Stabilizing the boat conformation of cyclohexane rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Goddard, W.A. III; Moldowan, J.M.
1995-06-21
In calculating the energetics for various conformers of the A, B, and C series of hopanoid hydrocarbons present in mature oil reservoirs, we find that the B series prefers the boat conformation (by 1.3-2.5 kcal/mol) for the D cyclohexane ring. We analyze the structural elements responsible for stabilizing this boat conformation, identify the key features, and illustrate how one might stabilize boat conformations of other systems. 5 refs., 3 figs., 2 tabs.
Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck
2015-01-01
External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377
Liu, Lu-Ning; Su, Hai-Nan; Yan, Shi-Gan; Shao, Si-Mi; Xie, Bin-Bin; Chen, Xiu-Lan; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong
2009-07-01
Crystal structures of phycobiliproteins have provided valuable information regarding the conformations and amino acid organizations of peptides and chromophores, and enable us to investigate their structural and functional relationships with respect to environmental variations. In this work, we explored the pH-induced conformational and functional dynamics of R-phycoerythrin (R-PE) by means of absorption, fluorescence and circular dichroism spectra, together with analysis of its crystal structure. R-PE presents stronger functional stability in the pH range of 3.5-10 compared to the structural stability. Beyond this range, pronounced functional and structural changes occur. Crystal structure analysis shows that the tertiary structure of R-PE is fixed by several key anchoring points of the protein. With this specific association, the fundamental structure of R-PE is stabilized to present physiological spectroscopic properties, while local variations in protein peptides are also allowed in response to environmental disturbances. The functional stability and relative structural sensitivity of R-PE allow environmental adaptation.
Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution
Ahlstrom, Logan S.; Miyashita, Osamu
2011-01-01
The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751
Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M
2016-03-08
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
Crespo, Maria D.; Rubini, Marina
2011-01-01
Background Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a Cγ-exo or a Cγ-endo ring pucker in dependence of proline chirality (4R/4S) in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying Cγ-exo puckering. Methodology/Principal Findings While (2S,4R)-4-fluoroproline ((4R)-FPro) containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S)-4-fluoroproline ((4S)-FPro) failed. Our results indicate that (4R)-FPro is favoring the Cγ-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of −4.71 kJ·mol−1 in the case of (4R)-FPro containing ubiquitin ((4R)-FPro-ub) compared to wild type ubiquitin (wt-ub). Expectedly, activity assays revealed that (4R)-FPro-ub retained the full biological activity compared to wt-ub. Conclusions/Significance The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein. PMID:21625626
NASA Astrophysics Data System (ADS)
Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira
2010-04-01
To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.
Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis
2002-09-01
In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.
Sialyldisaccharide conformations: a molecular dynamics perspective
NASA Astrophysics Data System (ADS)
Selvin, Jeyasigamani F. A.; Priyadarzini, Thanu R. K.; Veluraja, Kasinadar
2012-04-01
Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.
Conformation and Stability of Intramolecular Telomeric G-Quadruplexes: Sequence Effects in the Loops
Sattin, Giovanna; Artese, Anna; Nadai, Matteo; Costa, Giosuè; Parrotta, Lucia; Alcaro, Stefano; Palumbo, Manlio; Richter, Sara N.
2013-01-01
Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to loop bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex. To assess the effect of mutations in loop bases on G-quadruplex folding and stability, we performed a comprehensive analysis of mutant telomeric sequences by spectroscopic techniques, molecular dynamics simulations and gel electrophoresis. We found that when the first position in the loop was mutated from T to C or A the resulting structure adopted a less stable antiparallel topology; when the second position was mutated to C or A, lower thermal stability and no evident conformational change were observed; in contrast, substitution of the third position from A to C induced a more stable and original hybrid conformation, while mutation to T did not significantly affect G-quadruplex topology and stability. Our results indicate that allelic variations generate G-quadruplex telomeric structures with variable conformation and stability. This aspect needs to be taken into account when designing new potential anticancer molecules. PMID:24367632
Láng, András; Csizmadia, Imre G; Perczel, András
2005-02-15
The conformational space of the most biologically significant backbone folds of a suitable methionine peptide model was explored by density functional computational method. Using a medium [6-31G(d)] and a larger basis set [6-311++G(2d,2p)], the systematic exploration of low-energy backbone structures restricted for the "L-region" in the Ramachandran map of N-formyl-L-methioninamide results in conformers corresponding to the building units of an extended backbone structure (betaL), an inverse gamma-turn (gammaL), or a right-handed helical structure (alphaL). However, no poly-proline II type (epsilonL) fold was found, indicating that this conformer has no intrinsic stability, and highlighting the effect of molecular environment in stabilizing this backbone structure. This is in agreement with the abundance of the epsilonL-type backbone conformation of methionine found in proteins. Stability properties (DeltaE) and distinct backbone-side-chain interactions support the idea that specific intramolecular contacts are operative in the selection of the lowest energy conformers. Apart from the number of different folds, all stable conformers are within a 10 kcal x mol(-1) energy range, indicating the highly flexible behavior of methionine. This conformational feature can be important in supporting catalytic processes, facilitating protein folding and dimerization via metal ion binding. In both of the biological examples discussed (HIV-1 reverse transcriptase and PcoC copper-resistant protein), the conformational properties of Met residues were found to be of key importance. Spatial proximity to other types of residues or the same type of residue seems to be crucial for the structural integrity of a protein, whether Met is buried or exposed.
Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael
2005-02-01
The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
Zhai, Jiali; Wooster, Tim J; Hoffmann, Søren V; Lee, Tzong-Hsien; Augustin, Mary Ann; Aguilar, Marie-Isabel
2011-08-02
Understanding the factors that control protein structure and stability at the oil-water interface continues to be a major focus to optimize the formulation of protein-stabilized emulsions. In this study, a combination of synchrotron radiation circular dichroism spectroscopy, front-face fluorescence spectroscopy, and dual polarization interferometry (DPI) was used to characterize the conformation and geometric structure of β-lactoglobulin (β-Lg) upon adsorption to two oil-water interfaces: a hexadecane-water interface and a tricaprylin-water interface. The results show that, upon adsorption to both oil-water interfaces, β-Lg went through a β-sheet to α-helix transition with a corresponding loss of its globular tertiary structure. The degree of conformational change was also a function of the oil phase polarity. The hexadecane oil induced a much higher degree of non-native α-helix compared to the tricaprylin oil. In contrast to the β-Lg conformation in solution, the non-native α-helical-rich conformation of β-Lg at the interface was resistant to further conformational change upon heating. DPI measurements suggest that β-Lg formed a thin dense layer at emulsion droplet surfaces. The effects of high temperature and the presence of salt on these β-Lg emulsions were then investigated by monitoring changes in the ζ-potential and particle size. In the absence of salt, high electrostatic repulsion meant β-Lg-stabilized emulsions were resistant to heating to 90 °C. Adding salt (120 mM NaCl) before or after heating led to emulsion flocculation due to the screening of the electrostatic repulsion between colloidal particles. This study has provided insight into the structural properties of proteins adsorbed at the oil-water interface and has implications in the formulation and production of emulsions stabilized by globular proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B.; Amyes, T; Fedorov, A
2010-01-01
The structural factors responsible for the extraordinary rate enhancement ({approx}10{sup 17}) of the reaction catalyzed by orotidine 5{prime}-monophosphate decarboxylase (OMPDC) have not been defined. Catalysis requires a conformational change that closes an active site loop and 'clamps' the orotate base proximal to hydrogen-bonded networks that destabilize the substrate and stabilize the intermediate. In the OMPDC from Methanobacter thermoautotrophicus, a 'remote' structurally conserved cluster of hydrophobic residues that includes Val 182 in the active site loop is assembled in the closed, catalytically active conformation. Substitution of these residues with Ala decreases k{sub cat}/K{sub m} with a minimal effect on k{sub cat},more » providing evidence that the cluster stabilizes the closed conformation. The intrinsic binding energies of the 5{prime}-phosphate group of orotidine 5{prime}-monophosphate for the mutant enzymes are similar to that for the wild type, supporting this conclusion.« less
Zarrine-Afsar, Arash; Dahesh, Samira; Davidson, Alan R
2012-05-01
Delineating structures of the transition states in protein folding reactions has provided great insight into the mechanisms by which proteins fold. The most common method for obtaining this information is Φ-value analysis, which is carried out by measuring the changes in the folding and unfolding rates caused by single amino acid substitutions at various positions within a given protein. Canonical Φ-values range between 0 and 1, and residues displaying high values within this range are interpreted to be important in stabilizing the transition state structure, and to elicit this stabilization through native-like interactions. Although very successful in defining the general features of transition state structures, Φ-value analysis can be confounded when non-native interactions stabilize this state. In addition, direct information on backbone conformation within the transition state is not provided. In the work described here, we have investigated structure formation at a conserved β-bulge (with helical conformation) in the Fyn SH3 domain by characterizing the effects of substituting all natural amino acids at one position within this structural motif. By comparing the effects on folding rates of these substitutions with database-derived local structure propensity values, we have determined that this position adopts a non-native backbone conformation in the folding transition state. This result is surprising because this position displays a high and canonical Φ-value of 0.7. This work emphasizes the potential role of non-native conformations in folding pathways and demonstrates that even positions displaying high and canonical Φ-values may, nevertheless, adopt a non-native conformation in the transition state. Copyright © 2012 Wiley Periodicals, Inc.
Kellogg, Elizabeth H; Leaver-Fay, Andrew; Baker, David
2011-03-01
The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling. Copyright © 2010 Wiley-Liss, Inc.
On the origin of the gauche effect. A quantum chemical study of 1,2-difluoroethane
NASA Astrophysics Data System (ADS)
Engkvist, O.; Karlström, G.; Widmark, P.-O.
1997-01-01
The conformational equilibrium of 1,2-difluoroethane has been investigated using ab initio quantum chemical calculations at the SCF, MP2 and CCSD(T) levels, with ANO basis sets. The relative stability of the gauche-conformation of 1,2-difluoroethane is found to be a consequence of the nodal structure of the singly occupied orbital in the CFH 2 radical. It is also shown that the nodal structure of the singly occupied orbitals in the CFH biradical can explain the stability of the cis conformation of 1,2-difluoroethene.
NASA Astrophysics Data System (ADS)
Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Campos-Fernández, Linda; Alvarado-Salazar, Andres; Esquivel, Rodolfo O.
2015-08-01
Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys-Asn-Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.
NASA Astrophysics Data System (ADS)
Mozaffari Majd, M.; Dabbagh, H. A.; Farrokhpour, H.; Najafi Chermahini, A.
2017-11-01
The adsorption energies (Eads) and relative stabilities of selected conformers of the most stable tautomer of L-ascorbic acid (vitamin C) on the dehydroxylated γ-alumina (100) surface were calculated in both gas phase and solvent (water) using the density functional theory (DFT) method. The selected conformers were related to the different rotational angles of OH groups of L-ascorbic acid. The conformational analysis of bare tautomer in both gas and water showed that the conformer No.20 (conf. 20) and 13 (conf. 13) with the dihedral angles of H15sbnd O10sbnd C11sbnd C9 (-73°) and H20sbnd O19sbnd C9sbnd C11 (-135°) were the most stable and unstable conformers, respectively. The performed calculations in the presence of surface showed that the interaction of the conformers with the surface changes their relative stabilities and structures in both gas phase and water. The Ead of each conformer was calculated and it was determined that conf. 8 and conf. 16 have the highest value of Ead in the gas phase (-62.56 kcal/mol) and water (-54.44 kcal/mol), respectively. The optimized structure of each conformer on the surface and the number of hydrogen bonds between it and surface along with their bond lengths were determined.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Chi, Eva Y.; Krishnan, Sampathkumar; Kendrick, Brent S.; Chang, Byeong S.; Carpenter, John F.; Randolph, Theodore W.
2003-01-01
We studied the non-native aggregation of recombinant human granulocyte stimulating factor (rhGCSF) in solution conditions where native rhGCSF is both conformationally stable compared to its unfolded state and at concentrations well below its solubility limit. Aggregation of rhGCSF first involves the perturbation of its native structure to form a structurally expanded transition state, followed by assembly process to form an irreversible aggregate. The energy barriers of the two steps are reflected in the experimentally measured values of free energy of unfolding (ΔGunf) and osmotic second virial coefficient (B22), respectively. Under solution conditions where rhGCSF conformational stability dominates (i.e., large ΔGunf and negative B22), the first step is rate-limiting, and increasing ΔGunf (e.g., by the addition of sucrose) decreases aggregation. In solutions where colloidal stability is high (i.e., large and positive B22 values) the second step is rate-limiting, and solution conditions (e.g., low pH and low ionic strength) that increase repulsive interactions between protein molecules are effective at reducing aggregation. rhGCSF aggregation is thus controlled by both conformational stability and colloidal stability, and depending on the solution conditions, either could be rate-limiting. PMID:12717013
Erdmann, Roman S; Wennemers, Helma
2012-10-17
The effect of sterically demanding groups at proline residues on the conformational stability of the collagen triple helix was examined. The thermal stabilities (T(m) and ΔG) of eight different triple helices derived from collagen model peptides with (4R)- or (4S)-configured amidoprolines bearing either methyl or bulkier tert-butyl groups in the Xaa or Yaa position were determined and served as a relative measure for the conformational stability of the corresponding collagen triple helices. The results show that sterically demanding substituents are tolerated in the collagen triple helix when they are attached to (4R)-configured amidoprolines in the Xaa position or to (4S)-configured amidoprolines in the Yaa position. Structural studies in which the preferred conformation of (4R)- or (4S)-configured amidoproline were overlaid with the Pro and Hyp residues within a crystal structure of collagen revealed that the sterically demanding groups point to the outside of these two triple helices and thereby do not interfere with the formation of the triple helix. In all of the other examined collagen derivatives with lower stability of the triple helices, the acetyl or pivaloyl residues point toward the inside of the triple helix and clash with a residue of the neighboring strand. The results also revealed that unfavorable steric dispositions affect the conformational stability of the collagen triple helix more than unfavorable ring puckers of the proline residues. The results are useful for the design of functionalized collagen based materials.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Gounev, T. K.; Lee, M. S.; Little, T. S.
1994-10-01
The Raman (3100 to 50 cm -1) and IR (3100 to 50 cm -1) spectra of gaseous and solid n-propylphosphine, C 3H 7PH 2, and the corresponding P- d2 isotopomer have been recorded. Additionally, the Raman spectra of the liquids have been obtained with qualitative depolarization ratios. From these data, all five possible conformers have been identified in the fluid states and the trans-trans conformer is shown to be the most stable rotamer in both the gaseous and liquid states and it is the only conformer present in the solid. The first trans refers to the orientation of the lone pair to the ethylene group (rotation around the PC bond) whereas the second trans refers to the orientation of the methyl group relative to the PC bond (rotation around the -CH 2CH 2 bond). The next most stable conformer is the gauche-trans rotamer where the enthalpy difference has been determined from variable-temperature Raman studies to be 140 ± 5 cm -1 (400 ± 14 cal mol -1) for the vapor and 351 ± 20 cm -1 (1004 ± 57 cal mol -1) for the liquid. The other three conformers have nearly the same stabilities but significantly higher energies than the two more stable rotamers. From the far-IR data and relative conformer stabilities, some of the coefficients of the potential function governing conformer interconversion are estimated. A complete vibrational assignment is proposed for the trans-trans conformer and for the fundamentals for most of the heavy atom motions for the other conformers. The conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies which have been determined experimentally are compared to those obtained from ab initio calculations employing the RHF/3-21G* and/or RHF/6-31G* basis sets. Additionally, the conformational stabilities and structural parameters have been determined with the 6-31G* basis set with electron correlation at the MP2 level. These results are compared with the corresponding quantities for some similar molecules.
The pH-dependent tertiary structure of a designed helix-loop-helix dimer.
Dolphin, G T; Baltzer, L
1997-01-01
De novo designed helix-loop-helix motifs can fold into well-defined tertiary structures if residues or groups of residues are incorporated at the helix-helix boundary to form helix-recognition sites that restrict the conformational degrees of freedom of the helical segments. Understanding the relationship between structure and function of conformational constraints therefore forms the basis for the engineering of non-natural proteins. This paper describes the design of an interhelical HisH+-Asp- hydrogen-bonded ion pair and the conformational stability of the folded helix-loop-helix motif. GTD-C, a polypeptide with 43 amino acid residues, has been designed to fold into a hairpin helix-loop-helix motif that can dimerise to form a four-helix bundle. The folded motif is in slow conformational exchange on the NMR timescale and has a well-dispersed 1H NMR spectrum, a narrow temperature interval for thermal denaturation and a near-UV CD spectrum with some fine structure. The conformational stability is pH dependent with an optimum that corresponds to the pH for maximum formation of a hydrogen-bonded ion pair between HisH17+ in helix I and Asp27- in helix II. The formation of an interhelical salt bridge is strongly suggested by the pH dependence of a number of spectroscopic probes to generate a well-defined tertiary structure in a designed helix-loop-helix motif. The thermodynamic stability of the folded motif is not increased by the formation of the salt bridge, but neighbouring conformations are destabilised. The use of this novel design principle in combination with hydrophobic interactions that provide sufficient binding energy in the folded structure should be of general use in de novo design of native-like proteins.
Kong, Leopold; Huang, Chih-chin; Coales, Stephen J.; Molnar, Kathleen S.; Skinner, Jeff; Hamuro, Yoshitomo; Kwong, Peter D.
2010-01-01
The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction. PMID:20660185
The Structure of the Elusive Simplest Dipeptide Gly-Gly.
Cabezas, Carlos; Varela, Marcelino; Alonso, José L
2017-06-01
Among the hundreds of peptide compounds for which conformations have been determined by using different spectroscopic techniques, the structure of the simplest dipeptide glycylglycine (Gly-Gly) is conspicuously absent. Herein, for the first time, solid samples of Gly-Gly have been vaporized by laser ablation and three different structures have been revealed in a supersonic expansion by Fourier transform microwave spectroscopy. The intramolecular hydrogen bonding interactions that stabilize the observed forms have been established based on the 14 N nuclear quadrupole hyperfine structure. We have illustrated how conformer interconversion distorts the equilibrium conformational distribution, giving rise to missing conformers in the conformational landscape. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luchian, Raluca; Vinţeler, Emil; Chiş, Cosmina; Vasilescu, Mihai; Leopold, Nicolae; Prates Ramalho, João P; Chiş, Vasile
2017-12-01
The analysis of the possible conformers and the conformational change between solid and liquid states of a particular drug molecule are mandatory not only for describing reliably its spectroscopical properties but also for understanding the interaction with the receptor and its mechanism of action. Therefore, here we investigated the free-energy conformational landscape of levetiracetam (LEV) in gas phase as well as in water and ethanol, aiming to describe the 3-dimensional structure and energetic stability of its conformers. Twenty-two unique conformers were identified, and their energetic stability was determined at density functional theory B3LYP/6-31+G(2d,2p) level of theory. The 6 most stable monomers in water, within a relative free-energy window of 0.71 kcal mol -1 and clearly separated in energy from the remaining subset of 16 conformers, as well as the 3 most stable dimers were then used to compute the Boltzmann populations-averaged UV-Vis and NMR spectra of LEV. The conformational landscape in solution is distinctly different from that corresponding to gas phase, particularly due to the relative orientations of the butanamide group. Aiming to clarify the stability of the possible dimers of LEV, we also investigated computationally the structure of a set of 11 nonhydrated and hydrated homochiral hydrogen-bonded LEV dimers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Structural architecture of prothrombin in solution revealed by single molecule spectroscopy
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; ...
2016-07-19
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr 93 in kringle-1 onto Trp 547 in the protease domain that obliterates access tomore » the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.« less
Quantum chemical calculations in the structural analysis of phloretin
NASA Astrophysics Data System (ADS)
Gómez-Zavaglia, Andrea
2009-07-01
In this work, a conformational search on the molecule of phloretin [2',4',6'-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone] has been performed. The molecule of phloretin has eight dihedral angles, four of them taking part in the carbon backbone and the other four, related with the orientation of the hydroxyl groups. A systematic search involving a random variation of the dihedral angles has been used to generate input structures for the quantum chemical calculations. Calculations at the DFT(B3LYP)/6-311++G(d,p) level of theory permitted the identification of 58 local minima belonging to the C 1 symmetry point group. The molecular structures of the conformers have been analyzed using hierarchical cluster analysis. This method allowed us to group conformers according to their similarities, and thus, to correlate the conformers' stability with structural parameters. The dendrogram obtained from the hierarchical cluster analysis depicted two main clusters. Cluster I included all the conformers with relative energies lower than 25 kJ mol -1 and cluster II, the remaining conformers. The possibility of forming intramolecular hydrogen bonds resulted the main factor contributing for the stability. Accordingly, all conformers depicting intramolecular H-bonds belong to cluster I. These conformations are clearly favored when the carbon backbone is as planar as possible. The values of the νC dbnd O and νOH vibrational modes were compared among all the conformers of phloretin. The redshifts associated with intramolecular H-bonds were correlated with the H-bonds distances and energies.
Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA
2015-01-01
Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson–Crick/Watson–Crick A-G) or sheared (trans Hoogsteen/sugar edge A-G) conformations depending on the sequence and orientation of the adjacent closing base pairs. The solution structures (GCGGACGC)2 [Biochemistry, 1996, 35, 9677–9689] and (GCGGAUGC)2 [Biochemistry, 2007, 46, 1511–1522] demonstrate imino and sheared conformations for the two central GA pairs, respectively. These systems were studied using molecular dynamics and free energy change calculations for conformational changes, using umbrella sampling. For the structures to maintain their native conformations during molecular dynamics simulations, a modification to the standard Amber ff10 force field was required, which allowed the amino group of guanine to leave the plane of the base [J. Chem. Theory Comput., 2009, 5, 2088–2100] and form out-of-plane hydrogen bonds with a cross-strand cytosine or uracil. The requirement for this modification suggests the importance of out-of-plane hydrogen bonds in stabilizing the native structures. Free energy change calculations for each sequence demonstrated the correct conformational preference when the force field modification was used, but the extent of the preference is underestimated. PMID:24803859
Chou, Danny K; Krishnamurthy, Rajesh; Manning, Mark Cornell; Randolph, Theodore W; Carpenter, John F
2013-02-01
Physical and chemical degradation of therapeutic proteins can occur simultaneously. In this study, our first objective was to investigate how solution conditions that impact conformational stability of albinterferon alfa-2b, a recombinant fusion protein, modulate rates of methionine (Met) oxidation. Another objective of this work was to determine whether oxidation affects conformation and rate of aggregation of the protein. The protein was subjected to oxidation in solutions of varying pH, ionic strength, and excipients by the addition of 0.02% tertiary-butyl hydroperoxide (TBHP). The rate of formation of Met-sulfoxide species was monitored by reversed-phase high-performance liquid chromatography and compared across solution conditions. Albinterferon alfa-2b exhibited susceptibility to Met oxidation during exposure to TBHP that was highly dependent on solution parameters, but there was not a clear correlation between oxidation rate and protein conformational stability. Met oxidation resulted in significant perturbation of both secondary and tertiary structure of albinterferon alfa-2b as shown by both far-ultraviolet (UV) and near-UV circular dichroism. Moreover, oxidation of the protein caused a noticeable reduction in the protein's resistance to thermal denaturation. Surprisingly, despite its negative effect on solution structure and conformational stability, oxidation actually reduced the protein's aggregation rate during agitation at room temperature as well as during quiescent incubation at 40°C. Oxidation of the protein resulted in improved colloidal stability of the protein, which is manifested by a more positive B(22) value in the oxidized protein. Thus, the reduced aggregation rate after oxidation suggests that increased colloidal stability of oxidized albinterferon alfa-2b counteracted oxidation-induced decreases in conformational stability. Copyright © 2012 Wiley Periodicals, Inc.
Conformational states of the full-length glucagon receptor
Yang, Linlin; Yang, Dehua; de Graaf, Chris; Moeller, Arne; West, Graham M.; Dharmarajan, Venkatasubramanian; Wang, Chong; Siu, Fai Y.; Song, Gaojie; Reedtz-Runge, Steffen; Pascal, Bruce D.; Wu, Beili; Potter, Clinton S.; Zhou, Hu; Griffin, Patrick R.; Carragher, Bridget; Yang, Huaiyu; Wang, Ming-Wei; Stevens, Raymond C.; Jiang, Hualiang
2015-01-01
Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism. PMID:26227798
Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K
2017-04-01
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rotationally resolved electronic spectroscopy study of the conformational space of 3-methoxyphenol
NASA Astrophysics Data System (ADS)
Wilke, Martin; Schneider, Michael; Wilke, Josefin; Ruiz-Santoyo, José Arturo; Campos-Amador, Jorge J.; González-Medina, M. Elena; Álvarez-Valtierra, Leonardo; Schmitt, Michael
2017-07-01
Conformational preferences are determined by (de-)stabilization effects like intramolecular hydrogen bonds or steric hindrance of adjacent substituents and thus, influence the stability and reactivity of the conformers. In the present contribution, we investigate the conformational landscape of 3-methoxyphenol using a combination of high resolution electronic spectroscopy and ab initio calculations. Three of the four possible conformational isomers were characterized in their electronic ground and lowest excited singlet states on the basis of their rotational constants and other molecular parameters. The absence of one conformer in molecular beam studies can be explained by its non-planar structure in the excited state, which leads to a vanishingly small Franck-Condon factor of the respective origin excitation.
Andhirka, Sai Krishna; Vignesh, Ravichandran; Aradhyam, Gopala Krishna
2017-08-01
Deciphering the mechanism of activation of heterotrimeric G proteins by their cognate receptors continues to be an intriguing area of research. The recently solved crystal structure of the ternary complex captured the receptor-bound α-subunit in an open conformation, without bound nucleotide has improved our understanding of the activation process. Despite these advancements, the mechanism by which the receptor causes GDP release from the α-subunit remains elusive. To elucidate the mechanism of activation, we studied guanine nucleotide-induced structural stability of the α-subunit (in response to thermal/chaotrope-mediated stress). Inherent stabilities of the inactive (GDP-bound) and active (GTP-bound) forms contribute antagonistically to the difference in conformational stability whereas the GDP-bound protein is able to switch to a stable intermediate state, GTP-bound protein loses this ability. Partial perturbation of the protein fold reveals the underlying influence of the bound nucleotide providing an insight into the mechanism of activation. An extra stable, pretransition intermediate, 'empty pocket' state (conformationally active-state like) in the unfolding pathway of GDP-bound protein mimics a gating system - the activation process having to overcome this stable intermediate state. We demonstrate that a relatively more complex conformational fold of the GDP-bound protein is at the core of the gating system. We report capturing this threshold, 'metastable empty pocket' conformation (the gate) of α-subunit of G protein and hypothesize that the receptor activates the G protein by enabling it to achieve this structure through mild structural perturbation. © 2017 Federation of European Biochemical Societies.
Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom
2011-01-01
Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009
NASA Astrophysics Data System (ADS)
Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua
2016-02-01
The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.
NASA Astrophysics Data System (ADS)
Niimura, Subaru; Suzuki, Junya; Kurosu, Hiromichi; Yamanobe, Takeshi; Shoji, Akira
2010-04-01
To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a well-defined α-helical octadecapeptide composed of L-alanine (Ala) and L-phenylalanine (Phe) residues, H-(Ala) 8-Phe-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy and the precise secondary structural parameters such as main-chain dihedral angles and hydrogen-bond parameters of the optimized structure, we confirmed that the conformational stability of an α-helix is affected dominantly by the side-chain conformation ( χ1) of the Phe residue in this system: model A ( T form: around 180° of χ1) is most stable in α-helix and model B ( G + form: around -60° of χ1) is next stable, but model C ( G - form: around 60° of χ1) is less stable. In addition, we demonstrate that the stable conformation of poly( L-phenylalanine) is an α-helix with the side-chain T form, by comparison of the carbonyl 13C chemical shift measured by 13C CP-MAS NMR and the calculated one.
Yeh, Joanne I; Shivachev, Boris; Rapireddy, Srinivas; Crawford, Matthew J; Gil, Roberto R; Du, Shoucheng; Madrid, Marcela; Ly, Danith H
2010-08-11
We have determined the structure of a PNA-DNA duplex to 1.7 A resolution by multiple-wavelength anomalous diffraction phasing method on a zinc derivative. This structure represents the first high-resolution 3D view of a hybrid duplex containing a contiguous chiral PNA strand with complete gamma-backbone modification ("gammaPNA"). Unlike the achiral counterpart, which adopts a random-fold, this particular gammaPNA is already preorganized into a right-handed helix as a single strand. The new structure illustrates the unique characteristics of this modified PNA, possessing conformational flexibility while maintaining sufficient structural integrity to ultimately adopt the preferred P-helical conformation upon hybridization with DNA. The unusual structural adaptability found in the gammaPNA strand is crucial for enabling the accommodation of backbone modifications while constraining conformational states. In conjunction with NMR analysis characterizing the structures and substructures of the individual building blocks, these results provide unprecedented insights into how this new class of chiral gammaPNA is preorganized and stabilized, before and after hybridization with a cDNA strand. Such knowledge is crucial for the future design and development of PNA for applications in biology, biotechnology, and medicine.
Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico
2016-08-26
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Miyoshi, Daisuke; Ueda, Yu-Mi; Shimada, Naohiko; Nakano, Shu-Ichi; Sugimoto, Naoki; Maruyama, Atsushi
2014-09-01
Electrostatic interactions play a major role in protein-DNA interactions. As a model system of a cationic protein, herein we focused on a comb-type copolymer of a polycation backbone and dextran side chains, poly(L-lysine)-graft-dextran (PLL-g-Dex), which has been reported to form soluble interpolyelectrolyte complexes with DNA strands. We investigated the effects of PLL-g-Dex on the conformation and thermodynamics of DNA oligonucleotides forming various secondary structures. Thermodynamic analysis of the DNA structures showed that the parallel conformations involved in both DNA duplexes and triplexes were significantly and specifically stabilized by PLL-g-Dex. On the basis of thermodynamic parameters, it was further possible to design DNA switches that undergo structural transition responding to PLL-g-Dex from an antiparallel duplex to a parallel triplex even with mismatches in the third strand hybridization. These results suggest that polycationic molecules are able to induce structural polymorphism of DNA oligonucleotides, because of the conformation-selective stabilization effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Janati-Fard, Fatemeh; Housaindokht, Mohammad Reza; Monhemi, Hassan; Esmaeili, Abbas Ali; Nakhaei Pour, Ali
2018-07-15
The search for ionic liquids (ILs) with biochemical and biomedical applications has recently gained great attention. IL containing solvents can change the structure, stability and function of proteins. The study of protein conformation in ILs is important to understand enzymatic activity. In this work, conformational stability and activity of the enzyme in two imidazolium-based ILs (1-butyl 3-methyl-imidozolium and 1-hexyl 3-methyl-imidozoliumbromides) were investigated. We treated glucose oxidase as dimer-active enzyme in different IL concentration and seen that GOx activity was inhibited in the presence of ILs. Our experimental data showed that inhibition of activity and reduction of enzyme tertiary structure are more for hexyl than butyl derivative. These experimental results are in agreement with foregoing observations. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different IL concentration. The structure parameters obtained from MD simulation showed that conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inhibition at the presence of ILs. Root mean square deviation and fluctuation calculations indicated that the enzyme has stable conformation at higher IL concentration, in agreement with experimental observation. But hexyl derivative has a much stronger stabilization effect on the protein structure. In summary, the present study could improve our understanding of the molecular mechanism about the ionic liquid effects on the structure and activity of proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Nawaz, Mir Hussain; Ferreira, Juliana C.; Nedyalkova, Lyudmila; Zhu, Haizhong; Carrasco-López, César; Kirmizialtin, Serdal
2018-01-01
The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the ‘Warburg effect’. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis. Here, we report the structure of HK2 in complex with glucose and glucose-6-phosphate (G6P). Structural and biochemical characterization of the mitochondrial conformation reveals higher conformational stability and slow protein unfolding rate (ku) compared with the cytosolic conformation. Despite the active site similarity of all human hexokinases, the N-domain of HK2 is catalytically active but not in hexokinase 1 and 3. Helix-α13 that protrudes out of the N-domain to link it to the C-domain of HK2 is found to be important in maintaining the catalytic activity of the N-half. In addition, the N-domain of HK2 regulates the stability of the whole enzyme in contrast with the C-domain. Glucose binding enhanced the stability of the wild-type (WT) enzyme and the single mutant D657A of the C-domain, but it did not increase the stability of the D209A mutant of the N-domain. The interaction of HK2 with the mitochondria through its N-half is proposed to facilitate higher stability on the mitochondria. The identification of structural and biochemical differences between HK2 and other human hexokinase isozymes could potentially be used in the development of new anticancer therapies. PMID:29298880
NASA Technical Reports Server (NTRS)
Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,
2011-01-01
We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.
Predicting RNA pseudoknot folding thermodynamics
Cao, Song; Chen, Shi-Jie
2006-01-01
Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732
Flow-induced conformational changes in gelatin structure and colloidal stabilization.
Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K
2008-09-02
Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.
Sequence-specific unusual (1-->2)-type helical turns in alpha/beta-hybrid peptides.
Prabhakaran, Panchami; Kale, Sangram S; Puranik, Vedavati G; Rajamohanan, P R; Chetina, Olga; Howard, Judith A K; Hofmann, Hans-Jörg; Sanjayan, Gangadhar J
2008-12-31
This article describes novel conformationally ordered alpha/beta-hybrid peptides consisting of repeating l-proline-anthranilic acid building blocks. These oligomers adopt a compact, right-handed helical architecture determined by the intrinsic conformational preferences of the individual amino acid residues. The striking feature of these oligomers is their ability to display an unusual periodic pseudo beta-turn network of nine-membered hydrogen-bonded rings formed in the forward direction of the sequence by 1-->2 amino acid interactions both in solid-state and in solution. Conformational investigations of several of these oligomers by single-crystal X-ray diffraction, solution-state NMR, and ab initio MO theory suggest that the characteristic steric and dihedral angle restraints exerted by proline are essential for stabilizing the unusual pseudo beta-turn network found in these oligomers. Replacing proline by the conformationally flexible analogue alanine (Ala) or by the conformationally more constrained alpha-amino isobutyric acid (Aib) had an adverse effect on the stabilization of this structural architecture. These findings increase the potential to design novel secondary structure elements profiting from the steric and dihedral angle constraints of the amino acid constituents and help to augment the conformational space available for synthetic oligomer design with diverse backbone structures.
Tuske, Steven; Sarafianos, Stefan G.; Wang, Xinyue; Hudson, Brian; Sineva, Elena; Mukhopadhyay, Jayanta; Birktoft, Jens J.; Leroy, Olivier; Ismail, Sajida; Clark, Arthur D.; Dharia, Chhaya; Napoli, Andrew; Laptenko, Oleg; Lee, Jookyung; Borukhov, Sergei; Ebright, Richard H.; Arnold, Eddy
2009-01-01
We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic-acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to, but not overlapping, the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist, and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents. PMID:16122422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Gwo-Yu; Geng, Hui; Pancera, Marie
ABSTRACT The HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state. When placed into the context of BG505 SOSIP.664, a soluble Env trimer mimic developed by Sanders, Moore, andmore » colleagues, the engineered DS-SOSIP trimer showed reduced conformational triggering by CD4. Here, we further stabilize DS-SOSIP through a combination of structure-based design and 96-well-based expression and antigenic assessment. From 103 designs, we identified one, named DS-SOSIP.4mut, with four additional mutations at the interface of potentially mobile domains of the prefusion-closed structure. We also determined the crystal structures of DS-SOSIP.4mut at 4.1-Å resolution and of an additional DS-SOSIP.6mut variant at 4.3-Å resolution, and these confirmed the formation of engineered disulfide bonds. Notably, DS-SOSIP.4mut elicited a higher ratio of tier 2 autologous titers versus tier 1 V3-sensitive titers than BG505 SOSIP.664. DS-SOSIP.4mut also showed reduced recognition of CD4 and increased thermostability. The improved antigenicity, thermostability, and immunogenicity of DS-SOSIP.4mut suggest utility as an immunogen or a serologic probe; moreover, the specific four alterations identified here, M154, M300, M302, and L320 (4mut), can also be transferred to other HIV-1 Env trimers of interest to improve their properties. IMPORTANCEOne approach to elicit broadly neutralizing antibodies against HIV-1 is to stabilize the structurally flexible HIV-1 envelope (Env) trimer in a conformation that displays predominantly broadly neutralizing epitopes and few to no nonneutralizing epitopes. The prefusion-closed conformation of HIV-1 Env has been identified as one such preferred conformation, and a current leading vaccine candidate is the BG505 DS-SOSIP variant, comprising two disulfides and an Ile-to-Pro mutation of Env from strain BG505. Here, we introduced additional mutations to further stabilize BG505 DS-SOSIP in the vaccine-preferred prefusion-closed conformation. In guinea pigs, our best mutant, DS-SOSIP.4mut, elicited a significantly higher ratio of autologous versus V3-directed neutralizing antibody responses than the SOSIP-stabilized form. We also observed an improvement in thermostability and a reduction in CD4 affinity. With improved antigenicity, stability, and immunogenicity, DS-SOSIP.4mut-stabilized trimers may have utility as HIV-1 immunogens or in other antigen-specific contexts, such as with B-cell probes.« less
Representing the Marginal Stability of Peptides in Coarse Grained Models
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Dalgicdir, Cahit; Ramezanghorbani, Farhad
Tertiary structure of proteins is only marginally stable; such that the folded structure is separated from local minima by as little as 10 kcal/mol. In particular for intrinsically disordered peptides, this marginal stability is key to understanding their complex behavior. Bottom-up coarse grained (CG) models for proteins/peptides which rely on structural and/or thermodynamic reference data from experiments or all atom simulations inherently focus on the equilibrium structure and fail to capture the conformational dynamics of the molecule. In this study, we present a CG model for a synthetic peptide, LK, which successfully captures the conformational flexibility of the molecule in different environments. LK peptide is composed of leucine and lysine residues and displays a stark conformational transition from a degenerate conformation in dilute solution to a fully stable alpha-helix at macroscopic and molecular interfaces. In this study we demonstrate that by carefully combining atomistic references from both the unfolded and folded states, one can create a CG model that can represent not only the folded state, but also the conformational transitions that the peptide exhibits in response to changes in the environment. M. Sayar thanks TÜBİTAK (Grant No. 212T184) and TÜBA Distinguished Young Scientist Award (2012 awardee) for financial support.
Guo, Jianxin; Kumar, Sandeep; Prashad, Amarnauth; Starkey, Jason; Singh, Satish K
2014-07-01
To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.
Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D
2012-07-03
Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.
Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A
2010-01-01
There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.
He, Mu-Yang; Li, Wei-Kang; Zheng, Qing-Chuan; Zhang, Hong-Xing
2018-04-17
Deregulated kinase activity of anaplastic lymphoma kinase (ALK) has been observed to be implicated in the development of tumor progression. The activation mechanism of ALK is proposed to be similar to other receptor tyrosine kinases (RTKs), but the distinct static X-ray crystal conformation of ALK suggests its unique conformational transition. Herein, we have illustrated the dynamic conformational property of wild-type ALK as well as the kinase activation equilibrium variation induced by two neuroblastoma mutations (R1275Q and Y1278S) and ATP binding by performing enhanced sampling accelerated Molecular Dynamics (aMD) simulations. The results suggest that the wild-type ALK is mostly favored in the inactive state, whereas the mutations and ATP binding promote a clear shift toward the active-like conformation. The R1275Q mutant stabilizes the active conformation by rigidifying the αC-in conformation. The Y1278S mutant promotes activation at the expense of a π-stacking hydrophobic cluster, which plays a critical role in the stabilization of the inactive conformation of native ALK. ATP produces a more compact active site and thereby facilitates the activation of ALK. Taken together, these findings not only elucidate the diverse conformations in different ALKs but can also shed light on new strategies for protein engineering and structural-based drug design for ALK.
Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization
Larsen, Aaron T.; Fahrenbach, Albert C.; Sheng, Jia; Pian, Julia; Szostak, Jack W.
2015-01-01
Nucleobase modifications dramatically alter nucleic acid structure and thermodynamics. 2-thiouridine (s2U) is a modified nucleobase found in tRNAs and known to stabilize U:A base pairs and destabilize U:G wobble pairs. The recently reported crystal structures of s2U-containing RNA duplexes do not entirely explain the mechanisms responsible for the stabilizing effect of s2U or whether this effect is entropic or enthalpic in origin. We present here thermodynamic evaluations of duplex formation using ITC and UV thermal denaturation with RNA duplexes containing internal s2U:A and s2U:U pairs and their native counterparts. These results indicate that s2U stabilizes both duplexes. The stabilizing effect is entropic in origin and likely results from the s2U-induced preorganization of the single-stranded RNA prior to hybridization. The same preorganizing effect is likely responsible for structurally resolving the s2U:U pair-containing duplex into a single conformation with a well-defined H-bond geometry. We also evaluate the effect of s2U on single strand conformation using UV- and CD-monitored thermal denaturation and on nucleoside conformation using 1H NMR spectroscopy, MD and umbrella sampling. These results provide insights into the effects that nucleobase modification has on RNA structure and thermodynamics and inform efforts toward improving both ribozyme-catalyzed and nonenzymatic RNA copying. PMID:26240387
De novo design of the hydrophobic core of ubiquitin.
Lazar, G. A.; Desjarlais, J. R.; Handel, T. M.
1997-01-01
We have previously reported the development and evaluation of a computational program to assist in the design of hydrophobic cores of proteins. In an effort to investigate the role of core packing in protein structure, we have used this program, referred to as Repacking of Cores (ROC), to design several variants of the protein ubiquitin. Nine ubiquitin variants containing from three to eight hydrophobic core mutations were constructed, purified, and characterized in terms of their stability and their ability to adopt a uniquely folded native-like conformation. In general, designed ubiquitin variants are more stable than control variants in which the hydrophobic core was chosen randomly. However, in contrast to previous results with 434 cro, all designs are destabilized relative to the wild-type (WT) protein. This raises the possibility that beta-sheet structures have more stringent packing requirements than alpha-helical proteins. A more striking observation is that all variants, including random controls, adopt fairly well-defined conformations, regardless of their stability. This result supports conclusions from the cro studies that non-core residues contribute significantly to the conformational uniqueness of these proteins while core packing largely affects protein stability and has less impact on the nature or uniqueness of the fold. Concurrent with the above work, we used stability data on the nine ubiquitin variants to evaluate and improve the predictive ability of our core packing algorithm. Additional versions of the program were generated that differ in potential function parameters and sampling of side chain conformers. Reasonable correlations between experimental and predicted stabilities suggest the program will be useful in future studies to design variants with stabilities closer to that of the native protein. Taken together, the present study provides further clarification of the role of specific packing interactions in protein structure and stability, and demonstrates the benefit of using systematic computational methods to predict core packing arrangements for the design of proteins. PMID:9194177
Alsenaidy, Mohammad A.; Kim, Jae Hyun; Majumdar, Ranajoy; Weis, David D.; Joshi, Sangeeta B.; Tolbert, Thomas J.; Middaugh, C. Russell; Volkin, David B.
2013-01-01
The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial and complete enzymatic removal of the N-linked Fc glycan, was compared to the untreated mAb over a wide range of temperature (10° to 90°C) and solution pH (3 to 8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams (EPDs). Subtle to larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in mAb glycoform physical stability. Based on these results, a two-step methodology was used in which mAb glycoform conformational stability is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques and data visualization methods. With this approach, high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated. PMID:24114789
Automated use of mutagenesis data in structure prediction.
Nanda, Vikas; DeGrado, William F
2005-05-15
In the absence of experimental structural determination, numerous methods are available to indirectly predict or probe the structure of a target molecule. Genetic modification of a protein sequence is a powerful tool for identifying key residues involved in binding reactions or protein stability. Mutagenesis data is usually incorporated into the modeling process either through manual inspection of model compatibility with empirical data, or through the generation of geometric constraints linking sensitive residues to a binding interface. We present an approach derived from statistical studies of lattice models for introducing mutation information directly into the fitness score. The approach takes into account the phenotype of mutation (neutral or disruptive) and calculates the energy for a given structure over an ensemble of sequences. The structure prediction procedure searches for the optimal conformation where neutral sequences either have no impact or improve stability and disruptive sequences reduce stability relative to wild type. We examine three types of sequence ensembles: information from saturation mutagenesis, scanning mutagenesis, and homologous proteins. Incorporating multiple sequences into a statistical ensemble serves to energetically separate the native state and misfolded structures. As a result, the prediction of structure with a poor force field is sufficiently enhanced by mutational information to improve accuracy. Furthermore, by separating misfolded conformations from the target score, the ensemble energy serves to speed up conformational search algorithms such as Monte Carlo-based methods. Copyright 2005 Wiley-Liss, Inc.
García-Prieto, Francisco F; Fdez Galván, Ignacio; Aguilar, Manuel A; Martín, M Elena
2011-11-21
The ASEP/MD method has been employed for studying the solvent effect on the conformational equilibrium of the alanine dipeptide in water solution. MP2 and density functional theory (DFT) levels of theory were used and results were compared. While in gas phase cyclic structures showing intramolecular hydrogen bonds were found to be the most stable, the stability order is reversed in water solution. Intermolecular interaction with the solvent causes the predominance of extended structures as the stabilizing contacts dipeptide-water are favoured. Free-energy differences in solution were calculated and PPII, α(R), and C5 conformers were identified as the most stable at MP2 level. Experimental data from Raman and IR techniques show discrepancies about the relative abundance of α(R) y C5, our results support the Raman data. The DFT level of theory agrees with MP2 in the location and stability of PPII and α(R) forms but fails in the location of C5. MP2 results suggest the possibility of finding traces of C7eq conformer in water solution, in agreement with recent experiments.
Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity
NASA Astrophysics Data System (ADS)
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding
Flanagan, Colleen A.; Manilall, Ashmeetha
2017-01-01
Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501
Luo, Di; Mu, Yuguang
2016-06-09
G-quadruplex is a noncanonical yet crucial secondary structure of nucleic acids, which has proven its importance in cell aging, anticancer therapies, gene expression, and genome stability. In this study, the stability and folding dynamics of human telomeric DNA G-quadruplexes were investigated via enhanced sampling techniques. First, temperature-replica exchange MD (REMD) simulations were employed to compare the thermal stabilities among the five established folding topologies. The hybrid-2 type adopted by extended human telomeric sequence is revealed to be the most stable conformation in our simulations. Next, the free energy landscapes and folding intermediates of the hybrid-1 and -2 types were investigated with parallel tempering metadynamics simulations in the well-tempered ensemble. It was observed that the N-glycosidic conformations of guanines can flip over to accommodate into the cyclic Hoogsteen H-bonding on G-tetrads in which they were not originally involved. Furthermore, a hairpin and a triplex intermediate were identified for the folding of the hybrid-1 type conformation, whereas for the hybrid-2 type, there were no folding intermediates observed from its free energy surface. However, the energy barrier from its native topology to the transition structure is found to be extremely high compared to that of the hybrid-1 type, which is consistent with our stability predictions from the REMD simulations. We hope the insights presented in this work can help to complement current understanding on the stability and dynamics of G-quadruplexes, which is necessary not only to stabilize the structures but also to intervene their formation in genome.
Darkhalil, Ikhlas D; Paquet, Charles; Waqas, Mohammad; Gounev, Todor K; Durig, James R
2015-02-05
Variable temperature (-60 to -100 °C) studies of ethyldichlorophosphine, CH3CH2PCl2, of the infrared spectra (4000-400 cm(-1)) dissolved in liquid xenon have been carried out. From these data, the two conformers have been identified and the enthalpy difference has been determined between the more stable trans conformer and the less stable gauche form to be 88±9 cm(-1) (1.04±0.11 kJ/mol). The percentage of abundance of the gauche conformer is estimated to be 57% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing many different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for both conformers which have been predicted by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force fields, wavenumbers of the fundamentals, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. The results are discussed and compared to the corresponding properties of some related molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Different structural stability and toxicity of PrP(ARR) and PrP(ARQ) sheep prion protein variants.
Paludi, Domenico; Thellung, Stefano; Chiovitti, Katia; Corsaro, Alessandro; Villa, Valentina; Russo, Claudio; Ianieri, Adriana; Bertsch, Uwe; Kretzschmar, Hans A; Aceto, Antonio; Florio, Tullio
2007-12-01
The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrP(ARQ) [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrP(ARR) [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrP(ARR) and PrP(ARQ) variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrP(ARR) form was more toxic than the scrapie susceptible PrP(ARQ) variant. Moreover, the alpha-helical conformation of PrP(ARR) was less stable than that of PrP(ARQ) and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrP(ARQ) variant displays a higher propensity to form large aggregates than PrP(ARR). Interestingly, in the presence of small amounts of PrP(ARR), PrP(ARQ) aggregability was reduced to levels similar to that of PrP(ARR). Thus, in contrast to PrP(ARR) toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrP(ARQ) that allows the formation of large amyloid fibrils.
Celecoxib Encapsulation in β-Casein Micelles: Structure, Interactions, and Conformation.
Turovsky, Tanya; Khalfin, Rafail; Kababya, Shifi; Schmidt, Asher; Barenholz, Yechezkel; Danino, Dganit
2015-07-07
β-Casein is a 24 kDa natural protein that has an open conformation and almost no folded or secondary structure, and thus is classified as an intrinsically unstructured protein. At neutral pH, β-casein has an amphiphilic character. Therefore, in contrast to most unstructured proteins that remain monomeric in solution, β-casein self-assembles into well-defined core-shell micelles. We recently developed these micelles as potential carriers for oral administration of poorly water-soluble pharmaceuticals, using celecoxib as a model drug. Herein we present deep and precise insight into the physicochemical characteristics of the protein-drug formulation, both in bulk solution and in dry form, emphasizing drug conformation, packing properties and aggregation state. In addition, the formulation is extensively studied in terms of structure and morphology, protein/drug interactions and physical stability. Particularly, NMR measurements indicated strong drug-protein interactions and noncrystalline drug conformation, which is expected to improve drug solubility and bioavailability. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were combined for nanostructural characterization, proving that drug-protein interactions lead to well-defined spheroidal micelles that become puffier and denser upon drug loading. Dynamice light scattering (DLS), turbidity measurements, and visual observations complemented the analysis for determining formulation structure, interactions, and stability. Additionally, it was shown that the loaded micelles retain their properties through freeze-drying and rehydration, providing long-term physical and chemical stability. Altogether, the formulation seems greatly promising for oral drug delivery.
NASA Astrophysics Data System (ADS)
Wilke, Martin; Brand, Christian; Wilke, Josefin; Schmitt, Michael
2017-07-01
Even though the two possible rotamers of methoxy-substituted indoles only differ in the orientation of a methoxy group, this slight geometry change can have a strong influence on the stabilities and further molecular properties of the conformers. In the present study, we evaluate the effect of the methyl group position on the presence of different conformers in molecular beam studies for the systems 4-, 5-, and 6-methoxyindole. By using rotationally resolved electronic Stark spectroscopy in combination with high level ab initio calculations the structures of the observable conformers have been assigned and reasons for the absence of the missing conformers discussed. Thereby, we could show that the relative ground state energies and isomerization barriers for both conformers strongly depend on the position of the methoxy group and are the main explanation for the absence of the syn conformers of 4-, and 5-methoxyindole.
Vembanur, Srivathsan; Venkateshwaran, Vasudevan; Garde, Shekhar
2014-04-29
We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a broad range of conformations at the vapor-liquid interface of water. We show that adding a pair of charges to a hydrophobic polymer at the interface can dramatically change its conformations, stabilizing hairpinlike structures, with molecular details depending on the location of the charged pair in the sequence. The translational dynamics of homopolymers and heteropolymers are also different, whereas the homopolymers skate on the interface with low drag, the tendency of charged groups to remain hydrated pulls the heteropolymers toward the liquid side of the interface, thus pinning them, increasing drag, and slowing the translational dynamics. The conformational dynamics of heteropolymers are also slower than that of the homopolymer and depend on the location of the charged groups in the sequence. Conformational dynamics are most restricted for the end-charged heteropolymer and speed up as the charge pair is moved toward the center of the sequence. We rationalize these trends using the fundamental understanding of the effects of the interface on primitive pair-level interactions between two hydrophobic groups and between oppositely charged ions in its vicinity.
Metal Cations in G-Quadruplex Folding and Stability
NASA Astrophysics Data System (ADS)
Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra
2016-09-01
This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.
Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu
2012-12-01
Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.
Polymorphs and polymorphic cocrystals of temozolomide.
Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini
2008-07-07
Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.
Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins
NASA Astrophysics Data System (ADS)
Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.
Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.
Automated selection of stabilizing mutations in designed and natural proteins.
Borgo, Benjamin; Havranek, James J
2012-01-31
The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins.
Automated selection of stabilizing mutations in designed and natural proteins
Borgo, Benjamin; Havranek, James J.
2012-01-01
The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins. PMID:22307603
Yanaka, Saeko; Ueno, Takamasa; Shi, Yi; Qi, Jianxun; Gao, George F.; Tsumoto, Kouhei; Sugase, Kenji
2014-01-01
In immune-mediated control of pathogens, human leukocyte antigen (HLA) class I presents various antigenic peptides to CD8+ T-cells. Long-lived peptide presentation is important for efficient antigen-specific T-cell activation. Presentation time depends on the peptide sequence and the stability of the peptide-HLA complex (pHLA). However, the determinant of peptide-dependent pHLA stability remains elusive. Here, to reveal the pHLA stabilization mechanism, we examined the crystal structures of an HLA class I allomorph in complex with HIV-derived peptides and evaluated site-specific conformational fluctuations using NMR. Although the crystal structures of various pHLAs were almost identical independent of the peptides, fluctuation analyses identified a peptide-dependent minor state that would be more tightly packed toward the peptide. The minor population correlated well with the thermostability and cell surface presentation of pHLA, indicating that this newly identified minor state is important for stabilizing the pHLA and facilitating T-cell recognition. PMID:25028510
Pey, Angel L
2014-08-01
Human phosphoglycerate kinase 1 (hPGK1) is a glycolytic enzyme essential for ATP synthesis, and it is implicated in different pathological conditions such as inherited diseases, oncogenesis and activation of drugs for cancer and viral treatments. Particularly, mutations in hPGK1 cause human PGK1 deficiency, a rate metabolic conformational disease. We have recently found that most of these mutations cause protein kinetic destabilization by significant changes in the structure/energetics of the transition state for irreversible denaturation. In this work, we explore the relationships between protein conformation, thermodynamic and kinetic stability in hPGK1 by performing comprehensive analyses in a wide pH range (2.5-8). hPGK1 remains in a native conformation at pH 5-8, but undergoes a conformational transition to a molten globule-like state at acidic pH. Interestingly, hPGK1 kinetic stability remains essentially constant at pH 6-8, but is significantly reduced when pH is decreased from 6 to 5. We found that this decrease in kinetic stability is caused by significant changes in the energetic/structural balance of the denaturation transition state, which diverge from those found for disease-causing mutations. We also show that protein kinetic destabilization by acidic pH is strongly linked to lower thermodynamic stability, while in disease-causing mutations seems to be linked to lower unfolding cooperativity. These results highlight the plasticity of the hPGK1 denaturation mechanism that responds differently to changes in pH and in disease-causing mutations. New insight is presented into the different factors contributing to hPGK1 thermodynamic and kinetic stability and the role of denaturation mechanisms in hPGK1 deficiency. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Dutta, Sneha; Mukherjee, Debanjan; Jarori, Gotam K
2015-06-01
A distinct structural feature of Plasmodium falciparum enolase (Pfeno) is the presence of a five amino acid insert -104EWGWS108- that is not found in host enolases. Its conservation among apicomplexan enolases has raised the possibility of its involvement in some important physiological function(s). Deletion of this sequence is known to lower k(cat)/K(m), increase K(a) for Mg(II) and convert dimer into monomers (Vora HK, Shaik FR, Pal-Bhowmick I, Mout R & Jarori GK (2009) Arch Biochem Biophys 485, 128-138). These authors also raised the possibility of the formation of an H-bond between Ser108 and Leu49 that could stabilize the apo-Pfeno in an active closed conformation that has high affinity for Mg(II). Here, we examined the effect of replacement of Ser108 with Gly/Ala/Thr on enzyme activity, Mg(II) binding affinity, conformational states and oligomeric structure and compared it with native recombinant Pfeno. The results obtained support the view that Ser108 is likely to be involved in the formation of certain crucial H-bonds with Leu49. The presence of these interactions can stabilize apo-Pfeno in an active closed conformation similar to that of Mg(II) bound yeast enolase. As predicted, S108G/A-Pfeno variants (where Ser108-Leu49 H-bonds are likely to be disrupted) were found to exist in an open conformation and had low affinity for Mg(II). They also required Mg(II) induced conformational changes to acquire the active closed conformational state essential for catalysis. The possible physiological relevance of apo-Pfeno being in such an active state is discussed. © 2015 FEBS.
NASA Astrophysics Data System (ADS)
Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju
2014-10-01
Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.
Zhao, Jun; Zhang, Baohong; Zhu, Jianwei; Nussinov, Ruth; Ma, Buyong
2018-06-01
Amyloid formation and deposition of immunoglobulin light-chain proteins in systemic amyloidosis (AL) cause major organ failures. While the κ light-chain is dominant (λ/κ=1:2) in healthy individuals, λ is highly overrepresented (λ/κ=3:1) in AL patients. The structural basis of the amyloid formation and the sequence preference are unknown. We examined the correlation between sequence and structural stability of dimeric variable domains of immunoglobulin light chains using molecular dynamics simulations of 24 representative dimer interfaces, followed by energy evaluation of conformational ensembles for 20 AL patients' light chain sequences. We identified a stable interface with displaced N-terminal residues, provides the structural basis for AL protein fibrils formation. Proline isomerization may cause the N-terminus to adopt amyloid-prone conformations. We found that λ light-chains prefer misfolded dimer conformation, while κ chain structures are stabilized by a natively folded dimer. Our study may facilitate structure-based small molecule and antibody design to inhibit AL. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.
Asp133 Residue in NhaA Na+/H+ Antiporter Is Required for Stability Cation Binding and Transport.
Rimon, Abraham; Dwivedi, Manish; Friedler, Assaf; Padan, Etana
2018-03-16
Na + /H + antiporters have a crucial role in pH and Na + homeostasis in cells. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and revealed a previously unknown structural fold, which has since been identified in several secondary active transporters. This unique structural fold is very delicately electrostatically balanced. Asp133 and Lys 300 have been ascribed essential roles in this balance and, more generally, in the structure and function of the antiporter. In this work, we show the multiple roles of Asp133 in NhaA: (i) The residue's negative charge is critical for the stability of the NhaA structure. (ii) Its main chain is part of the active site. (iii) Its side chain functions as an alkaline-pH-dependent gate, changing the protein's conformation from an inward-facing conformation at acidic pH to an outward-open conformation at alkaline pH, opening the periplasm funnel. On the basis of the experimental data, we propose a tentative mechanism integrating the structural and functional roles of Asp133. Copyright © 2018 Elsevier Ltd. All rights reserved.
The denaturation and degradation of stable enzymes at high temperatures.
Daniel, R M; Dines, M; Petach, H H
1996-01-01
Now that enzymes are available that are stable above 100 degrees C it is possible to investigate conformational stability at this temperature, and also the effect of high-temperature degradative reactions in functioning enzymes and the inter-relationship between degradation and denaturation. The conformational stability of proteins depends upon stabilizing forces arising from a large number of weak interactions, which are opposed by an almost equally large destabilizing force due mostly to conformational entropy. The difference between these, the net free energy of stabilization, is relatively small, equivalent to a few interactions. The enhanced stability of very stable proteins can be achieved by an additional stabilizing force which is again equivalent to only a few stabilizing interactions. There is currently no strong evidence that any particular interaction (e.g. hydrogen bonds, hydrophobic interactions) plays a more important role in proteins that are stable at 100 degrees C than in those stable at 50 degrees C, or that the structures of very stable proteins are systematically different from those of less stable proteins. The major degradative mechanisms are deamidation of asparagine and glutamine, and succinamide formation at aspartate and glutamate leading to peptide bond hydrolysis. In addition to being temperature-dependent, these reactions are strongly dependent upon the conformational freedom of the susceptible amino acid residues. Evidence is accumulating which suggests that even at 100 degrees C deamidation and succinamide formation proceed slowly or not at all in conformationally intact (native) enzymes. Whether this is the case at higher temperatures is not yet clear, so it is not known whether denaturation of degradation will set the upper limit of stability for enzymes. PMID:8694749
Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L
2016-09-21
Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less competition with water at the specific hydration layer around the protein, thus reducing protein-solvent interactions and retaining lysozyme's native conformation. The structure-property links established in this study are considered to be applicable to other proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirouac, Kevin N.; Ling, Hong; UWO)
Human DNA polymerase iota (pol iota) is a unique member of Y-family polymerases, which preferentially misincorporates nucleotides opposite thymines (T) and halts replication at T bases. The structural basis of the high error rates remains elusive. We present three crystal structures of pol complexed with DNA containing a thymine base, paired with correct or incorrect incoming nucleotides. A narrowed active site supports a pyrimidine to pyrimidine mismatch and excludes Watson-Crick base pairing by pol. The template thymine remains in an anti conformation irrespective of incoming nucleotides. Incoming ddATP adopts a syn conformation with reduced base stacking, whereas incorrect dGTP andmore » dTTP maintain anti conformations with normal base stacking. Further stabilization of dGTP by H-bonding with Gln59 of the finger domain explains the preferential T to G mismatch. A template 'U-turn' is stabilized by pol and the methyl group of the thymine template, revealing the structural basis of T stalling. Our structural and domain-swapping experiments indicate that the finger domain is responsible for pol's high error rates on pyrimidines and determines the incorporation specificity.« less
Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design
Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos
2009-01-01
Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062
NASA Astrophysics Data System (ADS)
Ghosh, Saikat
The colloidal behavior of engineered nanomaterials exposed in an aquatic environment may significantly influence their bioavailability as well as toxicity to different species. Natural organic matter (NOM) is one of the major colloidal materials ubiquitous in the environment with significant structural heterogeneity. Therefore, role of NOM molecules on environmental fate of these engineered NPs needs to be addressed. Colloidal behavior of aluminum (Al2O 3) and magnetic iron oxide (gammaFe2O3) NPs was studied in the presence of structurally different HAs and synthetic polyacrylic acids (PAAs). The conformation behavior of the adsorobed NOM/polyelectrolyte under specific solution conditions were determined with dynamic light scattering, atomic force microscopy measurements. Al2O3 NPs followed the classical DLVO model of colloidal behavior in their pristine state. However, a significant deviation from the classical DLVO model was observed when these NPs were coated with structurally different HAs. Low polar, high molecular weight HA fractions showed much stronger stabilization against Ca2+ induced aggregation. Previously, we observed that these low polar, high molecular weight fractions strongly destabilized the NP suspension when added in a small quantity. A significant transformation in suspension stability was observed possibly due to steric effect of these adsorbed HAs. The colloidal behavior of PAA/NOM coated ferrimagnetic gammaFe 2O3 NPs were investigated. Pure gammaFe2O 3 NPs were extremely unstable in aqueous solution but a significant enhancement in colloidal stability was observed after coating with polyelectrolytes/NOM. The steric as well as electrostatic stabilization introduced by the polyelectrolyte coating strongly dictated the colloidal stability. The alteration of electrosteric stabilization mechanisms by pH-induced conformation change profoundly influences the colloidal stability. Atomic force microscopy (AFM) study revealed a highly stretched conformation of the HA molecular chains adsorbed on gammaFe 2O3 NP surface with increasing pH from 5 to 9 which enhanced the colloidal stability trough long range electrosteric stabilization. The depletion of the polyelectrolytes during dilution of the suspension in the acidic solution conditions and in the presence of Na+ or Ca 2+ decreased the colloidal stability. The conformation of the polyelectrolytes adsorbed on the NP surface altered significantly as a function of substrate surface charge as viewed from the AFM imaging.
The influence of solvent on conformational properties of peptides with Aib residue-a DFT study.
Wałęsa, Roksana; Broda, Małgorzata A
2017-11-21
The conformational propensities of the Aib residue on the example of two model peptides Ac-Aib-NHMe (1) and Ac-Aib-NMe 2 (2), were studied by B3LYP and M06-2X functionals, in the gas phase and in the polar solvents. To verify the reliability of selected functionals, we also performed MP2 calculations for the tested molecules in vacuum. Polarizable continuum models (PCM and SMD) were used to estimate the solvent effect. Ramachandran maps were calculated to find all energy minima. Noncovalent intramolecular interactions due to hydrogen-bonds and dipole attractions between carbonyl groups are responsible for the relative stabilities of the conformers. In order to verify the theoretical results, the available conformations of similar X-ray structures from the Cambridge Crystallographic Data Center (CCDC) were analyzed. The results of the calculations show that both derivatives with the Aib residue in the gas phase prefer structures stabilized by intramolecular N-H⋯O hydrogen bonds, i.e., C 5 and C 7 conformations, while polar solvent promotes helical conformation with φ, ψ values equal to +/-60°, +/-40°. In addition, in the case of molecule 2, the helical conformation is the only one available in the polar environment. This result is fully consistent with the X-ray data. Graphical abstract Effect of solvent on the Ramachandran maps of the model peptides with Aib residue.
Xu, Xiejun; Xiao, Xingqing; Wang, Yiming; Xu, Shouhong; Liu, Honglai
2018-06-13
Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.
Aguado-Llera, David; Martínez-Gómez, Ana Isabel; Prieto, Jesús; Marenchino, Marco; Traverso, José Angel; Gómez, Javier; Chueca, Ana; Neira, José L.
2011-01-01
Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so. PMID:21364950
Konno, T.; Iwashita, J.; Nagayama, K.
2000-01-01
The effects of 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) on the conformation of cytochrome c (cyt c) at pH 1.9 were studied using a combination of spectroscopic and physical methods. Analysis varying the HFIP concentration showed that a compact denatured conformation (M(HF)) accumulates in a low concentration range of HFIP in the middle of structural transition from the highly unstructured acid-denatured state to the highly helical alcohol-denatured state of cyt c. This contrasts clearly with the effect of isopropanol (IP), in which no compact conformation accompanied with the transition. Analysis varying concentrations of HFIP and NaCl concurrently showed that the M(HF) state of cyt c is essentially identical to the salt-induced molten-globule (M(G)) state, and the M(G) state in the presence of salt was also stabilized by a low concentration of HFIP. Furthermore, 2,2,2-trifluoroethanol stabilized M(HF) similarly to HFIP, supporting the proposition that the specific effect observed for HFIP is caused by fluorination of alcohol. The mechanism stabilizing compact conformation by HFIP remains unclear, but is probably distinct from that of salts and polyols, which are also known to stabilize the M(G)-like state. PMID:10752618
Conformational and NBO studies of serotonin as a radical scavenger. Changes induced by the OH group.
Lobayan, Rosana M; Schmit, María Celia Pérez
2018-03-01
Serotonin (5-hydroxytryptamine, SER) is a neurotransmitter that affects many different processes within the human body. We studied the conformational space of SER, and explored in depth the significant stereoelectronic features for the structure stabilization and antioxidant activity. Forty-eight equilibrium structures were described at the B3LYP/6-311++G(d,p) level, characterizing four non-previously reported conformers. Electron distributions were analyzed by topological QTAIM (Quantum Theory of atoms in molecules) and natural bond orbital (NBO) studies. The study was supplemented by an exploration of molecular electrostatic potential (MEP). Intramolecular hydrogen interactions were also investigated; N10⋯HC4 or N10⋯HC2 hydrogen bondings were depicted in 5 conformers. The conformer stabilization and the corresponding energy arrangement were explained by hyperconjugation interactions obtained by NBO analysis. The present study is based on the effect of the 5-OH group on geometric and electronic behavior that we have previously reported on the similar structure tryptamine (TRA). Our interest also lies in SER's free radical scavenging capacity as a member of the indole family. The H-atom abstraction and single-electron transfer mechanisms were taken into account. Our results showed that donor-acceptor interactions play a major role in explaining the changes induced by the OH group, and free-radical scavenging capability of the indole compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure-based conformational preferences of amino acids
Koehl, Patrice; Levitt, Michael
1999-01-01
Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955
Mahajan, Sai Pooja; Velez-Vega, Camilo; Escobedo, Fernando A
2013-01-10
Nanobodies are single-domain antibodies found in camelids. These are the smallest naturally occurring binding domains and derive functionality via three hypervariable loops (H1-H3) that form the binding surface. They are excellent candidates for antibody engineering because of their favorable characteristics like small size, high solubility, and stability. To rationally engineer antibodies with affinity for a specific target, the hypervariable loops can be tailored to obtain the desired binding surface. As a first step toward such a goal, we consider the design of loops with a desired conformation. In this study, we focus on the H1 loop of the anti-hCG llama nanobody that exhibits a noncanonical conformation. We aim to "tilt" the stability of the H1 loop structure from a noncanonical conformation to a (humanized) type 1 canonical conformation by studying the effect of selected mutations to the amino acid sequence of the H1, H2, and proximal residues. We use all-atomistic, explicit-solvent, biased molecular dynamic simulations to simulate the wild-type and mutant loops in a prefolded framework. We thus find mutants with increasing propensity to form a stable type 1 canonical conformation of the H1 loop. Free energy landscapes reveal the existence of conformational isomers of the canonical conformation that may play a role in binding different antigenic surfaces. We also elucidate the approximate mechanism and kinetics of transitions between such conformational isomers by using a Markovian model. We find that a particular three-point mutant has the strongest thermodynamic propensity to form the H1 type 1 canonical structure but also to exhibit transitions between conformational isomers, while a different, more rigid three-point mutant has the strongest propensity to be kinetically trapped in such a canonical structure.
Perczel, András; Jákli, Imre; McAllister, Michael A; Csizmadia, Imre G
2003-06-06
Folding properties of small globular proteins are determined by their amino acid sequence (primary structure). This holds both for local (secondary structure) and for global conformational features of linear polypeptides and proteins composed from natural amino acid derivatives. It thus provides the rational basis of structure prediction algorithms. The shortest secondary structure element, the beta-turn, most typically adopts either a type I or a type II form, depending on the amino acid composition. Herein we investigate the sequence-dependent folding stability of both major types of beta-turns using simple dipeptide models (-Xxx-Yyy-). Gas-phase ab initio properties of 16 carefully selected and suitably protected dipeptide models (for example Val-Ser, Ala-Gly, Ser-Ser) were studied. For each backbone fold most probable side-chain conformers were considered. Fully optimized 321G RHF molecular structures were employed in medium level [B3LYP/6-311++G(d,p)//RHF/3-21G] energy calculations to estimate relative populations of the different backbone conformers. Our results show that the preference for beta-turn forms as calculated by quantum mechanics and observed in Xray determined proteins correlates significantly.
Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger
Giladi, Moshe; Almagor, Lior; van Dijk, Liat; Hiller, Reuben; Man, Petr; Forest, Eric; Khananshvili, Daniel
2016-01-01
In analogy with many other proteins, Na+/Ca2+ exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na+/Ca2+ exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na+or Ca2+ binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct “noncatalytic” residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins. PMID:26876271
Spectroscopic properties and conformational stability of Concholepas concholepas hemocyanin.
Idakieva, Krassimira; Nikolov, Peter; Chakarska, Irena; Genov, Nicolay; Shnyrov, Valery L
2008-01-01
The structure in solution and conformational stability of the hemocyanin from the Chilean gastropod mollusk Concholepas concholepas (CCH) and its structural subunits, CCH-A and CCH-B, were studied using fluorescence spectroscopy and differential scanning calorimetry (DSC). The fluorescence properties of the oxygenated and apo-form (copper-deprived) of the didecamer and its subunits were characterized. Besides tryptophan residues buried in the hydrophobic interior of the protein molecule also exposed fluorophores determine the fluorescence emission of the oxy- and apo-forms of the investigated hemocyanins. The copper-dioxygen system at the binuclear active site quenches the tryptophan emission of the oxy-forms of CCH and its subunits. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophan residues in the respective apo-forms. Time-resolved fluorescence measurements show that the oxygenated and copper-deprived forms of the CCH and its subunits exist in different conformations. The thermal denaturation of the hemocyanin is an irreversible process, under kinetic control. A successive annealing procedure was applied to obtain the experimental deconvolution of the irreversible thermal transitions. Arrhenius equation parameter for the two-state irreversible model of the thermal denaturation of oxy-CCH at pH 7.2 was estimated. Both factors, oligomerization and the copper-dioxygen system at the active site, are important for stabilizing the structure of the hemocyanin molecule.
Automated identification of functional dynamic networks from X-ray crystallography
van den Bedem, Henry; Bhabha, Gira; Yang, Kun; Wright, Peter E.; Fraser, James S.
2013-01-01
Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active site conformations and consequently alter protein function. In addition to comparing independently determined X-ray crystal structures, alternative conformations observed at low levels of electron density have the potential to provide mechanistic insights into conformational dynamics. Here, we report a new multi-conformer contact network algorithm (CONTACT) that identifies networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks in Escherichia coli dihydrofolate reductase (ecDHFR) predict the long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild type and mutant ecDHFR suggests how mutations that alter optimized networks of coordinated motions can impair catalytic function. Thus, CONTACT-guided mutagenesis will allow the structure-dynamics-function relationship to be exploited in protein engineering and design. PMID:23913260
NASA Astrophysics Data System (ADS)
Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.
2018-02-01
In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.
Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent
Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas
2016-01-01
JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457
Méndez, Lídice; González, Nemecio; Parra, Francisco; Martín-Alonso, José M.; Limonta, Miladys; Sánchez, Kosara; Cabrales, Ania; Estrada, Mario P.; Rodríguez-Mallón, Alina; Farnós, Omar
2013-01-01
Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans. PMID:23460801
Guo, Zuojun; Streu, Kristina; Krilov, Goran; Mohanty, Udayan
2014-06-01
The stabilization of secondary structure is believed to play an important role in the peptide-protein binding interaction. In this study, the α-helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides when bound and unbound to MDM2 are investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, and the length of the bridge, to the relative stability of the α-helix structure. The binding affinity calculations by WaterMap provided over one hundred hydration sites in the MDM2 binding pocket where water density is greater than twice that of the bulk, and the relative value of free energy released by displacing these hydration sites. In agreement with the experimental data, potentials of mean force obtained by weighted histogram analysis methods indicated the order of peptides from lowest to highest binding affinity. Our study provides a comprehensive rationalization of the relationship between peptide stapling strategy, the secondary structural stability, and the binding affinity of p53/MDM2 complex. We hope our efforts can help to further the development of a new generation p53/MDM2 inhibitors that can reactivate the function of p53 as tumor suppressor gene. © 2014 John Wiley & Sons A/S.
Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers.
Wang, Qiuming; Zhao, Jun; Yu, Xiang; Zhao, Chao; Li, Lingyan; Zheng, Jie
2010-08-03
Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.
Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability
Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca
2017-01-01
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726–35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. PMID:28213515
Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.
Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca
2017-04-07
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Scheraga, H A; Paine, G H
1986-01-01
We are using a variety of theoretical and computational techniques to study protein structure, protein folding, and higher-order structures. Our earlier work involved treatments of liquid water and aqueous solutions of nonpolar and polar solutes, computations of the stabilities of the fundamental structures of proteins and their packing arrangements, conformations of small cyclic and open-chain peptides, structures of fibrous proteins (collagen), structures of homologous globular proteins, introduction of special procedures as constraints during energy minimization of globular proteins, and structures of enzyme-substrate complexes. Recently, we presented a new methodology for predicting polypeptide structure (described here); the method is based on the calculation of the probable and average conformation of a polypeptide chain by the application of equilibrium statistical mechanics in conjunction with an adaptive, importance sampling Monte Carlo algorithm. As a test, it was applied to Met-enkephalin.
NASA Astrophysics Data System (ADS)
Melo, Ulisses Zonta de; Yamazaki, Diego Alberto dos Santos; Cândido, Augusto de Araújo; Basso, Ernani Abicht; Gauze, Gisele de Freitas
2018-07-01
The three-dimensional structure of a potential drug molecule is of critical importance. Factors that determine its conformational stability and, consequently, corresponding biological/physicochemical properties of interest must therefore be carefully analyzed. Conformational properties and molecular structures of cis and trans-3-phenylaminocyclohexyl N,N-dimethylcarbamates were studied by low temperature 1H and 13C NMR spectroscopy and electronic structure calculations. B3LYP and M06-2X methods associated with the 6-311++G(2df,2p) basis set, and the integral-equation-formalism polarizable continuum model were used to study the conformational preferences in dichloromethane, acetone and methanol. NMR measurements indicated that for the cis isomer, the conformer with both substituents in equatorial position is the most stable, while for the trans isomer, the conformer with the carbamate group in the axial position and the arylamine in the equatorial position is favored in all solvents. B3LYP/6-311++G(2df,2p) theory level associated with IEF-PCM described properly the conformational preference in solution. NBO analyses were applied to determine the importance of hyperconjugative interactions in the conformational equilibrium.
Overall conformation of covalently stabilized domain-swapped dimer of human cystatin C in solution
NASA Astrophysics Data System (ADS)
Murawska, Magdalena; Szymańska, Aneta; Grubb, Anders; Kozak, Maciej
2017-11-01
Human cystatin C (HCC), a small protein, plays a crucial role in inhibition of cysteine proteases. The most common structural form of human cystatin C in crystals is a dimer, which has been evidenced both for the native protein and its mutants. In these structures, HCC dimers were formed through the mechanism of domain swapping. The structure of the monomeric form of human cystatin C was determined for V57N mutant and the mutant with the engineered disulfide bond (L47C)-(G69C) (known as stab1-HCC). On the basis of stab1-HCC, a number of covalently stabilized oligomers, including also dimers have been obtained. The aim of this study was to analyze the structure of the covalently stabilized dimer HCC in solution by the small angle X-ray scattering (SAXS) technique and synchrotron radiation. Experimental data confirmed that in solution this protein forms a dimer, which is characterized by the radius of gyration RG = 3.1 nm and maximum intramolecular distance Dmax = 10.3 nm. Using the ab initio method and program DAMMIN, we propose a low resolution structure of stabilized covalently cystatin C in solution. Stab-HCC dimer adopts in solution an elongated conformation, which is well reconstructed by the ab initio model.
Biophysical evaluation of hybrid Fc fusion protein of hGH to achieve basal buffer system.
Kim, Nam Ah; An, In Bok; Lim, Hye Seong; Yang, Sang In; Jeong, Seong Hoon
2016-11-20
A newly developed hybrid Fc (hyFc) is a non-immunogenic and non-cytolytic Fc with intact Ig structure derived from human IgD and IgG4. It is fused with the human growth hormone (GXD-9) and was evaluated by various biophysical techniques. Two thermal transitions were evident by DSC, reflecting the unfolding of IgG4 and the conjugated protein. The highest T m of the initial GXD-9 was 68.17°C and the T m of the two domains were around 66°C and 70°C. Although T m increased with decreasing concentration, which reflects increasing conformational stability, aggregation issues were still observed by DLS. This might be caused by decreasing or low zeta potential due to a highly complex structure. The protein was dialyzed to various pH (6.2-8.2) values to enhance conformational stability and to overcome aggregation issues. The results of CD spectroscopy were correlated with DSC measurements to evaluate its conformational stability. Changes in secondary structural contents were similar as determined by DSC and DLS. In conclusion, GXD-9 was found to be most stable at pH 7.0. The investigation of the biophysical stability of a hyFc-fusion protein has demonstrated a positive feasibility of developing more stable formulations to facilitate the initial drug development process for further clinical trials. Copyright © 2016 Elsevier B.V. All rights reserved.
Zou, Shuping; Huang, Shen; Kaleem, Imdad; Li, Chun
2013-03-10
Recombinant β-glucuronidase (GUS) expressed in Pichia pastoris GS115 is an important glycoprotein, encoded by a gene with four potential N-glycosylation sites. To investigate the impact of N-linked carbohydrate moieties on the stability of recombinant GUS, it was deglycosylated by peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic activities of the glycosylated and deglycosylated GUS were compared under various conditions such as temperature, pH, organic solvents, detergents and chaotropic agent. The results demonstrated that the glycosylated GUS retained greater fraction of maximum enzymatic activity against various types of denaturants compared with the deglycosylated. The conformational stabilities of both GUS were analyzed by monitoring the unfolding equilibrium by using the denaturant guanidinium chloride (dn-HCl). The glycosylated GUS displayed a significant increase in its conformational stability than the deglycosylated counterpart. These results affirmed the key role of N-glycosylation on the structural and functional stability of β-glucuronidase and could have potential applications in the functional enhancement of industrial enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.
Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core.
Borders, Donald B; Leese, Richard A; Jarolmen, Howard; Francis, Noreen D; Fantini, Amadeo A; Falla, Tim; Fiddes, John C; Aumelas, André
2007-03-01
Laspartomycin was originally isolated and characterized in 1968 as a lipopeptide antibiotic related to amphomycin. The molecular weight and structure remained unknown until now. In the present study, laspartomycin was purified by a novel calcium chelate procedure, and the structure of the major component (1) was determined. The structure of laspartomycin C (1) differs from that of amphomycin and all related antibiotics as a result of its peptide region being acidic rather than amphoteric and the amino acid branching into the side chain being diaminopropionic rather than diaminobutyric. In addition, the fatty acid side chain is 2,3-unsaturated compared to 3,4-unsaturated for amphomycin and other related antibiotics. Calcium ion addition to stabilize a particular conformer was found to be important for an enzymatic deacylation of the antibiotic. A peptide resulting from the deacylation was critical for chemical structure determination by NMR studies, which also involved addition of calcium ions to stabilize a conformer.
Insights from molecular dynamics simulations for computational protein design.
Childers, Matthew Carter; Daggett, Valerie
2017-02-01
A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
Insights from molecular dynamics simulations for computational protein design
Childers, Matthew Carter; Daggett, Valerie
2017-01-01
A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures. PMID:28239489
An exclusive α/β code directs allostery in TetR-peptide complexes.
Sevvana, Madhumati; Goetz, Christoph; Goeke, Dagmar; Wimmer, Cornelius; Berens, Christian; Hillen, Wolfgang; Muller, Yves A
2012-02-10
The allosteric mechanism of one of the best characterized bacterial transcription regulators, tetracycline repressor (TetR), has recently been questioned. Tetracycline binding induces cooperative folding of TetR, as suggested by recent unfolding studies, rather than switching between two defined conformational states, namely a DNA-binding-competent conformation and a non-DNA-binding conformation. Upon ligand binding, a host of near-native multiconformational structures collapse into a single, highly stabilized protein conformation that is no longer able to bind DNA. Here, structure-function studies performed with four synthetic peptides that bind to TetR and mimic the function of low-molecular-weight effectors, such as tetracyclines, provide new means to discriminate between different allosteric models. Whereas two inducing peptides bind in an extended β-like conformation, two anti-inducing peptides form an α-helix in the effector binding site of TetR. This exclusive bimodal interaction mode coincides with two distinct overall conformations of TetR, namely one that is identical with induced TetR and one that mirrors the DNA-bound state of TetR. Urea-induced unfolding studies show no increase in thermodynamic stability for any of the peptide complexes, although fluorescence measurements demonstrate peptide binding to TetR. This strongly suggests that, at least for these peptide effectors, a classical two-state allosteric model best describes TetR function. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yuan, C; Byeon, I J; Li, Y; Tsai, M D
1999-03-09
Bovine pancreatic phospholipase A2 (PLA2), a small (13.8 kDa) Ca2+-dependent lipolytic enzyme, is rich in functional and structural character. In an effort to examine its detailed structure-function relationship, we determined its solution structure by multidimensional nuclear magnetic resonance (NMR) spectroscopy at a functionally relevant pH. An ensemble of 20 structures generated has an average root-mean-square deviation (RMSD) of 0.62 +/- 0.08 A for backbone (N, Calpha, C) atoms and 0.98 +/- 0.09 A for all heavy atoms. The overall structure shows several notable differences from the crystal structure: the first three residues at the N-terminus, the calcium-binding loop (Y25-T36), and the surface loop (V63-N72) appear to be flexible; the alpha-helical conformation of helix B (E17-F22) is absent; helix D appears to be shorter (D59-V63 instead of D59-D66); and the hydrogen-bonding network is less defined. These differences were analyzed in relation to the function of PLA2. We then further examined the H-bonding network, because its functional role or even its existence in solution has been in dispute recently. Our results show that part of the H-bonding network (the portion away from N-terminus) clearly exists in solution, as evidenced by direct observation (at 11.1 ppm) of a strong H-bond between Y73 and D99 and an implicated interaction between D99 and H48. Analyses of a series of mutants indicated that the existence of the Y73.D99 H-bond correlates directly with the conformational stability of the mutant. Loss of this H-bond results in a loss of 2-3 kcal/mol in the conformational stability of PLA2. The unequivocal identification and demonstration of the structural importance of a specific hydrogen bond, and the magnitude of its contribution to conformational stability, are uncommon to the best of our knowledge. Our results also suggest that, while the D99.H48 catalytic diad is the key catalytic machinery of PLA2, it also helps to maintain conformational integrity.
NASA Astrophysics Data System (ADS)
Hays, Brian M.; Mehta-Hurt, Deepali; Jawad, Khadija M.; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zhang, Di; Zwier, Timothy S.
2017-06-01
The pure rotational spectra of 4-pentynenitrile, 4-pentenenitrile, and glutaronitrile were acquired using chirped pulse Fouirer transform microwave spectroscopy. 4-pentynenitrile and 4-pentenenitrile are the recombination products of two resonance stabilized radicals, propargyl + cyanomethyl or allyl + cyanomethyl, respectively, and are thus anticipated to be significant among the more complex nitriles in Titan's atmosphere. Indeed, these partially unsaturated alkyl cyanides have been found in laboratory analogs of tholins and are also expected to have interesting photochemistry. The optimized structures of all conformers below predicted energies of 500 \\wn were calculated for each molecule. Both of the conformers, trans and gauche, for 4-pentynenitrile have been identified and assigned. Five conformers were assigned in 4-pentenenitrile. The eclipsed conformers, with respect to the vinyl group, dominate the spectrum but some population was found in the syn conformers including the syn-gauche conformer, calculated to be 324 \\wn above the global minimum. The glutaronitrile spectrum contained only the two conformers below 500 \\wn, with reduced amount of the gauche trans conformer. The assigned spectra and structural assignments will be presented.
NASA Astrophysics Data System (ADS)
Klaassen, Joshua J.; Darkhalil, Ikhlas D.; Durig, James R.
2012-06-01
The Raman and infrared spectra (4000 to 50 cm-1) of the gas, liquid or solution, and solid have been recorded of isopropylamine, (CH3)2CHNH2. Variable temperature (-50 to -100oC) studies of the Raman spectra (3500 to 100 cm-1) dissolved in liquid xenon have been carried out. From these data, both the {trans} and {gauche} conformers have been identified and their relative stability obtained. The enthalpy difference has been determined from 20 band pairs at 6 temperatures to be 113 +/- 11 cm-1 (1.35 +/- 0.13 kJ mol-1) with the {trans} conformer the more stable form. The percentage of the {gauche} conformer is estimated to be 54 +/- 1 percent at ambient temperature. The conformational stabilities have been predicted from {ab initio} calculations utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants along with {ab initio} MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained for the {trans} conformer. The determined heavy atom and NH2 distances in angstroms are C-C = 1.530(3), C-N = 1.465(3), N-H = 1.019(3) and angles in degrees NCC = 108.9(5), CCC = 111.0(5), HNC = 110.3(5). The structural parameters for the {gauche} conformer were estimated by using the same adjustment differences to the {gauche} form as those obtained for the corresponding {trans} parameters. Vibrational assignments have been provided for the observed bands for both conformers which are supported by MP2(full)/6-31G(d) {ab initio} calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some related molecules.
Template-Framework Interactions in Tetraethylammonium-Directed Zeolite Synthesis
Schmidt, Joel E.; Fu, Donglong; Deem, Michael W.; ...
2016-11-22
Zeolites, having widespread applications in chemical industries, are often synthesized using organic templates. These can be cost-prohibitive, motivating investigations into their role in promoting crystallization. Herein, the relationship between framework structure, chemical composition, synthesis conditions and the conformation of the occluded, economical template tetraethylammonium (TEA +) has been systematically examined by experimental and computational means. The results show two distinct regimes of occluded conformer tendencies: 1) In frameworks with a large stabilization energy difference, only a single conformer was found (BEA, LTA and MFI). 2) In the frameworks with small stabilization energy differences (AEI, AFI, CHA and MOR), less thanmore » the interconversion of TEA + in solution, a heteroatom-dependent (Al, B, Co, Mn, Ti, Zn) distribution of conformers was observed. Our findings demonstrate that host–guest chemistry principles, including electrostatic interactions and coordination chemistry, are as important as ideal pore-filling.« less
NASA Astrophysics Data System (ADS)
Belyakov, A. V.; Baskakov, A. A.; Naraev, V. N.; Rykov, A. N.; Oberhammer, H.; Arnason, I.; Wallevik, S. O.
2012-10-01
The molecular structure of axial and equatorial conformer of the 1-bromo-1-silacyclohexane molecule, CH2(CH2CH2)2SiH-Br, as well as thermodynamic equilibrium between these species are investigated by means of gas-phase electron diffraction and quantum chemistry on the MP2(full)/SDB-AUG-cc-PVTZ level of theory. It is revealed that according to electron diffraction data, the compound exists in the gasphase as a mixture of conformers possessing the chair conformation of the six-membered ring and C s symmetry and differing in the axial and equatorial position of the Si-Br bond (ax. = 80(5) mol %, eq. = 20(7) mol %) at 352 K, that corresponds to the value of A = ( G {ax/○} - G {eq/○}) = -0.82(32) kcal/mol. It is found that observed data agree well with theoretical ones. Using Natural Bond Orbital (NBO) analysis it is revealed that axial conformer of 1-bromo-1-silacyclohexane molecule is an example of the stabilization of the form that is unfavorable from the point of view of steric effects and effects of conjugations. It is concluded that stabilization is achieved due to electrostatic interactions.
Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul
2015-01-01
ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983
Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution
Nagy, Peter I.
2014-01-01
A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178
Structure of human thymidylate synthase under low-salt conditions.
Lovelace, Leslie L; Minor, Wladek; Lebioda, Lukasz
2005-05-01
Human thymidylate synthase, a target in cancer chemotherapy, was crystallized from PEG 3350 with 30 mM ammonium sulfate (AS) in the crystallization medium. The crystals are isomorphous with the high-salt crystals ( approximately 2.0 M AS) and the structure has been solved and refined (R = 22.6%, R(free) = 24.3%) at 1.8 A resolution. The high- and low-AS-concentration structures are quite similar, with loop 181-197 is in the inactive conformation. Also, residues 95-106 and 129-135 (eukaryotic inserts region) show high mobility as assessed by poor electron density and high values of crystallographic temperature factors (residues 1-25 and 108-129 are disordered in both structures). The high mobility of this region may reflect the situation at physiological ionic strength. Of the four sulfate ions observed bound at 2.0 M AS, only two are present at 30 mM AS. The inactive conformation appears to be stabilized by the side chain of Val3 or a leucine residue from the disordered regions. The low-salt conditions of these crystals should be much more suitable for the study of thymidylate synthase inhibitors, especially those that utilize sulfate-binding sites to stabilize the inactive conformation of loop 181-197.
Minor, D L; Lin, Y F; Mobley, B C; Avelar, A; Jan, Y N; Jan, L Y; Berger, J M
2000-09-01
Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.
Ballano, Gema; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos
2009-01-01
Here we study conformational stabilization induced in a β-helical nanostructure by position-specific mutations. The nanostructure is constructed through the self-assembly of the β-helical building block excised from E. coli galactoside acetyltransferase (PDB code 1krr, chain A; residues 131-165). The mutations involve substitutions by cyclic, conformationally constrained amino acids. Specifically, a complete structural analysis of the Pro-Xaa-Val sequence [with Xaa being Gly, Ac3c (1-aminocyclopropane-1-carboxylic acid) and Ac5c (1-aminocyclopentane-1-carboxylic acid)], corresponding to the 148-150 loop region in the wild-type (Gly) and mutated (Ac3c and Ac5c) 1krr, has been performed using Molecular Dynamics simulations and X-ray crystallography. Simulations have been performed for the wild-type and mutants of three different systems, namely the building block, the nanoconstruct and the isolated Pro-Xaa-Val tripeptide. Furthermore, the crystalline structures of five peptides of Pro-Xaa-Val or Xaa-Val sequences have been solved by X-ray diffraction analysis and compared with theoretical predictions. Both the theoretical and crystallographic studies indicate that the Pro-Acnc-Val sequences exhibit a high propensity to adopt turn-like conformations, and this propensity is little affected by the chemical environment. Overall, the results indicate that replacement of Gly149 by Ac3c or Ac5c significantly reduce the conformational flexibility of the target site enhancing the structural specificity of the building block and the nanoconstruct derived from the 1krr β-helical motif. PMID:18811190
NASA Astrophysics Data System (ADS)
Dai, Jin; Niemi, Antti J.; He, Jianfeng
2016-07-01
The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.
Coexisting stable conformations of gaseous protein ions.
Suckau, D; Shi, Y; Beu, S C; Senko, M W; Quinn, J P; Wampler, F M; McLafferty, F W
1993-01-01
For further insight into the role of solvent in protein conformer stabilization, the structural and dynamic properties of protein ions in vacuo have been probed by hydrogen-deuterium exchange in a Fourier-transform mass spectrometer. Multiply charged ions generated by electrospray ionization of five proteins show exchange reactions with 2H2O at 10(-7) torr (1 torr = 133.3 Pa) exhibiting pseudo-first-order kinetics. Gas-phase compactness of the S-S cross-linked RNase A relative to denatured S-derivatized RNase A is indicated by exchange of 35 and 135 hydrogen atoms, respectively. For pure cytochrome c ions, the existence of at least three distinct gaseous conformers is indicated by the substantially different values--52, 113, and 74--of reactive H atoms; the observation of these same values for ions of a number--2, 7, and 5, respectively--of different charge states indicates conformational insensitivity to coulombic forces. For each of these conformers, the compactness in vacuo indicated by these values corresponds directly to that of a known conformer structure in the solution from which the conformer ions are produced by electrospray. S-derivatized RNase A ions also exist as at least two gaseous conformers exchanging 50-140 H atoms. Gaseous conformer ions are isometrically stable for hours; removal of solvent greatly increases conformational rigidity. More specific ion-molecule reactions could provide further details of conformer structures. Images PMID:8381533
Shirakihara, Yasuo; Shiratori, Aya; Tanikawa, Hiromi; Nakasako, Masayoshi; Yoshida, Masasuke; Suzuki, Toshiharu
2015-08-01
F1-ATPase (F1) is the catalytic sector in F(o)F1-ATP synthase that is responsible for ATP production in living cells. In catalysis, its three catalytic β-subunits undergo nucleotide occupancy-dependent and concerted open-close conformational changes that are accompanied by rotation of the γ-subunit. Bacterial and chloroplast F1 are inhibited by their own ε-subunit. In the ε-inhibited Escherichia coli F1 structure, the ε-subunit stabilizes the overall conformation (half-closed, closed, open) of the β-subunits by inserting its C-terminal helix into the α3β3 cavity. The structure of ε-inhibited thermophilic F1 is similar to that of E. coli F1, showing a similar conformation of the ε-subunit, but the thermophilic ε-subunit stabilizes another unique overall conformation (open, closed, open) of the β-subunits. The ε-C-terminal helix 2 and hook are conserved between the two structures in interactions with target residues and in their positions. Rest of the ε-C-terminal domains are in quite different conformations and positions, and have different modes of interaction with targets. This region is thought to serve ε-inhibition differently. For inhibition, the ε-subunit contacts the second catches of some of the β- and α-subunits, the N- and C-terminal helices, and some of the Rossmann fold segments. Those contacts, as a whole, lead to positioning of those β- and α- second catches in ε-inhibition-specific positions, and prevent rotation of the γ-subunit. Some of the structural features are observed even in IF1 inhibition in mitochondrial F1. © 2015 FEBS.
Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke
2013-01-31
We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.
Campbell, James C.; VanSchouwen, Bryan; Lorenz, Robin; ...
2016-12-23
The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. We determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a ‘gatekeeper’ for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalyticmore » subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. Our results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.« less
Hayashi, Satoko; Tsubomoto, Yutaka; Nakanishi, Waro
2018-02-17
The nature of the E-E' bonds (E, E' = S and Se) in glutathione disulfide ( 1 ) and derivatives 2 - 3 , respectively, was elucidated by applying quantum theory of atoms-in-molecules (QTAIM) dual functional analysis (QTAIM-DFA), to clarify the basic contribution of E-E' in the biological redox process, such as the glutathione peroxidase process. Five most stable conformers a - e were obtained, after applying the Monte-Carlo method then structural optimizations. In QTAIM-DFA, total electron energy densities H b ( r c ) are plotted versus H b ( r c ) - V b ( r c )/2 at bond critical points (BCPs), where V b ( r c ) are potential energy densities at BCPs. Data from the fully optimized structures correspond to the static nature. Those containing perturbed structures around the fully optimized one in the plot represent the dynamic nature of interactions. The behavior of E-E' was examined carefully. Whereas E-E' in 1a - 3e were all predicted to have the weak covalent nature of the shared shell interactions, two different types of S-S were detected in 1 , depending on the conformational properties. Contributions from the intramolecular non-covalent interactions to stabilize the conformers were evaluated. An inverse relationship was observed between the stability of a conformer and the strength of E-E' in the conformer, of which reason was discussed.
Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H
2002-01-01
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed. PMID:12023212
Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H
2002-06-01
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed.
Alsenaidy, Mohammad A.; Jain, Nishant K.; Kim, Jae H.; Middaugh, C. Russell; Volkin, David B.
2014-01-01
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies. PMID:24659968
Alsenaidy, Mohammad A; Jain, Nishant K; Kim, Jae H; Middaugh, C Russell; Volkin, David B
2014-01-01
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
The Structure of Phenylglycinol
NASA Astrophysics Data System (ADS)
Simao, Alcides; Peña, Isabel; Cabezas, Carlos; Alonso, José L.
2014-06-01
The most abundant conformer of the amino alcohol D-phenylglycinol has been observed in gas phase using broadband chirped pulse Fourier transform microwave spectroscopy (CP-FTMW) and laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). The rotational spectra corresponding to seven monosubstituted 13C, one monosubstituted 15N and one monosubstituted 18O species have been observed in their natural abundance, and the rs structure has been derived. The observed conformer is stabilized by O-H\\cdotsN, N-H\\cdotsπ intramolecular hydrogen bond network.
A generative, probabilistic model of local protein structure.
Boomsma, Wouter; Mardia, Kanti V; Taylor, Charles C; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas
2008-07-01
Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state. Our method represents a significant theoretical and practical improvement over the widely used fragment assembly technique by avoiding the drawbacks associated with a discrete and nonprobabilistic approach.
Chamachi, Neharika G; Chakrabarty, Suman
2016-08-04
The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation.
Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J
2017-10-25
Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.
A Free-Energy Approach for All-Atom Protein Simulation
Verma, Abhinav; Wenzel, Wolfgang
2009-01-01
All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an average backbone RMSD of 2.14 Å to the native conformation and an average Z-score of −3.46 to the corresponding decoy set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample the energy surface of three nonhomologous hairpin-peptides, a three-stranded β-sheet, the all-helical 40 amino-acid HIV accessory protein, and a zinc-finger ββα motif, and find near-native conformations for the minimal energy for each protein. Using a massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an average RMSD of only 3.06 Å to their respective experimental conformations. PMID:19413955
A free-energy approach for all-atom protein simulation.
Verma, Abhinav; Wenzel, Wolfgang
2009-05-06
All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an average backbone RMSD of 2.14 A to the native conformation and an average Z-score of -3.46 to the corresponding decoy set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample the energy surface of three nonhomologous hairpin-peptides, a three-stranded beta-sheet, the all-helical 40 amino-acid HIV accessory protein, and a zinc-finger beta beta alpha motif, and find near-native conformations for the minimal energy for each protein. Using a massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an average RMSD of only 3.06 A to their respective experimental conformations.
Role of different β-turns in β-hairpin conformation and stability studied by optical spectroscopy.
Wu, Ling; McElheny, Dan; Setnicka, Vladimír; Hilario, Jovencio; Keiderling, Timothy A
2012-01-01
Model β-hairpin peptides based on variations in the turn sequence of Cochran's tryptophan zipper peptide, SWTWENGKWTWK, were studied using electronic circular dichroism (ECD), fluorescence, and infrared (IR) spectroscopies. The trpzip2 Asn-Gly turn sequence was substituted with Thr-Gly, Aib-Gly, (D)Pro-Gly, and Gly-Asn (trpzip1) to study the impact of turn stability on β-hairpin formation. Stability and conformational changes of these hairpins were monitored by thermodynamic analyses of the temperature variation of both FTIR (amide I') and ECD spectral intensities. These changes were fit to a two-state model which yielded different T(m) values, representing the folding/unfolding process, for hairpins with different β-turns. Different β-turns show systematic contributions to hairpin structure formation, and their inclusion in hairpin design can modify the folding pathways. Aib-Gly or (D)Pro-Gly sequences stabilize the turn resulting in residual Trp-Trp interaction at high temperatures, but at the same time the β-structure (cross strand H-bonds) can become less stable due to constraints of the turn, as seen for (D)Pro-Gly. The structure of the Aib-Gly turn containing hairpin was determined by NMR and was shown to be like trpzip2 (Asn-Gly turn) as regards turn and strand geometries, but to differ from trpzip1 (Gly-Asn turn). The Munoz and Eaton statistical mechanically derived multistate model, tested as an alternate point of view, represented contributions from H-bonds and hydrophobic interactions as well as conformational change as interdependent. Use of different spectral methods that vary in dependence on these physical interactions along with the structural variations provided insight to the complex folding pathways of these small, well-folded peptides. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn; Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn
The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of themore » Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.« less
Molecular structure and conformational preferences of gaseous 1-iodo-1-silacyclohexane
NASA Astrophysics Data System (ADS)
Belyakov, A. V.; Baskakov, A. A.; Berger, R. J. F.; Mitzel, N. W.; Oberhammer, H.; Arnason, I.; Wallevik, S. Ò.
2012-03-01
The molecular structure of the axial and equatorial conformers of 1-iodo-1-silacyclohexane, CH2(CH2CH2)2SiH-I, as well as thermodynamic equilibrium between these species were investigated by means of gas-phase electron diffraction (GED) and quantum chemical calculations up to MP2(full)/SDB-AUG-CC-pVTZ level of theory (MP2). According to electron diffraction data, the vapor of this compound comprises a mixture of conformers with chair conformation and Cs symmetry differing in the axial and equatorial position of the Si-I bond (axial = 73(7) mol%/equatorial = 27(7) mol%) at T = 352 K. This corresponds to a free energy difference of A = -0.59(22) kcal mol-1. The observed gas-phase electron diffraction parameters are in good agreement with those obtained from theory. NBO analysis revealed that axial conformer of 1-iodo-1-silacyclohexane is an example for electrostatic stabilization of a conformer which is unfavorable in terms of steric and conjugation interaction.
Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation.
Yin, Hsien-Sheng; Wen, Xiaolin; Paterson, Reay G; Lamb, Robert A; Jardetzky, Theodore S
2006-01-05
Enveloped viruses have evolved complex glycoprotein machinery that drives the fusion of viral and cellular membranes, permitting entry of the viral genome into the cell. For the paramyxoviruses, the fusion (F) protein catalyses this membrane merger and entry step, and it has been postulated that the F protein undergoes complex refolding during this process. Here we report the crystal structure of the parainfluenza virus 5 F protein in its prefusion conformation, stabilized by the addition of a carboxy-terminal trimerization domain. The structure of the F protein shows that there are profound conformational differences between the pre- and postfusion states, involving transformations in secondary and tertiary structure. The positions and structural transitions of key parts of the fusion machinery, including the hydrophobic fusion peptide and two helical heptad repeat regions, clarify the mechanism of membrane fusion mediated by the F protein.
Yang, Liu; Yang, Lianjuan; Yu, Hui; Liu, Lu; Zhao, Xi; Huang, Xuri
2017-10-26
The Escherichia coli uracil/H + symporter UraA, known as the representative nucleobase/cation symporter 2(NCS2) protein, gets involved in several crucial physiological processes for most living organisms on Earth, such as the uptake of nucleobases and transport of vitamin C. Some experiments proposed a working model to explain proton-coupling and uracil transporting process of UraA on the basis of the crystal structure of NCS2 protein, but the details of conformational changes remained unknown. Thus, in order to make clear conformational changes caused by the protonation and deprotonation process of some conserved proton-coupled residues, the molecular dynamics simulation was used to study the conformation of UraA complexes in different protonation states. The results demonstrated that the protonation of residue Glu241 and Glu290 resulted in the whole conformational transition from the inward-open to the outward-open state. It can be concluded that Glu290 was crucial in a network of hydrogen-bonds in the middle of the core domain involving another essential residue, mainly including tyr288 in TM8, Tyr342, Ser338 in TM12, and the network of hydrogen-bonds was the key to maintain the stability of conformation. Protonation of Glu290 affects the stability of network of H-bond and changed the domains TM3 TM10 TM12. Thus, Glu290 may play a vital role as a 'proton trigger' that affects spatial structural of amino and residues near substrate binding side leading to an outward-open conformation transition.
Daidone, Isabella; Di Nola, Alfredo; Smith, Jeremy C.
2011-01-01
Prion proteins become pathogenic through misfolding. Here, we characterize the folding of a peptide consisting of residues 109–122 of the Syrian hamster prion protein (the H1 peptide) and of a more amyloidogenic A117V point mutant that leads in humans to an inheritable form of the Gerstmann-Sträussler-Scheinker syndrome. Atomistic molecular dynamics simulations are performed for 2.5 μs. Both peptides lose their α-helical starting conformations and assume a β-hairpin that is structurally similar in both systems. In each simulation several unfolding/refolding events occur, leading to convergence of the thermodynamics of the conformational states to within 1 kJ/mol. The similar stability of the β-hairpin relative to the unfolded state is observed in the two peptides. However, substantial differences are found between the two unfolded states. A local minimum is found within the free energy unfolded basin of the A117V mutant populated by misfolded collapsed conformations of comparable stability to the β-hairpin state, consistent with increased amyloidogenicity. This population, in which V117 stabilizes a hydrophobic core, is absent in the wild-type peptide. These results are supported by simulations of oligomers showing a slightly higher stability of the associated structures and a lower barrier to association for the mutated peptide. Hence, a single point mutation carrying only two additional methyl groups is here shown to be responsible for rather dramatic differences of structuring within the unfolded (misfolded) state. PMID:21689534
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.
Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu
2016-01-21
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle
Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu
2016-01-01
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253
Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective
Srivastava, Ashutosh; Sinha, Somdatta
2014-01-01
Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Harrilal, Christopher P.; Lawler, John T.; Burke, Nicole L.; McLuckey, Scott A.; Zwier, Timothy S.
2017-06-01
Incorporation of the unnatural D-proline (^{D}P) stereoisomer into a polypeptide sequence is a typical strategy to encourage formation of β-hairpin loops because natural sequences are often unstructured in solution. Using conformation-specific IR and UV spectroscopy of cold (10 K) gas-phase ions, we probe the inherent conformational preferences of the ^{D}P and ^{L}P diastereomers in the protonated peptide [YAPAA+H]^{+}, where only intramolecular interactions are possible. Consistent with the solution phase studies, one of the conformers of [YADPAA+H]^{+} is folded into a charge-stabilized β-hairpin turn. However, a second predominant conformer family containing two sequential γ-turns is also identified, with similar energetic stability. A single conformational isomer of the ^{L}P diastereomer, [YALPAA+H]^{+}, is found and assigned to a structure that is not the anticipated "mirror image" β-turn. Instead, the ^{L}P stereo center promotes a cis alanine-proline amide bond. The assigned structures contain clues that the preference of the ^{D}P diastereomer to support a trans-amide bond and the proclivity of ^{L}P for a cis-amide bond is sterically driven and can be reversed by substituting glycine for alanine in position 2, forming [YGLPAA+H]^{+}. These results provide a basis for understanding the residue-specific and stereo-specific alterations in the potential energy surface that underlie these changing preferences, providing insights to the origin of β-hairpin formation.
Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes.
Cao, Song; Chen, Shi-Jie
2006-03-17
We develop a statistical mechanical model for RNA/RNA complexes with both intramolecular and intermolecular interactions. As an application of the model, we compute the free energy landscapes, which give the full distribution for all the possible conformations, for U4/U6 and U2/U6 in major spliceosome and U4atac/U6atac and U12/U6atac in minor spliceosome. Different snRNA experiments found contrasting structures, our free energy landscape theory shows why these structures emerge and how they compete with each other. For yeast U2/U6, the model predicts that the two distinct experimental structures, the four-helix junction structure and the helix Ib-containing structure, can actually coexist and specifically compete with each other. In addition, the energy landscapes suggest possible mechanisms for the conformational switches in splicing. For instance, our calculation shows that coaxial stacking is essential for stabilizing the four-helix junction in yeast U2/U6. Therefore, inhibition of the coaxial stacking possibly by protein-binding may activate the conformational switch from the four-helix junction to the helix Ib-containing structure. Moreover, the change of the energy landscape shape gives information about the conformational changes. We find multiple (native-like and misfolded) intermediates formed through base-pairing rearrangements in snRNA complexes. For example, the unfolding of the U2/U6 undergoes a transition to a misfolded state which is functional, while in the unfolding of U12/U6atac, the functional helix Ib is found to be the last one to unfold and is thus the most stable structural component. Furthermore, the energy landscape gives the stabilities of all the possible (functional) intermediates and such information is directly related to splicing efficiency.
Conformational Transitions in Molecular Systems
NASA Astrophysics Data System (ADS)
Bachmann, M.; Janke, W.
2008-11-01
Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.
Shustova, Natalia B; Cozzolino, Anthony F; Dincă, Mircea
2012-12-05
Minimization of the torsional barrier for phenyl ring flipping in a metal-organic framework (MOF) based on the new ethynyl-extended octacarboxylate ligand H(8)TDPEPE leads to a fluorescent material with a near-dark state. Immobilization of the ligand in the rigid structure also unexpectedly causes significant strain. We used DFT calculations to estimate the ligand strain energies in our and all other topologically related materials and correlated these with empirical structural descriptors to derive general rules for trapping molecules in high-energy conformations within MOFs. These studies portend possible applications of MOFs for studying fundamental concepts related to conformational locking and its effects on molecular reactivity and chromophore photophysics.
Dixit, Anshuman; Verkhivker, Gennady M.
2009-01-01
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203
Fast, Jonas L; Cordes, Amanda A; Carpenter, John F; Randolph, Theodore W
2009-01-01
Protein therapeutics made up of artificially combined proteins or protein domains, so called fusion proteins, are a novel and growing class of biopharmaceuticals. We have studied abatacept (Orencia®), a fusion protein that is constructed of a modified IgG Fc domain and the soluble part of the T-cell receptor CTLA-4. In accelerated degradation studies conducted at at 40 °C, a pH shift from 7.5 to 6.0 yields significantly faster aggregation kinetics, as measured by size-exclusion chromatography. To understand how the fusion domains and their interactions contribute to this result, we considered aggregation in light of the modified Lumry-Eyring reaction pathway. Protein conformational stabilities against chaotropes and temperature were measured. The structural consequences of these perturbations were observed by a variety of experimental techniques, including differential scanning calorimetry, circular dichroism, and intrinsic fluorescence. Abatacept’s colloidal stability was studied by measuring zeta potentials and osmotic second virial coefficients, as well as by modeling electrostatic potentials on the protein’s surface. The domains of abatacept exhibit different conformational stabilities that are highly pH dependent, whereas abatacept was weakly colloidally unstable at pH 6 or pH 7.5. These results are ascribed to conformational instability of the CTLA-4 and CH2 domains, which unfold to form a molten globule-like structure that is aggregation-prone. We suggest the instability against aggregation is determined by the least stable domains. PMID:19899812
Wang, Xiaoling; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K
2013-03-01
With the rise of antibody based therapeutics as successful medicines, there is an emerging need to understand the fundamental antibody conformational dynamics and its implications towards stability of these medicines. Both deglycosylation and thermal stress have been shown to cause conformational destabilization and aggregation in monoclonal antibodies. Here, we study instabilities caused by deglycosylation and by elevated temperature (400 K) by performing molecular dynamic simulations on a full length murine IgG2a mAb whose crystal structure is available in the Protein Data bank. C(α)-atom root mean square deviation and backbone root mean square fluctuation calculations show that deglycosylation perturbs quaternary and tertiary structures in the C(H) 2 domains. In contrast, thermal stress pervades throughout the antibody structure and both Fabs and Fc regions are destabilized. The thermal stress applied in this study was not sufficient to cause large scale unfolding within the simulation time and most amino acid residues showed similar average solvent accessible surface area and secondary structural conformations in all trajectories. C(H) 3 domains were the most successful at resisting the conformational destabilization. The simulations helped identify aggregation prone regions, which may initiate cross-β motif formation upon deglycosylation and upon applying thermal stress. Deglycosylation leads to increased backbone fluctuations and solvent exposure of a highly conserved APR located in the edge β-strand A of the C(H) 2 domains. Aggregation upon thermal stress is most likely initiated by two APRs that overlap with the complementarity determining regions. This study has important implications for rational design of antibody based therapeutics that are resistant towards aggregation. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qianlong; Blissard, Gary W.; Liu, Tong-Xian
The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, butmore » no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.« less
Linsdell, Paul
2017-01-01
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.
Tanaka, Yoichiro; Tagaya, Mitsuhiro; Hori, Tamaki; Sakamoto, Taiichi; Kurihara, Yasuyuki; Katahira, Masato; Uesugi, Seiichi
2002-06-01
Hepatitis delta virus (HDV) ribozymes cleave RNA in the presence of divalent metal ions. We have previously elucidated the solution conformation of a minimized trans-acting HDV ribozyme and obtained evidence by NMR study that an Mg2+ ion binds to a site close to the cleavage site. We examined two ribozyme systems: a pre-cleavage complex with a non-cleavable substrate analogue (mS8) and a post-cleavage complex with a 3' cleavage product (P7). Upon titration with MgCl2, the complex with P7 showed a profound spectral change, while that with mS8 showed broadening of the signals. Analysis of the NOESY spectra of the P7 complex at high Mg2+ concentration revealed that a G:U pair is formed within the L3 loop, and the P1 and P4 stems are stabilized with respect to those of the pre-cleavage complex. The present analysis indicates that the cleavage reaction of the HDV ribozyme produces a big conformational change. Furthermore, presence of the 5'-terminal cytidine residue prevents this conformational change and its absence stabilizes the product-ribozyme complex in the presence of Mg2+. The structure of the Mg2+-bound P7 complex is similar to the crystal structure found for a product-ribozyme complex but is different from the pre-cleavage structure.
Persistent hydrogen bonding in polymorphic crystal structures.
Galek, Peter T A; Fábián, László; Allen, Frank H
2009-02-01
The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability.
Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana
2018-01-01
The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Ethanol Dimer: Observation of Three New Conformers by Broadband Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Loru, Donatella; Peña, Isabel; Sanz, M. Eugenia
2017-06-01
The conformational behaviour of the hydrogen-bonded cluster ethanol dimer has been reinvestigated by chirped pulse Fourier transform microwave spectroscopy in the 2-8 GHz frequency region. Three new conformers ({tt}, {tg}+, and {g}-{g}+) have been identified together with the three ({g}+{g}+, {g}-{t}, and {g}+{t}) previously observed by Hearn et al. (J. Chem. Phys. 123, 134324, 2005) and their rotational and centrifugal distortion constants have been determined. By using different carrier gases in the supersonic expansion, the relative abundances of the observed conformers have been estimated. The monosubstituted ^{13}C species and some of the ^{18}O species of the most abundant conformers {g}+{g}+, {g}-{t}, and {tt} have been observed in their natural abundance, which led to the partial determination of their r_{s} structures, and the r_{0} structure for the {tt} conformer. The six observed conformers are stabilized by the delicate interplay of primary O-H...O and secondary C-H...O hydrogen bonds, and dispersion interactions between the methyl groups. Density functional and ab initio methods with different basis sets are benchmarked against the experimental data.
Jong, KwangHyok; Grisanti, Luca; Hassanali, Ali
2017-07-24
We have studied the conformational landscape of the C-terminal fragment of the amyloid protein Aβ 30-35 in water using well-tempered metadynamics simulations and found that it resembles an intrinsically disordered protein. The conformational fluctuations of the protein are facilitated by a collective reorganization of both protein and water hydrogen bond networks, combined with electrostatic interactions between termini as well as hydrophobic interactions of the side chains. The stabilization of hydrophobic interactions in one of the conformers involves a collective collapse of the side chains along with a squeeze-out of water sandwiched between them. The charged N- and C-termini play a critical role in stabilizing different types of protein conformations, including those involving contact-ion salt bridges as well as solvent-mediated interactions of the termini and the amide backbone. We have examined this by probing the distribution of directed water wires forming the hydrogen bond network enveloping the polypeptide. Water wires and their fluctuations form an integral part of structural signature of the protein conformation.
Dissecting the dynamic conformations of the metamorphic protein lymphotactin.
Harvey, Sophie R; Porrini, Massimiliano; Konijnenberg, Albert; Clarke, David J; Tyler, Robert C; Langridge-Smith, Patrick R R; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E
2014-10-30
A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H](9+)) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.
The gating cycle of a K+ channel at atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuello, Luis G.; Cortes, D. Marien; Perozo, Eduardo
C-type inactivation in potassium channels helps fine-tune long-term channel activity through conformational changes at the selectivity filter. Here, through the use of cross-linked constitutively open constructs, we determined the structures of KcsA’s mutants that stabilize the selectivity filter in its conductive (E71A, at 2.25 Å) and deep C-type inactivated (Y82A at 2.4 Å) conformations. These structural snapshots represent KcsA’s transient open-conductive (O/O) and the stable open deep C-type inactivated states (O/I), respectively. The present structures provide an unprecedented view of the selectivity filter backbone in its collapsed deep C-type inactivated conformation, highlighting the close interactions with structural waters and themore » local allosteric interactions that couple activation and inactivation gating. Together with the structures associated with the closed-inactivated state (C/I) and in the well-known closed conductive state (C/O), this work recapitulates, at atomic resolution, the key conformational changes of a potassium channel pore domain as it progresses along its gating cycle.« less
NASA Astrophysics Data System (ADS)
Singh, Warispreet; Karabencheva-Christova, Tatyana G.; Black, Gary W.; Ainsley, Jon; Dover, Lynn; Christov, Christo Z.
2016-01-01
Heme d1, a vital tetrapyrrol involved in the denitrification processes is synthesized from its precursor molecule precorrin-2 in a chemical reaction catalysed by an S-adenosyl-L-methionine (SAM) dependent Methyltransferase (NirE). The NirE enzyme catalyses the transfer of a methyl group from the SAM to uroporphyrinogen III and serves as a novel potential drug target for the pharmaceutical industry. An important insight into the structure-activity relationships of NirE has been revealed by elucidating its crystal structure, but there is still no understanding about how conformational flexibility influences structure, cofactor and substrate binding by the enzyme as well as the structural effects of mutations of residues involved in binding and catalysis. In order to provide this missing but very important information we performed a comprehensive atomistic molecular dynamics study which revealed that i) the binding of the substrate contributes to the stabilization of the structure of the full complex; ii) conformational changes influence the orientation of the pyrrole rings in the substrate, iii) more open conformation of enzyme active site to accommodate the substrate as an outcome of conformational motions; and iv) the mutations of binding and active site residues lead to sensitive structural changes which influence binding and catalysis.
KIM, JAE HYUN; JOSHI, SANGEETA B.; MIDDAUGH, C. RUSSELL; TOLBERT, THOMAS J.; VOLKIN, DAVID B.
2014-01-01
The structural integrity and conformational stability of various IgG1-Fc proteins produced from the yeast Pichia pastoris with different glycosylation site occupancy (di-, mono-, and non- glycosylated) was determined. In addition, the physical stability profiles of three different forms of non-glycosylated Fc molecules (varying amino acid residues at site 297 in the CH2 domain due to point mutations and enzymatic digestion of the Fc glycoforms) were also examined. The physical stability of these IgG1-Fc glycoproteins was examined as a function of pH and temperature by high throughput biophysical analysis using multiple techniques combined with data visualization tools (three index empirical phase diagrams and radar charts). Across the pH range of 4.0 to 6.0, the di- and mono- glycosylated forms of the IgG1-Fc showed the highest and lowest levels of physical stability respectively, with the non-glycosylated forms showing intermediate stability depending on solution pH. In the aglycosylated Fc proteins, the introduction of Asp (D) residues at site 297 (QQ vs. DN vs. DD forms) resulted in more subtle changes in structural integrity and physical stability depending on solution pH. The utility of evaluating the conformational stability profile differences between the various IgG1-Fc glycoproteins is discussed in the context of analytical comparability studies. PMID:24740840
Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qichi; Laskin, Julia
2016-06-09
The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH 3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known tomore » stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.« less
Angkawidjaja, Clement; Matsumura, Hiroyoshi; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori
2010-07-02
The interfacial activation mechanism of family I.3 lipase from Pseudomonas sp. MIS38 (PML), which has two alpha-helical lids (lid1 and lid2), was investigated using a combination of X-ray crystallography and molecular dynamics (MD) simulation. The crystal structure of PML in an open conformation was determined at 2.1 A resolution in the presence of Ca(2+) and Triton X-100. Comparison of this structure with that in the closed conformation indicates that both lids greatly change their positions and lid1 is anchored by the calcium ion (Ca1) in the open conformation. This structure was not seriously changed even when the protein was dialyzed extensively against the Ca(2+)-free buffer containing Triton X-100 before crystallization, indicating that the open conformation is fairly stable unless a micellar substance is removed. The crystal structure of the PML derivative, in which the active site serine residue (Ser207) is diethylphosphorylated by soaking the crystal of PML in the open conformation in a solution containing diethyl p-nitrophenyl phosphate, was also determined. This structure greatly resembles that in the open conformation, indicating that PML structure in the open conformation represents that in the active form. MD simulation of PML in the open conformation in the absence of micelles showed that lid2 closes first, while lid1 maintains its open conformation. Likewise, MD simulation of PML in the closed conformation in the absence of Ca(2+) and in the presence of octane or trilaurin micelles showed that lid1 opens, while lid2 remains closed. These results suggest that Ca1 functions as a hook for stabilization of a fully opened conformation of lid1 and for initiation of subsequent opening of lid2. Copyright 2010 Elsevier Ltd. All rights reserved.
Packing interface energetics in different crystal forms of the λ Cro dimer.
Ahlstrom, Logan S; Miyashita, Osamu
2014-07-01
Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. © 2013 Wiley Periodicals, Inc.
Packing Interface Energetics in Different Crystal Forms of the λ Cro Dimer
Ahlstrom, Logan S.; Miyashita, Osamu
2014-01-01
Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them, in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ~5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. PMID:24218107
Modelling zwitterions in solution: 3-fluoro-γ-aminobutyric acid (3F-GABA).
Cao, Jie; Bjornsson, Ragnar; Bühl, Michael; Thiel, Walter; van Mourik, Tanja
2012-01-02
The conformations and relative stabilities of folded and extended 3-fluoro-γ-aminobutyric acid (3F-GABA) conformers were studied using explicit solvation models. Geometry optimisations in the gas phase with one or two explicit water molecules favour folded and neutral structures containing intramolecular NH···O-C hydrogen bonds. With three or five explicit water molecules zwitterionic minima are obtained, with folded structures being preferred over extended conformers. The stability of folded versus extended zwitterionic conformers increases on going from a PCM continuum solvation model to the microsolvated complexes, though extended structures become less disfavoured with the inclusion of more water molecules. Full explicit solvation was studied with a hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme and molecular dynamics simulations, including more than 6000 TIP3P water molecules. According to free energies obtained from thermodynamic integration at the PM3/MM level and corrected for B3LYP/MM total energies, the fully extended conformer is more stable than folded ones by about -4.5 kJ mol(-1). B3LYP-computed (3)J(F,H) NMR spin-spin coupling constants, averaged over PM3/MM-MD trajectories, agree best with experiment for this fully extended form, in accordance with the original NMR analysis. The seeming discrepancy between static PCM calculations and experiment noted previously is now resolved. That the inexpensive semiempirical PM3 method performs so well for this archetypical zwitterion is encouraging for further QM/MM studies of biomolecular systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Xiao; Gibson, Lydia M; Bell, Brittnaie J; Lovelace, Leslie L; Peña, Maria Marjorette O; Berger, Franklin G; Berger, Sondra H; Lebioda, Lukasz
2010-03-23
Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of approximately 27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K(m,app) values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F.FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K(m,app) value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K(m,app) values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.
Monhemi, Hassan; Housaindokht, Mohammad Reza; Nakhaei Pour, Ali
2015-08-20
Protein instability in supercritical CO2 limits the application of this green solvent in enzyme-catalyzed reactions. CO2 molecules act as a protein denaturant at high pressure under supercritical conditions. Here, for the first time, we show that natural osmolytes could stabilize protein conformation in supercritical CO2. Molecular dynamics simulation is used to monitor the effects of adding different natural osmolytes on the conformation and dynamics of chymotrypsin inhibitor 2 (CI2) in supercritical CO2. Simulations showed that CI2 is denatured at 200 bar in supercritical CO2, which is in agreement with experimental observations. Interestingly, the protein conformation remains native after addition of ∼1 M amino acid- and sugar-based osmolyte models. These molecules stabilize protein through the formation of supramolecular self-assemblies resulting from macromolecule-osmolyte hydrogen bonds. Nevertheless, trimethylamine N-oxide, which is known as a potent osmolyte for protein stabilization in aqueous solutions, amplifies protein denaturation in supercritical CO2. On the basis of our structural analysis, we introduce a new mechanism for the osmolyte effect in supercritical CO2, an "inclusion mechanism". To the best of our knowledge, this is the first study that introduces the application of natural osmolytes in a supercritical fluid and describes mechanistic insights into osmolyte action in nonaqueous media.
Structural confirmation and spectroscopic study of a biomolecule: Norepinephrine.
Yadav, T; Mukherjee, V
2018-05-21
The present work deals with the conformational and vibrational spectroscopic study of an important bio-molecule named norepinephrine in gas phase. The FTIR and FTRaman spectrum of norepinephrine in amorphous form were recorded in wavenumber range 4000-400 cm -1 and 4000-50 cm -1 respectively. We have investigated twenty-seven stable conformational structures of norepinephrine molecule. All the calculations have been done using Density Functional Theory with exchange functional B3LYP incorporated with the 6-31++G(d, p) basis set. The effect of hydrochloride on different bond lengths, bond angles and dihedral angles in the most stable conformer has also been studied. The total potential energy distribution for both the most stable conformer and the most stable conformer in hydrochloride was performed with the help Normal coordinate analysis method. Most of the calculated vibrational frequencies are in good agreement with the experimental frequencies. The natural bond orbital analysis was also performed to ensure the stability of electronic structures of norepinephrine. To know chemical reactivity of norepinephrine molecule we have calculated the energy gap between HOMO and LUMO orbitals and it has found above 5 eV in all the conformers. Copyright © 2018 Elsevier B.V. All rights reserved.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508
Blacklock, Kristin; Verkhivker, Gennady M
2014-06-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.
La Sala, Giuseppina; Riccardi, Laura; Gaspari, Roberto; Cavalli, Andrea; Hantschel, Oliver; De Vivo, Marco
2016-11-08
A number of structural factors modulate the activity of Abelson (Abl) tyrosine kinase, whose deregulation is often related to oncogenic processes. First, only the open conformation of the Abl kinase domain's activation loop (A-loop) favors ATP binding to the catalytic cleft. In this regard, the trans-autophosphorylation of the Y412 residue, which is located along the A-loop, favors the stability of the open conformation, in turn enhancing Abl activity. Another key factor for full Abl activity is the formation of active conformations of the catalytic DFG motif in the Abl kinase domain. Furthermore, binding of the SH2 domain to the N-lobe of the Abl kinase was recently demonstrated to have a long-range allosteric effect on the stabilization of the A-loop open state. Intriguingly, these distinct structural factors imply a complex signal transmission network for controlling the A-loop's flexibility and conformational preference for optimal Abl function. However, the exact dynamical features of this signal transmission network structure remain unclear. Here, we report on microsecond-long molecular dynamics coupled with enhanced sampling simulations of multiple Abl model systems, in the presence or absence of the SH2 domain and with the DFG motif flipped in two ways (in or out conformation). Through comparative analysis, our simulations augment the interpretation of the existing Abl experimental data, revealing a dynamical network of interactions that interconnect SH2 domain binding with A-loop plasticity and Y412 autophosphorylation in Abl. This signaling network engages the DFG motif and, importantly, other conserved structural elements of the kinase domain, namely, the EPK-ELK H-bond network and the HRD motif. Our results show that the signal propagation for modulating the A-loop spatial localization is highly dependent on the HRD motif conformation, which thus acts as the central hub of this (allosteric) signaling network controlling Abl activation and function.
Structure-preserving spectral element method in attenuating seismic wave modeling
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai
2016-04-01
This work describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems which has superior behaviors in long-time stability and dissipation preservation. To construct the conformal symplectic method, we first reformulate the damped acoustic wave equation and the elastic wave equations in their equivalent conformal multi-symplectic structures, which naturally reveal the intrinsic properties of the original systems, especially, the dissipation laws. We thereafter separate each structures into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed numerical scheme, which is conformal symplectic and can therefore guarantee the numerical stability and dissipation preservation after a large time modeling. Additionally, a relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh-wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic method in both the attenuating homogeneous and heterogeneous mediums.
Locking the Active Conformation of c-Src Kinase through the Phosphorylation of the Activation Loop
Meng, Yilin; Roux, Benoît
2013-01-01
Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexiblity of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially “locks” the kinase into its catalytically competent conformation. PMID:24103328
Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Vaidya; E Velazquez-Delgado; G Abbruzzese
2011-12-31
Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergomore » a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.« less
Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Baowei; Lowry, David; Mayer, M. Uljana
2008-08-09
The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H- 15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH.more » Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M -1 sec -1 to 370 M -1 sec -1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain linker that release helix A, thereby facilitating the formation of calcium binding sites in the amino-terminal lobe and linked tertiary structural rearrangements to form a high-affinity binding cleft that can associate with target proteins.« less
Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A
2017-07-14
The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure of PINK1 in complex with its substrate ubiquitin.
Schubert, Alexander F; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L; Freund, Stefan M V; Steyaert, Jan; Maslen, Sarah L; Komander, David
2017-12-07
Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (PARK2, also known as PRKN) and its upstream protein kinase PINK1 (also known as PARK6). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the 'C-terminally retracted' (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.
Parish, Carol A; Yarger, Matthew; Sinclair, Kent; Dure, Myrianne; Goldberg, Alla
2004-09-23
The conformational flexibility of a series of diastereomeric cyclic urea HIV-1 protease inhibitors has been examined using the Low Mode:Monte Carlo conformational search method. Force fields were validated by a comparison of the energetic ordering of the minimum energy structures on the AMBER/GBSA(water), OPLSAA/GBSA(water) and HF/6-311G/SCRF(water) surfaces. The energetic ordering of the minima on the OPLSAA /GBSA(water) surface was in better agreement with the quantum calculations than the ordering on the AMBER/GBSA(water) surface. An ensemble of low energy structures was generated using OPLSAA/GBSA(water) and used to compare the molecular shape and flexibility of each diastereomer to the experimentally determined binding affinities and crystal structures of closely related systems. The results indicate that diastereomeric solution-phase energetic stability, conformational rigidity and ability to adopt a chair conformation correlate strongly with experimental binding affinities. Rigid body docking suggests that all of the diastereomers adopt solution-phase conformations suitable for alignment with the HIV-1 protease; however, these results indicate that the binding affinities are dependent upon subtle differences in the P1/P1' and P2/P2' substituent orientations.
Alternative modes of client binding enable functional plasticity of Hsp70
NASA Astrophysics Data System (ADS)
Mashaghi, Alireza; Bezrukavnikov, Sergey; Minde, David P.; Wentink, Anne S.; Kityk, Roman; Zachmann-Brand, Beate; Mayer, Matthias P.; Kramer, Günter; Bukau, Bernd; Tans, Sander J.
2016-11-01
The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.
Turan, Başak; Selçuki, Cenk
2014-09-01
Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.
Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1
Park, Min-Sun
2015-01-01
Glucose transporters (GLUTs) provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and caner. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE), a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM) domains and the intracellular helices (ICH) domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states. PMID:25919356
Holliday Junction Thermodynamics and Structure: Coarse-Grained Simulations and Experiments
NASA Astrophysics Data System (ADS)
Wang, Wujie; Nocka, Laura M.; Wiemann, Brianne Z.; Hinckley, Daniel M.; Mukerji, Ishita; Starr, Francis W.
2016-03-01
Holliday junctions play a central role in genetic recombination, DNA repair and other cellular processes. We combine simulations and experiments to evaluate the ability of the 3SPN.2 model, a coarse-grained representation designed to mimic B-DNA, to predict the properties of DNA Holliday junctions. The model reproduces many experimentally determined aspects of junction structure and stability, including the temperature dependence of melting on salt concentration, the bias between open and stacked conformations, the relative populations of conformers at high salt concentration, and the inter-duplex angle (IDA) between arms. We also obtain a close correspondence between the junction structure evaluated by all-atom and coarse-grained simulations. We predict that, for salt concentrations at physiological and higher levels, the populations of the stacked conformers are independent of salt concentration, and directly observe proposed tetrahedral intermediate sub-states implicated in conformational transitions. Our findings demonstrate that the 3SPN.2 model captures junction properties that are inaccessible to all-atom studies, opening the possibility to simulate complex aspects of junction behavior.
Beyond the Bend: Exploring the Conformational Landscape of Decyl, Undecyl, and Dodecylbenzene
NASA Astrophysics Data System (ADS)
Hewett, Daniel M.; Zwier, Timothy S.
2017-06-01
Alkylbenzenes are important components in the combustion process: they make up 20-30% of petroleum fuels and are intermediates on the pathway to soot formation. Understanding their conformational preferences is a vital step in understanding the processes by which fuels begin their journey from small, simple hydrocarbons into the large, graphitic masses of soot. Previous work done in our group, in collaboration with the Sibert group, found that the smallest alkylbenzene which folds its chain back over the ring is octylbenzene. The population of the lone folded structure in octylbenzene is low; however, theory predicts a rapid stabilization of the folded conformations relative to more extended structures as the chain length is increased, suggesting a likely shift in population towards folded structures. This talk will focus on our exploration of this possibility by discussing the UV excitation and single conformation IR spectra of decyl, undecyl, and dodecylbenzene, where increasing chain length allows for multiple stable folded configurations.
Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana
2014-01-01
Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636
Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana
2014-01-01
Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins. PMID:24466147
Blacklock, Kristin; Verkhivker, Gennady M
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
Adaptability of Protein Structures to Enable Functional Interactions and Evolutionary Implications
Haliloglu, Turkan; Bahar, Ivet
2015-01-01
Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even prior to protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence → structure → dynamics → function where ‘dynamics’ bridges structure and function. PMID:26254902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela
Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA.more » None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.« less
Dahal, Udaya R; Dormidontova, Elena E
2017-04-12
Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.
Ilie, Ioana M; Nayar, Divya; den Otter, Wouter K; van der Vegt, Nico F A; Briels, Wim J
2018-06-12
Amyloid formation by the intrinsically disordered α-synuclein protein is the hallmark of Parkinson's disease. We present atomistic Molecular Dynamics simulations of the core of α-synuclein using enhanced sampling techniques to describe the conformational and binding free energy landscapes of fragments implicated in fibril stabilization. The theoretical framework is derived to combine the free energy profiles of the fragments into the reaction free energy of a protein binding to a fibril. Our study shows that individual fragments in solution have a propensity toward attaining non-β conformations, indicating that in a fibril β-strands are stabilized by interactions with other strands. We show that most dimers of hydrogen-bonded fragments are unstable in solution, while hydrogen bonding stabilizes the collective binding of five fragments to the end of a fibril. Hydrophobic effects make further contributions to the stability of fibrils. This study is the first of its kind where structural and binding preferences of the five major fragments of the hydrophobic core of α-synuclein have been investigated. This approach improves sampling of intrinsically disordered proteins, provides information on the binding mechanism between the core sequences of α-synuclein, and enables the parametrization of coarse grained models.
Lätzer, Joachim; Shen, Tongye; Wolynes, Peter G
2008-02-19
We investigate how post-translational phosphorylation modifies the global conformation of a protein by changing its free energy landscape using two test proteins, cystatin and NtrC. We first examine the changes in a free energy landscape caused by phosphorylation using a model containing information about both structural forms. For cystatin the free energy cost is fairly large indicating a low probability of sampling the phosphorylated conformation in a perfectly funneled landscape. The predicted barrier for NtrC conformational transition is several times larger than the barrier for cystatin, indicating that the switch protein NtrC most probably follows a partial unfolding mechanism to move from one basin to the other. Principal component analysis and linear response theory show how the naturally occurring conformational changes in unmodified proteins are captured and stabilized by the change of interaction potential. We also develop a partially guided structure prediction Hamiltonian which is capable of predicting the global structure of a phosphorylated protein using only knowledge of the structure of the unphosphorylated protein or vice versa. This algorithm makes use of a generic transferable long-range residue contact potential along with details of structure short range in sequence. By comparing the results obtained with this guided transferable potential to those from the native-only, perfectly funneled Hamiltonians, we show that the transferable Hamiltonian correctly captures the nature of the global conformational changes induced by phosphorylation and can sample substantially correct structures for the modified protein with high probability.
Conformal doping of topographic silicon structures using a radial line slot antenna plasma source
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru
2014-06-01
Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.
NASA Astrophysics Data System (ADS)
Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.
2001-03-01
Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.
El-Turk, Farah; Fauvet, Bruno; Ashrafi, Amer; Ouertatani-Sakouhi, Hajer; Cho, Min-Kyu; Neri, Marilisa; Cascella, Michele; Rothlisberger, Ursula; Pojer, Florence; Zweckstetter, Markus; Lashuel, Hilal
2012-01-01
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state. PMID:23028743
El-Turk, Farah; Fauvet, Bruno; Ashrafi, Amer; Ouertatani-Sakouhi, Hajer; Cho, Min-Kyu; Neri, Marilisa; Cascella, Michele; Rothlisberger, Ursula; Pojer, Florence; Zweckstetter, Markus; Lashuel, Hilal
2012-01-01
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF's trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.
Koo, Bon-Kyung; Park, Chin-Ju; Fernandez, Cesar F.; Chim, Nicholas; Ding, Yi; Chanfreau, Guillaume; Feigon, Juli
2011-01-01
H/ACA small nucleolar and Cajal body ribonucleoproteins (RNPs) function in site-specific pseudouridylation of eukaryotic rRNA and snRNA, rRNA processing, and vertebrate telomerase biogenesis. Nhp2, one of four essential protein components of eukaryotic H/ACA RNPs, forms a core trimer with the pseudouridylase Cbf5 and Nop10 that specifically binds to H/ACA RNAs. Crystal structures of archaeal H/ACA RNPs have revealed how the protein components interact with each other and with the H/ACA RNA. However, in place of Nhp2p, archaeal H/ACA RNPs contain L7Ae, which binds specifically to an RNA K-loop motif absent in eukaryotic H/ACA RNPs, while Nhp2 binds a broader range of RNA structures. We report solution NMR studies of S. cerevisiae Nhp2 (Nhp2p), which reveal that Nhp2p exhibits two major conformations in solution due to cis/trans isomerization of the evolutionarily conserved Pro83. The equivalent proline is in the cis conformation in all reported structures of L7Ae and other homologous proteins. Nhp2p has the expected α-β-α fold, but the solution structures of the major conformation of Nhp2p with trans Pro83 and of Nhp2p-S82W with cis Pro83 reveal that Pro83 cis/trans isomerization affects the positions of numerous residues at the Nop10- and RNA-binding interface. An S82W substitution, which stabilizes the cis conformation, also stabilizes the association of Nhp2p with H/ACA snoRNPs in vivo. We propose that Pro83 plays a key role in the assembly of the eukaryotic H/ACA RNP, with the cis conformation locking in a stable Cbf5-Nop10-Nhp2 ternary complex and positioning the protein backbone to interact with the H/ACA RNA. PMID:21708174
Josephin Domain Structural Conformations Explored by Metadynamics in Essential Coordinates
Tuszynski, Jack A.; Gallo, Diego; Morbiducci, Umberto; Danani, Andrea
2016-01-01
The Josephin Domain (JD), i.e. the N-terminal domain of Ataxin 3 (At3) protein, is an interesting example of competition between physiological function and aggregation risk. In fact, the fibrillogenesis of Ataxin 3, responsible for the spinocerebbellar ataxia 3, is strictly related to the JD thermodynamic stability. Whereas recent NMR studies have demonstrated that different JD conformations exist, the likelihood of JD achievable conformational states in solution is still an open issue. Marked differences in the available NMR models are located in the hairpin region, supporting the idea that JD has a flexible hairpin in dynamic equilibrium between open and closed states. In this work we have carried out an investigation on the JD conformational arrangement by means of both classical molecular dynamics (MD) and Metadynamics employing essential coordinates as collective variables. We provide a representation of the free energy landscape characterizing the transition pathway from a JD open-like structure to a closed-like conformation. Findings of our in silico study strongly point to the closed-like conformation as the most likely for a Josephin Domain in water. PMID:26745628
Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M
2014-01-01
The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to ‘gene end’ RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses. DOI: http://dx.doi.org/10.7554/eLife.02674.001 PMID:24842877
The role of protein dynamics in the evolution of new enzyme function.
Campbell, Eleanor; Kaltenbach, Miriam; Correy, Galen J; Carr, Paul D; Porebski, Benjamin T; Livingstone, Emma K; Afriat-Jurnou, Livnat; Buckle, Ashley M; Weik, Martin; Hollfelder, Florian; Tokuriki, Nobuhiko; Jackson, Colin J
2016-11-01
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
Just, Victoria J.; Burrell, Matthew R.; Bowater, Laura; McRobbie, Iain; Stevenson, Clare E. M.; Lawson, David M.; Bornemann, Stephen
2007-01-01
Oxalate decarboxylase (EC 4.1.1.2) catalyses the conversion of oxalate into carbon dioxide and formate. It requires manganese and, uniquely, dioxygen for catalysis. It forms a homohexamer and each subunit contains two similar, but distinct, manganese sites termed sites 1 and 2. There is kinetic evidence that only site 1 is catalytically active and that site 2 is purely structural. However, the kinetics of enzymes with mutations in site 2 are often ambiguous and all mutant kinetics have been interpreted without structural information. Nine new site-directed mutants have been generated and four mutant crystal structures have now been solved. Most mutants targeted (i) the flexibility (T165P), (ii) favoured conformation (S161A, S164A, D297A or H299A) or (iii) presence (Δ162–163 or Δ162–164) of a lid associated with site 1. The kinetics of these mutants were consistent with only site 1 being catalytically active. This was particularly striking with D297A and H299A because they disrupted hydrogen bonds between the lid and a neighbouring subunit only when in the open conformation and were distant from site 2. These observations also provided the first evidence that the flexibility and stability of lid conformations are important in catalysis. The deletion of the lid to mimic the plant oxalate oxidase led to a loss of decarboxylase activity, but only a slight elevation in the oxalate oxidase side reaction, implying other changes are required to afford a reaction specificity switch. The four mutant crystal structures (R92A, E162A, Δ162–163 and S161A) strongly support the hypothesis that site 2 is purely structural. PMID:17680775
Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A
2009-09-01
A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.
McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli
2011-11-09
Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.
Free-energy landscape of a hyperstable RNA tetraloop.
Miner, Jacob C; Chen, Alan A; García, Angel E
2016-06-14
We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif.
Alsenaidy, Mohammad A; Okbazghi, Solomon Z; Kim, Jae Hyun; Joshi, Sangeeta B; Middaugh, C Russell; Tolbert, Thomas J; Volkin, David B
2014-06-01
The structural integrity and conformational stability of various IgG1-Fc proteins produced from the yeast Pichia pastoris with different glycosylation site occupancy (di-, mono-, and nonglycosylated) were determined. In addition, the physical stability profiles of three different forms of nonglycosylated Fc molecules (varying amino-acid residues at site 297 in the CH 2 domain due to the point mutations and enzymatic digestion of the Fc glycoforms) were also examined. The physical stability of these IgG1-Fc glycoproteins was examined as a function of pH and temperature by high-throughput biophysical analysis using multiple techniques combined with data visualization tools (three index empirical phase diagrams and radar charts). Across the pH range of 4.0-6.0, the di- and monoglycosylated forms of the IgG1-Fc showed the highest and lowest levels of physical stability, respectively, with the nonglycosylated forms showing intermediate stability depending on solution pH. In the aglycosylated Fc proteins, the introduction of Asp (D) residues at site 297 (QQ vs. DN vs. DD forms) resulted in more subtle changes in structural integrity and physical stability depending on solution pH. The utility of evaluating the conformational stability profile differences between the various IgG1-Fc glycoproteins is discussed in the context of analytical comparability studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Skjaerven, Lars; Grant, Barry; Muga, Arturo; Teigen, Knut; McCammon, J. Andrew; Reuter, Nathalie; Martinez, Aurora
2011-01-01
GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. PMID:21423709
In silico study of full-length amyloid beta 1-42 tri- and penta-oligomers in solution.
Masman, Marcelo F; Eisel, Ulrich L M; Csizmadia, Imre G; Penke, Botond; Enriz, Ricardo D; Marrink, Siewert Jan; Luiten, Paul G M
2009-08-27
Amyloid oligomers are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases including Alzheimer's disease. Using MD simulation techniques, we explored the contributions of the different structural elements of trimeric and pentameric full-length Abeta1-42 aggregates in solution to their stability and conformational dynamics. We found that our models are stable at a temperature of 310 K, and converge toward an interdigitated side-chain packing for intermolecular contacts within the two beta-sheet regions of the aggregates: beta1 (residues 18-26) and beta2 (residues 31-42). MD simulations reveal that the beta-strand twist is a characteristic element of Abeta-aggregates, permitting a compact, interdigitated packing of side chains from neighboring beta-sheets. The beta2 portion formed a tightly organized beta-helix, whereas the beta1 portion did not show such a firm structural organization, although it maintained its beta-sheet conformation. Our simulations indicate that the hydrophobic core comprising the beta2 portion of the aggregate is a crucial stabilizing element in the Abeta aggregation process. On the basis of these structure-stability findings, the beta2 portion emerges as an optimal target for further antiamyloid drug design.
Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences
König, Sebastian L. B.; Huppert, Julian L.; Sigel, Roland K. O.; Evans, Amanda C.
2013-01-01
G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions. PMID:23771141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishova,E.; Di Costanzo, L.; Cane, D.
2007-01-01
Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 {angstrom} resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the {alpha}-helical class I terpene synthase fold with the active site in the 'open', solvent-exposed conformation. Intriguingly, the 2.15 {angstrom} resolution crystal structure of the complex with Mg{sup 2+}{sub 3}-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the 'closed' conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition frommore » the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved {alpha}-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.« less
Buchenberg, Sebastian; Schaudinnus, Norbert; Stock, Gerhard
2015-03-10
Biomolecules exhibit structural dynamics on a number of time scales, including picosecond (ps) motions of a few atoms, nanosecond (ns) local conformational transitions, and microsecond (μs) global conformational rearrangements. Despite this substantial separation of time scales, fast and slow degrees of freedom appear to be coupled in a nonlinear manner; for example, there is theoretical and experimental evidence that fast structural fluctuations are required for slow functional motion to happen. To elucidate a microscopic mechanism of this multiscale behavior, Aib peptide is adopted as a simple model system. Combining extensive molecular dynamics simulations with principal component analysis techniques, a hierarchy of (at least) three tiers of the molecule's free energy landscape is discovered. They correspond to chiral left- to right-handed transitions of the entire peptide that happen on a μs time scale, conformational transitions of individual residues that take about 1 ns, and the opening and closing of structure-stabilizing hydrogen bonds that occur within tens of ps and are triggered by sub-ps structural fluctuations. Providing a simple mechanism of hierarchical dynamics, fast hydrogen bond dynamics is found to be a prerequisite for the ns local conformational transitions, which in turn are a prerequisite for the slow global conformational rearrangement of the peptide. As a consequence of the hierarchical coupling, the various processes exhibit a similar temperature behavior which may be interpreted as a dynamic transition.
On the Roles of Substrate Binding and Hinge Unfolding in Conformational Changes of Adenylate Kinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brokaw, Jason B.; Chu, Jhih-wei
2010-11-17
We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier worksmore » of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.« less
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.
Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function.
Väre, Ville Y P; Eruysal, Emily R; Narendran, Amithi; Sarachan, Kathryn L; Agris, Paul F
2017-03-16
RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.
Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hitesh; Yu, Shaoning; Kong, Jilie
2009-10-21
The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 {angstrom} resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide bindingmore » domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N{sup 6} of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.« less
Conformational responses to changes in the state of ionization of titrable groups in proteins
NASA Astrophysics Data System (ADS)
Richman, Daniel Eric
Electrostatic energy links the structural properties of proteins with some of their important biological functions, including catalysis, energy transduction, and binding and recognition. Accurate calculation of electrostatic energy is essential for predicting and for analyzing function from structure. All proteins have many ionizable residues at the protein-water interface. These groups tend to have ionization equilibria (pK a values) shifted slightly relative to their values in water. In contrast, groups buried in the hydrophobic interior usually have highly anomalous p Ka values. These shifts are what structure-based calculations have to reproduce to allow examination of contributions from electrostatics to stability, solubility and interactions of proteins. Electrostatic energies are challenging to calculate accurately because proteins are heterogeneous dielectric materials. Any individual ionizable group can experience very different local environments with different dielectric properties. The studies in this thesis examine the hypothesis that proteins reorganize concomitant with changes in their state of ionization. It appears that the pKa value measured experimentally reflects the average of pKa values experienced in the different electrostatic environments corresponding to different conformational microstates. Current computational models fail to sample conformational reorganization of the backbone correctly. Staphyloccocal nuclease (SNase) was used as a model protein in nuclear magnetic resonance (NMR) spectroscopy studies to characterize the conformational rearrangements of the protein coupled to changes in the ionization state of titrable groups. One set of experiments tests the hypothesis that proton binding to surface Asp and Glu side chains drives local unfolding by stabilizing less-native, more water-solvated conformations in which the side chains have normalized pKa values. Increased backbone flexibility in the ps-ns timescale, hydrogen bond (H-bond) breaking on at least the mus timescale, and segmental unfolding were detected near titrating groups as pH decreased into the acidic range. The study identified local structural features and stabilities that modulate the magnitude of electrostatic effects. The data demonstrate that computational approaches to pK a calculations for surface groups must account for local fluctuations spanning a wide range of timescales. A comparative NMR spectroscopy study with the L25K and L125K variants of SNase, each with a Lys residue buried in the hydrophobic interior of the protein, determined locations, timescales, and amplitudes of backbone conformational reorganization coupled with ionization of the buried Lys residues. The L25K protein exhibited an ensemble of local fluctuations of the beta barrel in the hundreds of mus timescale and an ensemble of subglobally unfolded beta-barrel states in the hundreds of ms timescale with strong pH dependence. The L125K protein exhibited fluctuations of the helix around site 125 in the mus timescale, with negligible pH dependence. These data illustrate the diverse timescales and local structural properties of conformational reorganization coupled to ionization of buried groups, and the challenge to structure-based electrostatics calculations, which must capture these long-timescale processes.
Dynamics differentiate between active and inactive inteins
Cronin, Melissa; Coolbaugh, Michael J; Nellis, David; Zhu, Jianwei; Wood, David W.; Nussinov, Ruth; Ma, Buyong
2014-01-01
The balance between stability and dynamics for active enzymes can be somewhat quantified by studies of intein splicing and cleaving reactions. Inteins catalyze the ligation of flanking host exteins while excising themselves. The potential for applications led to engineering of a mini-intein splicing domain, where the homing endonuclease domain of the Mycobacterium tuberculosis RecA (Mtu recA) intein was removed. The remaining domains were linked by several short peptides, but splicing activity in all was substantially lower than the full-length intein. Native splicing activity was restored in some cases by a V67L mutation. Using computations and experiments, we examine the impact of this mutation on the stability and conformational dynamics of the mini-intein splicing domain. Molecular dynamics simulations were used to delineate the factors that determine the active state, including the V67L mini-intein mutant, and peptide linker. We found that (1) the V67L mutation lowers the global fluctuations in all modeled mini-inteins, stabilizing the mini-intein constructs; (2) the connecting linker length affects intein dynamics; and (3) the flexibilities of the linker and intein core are higher in the active structure. We have observed that the interaction of the linker region and a turn region around residues 35-41 provides the pathway for the allostery interaction. Our experiments reveal that intein catalysis is characterized by non-linear Arrhenius plot, confirming the significant contribution of protein conformational dynamics to intein function. We conclude that while the V67L mutation stabilizes the global structure, cooperative dynamics of all intein regions appear more important for intein function than high stability. Our studies suggest that effectively quenching the conformational dynamics of an intein through engineered allosteric interactions could deactivate intein splicing or cleaving. PMID:25087201
Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Chaubey, Amit Kumar; Dubey, Kshatresh Dutta; Ojha, Rajendra Prasad
2012-03-01
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.
Li, Jing; Boulanger, Eliot; Rui, Huan; Perozo, Eduardo; Roux, Benoît
2017-01-01
In many K+ channels, prolonged activating stimuli lead to a time-dependent reduction in ion conduction, a phenomenon known as C-type inactivation. X-ray structures of the KcsA channel suggest that this inactivated state corresponds to a “constricted” conformation of the selectivity filter. However, the functional significance of the constricted conformation has become a matter of debate. Functional and structural studies based on chemically modified semisynthetic KcsA channels along the selectivity filter led to the conclusion that the constricted conformation does not correspond to the C-type inactivated state. The main results supporting this view include the observation that C-type inactivation is not suppressed by a substitution of D-alanine at Gly77, even though this modification is believed to lock the selectivity filter into its conductive conformation, whereas it is suppressed following amide-to-ester backbone substitutions at Gly77 and Tyr78, even though these structure-conserving modifications are not believed to prevent the selectivity filter from adopting the constricted conformation. However, several untested assumptions about the structural and functional impact of these chemical modifications underlie these arguments. To make progress, molecular dynamics simulations based on atomic models of the KcsA channel were performed. The computational results support the notion that the constricted conformation of the selectivity filter corresponds to the functional C-type inactivated state of the KcsA. Importantly, MD simulations reveal that the semisynthetic KcsAD-ala77 channel can adopt an asymmetrical constricted-like nonconductive conformation and that the amide-to-ester backbone substitutions at Gly77 and Tyr78 perturb the hydrogen bonding involving the buried water molecules stabilizing the constricted conformation. PMID:28973956
Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.
Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L
2017-09-01
Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.
Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter
2015-01-01
Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.
Foldamer-mediated manipulation of a pre-amyloid toxin.
Kumar, Sunil; Birol, Melissa; Schlamadinger, Diana E; Wojcik, Slawomir P; Rhoades, Elizabeth; Miranker, Andrew D
2016-04-25
Disordered proteins, such as those central to Alzheimer's and Parkinson's, are particularly intractable for structure-targeted therapeutic design. Here we demonstrate the capacity of a synthetic foldamer to capture structure in a disease relevant peptide. Oligoquinoline amides have a defined fold with a solvent-excluded core that is independent of its outwardly projected, derivatizable moieties. Islet amyloid polypeptide (IAPP) is a peptide central to β-cell pathology in type II diabetes. A tetraquinoline is presented that stabilizes a pre-amyloid, α-helical conformation of IAPP. This charged, dianionic compound is readily soluble in aqueous buffer, yet crosses biological membranes without cellular assistance: an unexpected capability that is a consequence of its ability to reversibly fold. The tetraquinoline docks specifically with intracellular IAPP and rescues β-cells from toxicity. Taken together, our work here supports the thesis that stabilizing non-toxic conformers of a plastic protein is a viable strategy for cytotoxic rescue addressable using oligoquinoline amides.
NASA Astrophysics Data System (ADS)
Bocchinfuso, Gianfranco; Mazzuca, Claudia; Conflitti, Paolo; Cori, Davide; Coviello, Tommasina; Palleschi, Antonio
2016-09-01
Scleroglucan (Sclg) is a polysaccharide that exhibits a triple helix conformation (triplex), both in aqueous solution and in the solid state, which is lost in DMSO solution, at high temperature and at high pH values. The triplex conformation is characterized by a high rigidity, responsible of Sclg peculiar properties. Although the relative stability of triplex and single strand has already been investigated, different structural details are still missing. In the present study, we analyse the structural properties and the factors stabilizing the single chain and the triple helix of Sclg in different conditions. To this end, we simulated both systems in water and in DMSO. The triple helix has been also simulated in the presence of chemical damages on one of the three strands (to reproduce in silico the effect of sonication) or by inducing a partial unfolding of the triplex structure. The computational results have been compared with experimental evidences in which the triplex denaturation, at alkaline pH values, has been followed by monitoring the UV and CD spectra of Congo red, used as a probe molecule. Our results indicate that sonication breaks the Sclg chains without appreciably changing the stability of the other tracts of triple helix. The simulated perturbed or partially unfolded triplexes show a clear tendency to form less ordered aggregates. Finally, our simulations put in evidence an important role of the hydrophobic interactions both in the triplex stability and in the aggregation processes observed after induced denaturation.
Surprising conformers of the biologically important A·T DNA base pairs: QM/QTAIM proofs
NASA Astrophysics Data System (ADS)
Brovarets', Ol'ha O.; Tsiupa, Kostiantyn S.; Hovorun, Dmytro M.
2018-02-01
For the first time novel high-energy conformers – A·T(wWC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78) and A·T(wrH) (ΔG=5.82 kcal•mol-1) were revealed for each of the four biologically important A·T(WC) DNA base pairs – Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ɛ=4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H'…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states – TSA·T(WC)↔A·T(wWC), TSA·T(rWC)↔A·T(wrWC), TSA·T(H)↔A·T(wH) and TSA·T(rH)↔A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H'…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures (lifetime τ = (1.4-3.9) ps). Their possible biological significance and future perspectives have been briefly discussed.
Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E
2016-05-01
The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.
2016-06-01
The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.
Solution structure of a small protein containing a fluorinated side chain in the core
Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.
2007-01-01
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960
The Differential Response of Proteins to Macromolecular Crowding
Candotti, Michela; Orozco, Modesto
2016-01-01
The habitat in which proteins exert their function contains up to 400 g/L of macromolecules, most of which are proteins. The repercussions of this dense environment on protein behavior are often overlooked or addressed using synthetic agents such as poly(ethylene glycol), whose ability to mimic protein crowders has not been demonstrated. Here we performed a comprehensive atomistic molecular dynamic analysis of the effect of protein crowders on the structure and dynamics of three proteins, namely an intrinsically disordered protein (ACTR), a molten globule conformation (NCBD), and a one-fold structure (IRF-3) protein. We found that crowding does not stabilize the native compact structure, and, in fact, often prevents structural collapse. Poly(ethylene glycol) PEG500 failed to reproduce many aspects of the physiologically-relevant protein crowders, thus indicating its unsuitability to mimic the cell interior. Instead, the impact of protein crowding on the structure and dynamics of a protein depends on its degree of disorder and results from two competing effects: the excluded volume, which favors compact states, and quinary interactions, which favor extended conformers. Such a viscous environment slows down protein flexibility and restricts the conformational landscape, often biasing it towards bioactive conformations but hindering biologically relevant protein-protein contacts. Overall, the protein crowders used here act as unspecific chaperons that modulate the protein conformational space, thus having relevant consequences for disordered proteins. PMID:27471851
Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering
Sandberg, Anders; Luheshi, Leila M.; Söllvander, Sofia; Pereira de Barros, Teresa; Macao, Bertil; Knowles, Tuomas P. J.; Biverstål, Henrik; Lendel, Christofer; Ekholm-Petterson, Frida; Dubnovitsky, Anatoly; Lannfelt, Lars; Dobson, Christopher M.; Härd, Torleif
2010-01-01
Soluble oligomeric aggregates of the amyloid-β peptide (Aβ) have been implicated in the pathogenesis of Alzheimer’s disease (AD). Although the conformation adopted by Aβ within these aggregates is not known, a β-hairpin conformation is known to be accessible to monomeric Aβ. Here we show that this β-hairpin is a building block of toxic Aβ oligomers by engineering a double-cysteine mutant (called Aβcc) in which the β-hairpin is stabilized by an intramolecular disulfide bond. Aβ40cc and Aβ42cc both spontaneously form stable oligomeric species with distinct molecular weights and secondary-structure content, but both are unable to convert into amyloid fibrils. Biochemical and biophysical experiments and assays with conformation-specific antibodies used to detect Aβ aggregates in vivo indicate that the wild-type oligomer structure is preserved and stabilized in Aβcc oligomers. Stable oligomers are expected to become highly toxic and, accordingly, we find that β-sheet-containing Aβ42cc oligomers or protofibrillar species formed by these oligomers are 50 times more potent inducers of neuronal apoptosis than amyloid fibrils or samples of monomeric wild-type Aβ42, in which toxic aggregates are only transiently formed. The possibility of obtaining completely stable and physiologically relevant neurotoxic Aβ oligomer preparations will facilitate studies of their structure and role in the pathogenesis of AD. For example, here we show how kinetic partitioning into different aggregation pathways can explain why Aβ42 is more toxic than the shorter Aβ40, and why certain inherited mutations are linked to protofibril formation and early-onset AD. PMID:20713699
Interdomain Contacts Control Native State Switching of RfaH on a Dual-Funneled Landscape
Ramírez-Sarmiento, César A.; Noel, Jeffrey K.; Valenzuela, Sandro L.; Artsimovitch, Irina
2015-01-01
RfaH is a virulence factor from Escherichia coli whose C-terminal domain (CTD) undergoes a dramatic α-to-β conformational transformation. The CTD in its α-helical fold is stabilized by interactions with the N-terminal domain (NTD), masking an RNA polymerase binding site until a specific recruitment site is encountered. Domain dissociation is triggered upon binding to DNA, allowing the NTD to interact with RNA polymerase to facilitate transcription while the CTD refolds into the β-barrel conformation that interacts with the ribosome to activate translation. However, structural details of this transformation process in the context of the full protein remain to be elucidated. Here, we explore the mechanism of the α-to-β conformational transition of RfaH in the full-length protein using a dual-basin structure-based model. Our simulations capture several features described experimentally, such as the requirement of disruption of interdomain contacts to trigger the α-to-β transformation, confirms the roles of previously indicated residues E48 and R138, and suggests a new important role for F130, in the stability of the interdomain interaction. These native basins are connected through an intermediate state that builds up upon binding to the NTD and shares features from both folds, in agreement with previous in silico studies of the isolated CTD. We also examine the effect of RNA polymerase binding on the stabilization of the β fold. Our study shows that native-biased models are appropriate for interrogating the detailed mechanisms of structural rearrangements during the dramatic transformation process of RfaH. PMID:26230837
Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability
NASA Astrophysics Data System (ADS)
Zhao, Wenqi; Wang, Shanshan; Wang, Chunhui; Wu, Shiting; Xu, Wenjing; Zou, Mingchu; Ouyang, An; Cao, Anyuan; Li, Yibin
2015-12-01
Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices.Pseudo-materials are effective in boosting the specific capacitance of supercapacitors, but during service their degradation may also be very strong, causing reduced cycling stability. Here, we show that a carbon nanotube sponge grafted by two conventional pseudo-polymer layers in sequence can serve as a porous supercapacitor electrode with significantly enhanced cycling stability compared with single polymer grafting. Creating conformal polymer coatings on the nanotube surface and the resulting double-sheath configuration are important structural factors leading to the enhanced performance. Combining different polymers as double sheaths as reported here might be a potential route to circumvent the dilemma of pseudo-materials, and to simultaneously improve the capacitance and stability for various energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05978j
NASA Technical Reports Server (NTRS)
Egli, M.; Usman, N.; Rich, A.
1993-01-01
We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.
Relating conformation to function in integrin α5β1.
Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A
2016-07-05
Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.
Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c.
Battistuzzi, Gianantonio; Bortolotti, Carlo Augusto; Bellei, Marzia; Di Rocco, Giulia; Salewski, Johannes; Hildebrandt, Peter; Sola, Marco
2012-07-31
The low-pH conformational equilibria of ferric yeast iso-1 cytochrome c (ycc) and its M80A, M80A/Y67H, and M80A/Y67A variants were studied from pH 7 to 2 at low ionic strength through electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies. For wild-type ycc, the protein structure, axial heme ligands, and spin state of the iron atom convert from the native folded His/Met low-spin (LS) form to a molten globule His/H(2)O high-spin (HS) form and a totally unfolded bis-aquo HS state, in a single cooperative transition with an apparent pK(a) of ~3.0. An analogous cooperative transition occurs for the M80A and M80A/Y67H variants. This is preceded by protonation of heme propionate-7, with a pK(a) of ~4.2, and by an equilibrium between a His/OH(-)-ligated LS and a His/H(2)O-ligated HS conformer, with a pK(a) of ~5.9. In the M80A/Y67A variant, the cooperative low-pH transition is split into two distinct processes because of an increased stability of the molten globule state that is formed at higher pH values than the other species. These data show that removal of the axial methionine ligand does not significantly alter the mechanism of acidic unfolding and the ranges of stability of low-pH conformers. Instead, removal of a hydrogen bonding partner at position 67 increases the stability of the molten globule and renders cytochrome c more susceptible to acid unfolding. This underlines the key role played by Tyr67 in stabilizing the three-dimensional structure of cytochrome c by means of the hydrogen bonding network connecting the Ω loops formed by residues 71-85 and 40-57.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhunia, Anirban; Chua, Geok Lin; Domadia, Prerna N.
Designed peptides that would selectively interact with lipopolysaccharide (LPS) or endotoxin and fold into specific conformations could serve as important scaffolds toward the development of antisepsis compounds. Here, we describe solution structure of a designed amphipathic peptide, H{sub 2}N-YVKLWRMIKFIR-CONH{sub 2} (YW12D) in complex with endotoxin as determined by transferred nuclear Overhauser effect spectroscopy. The conformation of the isolated peptide is highly flexible, but undergoes a dramatic structural stabilization in the presence of LPS. Structure calculations reveal that the peptide presents two amphipathic surfaces in its bound state to LPS whereby each surface is characterized by two positive charges and amore » number of aromatic and/or aliphatic residues. ITC data suggests that peptide interacts with two molecules of lipid A. In activity assays, YW12D exhibits neutralization of LPS toxicity with very little hemolysis of red blood cells. Structural and functional properties of YW12D would be applicable in designing low molecular weight non-toxic antisepsis molecules.« less
Mechanochemical Modeling of Dynamic Microtubule Growth Involving Sheet-to-Tube Transition
Ji, Xiang-Ying; Feng, Xi-Qiao
2011-01-01
Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanisms of microtubule growth from the view of hydrolysis effects. Besides, the growth of a microtubule involves the closure of a curved sheet at its growing end. The curvature conversion from the longitudinal direction to the circumferential direction also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical–chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. First, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure and predict that the minimum conformational cap length that can stabilize the growth is two dimers. Then, we show that the conformational cap and the GTP cap can function independently and harmoniously, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth. PMID:22205994
Relationship between ion pair geometries and electrostatic strengths in proteins.
Kumar, Sandeep; Nussinov, Ruth
2002-01-01
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins. PMID:12202384
Rozman, Marko
2005-10-01
The most stable charge-solvated (CS) and zwitterionic (ZW) structures of sodiated and cesiated leucine and isoleucine were studied by density functional theory methods. According to the Boltzmann distribution in gas phase, both forms of LeuNa+ and IleNa+ exist, but in LeuCs+ and IleCs+, the ZW forms are dominant. Results for the sodiated compounds are consistent with the relationship found between decrease in relative stability of CS versus ZW form and aliphatic amino acid side chain length. The observed degeneracy in energy for IleNa+ conformers is at odds with kinetic method results. Additional calculations showed that kinetic method structural determinations for IleNa+ do not reflect relative order of populations in the lowest energy conformers. Since complexation of cationized amino acids into ion-bound dimers disfavors ZW structure by approximately 8 kJ mol(-1), it is suggested that for energy close conformers of sodium-cationized amino acids, the kinetic method may not be reliable for structural determinations. Copyright (c) 2005 John Wiley & Sons, Ltd.
Sheena Mary, Y; Raju, K; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; Thiemann, Thies; Van Alsenoy, Christian
2014-07-15
The conformational behavior and structural stability of (2E)-3-phenylprop-2-enoic anhydride were investigated by using density functional theory. Seventeen possible stable conformations of the title compound were determined and verified with their calculated vibrational frequencies being all positive. The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of (2E)-3-phenylprop-2-enoic anhydride have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of normal modes vibrations was done using GAR2PED program. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of the title compound is 12×10(-30) esu and is 92.31 times that of the standard NLO material urea and the title compound is an attractive object for future studies of nonlinear optical properties. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. Copyright © 2014 Elsevier B.V. All rights reserved.
Bobst, Cedric E; Thomas, John J; Salinas, Paul A; Savickas, Philip; Kaltashov, Igor A
2010-01-01
The solution dynamics of an enzyme acid-β-glucocerebrosidase (GCase) probed at a physiologically relevant (lysosomal) pH by hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals very uneven distribution of backbone amide protection across the polypeptide chain. Highly mobile segments are observed even within the catalytic cavity alongside highly protective segments, highlighting the importance of the balance between conformational stability and flexibility for enzymatic activity. Forced oxidation of GCase that resulted in a 40–60% reduction in in vitro biological activity affects the stability of some key structural elements within the catalytic site. These changes in dynamics occur on a longer time scale that is irrelevant for catalysis, effectively ruling out loss of structure in the catalytic site as a major factor contributing to the reduction of the catalytic activity. Oxidation also leads to noticeable destabilization of conformation in remote protein segments on a much larger scale, which is likely to increase the aggregation propensity of GCase and affect its bioavailability. Therefore, it appears that oxidation exerts its negative impact on the biological activity of GCase indirectly, primarily through accelerated aggregation and impaired trafficking. PMID:20945356
NASA Astrophysics Data System (ADS)
Škorňa, Peter; Michalík, Martin; Lukeš, Vladimír; Klein, Erik
2017-09-01
The quantum chemical DFT study of 1-hydroxynaphthalene-2-carboxanilide (A-H) and 2-hydroxynaphthalene-1-carboxanilide (B-H) and their selected ortho-derivatives (A-R, B-R) is presented. The structural analysis showed that the energetically preferred conformation is stabilized via the intramolecular hydrogen bonds occurring between the Cdbnd O⋯H-O1 of A-H molecule and Cdbnd O⋯H-O2 groups of B-H molecule. The A-R derivatives are practically planar, while the B-R derivatives are slightly distorted due to the spatial repulsion of hydrogen atoms. The conformation analysis of molecules with deprotonated hydroxyl group supports the concept of existence of two conformer types with respect to the sbnd NHsbnd COsbnd bridge orientation. Stabilization of the naphtholate moiety by a hydrogen bond to the amide sbnd NHsbnd group may allow the compound to cross the membrane to the extracellular space. The ortho substitution effect on the selected calculated properties was analyzed and the theoretical data were correlated with the substituent constants. For the B-R derivatives, the antitubercular activity concentrations were correlated and predicted by the calculated quantities.
Wang, Qiang; Zhang, Delin; Guan, Zeyuan; Li, Dongqin; Pei, Kai; Liu, Jian; Zou, Tingting; Yin, Ping
2018-06-21
mRNA decay is an important strategy by which bacteria can rapidly adapt to their ever-changing surroundings. The 5'-terminus state of mRNA determines the velocity of decay of many types of RNA. In Escherichia coli, RNA pyrophosphohydrolase (RppH) is responsible for the removal of the 5'-terminal triphosphate from hundreds of mRNAs and triggers its rapid degradation by ribonucleases. A diaminopimelate epimerase, DapF, can directly interact with RppH and stimulate its hydrolysis activity in vivo and in vitro. However, the molecular mechanism remains to be elucidated. Here, we determined the complex structure of DapF-RppH as a heterotetramer in a 2:2 molar ratio. DapF-bound RppH exhibits an RNA-favorable conformation similar to the RNA-bound state, suggesting that association with DapF promotes and stabilizes RppH in a conformation that facilitates substrate RNA binding and thus stimulates the activity of RppH. To our knowledge, this is the first published structure of an RNA-pyrophosphohydrolysis complex in bacteria. Our study provides a framework for further investigation of the potential regulators involved in the RNA-pyrophosphohydrolysis process in prokaryotes.
Biophysics of protein evolution and evolutionary protein biophysics
Sikosek, Tobias; Chan, Hue Sun
2014-01-01
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599
Protein stability: a crystallographer’s perspective
Deller, Marc C.; Kong, Leopold; Rupp, Bernhard
2016-01-01
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed. PMID:26841758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brohl, Andreas; Albrecht, Benjamin; Zhang, Yong
Here, the influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are alsomore » able to stabilize the conformers over wide temperature ranges.« less
Bröhl, Andreas; Albrecht, Benjamin; Zhang, Yong; Maginn, Edward; Giernoth, Ralf
2017-03-09
The influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are also able to stabilize the conformers over wide temperature ranges.
Brohl, Andreas; Albrecht, Benjamin; Zhang, Yong; ...
2017-02-13
Here, the influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are alsomore » able to stabilize the conformers over wide temperature ranges.« less
Khan, Sara; Farooq, Umar; Kurnikova, Maria
2017-08-22
In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.
Molecular switching behavior in isosteric DNA base pairs.
Jissy, A K; Konar, Sukanya; Datta, Ayan
2013-04-15
The structures and proton-coupled behavior of adenine-thymine (A-T) and a modified base pair containing a thymine isostere, adenine-difluorotoluene (A-F), are studied in different solvents by dispersion-corrected density functional theory. The stability of the canonical Watson-Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A-F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH-based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH-controlled molecular switch, which can be incorporated in a natural DNA tract. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn
Schroeder, Kersten T.; Daldrop, Peter; Lilley, David M.J.
2011-01-01
Summary The kink turn is a widespread RNA motif that introduces an acute kink into the axis of duplex RNA, typically comprising a bulge followed by a G⋅A and A⋅G pairs. The kinked conformation is stabilized by metal ions, or the binding of proteins including L7Ae. We now demonstrate a third mechanism for the stabilization of k-turn structure, involving tertiary interactions within a larger RNA structure. The SAM-I riboswitch contains an essential standard k-turn sequence that kinks a helix so that its terminal loop can make a long-range interaction. We find that some sequence variations in the k-turn within the riboswitch do not prevent SAM binding, despite preventing the folding of the k-turn in isolation. Furthermore, two crystal structures show that the sequence-variant k-turns are conventionally folded within the riboswitch. This study shows that the folded structure of the k-turn can be stabilized by tertiary interactions within a larger RNA structure. PMID:21893284
Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc
2002-01-01
Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All these different mutations call for a critical role of the PRR in mediating conformational changes of the Env glycoprotein during fusion activation. Our results suggest a model of MLV Env fusion activation in which unlocking of the fusion-inhibitory conformation is initiated by receptor binding of the viral RBD, which, upon disruption of the PRR, allows the NTR domain to promote further events in Env fusion activation. This involves a second type of interaction, in cis or in trans, between the receptor-activated RBD and a median segment of the freed C-terminal domain. PMID:12208946
Stewart, Chelsea M; Buffalo, Cosmo Z; Valderrama, J Andrés; Henningham, Anna; Cole, Jason N; Nizet, Victor; Ghosh, Partho
2016-08-23
The sequences of M proteins, the major surface-associated virulence factors of the widespread bacterial pathogen group A Streptococcus, are antigenically variable but have in common a strong propensity to form coiled coils. Paradoxically, these sequences are also replete with coiled-coil destabilizing residues. These features are evident in the irregular coiled-coil structure and thermal instability of M proteins. We present an explanation for this paradox through studies of the B repeats of the medically important M1 protein. The B repeats are required for interaction of M1 with fibrinogen (Fg) and consequent proinflammatory activation. The B repeats sample multiple conformations, including intrinsically disordered, dissociated, as well as two alternate coiled-coil conformations: a Fg-nonbinding register 1 and a Fg-binding register 2. Stabilization of M1 in the Fg-nonbinding register 1 resulted in attenuation of Fg binding as expected, but counterintuitively, so did stabilization in the Fg-binding register 2. Strikingly, these register-stabilized M1 proteins gained the ability to bind Fg when they were destabilized by a chaotrope. These results indicate that M1 stability is antithetical to Fg interaction and that M1 conformational dynamics, as specified by destabilizing residues, are essential for interaction. A "capture-and-collapse" model of association accounts for these observations, in which M1 captures Fg through a dynamic conformation and then collapses into a register 2-coiled coil as a result of stabilization provided by binding energy. Our results support the general conclusion that destabilizing residues are evolutionarily conserved in M proteins to enable functional interactions necessary for pathogenesis.
Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha.
Chakraborty, Sandipan; Biswas, Pradip Kumar
2014-08-01
Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.
Provasi, Davide; Artacho, Marta Camacho; Negri, Ana; Mobarec, Juan Carlos; Filizola, Marta
2011-01-01
Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally. PMID:22022248
Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.
Lee, Xiong An; Verma, Chandra; Sim, Adelene Y L
2017-08-01
Mdm2 and MdmX share high structural similarity in their N-terminal domains, yet dual inhibitors are challenging to design due to differences in the conformations of the binding pockets, and notably of the proposed gatekeeper residue, Y100/99. Analysis of crystal structures and molecular dynamics (MD) simulations of complexes of Mdm2 and MdmX resulted in the identification of a water molecule with a long residence time that appears to be modulated by the conformation of Y100/99. These observations lead us to speculate that dual inhibitors either (i) stabilize both Mdm2 and MdmX with Y100/99 in the open conformation typically seen in complexes of Mdm2 with p53, or (ii) the dual inhibitors are agnostic to the conformation of Y100/99. The recently developed potent dual inhibitory stapled peptide Atsp7041 appears to be agnostic to the conformation of the gatekeeper residue. Proteins 2017; 85:1493-1506. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; ...
2014-10-10
In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less
An ab-initio study of the relative stability of the ggg and the gtg conformer in hexane
NASA Astrophysics Data System (ADS)
Koglin, Eckhard; Meier, Robert J.
1999-10-01
Earlier ab-initio work suggested, on the basis of MP2 level calculations, that the hexane ggg conformer is more stable than the gtg conformer. Because this is unexpected and if true might have a significant impact on force field parametrisations, we have applied Hartree-Fock and post-HF methods to evaluate the relative stability of these conformers. We find that at levels higher than MP2 the gtg conformer is more stable than the ggg conformer, in agreement with the conventional idea that each additional gauche bond causes a further decrease in stability of the conformer. DFT methods were also applied, but although DFT methods including gradient corrections show correct qualitative behaviour, quantitatively the relative energies are far off compared to the post-HF results.
Trevino, R J; Gliubich, F; Berni, R; Cianci, M; Chirgwin, J M; Zanotti, G; Horowitz, P M
1999-05-14
The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
Wu, Di
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
Su, Zheng; Wen, Qing; Xu, Yunjie
2006-05-24
The 1:1 molecular adduct of propylene oxide and water (PO-H(2)O) was studied using Fourier transform microwave spectroscopy and high level ab initio methods. Two distinct structural conformers with the water molecule acting as a proton donor were detected experimentally: one with the water on the same side as the methyl group with respect to the ether ring, i.e., syn-PO-H(2)O, the other with the water molecule binding to the O-atom from the opposite side of the methyl group, i.e., anti-PO-H(2)O. The nonbonded hydrogen is entgegen to the ether ring in both conformers. Rotational spectra of four isotopic species, namely PO-H(2)O, PO-DOH, PO-HOD, and PO-D(2)O, were recorded for the two conformers. The hydrogen bond parameters: r(O(epoxy)...H), angle(ring-O(epoxy)...H), and angle(O(epoxy)...H-O) are 1.908 A, 112 degrees, and 177 degrees for syn-PO-H(2)O, and 1.885 A, 104.3 degrees, and 161.7 degrees for anti-PO-H(2)O, respectively. The experimental results suggest that the hydrogen bond in syn-PO-H(2)O is stronger and the monomer subunits are more rigidly locked in their positions than in the ethylene oxide-water adduct. The stabilizing effect of the methyl group to the intermolecular hydrogen bond is discussed in terms of the experimentally estimated binding energies, the structural parameters, and the ab initio calculations.
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...
2016-03-07
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Downing, D T; Lazo, N D
1999-01-01
Creutzfeldt-Jakob disease, kuru, scrapie and bovine spongiform encephalopathy are diseases of the mammalian central nervous system that involve the conversion of a cellular protein into an insoluble extracellular isoform. Spectroscopic studies have shown that the precursor protein contains mainly alpha-helical and random-coil conformations, whereas the prion isoform is largely in the beta conformation. The pathogenic prion is resistant to denaturation and protease digestion and can promote the conversion of the precursor protein to the pathogenic form. These properties have yet to be explained in terms of the structural conformations of the proteins. In the present study, molecular modelling showed that prion proteins could adopt the beta-helical conformation, which has been established for a number of fibrous proteins and has been suggested previously as the basis of amyloid fibrils. The beta-helical conformation provides explanations for the biophysical and biochemical stability of prions, their ability to form templates for the transmission of pathological conformation, and the existence of phenotypical strains of the prion diseases. PMID:10510313
Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study.
Lobayan, Rosana M; Pérez Schmit, María C; Jubert, Alicia H; Vitale, Arturo
2012-06-01
Due to the free radical scavenger properties of Tryptamine (TRA), as well as of others indole derivatives, it is in our interest to explore deeply the stereoelectronic aspects that would be relevant in their stabilization and antioxidant activity. In this work the conformational space of TRA was scanned using molecular dynamics complemented with functional density calculations at B3LYP/6-31 + G** level. Twenty one conformers of lowest energy were obtained, their electronic distributions were analyzed at a higher calculation level, thus improving the basis set (B3LYP/6-311++G**). A topological study based on Bader's theory ( atoms in molecules) and natural bond orbital (NBO) framework was performed. The study was enriched by a deep analysis of maps of molecular electrostatic potential (MEP) through a coordinated NBO/AIM analysis. The conformational preferences were explained by hyperconjugative interactions, which were revealed by NBO data. Because radical scavenging by indolic compounds is strongly modulated by their functional residues our study was related to similar analysis done previously on Indole and 1H-indole-3-acetic acid (IAA). Therefore, the conformational space of TRA was studied from a new perspective focusing on a deep analysis of the geometric and electronic properties of TRA conformers. The changes of the electronic distribution introduced by the substituent and the conformational flexibility of the side chain were addressed. The results reported contribute to the understanding of the structure, stability and reactivity of TRA and others indole derivatives.
Confirming the Revised C-Terminal Domain of the MscL Crystal Structure
Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.
2008-01-01
The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the impact of mutations to the C-terminal domain on the thermal stability of Tb-MscL using circular dichroism and performed molecular dynamics simulations of the original and the revised crystal structures of Tb-MscL. Our results imply that this region is helical and adopts an α-helical bundle conformation similar to that observed in the E. coli MscL model and the revised Tb-MscL crystal structure. PMID:18326638
Zhao, Wen-Shan; Sun, Meng-Yang; Sun, Liang-Fei; Liu, Yan; Yang, Yang; Huang, Li-Dong; Fan, Ying-Zhe; Cheng, Xiao-Yang; Cao, Peng; Hu, You-Min; Li, Lingyong; Tian, Yun; Wang, Rui; Yu, Ye
2016-04-08
Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the function of P2X receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Günther, Uwe; Zhuk, Alexander; Bezerra, Valdir B.; Romero, Carlos
2005-08-01
We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R-1 and R4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R-1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R4 model.
Compact Conformations of Human Protein Disulfide Isomerase
Cui, Lei; Ding, Xiang; Niu, Lili; Yang, Fuquan; Wang, Chao; Wang, Chih-chen; Lou, Jizhong
2014-01-01
Protein disulfide isomerase (PDI) composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI) in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact. PMID:25084354
Raffaini, Giuseppina; Milani, Roberto; Ganazzoli, Fabio; Resnati, Giuseppe; Metrangolo, Pierangelo
2016-01-01
Hydrophobins are proteins of interest for numerous applications thanks to their unique conformational and surface properties and their ability to self-assemble at interfaces. Here we report fully atomistic molecular mechanics and molecular dynamics results together with circular dichroism experimental data, aimed to study the conformational properties of the hydrophobin HFBII in a fluorinated solvent in comparison with a water solution and/or at an aqueous/vacuum interface. Both the atomistic simulations and the circular dichroism data show the remarkable structural stability of HFBII at all scales in all these environments, with no significant structural change, although a small cavity is formed in the fluorinated solvent. The combination of theoretical calculations and circular dichroism data can describe in detail the protein conformation and flexibility in different solvents and/or at an interface, and constitutes a first step towards the study of their self-assembly. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahu, Harikrishna; Shukla, Rishabh; Goswami, Juri; Gaur, Priyank; Panda, Aditya N.
2018-01-01
Structural and optoelectronic properties of phenylene-furan, phenylene-pyrrole and phenylene-thiophene oligomers are reported using density functional theory methods. Studies reveal that stabilities of conformers change with increasing chain length, and helical conformers are energetically feasible for large oligomers of the studied systems, due to stacking interactions between adjacent helical turns. Absorption spectra of helices are dominated by multiple number of electronic transitions other than the S0 →S1 , involving orbitals other than the HOMO/LUMO. All studied helices are optically active having similar pattern of negative and positive peaks in the CD spectra.
Crystal structure and theoretical studies of derivative of imidazo-1,2,4-triazine
NASA Astrophysics Data System (ADS)
Dybała, Izabela; Sztanke, Krzysztof
2016-09-01
In this study, we present the result of X-ray structure analysis of methyl [8-(3-chlorophenyl)-4-oxo-2,3,4,6,7,8-heksahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (1). The molecule conformation is flat, with a chlorophenyl substituent and the ester moiety lying in the plain of the heterobicyclic scaffold. Its conformation is stabilized by an intramolecular Nsbnd H…O hydrogen bond. Within the crystalline structure of 1, molecules associate with one another by weak Csbnd H…O, Csbnd H…Cl and Csbnd H…π bonds. The molecular and crystal structure of 1 was compared with the previously described structurally similar compound possessing the same bicyclic rigid core and similar chemical nature of the functional ester moiety. Very interesting differences in molecules geometry and association were observed. Non-covalent bonds within the crystals are additionally visualized by determination of Hirshfeld surfaces. Moreover, the quantum chemical calculation for 1 in the gas phase were carried out. The DFT calculation methods was used to optimize of molecule geometry and obtain molecular energy profiles with respect to selected torsion angles. The quantum chemical conformational analysis that was carried out for compound 1 in the gas phase suggests that in the solid state the molecules adopt the minimum energy conformation.
Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Normi, Yahaya M.; Mohd Shariff, Fairolniza
2017-01-01
The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity. PMID:28533982
Verma, Sharad; Goyal, Sukriti; Tyagi, Chetna; Jamal, Salma; Singh, Aditi; Grover, Abhinav
2016-06-01
The interaction of BAX (BCL-2-associated X protein) with BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) directly initiates BAX-mediated mitochondrial apoptosis. This molecular dynamics study reveals that BIM SAHB forms a stable complex with BAX but it remains in a non-functional conformation. N terminal of BAX folds towards the core which has been reported exposed in the functional monomer. The α1-α2 loop, which has been reported in open conformation in functional BAX, acquires a closed conformation during the simulation. BH3/α2 remains less exposed as compared to initial structure. The hydrophobic residues of BIM accommodates in the rear pocket of BAX during the simulation. A steep decrease in radius of gyration and solvent accessible surface area (SASA) indicates the complex folding to acquire a more stable but inactive conformation. Further the covariance matrix reveals that the backbone atoms' motions favour the inactive conformation of the complex. This is the first report on the non-functional BAX-BIM SAHB complex by molecular dynamics simulation in the best of our knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Dutta, Udayan; Cohenford, Menashi A; Dain, Joel A
2007-01-15
Advanced glycation end products (AGEs) play a significant role in the pathophysiology of diabetes leading to such conditions as atherosclerosis, cataract formation, and renal dysfunction. While the formation of nucleoside AGEs was previously demonstrated, no extensive studies have been performed to assess the effect of AGEs on DNA structure and folding. The objective of this study was to investigate the nonenzymatic glycation of two DNA oligonucleotide duplexes with one duplex consisting of deoxy-poly(A)15 and deoxy-poly(T)15 and the other consisting of deoxy-poly(GA)15 and deoxy-poly(CT)15. With D-glucose, D-galactose, D/L-glyceraldehyde, and D-glucosamine serving as the model glycating carbohydrates, D-glucosamine was found to exhibit the greatest effect on the stability and structure of the oligonucleotide duplexes, a finding that was confirmed by circular dichroism. The nonenzymatic glycation of deoxy-poly(AT) by D-glucosamine destabilized the deoxy-poly(AT) structure and changed its conformation from A form to X form. D-glucosamine also altered the conformation of deoxy-poly(GA)15 and deoxy-poly(CT)15 from A form to B form. Capillary electrophoresis and ultraviolet and fluorescence spectroscopy revealed that, of the various purines and pyrimidines, 2'-deoxyguanosine and guanine were most reactive with D-glucosamine. The nonenzymatic modification of nucleic acids warrants further investigation because this phenomenon may occur in vivo, altering DNA structure and/or function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy
In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less
Loss of conformational stability in calmodulin upon methionine oxidation.
Gao, J; Yin, D H; Yao, Y; Sun, H; Qin, Z; Schöneich, C; Williams, T D; Squier, T C
1998-01-01
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM. PMID:9512014
El-Turk, Farah; Cascella, Michele; Ouertatani-Sakouhi, Hajer; Narayanan, Raghavendran Lakshmi; Leng, Lin; Bucala, Richard; Hweckstetter, Markus; Rothlisberger, Ursula; Lashuel, Hilal A.
2013-01-01
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo as well as the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Δ110-114NSTFA and Δ105–114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants ΔC5 huMIF1-109 and ΔC10 huMIF1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105–114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that inter-subunit interactions involving the C-terminal region 105–114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighbouring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity. PMID:18795803
Tischer, Alexander; Campbell, James C.; Machha, Venkata R.; ...
2015-12-16
Unusually large von Willebrand factor (VWF), the first responder to vascular injury in primary hemostasis, is designed to capture platelets under the high shear stress of rheological blood flow. In type 2M von Willebrand disease, two rare mutations (G1324A and G1324S) within the platelet GPIbα binding interface of the VWF A1 domain impair the hemostatic function of VWF. We investigate structural and conformational effects of these mutations on the A1 domain's efficacy to bind collagen and adhere platelets under shear flow. These mutations enhance the thermodynamic stability, reduce the rate of unfolding, and enhance the A1 domain's resistance to limitedmore » proteolysis. Collagen binding affinity is not significantly affected indicating that the primary stabilizing effect of these mutations is to diminish the platelet binding efficiency under shear flow. The better stability stems from the steric consequences of adding a side chain (G1324A) and additionally a hydrogen bond (G1324S) to His 1322 across the β2-β3 hairpin in the GPIbα binding interface, which restrains the conformational degrees of freedom and the overall flexibility of the native state. These studies reveal a novel rheological strategy in which the incorporation of a single glycine within the GPIbα binding interface of normal VWF enhances the probability of local unfolding that enables the A1 domain to conformationally adapt to shear flow while maintaining its overall native structure.« less
Otani, Yuko; Watanabe, Satoshi; Ohwada, Tomohiko; Kitao, Akio
2017-01-12
In this study, the solution structures of the homooligomers of a conformationally constrained bicyclic proline-type β-amino acid were studied by means of molecular dynamics (MD) calculations in explicit methanol and water using the umbrella sampling method. The ratio of trans-amide and cis-amide was estimated by NMR and the rotational barrier of the amide of acetylated bicyclic amino acid monomer was estimated by two-dimensional (2D) exchange spectroscopy (EXSY) or line-shape analysis. A bias potential was introduced with respect to the amide torsion angle ω to enhance conformational exchange including isomerization of amide bonds by lowering the rotation energy barrier. After determination of reweighting parameters to best reproduce the experimental results of the monomer amide, the free energy profile around the amide torsion angle ω was obtained from the MD trajectory by reweighting of the biased probability density. The MD simulation results support the existence of invertomers of nitrogen-pyramidalized amide. Furthermore, extended structures with a high fraction of trans-amide conformation appear to be increasingly stabilized as the oligomer is elongated, both in methanol and in water. Our conformational analysis of natural and non-natural tertiary-amide-based peptide oligomers indicates that these oligomers preferentially adopt a limited number of conformations.
Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts
Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun
2012-01-01
Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272
Free-energy landscape of a hyperstable RNA tetraloop
Miner, Jacob C.; Chen, Alan A.; García, Angel E.
2016-01-01
We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif. PMID:27233937
Durig, James R; Zheng, Chao; Gounev, Todor K; Herrebout, Wouter A; van der Veken, Benjamin J
2006-05-04
Variable temperature (-55 to -145 degrees C) studies of the infrared spectra (3500 to 100 cm(-1)) of ethylamine, CH(3)CH(2)NH(2), dissolved in liquid krypton and/or xenon have been recorded. From these data, the enthalpy differences have been determined to be 54 +/- 4 cm(-1) (0.65 +/- 0.05 kJ/mol), with the trans conformer (methyl group relative to the lone pair of electrons on nitrogen) being the more stable form. It is estimated that there is 61 +/- 1% of the doubly degenerate gauche form present at ambient temperature. The conformational energetics have been calculated with the Møller-Plesset perturbation method to the second order (MP2(full)) and the fourth order (MP4(SDTQ)) as well as with density functional theory by the B3LYP method utilizing a variety of basis sets. Basis sets with diffuse functions lead to incorrect prediction of the conformational stability. On the basis of the frequencies of the torsional transitions along with the determined experimental enthalpy difference and gauche dihedral angle, the potential function governing conformational interchange has been obtained, and the determined Fourier cosine coefficients are V(1) = -207 +/- 48, V(2) = 320 +/- 67, V(3) = 1072 +/- 25, V(4) = 55 +/- 11, and V(5) = -96 +/- 28 cm(-1), with a trans-to-gauche barrier of 1286 cm(-1), and a gauche-to-gauche barrier of 715 cm(-1). The 3-fold methyl rotational barriers have been determined to be 1241 +/- 4 and 1281 +/- 10 cm(-1) for the gauche and trans conformers, respectively. By utilizing the previously reported microwave rotational constants combined with the structural parameters predicted at the MP2(full)/6-311+ G(d,p) level, adjusted r(0) structural parameters have been obtained. A complete vibrational assignment is given for the trans conformer, which is supported by normal coordinate calculations utilizing scaled force constants from ab initio B3LYP/6-311++G(3df,3pd) calculations. Proposed assignments are also made for the fundamentals of the gauche conformer. The results of these spectroscopic and theoretical studies are discussed and compared to the corresponding results for similar molecules.
Yang, Linlin; Jing, Xu; An, Bowen; He, Cheng; Yang, Yang; Duan, Chunying
2018-01-28
By synergistic combination of multicomponent self-assembly and template-directed approaches, triply interlocked metal organic catenanes that consist of two isolated chirally identical tetrahedrons were constructed and stabilized as thermodynamic minima. In the presence of suitable template anions, the structural conversion from the isolated tetrahedral conformers into locked catenanes occurred via the cleavage of an intrinsically reversible coordination bond in each of the tetrahedrons, followed by the reengineering and interlocking of two fragments with the regeneration of the broken coordination bonds. The presence of several kinds of individual pocket that were attributed to the triply interlocked patterns enabled the possibility of encapsulating different anions, allowing the dynamic allostery between the unlocked/locked conformers to promote the dehalogenation reaction of 3-bromo-cyclohexene efficiently, as with the use of dehalogenase enzymes. The interlocked structures could be unlocked into two individual tetrahedrons through removal of the well-matched anion templates. The stability and reversibility of the locked/unlocked structures were further confirmed by the catching/releasing process that accompanied emission switching, providing opportunities for the system to be a dynamic molecular logic system.
Toogood, Helen S; van Thiel, Adam; Scrutton, Nigel S; Leys, David
2005-08-26
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Burnette, Ronald R; Weinhold, Frank
2006-07-20
The 13C chemical shift for the carboxylic acid carbon provides a powerful diagnostic probe to determine the preferred isomeric dimer structures of benzoic acid derivatives undergoing intra- and intermolecular H-bonding in the gas, solution and crystalline phases. We have employed hybrid density functional calculations and natural bond orbital analysis to elucidate the electronic origins of the observed 13C shieldings and their relationship to isomeric stability. We find that delocalizing interactions from the carbonyl oxygen lone pairs (nO) into vicinal carbon-oxygen and carbon-carbon antibonds (sigmaCO*,sigmaCC*) make critical contributions to the 13C shieldings, and these nO --> sigmaCO*, nO --> sigmaCC* interactions are in turn sensitive to the intramolecular interactions that dictate dimer structure and stability. The carboxyl carbon atom can thus serve as a useful detector of subtle structural and conformational features in this pharmacologically important class of carboxylic acid interactions.
Cho, Ki Joon; Schepens, Bert; Seok, Jong Hyeon; Kim, Sella; Roose, Kenny; Lee, Ji-Hye; Gallardo, Rodrigo; Van Hamme, Evelien; Schymkowitz, Joost; Rousseau, Frederic; Fiers, Walter; Saelens, Xavier; Kim, Kyung Hyun
2015-04-01
The extracellular domain of influenza A virus matrix protein 2 (M2e) is conserved and is being evaluated as a quasiuniversal influenza A vaccine candidate. We describe the crystal structure at 1.6 Å resolution of M2e in complex with the Fab fragment of an M2e-specific monoclonal antibody that protects against influenza A virus challenge. This antibody binds M2 expressed on the surfaces of cells infected with influenza A virus. Five out of six complementary determining regions interact with M2e, and three highly conserved M2e residues are critical for this interaction. In this complex, M2e adopts a compact U-shaped conformation stabilized in the center by the highly conserved tryptophan residue in M2e. This is the first description of the three-dimensional structure of M2e. M2e of influenza A is under investigation as a universal influenza A vaccine, but its three-dimensional structure is unknown. We describe the structure of M2e stabilized with an M2e-specific monoclonal antibody that recognizes natural M2. We found that the conserved tryptophan is positioned in the center of the U-shaped structure of M2e and stabilizes its conformation. The structure also explains why previously reported in vivo escape viruses, selected with a similar monoclonal antibody, carried proline residue substitutions at position 10 in M2. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Molecular dynamics studies of the protein-protein interactions in inhibitor of κB kinase-β.
Jones, Michael R; Liu, Cong; Wilson, Angela K
2014-02-24
Activation of the inhibitor of κB kinase subunit β (IKKβ) oligomer initiates a cascade that results in the translocation of transcription factors involved in mediating immune responses. Dimerization of IKKβ is required for its activation. Coarse-grained and atomistic molecular dynamics simulations were used to investigate the conformation-activity and structure-activity relationships within the oligomer assembly of IKKβ that are impacted upon activation, mutation, and binding of ATP. Intermolecular interactions, free energies, and conformational changes were compared among several conformations, including a monomer, two different dimers, and the tetramer. Modifications to the activation segment induce conformational changes that disrupt dimerization and suggest that the multimeric assembly mediates a global stability for the enzyme that influences the activity of IKKβ.
NASA Astrophysics Data System (ADS)
Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.
1989-03-01
The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.
NASA Astrophysics Data System (ADS)
Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh
2018-06-01
All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900 cm-1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water > DMSO > acetone > toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8 kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46 kcal/mol, but this effect is lower than that of water and methanol-explicit effect.
Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K
2018-01-01
Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.
Cochran, A G; Tong, R T; Starovasnik, M A; Park, E J; McDowell, R S; Theaker, J E; Skelton, N J
2001-01-31
Phage display of peptide libraries has become a powerful tool for the evolution of novel ligands that bind virtually any protein target. However, the rules governing conformational preferences in natural peptides are poorly understood, and consequently, structure-activity relationships in these molecules can be difficult to define. In an effort to simplify this process, we have investigated the structural stability of 10-residue, disulfide-constrained beta-hairpins and assessed their suitability as scaffolds for beta-turn display. Using disulfide formation as a probe, relative free energies of folding were measured for 19 peptides that differ at a one strand position. A tryptophan substitution promotes folding to a remarkable degree. NMR analysis confirms that the measured energies correlate well with the degree of beta-hairpin structure in the disulfide-cyclized peptides. Reexamination of a subset of the strand substitutions in peptides with different turn sequences reveals linear free energy relationships, indicating that turns and strand-strand interactions make independent, additive contributions to hairpin stability. Significantly, the tryptophan strand substitution is highly stabilizing with all turns tested, and peptides that display model turns or the less stable C'-C' ' turn of CD4 on this tryptophan "stem" are highly structured beta-hairpins in water. Thus, we have developed a small, structured beta-turn scaffold, containing only natural L-amino acids, that may be used to display peptide libraries of limited conformational diversity on phage.
Berber, Hatice; Lameiras, Pedro; Denhez, Clément; Antheaume, Cyril; Clayden, Jonathan
2014-07-03
Terpenylation reactions of substituted phenols were used to prepare cannabidiol and linderatin derivatives, and their structure and conformational behavior in solution were investigated by NMR and, for some representative examples, by DFT. VT-NMR spectra and DFT calculations were used to determine the activation energies of the conformational change arising from restricted rotation about the aryl-Csp(3) bond that lead to two unequally populated rotameric epimers. The NBO calculation was applied to explain the electronic stabilization of one conformer over another by donor-acceptor charge transfer interactions. Conformational control arises from a combination of stereoelectronic and steric effects between substituents in close contact with each other on the two rings of the endocyclic epoxide atropisomers. This study represents the first exploration of the stereoelectronic origins of atropisomerism around C(sp(2))-C(sp(3)) single bonds through theoretical calculations.
New insights into structural determinants of prion protein folding and stability.
Benetti, Federico; Legname, Giuseppe
2015-01-01
Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.
Nei, Y-w; Crampton, K T; Berden, G; Oomens, J; Rodgers, M T
2013-10-17
The IRMPD action spectra of the deprotonated forms of the four common RNA mononucleotides, adenosine-5'-monophosphate (A5'p), guanosine-5'-monophosphate (G5'p), cytidine-5'-monophosphate (C5'p), and uridine-5'-monophosphate (U5'p), are measured to probe their gas-phase structures. The IRMPD action spectra of all four deprotonated RNA mononucleotides exhibit distinct IR signatures in the frequency region investigated, 570-1900 cm(-1), that allows these deprotonated mononucleotides to be easily differentiated from one other. Comparison of the measured IRMPD action spectra to the linear IR spectra calculated at the B3LYP/6-31+G(d,p) level of theory finds that the most stable conformations of the deprotonated forms of A5'p, C5'p, and U5'p are accessed in the experiments, and these conformers adopt the C3' endo conformation of the ribose moiety and the anti conformation of the nucleobase. In the case of deprotonated G5'p, the most stable conformer is also accessed in the experiments. However, the ground-state conformer differs from the other three deprotonated RNA mononucleotides in that it adopts the syn rather than anti conformation for the nucleobase. Present results are compared to results previously obtained for the deprotonated forms of the four common DNA mononucleotides to examine the fundamental conformational differences between these species, and thus elucidate the effects of the 2'-hydroxyl group on their structure, stability, and fragmentation behavior.
Molecular dynamics studies of the conformation of sorbitol
Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.
2009-01-01
Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646
The rotational barrier in ethane: a molecular orbital study.
Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J
2012-04-20
The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.
Shrivastava, Indira; LaLonde, Judith M.
2012-01-01
HIV infection is initiated by binding of the viral glycoprotein gp120, to the cellular receptor CD4. Upon CD4 binding, gp120 undergoes conformational change, permitting binding to the chemokine receptor. Crystal structures of gp120 ternary complex reveal the CD4 bound conformation of gp120. We report here the application of Gaussian Network Model (GNM) to the crystal structures of gp120 bound to CD4 or CD4 mimic and 17b, to study the collective motions of the gp120 core and determine the communication propensities of the residue network. The GNM fluctuation profiles identify residues in the inner domain and outer domain that may facilitate conformational change or stability, respectively. Communication propensities delineate a residue network that is topologically suited for signal propagation from the Phe43 cavity throughout the gp120 outer domain. . These results provide a new context for interpreting gp120 core envelope structure-function relationships. PMID:20718047
Liao, Yi-Ting; Manson, Anthony C; DeLyser, Michael R; Noid, William G; Cremer, Paul S
2017-03-07
We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N -oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air-water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer-water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins.
Stair, Jacqueline L; Holcombe, James A
2007-03-01
The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.
Wang, Xue; Zhao, Kun; Kirberger, Michael; Wong, Hing; Chen, Guantao; Yang, Jenny J
2010-01-01
Calcium binding in proteins exhibits a wide range of polygonal geometries that relate directly to an equally diverse set of biological functions. The binding process stabilizes protein structures and typically results in local conformational change and/or global restructuring of the backbone. Previously, we established the MUG program, which utilized multiple geometries in the Ca2+-binding pockets of holoproteins to identify such pockets, ignoring possible Ca2+-induced conformational change. In this article, we first report our progress in the analysis of Ca2+-induced conformational changes followed by improved prediction of Ca2+-binding sites in the large group of Ca2+-binding proteins that exhibit only localized conformational changes. The MUGSR algorithm was devised to incorporate side chain torsional rotation as a predictor. The output from MUGSR presents groups of residues where each group, typically containing two to five residues, is a potential binding pocket. MUGSR was applied to both X-ray apo structures and NMR holo structures, which did not use calcium distance constraints in structure calculations. Predicted pockets were validated by comparison with homologous holo structures. Defining a “correct hit” as a group of residues containing at least two true ligand residues, the sensitivity was at least 90%; whereas for a “correct hit” defined as a group of residues containing at least three true ligand residues, the sensitivity was at least 78%. These data suggest that Ca2+-binding pockets are at least partially prepositioned to chelate the ion in the apo form of the protein. PMID:20512971
Mary, Y Sheena; Raju, K; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; Thiemann, Thies
2014-10-15
The conformational behavior and structural stability of (2E)-3-(3-chlorophenyl)prop-2-enoic anhydride were investigated by using density functional theory. The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of (2E)-3-(3-chlorophenyl)prop-2-enoic anhydride have been investigated experimentally and theoretically. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. The stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of the title compound is 15.8×10(-30)esu, and is 121.54 times that of the standard NLO material urea and the title compound is an attractive object for future studies of nonlinear optical properties. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. Copyright © 2014 Elsevier B.V. All rights reserved.
Mechanism of partial agonism in AMPA-type glutamate receptors
Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew
2017-01-01
Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453
NASA Astrophysics Data System (ADS)
Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan
2012-12-01
Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.
Spasic, Aleksandar; Kennedy, Scott D; Needham, Laura; Manoharan, Muthiah; Kierzek, Ryszard; Turner, Douglas H; Mathews, David H
2018-05-01
The RNA "GAGU" duplex, (5'GAC GAGU GUCA) 2 , contains the internal loop (5'-GAGU-3') 2 , which has two conformations in solution as determined by NMR spectroscopy. The major conformation has a loop structure consisting of trans -Watson-Crick/Hoogsteen GG pairs, A residues stacked on each other, U residues bulged outside the helix, and all sugars with a C2'- endo conformation. This differs markedly from the internal loops, (5'-G AG C-3') 2 , (5'-A AG U-3') 2 , and (5'-UAGG-3') 2 , which all have cis -Watson-Crick/Watson-Crick AG "imino" pairs flanked by cis -Watson-Crick/Watson-Crick canonical pairs resulting in maximal hydrogen bonding. Here, molecular dynamics was used to test whether the Amber force field (ff99 + bsc0 + OL3) approximates molecular interactions well enough to keep stable the unexpected conformation of the GAGU major duplex structure and the NMR structures of the duplexes containing (5'-G AG C-3') 2 , (5'-A AG U-3') 2 , and (5'-U AG G-3') 2 internal loops. One-microsecond simulations were repeated four times for each of the duplexes starting in their NMR conformations. With the exception of (5'-UAGG-3') 2 , equivalent simulations were also run starting with alternative conformations. Results indicate that the Amber force field keeps the NMR conformations of the duplexes stable for at least 1 µsec. They also demonstrate an unexpected minor conformation for the (5'-GAGU-3') 2 loop that is consistent with newly measured NMR spectra of duplexes with natural and modified nucleotides. Thus, unrestrained simulations led to the determination of the previously unknown minor conformation. The stability of the native (5'-GAGU-3') 2 internal loop as compared to other loops can be explained by changes in hydrogen bonding and stacking as the flanking bases are changed. © 2018 Spasic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki
2017-05-03
The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.
Euston, S R; Hughes, P; Naser, Md A; Westacott, R E
2008-05-01
Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.
Alvarez-Ros, Margarita Clara; Palafox, Mauricio Alcolea
2014-01-01
The five tautomers of the drug acyclovir (ACV) were determined and optimised at the MP2 and B3LYP quantum chemical levels of theory. The stability of the tautomers was correlated with different parameters. On the most stable tautomer N1 was carried out a comprehensive conformational analysis, and the whole conformational parameters (R, β, Φ, φ1, φ2, φ3, φ4, φ5) were studied as well as the NBO Natural atomic charges. The calculations were carried out with full relaxation of all geometrical parameters. The search located at least 78 stable structures within 8.5 kcal/mol electronic energy range of the global minimum, and classified in two groups according to the positive or negative value of the torsional angle φ1. In the nitrogen atoms and in the O2' and O5' oxygen atoms of the most stable conformer appear a higher reactivity than in the natural nucleoside deoxyguanosine. The solid state was simulated through a dimer and tetramer forms and the structural parameters were compared with the X-ray crystal data available. Several general conclusions were emphasized. PMID:24915059
Tuning the structure of thermosensitive gold nanoparticle monolayers.
Rezende, Camila A; Shan, Jun; Lee, Lay-Theng; Zalczer, Gilbert; Tenhu, Heikki
2009-07-23
Gold nanoparticles grafted with poly(N-isopropylacrylamide) (PNIPAM) are rendered amphiphilic and thermosensitive. When spread on the surface of water, they form stable Langmuir monolayers that exhibit surface plasmon resonance. Using Langmuir balance and contrast-matched neutron reflectivity, the detailed structural properties of these nanocomposite monolayers are revealed. At low surface coverage, the gold nanoparticles are anchored to the interface by an adsorbed PNIPAM layer that forms a thin and compact pancake structure. Upon isothermal compression (T=20 degrees C), the adsorbed layer thickens with partial desorption of polymer chains to form brush structures. Two distinct polymer conformations thus coexist: an adsorbed conformation that assures stability of the monolayer, and brush structures that dangle in the subphase. An increase in temperature to 30 degrees C results in contractions of both adsorbed and brush layers with a concomitant decrease in interparticle distance, indicating vertical as well as lateral contractions of the graft polymer layer. The reversibility of this thermal response is also shown by the contraction-expansion of the polymer layers in heating-cooling cycles. The structure of the monolayer can thus be tuned by compression and reversibly by temperature. These compression and thermally induced conformational changes are discussed in relation to optical properties.
NASA Astrophysics Data System (ADS)
Fitrasari, Dian; Purqon, Acep
2017-07-01
Proteins play important roles in body metabolism. However, to reveal hydration effects, it is cost computing especially for all-atom calculation. Coarse-grained method is one of potential solution to reduce the calculation and computable in longer timescale. Furthermore, the protein of Azurin is interesting protein and potentially applicable to cancer medicine for the stability property reason. We investigate the effects of hydration on Azurin, the conformation and the stabilities. Furthermore, we analyze the free-energy of the conformation system to find the favorable structure using free energy perturbation (FEP) calculation. Our calculation results show that free energy value of azurin is -136.9 kJ/mol. It shows a good agreement with experimental results with relative error index remained at 0.07%.
Regulation of Response Regulator Autophosphorylation through Interdomain Contacts*♦
Barbieri, Christopher M.; Mack, Timothy R.; Robinson, Victoria L.; Miller, Matthew T.; Stock, Ann M.
2010-01-01
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo. PMID:20702407
Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme
Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.
2016-01-01
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360
Exploring the free energy landscape of a model β-hairpin peptide and its isoform.
Narayanan, Chitra; Dias, Cristiano L
2014-10-01
Secondary structural transitions from α-helix to β-sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β-hairpin peptides form basic components of anti-parallel β-sheets and are suitable model systems for characterizing the fundamental forces stabilizing β-sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β-hairpin peptide GB1 and its E2 isoform that preferentially adopts α-helical conformations at ambient conditions. Umbrella sampling simulations using all-atom models and explicit solvent are performed over a large range of end-to-end distances. Our results show the strong preference of GB1 and the E2 isoform for β-hairpin and α-helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β-hairpin structures which differ from each other in the position of the β-turn. We discuss the energetic factors contributing favorably to the formation of α-helix and β-hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non-bonded interactions. © 2014 Wiley Periodicals, Inc.
Santiveri, Clara M; Pantoja-Uceda, David; Rico, Manuel; Jiménez, M Angeles
2005-10-15
In order to check our current knowledge on the principles involved in beta-hairpin formation, we have modified the sequence of a 3:5 beta-hairpin forming peptide with two different purposes, first to increase the stability of the formed 3:5 beta-hairpin, and second to convert the 3:5 beta-hairpin into a 2:2 beta-hairpin. The conformational behavior of the designed peptides was investigated in aqueous solution and in 30% trifluoroethanol (TFE) by analysis of the following nuclear magnetic resonance (NMR) parameters: nuclear Overhauser effect (NOE) data, and C(alpha)H, (13)C(alpha), and (13)C(beta) conformational shifts. From the differences in the ability to adopt beta-hairpin structures in these peptides, we have arrived to the following conclusions: (i) beta-Hairpin population increases with the statistical propensity of residues to occupy each turn position. (ii) The loop length, and in turn, the beta-hairpin type, can be modified as a function of the type of turn favored by the loop sequence. These two conclusions reinforce previous results about the importance of beta-turn sequence in beta-hairpin folding. (iii) Side-chain packing on each face of the beta-sheet may play a major role in beta-hairpin stability; hence simplified analysis in terms of isolated pair interactions and intrinsic beta-sheet propensities is insufficient. (iv) Contributions to beta-hairpin stability of turn and strand sequences are not completely independent. (v) The burial of hydrophobic surface upon beta-hairpin formation that, in turn, depends on side-chain packing also contributes to beta-hairpin stability. (vi) As previously observed, TFE stabilizes beta-hairpin structures, but the extent of the contribution of different factors to beta-hairpin formation is sometimes different in aqueous solution and in 30% TFE. (c) 2005 Wiley Periodicals, Inc. Biopolymers 79: 150-162, 2005.
Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong
2018-06-01
Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.
Xie, Xiang-Qun; Chowdhury, Ananda
2013-01-01
Structural biology of GPCRs has made significant progress upon recently developed technologies for GPCRs expression/purification and elucidation of GPCRs crystal structures. The crystal structures provide a snapshot of the receptor structural disposition of GPCRs itself or with cocrystallized ligands, and the results are congruent with biophysical and computer modeling studies reported about GPCRs conformational and dynamics flexibility, regulated activation, and the various stabilizing interactions, such as "molecular switches." The molecular switches generally constitute the most conserved domains within a particular GPCR superfamily. Often agonist-induced receptor activation proceeds by the disruption of majority of these interactions, while antagonist and inverse agonist act as blockers and structural stabilizers, respectively. Several elegant studies, particularly for the β2AR, have demonstrated the relationship between ligand structure, receptor conformational changes, and corresponding pharmacological outcomes. Thus, it is of great importance to understand GPCRs activation related to cell signaling pathways. Herein, we summarize the steps to produce functional GPCRs, generate suitably fluorescent labeled GPCRs and the procedure to use that to understand if ligand-induced activation can proceed by activation of the GPCRs via ionic lock switch and/or rotamer toggle switch mechanisms. Such understanding of ligand structure and mechanism of receptor activation will provide great insight toward uncovering newer pathways of GPCR activation and aid in structure-based drug design. Copyright © 2013 Elsevier Inc. All rights reserved.
Czemeres, Josh; Buse, Kurt
2017-01-01
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding. PMID:29267381
Kitahara, Ryo; Simorellis, Alana K.; Hata, Kazumi; Maeno, Akihiro; Yokoyama, Shigeyuki; Koide, Shohei; Akasaka, Kazuyuki
2012-01-01
Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure 15N/1H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the polypeptide backbone in the nonglobular single layer β-sheet connecting the N- and C-terminal domains with τ << ms, which may give the two domains certain independence in mobility and thermodynamic stability. Furthermore, we found that folded, native OspA is in equilibrium (τ >> ms) with a minor conformer I, which is almost fully disordered and hydrated for the entire C-terminal part of the polypeptide chain from β8 to the C-terminus. Conformer I is characterized with ΔG0 = 32 ± 9 kJ/mol and ΔV0 = −140 ± 40 mL/mol, populating only ∼0.001% at 40°C at 0.1 MPa, pH 5.9. Because in the folded conformer the receptor binding epitope of OspA is buried in the C-terminal domain, its transition into conformer I under in vivo conditions may be critical for the infection of B. burgdorferi. The formation and stability of the peculiar conformer I are apparently supported by a large packing defect or cavity located in the C-terminal domain. PMID:22385863
Paz, S. Alexis; Vanden-Eijnden, Eric
2017-01-01
We study the thermodynamic stability of the native state of the human prion protein using a new free-energy method, replica-exchange on-the-fly parameterization. This method is designed to overcome hidden-variable sampling limitations to yield nearly error-free free-energy profiles along a conformational coordinate. We confirm that all four (M129V, D178N) polymorphs have a ground-state conformation with three intact β-sheet hydrogen bonds. Additionally, they are observed to have distinct metastabilities determined by the side-chain at position 129. We rationalize these findings with reference to the prion “strain” hypothesis, which links the variety of transmissible spongiform encephalopathy phenotypes to conformationally distinct infectious prion forms and classifies distinct phenotypes of sporadic Creutzfeldt-Jakob disease based solely on the 129 polymorphism. Because such metastable structures are not easily observed in structural experiments, our approach could potentially provide new insights into the conformational origins of prion diseases and other pathologies arising from protein misfolding and aggregation. PMID:28451263
Venkateshwari, Sureshkumar; Veluraja, Kasinadar
2012-01-01
The conformational property of oligosaccharide GT1B in aqueous environment was studied by molecular dynamics (MD) simulation using all-atom model. Based on the trajectory analysis, three prominent conformational models were proposed for GT1B. Direct and water-mediated hydrogen bonding interactions stabilize these structures. The molecular modeling and 15 ns MD simulation of the Botulinum Neuro Toxin/B (BoNT/B) - GT1B complex revealed that BoNT/B can accommodate the GT1B in the single binding mode. Least mobility was seen for oligo-GT1B in the binding pocket. The bound conformation of GT1B obtained from the MD simulation of the BoNT/B-GT1B complex bear a close conformational similarity with the crystal structure of BoNT/A-GT1B complex. The mobility noticed for Arg 1268 in the dynamics was accounted for its favorable interaction with terminal NeuNAc. The internal NeuNAc1 tends to form 10 hydrogen bonds with BoNT/B, hence specifying this particular site as a crucial space for the therapeutic design that can restrict the pathogenic activity of BoNT/B.
Prisilla, A; Prathiviraj, R; Chellapandi, P
2017-04-01
Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 toxin along with botulinum neurotoxins. C2 toxin is belonged to binary toxin A family in bacterial ADP-ribosylation superfamily. A structural and functional diversity of binary toxin A family was inferred from different evolutionary constraints to determine the avirulence state of C2 toxin. Evolutionary genetic analyses revealed evidence of C2 toxin cluster evolution through horizontal gene transfer from the phage or plasmid origins, site-specific insertion by gene divergence, and homologous recombination event. It has also described that residue in conserved NAD-binding core, family-specific domain structure, and functional motifs found to predetermine its virulence state. Any mutational changes in these residues destabilized its structure-function relationship. Avirulent mutants of C2 toxin were screened and selected from a crucial site required for catalytic function of C2I and pore-forming function of C2II. We found coevolved amino acid pairs contributing an essential role in stabilization of its local structural environment. Avirulent toxins selected in this study were evaluated by detecting evolutionary constraints in stability of protein backbone structure, folding and conformational dynamic space, and antigenic peptides. We found 4 avirulent mutants of C2I and 5 mutants of C2II showing more stability in their local structural environment and backbone structure with rapid fold rate, and low conformational flexibility at mutated sites. Since, evolutionary constraints-free mutants with lack of catalytic and pore-forming function suggested as potential immunogenic candidates for treating C. botulinum infected poultry and veterinary animals. Single amino acid substitution in C2 toxin thus provides a major importance to understand its structure-function link, not only of a molecule but also of the pathogenesis.
Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu
2014-01-01
Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4–5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. PMID:25283538
Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu
2014-12-01
Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. © 2014 The Protein Society.
The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk.
Sheng, Long; He, Zhenjiao; Chen, Jiahui; Liu, Yaofa; Ma, Meihu; Cai, Zhaoxia
2017-03-01
Immunoglobulin Y (IgY) is a new therapeutic antibody, and its applications in industry are very broad. To provide insight into the effects of N-glycosylation on IgY, its conformation and stability were studied. In this research, IgY was extracted from egg yolk and then digested by peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase. SDS-PAGE and infrared absorption spectrum showed that carbohydrates were distinctly reduced after enzymolysis. The circular dichroism spectrum indicated that the IgY molecule became more flexible and disordered after removal of N-glycan. The fluorescence intensity revealed that Trp residues were buried in a more hydrophobic environment after disposal of N-glycan. Storage stability decreased with the removal of oligosaccharide chains based on size-exclusion chromatography analysis. Deglycosylated IgY exhibited less resistance to guanidine hydrochloride-induced unfolding. After deglycosylation, IgY was more sensitive to pepsin. Therefore, N-glycosylation played an important role in the maintenance of the structure and stability of IgY. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.
2013-03-07
Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, suchmore » as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonetti, Angelita; Marzi, Stefano; Fabbretti, Attilio
2013-06-01
The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2more » is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.« less
2014-01-01
The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin–insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1–B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the “classical” T-state and that a substantial flexibility of the B1–B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin–IR interaction. PMID:24819248
Bamdad, Kourosh; Ranjbar, Bijan; Naderi-Manesh, Hossein; Sadeghi, Mehdi
2014-01-01
Horseradish peroxidase is an all alpha-helical enzyme, which widely used in biochemistry applications mainly because of its ability to enhance the weak signals of target molecules. This monomeric heme-containing plant peroxidase is also used as a reagent for the organic synthesis, biotransformation, chemiluminescent assays, immunoassays, bioremediation, and treatment of wastewaters as well. Accordingly, enhancing stability and catalytic activity of this protein for biotechnological uses has been one of the important issues in the field of biological investigations in recent years. In this study, pH-induced structural alterations of native (HRP), and modified (MHRP) forms of Horseradish peroxidase have been investigated. Based on the results, dramatic loss of the tertiary structure and also the enzymatic activity for both forms of enzymes recorded at pH values lower than 6 and higher than 8. Ellipticiy measurements, however, indicated very slight variations in the secondary structure for MHRP at pH 5. Spectroscopic analysis also indicated that melting of the tertiary structure of MHRP at pH 5 starts at around 45 °C, which is associated to the pKa of His 42 that has a serious role in keeping of the heme prostethic group in its native position through natural hydrogen bond network in the enzyme structure. According to our data, a molten globule like structure of a chemically modified form of Horseradish peroxidase at pH 5 with initial steps of conformational transition in tertiary structure with almost no changes in the secondary structure has been detected. Despite of some conformational changes in the tertiary structure of MHRP at pH 5, this modified form still keeps its catalytic activity to some extent besides enhanced thermal stability. These findings also indicated that a molten globular state does not necessarily preclude efficient catalytic activity. PMID:26417287
Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna
2017-10-01
Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.
Conformational flexibility of two RNA trimers explored by computational tools and database search.
Fadrná, Eva; Koca, Jaroslav
2003-04-01
Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data. Registry numbers: adenylyl-(3' --> 5')-adenylyl-(3' --> 5')-adenosine [917-44-2] adenylyl-(3' --> 5')-uridylyl-(3' --> 5')-guanosine [3494-35-7].
Huang, Xuhui; Wang, Dong; Weiss, Dahlia R.; Bushnell, David A.; Kornberg, Roger D.; Levitt, Michael
2010-01-01
A structurally conserved element, the trigger loop, has been suggested to play a key role in substrate selection and catalysis of RNA polymerase II (pol II) transcription elongation. Recently resolved X-ray structures showed that the trigger loop forms direct interactions with the β-phosphate and base of the matched nucleotide triphosphate (NTP) through residues His1085 and Leu1081, respectively. In order to understand the role of these two critical residues in stabilizing active site conformation in the dynamic complex, we performed all-atom molecular dynamics simulations of the wild-type pol II elongation complex and its mutants in explicit solvent. In the wild-type complex, we found that the trigger loop is stabilized in the “closed” conformation, and His1085 forms a stable interaction with the NTP. Simulations of point mutations of His1085 are shown to affect this interaction; simulations of alternative protonation states, which are inaccessible through experiment, indicate that only the protonated form is able to stabilize the His1085-NTP interaction. Another trigger loop residue, Leu1081, stabilizes the incoming nucleotide position through interaction with the nucleotide base. Our simulations of this Leu mutant suggest a three-component mechanism for correctly positioning the incoming NTP in which (i) hydrophobic contact through Leu1081, (ii) base stacking, and (iii) base pairing work together to minimize the motion of the incoming NTP base. These results complement experimental observations and provide insight into the role of the trigger loop on transcription fidelity. PMID:20798057
Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Svedas, Vytas
2014-01-01
Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.
Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas
2014-01-01
Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852
Desulfurization of 2-thiouracil nucleosides: conformational studies of 4-pyrimidinone nucleosides.
Kraszewska, Karina; Kaczyńska, Iwona; Jankowski, Stefan; Karolak-Wojciechowska, Janina; Sochacka, Elzbieta
2011-04-01
4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tanaka, Koji; Caaveiro, Jose M M; Tsumoto, Kouhei
2015-11-24
The bidirectional transformation of a protein between its native water-soluble and integral transmembrane conformations is demonstrated for FraC, a hemolytic protein of the family of pore-forming toxins. In the presence of biological membranes, the water-soluble conformation of FraC undergoes a remarkable structural reorganization generating cytolytic transmembrane nanopores conducive to cell death. So far, the reverse transformation from the native transmembrane conformation to the native water-soluble conformation has not been reported. We describe the use of detergents with different physicochemical properties to achieve the spontaneous conversion of transmembrane pores of FraC back into the initial water-soluble state. Thermodynamic and kinetic stability data suggest that specific detergents cause an asymmetric change in the energy landscape of the protein, allowing the bidirectional transformation of a membrane protein.
NASA Astrophysics Data System (ADS)
Chashmniam, Saeed; Tafazzoli, Mohsen
2017-11-01
Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.
Kumar, Ambuj; Purohit, Rituraj
2013-01-01
Background AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is one of the most frequently activated proliferated and survival pathway of cancer. Recently it has been shown that E17K mutation in the Pleckstrin Homology (PH) domain of AKT1 protein leads to cancer by amplifying the phosphorylation and membrane localization of protein. The mutant has shown resistance to AKT1/2 inhibitor VIII drug molecule. In this study we have demonstrated the detailed structural and molecular consequences associated with the activity regulation of mutant protein. Methods The docking score exhibited significant loss in the interaction affinity to AKT1/2 inhibitor VIII drug molecule. Furthermore, the molecular dynamics simulation studies presented an evidence of rapid conformational drift observed in mutant structure. Results There was no stability loss in mutant as compared to native structure and the major cation–π interactions were also shown to be retained. Moreover, the active residues involved in membrane localization of protein exhibited significant rise in NHbonds formation in mutant. The rise in NHbond formation in active residues accounts for the 4-fold increase in the membrane localization potential of protein. Conclusion The overall result suggested that, although the mutation did not induce any stability loss in structure, the associated pathological consequences might have occurred due to the rapid conformational drifts observed in the mutant AKT1 PH domain. General Significance The methodology implemented and the results obtained in this work will facilitate in determining the core molecular mechanisms of cancer-associated mutations and in designing their potential drug inhibitors. PMID:23741320
Effect of Urea on G-Quadruplex Stability.
Aslanyan, Lusine; Ko, Jordan; Kim, Byul G; Vardanyan, Ishkhan; Dalyan, Yeva B; Chalikian, Tigran V
2017-07-13
G-quadruplexes represent a class of noncanonical nucleic acid structures implicated in transcriptional regulation, cellular function, and disease. An understanding of the forces involved in stabilization and destabilization of the G-quadruplex conformation relative to the duplex or single-stranded conformation is a key to elucidating the biological role of G-quadruplex-based genomic switches and the quest for therapeutic means for controlled induction or suppression of a G-quadruplex at selected genomic loci. Solute-solvent interactions provide a ubiquitous and, in many cases, the determining thermodynamic force in maintaining and modulating the stability of nucleic acids. These interactions involve water as well as water-soluble cosolvents that may be present in the solution or in the crowded environment in the cell. We present here the first quantitative investigation of the effect of urea, a destabilizing cosolvent, on the conformational preferences of a G-quadruplex formed by the telomeric d[A(G 3 T 2 A) 3 G 3 ] sequence (Tel22). At 20 mM NaCl and room temperature, Tel22 undergoes a two-state urea-induced unfolding transition. An increase in salt mitigates the deleterious effect of urea on Tel22. The urea m-value of Tel22 normalized per change in solvent-accessible surface area, ΔS A , is similar to those for other DNA and RNA structures while being several-fold larger than that of proteins. Our results suggest that urea can be employed as an analytical tool in thermodynamic characterizations of G-quadruplexes in a manner similar to the use of urea in protein studies. We emphasize the need for further studies involving a larger selection of G-quadruplexes varying in sequence, topology (parallel, antiparallel, hybrid), and molecularity (monomolecular, bimolecular, tetramolecular) to outline the advantages and the limits of the use of urea in G-quadruplex studies. A deeper understanding of the effect of solvent and cosolvents on the differential stability of the G-quadruplex and duplex conformations is a step toward elucidation of the modulating influence of different types of cosolvents on duplex-G-quadruplex molecular switches triggering genomic events.
Durig, James R; Zheng, Chao
2007-11-01
Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.
Dalgicdir, Cahit; Globisch, Christoph; Peter, Christine; Sayar, Mehmet
2015-01-01
Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK) and EAALAEALAEALAE (EALA), with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides’ response to macroscopic and molecular interfaces (presented by an aggregation partner) can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides’ aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity. PMID:26295346
Dalgicdir, Cahit; Globisch, Christoph; Peter, Christine; Sayar, Mehmet
2015-08-01
Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK) and EAALAEALAEALAE (EALA), with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides' response to macroscopic and molecular interfaces (presented by an aggregation partner) can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides' aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity.
Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok
2014-02-01
Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidimensional Methods for the Formulation of Biopharmaceuticals and Vaccines
Maddux, Nathaniel R.; Joshi, Sangeeta B.; Volkin, David B.; Ralston, John P.; Middaugh, C. Russell
2013-01-01
Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods, since each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics. PMID:21647886
Structural characterization of ribosome recruitment and translocation by type IV IRES.
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-05-09
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.
Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases
Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott
2012-01-01
Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. PMID:22619179
Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.
Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott
2012-08-01
Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. Copyright © 2012 The Protein Society.
Bastolla, Ugo
2014-01-01
The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217
A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.
Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A
1984-01-01
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910
Chatterjee, Sunanda; Vasudev, Prema G; Raghothama, Srinivasarao; Ramakrishnan, Chandrasekharan; Shamala, Narayanaswamy; Balaram, Padmanabhan
2009-04-29
Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C(12) hydrogen bonded turns which may be considered as backbone expanded analogues of C(10) (beta-turns) found in alphaalpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alphagamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C(gamma)-C(beta) (theta(1)) and C(beta)-C(alpha) (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms a beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C(12) turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C(12) hydrogen bonded structures which are energetically feasible in alphagamma and gammaalpha sequences.
NASA Astrophysics Data System (ADS)
Franklin, S.; Balasubramanian, T.; Nehru, K.; Kim, Youngmee
2009-06-01
The crystal structure of the title rac-propranolol salt, CHNO2+·NO3-, consists of two protonated propranolol residues and nitrate anions. Three virtually flat fragments, characteristics of most of the β-adrenolytics with oxy-methylene bridge are present in both the cations (A and B). The plane of the propranolol chain is twisted with respect to the plane of the aromatic ring in both the cations. Present study investigates the conformation and hydrogen bonding interactions, which play an important role in biological functions. A gauche conformation is observed for the oxo-methylene bridge of cation A, while a trans conformation prevails in cation B. These conformations are found in majority of β-blockers. Presence of twenty intermolecular hydrogen bonds mediating through the anions stabilizes the crystal packing. Vibration analysis and earlier theoretical predictions complement the structure analysed. From the UV-Vis spectral analysis for the crystal, the optical band gap is found to be Eg = 5.12 eV, where as the chloride salt has Eg = 3.81 eV. The increase in the band gap may be attributed by the increase in the number of intermolecular hydrogen bonds. Good optical transmittance in the entire visible region and the direct band gap property suggest that it is a suitable candidate for optical applications in UV region.
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina
2018-01-01
The structures, relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of Pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semi-experimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg. for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt- and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol−1. Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm−1 are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC calculations. PMID:26575928
Pan, Feng; Man, Viet Hoang; Roland, Christopher; Sagui, Celeste
2018-04-26
Expansions of both GGC and CCG sequences lead to a number of expandable, trinucleotide repeat (TR) neurodegenerative diseases. Understanding of these diseases involves, among other things, the structural characterization of the atypical DNA and RNA secondary structures. We have performed molecular dynamics simulations of (GCC) n and (GGC) n homoduplexes in order to characterize their conformations, stability, and dynamics. Each TR has two reading frames, which results in eight nonequivalent RNA/DNA homoduplexes, characterized by CpG or GpC steps between the Watson-Crick base pairs. Free energy maps for the eight homoduplexes indicate that the C-mismatches prefer anti-anti conformations, while G-mismatches prefer anti-syn conformations. Comparison between three modifications of the DNA AMBER force field shows good agreement for the mismatch free energy maps. The mismatches in DNA-GCC (but not CCG) are extrahelical, forming an extended e-motif. The mismatched duplexes exhibit characteristic sequence-dependent step twist, with strong variations in the G-rich sequences and the e-motif. The distribution of Na + is highly localized around the mismatches, especially G-mismatches. In the e-motif, there is strong Na + binding by two G(N7) atoms belonging to the pseudo GpC step created when cytosines are extruded and by extrahelical cytosines. Finally, we used a novel technique based on fast melting by means of an infrared laser pulse to classify the relative stability of the different DNA-CCG and -GGC homoduplexes.
Nakahashi, Wataru
2007-08-01
Conformity is often observed in human social learning. Social learners preferentially imitate the majority or most common behavior in many situations, though the strength of conformity varies with the situation. Why has such a psychological tendency evolved? I investigate this problem by extending a standard model of social learning evolution with infinite environmental states (Feldman, M.W., Aoki, K., Kumm, J., 1996. Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropol. Sci. 104, 209-231) to include conformity bias. I mainly focus on the relationship between the strength of conformity bias that evolves and environmental stability, which is one of the most important factors in the evolution of social learning. Using the evolutionarily stable strategy (ESS) approach, I show that conformity always evolves when environmental stability and the cost of adopting a wrong behavior are small, though environmental stability and the cost of individual learning both negatively affect the strength of conformity.
Mapping the Ca(2+) induced structural change in calreticulin.
Boelt, Sanne Grundvad; Norn, Christoffer; Rasmussen, Morten Ib; André, Ingemar; Čiplys, Evaldas; Slibinskas, Rimantas; Houen, Gunnar; Højrup, Peter
2016-06-16
Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity. Copyright © 2016 Elsevier B.V. All rights reserved.
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423
Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.
Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen
2017-01-26
pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.
Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J
2016-02-26
Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Guo, Jianxin; Kumar, Sandeep; Chipley, Mark; Marcq, Olivier; Gupta, Devansh; Jin, Zhaowei; Tomar, Dheeraj S; Swabowski, Cecily; Smith, Jacquelynn; Starkey, Jason A; Singh, Satish K
2016-03-16
The impact of drug loading and distribution on higher order structure and physical stability of an interchain cysteine-based antibody drug conjugate (ADC) has been studied. An IgG1 mAb was conjugated with a cytotoxic auristatin payload following the reduction of interchain disulfides. The 2-D LC-MS analysis shows that there is a preference for certain isomers within the various drug to antibody ratios (DARs). The physical stability of the unconjugated monoclonal antibody, the ADC, and isolated conjugated species with specific DAR, were compared using calorimetric, thermal, chemical denaturation and molecular modeling techniques, as well as techniques to assess hydrophobicity. The DAR was determined to have a significant impact on the biophysical properties and stability of the ADC. The CH2 domain was significantly perturbed in the DAR6 species, which was attributable to quaternary structural changes as assessed by molecular modeling. At accelerated storage temperatures, the DAR6 rapidly forms higher molecular mass species, whereas the DAR2 and the unconjugated mAb were largely stable. Chemical denaturation study indicates that DAR6 may form multimers while DAR2 and DAR4 primarily exist in monomeric forms in solution at ambient conditions. The physical state differences were correlated with a dramatic increase in the hydrophobicity and a reduction in the surface tension of the DAR6 compared to lower DAR species. Molecular modeling of the various DAR species and their conformers demonstrates that the auristatin-based linker payload directly contributes to the hydrophobicity of the ADC molecule. Higher order structural characterization provides insight into the impact of conjugation on the conformational and colloidal factors that determine the physical stability of cysteine-based ADCs, with implications for process and formulation development.
Electronic polarization stabilizes tertiary structure prediction of HP-36.
Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H
2014-04-01
Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh
Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved throughmore » its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin’s role in stabilizing interactions between CyaA-ACD and N-CaM.« less
Miranda, Frederico Faria; Teigen, Knut; Thórólfsson, Matthías; Svebak, Randi M; Knappskog, Per M; Flatmark, Torgeir; Martínez, Aurora
2002-10-25
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.
Tsoneva, Yana; Jonker, Hendrik R A; Wagner, Manfred; Tadjer, Alia; Lelle, Marco; Peneva, Kalina; Ivanova, Anela
2015-02-19
The search for targeted drug delivery systems requires the design of drug-carrier complexes, which could both reach the malignant cells and preserve the therapeutic substance activity. A promising strategy aimed at enhancing the uptake and reducing the systemic toxicity is to bind covalently the drug to a cell-penetrating peptide. To understand the structure-activity relationship in such preparations, the chemotherapeutic drug doxorubicin was investigated by unrestrained molecular dynamics simulations, supported by NMR, which yielded its molecular geometry in aqueous environment. Furthermore, the structure and dynamics of a conjugate of the drug with a cell-penetrating peptide was obtained from molecular dynamics simulations in aqueous solution. The geometries of the unbound compounds were characterized at different temperatures, as well as the extent to which they change after covalent binding and whether/how they influence each other in the drug-peptide conjugate. The main structural fragments that affect the conformational ensemble of every molecule were found. The results show that the transitions between different substructures of the three compounds require a modest amount of energy. At increased temperature, either more conformations become populated as a result of the thermal fluctuations or the relative shares of the various conformers equalize at the nanosecond scale. These frequent structural interconversions suggest expressed conformational freedom of the molecules. Conjugation into the drug-peptide compound partially immobilizes the molecules of the parent compounds. Nevertheless, flexibility still exists, as well as an effective intra- and intermolecular hydrogen bonding that stabilizes the structures. We observe compact packing of the drug within the peptide that is also based on stacking interactions. All this outlines the drug-peptide conjugate as a prospective building block of a more complex drug-carrier system.
Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.
2017-01-01
We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526
Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.
Annavarapu, Srinivas; Nanda, Vikas
2009-09-22
Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.
Mirrors in the PDB: left-handed α-turns guide design with D-amino acids
Annavarapu, Srinivas; Nanda, Vikas
2009-01-01
Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds. PMID:19772623
Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering
NASA Astrophysics Data System (ADS)
Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel
Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.
Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F.; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M.
2015-01-01
The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17–42 and Aβ16–21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are able to protect and recondition the cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP20–29 fragment or by a low potassium medium, regardless of their capacity for accelerating or inhibiting in vitro formation of fibers. In vivo animal experiments are required to study the impact of chemical chaperones in cognitive and metabolic syndromes. PMID:26327208
Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.
2015-01-01
Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898
Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.
Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2018-05-10
The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.
Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani
It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less
Panda, Deepanjan; Debnath, Manish; Mandal, Samir; Bessi, Irene; Schwalbe, Harald; Dash, Jyotirmayee
2015-01-01
The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for “turn-on” detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection. PMID:26286633
Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films
Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani; ...
2017-09-26
It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less
Designed β-Boomerang Antiendotoxic and Antimicrobial Peptides
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N.; Torres, Jaume; Bhattacharjya, Surajit
2009-01-01
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like β-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nm concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the β-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate β-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane. PMID:19520860
High Conformational Stability of Secreted Eukaryotic Catalase-peroxidases
Zámocký, Marcel; García-Fernández, Queralt; Gasselhuber, Bernhard; Jakopitsch, Christa; Furtmüller, Paul G.; Loewen, Peter C.; Fita, Ignacio; Obinger, Christian; Carpena, Xavi
2012-01-01
Catalase-peroxidases (KatGs) are bifunctional heme enzymes widely spread in archaea, bacteria, and lower eukaryotes. Here we present the first crystal structure (1.55 Å resolution) of an eukaryotic KatG, the extracellular or secreted enzyme from the phytopathogenic fungus Magnaporthe grisea. The heme cavity of the homodimeric enzyme is similar to prokaryotic KatGs including the unique distal +Met-Tyr-Trp adduct (where the Trp is further modified by peroxidation) and its associated mobile arginine. The structure also revealed several conspicuous peculiarities that are fully conserved in all secreted eukaryotic KatGs. Peculiarities include the wrapping at the dimer interface of the N-terminal elongations from the two subunits and cysteine residues that cross-link the two subunits. Differential scanning calorimetry and temperature- and urea-mediated unfolding followed by UV-visible, circular dichroism, and fluorescence spectroscopy combined with site-directed mutagenesis demonstrated that secreted eukaryotic KatGs have a significantly higher conformational stability as well as a different unfolding pattern when compared with intracellular eukaryotic and prokaryotic catalase-peroxidases. We discuss these properties with respect to the structure as well as the postulated roles of this metalloenzyme in host-pathogen interactions. PMID:22822072
Horvat, Gordan; Stilinović, Vladimir; Hrenar, Tomica; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav
2012-06-04
The calix[4]arene secondary-amide derivative L was synthesized, and its complexation with alkali-metal cations in acetonitrile (MeCN) was studied by means of spectrophotometric, NMR, conductometric, and microcalorimetric titrations at 25 °C. The stability constants of the 1:1 (metal/ligand) complexes determined by different methods were in excellent agreement. For the complexation of M(+) (M = Li, Na, K) with L, both enthalpic and entropic contributions were favorable, with their values and mutual relations being quite strongly dependent on the cation. The enthalpic and overall stability was the largest in the case of the sodium complex. Molecular and crystal structures of free L, its methanol and MeCN solvates, the sodium complex, and its MeCN solvate were determined by single-crystal X-ray diffraction. The inclusion of a MeCN molecule in the calixarene hydrophobic cavity was observed both in solution and in the solid state. This specific interaction was found to be stronger in the case of metal complexes compared to the free ligand because of the better preorganization of the hydrophobic cone to accept the solvent molecule. Density functional theory calculations showed that the flattened cone conformation (C(2) point group) of L was generally more favorable than the square cone conformation (C(4) point group). In the complex with Na(+), L was in square cone conformation, whereas in its adduct with MeCN, the conformation was slightly distorted from the full symmetry. These conformations were in agreement with those observed in the solid state. The classical molecular dynamics simulations indicated that the MeCN molecule enters the L hydrophobic cavity of both the free ligand and its alkali-metal complexes. The inclusion of MeCN in the cone of free L was accompanied by the conformational change from C(2) to C(4) symmetry. As in solution studies, in the case of ML(+) complexes, an allosteric effect was observed: the ligand was already in the appropriate square cone conformation to bind the solvent molecule, allowing it to more easily and faster enter the calixarene cavity.
The effect of tensile stress on the conformational free energy landscape of disulfide bonds.
Anjukandi, Padmesh; Dopieralski, Przemyslaw; Ribas-Arino, Jordi; Marx, Dominik
2014-01-01
Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, χ2 and χ'2. Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The χ2 and χ'2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two a-carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox S(N)2 reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.
Structure-Function Based Molecular Relationships in Ewing's Sarcoma
2015-01-01
Ewing's Sarcoma Oncogene (ews) on chromosome 22q12 is encoding a ubiquitously expressed RNA-binding protein (EWS) with unknown function that is target of tumor-specific chromosomal translocations in Ewing's sarcoma family of tumors. A model of transcription complex was proposed in which the heterodimer Rpb4/7 binds to EAD, connecting it to Core RNA Pol II. The DNA-binding domain, provided by EFP, is bound to the promoter. Rpb4/7 binds RNA, stabilizing the transcription complex. The complex Rpb4/7 can stabilize the preinitiation complexes by converting the conformation of RNA Pol II. EWS may change its conformation, so that NTD becomes accessible. Two different mechanisms of interaction between EWS and RNA Pol II are proposed: (I) an intermolecular EWS-EWS interaction between two molecules, pushing conformation from “closed” to “open” state, or (II) an intramolecular interaction inside the molecule of EWS, pushing conformation of the molecule from “closed” to “open” state. The modified forms of EWS may interact with Pol II subunits hsRpb5 and hsRpb7. The EWS and EFPs binding partners are described schematically in a model, an attempt to link the transcription with the splicing. The proposed model helps to understand the functional molecular interactions in cancer, to find new partners and ways to treat cancer. PMID:25688366
Kaul, R; Angeles, A R; Jäger, M; Powers, E T; Kelly, J W
2001-06-06
To probe the conformational requirements of loop 1 in the Pin1 WW domain, the residues at the i + 2 and i + 3 positions of a beta-turn within this loop were replaced by dPro-Gly and Asn-Gly, which are known to prefer the conformations required at the i + 1 and i + 2 positions of type II' and type I' beta-turns. Conformational specificity or lack thereof was further examined by incorporating into the i + 2 and i + 3 positions a non-alpha-amino acid-based beta-turn mimetic (4-(2'-aminoethyl)-6-dibenzofuran propionic acid residue, 1), which was designed to replace the i + 1 and i + 2 positions of beta-turns. All these Pin WW variants are monomeric and folded as discerned by analytical ultracentrifugation, NMR, and CD. They exhibit cooperative two-state transitions and display thermodynamic stability within 0.5 kcal/mol of the wild-type WW domain, demonstrating that the acquisition of native structure and stability does not require a specific sequence and, by extension, conformation within loop 1. However, it could be that these loop 1 mutations alter the kinetics of antiparallel beta-sheet folding, which will be addressed by subsequent kinetic studies.
NASA Astrophysics Data System (ADS)
Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won
2017-04-01
Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2015-01-15
Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.
Soulages, Jose L.; Kim, Kangmin; Arrese, Estela L.; Walters, Christina; Cushman, John C.
2003-01-01
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (l-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (l-proline)-type II-like helical conformation at 12°C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80°C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt α-helical structure and to interact with phospholipid bilayers through amphipathic α-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation, ionic, or osmotic stress-related damage to macromolecular structures. PMID:12644649
X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability
Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...
2015-06-04
The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less
NASA Astrophysics Data System (ADS)
Chen, Xianwen; Lei, Shulai; Lotze, Christian; Czekelius, Constantin; Paulus, Beate; Franke, Katharina J.
2017-03-01
Porphyrins are highly flexible molecules and well known to adapt to their local environment via conformational changes. We studied the self-assembly of manganese meso-tetra(4-pyridyl)porphyrin (Mn-TPyP) molecules on a Cu(111) surface by low temperature scanning tunneling microscopy (STM) and atomic force microscopy (ATM). We observe molecular chains along the ⟨1 1 ¯ 0 ⟩ direction of the substrate. Within these chains, we identify two molecular conformations, which differ by the orientation of the upward bending of the macrocycle. Using density functional theory, we show that this saddle shape is a consequence of the rotation and inclination of the pyridyl groups towards Cu adatoms, which stabilize the metal-organic chains. The molecular conformations obey a strict alternation, reflecting the mutual enforcement of conformational adaptation in densely packed structures. Tunneling electrons from the STM tip can induce changes in the orientation of the pyridyl endgroups. The switching behaviour varies with the different adsorption configurations.
Saito, Shuntaro; Hasegawa, Jun; Kobayashi, Naoki; Tomitsuka, Toshiaki; Uchiyama, Susumu; Fukui, Kiichi
2013-05-01
To develop a general strategy for optimizing monoclonal antibody (MAb) formulations. Colloidal stabilities of four representative MAbs solutions were assessed based on the second virial coefficient (B 2) at 20°C and 40°C, and net charges at different NaCl concentrations, and/or in the presence of sugars. Conformational stabilities were evaluated from the unfolding temperatures. The aggregation propensities were determined at 40°C and after freeze-thawing. The electrostatic potential of antibody surfaces was simulated for the development of rational formulations. Similar B 2 values were obtained at 20°C and 40°C, implying little dependence on temperature. B 2 correlated quantitatively with aggregation propensities at 40°C. The net charge partly correlated with colloidal stability. Salts stabilized or destabilized MAbs, depending on repulsive or attractive interactions. Sugars improved the aggregation propensity under freeze-thaw stress through improved conformational stability. Uneven and even distributions of potential surfaces were attributed to attractive and strong repulsive electrostatic interactions. Assessment of colloidal stability at the lowest ionic strength is particularly effective for the development of formulations. If necessary, salts are added to enhance the colloidal stability. Sugars further improved aggregation propensities by enhancing conformational stability. These behaviors are rationally predictable according to the surface potentials of MAbs.
Pica, Andrea; Leone, Serena; Di Girolamo, Rocco; Donnarumma, Federica; Emendato, Alessandro; Rega, Michele Fortunato; Merlino, Antonello; Picone, Delia
2018-04-01
MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele
2018-01-01
The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Pseudopeptide foldamers: the homo-oligomers of pyroglutamic acid.
Bernardi, Fernando; Garavelli, Marco; Scatizzi, Marco; Tomasini, Claudia; Trigari, Valerio; Crisma, Marco; Formaggio, Fernando; Peggion, Cristina; Toniolo, Claudio
2002-06-03
As a part of a program evaluating substituted gamma-lactams as conformationally constrained building blocks of pseudopeptide foldamers, we synthesized the homo-oligomers of L-pyroglutamic acid up to the tetramer level by solution methods. The preferred conformation of this pseudopeptide series in structure-supporting solvents was assessed by FT-IR absorption, 1H NMR and CD techniques. In addition, the crystal structure of the N alpha-protected dimer was established by X-ray diffraction. A high-level DFT computational modeling was performed based on the crystallographic parameters. In this analysis, we demonstrated that an alpha C-H...O=C intramolecular hydrogen bond is responsible for the stabilization of the s-trans L-pGlu-L-pGlu conformation by 1.4 kcal mol-1. This effect can be easily detected by 1H NMR spectroscopy, owing to the anomalous chemical shifts of the alpha CH protons present in all of the oligomers. In summary, we have developed a new polyimide-based, foldameric structure that, if appropriately functionalized, has promise as a rigid scaffold for novel functions and applications.
Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.
G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less
Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Różycki, Bartosz, E-mail: rozycki@ifpan.edu.pl; Cieplak, Marek
2014-12-21
We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kineticsmore » of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.« less
Multifunctional Cytochrome c: Learning New Tricks from an Old Dog.
Alvarez-Paggi, Damián; Hannibal, Luciana; Castro, María A; Oviedo-Rouco, Santiago; Demicheli, Veronica; Tórtora, Veronica; Tomasina, Florencia; Radi, Rafael; Murgida, Daniel H
2017-11-08
Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.
Gereben, Orsolya; Pusztai, László
2013-11-13
Series of flexible molecule reverse Monte Carlo calculations, using bonding and non-bonding interatomic potential functions (FMP-RMC), were performed starting from previous molecular dynamics results that had applied the OPLS-AA and EncadS force fields. During RMC modeling, the experimental x-ray total scattering structure factor was approached. The discrepancy between experimental and calculated structure factors, in comparison with the molecular dynamics results, decreased substantially in each case. The room temperature liquid structure of bis(methylthio)methane is excellently described by the FMP-RMC simulation that applied the EncadS force field parameters. The main conformer was found to be AG with 55.2%, followed by 37.2% of G(+)G(+) (G(-)G(-)) and 7.6% of AA; the stability of the G(+)G(+) (G(-)G(-)) conformer is most probably caused by the anomer effect. The liquid structure of diethyl sulfide can be best described by applying the OPLS-AA force field parameters during FMP-RMC simulation, although in this case the force field parameters were found to be not fully compatible with experimental data. Here, the two main conformers are AG (50.6%) and the AA (40%). In addition to findings on the actual real systems, a fairly detailed comparison between traditional and FMP-RMC methodology is provided.
Megy, Simon; Bertho, Gildas; Kozin, Sergey A.; Debey, Pascale; Hui Bon Hoa, Gaston; Girault, Jean-Pierre
2004-01-01
The conformational conversion of the nonpathogenic “cellular” prion isoform into a pathogenic “scrapie” protease-resistant isoform is a fundamental event in the onset of transmissible spongiform encephalopathies (TSE). During this pathogenic conversion, helix H1 and its two flanking loops of the normal prion protein are thought to undergo a conformational transition into a β-like structure. A peptide spanning helix H1 and β-strand S2 (residues 142–166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. This peptide in aqueous solution, in contrast to many prion fragments studied earlier (1) is highly soluble and (2) does not aggregate until the millimolar concentration range, and (3) exhibits an intrinsic propensity to a β-hairpin-like conformation at neutral pH. We found that this peptide can also fold into a helix H1 conformation when dissolved in a TFE/PB mixture. The structures of the peptide calculated by MD showed solvent-dependent internal stabilizing forces of the structures and evidenced a higher mobility of the residues following the end of helix H1. These data suggest that the molecular rearrangement of this peptide in region 152–156, particularly in position 155, could be associated with the pathogenic conversion of the prion protein. PMID:15537751
Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model
NASA Astrophysics Data System (ADS)
RóŻycki, Bartosz; Cieplak, Marek
2014-12-01
We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Supratim; Koutmos, Markos; Pattridge, Katherine A.
2008-07-08
B{sub 12}-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reducesmore » the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme.« less
Synthetic single domain antibodies for the conformational trapping of membrane proteins
Arnold, Fabian M; Stohler, Peter; Bocquet, Nicolas; Hug, Melanie N; Huber, Sylwia; Siegrist, Martin; Hetemann, Lisa; Gera, Jennifer; Gmür, Samira; Spies, Peter; Gygax, Daniel
2018-01-01
Mechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies. To target the limited hydrophilic surfaces of membrane proteins, we designed three sybody libraries that exhibit different shapes and moderate hydrophobicity of the randomized surface. A robust binder selection cascade combining ribosome and phage display enabled the generation of conformation-selective, high affinity sybodies against an ABC transporter and two previously intractable human SLC transporters, GlyT1 and ENT1. The platform does not require access to animal facilities and builds exclusively on commercially available reagents, thus enabling every lab to rapidly generate binders against challenging membrane proteins. PMID:29792401
Yan, Bin; Jaeqx, Sander; van der Zande, Wim J; Rijs, Anouk M
2014-06-14
The conformational preferences of peptides are mainly controlled by the stabilizing effect of intramolecular interactions. In peptides with polar side chains, not only the backbone but also the side chain interactions determine the resulting conformations. In this paper, the conformational preferences of the capped dipeptides Ac-Phe-Ser-NH2 (FS) and Ac-Phe-Cys-NH2 (FC) are resolved under laser-desorbed jet cooling conditions using IR-UV ion dip spectroscopy and density functional theory (DFT) quantum chemistry calculations. As serine (Ser) and cysteine (Cys) only differ in an OH (Ser) or SH (Cys) moiety; this subtle alteration allows us to study the effect of the difference in hydrogen bonding for an OH and SH group in detail, and its effect on the secondary structure. IR absorption spectra are recorded in the NH stretching region (3200-3600 cm(-1)). In combination with quantum chemical calculations the spectra provide a direct view of intramolecular interactions. Here, we show that both FS as FC share a singly γ-folded backbone conformation as the most stable conformer. The hydrogen bond strength of OH···O (FS) is stronger than that of SH···O (FC), resulting in a more compact gamma turn structure. A second conformer is found for FC, showing a β turn interaction.
Nisha, M; Satyanarayana, T
2015-05-01
The far-UV CD spectroscopic analysis of the secondary structure in the temperature range between 30 and 90°C revealed a compact and thermally stable structure of C-terminal truncated amylopullulanase of Geobacillus thermoleovorans NP33 (gt-apuΔC) with a higher melting temperature [58°C] than G. thermoleovorans NP33 amylopullulanase (gt-apu) [50°C] and the N-terminal truncated amylopullulanase from G. thermoleovorans NP33 (gt-apuΔN) [55°C]. A significant decline in random coils in gt-apuΔC and gt-apuΔN suggested an improvement in conformational stability, and thus, an enhancement in their thermal stability. The improvement in the thermostability of gt-apuΔC was corroborated by the thermodynamic parameters for enzyme inactivation. The Trp fluorescence emission (335 nm) and the acrylamide quenching constant (22.69 M(-1)) of gt-apuΔC indicated that the C-terminal truncation increases the conformational stability of the protein with the deeply buried tryptophan residues. The 8-Anilino Naphthalene Sulfonic acid (ANS) fluorescence experiments indicated the unfolding of gt-apu to expose its hydrophobic surface to a greater extent than the gt-apuΔC and gt-apuΔN. Copyright © 2015 Elsevier B.V. All rights reserved.
X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia
Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-orderedmore » protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.« less
Protein stability: a crystallographer’s perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deller, Marc C., E-mail: mdeller@stanford.edu; Kong, Leopold; Rupp, Bernhard
An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhatmore » practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.« less
Mizwicki, Mathew T.; Bula, Craig M.; Bishop, June E.; Norman, Anthony W.
2007-01-01
Recently, we have developed a vitamin D sterol (VDS)-VDR conformational ensemble model. This model can be broken down into three individual, yet interlinked parts: a) the conformationally flexible VDS, b) the apo/holo-VDR helix-12 (H12) conformational ensemble, and c) the presence of two VDR ligand binding pockets (LBPs); one thermodynamically favored (the genomic pocket, G-pocket) and the other kinetically favored by VDSs (the alternative pocket, A-pocket). One focus of this study is to use directed VDR mutagenesis to 1) demonstrate H12 is stabilized in the transcriptionally active closed conformation (hVDR-c1) by three salt-bridges that span the length of H12 (cationic residues R154, K264 and R402), 2) to elucidate the VDR trypsin sites [R173 (hVDR-c1), K413 (hVDR-c2) and R402 (hVDR-c3)] and 3) demonstrate the apo-VDR H12 equilibrium can be shifted. The other focus of this study is to apply the model to generate a mechanistic understanding to discrepancies observed in structure-function data obtained with a variety of 1α,25(OH)2-vitamin D3 (1,25D) A-ring and side-chain analogs, and side-chain metabolites. We will demonstrate that these structure-function conundrums can be rationalized, for the most part by focusing on alterations in the VDS conformational flexibility and the elementary interaction between the VDS and the VDR A- and G-pockets, relative to the control, 1,25D. PMID:17368177
Chen, Yaozong; Jiang, Yiping; Guo, Zhihong
2016-12-06
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase, or MenE, catalyzes an essential step in vitamin K biosynthesis and is a valuable drug target. Like many other adenylating enzymes, it changes its structure to accommodate substrate binding, catalysis, and product release along the path of a domain alternation catalytic mechanism. We have determined the crystal structure of its complex with the adenylation product, o-succinylbenzoyl-adenosine monophosphate (OSB-AMP), and captured a new postadenylation state. This structure presents unique features such as a strained conformation for the bound adenylate intermediate to indicate that it represents the enzyme state after completion of the adenylation reaction but before release of the C domain in its transition to the thioesterification conformation. By comparison to the ATP-bound preadenylation conformation, structural changes are identified in both the reactants and the active site to allow inference about how these changes accommodate and facilitate the adenylation reaction and to directly support an in-line backside attack nucleophilic substitution mechanism for the first half-reaction. Mutational analysis suggests that the conserved His196 plays an important role in desolvation of the active site rather than stabilizing the transition state of the adenylation reaction. In addition, comparison of the new structure with a previously determined OSB-AMP-bound structure of the same enzyme allows us to propose a release mechanism of the C domain in its alteration to form the thioesterification conformation. These findings allow us to better understand the domain alternation catalytic mechanism of MenE as well as many other adenylating enzymes.
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
NASA Astrophysics Data System (ADS)
Blum, Volker; Ireta, Joel; Scheffler, Matthias
2007-03-01
An accurate representation of the energetic contribution Ehb of hydrogen bonds to structure formation is paramount to understand the secondary structure stability of proteins, both qualitatively and quantitatively. However, Ehb depends strongly on its environment, and even on the surrounding peptide conformation itself. For instance, a short α-helical polypeptide (Ala)4 can not be stabilized by its single hydrogen bond, whereas an infinite α-helical chain (Ala)∞ is clearly energetically stable over a fully extended conformation. We here use all-electron density functional calculations in the PBE generalized gradient approximation by a recently developed, computationally efficient numeric atom-centered orbital based code^1 to investigate this H-bond cooperativity that is intrinsic to Alanine-based polypeptides (Ala)n (n=1-20,∞). We compare finite and infinite prototypical helical conformations (α, π, 310) on equal footing, with both neutral and ionic termination for finite (Ala)n peptides. Moderately sized NAO basis sets allow to capture Ehb with meV accuracy, revealing a clear jump in Ehb (cooperativity) when two H-bonds first appear in line, followed by slower and more continuous increase of Ehb towards n->∞. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).
Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
Sugihara, Minoru; Fujibuchi, Wataru; Suwa, Makiko
2011-05-19
Squid and bovine rhodopsins are G-protein coupled receptors (GPCRs) that activate Gq- and Gt-type G-proteins, respectively. To understand the structural elements of the signal propagation pathway, we performed molecular dynamics (MD) simulations of squid and bovine rhodopsins plus a detailed sequence analysis of class A GPCRs. The computations indicate that although the geometry of the retinal is similar in bovine and squid rhodopsins, the important interhelical hydrogen bond networks are different. In squid rhodopsin, an extended hydrogen bond network that spans ∼13 Å to Tyr315 on the cytoplasmic site is present regardless of the protonation state of Asp80. In contrast, the extended hydrogen bond network is interrupted at Tyr306 in bovine rhodopsin. Those differences in the hydrogen bond network may play significant functional roles in the signal propagation from the retinal binding site to the cytoplasmic site, including transmembrane helix (TM) 6 to which the G-protein binds. The MD calculations demonstrate that the elongated conformation of TM6 in squid rhodopsin is stabilized by salt bridges formed with helix (H) 9. Together with the interhelical hydrogen bonds, the salt bridges between TM6 and H9 stabilize the protein conformation of squid rhodopsin and may hinder the occurrence of large conformational changes that are observed upon activation of bovine rhodopsin. © 2011 American Chemical Society
Szalay, Kristóf Z; Nussinov, Ruth; Csermely, Peter
2014-06-01
Conformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones. This leads to increased plasticity of signaling and cellular networks. Increased plasticity is both substantiated by and inducing an increased noise level. Using the versatile network dynamics tool, Turbine (www.turbine.linkgroup.hu), here we show that the 10 % noise level expected in cellular systems shifts a cancer-related signaling network of human cells from its proliferative attractors to its largest, apoptotic attractor representing their health-preserving response in the carcinogen containing and tumor suppressor deficient environment modeled in our study. Thus, fuzzy conformational barcodes may not only make the cellular system more plastic, and therefore more adaptable, but may also stabilize the complex system allowing better access to its largest attractor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
X-ray structure of the mammalian GIRK2-βγ G-protein complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whorton, Matthew R.; MacKinnon, Roderick
2013-07-30
G-protein-gated inward rectifier K + (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K + channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K + channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation thatmore » is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with ‘membrane delimited’ activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP 2) and intracellular Na + ions participate in multi-ligand regulation of GIRK channels.« less
NASA Astrophysics Data System (ADS)
Arı, Hatice; Özpozan, Talat
2016-01-01
Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features.
Arı, Hatice; Özpozan, Talat
2016-01-05
Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features. Copyright © 2015 Elsevier B.V. All rights reserved.
Badre, Chantal; Dubot, P; Lincot, Daniel; Pauporte, Thierry; Turmine, Mireille
2007-12-15
Superhydrophobic surfaces have been prepared from nanostructured zinc oxide layers by a treatment with fatty acid molecules. The layers are electrochemically deposited from an oxygenated aqueous zinc chloride solution. The effects of the layer's structure, from a dense film to that of a nanorod array, as well as that of the properties of the fatty acid molecules based on C18 chains are described. A contact angle (CA) as high as 167 degrees is obtained with the nanorod structure and the linear saturated molecule (stearic acid). Lower values are found with molecules having an unsaturated bond on C9, in particular with a cis conformation (140 degrees ). These results, supplemented by infrared spectroscopy, indicate an enhancement of the sensitivity to the properties of the fatty acid molecules (conformation, flexibility, saturated or not) when moving from the flat surface to the nanostructured surface. This is attributed to a specific influence of the structure of the tops of the rods and lateral wall properties on the adsorption and organization of the molecules. CA measurements show a very good stability of the surface in time if stored in an environment protected from UV radiations.
Theoretical and experimental study of the conformational and vibrational properties of benzoin
NASA Astrophysics Data System (ADS)
Pawelka, Zbignew; Kryachko, Eugene S.; Zeegers-Huyskens, Thérèse
2003-02-01
The conformational and vibrational properties of benzoin are theoretically studied at the B3LYP/6-31+G(d,p) computational level. Three lower energy stable structures are found on its potential energy surface. The two first structures correspond to cis- and trans-benzoin. The cis isomer, stabilized by an intramolecular OH⋯O hydrogen bond, is more favorable by 3.4 kcal mol -1 over the trans isomer. The third structure refers to the dienol tautomer ( cis-stilbendiol) which is less stable by 7.6 kcal mol -1. In carbon tetrachloride, benzoin is in the cis conformation. The calculated vibrational frequencies are compared with the experimental ones. When the ν(OH) and ν(CH) vibrations are corrected for anharmonicities, an average scaling factor of 0.980 is deduced. The IR and Raman spectra of solid benzoin are analyzed as well and discussed in terms of the structure determined by X-ray diffraction [Acta crystallogr. B 36 (1980) 2832]. The isotopic ratio ν(OH)/ ν(OD) reflects the weakness of the intramolecular hydrogen bond in solution and of the intermolecular hydrogen bond in the solid state. This weakness can be accounted for by the great departure of the hydrogen bond from linearity.
Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex.
Ueda, Yu-Mi; Zouzumi, Yu-Ki; Maruyama, Atsushi; Nakano, Shu-Ichi; Sugimoto, Naoki; Miyoshi, Daisuke
2016-01-01
We systematically investigated effects of molecular crowding with trimethylamine N -oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, these osmolytes generally destabilize the duplex; however, it was observed that osmolytes having the trimethylamine group stabilized the duplex at the lower concentrations because of a direct binding to a groove of the duplex. These results are useful not only to predict DNA structures and their thermodynamics under physiological environments in living cells, but also design of polymers and materials to regulate structure and stability of DNA sequences.
Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex
Ueda, Yu-mi; Zouzumi, Yu-ki; Maruyama, Atsushi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke
2016-01-01
Abstract We systematically investigated effects of molecular crowding with trimethylamine N-oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, these osmolytes generally destabilize the duplex; however, it was observed that osmolytes having the trimethylamine group stabilized the duplex at the lower concentrations because of a direct binding to a groove of the duplex. These results are useful not only to predict DNA structures and their thermodynamics under physiological environments in living cells, but also design of polymers and materials to regulate structure and stability of DNA sequences. PMID:27933115
Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L
2014-10-10
Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM. Copyright © 2014 Elsevier Inc. All rights reserved.
Improved mechanical stability of HKUST-1 in confined nanospace.
Casco, M E; Fernández-Catalá, J; Martínez-Escandell, M; Rodríguez-Reinoso, F; Ramos-Fernández, E V; Silvestre-Albero, J
2015-09-28
One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.
Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franca, Eduardo D.; Lins, Roberto D.; Freitas, Luiz C.
Molecular dynamics simulations have been used to characterize the structure of chitin and chitosan fibers in aqueous solutions. Chitin fibers, whether isolated or in the form of a β-chitin nanoparticle, adopt the so-called 2-fold helix with Φ and φ values similar to its crystalline state. In solution, the intramolecular hydrogen bond HO3(n)•••O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonds with water molecules in a well-defined orientation. On the other hand, chitosan can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atommore » of insoluble chitosan (basic pH) are nearly identical to these quantities in chitin. Our findings suggest that the solubility and conformation of these polysaccharides are related to the stability of the intrachain HO3(n)•••O5(n+1) hydrogen bond, which is affect by the water exchange around the O3-HO3 hydroxyl group.« less
Chirality recognition in the glycidol···propylene oxide complex: a rotational spectroscopic study.
Thomas, Javix; Sunahori, Fumie X; Borho, Nicole; Xu, Yunjie
2011-04-11
Chirality recognition in the hydrogen-bonded glycidol···propylene oxide complex has been studied by using rotational spectroscopy and ab initio calculations. An extensive conformational search has been performed for this binary adduct at the MP2/6-311++G(d,p) level of theory and a total of 28 homo- and heterochiral conformers were identified. The eight binary conformers, built of the two dominant glycidol monomeric conformers, g-G+ and g+G-, were predicted to be the most stable ones. Jet-cooled rotational spectra of six out of the eight conformers were observed and unambiguously assigned for the first time. The experimental stability ordering has been obtained and compared with the ab initio predictions. The relative stability of the two dominant glycidol monomeric conformers is reversed in some cases when binding to propylene oxide. The contributions of monomeric energy, deformation energy, and binary intermolecular interaction energy to the relative stability of the binary conformers are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations
NASA Technical Reports Server (NTRS)
Gessner, R. V.; Quigley, G. J.; Wang, A. H.; van der Marel, G. A.; van Boom, J. H.; Rich, A.
1985-01-01
In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.
James, Kevin A.; Verkhivker, Gennady M.
2014-01-01
The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues. PMID:25427151
Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase
Sutto, Ludovico; Gervasio, Francesco Luigi
2013-01-01
Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers. PMID:23754386
Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase.
Sutto, Ludovico; Gervasio, Francesco Luigi
2013-06-25
Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers.
Wei, Dengguo; Parkinson, Gary N; Reszka, Anthony P; Neidle, Stephen
2012-05-01
We report here the 1.62 Å crystal structure of an intramolecular quadruplex DNA formed from a sequence in the promoter region of the c-kit gene. This is the first reported crystal structure of a promoter quadruplex and the first observation of localized magnesium ions in a quadruplex structure. The structure reveals that potassium and magnesium ions have an unexpected yet significant structural role in stabilizing particular quadruplex loops and grooves that is distinct from but in addition to the role of potassium ions in the ion channel at the centre of all quadruplex structures. The analysis also shows how ions cluster together with structured water molecules to stabilize the quadruplex arrangement. This particular quadruplex has been previously studied by NMR methods, and the present X-ray structure is in accord with the earlier topology assignment. However, as well as the observations of potassium and magnesium ions, the crystal structure has revealed a highly significant difference in the dimensions of the large cleft in the structure, which is a plausible target for small molecules. This difference can be understood by the stabilizing role of structured water networks.
Casiano-Negroni, Anette; Sun, Xiaoyan; Al-Hashimi, Hashim M.
2012-01-01
Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands but the mechanism by which this occur remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+ induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirror changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 mM to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46° to 22°), inter-helical twist angle (from 66° to −18°) and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that non-specific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized based on a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions, and a globally rigid coaxial conformation which has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs. PMID:17488097
Gresh, Nohad; Perahia, David; de Courcy, Benoit; Foret, Johanna; Roux, Céline; El-Khoury, Lea; Piquemal, Jean-Philip; Salmon, Laurent
2016-12-15
Zn-metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long-duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor-protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5-phospho-d-arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum-chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI-ligand energy-minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy-minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy-minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand-macromolecule recognition problems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chang, Shan; He, Hong-Qiu; Shen, Lin; Wan, Hua
2015-10-01
Botulinum neurotoxins (BoNTs) are known as the most toxic natural substances. Synaptic vesicle protein 2 (SV2) has been proposed to be a protein receptor for BoNT/A. Recently, two short peptides (BoNT/A-A2 and SV2C-A3) were designed to inhibit complex formation between the BoNT/A receptor-binding domain (BoNT/A-RBD) and the synaptic vesicle protein 2C luminal domain (SV2C-LD). In this article, the two peptide complex systems are studied by molecular dynamics (MD) simulations. The structural stability analysis indicates that BoNT/A-A2 system is more stable than SV2C-A3 system. The conformational analysis implies that the β-sheet in BoNT/A-A2 system maintains its secondary structure but the two β-strands in SV2C-A3 system have remarkable conformational changes. Based on the calculation of hydrogen bonds, hydrophobic interactions and cation-π interactions, it is found that the internal hydrogen bonds play crucial roles in the structural stability of the peptides. Because of the stable secondary structure, the β-sheet in BoNT/A-A2 system establishes effective interactions at the interface and inhibits BoNT/A-RBD binding to SV2C-LD. In contrast, without other β-strands forming internal hydrogen bonds, the two isolated β-strands in SV2C-A3 system become the random coil. This conformational change breaks important hydrogen bonds and weakens cation-π interaction in the interface, so the complex formation is only partially inhibited by the two β-strands. These results are consistent with experimental studies and may be helpful in understanding the inhibition mechanisms of peptide inhibitors. © 2015 Wiley Periodicals, Inc.
Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.
2014-01-01
ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses. PMID:24600002
Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J M; Ferrer-Orta, Cristina; Verdaguer, Núria
2014-05-01
Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.
β N-O turns and helices induced by β2-aminoxy peptides: synthesis and conformational studies.
Jiao, Zhi-Gang; Chang, Xiao-Wei; Ding, Wei; Liu, Guo-Jun; Song, Ke-Sheng; Zhu, Nian-Yong; Zhang, Dan-Wei; Yang, Dan
2011-07-04
Herein, we report an efficient route for the asymmetric synthesis of β(2)-aminoxy acids as well as experimental and theoretical studies of conformations of peptides composed of β(2)-aminoxy acids. The nine-membered-ring intramolecular hydrogen bonds, namely, β N-O turns, are generated between adjacent residues in those peptides, in accordance with our computational results. The presence of two consecutive homochiral β N-O turns leads to the formation of β N-O helical structures in solution, although both helical (composed of two β N-O turns of the same handedness) and reverse-turn (composed of two β N-O turns with opposite handedness) structures are of similar stability, as suggested by theoretical studies. Nevertheless, two slightly different conformations, with the same handedness, of β(2)-aminoxy monomers have been observed in the solid state and in solution according to our X-ray and 2D NOESY studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Venditti, Vincenzo; Tugarinov, Vitali; Schwieters, Charles D.; Grishaev, Alexander; Clore, G. Marius
2015-01-01
Enzyme I (EI), the first component of the bacterial phosphotransfer signal transduction system, undergoes one of the largest substrate-induced interdomain rearrangements documented to date. Here we characterize the perturbations generated by two small molecules, the natural substrate phosphoenolpyruvate and the inhibitor α-ketoglutarate, on the structure and dynamics of EI using NMR, small-angle X-ray scattering and biochemical techniques. The results indicate unambiguously that the open-to-closed conformational switch of EI is triggered by complete suppression of micro- to millisecond dynamics within the C-terminal domain of EI. Indeed, we show that a ligand-induced transition from a dynamic to a more rigid conformational state of the C-terminal domain stabilizes the interface between the N- and C-terminal domains observed in the structure of the closed state, thereby promoting the resulting conformational switch and autophosphorylation of EI. The mechanisms described here may be common to several other multidomain proteins and allosteric systems.
The Reovirus Sigmal Aspartic Acid Sandwich: A Trimerization Motif Poised for Conformational Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelling,P.; Guglielml, K.; Kirchner, E.
2007-01-01
Reovirus attachment protein {sigma}1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The {sigma}1 protein is a filamentous, trimeric molecule with a globular {beta}-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the {sigma}1 subunit interface. A 1.75 {angstrom} structure of the {sigma}1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate thatmore » these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the {sigma}1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.« less
Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier
2017-01-01
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity. PMID:28181556
NASA Astrophysics Data System (ADS)
Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier
2017-02-01
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.
Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh
2018-06-15
All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900cm -1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water>DMSO>acetone>toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46kcal/mol, but this effect is lower than that of water and methanol-explicit effect. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of protein fold stability on immunogenicity and its implications for vaccine design
Scheiblhofer, Sandra; Laimer, Josef; Machado, Yoan; Weiss, Richard; Thalhamer, Josef
2017-01-01
ABSTRACT Introduction: In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed. PMID:28290225
Chikalov, Igor; Yao, Peggy; Moshkov, Mikhail; Latombe, Jean-Claude
2011-02-15
Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration Δ. We model dependence of the output variable on the predictors by a regression tree. Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings. We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone.
Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins.
Song, Albert S; Poor, Taylor A; Abriata, Luciano A; Jardetzky, Theodore S; Dal Peraro, Matteo; Lamb, Robert A
2016-07-05
Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin-neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design.
Structural characterization of ribosome recruitment and translocation by type IV IRES
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-01-01
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duquerroy, Stephane; Vigouroux, Armelle; Rottier, Peter J.M.
2005-05-10
The coronavirus spike glycoprotein is a class I membrane fusion protein with two characteristic heptad repeat regions (HR1 and HR2) in its ectodomain. Here, we report the X-ray structure of a previously characterized HR1/HR2 complex of the severe acute respiratory syndrome coronavirus spike protein. As expected, the HR1 and HR2 segments are organized in antiparallel orientations within a rod-like molecule. The HR1 helices form an exceptionally long (120 A) internal coiled coil stabilized by hydrophobic and polar interactions. A striking arrangement of conserved asparagine and glutamine residues of HR1 propagates from two central chloride ions, providing hydrogen-bonding 'zippers' that stronglymore » constrain the path of the HR2 main chain, forcing it to adopt an extended conformation at either end of a short HR2 {alpha}-helix.« less
Computational Design of Thermostabilizing d-Amino Acid Substitutions
Rodriguez-Granillo, Agustina; Annavarapu, Srinivas; Zhang, Lei; Koder, Ronald L.; Nanda, Vikas
2012-01-01
Judicious incorporation of d-amino acids in engineered proteins confer many advantages such as preventing degradation by endogenous proteases, and designing novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy-termini can stabilize α-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-Cage mini-protein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces at both the α-helix C-terminus and throughout the protein. PMID:21978298
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit
2009-08-14
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.
On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide
NASA Astrophysics Data System (ADS)
Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.
Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.
Conformational analysis of cellobiose by electronic structure theories.
French, Alfred D; Johnson, Glenn P; Cramer, Christopher J; Csonka, Gábor I
2012-03-01
Adiabatic Φ/ψ maps for cellobiose were prepared with B3LYP density functional theory. A mixed basis set was used for minimization, followed with 6-31+G(d) single-point calculations, with and without SMD continuum solvation. Different arrangements of the exocyclic groups (38 starting geometries) were considered for each Φ/ψ point. The vacuum calculations agreed with earlier computational and experimental results on the preferred gas phase conformation (anti-Φ(H), syn-ψ(H)), and the results from the solvated calculations were consistent with the (syn Φ(H)/ψ(H) conformations from condensed phases (crystals or solutions). Results from related studies were compared, and there is substantial dependence on the solvation model as well as arrangements of exocyclic groups. New stabilizing interactions were revealed by Atoms-In-Molecules theory. Published by Elsevier Ltd.
Accelerated stability studies for moisture-induced aggregation of tetanus toxoid.
Jain, Nishant Kumar; Roy, Ipsita
2011-03-01
The study was carried out to evaluate the effect of exposing solid tetanus toxoid to moisture in two different ways on the structure and function of the toxoid. Tetanus toxoid was exposed to moisture by (i) the addition of an optimized amount of buffer and (ii) incubation under an environment provided by a saturated solution of K(2)CrO(4.) The changes in the conformational, structural and antigenic properties of tetanus toxoid were measured and compared. Results show that even at a similar level of moisture-induced aggregation, the amounts of water absorbed by the two preparations of tetanus toxoid are different. Differences in antigenicity and changes in structure of the toxoid at primary, secondary and tertiary structure levels were seen. Although both conditions are used to mimic accelerated stability conditions in the laboratory, the final products are different in the two cases. Thus, conditions for 'accelerated stability studies' for therapeutic proteins need to be selected with care so that they resemble the fate of the actual product.
Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong
2017-09-01
The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.
2013-06-01
The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.
Smith, Colin A; Kortemme, Tanja
2011-01-01
Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.
Zhao, Xiaoyang; Liu, Bo; Yan, Jing; Yuan, Ying; An, Liwen; Guan, Yifu
2014-10-01
Thrombin binding aptamer (TBA), a 15-mer oligonucleotide of d(GGTTGGTGTGGTTGG) sequence, folds into a chair-type antiparallel G-quadruplex in the K(+) environment, and each of two G-tetrads is characterized by a syn-anti-syn-anti glycosidic conformation arrangement. To explore its folding topology and structural stability, 2'-O-methyl nucleotide (OMe) with the C3'-endo sugar pucker conformation and anti glycosidic angle was used to selectively substitute for the guanine residues of G-tetrads of TBA, and these substituted TBAs were characterized using a circular dichroism spectrum, thermally differential spectrum, ultraviolet stability analysis, electrophoresis mobility shift assay, and thermodynamic analysis in K(+) and Ca(2+) environments. Results showed that single substitutions for syn-dG residues destabilized the G-quadruplex structure, while single substitutions for anti-dG residues could preserve the G-quadruplex in the K(+) environment. When one or two G-tetrads were modified with OMe, TBA became unstructured. In contrast, in Ca(2+) environment, the native TBA appeared to be unstructured. When two G-tetrads were substituted with OMe, TBA seemed to become a more stable parallel G-4 structure. Further thermodynamic data suggested that OMe-substitutions were an enthalpy-driven event. The results in this study enrich our understanding about the effects of nucleotide derivatives on the G-quadruplex structure stability in different ionic environments, which will help to design G-quadruplex for biological and medical applications. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
Sagan, S; Lequin, O; Frank, F; Convert, O; Ayoub, M; Lavielle, S; Chassaing, G
2001-05-01
Two binding sites NK-1M (major, more abundant) and NK-1m (minor) are associated with the neurokinin-1 receptor. For the first time with a bioactive peptide, the Calpha methylation constraint, shown to be a helix stabiliser in model peptides, was systematically used to probe the molecular requirements of NK-1M and NK-1m binding sites and the previously postulated bioactive helical conformation of substance P (SP). Seven Calpha methylated analogues of the undecapeptide SP (from position 5-11) have been assayed for their affinities and their potencies to stimulate second messenger production. The consequences of Calpha methylation on the structure of SP have been analysed by circular dichroism and nuclear magnetic resonance combined with restrained molecular dynamics. The decreased potencies of six out of these seven Calpha methylated SP analogues do not allow the identification of any clear-cut differences in the structural requirements between the two binding sites. Strikingly, the most active analogue, [alphaMeMet5]SP, leads to variable subnanomolar affinity and potency when interacting with the NK-1m binding site. The conformational analyses show that the structural consequences associated with Calpha methylation of SP are sequence dependent. Moreover, a single Calpha methylation is not sufficient by itself to drastically stabilize a helical structure even pre-existing in solution, except when Gly9 is substituted by an alpha-aminoisobutyric acid. Furthermore, Calpha methylation of residues 5 and 6 of SP in the middle of the postulated helix does not stabilize, but decreases (to different extents) the stability of the helical structure previously observed in the 4-8 domain of other potent SP analogues.
Tian, Jianhui; Lopez, Cesar Augusto; Derdeyn, Cynthia A.; ...
2016-10-07
Heavy glycosylation of the envelope (Env) surface subunit, gp120, is a key adaptation of HIV-1; however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. Here we explore the patterns of HIV-1 Env gp120 glycosylation, and particularly the enrichment in glycosylation sites proximal to the disulfide linkages at the base of the surface-exposed variable domains. To dissect the influence of glycans on the conformation these regions, we focused on an antigenic peptide fragment from a disulfide bridge-bounded region spanning the V1 and V2 hyper-variable domains of HIV-1 gp120. We used replica exchangemore » molecular dynamics (MD) simulations to investigate how glycosylation influences its conformation and stability. Simulations were performed with and without N-linked glycosylation at two sites that are highly conserved across HIV-1 isolates (N156 and N160); both are contacts for recognition by V1V2-targeted broadly neutralizing antibodies against HIV-1. Glycosylation stabilized the pre-existing conformations of this peptide construct, reduced its propensity to adopt other secondary structures, and provided resistance against thermal unfolding. Simulations performed in the context of the Env trimer also indicated that glycosylation reduces flexibility of the V1V2 region, and provided insight into glycan-glycan interactions in this region. These stabilizing effects were influenced by a combination of factors, including the presence of a disulfide bond between the Cysteines at 131 and 157, which increased the formation of beta-strands. Together, these results provide a mechanism for conservation of disulfide linkage proximal glycosylation adjacent to the variable domains of gp120 and begin to explain how this could be exploited to enhance the immunogenicity of those regions. Furthermore, these studies suggest that glycopeptide immunogens can be designed to stabilize the most relevant Env conformations to focus the immune response on key neutralizing epitopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jianhui; Lopez, Cesar Augusto; Derdeyn, Cynthia A.
Heavy glycosylation of the envelope (Env) surface subunit, gp120, is a key adaptation of HIV-1; however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. Here we explore the patterns of HIV-1 Env gp120 glycosylation, and particularly the enrichment in glycosylation sites proximal to the disulfide linkages at the base of the surface-exposed variable domains. To dissect the influence of glycans on the conformation these regions, we focused on an antigenic peptide fragment from a disulfide bridge-bounded region spanning the V1 and V2 hyper-variable domains of HIV-1 gp120. We used replica exchangemore » molecular dynamics (MD) simulations to investigate how glycosylation influences its conformation and stability. Simulations were performed with and without N-linked glycosylation at two sites that are highly conserved across HIV-1 isolates (N156 and N160); both are contacts for recognition by V1V2-targeted broadly neutralizing antibodies against HIV-1. Glycosylation stabilized the pre-existing conformations of this peptide construct, reduced its propensity to adopt other secondary structures, and provided resistance against thermal unfolding. Simulations performed in the context of the Env trimer also indicated that glycosylation reduces flexibility of the V1V2 region, and provided insight into glycan-glycan interactions in this region. These stabilizing effects were influenced by a combination of factors, including the presence of a disulfide bond between the Cysteines at 131 and 157, which increased the formation of beta-strands. Together, these results provide a mechanism for conservation of disulfide linkage proximal glycosylation adjacent to the variable domains of gp120 and begin to explain how this could be exploited to enhance the immunogenicity of those regions. Furthermore, these studies suggest that glycopeptide immunogens can be designed to stabilize the most relevant Env conformations to focus the immune response on key neutralizing epitopes.« less
Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
Barnard, Travis J; Dautin, Nathalie; Lukacik, Petra; Bernstein, Harris D; Buchanan, Susan K
2007-12-01
Autotransporters are virulence factors produced by Gram-negative bacteria. They consist of two domains, an N-terminal 'passenger' domain and a C-terminal beta-domain. beta-domains form beta-barrel structures in the outer membrane while passenger domains are translocated into the extracellular space. In some autotransporters, the two domains are separated by proteolytic cleavage. Using X-ray crystallography, we solved the 2.7-A structure of the post-cleavage state of the beta-domain of EspP, an autotransporter produced by Escherichia coli strain O157:H7. The structure consists of a 12-stranded beta-barrel with the passenger domain-beta-domain cleavage junction located inside the barrel pore, approximately midway between the extracellular and periplasmic surfaces of the outer membrane. The structure reveals an unprecedented intra-barrel cleavage mechanism and suggests that two conformational changes occur in the beta-domain after cleavage, one conferring increased stability on the beta-domain and another restricting access to the barrel pore.
Crystal structure of group II intron domain 1 reveals a template for RNA assembly
Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; ...
2015-10-26
Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. In this paper, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed andmore » the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. Finally, the open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.« less
Crystal structure of N-deacetyllappaconitine
Shi, Xin-Wei; Lu, Qiang-Qiang; Zhou, Jun-Hui; Cui, Xin-Ai
2015-01-01
The title compound, C30H42N2O7 [systematic name: (1S,4S,5S,7S,8S,9S,10S,11S,13R,14S,16S,17R)-20-ethyl-4,8,9-trihydroxy-1,14,16-trimethoxyaconitan-4-yl 2-aminobenzoate], isolated from roots of Aconitum sinomontanum Nakai, is a typical aconitane-type C19-diterpenoid alkaloid, which crystallizes with two independent molecules in the asymmetric unit. The conformations of the two independent molecules are closely similar. Each molecule comprises four six-membered rings (A, B, D and E) including one six-membered N-containing heterocyclic ring (E), and two five-membered rings (C and F). Rings A, B and E adopt chair conformations, while ring D displays a boat conformation. Five-membered rings C and F exhibit envelope conformations. IntramolecularN—H⋯O hydrogen bonds between the amino group and carbonyl O atom help to stabilize molecular structure. In the crystal, O—H⋯O hydrogen bonds link the molecules into zigzag chains propagating in [010]. PMID:26396805
NASA Astrophysics Data System (ADS)
Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping
2018-01-01
In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8-12 GHz) and Ku (12-18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.
Light activation of the LOV protein vivid generates a rapidly exchanging dimer.
Zoltowski, Brian D; Crane, Brian R
2008-07-08
The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; Blodgett, Karl N.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.
Glutamine is vitally important to a class of neurodegenerative diseases called poly-glutamine (poly-Q) repeat diseases such as Huntington's Disease (HD). Recent studies have revealed a pathogenic pathway that proceeds through misfolding of poly-Q regions into characteristic β-turn/ β-hairpin structures that are highly correlated with toxicity. The inherent conformational preferences of small glutamine containing peptides (Ac-Q-Q-NHBn and Ac-A-Q-NHBn) were studied using conformation-specific IR and UV spectroscopies, with the goal of probing the delicate interplay between three competitive hydrogen bonding motifs: backbone-backbone, sidechain-backbone, and sidechain-sidechain hydrogen bonds. Laser desorption, coupled with a supersonic expansion, was used to introduce the non-thermally labile sample into the gas-phase. Resonant ion-dip infrared (RIDIR) spectroscopy is a powerful tool for recording the vibrational spectra of single conformational isomers and was used here to reveal the innate structural preferences of the glutamine containing peptides. Experimental results are compared against density functional calculations to arrive at firm conformational assignments. Our results demonstrate a striking preference for β-turn formation in the non-polar environment of the gas-phase. Previous Affiliation: Purdue University, Department of Chemistry.
Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization
NASA Astrophysics Data System (ADS)
Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro
2013-06-01
Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.
Kellogg, Elizabeth H; Hejab, Nisreen M A; Howes, Stuart; Northcote, Peter; Miller, John H; Díaz, J Fernando; Downing, Kenneth H; Nogales, Eva
2017-03-10
A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9-4.2Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the "seam" of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam) contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kellogg, Elizabeth H.; Hejab, Nisreen M. A.; Howes, Stuart; ...
2017-01-17
A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9–4.2 Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the “seam” of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam)more » contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, Elizabeth H.; Hejab, Nisreen M. A.; Howes, Stuart
A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9–4.2 Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the “seam” of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam)more » contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.« less
Role of polyols (erythritol, xylitol and sorbitol) on the structural stabilization of collagen
NASA Astrophysics Data System (ADS)
Usha, R.; Raman, S. Sundar; Subramanian, V.; Ramasami, T.
2006-10-01
The effect of erythritol, xylitol and sorbitol on monomeric collagen solution was evaluated with melting temperature, fluorescence studies, conformational stability and binding energy. The emission intensity and the melting temperature increase as the chain length of polyols increases. Circular dichroism (CD) results indicate the possibility of aggregation of collagen in the presence of polyols. The interaction between collagen and polyols were calculated using binding energy, RMS deviation with collagen like models. Molecular mechanics calculations suggest that polyols bind well with collagen models, that have serine in the X position. The stability of collagen decreases as the number of carbon atoms present in the polyols increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...
2016-03-09
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Calero-Rubio, Cesar; Paik, Bradford; Jia, Xinqiao; Kiick, Kristi L; Roberts, Christopher J
2016-10-01
This report focuses on the molecular-level processes and thermodynamics of unfolding of a series of helical peptides using a coarse-grained (CG) molecular model. The CG model was refined to capture thermodynamics and structural changes as a function of temperature for a set of published peptide sequences. Circular dichroism spectroscopy (CD) was used to experimentally monitor the temperature-dependent conformational changes and stability of published peptides and new sequences introduced here. The model predictions were quantitatively or semi-quantitatively accurate in all cases. The simulations and CD results showed that, as expected, in most cases the unfolding of helical peptides is well described by a simply 2-state model, and conformational stability increased with increased length of the helices. A notable exception in a 19-residue helix was when two Ala residues were each replaced with Phe. This stabilized a partly unfolded intermediate state via hydrophobic contacts, and also promoted aggregates at higher peptide concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Energetic Selection of Topology in Ferredoxins
Kim, J. Dongun; Rodriguez-Granillo, Agustina; Case, David A.; Nanda, Vikas; Falkowski, Paul G.
2012-01-01
Models of early protein evolution posit the existence of short peptides that bound metals and ions and served as transporters, membranes or catalysts. The Cys-X-X-Cys-X-X-Cys heptapeptide located within bacterial ferredoxins, enclosing an Fe4S4 metal center, is an attractive candidate for such an early peptide. Ferredoxins are ancient proteins and the simple α+β fold is found alone or as a domain in larger proteins throughout all three kingdoms of life. Previous analyses of the heptapeptide conformation in experimentally determined ferredoxin structures revealed a pervasive right-handed topology, despite the fact that the Fe4S4 cluster is achiral. Conformational enumeration of a model CGGCGGC heptapeptide bound to a cubane iron-sulfur cluster indicates both left-handed and right-handed folds could exist and have comparable stabilities. However, only the natural ferredoxin topology provides a significant network of backbone-to-cluster hydrogen bonds that would stabilize the metal-peptide complex. The optimal peptide configuration (alternating αL,αR) is that of an α-sheet, providing an additional mechanism where oligomerization could stabilize the peptide and facilitate iron-sulfur cluster binding. PMID:22496635
Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin.
Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura; Tescari, Simone; Frezzato, Diego; Polimeno, Antonino; Gohara, David W; Di Cera, Enrico; De Filippis, Vincenzo
2016-07-19
Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold.
Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure
Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta
2016-01-01
Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949
Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure
NASA Astrophysics Data System (ADS)
Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta
2016-05-01
Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.
An object programming based environment for protein secondary structure prediction.
Giacomini, M; Ruggiero, C; Sacile, R
1996-01-01
The most frequently used methods for protein secondary structure prediction are empirical statistical methods and rule based methods. A consensus system based on object-oriented programming is presented, which integrates the two approaches with the aim of improving the prediction quality. This system uses an object-oriented knowledge representation based on the concepts of conformation, residue and protein, where the conformation class is the basis, the residue class derives from it and the protein class derives from the residue class. The system has been tested with satisfactory results on several proteins of the Brookhaven Protein Data Bank. Its results have been compared with the results of the most widely used prediction methods, and they show a higher prediction capability and greater stability. Moreover, the system itself provides an index of the reliability of its current prediction. This system can also be regarded as a basis structure for programs of this kind.
NASA Astrophysics Data System (ADS)
Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.
2017-04-01
A family of hydrazones of isoniazid and a group of hydroxybenzalaldehydes (vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde) were obtained and fully characterized. The results, including theoretical data, are comparatively analyzed along with the already reported hydrazone of o-vanillin. The crystal structures of three compounds were determined. The hydrazones obtained from halogenated aldehydes are isomorphic and chiral to each other. Structures are further stabilized by (pyr)NH+⋯Cl- and OwH⋯Cl- bonds. The vanillin hydrazone shows a conformer that differs from the previously reported. Neighboring molecules are linked to each other through OH⋯N(pyr) bonds, giving rise to a nearly planar polymeric structure. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by DFT. Results are extended to describe the 5-bromovanillin hydrazone. FTIR, NMR and electronic spectra were measured and assigned with the help of computational calculations.
Chapeaurouge, Alex; Martins, Samantha M; Holub, Oliver; Rocha, Surza L G; Valente, Richard H; Neves-Ferreira, Ana G C; Ferreira, Sérgio T; Domont, Gilberto B; Perales, Jonas
2009-10-01
We have investigated the folding of DM43, a homodimeric metalloproteinase inhibitor isolated from the serum of the South American opossum Didelphis marsupialis. Denaturation of the protein induced by GdnHCl (guanidine hydrochloride) was monitored by extrinsic and intrinsic fluorescence spectroscopy. While the equilibrium (un)folding of DM43 followed by tryptophan fluorescence was well described by a cooperative two-state transition, bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid) fluorescence measurements revealed an intensity maximum at the midpoint of the unfolding transition (2 M GdnHCl), indicating a partially folded intermediate state. We further investigated the DM43 intermediate stabilized at 2 M GdnHCl using size exclusion chromatography. This analysis revealed that the folding intermediate can be best described as partially folded DM43 monomers. Thermodynamic analysis of the GdnHCl-induced denaturation of DM43 revealed Gibbs free-energy changes of 13.57 kcal/mol for dimer dissociation and 1.86 kcal/mol for monomer unfolding, pointing to a critical role of dimerization as a determinant of the structure and stability of this protein. In addition, by using hydrostatic pressure (up to 3.5 kbar) we were able to stabilize partially folded states different from those stabilized in the presence of GdnHCl. Taken together, these results indicate that the conformational plasticity of DM43 could provide this protein with the ability to adapt its conformation to a variety of different environments and biological partners during its biological lifetime.
USDA-ARS?s Scientific Manuscript database
Transmissible spongiform encephalopathies (TSEs), including scrapie in sheep (Ovis aries), are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrP**C) into a beta-rich conformer (PrP**Sc) that accumulates into higher-order structures in the brain and other ti...
USDA-ARS?s Scientific Manuscript database
In the formation of silver nanoparticles (NPs) using silver nitrate in a poly(ethylene glycol) (PEG) aqueous solution, which acts as both a reducing and stabilizing agent, the PEG chain structure was found to play a significant role. Even though PEG 100 (100 kg/mol) has limited reducing sites of hyd...
Gabba, Matteo; Poblete, Simón; Rosenkranz, Tobias; Katranidis, Alexandros; Kempe, Daryan; Züchner, Tina; Winkler, Roland G.; Gompper, Gerhard; Fitter, Jörg
2014-01-01
Over the last few decades, a view has emerged showing that multidomain enzymes are biological machines evolved to harness stochastic kicks of solvent particles into highly directional functional motions. These intrinsic motions are structurally encoded, and Nature makes use of them to catalyze chemical reactions by means of ligand-induced conformational changes and states redistribution. Such mechanisms align reactive groups for efficient chemistry and stabilize conformers most proficient for catalysis. By combining single-molecule Förster resonance energy transfer measurements with normal mode analysis and coarse-grained mesoscopic simulations, we obtained results for a hinge-bending enzyme, namely phosphoglycerate kinase (PGK), which support and extend these ideas. From single-molecule Förster resonance energy transfer, we obtained insight into the distribution of conformational states and the dynamical properties of the domains. The simulations allowed for the characterization of interdomain motions of a compact state of PGK. The data show that PGK is intrinsically a highly dynamic system sampling a wealth of conformations on timescales ranging from nanoseconds to milliseconds and above. Functional motions encoded in the fold are performed by the PGK domains already in its ligand-free form, and substrate binding is not required to enable them. Compared to other multidomain proteins, these motions are rather fast and presumably not rate-limiting in the enzymatic reaction. Ligand binding slightly readjusts the orientation of the domains and feasibly locks the protein motions along a preferential direction. In addition, the functionally relevant compact state is stabilized by the substrates, and acts as a prestate to reach active conformations by means of Brownian motions. PMID:25418172
Ribbon structure stabilized by C10 and C12 turns in αγ hybrid peptide.
Wani, Naiem Ahmad; Kant, Rajni; Gupta, Vivek Kumar; Aravinda, Subrayashastry; Rai, Rajkishor
2016-04-01
The present study describes the synthesis and crystallographic analysis of αγ hybrid peptides, Boc-Gpn-L-Pro-NHMe (1), Boc-Aib-Gpn-L-Pro-NHMe (2), and Boc-L-Pro-Aib-Gpn-L-Pro-NHMe (3). Peptides 1 and 2 adopt expanded 12-membered (C12 ) helical turn over γα segment. Peptide 3 promotes the ribbon structure stabilized by type II β-turn (C10 ) followed by the expanded C12 helical γα turn. Both right-handed and left-handed helical conformations for Aib residue are observed in peptides 2 and 3, respectively. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Haldiman, Tracy; Kim, Chae; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Qing, Liuting; Cohen, Mark L.; Langeveld, Jan; Telling, Glenn C.; Kong, Qingzhong; Safar, Jiri G.
2013-01-01
The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrPSc). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrPSc particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrPSc particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrPC substrate, the dominant PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrPSc is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrPSc conformers. PMID:23974118
Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2015-06-19
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2015-01-01
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar1,Ile8]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. PMID:25934394
Structure, stability and behaviour of nucleic acids in ionic liquids
Tateishi-Karimata, Hisae; Sugimoto, Naoki
2014-01-01
Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are ‘green’ solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A–T base pairs are more stable than G–C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson–Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178
Gu, Quanli; Knee, J L
2012-09-14
The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60,928 ± 5 cm(-1), at least 400 cm(-1) higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm(-1) of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine(+)-H(2)O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60,307 ± 100 cm(-1), close to the conformer A monomer of 60 320 ± 100 cm(-1). It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm(-1) compared to other H-bonding involved cation-H(2)O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H(+) in the exit channel.
Ozcan, Ahmet; Olmez, Elif Ozkirimli; Alakent, Burak
2013-05-01
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed ) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen ) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. Copyright © 2013 Wiley Periodicals, Inc.
Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding.
Stadler, Andreas M; Demmel, Franz; Ollivier, Jacques; Seydel, Tilo
2016-08-03
Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin.
Kim, Dorothy M.; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J.
2016-01-01
The process of ion channel gating—opening and closing—involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996
Feyen, Fabian; Cachoux, Frédéric; Gertsch, Jürg; Wartmann, Markus; Altmann, Karl-Heinz
2008-01-01
Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These facts indicate that cancer cell growth inhibition by these compounds is based on the same mechanistic underpinnings as those for natural epothilones. Interestingly, the 9,10-dehydro analog of 40 is significantly less active than the saturated parent compound, which is contrary to observations for natural epothilones B or D. This may point to differences in the bioactive conformations of N-acyl-12-aza-epothilones like 40 and natural epothilones. In light of their distinct structural features, combined with an epothilone-like (and taxol-like) in vitro biological profile, 30 and 40 can be considered as representative examples of new chemotypes for microtubule stabilization. As such, they may offer the same potential for pharmacological differentiation from the original epothilone leads as various newly discovered microtubule-stabilizing natural products with macrolactone structures, such as laulimalide, peloruside, or dictyostatin.
Srinivasan, E; Rajasekaran, R
2017-07-25
The genetic substitution mutation of Cys146Arg in the SOD1 protein is predominantly found in the Japanese population suffering from familial amyotrophic lateral sclerosis (FALS). A complete study of the biophysical aspects of this particular missense mutation through conformational analysis and producing free energy landscapes could provide an insight into the pathogenic mechanism of ALS disease. In this study, we utilized general molecular dynamics simulations along with computational predictions to assess the structural characterization of the protein as well as the conformational preferences of monomeric wild type and mutant SOD1. Our static analysis, accomplished through multiple programs, predicted the deleterious and destabilizing effect of mutant SOD1. Subsequently, comparative molecular dynamic studies performed on the wild type and mutant SOD1 indicated a loss in the protein conformational stability and flexibility. We observed the mutational consequences not only in local but also in long-range variations in the structural properties of the SOD1 protein. Long-range intramolecular protein interactions decrease upon mutation, resulting in less compact structures in the mutant protein rather than in the wild type, suggesting that the mutant structures are less stable than the wild type SOD1. We also presented the free energy landscape to study the collective motion of protein conformations through principal component analysis for the wild type and mutant SOD1. Overall, the study assisted in revealing the cause of the structural destabilization and protein misfolding via structural characterization, secondary structure composition and free energy landscapes. Hence, the computational framework in our study provides a valuable direction for the search for the cure against fatal FALS.
León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L
2017-09-20
The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.
Castillo, Virginia; Ventura, Salvador
2009-01-01
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882
NASA Astrophysics Data System (ADS)
Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun
2017-12-01
Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.
Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors
Talavera, Ariel; Hendrix, Jelle; Versées, Wim; Jurėnas, Dukas; Van Nerom, Katleen; Vandenberk, Niels; Singh, Ranjan Kumar; Konijnenberg, Albert; De Gieter, Steven; Castro-Roa, Daniel; Barth, Anders; De Greve, Henri; Sobott, Frank; Hofkens, Johan; Zenkin, Nikolay; Loris, Remy; Garcia-Pino, Abel
2018-01-01
Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of Escherichia coli EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase. PMID:29546243
NASA Astrophysics Data System (ADS)
Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola
2002-06-01
Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.
Interlandi, Gianluca; Thomas, Wendy E
2016-07-01
The bacterial adhesin FimH consists of an allosterically regulated mannose-binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter-domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter-domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring-like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called "population shift" model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990-1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Ab initio investigation of the first hydration shell of protonated glycine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling
2014-02-28
The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less
Germe, Thomas; Vörös, Judit; Jeannot, Frederic; Taillier, Thomas; Stavenger, Robert A; Bacqué, Eric; Maxwell, Anthony; Bax, Benjamin D
2018-05-04
Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA ('poisoning') in an analogous fashion to fluoroquinolones, but without the requirement for the water-metal-ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase-DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases.
Germe, Thomas; Vörös, Judit; Jeannot, Frederic; Taillier, Thomas; Stavenger, Robert A; Bacqué, Eric; Bax, Benjamin D
2018-01-01
Abstract Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA (‘poisoning’) in an analogous fashion to fluoroquinolones, but without the requirement for the water–metal–ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase–DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases. PMID:29538767
Zhu, Yun; Su, Shan; Qin, Lili; Wang, Qian; Shi, Lei; Ma, Zhenxuan; Tang, Jianchao; Jiang, Shibo; Lu, Lu; Ye, Sheng; Zhang, Rongguang
2016-09-26
Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses.