Sample records for conformer acidity analysis

  1. Conformational Map of Phenolic Acids.

    PubMed

    Cortijo, Vanessa; Alonso, Elena R; Mata, Santiago; Alonso, José L

    2018-01-18

    The benefits of vaporization by laser ablation and the high resolution and sensitivity attained by the chirped pulse Fourier transform microwave spectroscopy CP-FTMW have provided the first conformational map of the simplest phenolic acids of trans-cinnamic and p-coumaric. Two conformers of trans-cinnamic acid and four conformers of trans-p-coumaric acid have been characterized under the isolation conditions of a supersonic expansion. The spectroscopic constants derived from the analysis of the rotational spectra compared with those predicted theoretically provide an unmatched means to achieve an unambiguous identification of the observed species.

  2. Conformational analysis of a trihydroxylated derivative of cinnamic acid—a combined Raman spectroscopy and Ab initio study

    NASA Astrophysics Data System (ADS)

    Fiuza, S. M.; Van Besien, E.; Milhazes, N.; Borges, F.; Marques, M. P. M.

    2004-05-01

    A conformational analysis of 3-(3,4,5-trihydroxyphenyl)-2-propenoic acid (3,4,5-trihydroxycinnamic acid, THPPE), a trihydroxylated cinnamic acid analogous to caffeic acid (a natural compound often present in diet), was carried out by Raman spectroscopy coupled to Ab initio MO calculations. Apart from the optimised geometrical parameters for the most stable conformers of this compound, and for one of its dimeric species, the corresponding harmonic vibrational frequencies, as well as potential-energy profiles for rotation around several bonds within the molecule, were obtained. Twenty one distinct conformers were found for THPPE, the lowest energy ones—THPPE 1 and THPPE 2—displaying a completely planar geometry. The conformational preferences of this system were thus found to be mainly ruled by the stabilising effect of π-electron delocalisation. At the light of these results, a complete assignment of the corresponding solid state Raman spectra was performed.

  3. Structures and functions of proteins and nucleic acids in protein biosynthesis

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tatsuo; Yokoyama, Shigeyuki

    Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).

  4. Conformational landscape of isolated capped amino acids: on the nature of non-covalent interactions*

    NASA Astrophysics Data System (ADS)

    González, Jorge; Martínez, Rodrigo; Fernández, José A.; Millan, Judith

    2017-08-01

    The intramolecular interactions for isolated capped amino acids were investigated computationally by characterizing the conformers for selected amino acids with charged (arginine), polar (asparagine and glutamine), non-polar (alanine, valine and isoleucine), and aromatic (phenylalanine, tryptophan and tyrosine) side chains. The computational method applied combined a molecular mechanics conformational search (with an MMFFs forced field) followed by structural and vibrational density-functional calculations (M06-2X with a triple- ζ Pople's basis set). The intramolecular forces in each amino acid were analyzed with the Non-Covalent Interactions (NCI) analysis. The results for the 15 most stable conformers studied showed that the structure of isolated capped amino acids resembles those found in proteins. In particular, the two most stable conformers of the nine amino acids investigated exhibit γ L and β L conformations with 7- and 5-membered rings, respectively, as a result of the balance between non-covalent interactions (hydrogen bonds and van der Waals).

  5. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides.

    PubMed

    Ganesh Kumar, Mothukuri; Mali, Sachitanand M; Gopi, Hosahudya N

    2013-02-07

    The high diastereoselectivity in the Michael addition of nitromethane to α,β-unsaturated γ-amino esters, crystal conformations of β-nitromethane substituted γ-amino acids and peptides are studied. Results suggest that the N-Boc protected amide NH, conformations of α,β-unsaturated γ-amino esters and alkyl side chains play a crucial role in dictating the high diastereoselectivity of nitromethane addition to E-vinylogous amino esters. Investigation of the crystal conformations of both α,β-unsaturated γ-amino esters and the Michael addition products suggests that an H-C(γ)-C(β)=C(α) eclipsed conformer of the unsaturated amino ester leads to the major (anti) product compared to that of an N-C(γ)-C(β)=C(α) eclipsed conformer. The major diastereomers were separated and subjected to the peptide synthesis. The single crystal analysis of the dipeptide containing β-nitromethane substituted γ-amino acids reveals a helical type of folded conformation with an isolated H-bond involving a nine-atom pseudocycle.

  6. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  7. Transferability of different classical force fields for right and left handed α-helices constructed from enantiomeric amino acids.

    PubMed

    Biswas, Santu; Sarkar, Sujit; Pandey, Prithvi Raj; Roy, Sudip

    2016-02-21

    Amino acids can form d and l enantiomers, of which the l enantiomer is abundant in nature. The naturally occurring l enantiomer has a greater preference for a right handed helical conformation, and the d enantiomer for a left handed helical conformation. The other conformations, that is, left handed helical conformations of the l enantiomers and right handed helical conformations of the d enantiomers, are not common. The energetic differences between left and right handed alpha helical peptide chains constructed from enantiomeric amino acids are investigated using quantum chemical calculations (using the M06/6-311g(d,p) level of theory). Further, the performances of commonly used biomolecular force fields (OPLS/AA, CHARMM27/CMAP and AMBER) to represent the different helical conformations (left and right handed) constructed from enantiomeric (D and L) amino acids are evaluated. 5- and 10-mer chains from d and l enantiomers of alanine, leucine, lysine, and glutamic acid, in right and left handed helical conformations, are considered in the study. Thus, in total, 32 α-helical polypeptides (4 amino acids × 4 conformations of 5-mer and 10-mer) are studied. Conclusions, with regards to the performance of the force fields, are derived keeping the quantum optimized geometry as the benchmark, and on the basis of phi and psi angle calculations, hydrogen bond analysis, and different long range helical order parameters.

  8. [Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].

    PubMed

    Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping

    2004-11-01

    Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.

  9. Conformational analysis of HAMLET, the folding variant of human alpha-lactalbumin associated with apoptosis.

    PubMed

    Casbarra, Annarita; Birolo, Leila; Infusini, Giuseppe; Dal Piaz, Fabrizio; Svensson, Malin; Pucci, Piero; Svanborg, Catharina; Marino, Gennaro

    2004-05-01

    A combination of hydrogen/deuterium (H/D) exchange and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the conformation in solution of HAMLET, the folding variant of human alpha-lactalbumin, complexed to oleic acid, that induces apoptosis in tumor and immature cells. Although near- and far-UV CD and fluorescence spectroscopy were not able to discriminate between HAMLET and apo-alpha-lactalbumin, H/D exchange experiments clearly showed that they correspond to two distinct conformational states, with HAMLET incorporating a greater number of deuterium atoms than the apo and holo forms. Complementary proteolysis experiments revealed that HAMLET and apo are both accessible to proteases in the beta-domain but showed substantial differences in accessibility to proteases at specific sites. The overall results indicated that the conformational changes associated with the release of Ca2+ are not sufficient to induce the HAMLET conformation. Metal depletion might represent the first event to produce a partial unfolding in the beta-domain of alpha-lactalbumin, but some more unfolding is needed to generate the active conformation HAMLET, very likely allowing the protein to bind the C18:1 fatty acid moiety. On the basis of these data, a putative binding site of the oleic acid, which stabilizes the HAMLET conformation, is proposed.

  10. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  11. Acid-enhanced conformation changes of yeast cytochrome c coated onto gold nanoparticles, a FT-IR spectroscopic analysis.

    PubMed

    Dong, Aichun; Brown, Corina; Bai, Shufeng; Dong, Jian

    2018-06-01

    Under conditions with or without linker molecules, the effects of acidic pH on the conformation of yeast iso-1-cytochrome c coated onto gold nanoparticles (AuNPs) in correlation with color changes of a Cyt c-coated AuNPs solution/suspension were examined by Fourier transform infrared (FT-IR) spectroscopy and correlated to color change. The results of detailed secondary structural analysis revealed that although the color changes coincide with acid-induced conformational changes in Cyt c coated onto AuNPs, the pH-related conformational unfolding of Cyt c coated onto AuNPs differed dramatically from that of its counterpart in solution. For Cyt c free in solution, the acid-induced unfolding did not occur until the pH was below 3.0, whereas for Cyt c coated onto AuNPs via C102 coordination near the C-terminal, a partial unfolding was observed even at near neutral pH which continuously intensified as pH decreased. Insertion of a short alkanethiol (3-mercaptoproprionic acid, 3-MPA) molecule between Cyt c and AuNP, which changes the interaction mode from a thiol coordination between Cyt c and AuNP to an electrostatic interaction between Cyt c and 3-MPA, which stabilized the conformation of Cyt c significantly, but did not prevent the acid-induced aggregation of Cyt c-3MPA-AuNPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Picolinic and isonicotinic acids: a Fourier transform microwave spectroscopy study.

    PubMed

    Peña, Isabel; Varela, Marcelino; Franco, Vanina G; López, Juan C; Cabezas, Carlos; Alonso, José L

    2014-12-04

    The rotational spectra of laser ablated picolinic and isonicotinic acids have been studied using broadband chirped pulse (CP-FTMW) and narrowband molecular beam (MB-FTMW) Fourier transform microwave spectroscopies. Two conformers of picolinic acid, s-cis-I and s-cis-II, and one conformer of isonicotinic acid have been identified through the analysis of their rotational spectra. The values of the inertial defect and the quadrupole coupling constants obtained for the most stable s-cis-I conformer of picolinic acid, evidence the formation of an O-H···N hydrogen bond between the acid group and the endocyclic N atom. The stabilization provided by this hydrogen bond compensates the destabilization energy due to the adoption of a -COOH trans configuration in this conformer. Its rs structure has been derived from the rotational spectra of several (13)C, (15)N, and (18)O species observed in their natural abundances. Mesomeric effects have been revealed by comparing the experimental values of the (14)N nuclear quadrupole coupling constants in the isomeric series of picolinic, isonicotinic, and nicotinic acids.

  13. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2},more » Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.« less

  14. A NAD(P) reductase like protein is the salicylic acid receptor in the appendix of the Sauromatum guttatum inflorescence

    PubMed Central

    Skubatz, Hanna; Orellana, Mónica V; Howald, William N

    2013-01-01

    The mode of action of the thermogenic inducers (salicylic acid, aspirin, and 2,6-dihydroxybenzoic acid) in the appendix of the Sauromatum guttatum inflorescence is poorly understood. Using ESI-MS and light scattering analysis, we have demonstrated that NAD(P) reductase like protein (RL) is the salicylic acid receptor in the Sauromatum appendix. RL was self-assembled in water into a large unit with a hydrodynamic diameter of 800 nm. In the presence of 1 pM salicylic acid, RL exhibited discontinuous and reversible volume phase transitions. The volume phase changed from 800 to 300 nm diameter and vice versa. RL stayed at each volume phase for ~4–5 min with a fast relaxation time between the 2 phases. ESI-MS analysis of RL extracted from appendices treated with salicylic acid, aspirin, and 2,6-DHBA at a micromolar range demonstrated that these compounds are capable of inducing graded conformational changes that are concentration-dependent. A strong correlation between RL conformations and heat-production induced by salicylic acid was also observed. These preliminary findings reveal structural and conformational roles for RL by which plants regulate their temperature and synchronize their time keeping mechanisms. PMID:28516022

  15. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA

    PubMed Central

    Wienken, Christoph J.; Baaske, Philipp; Duhr, Stefan; Braun, Dieter

    2011-01-01

    Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique’s versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing. PMID:21297115

  16. Multivariate Analysis of Conformational Changes Induced by Macromolecular Interactions

    NASA Astrophysics Data System (ADS)

    Mitra, Indranil; Alexov, Emil

    2009-11-01

    Understanding protein-protein binding and associated conformational changes is critical for both understanding thermodynamics of protein interactions and successful drug discovery. Our study focuses on computational analysis of plausible correlations between induced conformational changes and set of biophysical characteristics of interacting monomers. It was done by comparing 3D structures of unbound and bound monomers to calculate the RMSD which is used as measure of the structural changed induced by the binding. We correlate RMSD with volumetric and interfacial charge of the monomers, the amino acid composition, the energy of binding, and type of amino acids at the interface. as predictors. The data set was analyzed with SVM in R & SPSS which is trained on a combination of a new robust evolutionary conservation signal with the monomeric properties to predict the induced RMSD. The goal of this study is to undergo parametric tests and heirchiacal cluster and discriminant multivariate analysis to find key predictors which will be used to develop algorithm to predict the magnitude of conformational changes provided by the structure of interacting monomers. Results indicate that the most promising predictor is the net charge of the monomers, however, other parameters as the type of amino acids at the interface have significant contribution as well.

  17. The Conformational Landscape of L-Threonine Matrix Isolation Infrared and {AB-INITIO Studies

    NASA Astrophysics Data System (ADS)

    Dubey, Pankaj; Mukhopadhyay, Anamika; Viswanathan, K. S.

    2017-06-01

    Amino acids, containing hydroxy side chains such as L-threonine and tyrosine play an important role in molecular recognition, such as in the docking of propofol, which is a commonly used anaesthetic. A rich conformational landscape of these amino acids makes them interesting candidates in the study of intra and intermolecular interactions. In this work, the conformational landscape of L-threonine was studied, as it can be expected to serve as a basis for understanding structure and functions of polypeptides and other biomolecules. The matrix isolation technique (MI) coupled with a high temperature effusive molecular beam (EMB) nozzle was used to trap conformers of amino acid, which were then characterized using FTIR spectroscopy. The usefulness of MI-EMB-FTIR spectroscopy is that it can trap structures corresponding to the local minima along with the global minimum and hence allows for a better exploration of the potential energy surface. A major challenge in conformational analysis of amino acids using matrix isolation FTIR arises from its non-volatile nature. A home built heating system which was mounted close to the cryotip, was used to evaporate the non-volatile amino acids. Our infrared spectra show that three conformations were trapped in the matrix. Experimental results were supported by {ab-initio calculations performed using the CCSD(T), MP2 and M06-2X methods together with 6-311++G(d,p) and aug/cc-pVDZ basis sets. The side chains of the amino acids appeared to have an influence on the preferential stabilisation of a particular backbone structure of amino acids. Factors such as entropy, anomeric effect and intramolecular H-bonding were also found to play an important role in determining conformal preferences, which will be discussed.

  18. Structural Analysis of a β-Helical Protein Motif Stabilized by Targeted Replacements with Conformationally Constrained Amino Acids

    PubMed Central

    Ballano, Gema; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Here we study conformational stabilization induced in a β-helical nanostructure by position-specific mutations. The nanostructure is constructed through the self-assembly of the β-helical building block excised from E. coli galactoside acetyltransferase (PDB code 1krr, chain A; residues 131-165). The mutations involve substitutions by cyclic, conformationally constrained amino acids. Specifically, a complete structural analysis of the Pro-Xaa-Val sequence [with Xaa being Gly, Ac3c (1-aminocyclopropane-1-carboxylic acid) and Ac5c (1-aminocyclopentane-1-carboxylic acid)], corresponding to the 148-150 loop region in the wild-type (Gly) and mutated (Ac3c and Ac5c) 1krr, has been performed using Molecular Dynamics simulations and X-ray crystallography. Simulations have been performed for the wild-type and mutants of three different systems, namely the building block, the nanoconstruct and the isolated Pro-Xaa-Val tripeptide. Furthermore, the crystalline structures of five peptides of Pro-Xaa-Val or Xaa-Val sequences have been solved by X-ray diffraction analysis and compared with theoretical predictions. Both the theoretical and crystallographic studies indicate that the Pro-Acnc-Val sequences exhibit a high propensity to adopt turn-like conformations, and this propensity is little affected by the chemical environment. Overall, the results indicate that replacement of Gly149 by Ac3c or Ac5c significantly reduce the conformational flexibility of the target site enhancing the structural specificity of the building block and the nanoconstruct derived from the 1krr β-helical motif. PMID:18811190

  19. Study on conformational stability, molecular structure, vibrational spectra, NBO, TD-DFT, HOMO and LUMO analysis of 3,5-dinitrosalicylic acid by DFT techniques

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayabharathi, J.; Ayyapan, S.; Amalanathan, M.; Oudayakumar, K.; Herman, Ignatius A.

    2015-02-01

    In this work we analyzed the vibrational spectra of 3,5-dinitrosalicylic acid (3,5DNSA) molecule. The total energy of eight possible conformers can be calculated by Density Functional Theory with 6-31G(d,p) as basis set to find the most stable conformer. Computational result identify the most stable conformer of 3,5DNSA is C6. The assignments of the vibrational spectra have been carried out by computing Total Energy Distribution (TED). The molecular geometry, second order perturbation energies and Electron Density (ED) transfer from filled lone pairs of Lewis base to unfilled Lewis acid sites for 3,5-DNSA molecular analyzed on the basis of Natural Bond Orbital (NBO) analysis. The formation of inter and intramolecular hydrogen bonding between sbnd OH and sbnd COOH group gave the evidence for the formation of dimer formation for 3,5-DNSA molecule. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra.

  20. Comprehensive analysis of the dynamic structure of nuclear localization signals.

    PubMed

    Yamagishi, Ryosuke; Okuyama, Takahide; Oba, Shuntaro; Shimada, Jiro; Chaen, Shigeru; Kaneko, Hiroki

    2015-12-01

    Most transcription and epigenetic factors in eukaryotic cells have nuclear localization signals (NLSs) and are transported to the nucleus by nuclear transport proteins. Understanding the features of NLSs and the mechanisms of nuclear transport might help understand gene expression regulation, somatic cell reprogramming, thus leading to the treatment of diseases associated with abnormal gene expression. Although many studies analyzed the amino acid sequence of NLSs, few studies investigated their three-dimensional structure. Therefore, we conducted a statistical investigation of the dynamic structure of NLSs by extracting the conformation of these sequences from proteins examined by X-ray crystallography and using a quantity defined as conformational determination rate (a ratio between the number of amino acids determining the conformation and the number of all amino acids included in a certain region). We found that determining the conformation of NLSs is more difficult than determining the conformation of other regions and that NLSs may tend to form more heteropolymers than monomers. Therefore, these findings strongly suggest that NLSs are intrinsically disordered regions.

  1. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes

    PubMed Central

    Cox, Bryan D.; Muccio, Donald D.; Hamilton, Tracy P.

    2013-01-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all-trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers (6–7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers (6–7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers (6–7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations. PMID:25798372

  2. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes.

    PubMed

    Cox, Bryan D; Muccio, Donald D; Hamilton, Tracy P

    2013-05-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all- trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers ( 6-7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers ( 6-7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers ( 6-7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations.

  3. Theoretical study on the adsorption and relative stability of conformers of L-ascorbic acid on γ - alumina (100) surface

    NASA Astrophysics Data System (ADS)

    Mozaffari Majd, M.; Dabbagh, H. A.; Farrokhpour, H.; Najafi Chermahini, A.

    2017-11-01

    The adsorption energies (Eads) and relative stabilities of selected conformers of the most stable tautomer of L-ascorbic acid (vitamin C) on the dehydroxylated γ-alumina (100) surface were calculated in both gas phase and solvent (water) using the density functional theory (DFT) method. The selected conformers were related to the different rotational angles of OH groups of L-ascorbic acid. The conformational analysis of bare tautomer in both gas and water showed that the conformer No.20 (conf. 20) and 13 (conf. 13) with the dihedral angles of H15sbnd O10sbnd C11sbnd C9 (-73°) and H20sbnd O19sbnd C9sbnd C11 (-135°) were the most stable and unstable conformers, respectively. The performed calculations in the presence of surface showed that the interaction of the conformers with the surface changes their relative stabilities and structures in both gas phase and water. The Ead of each conformer was calculated and it was determined that conf. 8 and conf. 16 have the highest value of Ead in the gas phase (-62.56 kcal/mol) and water (-54.44 kcal/mol), respectively. The optimized structure of each conformer on the surface and the number of hydrogen bonds between it and surface along with their bond lengths were determined.

  4. Conformational Analysis of Free and Bound Retinoic Acid

    PubMed Central

    Fu, Zheng; Li, Xue; Merz, Kenneth M.

    2012-01-01

    The conformational profiles of unbound all-trans and 9-cis retinoic acid (RA) have been determined using classical and quantum mechanical calculations. Sixty-six all-trans-RA (ATRA) and forty-eight 9-cis-RA energy minimum conformers were identified via HF/6-31G* geometry optimizations in vacuo. Their relative conformational energies were estimated utilizing the M06, M06-2x and MP2 methods combined with the 6-311+G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets, as well as complete basis set MP2 extrapolations using the latter two basis sets. Single-point energy calculations performed with the M06-2x density functional were found to yield similar results to MP2/CBS for the low-energy retinoic acid conformations. Not unexpectedly, the conformational propensities of retinoic acid were governed by the orientation and arrangement of the torsion angles associated with the polyene tail. We also used previously reported QM/MM X-ray refinement results on four ATRA-protein crystal structures plus one newly refined 9-cis-RA complex (PDB ID 1XDK) in order to investigate the conformational preferences of bound retinoic acid. In the re-refined RA conformers the conjugated double bonds are nearly coplanar, which is consistent with the global minimum identified by the Omega/QM method rather than the corresponding crystallographically determined conformations given in the PDB. Consequently, a 91.3% average reduction of the local strain energy in the gas phase, as well as 92.1% in PCM solvent, was observed using the QM/MM refined structures versus the PDB deposited RA conformations. These results thus demonstrate that our QM/MM X-ray refinement approach can significantly enhance the quality of X-ray crystal structures refined by conventional refinement protocols, thereby providing reliable drug-target structural information for use in structure-based drug discovery applications. PMID:22844234

  5. Theoretical calculations of Electron Paramagnetic Resonance parameters of liquid phase Orotic acid radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.

  6. Synthesis and conformational analysis of hybrid α/β-dipeptides incorporating S-glycosyl-β(2,2)-amino acids.

    PubMed

    García-González, Iván; Mata, Lara; Corzana, Francisco; Jiménez-Osés, Gonzalo; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2015-01-12

    We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α-amino acid attached to a quaternary glyco-β-amino acid. In particular, we combined a S-glycosylated β(2,2)-amino acid and two different types of α-amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β-dipeptides. The key step in the synthesis involved the ring-opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur-containing nucleophile by using 1-thio-β-D-glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time-averaged restraints (MD-tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β-amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α-amino acids due to the presence of CH-π interactions between the phenyl or indole ring and the methyl groups of the β-amino acid unit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Conformation-dependent chemical reaction of formic acid with an oxygen atom.

    PubMed

    Khriachtchev, Leonid; Domanskaya, Alexandra; Marushkevich, Kseniya; Räsänen, Markku; Grigorenko, Bella; Ermilov, Alexander; Andrijchenko, Natalya; Nemukhin, Alexander

    2009-07-23

    Conformation dictates many physical and chemical properties of molecules. The importance of conformation in the selectivity and function of biologically active molecules is widely accepted. However, clear examples of conformation-dependent bimolecular chemical reactions are lacking. Here we consider a case of formic acid (HCOOH) that is a valuable model system containing the -COOH carboxyl functional group, similar to many biomolecules including the standard amino acids. We have found a strong case of conformation-dependent reaction between formic acid and atomic oxygen obtained in cryogenic matrices. The reaction surprisingly leads to peroxyformic acid only from the ground-state trans conformer of formic acid, and it results in the hydrogen-bonded complex for the higher-energy cis conformer.

  8. Properties of polyproline II, a secondary structure element implicated in protein-protein interactions.

    PubMed

    Cubellis, M V; Caillez, F; Blundell, T L; Lovell, S C

    2005-03-01

    The polyproline II (PPII) conformation of protein backbone is an important secondary structure type. It is unusual in that, due to steric constraints, its main-chain hydrogen-bond donors and acceptors cannot easily be satisfied. It is unable to make local hydrogen bonds, in a manner similar to that of alpha-helices, and it cannot easily satisfy the hydrogen-bonding potential of neighboring residues in polyproline conformation in a manner analogous to beta-strands. Here we describe an analysis of polyproline conformations using the HOMSTRAD database of structurally aligned proteins. This allows us not only to determine amino acid propensities from a much larger database than previously but also to investigate conservation of amino acids in polyproline conformations, and the conservation of the conformation itself. Although proline is common in polyproline helices, helices without proline represent 46% of the total. No other amino acid appears to be greatly preferred; glycine and aromatic amino acids have low propensities for PPII. Accordingly, the hydrogen-bonding potential of PPII main-chain is mainly satisfied by water molecules and by other parts of the main-chain. Side-chain to main-chain interactions are mostly nonlocal. Interestingly, the increased number of nonsatisfied H-bond donors and acceptors (as compared with alpha-helices and beta-strands) makes PPII conformers well suited to take part in protein-protein interactions. Copyright 2005 Wiley-Liss, Inc.

  9. A Course on Macromolecules.

    ERIC Educational Resources Information Center

    Horta, Arturo

    1985-01-01

    Describes a senior-level course that: (1) focuses on the structure and reactions of macromolecules; (2) treats industrial polymers in a unified way; and (3) uses analysis of conformation and conformational statistics as a unifying approach. Also discusses course topics, including polysaccharides, proteins, nucleic acids, and others. (JN)

  10. Conformational analysis and circular dichroism of bilirubin, the yellow pigment of jaundice

    NASA Astrophysics Data System (ADS)

    Lightner, David A.; Person, Richard; Peterson, Blake; Puzicha, Gisbert; Pu, Yu-Ming; Bojadziev, Stefan

    1991-06-01

    Conformational analysis of (4Z, 15Z)-bilirubin-IX(alpha) by molecular mechanics computations reveals a global energy minimum folded conformation. Powerful added stabilization is achieved through intramolecular hydrogen bonding. Theoretical treatment of bilirubin as a molecular exciton predicts an intense bisignate circular dichroism spectrum for the folded conformation: (Delta) (epsilon) is congruent to 270 L (DOT) mole-1 (DOT) cm-1 for the $OM450 nm electronic transition(s). Synthesis of bilirubin analogs with propionic acid groups methylated at the (alpha) or (beta) position introduces an allosteric effect that allows for an optical resolution of the pigments, with enantiomers exhibiting the theoretically predicted circular dichroism.

  11. Spirocyclic systems derived from pyroglutamic acid.

    PubMed

    Cowley, Andrew R; Hill, Thomas J; Kocis, Petr; Moloney, Mark G; Stevenson, Robert D; Thompson, Amber L

    2011-10-21

    The synthesis and likely conformational structure of rigid spirocyclic bislactams and lactam-lactones derived from pyroglutamic acid, and their suitability as lead structures for applications in drug development programmes using cheminformatic analysis, has been investgated.

  12. A harmonized immunoassay with liquid chromatography-mass spectrometry analysis in egg allergen determination.

    PubMed

    Nimata, Masaomi; Okada, Hideki; Kurihara, Kei; Sugimoto, Tsukasa; Honjoh, Tsutomu; Kuroda, Kazuhiko; Yano, Takeo; Tachibana, Hirofumi; Shoji, Masahiro

    2018-01-01

    Food allergy is a serious health issue worldwide. Implementing allergen labeling regulations is extremely challenging for regulators, food manufacturers, and analytical kit manufacturers. Here we have developed an "amino acid sequence immunoassay" approach to ELISA. The new ELISA comprises of a monoclonal antibody generated via an analyte specific peptide antigen and sodium lauryl sulfate/sulfite solution. This combination enables the antibody to access the epitope site in unfolded analyte protein. The newly developed ELISA recovered 87.1%-106.4% ovalbumin from ovalbumin-incurred model processed foods, thereby demonstrating its applicability as practical egg allergen determination. Furthermore, the comparison of LC-MS/MS and the new ELISA, which targets the amino acid sequence conforming to the LC-MS/MS detection peptide, showed a good agreement. Consequently the harmonization of two methods was demonstrated. The complementary use of the new ELISA and LC-MS analysis can offer a wide range of practical benefits in terms of easiness, cost, accuracy, and efficiency in food allergen analysis. In addition, the new assay is attractive in respect to its easy antigen preparation and predetermined specificity. Graphical abstract The ELISA composing of the monoclonal antibody targeting the amino acid sequence conformed to LC-MS detection peptide, and the protein conformation unfolding reagent was developed. In ovalbumin determination, the developed ELISA showed a good agreement with LC-MS analysis. Consequently the harmonization of immunoassay with LC-MS analysis by using common target amino acid sequence was demonstrated.

  13. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    PubMed

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  14. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  15. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator.

    PubMed

    Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua

    2017-08-25

    As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.

  16. Secondary structure inducing potential of beta-amino acids: torsion angle clustering facilitates comparison and analysis of the conformation during MD trajectories.

    PubMed

    Guthöhrlein, E W; Malesević, M; Majer, Z; Sewald, N

    2007-01-01

    While numerous examples of beta-peptides--exclusively composed of beta-amino acids--have been investigated during the past decade, there are only few reports on the conformational preference of a single beta-amino acid when incorporated into a cyclopeptide. The conformational bias of beta-amino acids on the secondary structure of cyclopeptides has been investigated by NMR spectroscopy in combination with distance geometry (DG) and molecular dynamics (MD) calculations using experimental constraints. The atomic coordinate RMSD criterion usually employed for clustering of conformations after DG and MD calculations does not necessarily group similar peptide conformations, as there is an insufficient correlation between atomic coordinates and torsion angles. To improve on this shortcoming and to eliminate any arbitrary decisions during this process, a torsion angle clustering procedure has been implemented. For the cyclic pentapeptides cyclo-(-Val-beta-Hala-Phe-Leu-Ile-) 1 and cyclo-(-Ser-Pro-Leu-beta-Hasn-Asp-) 3, the beta-amino acid is found in the central position of an extended gamma-turn (pseudo gamma-turn, Psigamma-turn), while the beta-Hpro residue in the cyclic hexapeptide cyclo-(-Ser-beta-Hpro-Leu-Asn-Ile-Asp-) 5 preferentially occupies position i+1 of a pseudo beta-turn (Psibeta-turn). These results further corroborate the hypothesis of beta-amino acids being reliable inducers of secondary structure in cyclic penta- and hexapeptides. They can be employed in the de novo design of biologically active cyclopeptides in pharmaceutical research, since the three-dimensional presentation of pharmacophoric groups in the side chains can be tailored by incorporation of beta-amino acids in strategic sequential positions. (c) 2007 Wiley Periodicals, Inc.

  17. Theoretical study of interactions between cysteine and perfluoropropanoic acid in gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Holmes, Tiffani M.; Doskocz, Jacek; Wright, Terrance; Hill, Glake A.

    The interaction of perfluoropropanoic acid (PFPA) with the amino acid cysteine was investigated using density functional theory. Previous studies suggest that the peroxisome proliferator chemical, perfluorooctanoic acid, is circulated throughout the body by way of sulfur-containing amino acids. We present conformational analysis of the interactions of PFPA, a small model of perfluorooctanoic acid, with the sulfur-containing amino acid which occur by the process of hydrogen bonding, in which the hydrogen of the sulfhydryl group interacts with the carboxyl oxygen, and the amino nitrogen forms a hydrogen bond with the hydrogen of the bond OH group of the fluorinated alkyl. We also show in our structures a recently characterized weak nonbonded interaction between divalent sulfur and a main chain carboxyl oxygen in proteins. B3LYP calculated free energies and interaction energies predict low-energy, high-interaction conformations for complex systems of perfluorinated fatty acid interactions with cysteine.

  18. Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs).

    PubMed

    Tian, Guang-Zong; Hu, Jing; Zhang, Heng-Xi; Rademacher, Christoph; Zou, Xiao-Peng; Zheng, Hong-Ning; Xu, Fei; Wang, Xiao-Li; Linker, Torsten; Yin, Jian

    2018-04-26

    Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo- and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1 NH ↔  i C 1 H, i C 2 H correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials.

  19. Recognition of the folded conformation of plant hormone (auxin, IAA) conjugates with glutamic and aspartic acids and their amides

    NASA Astrophysics Data System (ADS)

    Antolić, S.; Kveder, M.; Klaić, B.; Magnus, V.; Kojić-Prodić, B.

    2001-01-01

    The molecular structure of the endogenous plant hormone (auxin) conjugate, N-(indol-3-ylacetyl)-L-glutamic acid, is deduced by comparison with N2-(indol-3-ylacetyl)glutamine (IAA-Gln), N2-(indol-3-ylacetyl)asparagine (IAA-Asn) and N-(indol-3-ylacetyl)-L-aspartic acid using X-ray structure analysis, 1H-NMR spectroscopy (NOE measurements) and molecular modelling. The significance of the overall molecular shape, and of the resulting amphiphilic properties, of the compounds studied are discussed in terms of possible implications for trafficking between cell compartments. Both in the solid state and in solution, the molecules are in the hair-pin (folded) conformation in which the side chain is folded over the indole ring. While extended conformations can be detected by molecular dynamics simulations, they are so short-lived that any major influence on the biological properties of the compounds studied is unlikely.

  20. Cross-protection in Neisseria meningitidis serogroups Y and W polysaccharides: A comparative conformational analysis.

    PubMed

    Kuttel, Michelle M; Timol, Zaheer; Ravenscroft, Neil

    2017-06-29

    The capsular polysaccharide is the main virulence factor in meningococcus. The capsular polysaccharides for meningococcal serogroups Y and W are almost identical polymers of hexose-sialic acid, suggesting the possibility of cross-protection between group Y and W vaccines. However, early studies indicated that they elicit different levels of cross-protection. Here we explore the conformations of the meningococcal Y and W polysaccharides with molecular dynamics simulations of three repeating unit oligosaccharide strands. We find differences in Y and W antigen conformation: the Y polysaccharide has a single dominant conformation, whereas W exhibits a family of conformations including the Y conformation. This result is supported by our NMR NOESY analysis, which indicates key close contacts for W that are not present in Y. These conformational differences provide an explanation for the different levels of cross-protection measured for the Y and W monovalent vaccines and the high group W responses observed in HibMenCY-TT vaccinees. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    PubMed

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  2. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  3. Factors affecting the use of 13Cα chemical shifts to determine, refine, and validate protein structures

    PubMed Central

    Vila, Jorge A.; Scheraga, Harold A.

    2008-01-01

    Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13Cα chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13Cα chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13Cα chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13Cα chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2ξ possible ionization states of the whole molecule, with ξ being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshield-ing of the 13Cα nucleus, indicated that: (i) there is a significant difference in the computed 13Cα chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13Cα nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13Cα chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13Cα chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13Cα chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13Cα chemical shifts (by up to 3.7 ppm), was found for ~68% and ~63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm ≤ rmsd ≤ 2.13 ppm), between computed and observed 13Cα chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13Cα chemical shifts and χ1 torsional angles (given by the vicinal coupling constants, 3JN–Cγ and 3JC′–Cγ, is discussed. PMID:17975838

  4. Molecular Dynamics Study of Nitrogen-Pyramidalized Bicyclic β-Proline Oligomers: Length-Dependent Convergence to Organized Structures.

    PubMed

    Otani, Yuko; Watanabe, Satoshi; Ohwada, Tomohiko; Kitao, Akio

    2017-01-12

    In this study, the solution structures of the homooligomers of a conformationally constrained bicyclic proline-type β-amino acid were studied by means of molecular dynamics (MD) calculations in explicit methanol and water using the umbrella sampling method. The ratio of trans-amide and cis-amide was estimated by NMR and the rotational barrier of the amide of acetylated bicyclic amino acid monomer was estimated by two-dimensional (2D) exchange spectroscopy (EXSY) or line-shape analysis. A bias potential was introduced with respect to the amide torsion angle ω to enhance conformational exchange including isomerization of amide bonds by lowering the rotation energy barrier. After determination of reweighting parameters to best reproduce the experimental results of the monomer amide, the free energy profile around the amide torsion angle ω was obtained from the MD trajectory by reweighting of the biased probability density. The MD simulation results support the existence of invertomers of nitrogen-pyramidalized amide. Furthermore, extended structures with a high fraction of trans-amide conformation appear to be increasingly stabilized as the oligomer is elongated, both in methanol and in water. Our conformational analysis of natural and non-natural tertiary-amide-based peptide oligomers indicates that these oligomers preferentially adopt a limited number of conformations.

  5. Quantum chemical calculation (electronic and topologic) and experimental (FT-IR, FT-Raman and UV) analysis of isonicotinic acid N-oxide

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-04-01

    In this work, the molecular conformation, vibrational and electronic analysis of isonicotinic acid N-oxide (iso-NANO) were presented in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. The geometry optimization and energies associated possible two conformers (Rot-I and Rot-II) were computed. The vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The obtained structures were analyzed with the Atoms in Molecules (AIMs) methodology. The computational results diagnose the most stable conformer of iso-NANO as the Rot-I form. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (OPDOS) diagrams analysis for the most stable conformer (Rot-I) were calculated using the same method. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. As a result, the optimized geometry and calculated spectroscopic data show a good agreement with the experimental results.

  6. The Hydrogen Bonded Structures of Two 5-Bromobarbituric Acids and Analysis of Unequal C5–X and C5–X′ Bond Lengths (X = X′ = F, Cl, Br or Me) in 5,5-Disubstituted Barbituric Acids

    PubMed Central

    Gelbrich, Thomas; Braun, Doris E.; Oberparleiter, Stefan; Schottenberger, Herwig; Griesser, Ulrich J.

    2017-01-01

    The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH) displays an H-bonded layer structure which is based on N–H⋯O=C, N–H⋯O(MeOH) and (MeOH)O–H⋯O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid) 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H⋯O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me) have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms. PMID:28670485

  7. Chair interconversion and reactivity of mannuronic acid esters.

    PubMed

    Rönnols, Jerk; Walvoort, Marthe T C; van der Marel, Gijsbert A; Codée, Jeroen D C; Widmalm, Göran

    2013-12-14

    Mannopyranosyluronic acids display a very unusual conformation behavior in that they often prefer to adopt a (1)C4 chair conformation. They are endowed with a strikingly high reactivity when used in a glycosylation reaction as a glycosyl donor. To investigate the unusual conformational behavior a series of mannuronic acid ester derivatives, comprising anomeric triflate species and O-methyl glycosides, was examined by dynamic NMR experiments, through lineshape analysis of (1)H and (19)F NMR spectra at various temperatures from -80 °C to 0 °C. Exchange rates between (4)C1 and (1)C4 chair conformations were found to depend on the electronic properties and the size of the C2 substituent (F, N3 or OBn) and the aglycon, with higher exchange rates for the glycosyl triflates and smaller C2 substituents. Low temperature (19)F exchange spectroscopy experiments showed that the covalently bound anomeric triflates did not exchange with free triflate species present in the reaction mixture. To relate the conformational behavior of the intermediate triflates to their reactivity in a glycosylation reaction, their relative reactivity was determined via competition reactions monitored by (1)H NMR spectroscopy at low temperature. The 2-O-benzyl ether compound was found to be most reactive whereas the 2-fluoro compound - the most flexible of the studied compounds - was least reactive. Whereas the ring-flip of the mannuronic acids is important for the enhanced reactivity of the donors, the rate of the ring-flip has little influence on the relative reactivity.

  8. Synthesis and conformational analysis of new arylated-diphenylurea derivatives related to sorafenib drug via Suzuki-Miyaura cross-coupling reaction

    NASA Astrophysics Data System (ADS)

    Al-Masoudi, Najim A.; Essa, Ali Hashem; Alwaaly, Ahmed A. S.; Saeed, Bahjat A.; Langer, Peter

    2017-10-01

    Sorafenib, is a relatively new cytostatic drug approved for the treatment of renal cell and hepatocellular carcinoma. The development of new sorafenib analogues offers the possibility of generating structures of increased potency. To this end, a series of arylated-diphenylurea analogues 17-31 were synthesized via Suzuki-Miyaura coupling reaction, related to sorafenib by treatment of three diarylureas 2-4 having 3-bromo, 4-chloro and 2-iodo groups with various arylboronic acids. Conformational analysis of the new arylated urea analogues has been investigated using MOPAC 2016 of semi empirical PM7 Hamiltonian computational method. Our results showed that all compounds preferred the trans-trans conformations. Compound 17 has been selected to calculate the torsional energy profiles for rotation around the urea bonds and found to be existed predominantly in the trans-trans conformation with only very minimal fluctuation in conformation.

  9. Conformational distribution of baclofen analogues by 1H and 13C NMR analysis and ab initio HF MO STO-3G or STO-3G* calculations

    NASA Astrophysics Data System (ADS)

    Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François

    1993-12-01

    The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.

  10. Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study.

    PubMed

    Kołaski, Maciej; Zakharenko, Aleksey A; Karthikeyan, S; Kim, Kwang S

    2011-10-11

    We carried out extensive calculations of diverse inorganic acids interacting with a single water molecule, through a detailed analysis of many possible conformations. The optimized structures were obtained by using density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2). For the most stable conformers, we calculated the interaction energies at the complete basis set (CBS) limit using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The -OH stretching harmonic and anharmonic frequencies are provided as fingerprints of characteristic conformers. The zero-point energy (ZPE) uncorrected/corrected (ΔEe/ΔE0) interaction energies and the enthalpies/free energies (ΔHr/ΔGr at room temperature and 1 bar) are reported. Various comparisons are made between many diverse inorganic acids (HmXOn where X = B/N/P/Cl/Br/I, m = 1-3, and n = 0-4) as well as other simple inorganic acids. In many cases, we find that the dispersion-driven van der Waals interactions between X in inorganic acid molecules and O in water molecules as well as the X(+)···O(-) electrostatic interactions are important.

  11. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    PubMed

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  12. Determination of the conformation of 2-hydroxy- and 2-aminobenzoic acid dimers using 13C NMR and density functional theory/natural bond order analysis: the central importance of the carboxylic acid carbon.

    PubMed

    Burnette, Ronald R; Weinhold, Frank

    2006-07-20

    The 13C chemical shift for the carboxylic acid carbon provides a powerful diagnostic probe to determine the preferred isomeric dimer structures of benzoic acid derivatives undergoing intra- and intermolecular H-bonding in the gas, solution and crystalline phases. We have employed hybrid density functional calculations and natural bond orbital analysis to elucidate the electronic origins of the observed 13C shieldings and their relationship to isomeric stability. We find that delocalizing interactions from the carbonyl oxygen lone pairs (nO) into vicinal carbon-oxygen and carbon-carbon antibonds (sigmaCO*,sigmaCC*) make critical contributions to the 13C shieldings, and these nO --> sigmaCO*, nO --> sigmaCC* interactions are in turn sensitive to the intramolecular interactions that dictate dimer structure and stability. The carboxyl carbon atom can thus serve as a useful detector of subtle structural and conformational features in this pharmacologically important class of carboxylic acid interactions.

  13. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  14. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    PubMed

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  15. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. Themore » results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.« less

  16. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy.

    PubMed

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H

    2016-04-20

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Algül, Öztekin; Önkol, Tijen

    2008-08-01

    The molecular structure, vibrational frequencies and infrared intensities of the 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid were calculated by the HF and DFT methods using 6-31G(d) basis set. The FT-infrared spectra have been measured for the title compound in the solid state. We obtained 11 stable conformers for the title compound, however the Conformer 1 is approximately 3.88 kcal/mol more stable than the Conformer 11. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of the Conformer 1. The harmonic vibrations computed of this compound by the B3LYP/6-31G(d) method are in a good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.

  18. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  19. Conformational Behaviour of Azasugars Based on Mannuronic Acid.

    PubMed

    van Rijssel, Erwin R; Janssen, Antonius P A; Males, Alexandra; Davies, Gideon J; van der Marel, Gijsbert A; Overkleeft, Herman S; Codée, Jeroen D C

    2017-07-04

    A set of mannuronic-acid-based iminosugars, consisting of the C-5-carboxylic acid, methyl ester and amide analogues of 1deoxymannorjirimicin (DMJ), was synthesised and their pH-dependent conformational behaviour was studied. Under acidic conditions the methyl ester and the carboxylic acid adopted an "inverted" 1 C 4 chair conformation as opposed to the "normal" 4 C 1 chair at basic pH. This conformational change is explained in terms of the stereoelectronic effects of the ring substituents and it parallels the behaviour of the mannuronic acid ester oxocarbenium ion. Because of this solution-phase behaviour, the mannuronic acid ester azasugar was examined as an inhibitor for a Caulobacter GH47 mannosidase that hydrolyses its substrates by way of a reaction itinerary that proceeds through a 3 H 4 transition state. No binding was observed for the mannuronic acid ester azasugar, but sub-atomic resolution data were obtained for the DMJ⋅CkGH47 complex, showing two conformations- 3 S 1 and 1 C 4 -for the DMJ inhibitor. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. A residue in helical conformation in the native state adopts a β-strand conformation in the folding transition state despite its high and canonical Φ-value.

    PubMed

    Zarrine-Afsar, Arash; Dahesh, Samira; Davidson, Alan R

    2012-05-01

    Delineating structures of the transition states in protein folding reactions has provided great insight into the mechanisms by which proteins fold. The most common method for obtaining this information is Φ-value analysis, which is carried out by measuring the changes in the folding and unfolding rates caused by single amino acid substitutions at various positions within a given protein. Canonical Φ-values range between 0 and 1, and residues displaying high values within this range are interpreted to be important in stabilizing the transition state structure, and to elicit this stabilization through native-like interactions. Although very successful in defining the general features of transition state structures, Φ-value analysis can be confounded when non-native interactions stabilize this state. In addition, direct information on backbone conformation within the transition state is not provided. In the work described here, we have investigated structure formation at a conserved β-bulge (with helical conformation) in the Fyn SH3 domain by characterizing the effects of substituting all natural amino acids at one position within this structural motif. By comparing the effects on folding rates of these substitutions with database-derived local structure propensity values, we have determined that this position adopts a non-native backbone conformation in the folding transition state. This result is surprising because this position displays a high and canonical Φ-value of 0.7. This work emphasizes the potential role of non-native conformations in folding pathways and demonstrates that even positions displaying high and canonical Φ-values may, nevertheless, adopt a non-native conformation in the transition state. Copyright © 2012 Wiley Periodicals, Inc.

  1. A molecular mechanics study of the effect of substitution in position 1 on the conformational space of the oxytocin/vasopressin ring

    NASA Astrophysics Data System (ADS)

    Tarnowska, Monika; Liwo, Adam; Shenderovich, Mark D.; Liepiņa, Inta; Golbraikh, Alexander A.; Grzonka, Zbigniew; Tempczyk, Anna

    1993-12-01

    The effect of the substitution in position 1 on the low-energy conformations of the oxytocin/vasopressin 20-membered ring was investigated by means of molecular mechanics. Three representative substitutions were considered: β'-mercapto-β,β-dimethyl)propionic acid (Dmp), (β'-mercapto-β,β-cyclopentamethylene)propionic acid (Cpp), both forming strong antagonists, and (α,α-dimethyl-β-mercapto)propionic acid (α-Dmp), forming analogs of strongly reduced biological activity, with the β-mercaptopropionic (Mpa) residue taken as reference. Both ECEPP/2 (rigid valence geometry) and AMBER (flexible valence geometry) force fields were employed in the calculations. Three basic types of backbone conformations were taken into account which are distinguished by the type of β-turn at residues 3 and 4: β1/βIII, βII, and βI'/βIII', all types containing one or two intra-annular hydrogen bonds. The allowed (ring-closed) disulfide-bridge conformations were searched by an algorithm formulated in terms of scanning the disulfide-bridge torsional angle Cβ-S-S-Cβ. The ECEPP/2 and AMBER energies of the obtained conformations were found to be in reasonable agreement. Two of the low-energy conformers of the [Mpa1]-compound agreed very well with the cyclic part of the two conformers found in the crystal structure of [Mpa1]-oxytocin. An analysis of the effect of β-substitution on relative energies showed that the conformations with the N-C'-CH2-CH2 (ψ'1) and C'-CH2-CH2-S (ϰ'1) angles of the first residue around (-100°, 60°) and (100°, -60°) are not affected; this in most cases implies a left-handed disulfide bridge. In the case of α-substitution the allowed values of ψ'1 are close to ± 60°. This requirement, being in contradiction to the one concerning β-substitution, could explain the very low biological activity of the α-substituted analogs. The conformational preferences of substituted compounds can largely be explained by the analysis of local interactions within the first residue. Based on the selection of the conformations which are low in energy for both the reference and β-substituted compounds, two distinct types of possible binding conformations were proposed, the first one being similar to the crystal conformer with a left-handed disulfide bridge, the second one having a right-handed bridge, but a geometry different from that of the crystal conformer with the right-handed bridge. The first type of disulfide-bridge arrangement is equally favorable for both βI/βIII and βII types of backbone structure, while the second one is allowed only for the βII type of backbone. No conformation of the βI'/βIII' type has a low enough energy to be considered as a possible binding conformation for all of the active compounds studied in this work.

  2. Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase.

    PubMed

    Zhou, Lei; Xiong, Zhiqiang; Liu, Wei; Zou, Liqiang

    2017-11-01

    Gentisic acid and cyanidin-3-O-glucoside are important bioactive polyphenols which are widely distributed in many fruits and cereals. In this work, kinetic study, spectral analysis and computational simulation were used to compare the inhibitory effects and inhibition mechanisms of gentisic acid and cyanidin-3-O-glucoside on mushroom polyphenoloxidase (PPO). The inhibitory effect of cyanidin-3-O-glucoside on PPO was much stronger than that of gentisic acid. Gentisic acid inhibited PPO in a reversible mixed-type manner while cyanidin-3-O-glucoside was an irreversible inhibitor. Gentisic acid and cyanidin-3-O-glucoside made the thermal inactivation of PPO easier, and induced apparent conformational changes of PPO. Compared with gentisic acid, cyanidin-3-O-glucoside had stronger effects on the thermal inactivation and conformation of PPO. Molecular docking results revealed gentisic acid bound to the active site of PPO by hydrogen bonding, π-π stacking and van der Waals forces. However, cyanidin-3-O-glucoside might irreversibly interact with the Met or Cys in PPO by covalent bonds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Theoretical and experimental studies on alpha/epsilon-hybrid peptides: design of a 14/12-helix from peptides with alternating (S)-C-linked carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] and L-ala.

    PubMed

    Sharma, Gangavaram V M; Babu, Bommagani Shoban; Chatterjee, Deepak; Ramakrishna, Kallaganti V S; Kunwar, Ajit C; Schramm, Peter; Hofmann, Hans-Jörg

    2009-09-04

    An (S)-C-linked carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] was prepared from the known (S)-delta-Caa. This monomer was utilized together with l-Ala to give novel alpha/epsilon-hybrid peptides in 1:1 alternation. Conformational analysis on penta- and hexapeptides by NMR (in CDCl(3)), CD, and MD studies led to the identification of robust 14/12-mixed helices. This is in agreement with the data from a theoretical conformational analysis on the basis of ab initio MO theory providing a complete overview on all formally possible hydrogen-bonded helix patterns of alpha/epsilon-hybrid peptides with 1:1 backbone alternation. The "new motif" of a mixed 14/12-helix was predicted as most stable in vacuum. Obviously, the formation of ordered secondary structures is also possible in peptide foldamers with amino acid constituents of considerable backbone lengths. Thus, alpha/epsilon-hybrid peptides expand the domain of foldamers and allow the introduction of desired functionalities via the alpha-amino acid constituents.

  4. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    PubMed

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Probing RNA Native Conformational Ensembles with Structural Constraints.

    PubMed

    Fonseca, Rasmus; van den Bedem, Henry; Bernauer, Julie

    2016-05-01

    Noncoding ribonucleic acids (RNA) play a critical role in a wide variety of cellular processes, ranging from regulating gene expression to post-translational modification and protein synthesis. Their activity is modulated by highly dynamic exchanges between three-dimensional conformational substates, which are difficult to characterize experimentally and computationally. Here, we present an innovative, entirely kinematic computational procedure to efficiently explore the native ensemble of RNA molecules. Our procedure projects degrees of freedom onto a subspace of conformation space defined by distance constraints in the tertiary structure. The dimensionality reduction enables efficient exploration of conformational space. We show that the conformational distributions obtained with our method broadly sample the conformational landscape observed in NMR experiments. Compared to normal mode analysis-based exploration, our procedure diffuses faster through the experimental ensemble while also accessing conformational substates to greater precision. Our results suggest that conformational sampling with a highly reduced but fully atomistic representation of noncoding RNA expresses key features of their dynamic nature.

  6. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.

  7. Isotope-encoded Carboxyl Group Footprinting for Mass Spectrometry-based Protein Conformational Studies

    PubMed Central

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2015-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the Orange Carotenoid Protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy” and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting. PMID:26384685

  8. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    DOE PAGES

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; ...

    2015-09-18

    Here, we report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy”more » and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.« less

  9. Gas-phase Conformational Analysis of (R,R)-Tartaric Acid, its Diamide, N,N,N',N'- Tetramethyldiamide and Model Compounds

    NASA Astrophysics Data System (ADS)

    Hoffmann, Marcin; Szarecka, Agnieszka; Rychlewski, Jacek

    A review over most recent ab initio studies carried out at both RHF and MP2 levels on (R,R)-tartaric acid (TA), its diamide (DA), tetramethyldiamide (TMDA) and on three prototypic model systems (each of them constitutes a half of the respective parental molecule), i.e. 2-hydroxyacetic acid (HA), 2-hydroxyacetamide (HD) and 2-hydroxy-N,N-dimethylacetamide (HMD) is presented. (R,R)-tartaric acid and the derivatives have been completely optimized at RHF/6-31G* level and subsequently single-point energies of all conformers have been calculated with the use of second order perturbation theory according to the scheme: MP2/6-31G*//RHF/6-31G*. In the complete optimization of the model molecules at RHF level we have employed relatively large basis sets, augmented with polarisation and diffuse functions, namely 3-21G, 6-31G*, 6-31++G** and 6-311++G**. Electronic correlation has been included with the largest basis set used in this study, i.e. MP2/6-311++G**//RHF/6-311++G** single-point energy calculations have been performed. General confomational preferences of tartaric acid derivatives have been analysed as well as an attempt has been made to define main factors affecting the conformational behaviour of these molecules in the isolated state, in particular, the role and stability of intramolecular hydrogen bonding. In the case of the model compounds, our study principally concerned the conformational preferences and hydrogen bonding structure within the [alpha]-hydroxy-X moiety, where X=COOH, CONH2, CON(CH3)2.

  10. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc.

  11. Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study.

    PubMed

    Lobayan, Rosana M; Pérez Schmit, María C; Jubert, Alicia H; Vitale, Arturo

    2012-06-01

    Due to the free radical scavenger properties of Tryptamine (TRA), as well as of others indole derivatives, it is in our interest to explore deeply the stereoelectronic aspects that would be relevant in their stabilization and antioxidant activity. In this work the conformational space of TRA was scanned using molecular dynamics complemented with functional density calculations at B3LYP/6-31 + G** level. Twenty one conformers of lowest energy were obtained, their electronic distributions were analyzed at a higher calculation level, thus improving the basis set (B3LYP/6-311++G**). A topological study based on Bader's theory ( atoms in molecules) and natural bond orbital (NBO) framework was performed. The study was enriched by a deep analysis of maps of molecular electrostatic potential (MEP) through a coordinated NBO/AIM analysis. The conformational preferences were explained by hyperconjugative interactions, which were revealed by NBO data. Because radical scavenging by indolic compounds is strongly modulated by their functional residues our study was related to similar analysis done previously on Indole and 1H-indole-3-acetic acid (IAA). Therefore, the conformational space of TRA was studied from a new perspective focusing on a deep analysis of the geometric and electronic properties of TRA conformers. The changes of the electronic distribution introduced by the substituent and the conformational flexibility of the side chain were addressed. The results reported contribute to the understanding of the structure, stability and reactivity of TRA and others indole derivatives.

  12. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    PubMed

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  13. Sialyldisaccharide conformations: a molecular dynamics perspective

    NASA Astrophysics Data System (ADS)

    Selvin, Jeyasigamani F. A.; Priyadarzini, Thanu R. K.; Veluraja, Kasinadar

    2012-04-01

    Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.

  14. Synthesis, spectroscopic characterization, crystal structure, DNA interaction study and invitro biological screenings of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Nooruddin; Ali, Saqib; McKee, Vickie; Khan, Shahan Zeb; Malook, Khan

    2015-01-01

    The titled compound, 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid was synthesized and characterized by various techniques like elemental analyses, FT-IR, NMR (1H, and 13C) and single crystal X-ray structural analysis. The appearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra conform the formation of the compound. A good agreement was found between the calculated values of C, H, N and found values in elemental analysis that show the purity of the compound. Protons H2 and H3 are in cis conformation with each other as conformed both from 1H NMR as well as from single crystal X-ray analysis. The molecular structure of the title compound, C10H10NO3Cl, is stabilized by short intramolecular Osbnd H- - -O hydrogen bonds within the molecule. In the crystal structure, intermolecular Nsbnd H- - -O hydrogen bonds link molecules into zigzag chains resulting in a dendrimer like structure. The title compound was screened for biological activities like interaction with DNA, cytotoxicity, antitumor and antioxidant activities. DNA interaction study reveals that the binding mode of interaction of the compound with SS-DNA is intercalative as it results in hypochromism along with significant red shift of 5 nm. It was also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid, at higher concentration. The antitumor activity data of the compound shows that it can be used as potent antitumor agent.

  15. The allosteric switching mechanism in bacteriophage MS2

    NASA Astrophysics Data System (ADS)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  16. The allosteric switching mechanism in bacteriophage MS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less

  17. The allosteric switching mechanism in bacteriophage MS2

    PubMed Central

    Perkett, Matthew R.; Mirijanian, Dina T.

    2016-01-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905

  18. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.

    2016-06-01

    The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed by NBO method.

  19. 21 CFR 172.755 - Stearyl monoglyceridyl citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is prepared by controlled chemical reaction of the following: Reactant Limitations Citric acid Monoglycerides of fatty acids Prepared by the glycerolysis of edible fats and oils or derived from fatty acids conforming with § 172.860. Stearyl alcohol Derived from fatty acids conforming with § 172.860, or derived...

  20. Dipeptide Sequence Determination: Analyzing Phenylthiohydantoin Amino Acids by HPLC

    NASA Astrophysics Data System (ADS)

    Barton, Janice S.; Tang, Chung-Fei; Reed, Steven S.

    2000-02-01

    Amino acid composition and sequence determination, important techniques for characterizing peptides and proteins, are essential for predicting conformation and studying sequence alignment. This experiment presents improved, fundamental methods of sequence analysis for an upper-division biochemistry laboratory. Working in pairs, students use the Edman reagent to prepare phenylthiohydantoin derivatives of amino acids for determination of the sequence of an unknown dipeptide. With a single HPLC technique, students identify both the N-terminal amino acid and the composition of the dipeptide. This method yields good precision of retention times and allows use of a broad range of amino acids as components of the dipeptide. Students learn fundamental principles and techniques of sequence analysis and HPLC.

  1. Experimental Raman and IR spectral and theoretical studies of vibrational spectrum and molecular structure of Pantothenic acid (vitamin B5)

    NASA Astrophysics Data System (ADS)

    Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.

    2014-08-01

    Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.

  2. Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Aspartic Acid Complexes with Zn2+ and Cd2.

    PubMed

    Boles, Georgia C; Hightower, Randy L; Coates, Rebecca A; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B

    2018-04-12

    Complexes of aspartic acid (Asp) cationized with Zn 2+ : Zn(Asp-H) + , Zn(Asp-H) + (ACN) where ACN = acetonitrile, and Zn(Asp-H) + (Asp); as well as with Cd 2+ , CdCl + (Asp), were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free electron laser. A series of low-energy conformers for each complex was found using quantum chemical calculations to identify the structures formed experimentally. The main binding motif observed for the heavy-metal complex, CdCl + (Asp)[N,CO,CO s ], is a charge-solvated, tridentate structure, where the metal center binds to the backbone amino group and carbonyl oxygens of the backbone and side-chain carboxylic acids. Likewise, the deprotonated Zn(Asp-H) + (ACN) and Zn(Asp-H) + (Asp) complexes show comparable [N,CO - ,CO s ](ACN) and [N,CO - ,CO s ][N,CO,CO s ] coordinations, respectively. Interestingly, there was only minor spectral evidence for the analogous Zn(Asp-H) + [N,CO - ,CO s ] binding motif, even though this species is predicted to be the lowest-energy conformer. Instead, rearrangement and partial dissociation of the amino acid are observed, as spectral features most consistent with the experimental spectrum are exhibited by a four-coordinate Zn(Asp-NH 4 ) + [CO 2 - ,CO s ](NH 3 ) complex. Analysis of the mechanistic pathway leading from the predicted lowest-energy conformer to the isobaric deaminated complex is explored theoretically. Further, comparison of the current work to that of Zn 2+ and Cd 2+ complexes of asparagine (Asn) allows additional conclusions regarding populated conformers and effects of carboxamide versus carboxylic acid binding to be drawn.

  3. Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62.

    PubMed

    Tsai, Li-Chun Lisa; Xie, Lei; Dore, Kim; Xie, Li; Del Rio, Jason C; King, Charles C; Martinez-Ariza, Guillermo; Hulme, Christopher; Malinow, Roberto; Bourne, Philip E; Newton, Alexandra C

    2015-09-04

    Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Conformational equilibrium of phenylacetic acid and its halogenated analogues through theoretical studies, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.

    2017-03-01

    This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.

  5. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  6. Conformations of the HIV-1 protease: A crystal structure data set analysis.

    PubMed

    Palese, Luigi Leonardo

    2017-11-01

    The HIV protease is an important drug target for HIV/AIDS therapy, and its structure and function have been extensively investigated. This enzyme performs an essential role in viral maturation by processing specific cleavage sites in the Gag and Gag-Pol precursor polyproteins so as to release their mature forms. This 99 amino acid aspartic protease works as a homodimer, with the active site localized in a central cavity capped by two flexible flap regions. The dimer presents closed or open conformations, which are involved in the substrate binding and release. Here the results of the analysis of a HIV-1 protease data set containing 552 dimer structures are reported. Different dimensionality reduction methods have been used in order to get information from this multidimensional database. Most of the structures in the data set belong to two conformational clusters. An interesting observation that comes from the analysis of these data is that some protease sequences are localized preferentially in specific areas of the conformational landscape of this protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synergic application of spectroscopic and theoretical methods to the chlorogenic acid structure elucidation

    NASA Astrophysics Data System (ADS)

    Marković, Svetlana; Tošović, Jelena; Dimitrić Marković, Jasmina M.

    2016-07-01

    Although chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) is a dietary polyphenol known for its pharmacological and nutritional properties, its structural features have not been completely elucidated. This is the first study whose aim is to contribute to clarification of the 5CQA structure by comparing the experimental and simulated IR, Raman, 1H NMR, 13C NMR, and UV spectra. For this purpose, a comprehensive conformational analysis of 5CQA was performed to reveal its most stable conformations in the gas-state and solution (DMSO and methanol). The lowest-energy conformers were used to predict the spectra at two levels of theory: B3LYP-D3/and M06-2X/6-311+G(d,p) in combination with the CPCM solvation model. Both methods provide very good agreement between all experimental and simulated spectra, thus indicating correct arrangement of the atoms in the 5CQA molecule. The quinic moiety is characterized with directed hydrogen bonds, where the carboxylic hydrogen is not oriented towards the carbonyl oxygen of the carboxylic group, but towards the oxygen of the proximate hydroxyl group. In the gas-state the lowest-energy conformers are characterized with the O4sbnd H4 ⋯ O9‧ hydrogen bond, whereas in the solvated state the structures with the O4sbnd H4 ⋯ O10‧ hydrogen bond prevail. Knowing the fine structural details, i.e. the proper conformation of 5CQA, provides a solid base for all further investigations related to this compound.

  8. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    PubMed

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  9. The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity.

    PubMed

    Andreu, Vanesa; Lagunas, Beatriz; Collados, Raquel; Picorel, Rafael; Alfonso, Miguel

    2010-07-01

    The FAD7 gene encodes a omega3 fatty acid desaturase which catalyses the production of trienoic fatty acids (TAs) in plant chloroplasts. A novel GmFAD7 gene (named GmFAD7-2) has been identified in soybean, with high homology to the previously annotated GmFAD7 gene. Genomic sequencing analysis together with searches at the soybean genome database further confirmed that both GmFAD7 genes were located in two different loci within the soybean genome, suggesting that the soybean omega3 plastidial desaturase FAD7 is encoded by two different paralogous genes. Both GmFAD7-1 and GmFAD7-2 genes were expressed in all soybean tissues examined, displaying their highest mRNA accumulation in leaves. This expression profile contrasted with GmFAD3A and GmFAD3B mRNA accumulation, which was very low in this tissue. These results suggested a concerted control of plastidial and reticular omega3 desaturase gene expression in soybean mature leaves. Analysis of GmFAD7 protein distribution in different soybean tissues showed that, in mature leaves, two bands were detected, coincident with the higher expression level of both GmFAD7 genes and the highest 18:3 fatty acid accumulation. By contrast, in seeds, where FAD7 activity is low, specific GmFAD7 protein conformations were observed. These GmFAD7 protein conformations were affected in vitro by changes in the redox conditions of thiol groups and iron availability. These results suggest the existence of tissue-specific post-translational regulatory mechanisms affecting the distribution and conformation of the FAD7 enzymes related with the control of its activity.

  10. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  11. Exploration of gated ligand binding recognizes an allosteric site for blocking FABP4-protein interaction.

    PubMed

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-12-28

    Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and the Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for the development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level.

  12. Sequence-specific unusual (1-->2)-type helical turns in alpha/beta-hybrid peptides.

    PubMed

    Prabhakaran, Panchami; Kale, Sangram S; Puranik, Vedavati G; Rajamohanan, P R; Chetina, Olga; Howard, Judith A K; Hofmann, Hans-Jörg; Sanjayan, Gangadhar J

    2008-12-31

    This article describes novel conformationally ordered alpha/beta-hybrid peptides consisting of repeating l-proline-anthranilic acid building blocks. These oligomers adopt a compact, right-handed helical architecture determined by the intrinsic conformational preferences of the individual amino acid residues. The striking feature of these oligomers is their ability to display an unusual periodic pseudo beta-turn network of nine-membered hydrogen-bonded rings formed in the forward direction of the sequence by 1-->2 amino acid interactions both in solid-state and in solution. Conformational investigations of several of these oligomers by single-crystal X-ray diffraction, solution-state NMR, and ab initio MO theory suggest that the characteristic steric and dihedral angle restraints exerted by proline are essential for stabilizing the unusual pseudo beta-turn network found in these oligomers. Replacing proline by the conformationally flexible analogue alanine (Ala) or by the conformationally more constrained alpha-amino isobutyric acid (Aib) had an adverse effect on the stabilization of this structural architecture. These findings increase the potential to design novel secondary structure elements profiting from the steric and dihedral angle constraints of the amino acid constituents and help to augment the conformational space available for synthetic oligomer design with diverse backbone structures.

  13. Linoleic acid and its potassium and sodium salts: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Gocen, Tuğba; Haman Bayarı, Sevgi; Haluk Guven, Mehmet

    2017-12-01

    Linoleic acid (cis, cis-9,12-octodecadienoic acid) is the main polyunsaturated -omega 6- essential fatty acid. The conformational behaviour of linoleic acid (LA) in the gas phase was investigated by means of density functional theory (DFT). The structures of conformers of LA were fully optimized by using the B3LYP/6-311++G(d,p) method. The theory showed that the tttttts‧CssCs‧tt conformation of LA (conformer I) is the more stable than the other conformations. Fourier Transform Infrared (FTIR) and micro-Raman spectra of pure LA in liquid form were recorded in the region 4000-450 and 3500-100 cm-1, respectively. The DFT calculations on the molecular structure and vibrational spectra of the dimer form of most stable conformer of LA were also performed using the same method. The assignment of the vibrational modes was made based on calculated potential energy distributions (PEDs). The simulated spectra of dimer form of LA are in reasonably good agreement with the experimental spectra. The sodium and potassium salts of LA were synthesized and characterized by FTIR and Raman spectroscopy, X-ray diffraction and DFT calculations. Several molecular and electronic properties of LA and its salts such as HOMO-LUMO energies, chemical hardness and electronegativity were also calculated and interpreted.

  14. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.

  15. DNATCO: assignment of DNA conformers at dnatco.org.

    PubMed

    Černý, Jiří; Božíková, Paulína; Schneider, Bohdan

    2016-07-08

    The web service DNATCO (dnatco.org) classifies local conformations of DNA molecules beyond their traditional sorting to A, B and Z DNA forms. DNATCO provides an interface to robust algorithms assigning conformation classes called NTC: to dinucleotides extracted from DNA-containing structures uploaded in PDB format version 3.1 or above. The assigned dinucleotide NTC: classes are further grouped into DNA structural alphabet NTA: , to the best of our knowledge the first DNA structural alphabet. The results are presented at two levels: in the form of user friendly visualization and analysis of the assignment, and in the form of a downloadable, more detailed table for further analysis offline. The website is free and open to all users and there is no login requirement. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  17. Pangamic Acid (Vitamin B15, Pangametin, Sopangamine)

    PubMed Central

    French, W. N.; Levi, Leo

    1966-01-01

    Pangamic acid is shown to be a mixture of variable composition. Criteria of identity and methods of analysis are described for five pharmaceutical dosage forms. Experimental results indicate that the products are not uniform in composition and that composition does not conform to label claims. No satisfactory preclinical drug application for any such preparation has so far been submitted to the Food and Drug Directorate. PMID:5295884

  18. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices.

    PubMed

    Lindsay, Richard J; Siess, Jan; Lohry, David P; McGee, Trevor S; Ritchie, Jordan S; Johnson, Quentin R; Shen, Tongye

    2018-01-14

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  19. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    NASA Astrophysics Data System (ADS)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  20. Single molecule views of Nature's nano-machines

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2006-03-01

    We are interested in the perturbational analysis of biological molecules to better understand their mechanisms. Our readout is the fluorescence signal from individual biomolecules, mainly in the form of single molecule fluorescence resonance energy transfer (FRET). We are pioneering approaches to perturb and control biomolecular conformations using external force (combination of single molecule FRET and optical trap) or other biological motifs (DNA hybridization, G-quadruplex, aptamers,.). In this talk, I will present our latest results on mapping the conformational energy landscape of the Holliday junction through simultaneous fluorescence and force measurements. In addition, a new nanomechanical device called single molecule nano-metronome will be discussed with an outlook toward controlling protein conformations using nucleic acids motifs.

  1. Stereoselective synthesis of conformationally constrained omega-amino acid analogues from pyroglutamic acid.

    PubMed

    Bentz, Emilie L; Goswami, Rajesh; Moloney, Mark G; Westaway, Susan M

    2005-08-07

    Bicyclic lactams derived from pyroglutamic acid provide a useful scaffold for synthesis of conformationally restricted analogues of lysine, ornithine and glutamine, as well as an Ala-Ala dipeptide analogue. Amino alcohol and carboxylic acid derivatives are accessible from a common intermediate. In this strategy, the bicyclic lactam system not only controls, but also facilitates the determination of the stereochemistry of the synthetic intermediates.

  2. On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli.

    PubMed

    Fibriansah, Guntur; Gliubich, Francesca I; Thunnissen, Andy-Mark W H

    2012-11-13

    The lytic transglycosylase MltE from Escherichia coli is a periplasmic, outer membrane-attached enzyme that cleaves the β-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine residues in the cell wall peptidoglycan, producing 1,6-anhydromuropeptides. Here we report three crystal structures of MltE: in a substrate-free state, in a binary complex with chitopentaose, and in a ternary complex with the glycopeptide inhibitor bulgecin A and the murodipeptide N-acetylglucosaminyl-N-acetylmuramyl-l-Ala-d-Glu. The substrate-bound structures allowed a detailed analysis of the saccharide-binding interactions in six subsites of the peptidoglycan-binding groove (subsites -4 to +2) and, combined with site-directed mutagenesis analysis, confirmed the role of Glu64 as catalytic acid/base. The structures permitted the precise modeling of a short glycan strand of eight saccharide residues, providing evidence for two additional subsites (+3 and +4) and revealing the productive conformational state of the substrate at subsites -1 and +1, where the glycosidic bond is cleaved. Full accessibility of the peptidoglycan-binding groove and preferential binding of an N-acetylmuramic acid residue in a (4)C(1) chair conformation at subsite +2 explain why MltE shows only endo- and no exo-specific activity toward glycan strands. The results further indicate that catalysis of glycosidic bond cleavage by MltE proceeds via distortion toward a sofa-like conformation of the N-acetylmuramic acid sugar ring at subsite -1 and by anchimeric assistance of the sugar's N-acetyl group, as shown previously for the lytic transglycosylases Slt70 and MltB.

  3. Structure-based conformational preferences of amino acids

    PubMed Central

    Koehl, Patrice; Levitt, Michael

    1999-01-01

    Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955

  4. Hybridization-based biosensor containing hairpin probes and use thereof

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  5. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

    PubMed

    Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro

    2011-07-01

    The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.

  6. Conformation of kainic acid in solution from molecular modelling and NMR spectra.

    PubMed

    Falk, M; Sidhu, P; Walter, J A

    1998-01-01

    Conformational behaviour of kainic acid in aqueous solution was elucidated by molecular mechanics and dynamics. The pucker of the five-membered ring in kainic acid was examined and compared with that of model compounds. In cyclopentane there is no barrier to pseudorotation, so that all puckered states coexist. In pyrrolidinium, the presence of a hetero-atom in the ring introduces a small barrier (about 0.6 kcal mol(-1)) to pseudorotation, separating two stable regions, A and B, which are equivalent by symmetry. In proline, the presence of the carboxylate group on C2 removes the symmetry but two stable conformational minima, A and B, remain. In kainic acid, the presence of side-chains on C3 and C4 introduces complications resulting in additional sub-minima in both regions, A and B. In solution, kainic acid is a complex mixture of conformers with comparable energies, because of the combination of several stable states of the pyrrolidinium ring with the torsional degrees of freedom arising from the two side-chains. The individual geometries, energies, and estimates of relative populations of these conformers were obtained from molecular dynamics simulations. The calculations were validated by a comparison of predicted inter-proton distances and vicinal proton coupling constants with the experimental quantities derived from NMR spectra.

  7. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  8. Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju

    2014-10-01

    Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.

  9. Pseudopeptide foldamers: the homo-oligomers of pyroglutamic acid.

    PubMed

    Bernardi, Fernando; Garavelli, Marco; Scatizzi, Marco; Tomasini, Claudia; Trigari, Valerio; Crisma, Marco; Formaggio, Fernando; Peggion, Cristina; Toniolo, Claudio

    2002-06-03

    As a part of a program evaluating substituted gamma-lactams as conformationally constrained building blocks of pseudopeptide foldamers, we synthesized the homo-oligomers of L-pyroglutamic acid up to the tetramer level by solution methods. The preferred conformation of this pseudopeptide series in structure-supporting solvents was assessed by FT-IR absorption, 1H NMR and CD techniques. In addition, the crystal structure of the N alpha-protected dimer was established by X-ray diffraction. A high-level DFT computational modeling was performed based on the crystallographic parameters. In this analysis, we demonstrated that an alpha C-H...O=C intramolecular hydrogen bond is responsible for the stabilization of the s-trans L-pGlu-L-pGlu conformation by 1.4 kcal mol-1. This effect can be easily detected by 1H NMR spectroscopy, owing to the anomalous chemical shifts of the alpha CH protons present in all of the oligomers. In summary, we have developed a new polyimide-based, foldameric structure that, if appropriately functionalized, has promise as a rigid scaffold for novel functions and applications.

  10. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.

    PubMed

    Sedova, Ada; Banavali, Nilesh K

    2017-03-14

    Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.

  11. Incorporation of N-amidino-pyroglutamic acid into peptides using intramolecular cyclization of alpha-guanidinoglutaric acid.

    PubMed

    Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny

    2009-11-01

    N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach.

  12. Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.

    PubMed

    Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael

    2005-02-01

    The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.

  13. The Mm-Wave Rotational Spectrum of Glycolic Acid

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczółkowski, Lech; Białkowska-Jaworska, Ewa; Charnley, Steven B.

    2014-06-01

    Glycolic acid, HOCH_2COOH is the simplest α-hydroxy acid. It is as yet undetected in the interstellar medium, but is known to be present in carbonaceous meteorites and in residues from UV-photolysed interstellar ice analogue mixtures. Prior rotational spectroscopy has been carried out up to 40 GHz for the main, SSC conformer, Presently we report the analysis of the rotational spectrum of glycolic acid on the basis of broadband measurements performed up to 318 GHz, and updated spectroscopic constants for the ground state and the first two excited states of the low-frequency ν21 torsional mode. We have used the AABS package to assign multiple further excited vibrational states of the SSC conformer. In particular, we have been able to assign the highly perturbed triad of ν14, ν20 and 3ν21 states. The triad has been fitted down to experimental accuracy with a coupled fit, which allowed us to pin down the hitherto elusive frequency of the ν21 mode. The experimental results make an interesting comparison with those of anharmonic force field calculations. We have also been able to extend the measurements for the AAT conformer. C.E.Blom, A.Bauder, Chem. Phys. Lett., 82, 492 (1981), J. Am. Chem. Soc., 104, 2993 (1982). H.Hasegawa, O.Ohashi, I.Yamaguchi, J. Mol. Spectrosc., 82, 205 (1982). P.D.Godfrey, F.M.Rodgers, R.D.Brown, J. Am. Chem. Soc., 119, 2232 (1997).

  14. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-01

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion-1 and anion-2 conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1sbnd C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed.

  15. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: a combined experimental and theoretical study.

    PubMed

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-25

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion(-1) and anion(-2) conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. (1)H and (13)C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. HPLC study of migration of terephthalic acid and isophthalic acid from PET bottles into edible oils.

    PubMed

    Khaneghah, Amin Mousavi; Limbo, Sara; Shoeibi, Shahram; Mazinani, Somayeh

    2014-08-01

    Polyethylene terephthalate (PET) containers for food oil packaging were evaluated with a newly established determination method for terephthalic acid (TPA) and isophthalic acid (IPA). The analysis of monomers, TPA and IPA that migrate from PET bottles into oils was performed using high-pressure liquid chromatography with a diode array detector. Three types of commercial oils (sunflower oil, canola oil and blended oil which included sunflower oil, soy bean oil and cottonseed oil) were bottled in PET containers. These samples were incubated for 10 days at 49 °C as accelerated test condition. The means of recovery for this method varied from 70% to 72% and from 101% to 111% for TPA and IPA, respectively. The results showed that the amounts of specific migration of TPA and IPA into the samples conform to European Union legislation that identifies specific migration limits. More important, the results highlighted a different behavior of migration as a function of the fatty acid profile. Previous investigations have been performed with food simulants such as HB307 or 20% ethanol but our study used real food samples and determined trace amounts of the migrated compounds. Further investigation will be needed to better explain the influence of fatty acid conformation on migration of PET monomers. © 2013 Society of Chemical Industry.

  17. Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1)*

    PubMed Central

    Divakaruni, Ajit S.; Humphrey, Dickon M.; Brand, Martin D.

    2012-01-01

    UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2′/3′-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1. PMID:22952235

  18. Millimetre Wave Rotational Spectrum of Glycolic Acid

    NASA Technical Reports Server (NTRS)

    Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.

    2016-01-01

    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.

  19. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy

    PubMed Central

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H.

    2016-01-01

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800

  20. Molecular mechanics calculations on deaminooxytocin and on deamino-arginine-vasopressin and its analogues

    NASA Astrophysics Data System (ADS)

    Liwo, A.; Tempczyk, A.; Grzonka, Z.

    1989-01-01

    The backbone conformations of the cyclic moieties of 1-[ β-mercaptopropionic acid]-oxytocin ([Mpa1]-OT), [1- β-mercaptopropionic acid]-arginine-vasopressin ([Mpa1]-AVP), [1-( β'-mercapto- β,β-cyclopentamethylene)propionic acid]-arginine-vasopressin ([Cpp1]-AVP), and [1-thiosalicylic acid]-arginine-vasopressin ([Ths1]-AVP) have been analyzed by means of molecular mechanics. In these calculations, the side chains were simulated by pseudoatoms. For the three last compounds, the calculations were also performed on the whole molecules, in order to shed light on the differences in their biological activity. Their starting conformations were obtained by attaching the acyclic tail and side chains to the lowest energy conformations of the cyclic parts. In the case of [Ths1]-AVP, however, other starting conformations were also examined, which were obtained by attaching the planar benzene ring to the lowest energy conformations of [Mpa1]-AVP. In the calculations, all the degrees of freedom were relaxed and Weiner's force field was used, the parameters required for the benzene parts of [Ths1]-AVP being determined from the experimental data available, as well as from the results of molecular dynamics calculations on the model compounds. The lowest energy conformations of [Mpa1]-AVP and [Cpp1]-AVP are similar, while [Ths1]-AVP differs from them near the disulphide region, due to the presence of a planar benzene ring. Interactions involving the charged guanidine group of arginine make, in each case, an important contribution to the conformational energy. A model description of the shapes of the oxytocin and vasopressin ring has been proposed, which is based on the cyclohexane geometry. This description is in good correlation with the energetics of the conformations corresponding to different shapes.

  1. Pyrazole amino acids: hydrogen bonding directed conformations of 3-amino-1H-pyrazole-5-carboxylic acid residue.

    PubMed

    Kusakiewicz-Dawid, Anna; Porada, Monika; Ochędzan-Siodłak, Wioletta; Broda, Małgorzata A; Bujak, Maciej; Siodłak, Dawid

    2017-09-01

    A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  2. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  3. Probing the pH sensitivity of R-phycoerythrin: investigations of active conformational and functional variation.

    PubMed

    Liu, Lu-Ning; Su, Hai-Nan; Yan, Shi-Gan; Shao, Si-Mi; Xie, Bin-Bin; Chen, Xiu-Lan; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2009-07-01

    Crystal structures of phycobiliproteins have provided valuable information regarding the conformations and amino acid organizations of peptides and chromophores, and enable us to investigate their structural and functional relationships with respect to environmental variations. In this work, we explored the pH-induced conformational and functional dynamics of R-phycoerythrin (R-PE) by means of absorption, fluorescence and circular dichroism spectra, together with analysis of its crystal structure. R-PE presents stronger functional stability in the pH range of 3.5-10 compared to the structural stability. Beyond this range, pronounced functional and structural changes occur. Crystal structure analysis shows that the tertiary structure of R-PE is fixed by several key anchoring points of the protein. With this specific association, the fundamental structure of R-PE is stabilized to present physiological spectroscopic properties, while local variations in protein peptides are also allowed in response to environmental disturbances. The functional stability and relative structural sensitivity of R-PE allow environmental adaptation.

  4. Insight into a conformation of the PNA-PNA duplex with (2‧R,4‧R)- and (2‧R,4‧S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbones

    NASA Astrophysics Data System (ADS)

    Maitarad, Amphawan; Poomsuk, Nattawee; Vilaivan, Chotima; Vilaivan, Tirayut; Siriwong, Khatcharin

    2018-04-01

    Suitable conformations for peptide nucleic acid (PNA) self-hybrids with (2‧R,4‧R)- and (2‧R,4‧S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbones (namely, acpcPNA and epi-acpcPNA, respectively) were investigated based on molecular dynamics simulations. The results revealed that hybridization of the acpcPNA was observed only in the parallel direction, with a conformation close to the P-type structure. In contrast, self-hybrids of the epi-acpcPNA were formed in the antiparallel and parallel directions; the antiparallel duplex adopted the B-form conformation, and the parallel duplex was between B- and P-forms. The calculated binding energies and the experimental data indicate that the antiparallel epi-acpcPNA self-hybrid was more stable than the parallel duplex.

  5. Conformational Flexibility of Metazoan Fatty Acid Synthase Enables Catalysis

    PubMed Central

    Brignole, Edward J.; Smith, Stuart; Asturias, Francisco J.

    2008-01-01

    The metazoan cytosolic fatty acid synthase (FAS) contains all of the enzymes required for de novo fatty acid biosynthesis covalently linked around two reaction chambers. While the 3D architecture of FAS has been mostly defined, it is unclear how reaction intermediates can transfer between distant catalytic domains. Using single-particle electron microscopy we have identified a near continuum of conformations consistent with remarkable flexibility of FAS. The distribution of conformations was influenced by the presence of substrates and altered by different catalytic mutations suggesting a direct correlation between conformation and specific enzymatic activities. 3D reconstructions were interpreted by docking high-resolution structures of individual domains and illustrate that the substrate loading and condensation domains dramatically swing and swivel to access substrates within either reaction chamber. Concomitant rearrangement of the β-carbon processing domains synchronizes acyl-chain reduction in one chamber with acyl-chain elongation in the other. PMID:19151726

  6. Conformational analysis of the N-terminal sequence Met1 Val60 of the tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Alieva, Irada N.; Mustafayeva, Narmina N.; Gojayev, Niftali M.

    2006-03-01

    Molecular mechanics method and molecular dynamics (MD) simulation techniques are used to study the behavior and the effect of the amino acids substitution on structure and molecular dynamics of the specific portion of Met1-Val60 amino acid residues from N-terminal regulatory domain of the tyrosine hydroxylase (TH) and its mutants in which the positively charged arginine residues at positions 37 and 38 were replaced by electrically neutral Gly and negatively charged Glu, and serine residue at position 40 was replaced by Ala or Asp residue. Our study allowed us to make the following conclusions: (i) the higher conformational flexibility of the Met1-Arg16 sequence is revealed in comparision to other part of the N-terminus; (ii) the stretch of amino acid residues Met30-Ser40 within the N-terminus forms β-turn so that two α-helices (residues 16-29 and residues 41-60) are paralel one another; (ii) the significant differences that are observed for the Arg37→Gly37, Arg37-Arg38→Glu37-Glu38 mutant segments indicates that the positive charge of the Arg37 and Arg38 residues is one of the main factor that maintains the characteristic of the turn; (ii) no major conformational changes are observed between Ser40→Ala40, and Ser40→Asp40 mutant segments.

  7. Classification of auxin plant hormones by interaction property similarity indices

    NASA Astrophysics Data System (ADS)

    Tomić, Sanja; Gabdoulline, Razif R.; Kojić-Prodić, Biserka; Wade, Rebecca C.

    1998-01-01

    Although auxins were the first type of plant hormone to be identified, little is known about the molecular mechanism of this important class of plant hormones. We present a classification of a set of about 50 compounds with measured auxin activities, according to their interaction properties. Four classes of compounds were defined: strongly active, weakly active with weak antiauxin behaviour, inactive and inhibitory. All compounds were modeled in two low-energy conformations, `P' and `T', so as to obtain the best match to the `planar' and `tilted' conformations, respectively, of indole 3-acetic acid. Each set of conformers was superimposed separately using several different alignment schemes. Molecular interaction energy fields were computed for each molecule with five different chemical probes and then compared by computing similarity indices. Similarity analysis showed that the classes are on average distinguishable, with better differentiation achieved for the T conformers than the P conformers. This indicates that the T conformation might be the active one. Further, a screening was developed which could distinguish compounds with auxin activity from inactive compounds and most antiauxins using the T conformers. The classifications rationalize ambiguities in activity data found in the literature and should be of value in predicting the activities of new plant growth substances and herbicides.

  8. Conformational properties of a pyridyl-substituted cinnamic acid studied by NMR measurements and computations

    NASA Astrophysics Data System (ADS)

    Csankó, K.; Forgo, P.; Boros, K.; Hohmann, J.; Sipos, P.; Pálinkó, I.

    2013-07-01

    Following a preliminary exploration of the conformational space by the PM3 and HF/6-31 G*ab initio methods the conformational characteristics of the scarcely available Z isomer of an α-pyridyl-substituted cinnamic acid dimer [Z-2(3‧-pyridyl)-3-phenylpropanoic acid] was studied by NMR spectroscopy (NOESY measurements) in DMSO(d6), methanol(d4) and chloroform(d1). Calculations predicted that full conjugation was overruled by steric interactions and the rotation of the pyridyl ring was not restricted. NOESY measurements verified indeed that in all three solvents the pyridyl group was virtually freely rotating, while some restriction applied for that of the phenyl group.

  9. 4D-Qsar Study of Some Pyrazole Pyridine Carboxylic Acid Derivatives by Electron Conformational-Genetic Algorithm Method.

    PubMed

    Tuzun, Burak; Yavuz, Sevtap Caglar; Sabanci, Nazmiye; Saripinar, Emin

    2018-05-13

    In the present work, pharmacophore identification and biological activity prediction for 86 pyrazole pyridine carboxylic acid derivatives were made using the electron conformational genetic algorithm approach which was introduced as a 4D-QSAR analysis by us in recent years. In the light of the data obtained from quantum chemical calculations at HF/6-311 G** level, the electron conformational matrices of congruity (ECMC) were constructed by EMRE software. Comparing the matrices, electron conformational submatrix of activity (ECSA, Pha) was revealed that are common for these compounds within a minimum tolerance. A parameter pool was generated considering the obtained pharmacophore. To determine the theoretical biological activity of molecules and identify the best subset of variables affecting bioactivities, we used the nonlinear least square regression method and genetic algorithm. The results obtained in this study are in good agreement with the experimental data presented in the literature. The model for training and test sets attained by the optimum 12 parameters gave highly satisfactory results with R2training= 0.889, q2=0.839 and SEtraining=0.066, q2ext1 = 0.770, q2ext2 = 0.750, q2ext3=0.824, ccctr = 0.941, ccctest = 0.869 and cccall = 0.927. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    PubMed

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  11. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  12. Insights into peptide nucleic acid (PNA) structural features: The crystal structure of a d-lysine-based chiral PNA–DNA duplex

    PubMed Central

    Menchise, Valeria; De Simone, Giuseppina; Tedeschi, Tullia; Corradini, Roberto; Sforza, Stefano; Marchelli, Rosangela; Capasso, Domenica; Saviano, Michele; Pedone, Carlo

    2003-01-01

    Peptide nucleic acids (PNAs) are oligonucleotide analogues in which the sugar-phosphate backbone has been replaced by a pseudopeptide skeleton. They bind DNA and RNA with high specificity and selectivity, leading to PNA–RNA and PNA–DNA hybrids more stable than the corresponding nucleic acid complexes. The binding affinity and selectivity of PNAs for nucleic acids can be modified by the introduction of stereogenic centers (such as d-Lys-based units) into the PNA backbone. To investigate the structural features of chiral PNAs, the structure of a PNA decamer containing three d-Lys-based monomers (namely H-GpnTpnApnGpnAdlTdlCdlApnCpnTpn-NH2, in which pn represents a pseudopeptide link and dl represents a d-Lys analogue) hybridized with its complementary antiparallel DNA has been solved at a 1.66-Å resolution by means of a single-wavelength anomalous diffraction experiment on a brominated derivative. Thed-Lys-based chiral PNA–DNA (LPD) heteroduplex adopts the so-called P-helix conformation. From the substantial similarity between the PNA conformation in LPD and the conformations observed in other PNA structures, it can be concluded that PNAs possess intrinsic conformational preferences for the P-helix, and that their flexibility is rather restricted. The conformational rigidity of PNAs is enhanced by the presence of the chiral centers, limiting the ability of PNA strands to adopt other conformations and, ultimately, increasing the selectivity in molecular recognition. PMID:14512516

  13. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    PubMed Central

    Topham, Christopher M.; Smith, Jeremy C.

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  14. Human Growth Hormone Adsorption Kinetics and Conformation on Self-Assembled Monolayers

    PubMed Central

    Buijs, Jos; Britt, David W.; Hlady, Vladimir

    2012-01-01

    The adsorption process of the recombinant human growth hormone on organic films, created by self-assembly of octadecyltrichlorosilane, arachidic acid, and dipalmitoylphosphatidylcholine, is investigated and compared to adsorption on silica and methylated silica substrates. Information on the adsorption process of human growth hormone (hGH) is obtained by using total internal reflection fluorescence (TIRF). The intensity, spectra, and quenching of the intrinsic fluorescence emitted by the growth hormone’s single tryptophan are monitored and related to adsorption kinetics and protein conformation. For the various alkylated hydrophobic surfaces with differences in surface density and conformational freedom it is observed that the adsorbed amount of growth hormone is relatively large if the alkyl chains are in an ordered structure while the amounts adsorbed are considerably lower for adsorption onto less ordered alkyl chains of fatty acid and phospholipid layers. Adsorption on methylated surfaces results in a relatively large conformational change in the growth hormone’s structure, as displayed by a 7 nm blue shift in emission wavelength and a large increase in the effectiveness of fluorescence quenching. Conformational changes are less evident for hGH adsorption onto the fatty acid and phospholipid alkyl chains. Adsorption kinetics on the hydrophilic head groups of the self-assembled monolayers are similar to those on solid hydrophilic surfaces. The relatively small conformational changes in the hGH structure observed for adsorption on silica are even further reduced for adsorption on fatty acid head groups. PMID:25125795

  15. Surveying the Hydrogen Bonding Landscape of AN Achiral, α-AMINO Acid: Conformation Specific IR and UV Spectroscopy of 2-AMINOISOBUTYRIC Acid

    NASA Astrophysics Data System (ADS)

    Gord, Joseph R.; Hewett, Daniel M.; Kubasik, Matthew A.; Zwier, Timothy S.

    2014-06-01

    2-Aminoisobutyric acid (Aib) is an achiral, α-amino acid having two equivalent methyl groups attached to Cα. Extended Aib oligomers are known to preferentially adopt a 310-helical structure in the condensed phase. Here, we take a simplifying step and focus on the intrinsic folding propensities of Aib by looking at a single, capped Aib structure and then extending to longer oligomers in the gas phase, free from the influence of solvent molecules and cooled in a supersonic expansion. Resonant two-photon ionization and IR-UV holeburning will be used to record single-conformation UV spectra using the Z-cap as UV chromophore. Resonant ion-dip infrared (RIDIR) spectroscopy provides single-conformation IR spectra in the OH stretch, NH stretch, amide I and amide II regions. Two conformational isomers have been identified for the smallest unit in the study, Z-Aib-OH, and four conformational isomers were seen for Z-Aib-Aib-OH, with widely-varying IR spectral patterns. In addition to investigating the conformational dependence on oligomer length, this work also studies the steric and electrostatic impact of different capping groups, R-X where X = -OH, -OMethyl, and -OtButyl. These caps are considered here for the case of Z-Aib-Aib-X. Extension to larger Z-(Aib)n-X oligomers will shed light on the extent to which the solution phase preference for 310-helix formation is retained in the gas phase, and when its onset first appears. When possible 13C isotopomers will be used to assist with the assignments and modulate the coupling between amide I fundamentals. Toniolo, C.; Bonora, G. M.; Barone, V.; Bavoso, A.; Benedetti, E.; Di Blasio, B.; Grimaldi, P.; Lelj, F.; Pavone, V.; Padone, C., Conformation of Pleionomers of α-Aminoisobutyric Acid. Macromolecules 1985, 18, 895-902.

  16. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography*

    PubMed Central

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz

    2015-01-01

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. PMID:25670859

  17. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry.

    PubMed

    Hindle, Ralph; Noestheden, Matthew; Peru, Kerry; Headley, John

    2013-04-19

    This study details the development of a routine method for quantitative analysis of oil sands naphthenic acids, which are a complex class of compounds found naturally and as contaminants in oil sands process waters from Alberta's Athabasca region. Expanding beyond classical naphthenic acids (CnH2n-zO2), those compounds conforming to the formula CnH2n-zOx (where 2≥x≤4) were examined in commercial naphthenic acid and environmental water samples. HPLC facilitated a five-fold reduction in ion suppression when compared to the more commonly used flow injection analysis. A comparison of 39 model naphthenic acids revealed significant variability in response factors, demonstrating the necessity of using naphthenic acid mixtures for quantitation, rather than model compounds. It was also demonstrated that naphthenic acidic heterogeneity (commercial and environmental) necessitates establishing a single NA mix as the standard against which all quantitation is performed. The authors present the first ISO17025 accredited method for the analysis of naphthenic acids in water using HPLC high resolution accurate mass time-of-flight mass spectrometry. The method detection limit was 1mg/L total oxy-naphthenic acids (Sigma technical mix). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Modelling zwitterions in solution: 3-fluoro-γ-aminobutyric acid (3F-GABA).

    PubMed

    Cao, Jie; Bjornsson, Ragnar; Bühl, Michael; Thiel, Walter; van Mourik, Tanja

    2012-01-02

    The conformations and relative stabilities of folded and extended 3-fluoro-γ-aminobutyric acid (3F-GABA) conformers were studied using explicit solvation models. Geometry optimisations in the gas phase with one or two explicit water molecules favour folded and neutral structures containing intramolecular NH···O-C hydrogen bonds. With three or five explicit water molecules zwitterionic minima are obtained, with folded structures being preferred over extended conformers. The stability of folded versus extended zwitterionic conformers increases on going from a PCM continuum solvation model to the microsolvated complexes, though extended structures become less disfavoured with the inclusion of more water molecules. Full explicit solvation was studied with a hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme and molecular dynamics simulations, including more than 6000 TIP3P water molecules. According to free energies obtained from thermodynamic integration at the PM3/MM level and corrected for B3LYP/MM total energies, the fully extended conformer is more stable than folded ones by about -4.5 kJ mol(-1). B3LYP-computed (3)J(F,H) NMR spin-spin coupling constants, averaged over PM3/MM-MD trajectories, agree best with experiment for this fully extended form, in accordance with the original NMR analysis. The seeming discrepancy between static PCM calculations and experiment noted previously is now resolved. That the inexpensive semiempirical PM3 method performs so well for this archetypical zwitterion is encouraging for further QM/MM studies of biomolecular systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Conformational characterization of peptides rich in the cycloaliphatic C alpha,alpha-disubstituted glycine 1-aminocyclononane-1-carboxylic acid.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Valle, G; Toniolo, C; Bonora, G M; Saviano, M; Iacovino, R; Menchise, V; Galdiero, S; Pedone, C; Benedetti, E

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic C alpha,alpha-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mCIAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-(Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong beta-turn and helix former. A comparison with the structural propensity of alpha-aminoisobutyric acid, the prototype of C alpha,alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3-8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined.

  20. NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics

    NASA Astrophysics Data System (ADS)

    Volpon, Laurent; Tsan, Pascale; Majer, Zsuzsa; Vass, Elemer; Hollósi, Miklós; Noguéra, Valérie; Lancelin, Jean-Marc; Besson, Françoise

    2007-08-01

    Iturins are a group of antifungal produced by Bacillus subtilis. All are cyclic lipopeptides with seven α-amino acids of configuration LDDLLDL and one β-amino fatty acid. The bacillomycin L is a member of this family and its NMR structure was previously resolved using the sequence Asp-Tyr-Asn-Ser-Gln-Ser-Thr. In this work, we carefully examined the NMR spectra of this compound and detected an error in the sequence. In fact, Asp1 and Gln5 need to be changed into Asn1 and Glu5, which therefore makes it identical to bacillomycin Lc. As a consequence, it now appears that all iturinic peptides with antibiotic activity share the common β-amino fatty acid 8- L-Asn1- D-Tyr2- D-Asn3 sequence. To better understand the conformational influence of the acidic residue L-Asp1, present, for example in the inactive iturin C, the NMR structure of the synthetic analogue SCP [cyclo ( L-Asp1- D-Tyr2- D-Asn3- L-Ser4- L-Gln5- D-Ser6- L-Thr7-β-Ala8)] was determined and compared with bacillomycin Lc recalculated with the corrected sequence. In both cases, the conformers obtained were separated into two families of similar energy which essentially differ in the number and type of turns. A detailed analysis of both cyclopeptide structures is presented here. In addition, CD and FTIR spectra were performed and confirmed the conformational differences observed by NMR between both cyclopeptides.

  1. Molecular dynamics simulations of poly (ethylene oxide) hydration and conformation in solutions

    NASA Astrophysics Data System (ADS)

    Dahal, Udaya; Dormidontova, Elena

    Polyethylene oxide (PEO) is one of the most actively used polymers, especially in biomedical applications due to its high hydrophilicity, biocompatibility and potency to inhibit protein adsorption. PEO solubility and conformation in water depends on its capability to form hydrogen bonds. Using atomistic molecular dynamics simulations we investigated the details of water packing around PEO chain and characterized the type and lifetime of hydrogen bonds in aqueous and mixed solvent solutions. The observed polymer chain conformation varies from an extended coil in pure water to collapsed globule in hexane and a helical-like conformation in pure isobutyric acid or isobutyric acid -water mixture in agreement with experimental observations. We'll discuss the implications of protic solvent arrangement and stability of hydrogen bonds on PEO chain conformation and mobility. This research is supported by NSF (DMR-1410928).

  2. Binding of vitamin A with milk α- and β-caseins.

    PubMed

    Bourassa, P; N'soukpoé-Kossi, C N; Tajmir-Riahi, H A

    2013-05-01

    The binding sites of retinol and retinoic acid with milk α- and β-caseins were determined, using constant protein concentration and various retinoid contents. FTIR, UV-visible and fluorescence spectroscopic methods as well as molecular modelling were used to analyse retinol and retinoic acid binding sites, the binding constant and the effect of retinoid complexation on the stability and conformation of caseins. Structural analysis showed that retinoids bind caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(retinol-)(α)(-caseins)=1.21 (±0.4)×10(5) M(-1) and K(retinol-)(β)(-caseins)=1.11 (±0.5)×10(5) M(-1) and K(retinoic acid-)(α)(-caseins)=6.2 (±0.6)×10(4) M(-1) and K(retinoic acid-)(β)(-caseins)=6.3 (±0.6)×10(4) M(-1). The number of bound retinol molecules per protein (n) was 1.5 (±0.1) for α-casein and 1.0 (±0.1) for β-casein, while 1 molecule of retinoic acid was bound in the α- and β-casein complexes. Molecular modelling showed different binding sites for retinol and retinoic acid on α- and β-caseins with more stable complexes formed with α-casein. Retinoid-casein complexation induced minor alterations of protein conformation. Caseins might act as carriers for transportation of retinoids to target molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 4-Cyano-α-methyl-l-phenylalanine as a spectroscopic marker for the investigation of peptaibiotic-membrane interactions.

    PubMed

    De Zotti, Marta; Bobone, Sara; Bortolotti, Annalisa; Longo, Edoardo; Biondi, Barbara; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Dalla Bona, Andrea; Kaptein, Bernard; Stella, Lorenzo

    2015-04-01

    Two analogs of the ten-amino acid residue, membrane-active lipopeptaibiotic trichogin GA IV, mono-labeled with 4-cyano-α-methyl-L-phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid-phase methodology and conformationally characterized. The single modification was incorporated either at the N-terminus (position 1) or near the C-terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α-aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT-IR absorption, CD, and 2D-NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide-membrane interactions were assessed by fluorescence and ATR-IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4-cyanobenzyl chromophore are sensitive markers of the local microenvironment. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  4. 13-Helix folding of a β/γ-peptide manifold designed from a "minimal-constraint" blueprint.

    PubMed

    Grison, Claire M; Robin, Sylvie; Aitken, David J

    2016-06-14

    A bottom-up design rationale was adopted to devise β/γ-peptide foldamer manifolds which would adopt preferred 13-helix conformations, relying on minimal steric imposition brought by the constituent amino acid residues. In this way, a well-defined 13-helix conformer was revealed for short oligomers of trans-2-aminocyclobutanecarboxylic acid and γ(4)-amino acids in alternation, which gave good topological superposition upon an α-helix motif.

  5. A dominant conformational role for amino acid diversity in minimalist protein–protein interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies.” One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobodymore » bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.« less

  6. A Dominant Conformational Role for Amino Acid Diversity in Minimalist Protein-Protein Interfaces

    PubMed Central

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko; Sidhu, Sachdev S.; Koide, Shohei

    2008-01-01

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies”. One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose binding protein (MBP). The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution x-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side-chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces. PMID:18602117

  7. p-tert-Butylcalix[6]arene hexacarboxylic acid as host for Pb(ii), Sr(ii) and Ba(ii)†

    PubMed Central

    Adhikari, Birendra Babu; Zhao, Xiang; Derakhshan, Shahab

    2015-01-01

    p-tert-Butylcalixarene hexacarboxylic acid initially binds with low symmetry, to later adopt a highly symmetric up-down alternating conformation in the presence of Pb, Sr or Ba. The conformational dynamics for the three ions are distinct, from 15 hours, to 20 days, to 38 days, respectively. PMID:25198172

  8. Conformational changes in proteins recovered from jumbo squid (Dosidicus gigas) muscle through pH shift washing treatments.

    PubMed

    Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Ramírez-Suárez, Juan C; Lugo-Sánchez, Maria E; García-Orozco, Karina D; Sotelo-Mundo, Rogerio R; Peña-Ramos, Aida

    2016-04-01

    Conformational and thermal-rheological properties of acidic (APC) and neutral (NPC) protein concentrates were evaluated and compared to those of squid (Dosidicus gigas) muscle proteins (SM). Surface hydrophobicity, sulfhydryl status, secondary structure profile, differential scanning calorimetry and oscillatory dynamic rheology were used to evaluate the effect of treatments on protein properties. Acidic condition during the washing process (APC) promoted structural and conformational changes in the protein present in the concentrate produced. These changes were enhanced during the heat setting of the corresponding sol. Results demonstrate that washing squid muscle under the proposed acidic conditions is a feasible technological alternative for squid-based surimi production improving its yield and gel-forming ability. Copyright © 2015. Published by Elsevier Ltd.

  9. The vicinal difluoro motif: The synthesis and conformation of erythro- and threo- diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids and their derivatives

    PubMed Central

    O'Hagan, David; Rzepa, Henry S; Schüler, Martin; Slawin, Alexandra MZ

    2006-01-01

    Background It is well established that vicinal fluorines (RCHF-CHFR) prefer to adopt a gauche rather than an anti conformation when placed along aliphatic chains. This has been particularly recognised for 1,2-difluoroethane and extends to 2,3-difluorobutane and longer alkyl chains. It follows in these latter cases that if erythro and threo vicinal difluorinated stereoisomers are compared, they will adopt different overall conformations if the fluorines prefer to be gauche in each case. This concept is explored in this paper with erythro- and threo- diastereoisomers of 2,3-difluorosuccinates. Results A synthetic route to 2,3-difluorosuccinates has been developed through erythro- and threo- 1,2-difluoro-1,2-diphenylethane which involved the oxidation of the aryl rings to generate the corresponding 2,3-difluorosuccinic acids. Ester and amide derivatives of the erythro- and threo- 2,3-difluorosuccinic acids were then prepared. The solid and solution state conformation of these compounds was assessed by X-ray crystallography and NMR. Ab initio calculations were also carried out to model the conformation of erythro- and threo- 1,2-difluoro-1,2-diphenylethane as these differed from the 2,3-difluorosuccinates. Conclusion In general the overall chain conformations of the 2,3-difluorosuccinates diastereoisomers were found to be influenced by the fluorine gauche effect. The study highlights the prospects of utilising the vicinal difluorine motif (RCHF-CHFR) as a tool for influencing the conformation of performance organic molecules and particularly tuning conformation by selecting specific diastereoisomers (erythro or threo). PMID:17014729

  10. The vicinal difluoro motif: The synthesis and conformation of erythro- and threo- diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids and their derivatives.

    PubMed

    O'Hagan, David; Rzepa, Henry S; Schüler, Martin; Slawin, Alexandra M Z

    2006-10-02

    It is well established that vicinal fluorines (RCHF-CHFR) prefer to adopt a gauche rather than an anti conformation when placed along aliphatic chains. This has been particularly recognised for 1,2-difluoroethane and extends to 2,3-difluorobutane and longer alkyl chains. It follows in these latter cases that if erythro and threo vicinal difluorinated stereoisomers are compared, they will adopt different overall conformations if the fluorines prefer to be gauche in each case. This concept is explored in this paper with erythro- and threo- diastereoisomers of 2,3-difluorosuccinates. A synthetic route to 2,3-difluorosuccinates has been developed through erythro- and threo- 1,2-difluoro-1,2-diphenylethane which involved the oxidation of the aryl rings to generate the corresponding 2,3-difluorosuccinic acids. Ester and amide derivatives of the erythro- and threo- 2,3-difluorosuccinic acids were then prepared. The solid and solution state conformation of these compounds was assessed by X-ray crystallography and NMR. Ab initio calculations were also carried out to model the conformation of erythro- and threo- 1,2-difluoro-1,2-diphenylethane as these differed from the 2,3-difluorosuccinates. In general the overall chain conformations of the 2,3-difluorosuccinates diastereoisomers were found to be influenced by the fluorine gauche effect. The study highlights the prospects of utilising the vicinal difluorine motif (RCHF-CHFR) as a tool for influencing the conformation of performance organic molecules and particularly tuning conformation by selecting specific diastereoisomers (erythro or threo).

  11. The free energy landscape of pseudorotation in 3'-5' and 2'-5' linked nucleic acids.

    PubMed

    Li, Li; Szostak, Jack W

    2014-02-19

    The five-membered furanose ring is a central component of the chemical structure of biological nucleic acids. The conformations of the furanose ring can be analytically described using the concept of pseudorotation, and for RNA and DNA they are dominated by the C2'-endo and C3'-endo conformers. While the free energy difference between these two conformers can be inferred from NMR measurements, a free energy landscape of the complete pseudorotation cycle of nucleic acids in solution has remained elusive. Here, we describe a new free energy calculation method for molecular dynamics (MD) simulations using the two pseudorotation parameters directly as the collective variables. To validate our approach, we calculated the free energy surface of ribose pseudorotation in guanosine and 2'-deoxyguanosine. The calculated free energy landscape reveals not only the relative stability of the different pseudorotation conformers, but also the main transition path between the stable conformations. Applying this method to a standard A-form RNA duplex uncovered the expected minimum at the C3'-endo state. However, at a 2'-5' linkage, the minimum shifts to the C2'-endo conformation. The free energy of the C3'-endo conformation is 3 kcal/mol higher due to a weaker hydrogen bond and a reduced base stacking interaction. Unrestrained MD simulations suggest that the conversion from C3'-endo to C2'-endo and vice versa is on the nanosecond and microsecond time scale, respectively. These calculations suggest that 2'-5' linkages may enable folded RNAs to sample a wider spectrum of their pseudorotation conformations.

  12. Probing thermal stability of the β-lactoglobulin-oleic acid complex by fluorescence spectroscopy and molecular modeling

    NASA Astrophysics Data System (ADS)

    Simion (Ciuciu), Ana-Maria; Aprodu, Iuliana; Dumitrașcu, Loredana; Bahrim, Gabriela Elena; Alexe, Petru; Stănciuc, Nicoleta

    2015-09-01

    Bovine β-lactoglobulin is able to interact with different bioactive compounds, thus being an important candidate in the development of delivery systems with improved functionality. The heat induced changes in the β-lactoglobulin-oleic acid complex were examined by means of fluorescence spectroscopy and molecular modeling techniques. Fluorescence spectroscopy results indicated a rigid protein structure in the temperature range 25-70 °C, whereas at temperatures over 75 °C, the rearrangements of the polypeptide chains led to higher exposure of hydrophobic residues. The most significant increase of the accessible surface area with temperature increase was identified in case of Tyr99 and Tyr102. The phase diagram method indicated an all or none transition between two conformations. Due to conformational changes, no contact between Ile56 or Lys60 and the fatty acid could be identified at 85 °C, but new non-bonding interaction were established with Ile12 and Val15. The results obtained in this study provide important details about thermal induced changes in the conformation of β-lactoglobulin-oleic acid complex. Significant conformational changes were registered above 75 °C, suggesting the possibility of obtaining highly functional complexes between whey proteins and natural unsaturated fatty acids.

  13. Electrochemical evidence on the molten globule conformation of cytochrome c.

    PubMed

    Pineda, T; Sevilla, J M; Román, A J; Blázquez, M

    1997-12-05

    To explore a new approach for characterizing the molten globule conformation, cyclic voltammetric studies of salt induced transitions at acidic pH of cyt c have been carried out. The use of modified electrodes has made the observation of direct electrochemistry in native cyt c possible. However, most of these electrodes do not show reversible responses at acidic pH, due to the fact that, for this system, a deprotonated electrode surface is needed. In these studies, we have used a 6-mercaptopurine and cysteine-modified gold electrodes which are effective for direct rapid electron transfer to cyt c, even in acid solutions. The change in the absorption bands of cyt c are used to monitor the conformational states and, hence, to compare the voltammetric results. Under the experimental conditions where the A state of cyt c is obtained, a reversible voltammetric signal is observed. The midpoint peak potentials are found to be very close to the formal potential of native cyt c. Results are discussed in terms of a cooperative two-state transition between the acid unfolded and the globular acidic states of cyt c. This finding establishes, for the first time, the similarity of both the native and the molten globule-like conformations in terms of its redox properties.

  14. Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design

    PubMed Central

    Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062

  15. Integrating the intrinsic conformational preferences of non-coded α-amino acids modified at the peptide bond into the NCAD database

    PubMed Central

    Revilla-López, Guillem; Rodríguez-Ropero, Francisco; Curcó, David; Torras, Juan; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2011-01-01

    Recently, we reported a database (NCAD, Non-Coded Amino acids Database; http://recerca.upc.edu/imem/index.htm) that was built to compile information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, the experimentally-established conformational propensities, and applications (J. Phys. Chem. B 2010, 114, 7413). The database initially contained the information available for α-tetrasubstituted α-amino acids. In this work, we extend NCAD to three families of compounds, which can be used to engineer peptides and proteins incorporating modifications at the –NHCO– peptide bond. Such families are: N-substituted α-amino acids, thio-α-amino acids, and diamines and diacids used to build retropeptides. The conformational preferences of these compounds have been analyzed and described based on the information captured in the database. In addition, we provide an example of the utility of the database and of the compounds it compiles in protein and peptide engineering. Specifically, the symmetry of a sequence engineered to stabilize the 310-helix with respect to the α-helix has been broken without perturbing significantly the secondary structure through targeted replacements using the information contained in the database. PMID:21491493

  16. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes.

    PubMed

    Kachhap, Sangita; Singh, Balvinder

    2015-01-01

    In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.

  17. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  18. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.

    PubMed

    Annavarapu, Srinivas; Nanda, Vikas

    2009-09-22

    Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  19. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    PubMed Central

    Annavarapu, Srinivas; Nanda, Vikas

    2009-01-01

    Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds. PMID:19772623

  20. Biodegradable materials based on silk fibroin and keratin.

    PubMed

    Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur

    2008-04-01

    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles.

  1. Mildly Acidic pH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry.

    PubMed

    Weed, Darin J; Pritchard, Suzanne M; Gonzalez, Floricel; Aguilar, Hector C; Nicola, Anthony V

    2017-03-01

    Herpes simplex virus (HSV) entry into a subset of cells requires endocytosis and endosomal low pH. Preexposure of isolated virions to mildly acidic pH of 5 to 6 partially inactivates HSV infectivity in an irreversible manner. Acid inactivation is a hallmark of viruses that enter via low-pH pathways; this occurs by pretriggering conformational changes essential for fusion. The target and mechanism(s) of low-pH inactivation of HSV are unclear. Here, low-pH-treated HSV-1 was defective in fusion activity and yet retained normal levels of attachment to cell surface heparan sulfate and binding to nectin-1 receptor. Low-pH-triggered conformational changes in gB reported to date are reversible, despite irreversible low-pH inactivation. gB conformational changes and their reversibility were measured by antigenic analysis with a panel of monoclonal antibodies and by detecting changes in oligomeric conformation. Three-hour treatment of HSV-1 virions with pH 5 or multiple sequential treatments at pH 5 followed by neutral pH caused an irreversible >2.5 log infectivity reduction. While changes in several gB antigenic sites were reversible, alteration of the H126 epitope was irreversible. gB oligomeric conformational change remained reversible under all conditions tested. Altogether, our results reveal that oligomeric alterations and fusion domain changes represent distinct conformational changes in gB, and the latter correlates with irreversible low-pH inactivation of HSV. We propose that conformational change in the gB fusion domain is important for activation of membrane fusion during viral entry and that in the absence of a host target membrane, this change results in irreversible inactivation of virions. IMPORTANCE HSV-1 is an important pathogen with a high seroprevalence throughout the human population. HSV infects cells via multiple pathways, including a low-pH route into epithelial cells, the primary portal into the host. HSV is inactivated by low-pH preexposure, and gB, a class III fusion protein, undergoes reversible conformational changes in response to low-pH exposure. Here, we show that low-pH inactivation of HSV is irreversible and due to a defect in virion fusion activity. We identified an irreversible change in the fusion domain of gB following multiple sequential low-pH exposures or following prolonged low-pH treatment. This change appears to be separable from the alteration in gB quaternary structure. Together, the results are consistent with a model by which low pH can have an activating or inactivating effect on HSV depending on the presence of a target membrane. Copyright © 2017 American Society for Microbiology.

  2. Populations of the Minor α-Conformation in AcGXGNH2 and the α-Helical Nucleation Propensities

    NASA Astrophysics Data System (ADS)

    Zhou, Yanjun; He, Liu; Zhang, Wenwen; Hu, Jingjing; Shi, Zhengshuang

    2016-06-01

    Intrinsic backbone conformational preferences of different amino acids are important for understanding the local structure of unfolded protein chains. Recent evidence suggests α-structure is relatively minor among three major backbone conformations for unfolded proteins. The α-helices are the dominant structures in many proteins. For these proteins, how could the α-structures occur from the least in unfolded to the most in folded states? Populations of the minor α-conformation in model peptides provide vital information. Reliable determination of populations of the α-conformers in these peptides that exist in multiple equilibriums of different conformations remains a challenge. Combined analyses on data from AcGXPNH2 and AcGXGNH2 peptides allow us to derive the populations of PII, β and α in AcGXGNH2. Our results show that on average residue X in AcGXGNH2 adopt PII, β, and α 44.7%, 44.5% and 10.8% of time, respectively. The contents of α-conformations for different amino acids define an α-helix nucleation propensity scale. With derived PII, β and α-contents, we can construct a free energy-conformation diagram on each AcGXGNH2 in aqueous solution for the three major backbone conformations. Our results would have broad implications on early-stage events of protein folding.

  3. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860...

  4. Conformational Effects through Hydrogen Bonding in a Constrained γ-Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure.

    PubMed

    Awada, Hawraà; Grison, Claire M; Charnay-Pouget, Florence; Baltaze, Jean-Pierre; Brisset, François; Guillot, Régis; Robin, Sylvie; Hachem, Ali; Jaber, Nada; Naoufal, Daoud; Yazbeck, Ogaritte; Aitken, David J

    2017-05-05

    A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.

  5. Conformational preferences of 1-amino-2-phenylcyclohexanecarboxylic acid, a phenylalanine cyclohexane analogue

    PubMed Central

    Alemán, Carlos; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Casanovas, Jordi

    2009-01-01

    The intrinsic conformational preferences of the restricted phenylalanine analogue generated by including the α and β carbon atoms into a cyclohexane ring (1-amino-2-phenylcyclohexanecarboxylic acid, c6Phe) have been determined using quantum mechanical calculations. Specifically, the conformational profile of the N-acetyl-N’-methylamide derivative of the c6Phe stereoisomers exhibiting either a cis or a trans relative orientation between the amino and phenyl substituents has been analyzed in different environments (gas phase, chloroform and aqueous solutions). Calculations were performed using B3LYP, MP2 and HF methods combined with the 6-31+G(d,p) and 6-311++G(d,p) basis sets, and a self-consistent reaction-field (SCRF) method was applied to analyze the influence of the solvent. The amino acids investigated can be viewed as constrained phenylalanine analogues with a rigidly oriented aromatic side chain that may interact with the peptide backbone not only sterically but also electronically through the aromatic π orbitals. Their conformational propensities have been found to be strongly influenced by the specific orientation of the aromatic substituent in each stereoisomer and the conformation adopted by the cyclohexane ring, as well as by the environment. PMID:19772338

  6. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

    PubMed

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz

    2015-04-17

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    DOE PAGES

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; ...

    2015-02-10

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less

  8. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less

  9. Formic acid dimers in a nitrogen matrix

    NASA Astrophysics Data System (ADS)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-01

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  10. Formic acid dimers in a nitrogen matrix.

    PubMed

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-21

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  11. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2013-03-12

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  12. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  13. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A; Li, Jiali; Stein, Derek; Gershow, Marc H

    2015-03-03

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  14. Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.

    PubMed

    Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C

    2017-07-01

    An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high-resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Fluorinated alcohol, the third group of cosolvents that stabilize the molten-globule state relative to a highly denatured state of cytochrome c.

    PubMed Central

    Konno, T.; Iwashita, J.; Nagayama, K.

    2000-01-01

    The effects of 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) on the conformation of cytochrome c (cyt c) at pH 1.9 were studied using a combination of spectroscopic and physical methods. Analysis varying the HFIP concentration showed that a compact denatured conformation (M(HF)) accumulates in a low concentration range of HFIP in the middle of structural transition from the highly unstructured acid-denatured state to the highly helical alcohol-denatured state of cyt c. This contrasts clearly with the effect of isopropanol (IP), in which no compact conformation accompanied with the transition. Analysis varying concentrations of HFIP and NaCl concurrently showed that the M(HF) state of cyt c is essentially identical to the salt-induced molten-globule (M(G)) state, and the M(G) state in the presence of salt was also stabilized by a low concentration of HFIP. Furthermore, 2,2,2-trifluoroethanol stabilized M(HF) similarly to HFIP, supporting the proposition that the specific effect observed for HFIP is caused by fluorination of alcohol. The mechanism stabilizing compact conformation by HFIP remains unclear, but is probably distinct from that of salts and polyols, which are also known to stabilize the M(G)-like state. PMID:10752618

  16. Watching Conformations of Biomolecules: a Microwave Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Lopez, J. C.

    2011-06-01

    The combination of laser ablation with Fourier transform microwave spectroscopy in supersonic jets (LA-MB-FTMW) has made possible the gas-phase study of solid biomolecules with high melting points. In the experiment, solids are efficiently vaporized by a high-energy laser pulse, supersonically expanded into a evacuated Fabry-Perot cavity and characterised by their rotational spectra. Recent improvements such as the use of picosecond pulse lasers, new ablation nozzles and the extension of the range of the spectrometers to low frequecy have notably increased the sensitivity of our experimental setup. To date different α-, β- and γ-amino acids have been studied using this technique, making possible the characterization of their preferred conformations and gaining insight in the role of intramolecular interactions. Even in conformationally challenging systems the different rotamers of such biomolecules can be identified by rotational spectroscopy as can be illustrated by the assignment of six low-energy conformers in cysteine and aspartic acid, seven in serine and threonine,^a and nine in γ-amino butyric acid (GABA). In all cases the low-energy conformers have been conclusive identified from their experimental rotational and 14N quadrupole coupling constants. The spectra of neurotransmitters and of the nucleic acid bases uracil, thymine, cytosine and guanine have also been studied and their preferred conformers or tautomeric forms determined. The complexes between amino acids and nucleic acid bases with water have also been investigated to obtain information on the possible changes induced in the conformational or tautomeric preferences by the addition of solvent molecules. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11, 617-627 (2009) and references therein M. E. Sanz, J. C. López, J. L. Alonso, Phys. Chem. Chem. Phys., 12, 3573-3578 (2010) S. Blanco, J. C. López, S. Mata and J. L. Alonso, Angew. Chem. Int. Ed. 49, 9187 (2010) J. L. Alonso, M. E. Sanz, J. C. López, V. Cortijo, J. Am. Chem. Soc. 131, 4320 (2009) J. L. Alonso, I. Peña, J. C. López, V. Vaquero, Angew. Chem. Int. Ed. 49, 6141 (2009) J. C. López, J. L. Alonso, I. Peña, V. Vaquero, Phys. Chem. Chem. Phys., 12, 3573-3578 (2010)

  17. Free energy landscapes of peptides by enhanced conformational sampling.

    PubMed

    Nakajima, N; Higo, J; Kidera, A; Nakamura, H

    2000-02-11

    The free energy landscapes of peptide conformations in water have been observed by the enhanced conformational sampling method, applying the selectively enhanced multicanonical molecular dynamics simulations. The conformations of the peptide dimers, -Gly-Gly-, -Gly-Ala-, -Gly-Ser-, -Ala-Gly-, -Asn-Gly-, -Pro-Gly-, -Pro-Ala-, and -Ala-Ala-, which were all blocked with N-terminal acetyl and C-terminal N-methyl groups, were individually sampled with the explicit TIP3P water molecules. From each simulation trajectory, we obtained the canonical ensemble at 300 K, from which the individual three-dimensional landscape was drawn by the potential of mean force using the three reaction coordinates: the backbone dihedral angle, psi, of the first amino acid, the backbone dihedral angle, phi, of the second amino acid, and the distance between the carbonyl oxygen of the N-terminal acetyl group and the C-terminal amide proton. The most stable state and several meta-stable states correspond to extended conformations and typical beta-turn conformations, and their free energy values were accounted for from the potentials of mean force at the states. In addition, the contributions from the intra-molecular energies of peptides and those from the hydration effects were analyzed. Consequently, the stable beta-turn conformations in the free energy landscape were consistent with the empirically preferred beta-turn types for each amino acid sequence. The thermodynamic values for the hydration effect were decomposed and they correlated well with the empirical values estimated from the solvent accessible surface area of each molecular conformation during the trajectories. The origin of the architecture of protein local fragments was analyzed from the viewpoint of the free energy and its decomposed factors. Copyright 2000 Academic Press.

  18. The Free Energy Landscape of Pseudorotation in 3′–5′ and 2′–5′ Linked Nucleic Acids

    PubMed Central

    2014-01-01

    The five-membered furanose ring is a central component of the chemical structure of biological nucleic acids. The conformations of the furanose ring can be analytically described using the concept of pseudorotation, and for RNA and DNA they are dominated by the C2′-endo and C3′-endo conformers. While the free energy difference between these two conformers can be inferred from NMR measurements, a free energy landscape of the complete pseudorotation cycle of nucleic acids in solution has remained elusive. Here, we describe a new free energy calculation method for molecular dynamics (MD) simulations using the two pseudorotation parameters directly as the collective variables. To validate our approach, we calculated the free energy surface of ribose pseudorotation in guanosine and 2′-deoxyguanosine. The calculated free energy landscape reveals not only the relative stability of the different pseudorotation conformers, but also the main transition path between the stable conformations. Applying this method to a standard A-form RNA duplex uncovered the expected minimum at the C3′-endo state. However, at a 2′–5′ linkage, the minimum shifts to the C2′-endo conformation. The free energy of the C3′-endo conformation is 3 kcal/mol higher due to a weaker hydrogen bond and a reduced base stacking interaction. Unrestrained MD simulations suggest that the conversion from C3′-endo to C2′-endo and vice versa is on the nanosecond and microsecond time scale, respectively. These calculations suggest that 2′–5′ linkages may enable folded RNAs to sample a wider spectrum of their pseudorotation conformations. PMID:24499340

  19. The probability distribution of side-chain conformations in [Leu] and [Met]enkephalin determines the potency and selectivity to mu and delta opiate receptors.

    PubMed

    Nielsen, Bjørn G; Jensen, Morten Ø; Bohr, Henrik G

    2003-01-01

    The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The simulations provide the possibility to perform cluster analysis in the space defined by potentially pharmacophoric measures such as dihedral angles, side-chain orientation, etc. By analyzing the statistics of the resulting clusters, the probability distribution of the side-chain conformations may be determined. These probabilities allow us to predict the selectivity of [Leu]enkephalin and [Met]enkephalin to the known mu- and delta-type opiate receptors to which they bind as agonists. Other plausible consequences of these probability distributions are discussed in relation to the way in which they may influence the dynamics of the synapse. Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 71: 577-592, 2003

  20. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  1. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations.

    PubMed

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2016-10-26

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.

  2. Assessing the Impact of Backbone Length and Capping Agent on the Conformational Preferences of a Model Peptide: Conformation Specific IR and UV Spectroscopy of 2-AMINOISOBUTYRIC Acid

    NASA Astrophysics Data System (ADS)

    Gord, Joseph R.; Hewett, Daniel M.; Kubasik, Matthew A.; Zwier, Timothy S.

    2015-06-01

    2-Aminoisobutyric acid (Aib) is an achiral, α-amino acid having two equivalent methyl groups attached to C_α. Extended Aib oligomers are known to have a strong preference for the adoption of a 310-helical structure in the condensed phase. Here, we have taken a simplifying step and focused on the intrinsic folding propensities of Aib by looking at a series of capped Aib oligomers in the gas phase, free from the influence of solvent molecules and cooled in a supersonic expansion. Resonant two-photon ionization and IR-UV holeburning have been used to record single-conformation UV spectra using the Z-cap as the UV chromophore. Resonant ion-dip infrared (RIDIR) spectroscopy provides single-conformation IR spectra in the OH stretch and NH stretch regions. Data have been collected on a set of Z-(Aib)n-X oligomers with n = 1, 2, 4, 6 and X = -OH and -OMethyl. The impacts of these capping groups and differences in backbone length have been found to dramatically influence the conformational space accessed by the molecules studied here. Oligomers of n=4 have sufficient backbone length for a full turn of the 310-helix to be formed. Early interpretation of the data collected shows clear spectroscopic markers signaling the onset of 310-helix formation as well as evidence of structures incorporating C7 and C14 hydrogen bonded rings. Toniolo, C.; Bonora, G. M.; Barone, V.; Bavoso, A.; Benedetti, E.; Di Blasio, B.; Grimaldi, P.; Lelj, F.; Pavone, V.; Pedone, C., Conformation of Pleionomers of α-Aminoisobutyric Acid. Macromolecules 1985, 18, 895-902.

  3. A Free-Energy Approach for All-Atom Protein Simulation

    PubMed Central

    Verma, Abhinav; Wenzel, Wolfgang

    2009-01-01

    All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an average backbone RMSD of 2.14 Å to the native conformation and an average Z-score of −3.46 to the corresponding decoy set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample the energy surface of three nonhomologous hairpin-peptides, a three-stranded β-sheet, the all-helical 40 amino-acid HIV accessory protein, and a zinc-finger ββα motif, and find near-native conformations for the minimal energy for each protein. Using a massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an average RMSD of only 3.06 Å to their respective experimental conformations. PMID:19413955

  4. A free-energy approach for all-atom protein simulation.

    PubMed

    Verma, Abhinav; Wenzel, Wolfgang

    2009-05-06

    All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an average backbone RMSD of 2.14 A to the native conformation and an average Z-score of -3.46 to the corresponding decoy set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample the energy surface of three nonhomologous hairpin-peptides, a three-stranded beta-sheet, the all-helical 40 amino-acid HIV accessory protein, and a zinc-finger beta beta alpha motif, and find near-native conformations for the minimal energy for each protein. Using a massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an average RMSD of only 3.06 A to their respective experimental conformations.

  5. Solvent-induced conformational flexibility of a bicyclic proline analogue: Octahydroindole-2-carboxylic acid.

    PubMed

    Torras, Juan; Warren, Javier G; Revilla-López, Guillem; Jiménez, Ana I; Cativiela, Carlos; Alemán, Carlos

    2014-03-01

    The conformational preferences of the N-acetyl-N'-methylamide derivatives of the four octahydroindole-2-carboxylic acid (Oic) stereoisomers have been investigated in the gas-phase and in aqueous solution using quantum mechanical calculations. In addition to the conformational effects provoked by the stereochemical diversity of Oic, which presents three chiral centers, results provide evidence of interesting and rather unusual features. The conformational preferences of the Oic stereoisomers in solution are only well described by applying a complete and systematic search process, results achieved by simple re-optimization of the gas-phase minima being very imprecise. This is because the conformational rigidity detected in the gas-phase, which is imposed by the chemical restrictions of the fused bicyclic skeleton, disappears in aqueous solution, the four stereoisomers behaving as flexible molecules in this environment. Thus, in general, the γ-turn is the only minimum energy conformation in the gas-phase while in aqueous solution the helical, polyproline-II and γ-turn motifs are energetically favored. Molecular dynamics simulations indicate that the conformational flexibility predicted by quantum mechanical calculations for the four Oic stereoisomers in solution is satisfactorily reproduced by classical force-fields. Copyright © 2014 Wiley Periodicals, Inc.

  6. Conformational analysis of the ΜΒΡ83-99 (Phe91) and ΜΒΡ83-99 (Tyr91) peptide analogues and study of their interactions with the HLA-DR2 and human TCR receptors by using Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Potamitis, C.; Matsoukas, M.-T.; Tselios, T.; Mavromoustakos, T.; Golič Grdadolnik, S.

    2011-09-01

    The two new synthetic analogues of the MBP83-99 epitope substituted at Lys91 (primary TCR contact) with Phe [MBP83-99 (Phe91)] or Tyr [MBP83-99 (Tyr91)], have been structurally elucidated using 1D and 2D high resolution NMR studies. The conformational analysis of the two altered peptide ligands (APLs) has been performed and showed that they adopt a linear and extended conformation which is in agreement with the structural requirements of the peptides that interact with the HLA-DR2 and TCR receptors. In addition, Molecular Dynamics (MD) simulations of the two analogues in complex with HLA-DR2 (DRA, DRB1*1501) and TCR were performed. Similarities and differences of the binding motif of the two analogues were observed which provide a possible explanation of their biological activity. Their differences in the binding mode in comparison with the MBP83-99 epitope may also explain their antagonistic versus agonistic activity. The obtained results clearly indicate that substitutions in crucial amino acids (TCR contacts) in combination with the specific conformational characteristics of the MBP83-99 immunodominant epitope lead to an alteration of their biological activity. These results make the rational drug design intriguing since the biological activity is very sensitive to the substitution and conformation of the mutated MBP epitopes.

  7. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  8. Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding

    PubMed Central

    Flanagan, Colleen A.; Manilall, Ashmeetha

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501

  9. How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations.

    PubMed

    Yang, Yang; Cui, Qiang; Sahai, Nita

    2010-06-15

    Bone sialoprotein (BSP) is a highly phosphorylated, acidic, noncollagenous protein in bone matrix. Although BSP has been proposed to be a nucleator of hydroxyapatite (Ca(5)(PO(4))(3)OH), the major mineral component of bone, no detailed mechanism for the nucleation process has been elucidated at the atomic level to date. In the present work, using a peptide model, we apply molecular dynamics (MD) simulations to study the conformational effect of a proposed nucleating motif of BSP (a phosphorylated, acidic, 10 amino-acid residue sequence) on controlling the distributions of Ca(2+) and inorganic phosphate (Pi) ions in solution, and specifically, we explore whether a nucleating template for orientated hydroxyapatite could be formed in different peptide conformations. Both the alpha-helical conformation and the random coil structure have been studied, and inorganic solutions without the peptide are simulated as reference. Ca(2+) distributions around the peptide surface and interactions between Ca(2+) and Pi in the presence of the peptide are examined in detail. From the MD simulations, although in some cases for the alpha-helical conformation, we observe that a Ca(2+) equilateral triangle forms around the surface of peptide, which matches the distribution of Ca(2+) ions on the (001) face of the hydroxyapatite crystal, we do not consistently find a stable nucleating template formation in general for either the helical conformation or the random coil structure. Therefore, independent of conformations, the BSP nucleating motif is more likely to help nucleate an amorphous calcium phosphate cluster, which ultimately converts to crystalline hydroxyapatite.

  10. Statistical analysis of native contact formation in the folding of designed model proteins

    NASA Astrophysics Data System (ADS)

    Tiana, Guido; Broglia, Ricardo A.

    2001-02-01

    The time evolution of the formation probability of native bonds has been studied for designed sequences which fold fast into the native conformation. From this analysis a clear hierarchy of bonds emerge: (a) local, fast forming highly stable native bonds built by some of the most strongly interacting amino acids of the protein; (b) nonlocal bonds formed late in the folding process, in coincidence with the folding nucleus, and involving essentially the same strongly interacting amino acids already participating in the fast bonds; (c) the rest of the native bonds whose behavior is subordinated, to a large extent, to that of the strong local and nonlocal native contacts.

  11. The role of amino acid side chains in stabilizing dipeptides: the laser ablation Fourier transform microwave spectrum of Ac-Val-NH2.

    PubMed

    León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L

    2017-09-20

    The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.

  12. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.

  13. Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol.

    PubMed

    Höltje, M; Förster, T; Brandt, B; Engels, T; von Rybinski, W; Höltje, H D

    2001-03-09

    We report the results of an investigation on stratum corneum lipids, which present the main barrier of the skin. Molecular dynamics simulations, thermal analysis and FTIR measurements were applied. The primary objective of this work was to study the effect of cholesterol on skin structure and dynamics. Two molecular models were constructed, a free fatty acid bilayer (stearic acid, palmitic acid) and a fatty acid/cholesterol mixture at a 1:1 molar ratio. Our simulations were performed at constant pressure and temperature on a nanosecond time scale. The resulting model structures were characterized by calculating surface areas per headgroup, conformational properties, atom densities and order parameters of the fatty acids. Analysis of the simulations indicates that the free fatty acid fraction of stratum corneum lipids stays in a highly ordered crystalline state at skin temperatures. The phase behavior is strongly influenced when cholesterol is added. Cholesterol smoothes the rigid phases of the fatty acids: the order of the hydrocarbon tails (mainly of the last eight bonds) is reduced, the area per molecule becomes larger, the fraction of trans dihedrals is lower and the hydrophobic thickness is reduced. The simulation results are in good agreement with our experimental data from FTIR analysis and NIR-FT Raman spectroscopy.

  14. Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating.

    PubMed

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Cornelis Metselaar, Hendrik Simon; Chee, Swee Yong; Lai, Koon Chun

    2017-07-28

    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.

  15. Use of vectors in sequence analysis.

    PubMed

    Ishikawa, T; Yamamoto, K; Yoshikura, H

    1987-10-01

    Applications of the vector diagram, a new type of representation of protein structure, in homology search of various proteins including oncogene products are presented. The method takes account of various kinds of information concerning the properties of amino acids, such as Chou and Fasman's probability data. The method can detect conformational similarities of proteins which may not be detected by the conventional programs.

  16. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues.

    PubMed

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2016-11-15

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.

    PubMed

    Eberini, Ivano; Guerini Rocco, Alessandro; Ientile, Anna Rita; Baptista, António M; Gianazza, Elisabetta; Tomaselli, Simona; Molinari, Henriette; Ragona, Laura

    2008-06-01

    The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family. (c) 2008 Wiley-Liss, Inc.

  18. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    PubMed

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  20. Tetrahydrofuran Calpha-tetrasubstituted amino acids: two consecutive beta-turns in a crystalline linear tripeptide.

    PubMed

    Maity, Prantik; Zabel, Manfred; König, Burkhard

    2007-10-12

    The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.

  1. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohda, D.; Kawai, G.; Yokoyama, S.

    1987-10-06

    The 400-MHz /sup 1/H NMR spectra of L-isoleucine and L-valine were measured in the presence of Escherichia coli isoleucyl-tRNA synthetase (IleRS). Because of chemical exchange of L-isoleucine or L-valine between the free state and the IleRS-bound state, a transferred nuclear Overhauser effect (TRNOE) was observed among proton resonances of L-isoleucine or L-valine. However, in the presence of isoleucyl adenylate tightly bound to the amino acid activation site of IleRS, no TRNOE for L-isoleucine or L-valine was observed. This indicates that the observed TRNOE is due to the interaction of L-isoleucine or L-valine with the amino acid activation site of IleRS.more » The conformations of these amino acids in the amino acid activation site of IleRS were determined by the analyses of time dependences of TRNOEs and TRNOE action spectra. The IleRS-bound L-isoleucine takes the gauche/sup +/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond and the trans form about the C/sub ..beta../-C/sub ..gamma../sub 1// bond. The IleRS-bound L-valine takes the guache/sup -/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond. Thus, the conformation of the IleRS-bound L-valine is the same as that of IleRS-bound L-isoleucine except for the delta-methyl group. The side chain of L-isoleucine or L-valine lies in an aliphatic hydrophobic pocket of the active site of IleRS. Such hydrophobic interaction with IleRS is more significant for L-isoleucine than for L-valine. The TRNOE analysis is useful for studying the amino acid discrimination mechanism of aminoacyl-tRNA synthetases.« less

  2. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  3. Deuterated fatty acids as Raman spectroscopic probes of membrane structure.

    PubMed

    Mendelsohn, R; Sunder, S; Bernstein, H J

    1976-09-07

    Raman spectra are reported for the C-D stretching region of stearic acid-d35 bound in egg lecithin multilayers. The temperature dependence of the spectra shows that the linewidth of the C-D stretching bands is a sensitive and non-perturbative probe of membrane hydrocarbon chain conformation. The utility of this approach for studying lipid conformation in membranes containing a significant fraction of non-lipid component is discussed.

  4. Structure-activity studies of lGnRH-III through rational amino acid substitution and NMR conformational studies.

    PubMed

    Pappa, Eleni V; Zompra, Aikaterini A; Diamantopoulou, Zoi; Spyranti, Zinovia; Pairas, George; Lamari, Fotini N; Katsoris, Panagiotis; Spyroulias, George A; Cordopatis, Paul

    2012-01-01

    Lamprey gonadotropin-releasing hormone type III (lGnRH-III) is an isoform of GnRH isolated from the sea lamprey (Petromyzon marinus) with negligible endocrine activity in mammalian systems. Data concerning the superior direct anticancer activity of lGnRH-III have been published, raising questions on the structure-activity relationship. We synthesized 21 lGnRH-III analogs with rational amino acid substitutions and studied their effect on PC3 and LNCaP prostate cancer cell proliferation. Our results question the importance of the acidic charge of Asp⁶ for the antiproliferative activity and indicate the significance of the stereochemistry of Trp in positions 3 and 7. Furthermore, conjugation of an acetyl-group to the side chain of Lys⁸ or side chain cyclization of amino acids 1-8 increased the antiproliferative activity of lGnRH-III demonstrating that the proposed salt bridge between Asp⁶ and Lys⁸ is not crucial. Conformational studies of lGnRH-III were performed through NMR spectroscopy, and the solution structure of GnRH-I was solved. In solution, lGnRH-III adopts an extended backbone conformation in contrast to the well-defined β-turn conformation of GnRH-I. Copyright © 2012 Wiley Periodicals, Inc.

  5. Protein conformation and disease : pathological consequences of analogous mutations in homologous proteins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Pokkuluri, P. R.; Schiffer, M.

    2000-12-19

    The antibody light chain variable domain (V{sub L}){sup 1} and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V{sub L} is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V{sub L} account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V{sub L} that are responsible for disease have been obscured bymore » multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V{sub L}. This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.« less

  6. Nearest Neighbor Interactions Affect the Conformational Distribution in the Unfolded State of Peptides

    NASA Astrophysics Data System (ADS)

    Toal, Siobhan; Schweitzer-Stenner, Reinhard; Rybka, Karin; Schwalbe, Hardol

    2013-03-01

    In order to enable structural predictions of intrinsically disordered proteins (IDPs) the intrinsic conformational propensities of amino acids must be complimented by information on nearest-neighbor interactions. To explore the influence of nearest-neighbors on conformational distributions, we preformed a joint vibrational (Infrared, Vibrational Circular Dichroism (VCD), polarized Raman) and 2D-NMR study of selected GxyG host-guest peptides: GDyG, GSyG, GxLG, GxVG, where x/y ={A,K,LV}. D and S (L and V) were chosen at the x (y) position due to their observance to drastically change the distribution of alanine in xAy tripeptide sequences in truncated coil libraries. The conformationally sensitive amide' profiles of the respective spectra were analyzed in terms of a statistical ensemble described as a superposition of 2D-Gaussian functions in Ramachandran space representing sub-ensembles of pPII-, β-strand-, helical-, and turn-like conformations. Our analysis and simulation of the amide I' band profiles exploits excitonic coupling between the local amide I' vibrational modes in the tetra-peptides. The resulting distributions reveal that D and S, which themselves have high propensities for turn-structures, strongly affect the conformational distribution of their downstream neighbor. Taken together, our results indicate that Dx and Sx motifs might act as conformational randomizers in proteins, attenuating intrinsic propensities of neighboring residues. Overall, our results show that nearest neighbor interactions contribute significantly to the Gibbs energy landscape of disordered peptides and proteins.

  7. Underlying thermodynamics of pH-dependent allostery.

    PubMed

    Di Russo, Natali V; Martí, Marcelo A; Roitberg, Adrian E

    2014-11-13

    Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger.

  8. Conformational elasticity can facilitate TALE-DNA recognition

    PubMed Central

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P.; Segal, David J.; Duan, Yong

    2015-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo- and bound- conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann/surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. PMID:24629191

  9. Conformational elasticity can facilitate TALE-DNA recognition.

    PubMed

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong

    2014-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.

  10. Flaws in foldamers: conformational uniformity and signal decay in achiral helical peptide oligomers† †Electronic supplementary information (ESI) available: Synthesis and characterisation of all new compounds. See DOI: 10.1039/c4sc03944k Click here for additional data file.

    PubMed Central

    Le Bailly, Bryden A. F.; Byrne, Liam; Diemer, Vincent; Foroozandeh, Mohammadali; Morris, Gareth A.

    2015-01-01

    Although foldamers, by definition, are extended molecular structures with a well-defined conformation, minor conformers must be populated at least to some extent in solution. We present a quantitative analysis of these minor conformers for a series of helical oligomers built from achiral but helicogenic α-amino acids. By measuring the chain length dependence or chain position dependence of NMR or CD quantities that measure screw-sense preference in a helical oligomer, we quantify values for the decay constant of a conformational signal as it passes through the molecular structure. This conformational signal is a perturbation of the racemic mixture of M and P helices that such oligomers typically adopt by the inclusion of an N or C terminal chiral inducer. We show that decay constants may be very low (<1% signal loss per residue) in non-polar solvents, and we evaluate the increase in decay constant that results in polar solvents, at higher temperatures, and with more conformationally flexible residues such as Gly. Decay constants are independent of whether the signal originates from the N or the C terminus. By interpreting the decay constant in terms of the probability with which conformations containing a screw-sense reversal are populated, we quantify the populations of these alternative minor conformers within the overall ensemble of secondary structures adopted by the foldamer. We deduce helical persistence lengths for Aib polymers that allow us to show that in a non-polar solvent a peptide helix, even in the absence of chiral residues, may continue with the same screw sense for approximately 200 residues. PMID:29308146

  11. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  12. [FATTY ACID COMPOSITION ALTEROMONAS-LIKE BACTERIA ISOLATED FROM THE BLACK SEA WATER].

    PubMed

    Klochko, V V; Avdeeva, L V

    2015-01-01

    Alteromonas macleodii strains isolated from the Black sea water were similar in their fatty acids composition with the type strain of this species. Analysis of lipid composition of 10 A. macleodii strains isolated from the deep and surface water layers in different World ocean regions including the Black sea water has shown that the deep and surface isolates of this species formed two groups different in their fatty acids profiles. The Black sea isolates of Pseudoalteromonas haloplanktis, P. citrea, P. flavipulchra conformed to these species type strains in their fatty acids composition. On the basis of the fatty acids spectra similarity of three Pseudoalteromonas species strains with Plipolytica described in 2010 has been established. Presence of three isomers C16:1ψ7, C 16:1ψ9 and C16:1ψ6--components of hexadecenic acid in the Black sea isolates of Shewanella baltica has been shown.

  13. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how amore » highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.« less

  14. Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction

    NASA Astrophysics Data System (ADS)

    Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim

    2017-09-01

    Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.

  15. Characterization of antibodies that selectively detect alpha-synuclein in pathological inclusions.

    PubMed

    Waxman, Elisa A; Duda, John E; Giasson, Benoit I

    2008-07-01

    Sensitive detection of alpha-synuclein (alpha-syn) pathology is important in the diagnosis of disorders like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy and in providing better insights into the etiology of these diseases. Several monoclonal antibodies that selectively react with aggregated alpha-syn in pathological inclusions and reveal extensive and underappreciated alpha-syn pathology in the brains of diseased patients were previously reported by Duda et al. (Ann Neurol 52:205-210, 2002). We sought to characterize the specificity of some of these antibodies (Syn 505, Syn 506 and Syn 514); using C-terminal and N-terminal truncations of alpha-syn, all three antibodies were determined to require N-terminal epitopes that minimally comprise amino acids 2-4, but possibly extend to amino acid 12 of alpha-syn. The selectivity of these antibodies was further assessed using biochemical analysis of human brains and reactivity to altered recombinant alpha-syn proteins with duplication variants of amino acids 1-12. In addition, by expressing wild-type or a double mutant (E46K/A53T) of alpha-syn in cultured cells and by comparing their immunoreactivities to another antibody (SNL-4), which has a similar primary epitope, it was determined that Syn 505, Syn 506 and Syn 514 recognize conformational variants of alpha-syn that is enhanced by the presence of the double mutations. These studies indicate that antibodies Syn 505, Syn 506 and Syn 514 preferentially recognize N-terminal epitopes in complex conformations, consistent with the dramatic conformational change associated with the polymerization of alpha-synuclein into amyloid fibrils that form pathological inclusions.

  16. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less

  17. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Graaf, M.; van Mierlo, C.P.M.; Hemminga, M.A.

    1991-06-11

    The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an {alpha}-helical conformation has been predicted for this highly positively charged N-terminal region. No experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presencemore » of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10{degrees}C, a perceptible fraction of the conformational ensemble consists of structures with an {alpha}-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.« less

  18. Determination of helix orientations in a flexible DNA by multi-frequency EPR spectroscopy.

    PubMed

    Grytz, C M; Kazemi, S; Marko, A; Cekan, P; Güntert, P; Sigurdsson, S Th; Prisner, T F

    2017-11-15

    Distance measurements are performed between a pair of spin labels attached to nucleic acids using Pulsed Electron-Electron Double Resonance (PELDOR, also called DEER) spectroscopy which is a complementary tool to other structure determination methods in structural biology. The rigid spin label Ç, when incorporated pairwise into two helical parts of a nucleic acid molecule, allows the determination of both the mutual orientation and the distance between those labels, since Ç moves rigidly with the helix to which it is attached. We have developed a two-step protocol to investigate the conformational flexibility of flexible nucleic acid molecules by multi-frequency PELDOR. In the first step, a library with a broad collection of conformers, which are in agreement with topological constraints, NMR restraints and distances derived from PELDOR, was created. In the second step, a weighted structural ensemble of these conformers was chosen, such that it fits the multi-frequency PELDOR time traces of all doubly Ç-labelled samples simultaneously. This ensemble reflects the global structure and the conformational flexibility of the two-way DNA junction. We demonstrate this approach on a flexible bent DNA molecule, consisting of two short helical parts with a five adenine bulge at the center. The kink and twist motions between both helical parts were quantitatively determined and showed high flexibility, in agreement with a Förster Resonance Energy Transfer (FRET) study on a similar bent DNA motif. The approach presented here should be useful to describe the relative orientation of helical motifs and the conformational flexibility of nucleic acid structures, both alone and in complexes with proteins and other molecules.

  19. Molecular mechanical studies of proflavine and acridine orange intercalation.

    PubMed Central

    Dearing, A; Weiner, P; Kollman, P A

    1981-01-01

    Previous workers have reported that proflavine and acridine orange form various structurally different complexes with the dinucleoside phosphates rCpG and dCpG, with uniform C3'-endo and mixed C3'-endo (3'-5') C2'-endo sugar puckers being observed. We present theoretical calculations, based on the method of molecular mechanics, which support the experimental observations. The results suggest that the mixed C3'-edo (3'-5') C2'-endo pucker conformation isi intrinsically more stable than the uniform C3'-endo conformation, but that the additional stabilisation gained from specific, hydrogen bonding, interactions between nucleic acid and solvent, or intramolecularly within the nucleic acid, can lead to the adoption of the latter conformation, or of variants between the two. The role played by hydrogen bonding between amino-groups and nucleic acid phosphate appears more subtle than previously supposed. PMID:7232221

  20. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039

  1. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  2. Influence of Trp flipping on carbohydrate binding in lectins. An example on Aleuria aurantia lectin AAL.

    PubMed

    Houser, Josef; Kozmon, Stanislav; Mishra, Deepti; Mishra, Sushil K; Romano, Patrick R; Wimmerová, Michaela; Koča, Jaroslav

    2017-01-01

    Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.

  3. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  4. NMR investigation and theoretical calculations of the solvent effect on the conformation of valsartan

    NASA Astrophysics Data System (ADS)

    Chashmniam, Saeed; Tafazzoli, Mohsen

    2017-11-01

    Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.

  5. Single-Molecule Studies of Hyaluronic Acid Conformation

    NASA Astrophysics Data System (ADS)

    Innes-Gold, Sarah; Berezney, John; Saleh, Omar

    Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.

  6. Molecular structure and vibrational assignments of 2,4-dichlorophenoxyacetic acid herbicide

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.

    2010-09-01

    The structural stability of 2,4-dichlorophenoxyacetic acid was investigated by the DFT-B3LYP and the ab initio MP2 calculations with the 6-311G** basis set. From the calculations at both levels of theory the Cgcpp structure was predicted to be the lowest energy minimum for the acid. The DFT and the MP2 levels disagreed about the nature of the second stable structure of 2,4-dichlorophenoxyacetic acid. At the DFT-B3LYP level of calculation the planar Tttp ( transoid O dbnd C sbnd O sbnd H) and the non-planar Tgcpp ( cisoid O dbnd C sbnd O sbnd H) forms were predicted to be 0.7 and 1.5 kcal/mol, respectively higher in energy than the Cgcpp conformation. At the MP2 level the two high energy Tttp and Tgcpp forms were predicted to be 2.7 and 1.4 kcal/mol, respectively higher in energy than the ground state Cgcpp structure. The Tgcpp form was adopted as the second possible structure of 2,4-dichlorophenoxyacetic acid on the basis of the fact that the Møller-Plesset calculations account better than the DFT ones for the non-bonding O⋯H interactions. The vibrational frequencies of the lowest energy Cgcpp conformer were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.

  7. Conformational profile of a proline-arginine hybrid

    PubMed Central

    Revilla-López, Guillermo; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David

    2010-01-01

    The intrinsic conformational preferences of a new non-proteinogenic amino acid have been explored by computational methods. This tailored molecule, named (βPro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the Cβ position of the five-membered pyrrolidine ring, either in a cis or a trans orientation with respect to the carboxylic acid. The conformational profile of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of (βPro)Arg has been examined in the gas phase and in solution by B3LYP/6–31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen-bonds. Thus, both cis and trans (βPro)Arg exhibit a preference for the αL conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups. PMID:20886854

  8. Conformational profile of a proline-arginine hybrid.

    PubMed

    Revilla-López, Guillermo; Jiménez, Ana I; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David

    2010-10-25

    The intrinsic conformational preferences of a new nonproteinogenic amino acid have been explored by computational methods. This tailored molecule, named ((β)Pro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the C(β) position of the five-membered pyrrolidine ring, in either a cis or a trans orientation with respect to the carboxylic acid. The conformational profiles of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of ((β)Pro)Arg have been examined in the gas phase and in solution by B3LYP/6-31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen bonds. Thus, both cis- and trans-((β)Pro)Arg exhibit a preference for the α(L) conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups.

  9. Optimization of the omega-3 extraction as a functional food from flaxseed.

    PubMed

    Hassan-Zadeh, A; Sahari, M A; Barzegar, M

    2008-09-01

    The fatty acid content, total lipid, refractive index, peroxide, iodine, acid and saponification values of Iranian linseed oil (Linum usitatissimum) were studied. For optimization of extraction conditions, this oil was extracted by solvents (petroleum benzene and methanol-water-petroleum benzene) in 1:2, 1:3 and 1:4 ratios at 2, 5 and 8 h. Then its fatty acid content, omega-3 content and extraction yield were determined. According to the statistical analysis, petroleum benzene in a ratio of 1:3 at 5 h was chosen for the higher fatty acid, extraction yield, and economical feasibility. For preservation of omega-3 ingredients, oil with specified characters containing 46.8% omega-3 was kept under a nitrogen atmosphere at -30 degrees C during 0, 7, 30, 60 and 90 days and its peroxide value was determined. Statistical analysis showed a significant difference in the average amount of peroxide value only on the first 7 days of storage, and its increase (8.30%) conformed to the international standard.

  10. Predominant information quality scheme for the essential amino acids: an information-theoretical analysis.

    PubMed

    Esquivel, Rodolfo O; Molina-Espíritu, Moyocoyani; López-Rosa, Sheila; Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Kohout, Miroslav; Dehesa, Jesús S

    2015-08-24

    In this work we undertake a pioneer information-theoretical analysis of 18 selected amino acids extracted from a natural protein, bacteriorhodopsin (1C3W). The conformational structures of each amino acid are analyzed by use of various quantum chemistry methodologies at high levels of theory: HF, M062X and CISD(Full). The Shannon entropy, Fisher information and disequilibrium are determined to grasp the spatial spreading features of delocalizability, order and uniformity of the optimized structures. These three entropic measures uniquely characterize all amino acids through a predominant information-theoretic quality scheme (PIQS), which gathers all chemical families by means of three major spreading features: delocalization, narrowness and uniformity. This scheme recognizes four major chemical families: aliphatic (delocalized), aromatic (delocalized), electro-attractive (narrowed) and tiny (uniform). All chemical families recognized by the existing energy-based classifications are embraced by this entropic scheme. Finally, novel chemical patterns are shown in the information planes associated with the PIQS entropic measures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation

    PubMed Central

    Vila, Jorge A.; Arnautova, Yelena A.; Martin, Osvaldo A.; Scheraga, Harold A.

    2009-01-01

    A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server. PMID:19805131

  12. Effects of nanorod structure and conformation of fatty acid self-assembled layers on superhydrophobicity of zinc oxide surface.

    PubMed

    Badre, Chantal; Dubot, P; Lincot, Daniel; Pauporte, Thierry; Turmine, Mireille

    2007-12-15

    Superhydrophobic surfaces have been prepared from nanostructured zinc oxide layers by a treatment with fatty acid molecules. The layers are electrochemically deposited from an oxygenated aqueous zinc chloride solution. The effects of the layer's structure, from a dense film to that of a nanorod array, as well as that of the properties of the fatty acid molecules based on C18 chains are described. A contact angle (CA) as high as 167 degrees is obtained with the nanorod structure and the linear saturated molecule (stearic acid). Lower values are found with molecules having an unsaturated bond on C9, in particular with a cis conformation (140 degrees ). These results, supplemented by infrared spectroscopy, indicate an enhancement of the sensitivity to the properties of the fatty acid molecules (conformation, flexibility, saturated or not) when moving from the flat surface to the nanostructured surface. This is attributed to a specific influence of the structure of the tops of the rods and lateral wall properties on the adsorption and organization of the molecules. CA measurements show a very good stability of the surface in time if stored in an environment protected from UV radiations.

  13. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.

    PubMed

    Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio

    2017-03-01

    The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .

  14. Exploring the structural insights on human laforin mutation K87A in Lafora disease--a molecular dynamics study.

    PubMed

    Srikumar, P S; Rohini, K

    2013-10-01

    Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.

  15. Deactivation of the E. coli pH stress sensor CadC by cadaverine.

    PubMed

    Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten

    2012-11-23

    At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Expanding the peptide beta-turn in alphagamma hybrid sequences: 12 atom hydrogen bonded helical and hairpin turns.

    PubMed

    Chatterjee, Sunanda; Vasudev, Prema G; Raghothama, Srinivasarao; Ramakrishnan, Chandrasekharan; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2009-04-29

    Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C(12) hydrogen bonded turns which may be considered as backbone expanded analogues of C(10) (beta-turns) found in alphaalpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alphagamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C(gamma)-C(beta) (theta(1)) and C(beta)-C(alpha) (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms a beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C(12) turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C(12) hydrogen bonded structures which are energetically feasible in alphagamma and gammaalpha sequences.

  17. Calculation of density functional theory (DFT) vibrational parameters of nucleotides for use in theoretical optical calculations: Herein applied to circular dichroism (CD) and absorption of polynucleotides

    NASA Astrophysics Data System (ADS)

    Ferber, Steven Dwight

    2005-11-01

    The Vibrational Circular Dichroism (VCD) of Nucleic Acids is a sensitive function of their conformation. DeVoe's classically derived polarizability theory allows the calculation of polymer absorption and circular dichroism spectra in any frequency range. Following the approach of Tinoco and Cech as modified by Moore and Self, calculations were done in the infrared (IR) region with theoretically derived monomer input parameters. Presented herein are calculated absorption and CD spectra for nucleic acid oligomers and polymers. These calculations improve upon earlier attempts, which utilized frequencies, intensities and normal modes from empirical analysis of the nitrogenous base of the monomers. These more complete input polarizability parameters include all contributions to specific vibrational normal modes for the entire nucleotide structure. They are derived from density functional theory (DFT) vibrational analysis on quasi-nucleotide monomers using the GAUSSIAN '98/'03 program. The normal modes are "integrated" for the first time into single virtual (DeVoe) oscillators by incorporating "fixed partial charges" in the manner of Schellman. The results include the complete set of monomer normal modes. All of these modes may be analyzed, in a manner similar to those demonstrated here (for the 1500-1800 cm-1 region). A model is utilized for the polymer/oligomer monomers which maintains the actual electrostatic charge on the adjacent protonated phosphoryl groups (hydrogen phosphate, a mono-anion). This deters the optimization from "collapsing" into a hydrogen-bonded "ball" and thereby maintains the extended (polymer-like) conformation. As well, the precise C2 "endo" conformation of the sugar ring is maintained in the DNA monomers. The analogous C3 "endo" conformation is also maintained for the RNA monomers, which are constrained by massive "anchors" at the phosphates. The complete IR absorbance spectra (0-4,000 cm-1) are calculated directly in Gaussian. Calculated VCD and Absorbance Spectra for the eight standard Ribonucleic and Deoxy-ribonucleic acid homo-polymers in the nitrogenous base absorbing region 1550-1750 cm-1 are presented. These spectra match measured spectra at least as well as spectra calculated from empirical parameters. These results demonstrate that the purely theoretical calculation, an example given herein, should serve to provide more transferable, universal parameters for the polarizability treatment of the optical properties of oligomers and polymers.

  18. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns.

    PubMed

    Gandhi, Neha S; Kukic, Predrag; Lippens, Guy; Mancera, Ricardo L

    2017-01-01

    The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.

  19. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.

    PubMed

    Padgett, Pamela E; Parry, Sally D; Bytnerowicz, Andrzej; Heath, Robert L

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric acid follow? We investigated the effects of dry deposition of nitric acid on the foliage of four tree species native to the western United States. A novel controlled environment, fumigation system enabled a four-week exposure at concentrations consistent with ambient diurnal patterns. Scanning electron microscopy and automated image analysis revealed changes in the epicuticular wax layer during fumigation. Exposure to nitric acid resulted in a reproducible suite of damage symptoms that increased with increasing dose. Each tree species tested exhibited a unique set of damage features, including cracks, lesions, and conformation changes to epicuticular crystallite structures. Dry deposition of atmospheric nitric acid caused substantial perturbation to the epicuticular surface of all four tree species investigated, consistent with the chemical oxidation of epicuticular waxes. Automated image analysis eliminated many biases that can trouble microscopy studies. Trade names and commercial enterprises or products are mentioned solely for information. No endorsements by the U.S. Department of Agriculture are implied.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qianlong; Blissard, Gary W.; Liu, Tong-Xian

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, butmore » no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.« less

  1. 21 CFR 172.755 - Stearyl monoglyceridyl citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... controlled chemical reaction of the following: Reactant Limitations Citric acid Monoglycerides of fatty acids Prepared by the glycerolysis of edible fats and oils or derived from fatty acids conforming with § 172.860... (a) of this section, meets the following specifications: Acid number 40 to 52. Total citric acid 15...

  2. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment.

    PubMed

    Fujieda, Nobutaka; Murata, Michiaki; Yabuta, Shintaro; Ikeda, Takuya; Shimokawa, Chizu; Nakamura, Yukihiro; Hata, Yoji; Itoh, Shinobu

    2013-01-01

    The pro form of recombinant tyrosinase from Aspergillus oryzae (melB) shows no catalytic activity, but acid treatment (around pH 3.5) of protyrosinase activates it to induce tyrosinase activity. Circular dichroism spectra, gel filtration analysis, and colorimetric assay have indicated that acid treatment around pH 3.5 induced the disruption of the conformation of the C-terminal domain covering the enzyme active site. These structural changes induced by the acid treatment may open the entrance to the enzyme active site for substrate incorporation. To compare the mechanism of hydroxylation by the acid-treated tyrosinase with that by trypsin-treated tyrosinase, a detailed steady-state kinetic analysis of the phenolase activity was performed by monitoring the O(2)-consumption rate using a Clark-type oxygen electrode. The results clearly show that the phenolase activity (phenol hydroxylation) of the activated tyrosinase involves an electrophilic aromatic substitution mechanism as in the case of mushroom tyrosinase (Yamazaki and Itoh in J. Am. Chem. Soc. 125:13034-13035, 2003) and activated hemocyanin with urea (Morioka et al. in J. Am. Chem. Soc. 128:6788-6789, 2006).

  3. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis.

    PubMed

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-15

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-01

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials.

  5. Conformational Switching of a Foldamer in a Multicomponent System by pH-Filtered Selection between Competing Noncovalent Interactions

    PubMed Central

    2015-01-01

    Biomolecular systems are able to respond to their chemical environment through reversible, selective, noncovalent intermolecular interactions. Typically, these interactions induce conformational changes that initiate a signaling cascade, allowing the regulation of biochemical pathways. In this work, we describe an artificial molecular system that mimics this ability to translate selective noncovalent interactions into reversible conformational changes. An achiral but helical foldamer carrying a basic binding site interacts selectively with the most acidic member of a suite of chiral ligands. As a consequence of this noncovalent interaction, a global absolute screw sense preference, detectable by 13C NMR, is induced in the foldamer. Addition of base, or acid, to the mixture of ligands competitively modulates their interaction with the binding site, and reversibly switches the foldamer chain between its left and right-handed conformations. As a result, the foldamer–ligand mixture behaves as a biomimetic chemical system with emergent properties, functioning as a “proton-counting” molecular device capable of providing a tunable, pH-dependent conformational response to its environment. PMID:25915163

  6. Interaction of formic acid with nitrogen: stabilization of the higher-energy conformer.

    PubMed

    Marushkevich, Kseniya; Räsänen, Markku; Khriachtchev, Leonid

    2010-10-07

    Conformational change is an important concept in chemistry and physics. In the present work, we study conformations of formic acid (HCOOH, FA) and report the preparation and identification of the complex of the higher-energy conformer cis-FA with N(2) in an argon matrix. The cis-FA···N(2) complex was synthesized by combining annealing and vibrational excitation of the ground-state trans-FA in a FA/N(2)/Ar matrix. The assignment is based on IR spectroscopic measurements and ab initio calculations. The cis-FA···N(2) complex decay in an argon matrix is much slower compared with the cis-FA monomer. In agreement with the experimental observations, the calculations predict a substantial increase in the stabilization barrier for the cis-FA···N(2) complex compared with the uncomplexed cis-FA monomer. A number of solvation effects in an argon matrix are computationally estimated and discussed. The present results on the cis-FA···N(2) complex show that intermolecular interaction can stabilize intrinsically unstable conformers, as previously found for some other cis-FA complexes.

  7. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  8. Acemetacin cocrystal structures by powder X-ray diffraction.

    PubMed

    Bolla, Geetha; Chernyshev, Vladimir; Nangia, Ashwini

    2017-05-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R 3 2 (9) R 2 2 (8) R 3 2 (9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

  9. Acemetacin cocrystal structures by powder X-ray diffraction

    PubMed Central

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  10. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    NASA Astrophysics Data System (ADS)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  11. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.

    PubMed

    Tsuchiya, Yuko; Mizuguchi, Kenji

    2016-04-01

    Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.

  12. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    PubMed Central

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris

    2017-01-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  13. Gold-Catalyzed Solid-Phase Synthesis of 3,4-Dihydropyrazin-2(1H)-ones: Relevant Pharmacophores and Peptide Backbone Constraints.

    PubMed

    Přibylka, Adam; Krchňák, Viktor

    2017-11-13

    Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.

  14. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.

    PubMed

    Duitch, Laura; Toal, Siobhan; Measey, Thomas J; Schweitzer-Stenner, Reinhard

    2012-05-03

    Understanding the interactions that govern turn formation in the unfolded state of proteins is necessary for a complete picture of the role that these turns play in both normal protein folding and functionally relevant yet disordered linear motifs. It is still unclear, however, whether short peptides can adopt stable turn structures in aqueous environments in the absence of any nonlocal interactions. To explore the effect that nearest-neighbor interactions and the local peptide environment have on the turn-forming capability of individual amino acid residues in short peptides, we combined vibrational (IR, Raman, and VCD), UV-CD, and (1)H NMR spectroscopies in order to probe the conformational ensemble of the central aspartic acid residue of the triaspartate peptide (DDD). The study was motivated by the recently discovered turn propensities of aspartic acid in GDG (Hagarman; et al. Chem.-Eur. J. 2011, 17, 6789). We investigated the DDD peptide under both acidic and neutral conditions in order to elucidate the effect that side-chain protonation has on the conformational propensity of the central aspartic acid residue. Amide I' profiles were analyzed in terms of two-dimensional Gaussian distributions representing conformational subdistributions in Ramachandran space. Interestingly, our results show that while the protonated form of the DDD peptide samples various turn-like conformations similar to GDG, deprotonation of the peptide eliminates this propensity for turns, causing the fully ionized peptide to exclusively sample pPII and β-strand-like structures. To further explore the factors stabilizing these more extended conformations in fully ionized DDD, we analyzed the temperature dependence of both the UV-CD spectrum and the (3)J(H(N),H(α)) coupling constants of the two amide protons (N- and C-terminal) in terms of a simple two-state (pPII-β) thermodynamic model. Thus, we were able to obtain the enthalpic and entropic differences between the pPII and β-strand conformations of the central and C-terminal residue. For the central residue, we obtained ΔH(3) = -12.0 kJ/mol and ΔS(3) = -73.8 J/mol·K, resulting in a much larger room-temperature Gibbs free energy of 10.0 kJ/mol, which effectively locks the C-terminal in a β-like conformation. A comparison of the temperature dependence of the chemical shifts reveals that there is indeed some type of protection of the amide protons from solvent in ionized DDD. This finding and several other lines of evidence suggest that both conformations of ionized DDD are stabilized by hydrogen bonding between the carboxylate groups of the central and C-terminal residue and the respective amide protons. These hydrogen bonds can be expected to be eliminated by side-chain protonation and substituted by hydrogen bonds between the N-terminal amide proton and the C-terminal carbonyl group as well as between the central aspartate side chain and the N-terminal amide proton. Hence, our results are indicative of a pH-induced switch in hydrogen-bonding patterns of aspartic acid motifs.

  15. KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the beta-prism fold.

    PubMed Central

    Rosa, J. C.; De Oliveira, P. S.; Garratt, R.; Beltramini, L.; Resing, K.; Roque-Barreira, M. C.; Greene, L. J.

    1999-01-01

    The complete amino acid sequence of the lectin KM+ from Artocarpus integrifolia (jackfruit), which contains 149 residues/mol, is reported and compared to those of other members of the Moraceae family, particularly that of jacalin, also from jackfruit, with which it shares 52% sequence identity. KM+ presents an acetyl-blocked N-terminus and is not posttranslationally modified by proteolytic cleavage as is the case for jacalin. Rather, it possesses a short, glycine-rich linker that unites the regions homologous to the alpha- and beta-chains of jacalin. The results of homology modeling implicate the linker sequence in sterically impeding rotation of the side chain of Asp141 within the binding site pocket. As a consequence, the aspartic acid is locked into a conformation adequate only for the recognition of equatorial hydroxyl groups on the C4 epimeric center (alpha-D-mannose, alpha-D-glucose, and their derivatives). In contrast, the internal cleavage of the jacalin chain permits free rotation of the homologous aspartic acid, rendering it capable of accepting hydrogen bonds from both possible hydroxyl configurations on C4. We suggest that, together with direct recognition of epimeric hydroxyls and the steric exclusion of disfavored ligands, conformational restriction of the lectin should be considered to be a new mechanism by which selectivity may be built into carbohydrate binding sites. Jacalin and KM+ adopt the beta-prism fold already observed in two unrelated protein families. Despite presenting little or no sequence similarity, an analysis of the beta-prism reveals a canonical feature repeatedly present in all such structures, which is based on six largely hydrophobic residues within a beta-hairpin containing two classic-type beta-bulges. We suggest the term beta-prism motif to describe this feature. PMID:10210179

  16. Conformational characterization of the 1-aminocyclobutane-1-carboxylic acid residue in model peptides.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Toniolo, C; Bonora, G M; Benedetti, Z; Di Blasio, B; Iacovino, R; Santini, A; Saviano, M; Kamphuis, J

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic C alpha, alpha-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L-Ala)2-OMe and Z-L-Ala-Ac4c-L-Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the tau(N-C alpha-C') bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective beta-turn and helix former. A comparison with the structural propensities of alpha-aminoisobutyric acid, the prototype of C alpha, alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3, 5-8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined.

  17. Conformational Changes and Substrate Recognition in Pseudomonas aeruginosa d-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Li, Congran

    2010-11-15

    DADH catalyzes the flavin-dependent oxidative deamination of D-amino acids to the corresponding {alpha}-keto acids and ammonia. Here we report the first X-ray crystal structures of DADH at 1.06 {angstrom} resolution and its complexes with iminoarginine (DADH{sub red}/iminoarginine) and iminohistidine (DADH{sub red}/iminohistidine) at 1.30 {angstrom} resolution. The DADH crystal structure comprises an unliganded conformation and a product-bound conformation, which is almost identical to the DADH{sub red}/iminoarginine crystal structure. The active site of DADH was partially occupied with iminoarginine product (30% occupancy) that interacts with Tyr53 in the minor conformation of a surface loop. This flexible loop forms an 'active site lid',more » similar to those seen in other enzymes, and may play an essential role in substrate recognition. The guanidinium side chain of iminoarginine forms a hydrogen bond interaction with the hydroxyl of Thr50 and an ionic interaction with Glu87. In the structure of DADH in complex with iminohistidine, two alternate conformations were observed for iminohistidine where the imidazole groups formed hydrogen bond interactions with the side chains of His48 and Thr50 and either Glu87 or Gln336. The different interactions and very distinct binding modes observed for iminoarginine and iminohistidine are consistent with the 1000-fold difference in k{sub cat}/K{sub m} values for D-arginine and D-histidine. Comparison of the kinetic data for the activity of DADH on different D-amino acids and the crystal structures in complex with iminoarginine and iminohistidine establishes that this enzyme is characterized by relatively broad substrate specificity, being able to oxidize positively charged and large hydrophobic D-amino acids bound within a flask-like cavity.« less

  18. Conformational analysis of a modified RGD adhesive sequence.

    PubMed

    Triguero, Jordi; Zanuy, David; Alemán, Carlos

    2017-02-01

    The conformational preferences of the Arg-GlE-Asp sequence, where GlE is an engineered amino acid bearing a 3,4-ethylenedioxythiophene (EDOT) ring as side group, have been determined combining density functional theory calculations with a well-established conformational search strategy. Although the Arg-GlE-Asp sequence was designed to prepare a conducting polymer-peptide conjugate with excellent electrochemical and bioadhesive properties, the behavior of such hybrid material as adhesive biointerface is improvable. Results obtained in this work prove that the bioactive characteristics of the parent Arg-Gly-Asp sequence become unstable in Arg-GlE-Asp because of both the steric hindrance caused by the EDOT side group and the repulsive interactions between the oxygen atoms belonging to the backbone amide groups and the EDOT side group. Detailed analyses of the conformational preferences identified in this work have been used to re-engineer the Arg-GlE-Asp sequence for the future development of a new electroactive conjugate with improved bioadhesive properties. The preparation of this new conjugate is in progress. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  19. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).

    PubMed

    Ren, Jianhua; Tan, John P; Harper, Robert T

    2009-10-15

    The gas-phase acidities of four cysteine-polyalanine peptides, A(3,4)CSH and HSCA(3,4), were determined using the extended Cooks kinetic method with full entropy analysis. A triple-quadrupole mass spectrometer with an electrospray interface was employed for the experimental study. The ion activation was achieved via collision-induced dissociation (CID) experiments. The deprotonation enthalpies (Delta(acid)H) of the peptides were determined to be 332.2 +/- 2.0 kcal/mol (A(3)CSH), 325.9 +/- 2.0 kcal/mol (A(4)CSH), 319.3 +/- 3.0 kcal/mol (HSCA(3)), and 319.2 +/- 4.0 kcal/mol (HSCA(4)). The deprotonation entropies (Delta(acid)S) of the peptides were estimated based on the entropy term (Delta(DeltaS)) and the deprotonation entropies of the reference acids. By using the deprotonation enthalpies and entropies, the gas-phase acidities (Delta(acid)G) of the peptides were derived: 325.0 +/- 2.0 kcal/mol (A(3)CSH), 320.2 +/- 2.0 kcal/mol (A(4)CSH), 316.3 +/- 3.0 kcal/mol (HSCA(3)), and 315.4 +/- 4.0 kcal/mol (HSCA(4)). Conformations and energetic information of the peptides were calculated through simulated annealing (Tripos), geometry optimization (AM1), and single-point energy calculations (B3LYP/6-31+G(d)), respectively. The calculated theoretical deprotonation enthalpies (Delta(acid)H) of 334.2 kcal/mol (A(3)CSH), 327.7 kcal/mol (A(4)CSH), 320.6 kcal/mol (HSCA(3)), and 318.6 kcal/mol (HSCA(4)) are in good agreement with the experimentally determined values. Both the experimental and computational studies suggest that the two N-terminal cysteine peptides, HSCA(3,4), are significantly more acidic than the corresponding C-terminal ones, A(3,4)CSH. The high acidities of the former are likely due to the helical conformational effects for which the thiolate anion may be strongly stabilized by the interaction with the helix macrodipole.

  20. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation.

    PubMed

    Meng, Fanjie; Bellaiche, Mathias M J; Kim, Jae-Yeol; Zerze, Gül H; Best, Robert B; Chung, Hoi Sung

    2018-02-27

    Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ∼35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies. Published by Elsevier Inc.

  1. Characterizing Peptide β-HAIRPIN Loops via Cold Ion Spectroscopy of Model Compounds

    NASA Astrophysics Data System (ADS)

    Lawler, John T.; DeBlase, Andrew F.; Harrilal, Christopher P.; Fischer, Joshua L.; McLuckey, Scott A.; Zwier, Timothy S.

    2017-06-01

    The introduction of non-native D-amino acids into peptides is known to reduce conformational entropy in peptides. D-proline has been shown to promote the formation of β-hairpin loops when paired with Gly, providing a framework for building these loops with different lengths of anti-parallel beta-sheet. This study seeks to characterize and compare the conformational preferences of a model protonated pentapeptide containing DPG, [YAP^{D}GA+H]^{+}, with its L-Pro counterpart via conformation specific cold ion spectroscopy as a foundation for future consideration of larger beta-hairpin models. The UV spectrum of YAP^{D}GA of the Tyr chromophore is beautifully sharp, but contains a complicated set of transitions that could arise from the presence of more than one conformer. To assess this possibility, we recorded non-conformation specific IR "gain" spectra in the hydride stretch region. The IR spectrum so obtained displays a set of five strong IR transitions that bear a close resemblance to those found in one of the conformers of its close analog, [YAP^{D}AA+H]^{+}, signaling that a single conformer dominates the population. Two transitions at 3392 and 3464 cm-1 are slightly shifted versions of the C10 and C14 hydrogen bonds found in one of the conformers of [YAP^{D}AA+H]^{+}, and are characteristic of formation of a β-hairpin loop. Notably, in [YAP^{D}GA+H]^{+}, there is at most a minor second conformer with a free carboxylic acid OH, appearing weakly in the IR "gain" spectrum. As expected, the UV spectrum of YAP^{L}GA is more congested, which suggests the presence of multiple conformers. Further investigation into this peptide will reveal the conformational preferences of the L-pro containing molecule. Preliminary data affirms that D-proline containing peptides show reduced conformational states when compared to their natural counterparts.

  2. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    NASA Astrophysics Data System (ADS)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  3. Quantitative Assessment of Molecular Dynamics Sampling for Flexible Systems.

    PubMed

    Nemec, Mike; Hoffmann, Daniel

    2017-02-14

    Molecular dynamics (MD) simulation is a natural method for the study of flexible molecules but at the same time is limited by the large size of the conformational space of these molecules. We ask by how much the MD sampling quality for flexible molecules can be improved by two means: the use of diverse sets of trajectories starting from different initial conformations to detect deviations between samples and sampling with enhanced methods such as accelerated MD (aMD) or scaled MD (sMD) that distort the energy landscape in controlled ways. To this end, we test the effects of these approaches on MD simulations of two flexible biomolecules in aqueous solution, Met-Enkephalin (5 amino acids) and HIV-1 gp120 V3 (a cycle of 35 amino acids). We assess the convergence of the sampling quantitatively with known, extensive measures of cluster number N c and cluster distribution entropy S c and with two new quantities, conformational overlap O conf and density overlap O dens , both conveniently ranging from 0 to 1. These new overlap measures quantify self-consistency of sampling in multitrajectory MD experiments, a necessary condition for converged sampling. A comprehensive assessment of sampling quality of MD experiments identifies the combination of diverse trajectory sets and aMD as the most efficient approach among those tested. However, analysis of O dens between conventional and aMD trajectories also reveals that we have not completely corrected aMD sampling for the distorted energy landscape. Moreover, for V3, the courses of N c and O dens indicate that much higher resources than those generally invested today will probably be needed to achieve convergence. The comparative analysis also shows that conventional MD simulations with insufficient sampling can be easily misinterpreted as being converged.

  4. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics.

    PubMed

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  5. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics

    NASA Astrophysics Data System (ADS)

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  6. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins

    PubMed Central

    Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2014-01-01

    Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4–5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. PMID:25283538

  7. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins.

    PubMed

    Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2014-12-01

    Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. © 2014 The Protein Society.

  8. Comparison and Analysis of 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) on Amyloid-Beta 40 Monomer for treatment of Alzheimer's Disease using Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Woosung; Jee, Sang Eun; Jang, Seung Soon

    Alzheimer's disease (AD) is type of degenerative dementia caused memory loss and behavior problem. Main reason of AD is Amyloid-Beta 40(A β) mostly composed of α -helix form misfolds to insoluble fibrils and soluble oilgomer. This insoluble fibrils aggregate with beta sheet structure and form the plaque which is caused nurotoxicity in brain. Both 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) are the metabolite of norepinephrine in brain . Also these are inhibit the changing formation of fibrils and maintain the α -helix structure. In this computational modeling study, both NMN and DHMA molecules were modified and analyzed for specific effect on the A β-monomer using molecular dynamics simulation. Using molecular dynamic simulation, NMN and DHMA act as modulator on three A β-monomer batches and could observe the conformational changing of these A β-monomer under the physiologocal condition. This computational experiment is designed to compare and analyze both of chemicals for determining which chamecal would be more effective on the conformation of A β 40 monomer.

  9. Synthesis and NMR Analysis of a Conformationally Controlled β-Turn Mimetic Torsion Balance.

    PubMed

    Lypson, Alyssa B; Wilcox, Craig S

    2017-01-20

    The molecular torsion balance concept was applied to a new conformationally controlled scaffold and synthesized to accurately evaluate pairwise amino acid interactions in an antiparallel β-sheet motif. The scaffold's core design combines (ortho-tolyl)amide and o,o,o'-trisubstituted biphenyl structural units to provide a geometry better-suited for intramolecular hydrogen bonding. Like the dibenzodiazocine hinge of the traditional torsion balance, the (ortho-tolyl)amide unit offers restricted rotation around an N-aryl bond. The resulting two-state folding model is a powerful template for measuring hydrogen bond stability between two competing sequences. The aim of this study was to improve the alignment between the amino acid sequences attached to the upper and lower aromatic rings in order to promote hydrogen bond formation at the correct distance and antiparallel orientation. Bromine substituents were introduced ortho to the upper side chains and compared to a control to test our hypothesis. Hydrogen bond formation has been identified between the NH amide proton of the upper side chain (proton donor) and glycine acetamide of the lower side chain (proton acceptor).

  10. Nanoscale Investigation of Generation 1 PAMAM Dendrimers Interaction with a Protein Nanopore.

    PubMed

    Asandei, Alina; Ciuca, Andrei; Apetrei, Aurelia; Schiopu, Irina; Mereuta, Loredana; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2017-07-21

    Herein, we describe at uni-molecular level the interactions between poly(amidoamine) (PAMAM) dendrimers of generation 1 and the α-hemolysin protein nanopore, at acidic and neutral pH, and ionic strengths of 0.5 M and 1 M KCl, via single-molecule electrical recordings. The results indicate that kinetics of dendrimer-α-hemolysin reversible interactions is faster at neutral as compared to acidic pH, and we propose as a putative explanation the fine interplay among conformational and rigidity changes on the dendrimer structure, and the ionization state of the dendrimer and the α-hemolysin. From the analysis of the dendrimer's residence time inside the nanopore, we posit that the pH- and salt-dependent, long-range electrostatic interactions experienced by the dendrimer inside the ion-selective α-hemolysin, induce a non-Stokesian diffusive behavior of the analyte inside the nanopore. We also show that the ability of dendrimer molecules to adapt their structure to nanoscopic spaces, and control the flow of matter through the α-hemolysin nanopore, depends non-trivially on the pH- and salt-induced conformational changes of the dendrimer.

  11. A diffuse reflectance comparative study of benzil inclusion within microcrystalline cellulose and beta-cyclodextrin.

    PubMed

    Vieira Ferreira, Luis F; Ferreira Machado, Isabel; Da Silva, José P; Oliveira, Anabela S

    2004-02-01

    Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and [small beta]-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/[small beta]-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet-triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into [small beta]-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.

  12. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    PubMed

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor.

    PubMed

    Banerjee, Amit; Misra, Milind; Pai, Deepa; Shih, Liang-Yu; Woodley, Rohan; Lu, Xiang-Jun; Srinivasan, A R; Olson, Wilma K; Davé, Rajesh N; Venanzi, Carol A

    2007-01-01

    Six rigid-body parameters (Shift, Slide, Rise, Tilt, Roll, Twist) are commonly used to describe the relative displacement and orientation of successive base pairs in a nucleic acid structure. The present work adapts this approach to describe the relative displacement and orientation of any two planes in an arbitrary molecule-specifically, planes which contain important pharmacophore elements. Relevant code from the 3DNA software package (Nucleic Acids Res. 2003, 31, 5108-5121) was generalized to treat molecular fragments other than DNA bases as input for the calculation of the corresponding rigid-body (or "planes") parameters. These parameters were used to construct feature vectors for a fuzzy relational clustering study of over 700 conformations of a flexible analogue of the dopamine reuptake inhibitor, GBR 12909. Several cluster validity measures were used to determine the optimal number of clusters. Translational (Shift, Slide, Rise) rather than rotational (Tilt, Roll, Twist) features dominate clustering based on planes that are relatively far apart, whereas both types of features are important to clustering when the pair of planes are close by. This approach was able to classify the data set of molecular conformations into groups and to identify representative conformers for use as template conformers in future Comparative Molecular Field Analysis studies of GBR 12909 analogues. The advantage of using the planes parameters, rather than the combination of atomic coordinates and angles between molecular planes used in our previous fuzzy relational clustering of the same data set (J. Chem. Inf. Model. 2005, 45, 610-623), is that the present clustering results are independent of molecular superposition and the technique is able to identify clusters in the molecule considered as a whole. This approach is easily generalizable to any two planes in any molecule.

  14. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase

    PubMed Central

    2012-01-01

    Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913

  15. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations

    PubMed Central

    Miao, Yinglong; Walker, Ross C.; Jinek, Martin; McCammon, J. Andrew

    2017-01-01

    CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature, 527, 110–113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9. PMID:28652374

  16. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.

    PubMed

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2017-07-11

    CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature , 527 , 110-113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9.

  17. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    PubMed Central

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574

  18. IR low-temperature matrix, X-ray and ab initio study on L-isoserine conformations.

    PubMed

    Dobrowolski, Jan Cz; Jamróz, Michał H; Kołos, Robert; Rode, Joanna E; Cyrański, Michał K; Sadlej, Joanna

    2010-09-28

    The IR low-temperature Ar and Kr matrix spectra of l-isoserine were registered for the first time and interpreted by means of the anharmonic DFT frequencies calculated at the B3LYP/aug-cc-pVTZ and B3LYP/aug-cc-pVDZ levels. 54 l-isoserine conformers were predicted to be stable at the B3LYP/aug-cc-pVDZ level. Population of the 8 most stable conformers was based on the QCISD/aug-cc-pVDZ energies, corrected for thermal anharmonic factors obtained at the B3LYP/aug-cc-pVDZ level. We found several conformers to be present in the measured matrices and conformer 1 to be dominating. Presence of the conformer 2 is well confirmed by the nu(C=O) band at 1790 cm(-1) and two bands at 1380 and 1350 cm(-1). Presence of the conformer 4 is quite well confirmed by the nu(C-O) bands at 1120 and 1095 cm(-1). Slightly weaker arguments are found for the observation of conformers 6 and 3. Calculations on 54 neutral and 5 zwitterionic conformers in water at the IEF-PCM/B3LYP/aug-cc-pVDZ level suggest that one neutral and one zwitterionic conformer co-exist in the aqueous environment. The crystal structure of l-isoserine was solved by X-ray diffraction analysis. The compound crystallizes without solvent in the chiral P2(1)2(1)2 space group. The asymmetric unit contains a single molecule. The molecule is in its zwitterionic form with the CH(2)-NH(3) side chain in the gauche conformation with respect to the hydroxyl group and in the anti conformation with respect to the carboxylate group. The structure of l-isoserine is dominated by a set of intermolecular hydrogen bonds. The strongest one appears between the OH and COOH groups of two neighbouring molecules: the O...H contact is of 1.66(2) A, which is amongst the shortest H-bonds of this kind observed in amino acid crystal structures.

  19. Model simulations of the adsorption of statherin to solid surfaces: Effects of surface charge and hydrophobicity

    NASA Astrophysics Data System (ADS)

    Skepö, M.

    2008-11-01

    The structural properties of the salivary protein statherin upon adsorption have been examined using a coarse-grained model and Monte Carlo simulation. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. To mimic hydrophobically modified surfaces, an extra short-ranged interaction was implemented between the amino acids and the surface. It has been shown that the adsorption and the thickness of the adsorbed layer are determined by (i) the affinity for the surface, i.e., denser layer with an extrashort-ranged potential, and (ii) the distribution of the charges along the chain. If all the amino acids have a high affinity for the surface, the protein adsorbs in a train conformation, if the surface is negatively charged the protein adsorbs in a tail-train conformation, whereas if the surface is positively charged the protein adsorbs in a loop conformation. The latter gives rise to a more confined adsorbed layer.

  20. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Campos-Fernández, Linda; Alvarado-Salazar, Andres; Esquivel, Rodolfo O.

    2015-08-01

    Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys-Asn-Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  1. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.

    PubMed

    Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R

    2018-04-05

    Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.

  2. The Reovirus Sigmal Aspartic Acid Sandwich: A Trimerization Motif Poised for Conformational Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelling,P.; Guglielml, K.; Kirchner, E.

    2007-01-01

    Reovirus attachment protein {sigma}1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The {sigma}1 protein is a filamentous, trimeric molecule with a globular {beta}-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the {sigma}1 subunit interface. A 1.75 {angstrom} structure of the {sigma}1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate thatmore » these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the {sigma}1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.« less

  3. 21 CFR 73.315 - Corn endosperm oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... corn endosperm oil is a reddish-brown liquid composed chiefly of glycerides, fatty acids, sitosterols.... (b) Specifications. Corn endosperm oil conforms to the following specifications: Total fatty acids...

  4. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  5. Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein.

    PubMed

    Velázquez-López, Isabel; Valdés-García, Gilberto; Romero Romero, Sergio; Maya Martínez, Roberto; Leal-Cervantes, Ana I; Costas, Miguel; Sánchez-López, Rosana; Amero, Carlos; Pastor, Nina; Fernández Velasco, D Alejandro

    2018-07-01

    Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0-8.0 pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0-8.0 pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Curcó, David; Casanovas, Jordi; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Grodzinski, Piotr; Alemán, Carlos

    2010-01-01

    Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids –also called non-coded, non-canonical or non-standard– is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, α-tetrasubstituted α-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example. PMID:20455555

  7. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  8. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    PubMed

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2013-01-01

    ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins.

  9. Decipher the Mechanisms of Protein Conformational Changes Induced by Nucleotide Binding through Free-Energy Landscape Analysis: ATP Binding to Hsp70

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2013-01-01

    ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins. PMID:24348227

  10. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy. Copyright © 2011 Wiley-Liss, Inc.

  11. Cation-Size-Dependent Conformational Locking of Glutamic Acid by Alkali Ions: Infrared Photodissociation Spectroscopy of Cryogenic Ions.

    PubMed

    Klyne, Johanna; Bouchet, Aude; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2018-03-01

    Consolidated knowledge of conformation and stability of amino acids and their clusters is required to understand their biochemical recognition. Often, alkali ions interact with amino acids and proteins. Herein, infrared photodissociation (IRPD) spectra of cryogenic metalated glutamic acid ions (GluM + , M = Li-Cs) are systematically analyzed in the isomer-specific fingerprint and XH stretch ranges (1100-1900, 2600-3600 cm -1 ) to provide a direct measure for cation-size-dependent conformational locking. GluM + ions are generated by electrospray ionization and cooled down to 15 K in a cryogenic quadrupole ion trap. The assignment of the IRPD spectra is supported by density functional theory calculations at the dispersion-corrected B3LYP-D3/aug-cc-pVTZ level. In the global minimum of GluM + , the flexibility of Glu is strongly reduced by the formation of rigid ionic CO···M + ···OC metal bridges, corresponding to charge solvation. The M + binding energy decreases monotonically with increasing cation size from D 0 = 314 to 119 kJ/mol for Li-Cs. Whereas for Li and Na only the global minimum of GluM + is observed, for K-Cs at least three isomers exist at cryogenic temperature. The IRPD spectra of cold GluM + ions are compared to IR multiple-photon dissociation spectra measured at room temperature. Furthermore, we elucidate the differences of the impact of protonation and metalation on the structure and conformational locking of Glu.

  12. Folded and unfolded conformations of the omega-3 polyunsaturated fatty acid family: ch(3)ch(2)[ch=chch(2)](b)[ch(2)](m)cooh: first principles study.

    PubMed

    Law, Jacqueline M S; Szori, Milan; Izsak, Robert; Penke, Botond; Csizmadia, Imre G; Viskolcz, Bela

    2006-05-11

    Polyunsaturated fatty acids (PUFA) like stearidonic acid (SDA;18:4 n-3) eicosapentaenoic acid (EPA; 20:5 n-3), and docosahexaenoic acid (DHA; 22:6 n-3) and its chain fragment models were studied at B3LYP/6-31G(d) levels of theory. Significant conformations for the cis and trans isomers were selected to obtained the thermodynamic functions (DeltaH, DeltaS, DeltaG) for the cis-trans isomerization and for folding using the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) level of theory. The structural analysis shows that there are significant differences in thermodynamic function of the trans- and cis-PUFAs. The trans-cis isomerization energy values reinforce the consistency and the relative accuracy of theoretical model calculations. The observed flexibility of naturally cis PUFAs could be explained by a very special "smooth basin" PES of the motif of sp(2)-sp(3)-sp(2) hybrid states as reported previously (J. Phys. Chem. A 2005, 109, 520-533). We assumed that intrinsic thermodynamic functions may describe this flexible folding process. The folding enthalpy as well as the folding entropy suggests that there is a new role of the cis-PUFAs in membranes: these cis isomers may have a strong influence on membrane stability and permeability. The average length of the cis helix and beta PUFA was approximated. The difference between the lengths of these two structures is approximately 10 A.

  13. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    PubMed

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. 4-Methyl-1H-Indazole-5-Boronic acid: Crystal structure, vibrational spectra and DFT simulations

    NASA Astrophysics Data System (ADS)

    Dikmen, Gökhan

    2017-12-01

    Molecular structure, conformer forms, geometric parameters and vibrational assignments and properties of 4-Methyl-1H-Indazole-5-Boronic Acid (4M1HI5BA) were theoretically and experimentally studied using Raman, FT-IR, XRD spectroscopic methods and quantum chemical calculations. Raman and FT-IR spectra were examined range from 4000 to 400 cm-1. Moreover, single crystals of 4M1HI5BA were prepared in order to use in XRD experiments. Vibrational assignments were carried out using total energy distribution (TED) values. Furthermore, HOMO and LUMO were calculated for 4M1HI5BA. Four different conformations of 4M1HI5BA were calculated in only gas phase. The theoretical and experimental results show that in order to predict vibrational wavenumbers B3LYP/6-311++G(d,p) may provide acceptable results and the most stable conformer of 4M1HI5BA is predicted to be envelope conformer.

  15. Conformation and hydration of surface grafted and free polyethylene oxide chains in solutions

    NASA Astrophysics Data System (ADS)

    Dahal, Udaya; Wang, Zilu; Dormidontova, Elena

    Due to the wide application of polyethylene oxide (PEO), ranging from biomedicine to fuel cells, it is one of the most studied polymers in the scientific world. In order to elucidate detailed molecular-level insights on the impact of surface grafting on PEO conformation, we performed atomistic molecular dynamics simulations of PEO chains in solution and grafted to a flat gold surface in different solvents. We examined the hydration as well as conformation of the free chain compared to the grafted polymer in pure water and mixed solvents. We find that grafted chains are stiffer and have a stronger tendency to form helical structures in isobutyric acid or mixture of isobutyric acid and water solution than the free chains in corresponding solutions. For grafted chains exposed to pure water the random coil conformation is retained at low grafting density, but becomes stretched and more dehydrated as the grafting density or temperature increases. This research is supported by NSF (DMR-1410928).

  16. Side-chain to backbone interactions dictate the conformational preferences of a cyclopentane arginine analogue

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034

  17. From Ramachandran Maps to Tertiary Structures of Proteins.

    PubMed

    DasGupta, Debarati; Kaushik, Rahul; Jayaram, B

    2015-08-27

    Sequence to structure of proteins is an unsolved problem. A possible coarse grained resolution to this entails specification of all the torsional (Φ, Ψ) angles along the backbone of the polypeptide chain. The Ramachandran map quite elegantly depicts the allowed conformational (Φ, Ψ) space of proteins which is still very large for the purposes of accurate structure generation. We have divided the allowed (Φ, Ψ) space in Ramachandran maps into 27 distinct conformations sufficient to regenerate a structure to within 5 Å from the native, at least for small proteins, thus reducing the structure prediction problem to a specification of an alphanumeric string, i.e., the amino acid sequence together with one of the 27 conformations preferred by each amino acid residue. This still theoretically results in 27(n) conformations for a protein comprising "n" amino acids. We then investigated the spatial correlations at the two-residue (dipeptide) and three-residue (tripeptide) levels in what may be described as higher order Ramachandran maps, with the premise that the allowed conformational space starts to shrink as we introduce neighborhood effects. We found, for instance, for a tripeptide which potentially can exist in any of the 27(3) "allowed" conformations, three-fourths of these conformations are redundant to the 95% confidence level, suggesting sequence context dependent preferred conformations. We then created a look-up table of preferred conformations at the tripeptide level and correlated them with energetically favorable conformations. We found in particular that Boltzmann probabilities calculated from van der Waals energies for each conformation of tripeptides correlate well with the observed populations in the structural database (the average correlation coefficient is ∼0.8). An alpha-numeric string and hence the tertiary structure can be generated for any sequence from the look-up table within minutes on a single processor and to a higher level of accuracy if secondary structure can be specified. We tested the methodology on 100 small proteins, and in 90% of the cases, a structure within 5 Å is recovered. We thus believe that the method presented here provides the missing link between Ramachandran maps and tertiary structures of proteins. A Web server to convert a tertiary structure to an alphanumeric string and to predict the tertiary structure from the sequence of a protein using the above methodology is created and made freely accessible at http://www.scfbio-iitd.res.in/software/proteomics/rm2ts.jsp.

  18. Conformational behavior of phenylglycines and hydroxyphenylglycines and non-planarity of phenyl rings.

    PubMed

    Nandel, Fateh S; Shafique, Mohd

    2014-10-01

    The non-proteinogenic amino acids--phenylglycine (PG) and hydroxyphenylglycine (HPG) are crucial components of certain peptidic natural products and are important for the preparation of various medicines. In this, study, the conformation of model dipeptides Ac-X-NHMe of PG, p-HPG and 3, 5-di-hydroxyphenylglycine (3, 5-DHPG) was studied both in R and S form by quantum mechanical (QM) and molecular dynamics approaches. On the energy scale, the conformational states of these molecules in both the R and S were found to be degenerate by QM studies, stabilized by non-covalent interactions like carbonyl--carbonyl interactions, carbonyl-lp .. π (aromatic ring) interactions etc. These interactions disappeared/weakened due to interaction of water molecules with carbonyl groups of backbone in simulation and water was found to interact with the aromatic ring through O(w)-H .. π or O(w)lp .. π interactions. The degeneracy of conformational states was lifted in favor of R-form of PG and DHPG and water molecules interactions with aromatic ring led to non-planarity of the aromatic ring. In simulation studies, irrespective of the starting geometry, the Φ, ψ values for the R form correspond to inverse β/inverse collagen region and for the S-form, the Φ, ψ values correspond to β/collagen region i.e., adopt single conformation. The obtained results were in conformity with the CD spectroscopic data on D-PG and D-p-HPG. The conformational behavior of the unusual amino acids might be of great help in designing of bioactive peptides/peptide based drugs to be realized in single conformation--an essential requirement.

  19. Relative stability of major types of beta-turns as a function of amino acid composition: a study based on Ab initio energetic and natural abundance data.

    PubMed

    Perczel, András; Jákli, Imre; McAllister, Michael A; Csizmadia, Imre G

    2003-06-06

    Folding properties of small globular proteins are determined by their amino acid sequence (primary structure). This holds both for local (secondary structure) and for global conformational features of linear polypeptides and proteins composed from natural amino acid derivatives. It thus provides the rational basis of structure prediction algorithms. The shortest secondary structure element, the beta-turn, most typically adopts either a type I or a type II form, depending on the amino acid composition. Herein we investigate the sequence-dependent folding stability of both major types of beta-turns using simple dipeptide models (-Xxx-Yyy-). Gas-phase ab initio properties of 16 carefully selected and suitably protected dipeptide models (for example Val-Ser, Ala-Gly, Ser-Ser) were studied. For each backbone fold most probable side-chain conformers were considered. Fully optimized 321G RHF molecular structures were employed in medium level [B3LYP/6-311++G(d,p)//RHF/3-21G] energy calculations to estimate relative populations of the different backbone conformers. Our results show that the preference for beta-turn forms as calculated by quantum mechanics and observed in Xray determined proteins correlates significantly.

  20. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.

    PubMed

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David

    2005-01-12

    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  1. The role of the AT pairs in the acid denaturation of DNA.

    PubMed Central

    Hermann, P; Fredericq, E

    1977-01-01

    It has been determined previously that the protonation of the GC pairs induces a DNA conformation change which leads to a "metastable" structure. The role of the AT pairs, however, is no well known because the protonation does not modify their spectral properties. By means of an indirect method based on the binding of proflavine, it has been determined that the AT pairs are protonated before the acid-induced denaturation and that they seem to be unable to assume a conformation change when protonated. These results would indicate that the protonated AT pairs may be responsible for the induction of the acid denaturation and not the GC pairs as it was thought previously. PMID:20604

  2. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.

    PubMed

    Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S

    2005-01-01

    Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.

  3. Origins of pressure-induced protein transitions.

    PubMed

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  4. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase

    PubMed Central

    Sündermann, Axel; Oostenbrink, Chris

    2013-01-01

    Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577

  5. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  6. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.

    PubMed

    Vazquez Reyes, Carolina; Tangprasertchai, Narin S; Yogesha, S D; Nguyen, Richard H; Zhang, Xiaojun; Rajan, Rakhi; Qin, Peter Z

    2017-06-01

    In a type II clustered regularly interspaced short palindromic repeats (CRISPR) system, RNAs that are encoded at the CRISPR locus complex with the CRISPR-associated (Cas) protein Cas9 to form an RNA-guided nuclease that cleaves double-stranded DNAs at specific sites. In recent years, the CRISPR-Cas9 system has been successfully adapted for genome engineering in a wide range of organisms. Studies have indicated that a series of conformational changes in Cas9, coordinated by the RNA and the target DNA, direct the protein into its active conformation, yet details on these conformational changes, as well as their roles in the mechanism of function of Cas9, remain to be elucidated. Here, nucleic acid-dependent conformational changes in Streptococcus pyogenes Cas9 (SpyCas9) were investigated using the method of site-directed spin labeling (SDSL). Single nitroxide spin labels were attached, one at a time, at one of the two native cysteine residues (Cys80 and Cys574) of SpyCas9, and the spin-labeled proteins were shown to maintain their function. X-band continuous-wave electron paramagnetic resonance spectra of the nitroxide attached at Cys80 revealed conformational changes of SpyCas9 that are consistent with a large-scale domain re-arrangement upon binding to its RNA partner. The results demonstrate the use of SDSL to monitor conformational changes in CRISPR-Cas9, which will provide key information for understanding the mechanism of CRISPR function.

  7. A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface

    PubMed Central

    Long, Joanna R.; Dindot, John L.; Zebroski, Henry; Kiihne, Suzanne; Clark, Rutilio H.; Campbell, Allison A.; Stayton, Patrick S.; Drobny, Gary P.

    1998-01-01

    Proteins play an important role in the biological mechanisms controlling hard tissue development, but the details of molecular recognition at inorganic crystal interfaces remain poorly characterized. We have applied a recently developed homonuclear dipolar recoupling solid-state NMR technique, dipolar recoupling with a windowless sequence (DRAWS), to directly probe the conformation of an acidic peptide adsorbed to hydroxyapatite (HAP) crystals. The phosphorylated hexapeptide, DpSpSEEK (N6, where pS denotes phosphorylated serine), was derived from the N terminus of the salivary protein statherin. Constant-composition kinetic characterization demonstrated that, like the native statherin, this peptide inhibits the growth of HAP seed crystals when preadsorbed to the crystal surface. The DRAWS technique was used to measure the internuclear distance between two 13C labels at the carbonyl positions of the adjacent phosphoserine residues. Dipolar dephasing measured at short mixing times yielded a mean separation distance of 3.2 ± 0.1 Å. Data obtained by using longer mixing times suggest a broad distribution of conformations about this average distance. Using a more complex model with discrete α-helical and extended conformations did not yield a better fit to the data and was not consistent with chemical shift analysis. These results suggest that the peptide is predominantly in an extended conformation rather than an α-helical state on the HAP surface. Solid-state NMR approaches can thus be used to determine directly the conformation of biologically relevant peptides on HAP surfaces. A better understanding of peptide and protein conformation on biomineral surfaces may provide design principles useful for the modification of orthopedic and dental implants with coatings and biological growth factors that are designed to enhance biocompatibility with surrounding tissue. PMID:9770443

  8. Thermodynamic analysis of the disorder-to-α-helical transition of 18.5-kDa myelin basic protein reveals an equilibrium intermediate representing the most compact conformation.

    PubMed

    Vassall, Kenrick A; Jenkins, Andrew D; Bamm, Vladimir V; Harauz, George

    2015-05-22

    The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

    PubMed

    Cao, Zanxia; Bian, Yunqiang; Hu, Guodong; Zhao, Liling; Kong, Zhenzhen; Yang, Yuedong; Wang, Jihua; Zhou, Yaoqi

    2018-03-16

    Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  10. Synthesis of P,N-Heterocycles from ω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs

    PubMed Central

    Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc

    2009-01-01

    P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477

  11. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  12. Chronic Beryllium Disease: Revealing the Role of Beryllium Ion and Small Peptides Binding to HLA-DP2

    PubMed Central

    Petukh, Marharyta; Wu, Bohua; Stefl, Shannon; Smith, Nick; Hyde-Volpe, David; Wang, Li; Alexov, Emil

    2014-01-01

    Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade. PMID:25369028

  13. Temperature-Dependent Conformational Properties of Human Neuronal Calcium Sensor-1 Protein Revealed by All-Atom Simulations.

    PubMed

    Zhu, Yuzhen; Ma, Buyong; Qi, Ruxi; Nussinov, Ruth; Zhang, Qingwen

    2016-04-14

    Neuronal calcium sensor-1 (NCS-1) protein has orthologues from Saccharomyces cerevisiae to human with highly conserved amino acid sequences. NCS-1 is an important factor controlling the animal's response to temperature change. This leads us to investigate the temperature effects on the conformational dynamics of human NCS-1 at 310 and 316 K by all-atom molecular dynamics (MD) simulations and dynamic community network analysis. Four independent 500 ns MD simulations show that secondary structure content at 316 K is similar to that at 310 K, whereas the global protein structure is expanded. Loop 3 (L3) adopts an extended state occuping the hydrophobic crevice, and the number of suboptimal communication paths between residue D176 and V190 is reduced at 316 K. The dynamic community network analysis suggests that the interdomain correlation is weakened, and the intradomain coupling is strengthened at 316 K. The elevated temperature reduces the number of the salt bridges, especially in C-domain. This study suggests that the elevated temperature affects the conformational dynamics of human NCS-1 protein. Comparison of the structural dynamics of R102Q mutant and Δ176-190 truncated NCS-1 suggests that the structural and dynamical response of NCS-1 protein to elevated temperature may be one of its intrinsic functional properties.

  14. iMODS: internal coordinates normal mode analysis server.

    PubMed

    López-Blanco, José Ramón; Aliaga, José I; Quintana-Ortí, Enrique S; Chacón, Pablo

    2014-07-01

    Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. C9/12 Ribbon-Like Structures in Hybrid Peptides Alternating α- and Thiazole-Based γ-Amino Acids.

    PubMed

    Bonnel, Clément; Legrand, Baptiste; Simon, Matthieu; Martinez, Jean; Bantignies, Jean-Louis; Kang, Young Kee; Wenger, Emmanuel; Hoh, Francois; Masurier, Nicolas; Maillard, Ludovic T

    2017-12-11

    According to their restricted conformational freedom, heterocyclic γ-amino acids are usually considered to be related to Z-vinylogous γ-amino acids. In this context, oligomers alternating α-amino acids and thiazole-based γ-amino acids (ATCs) were expected to fold into a canonical 12-helical shape as described for α/γ-hybrid peptides composed of cis-α/β-unsaturated γ-amino acids. However, through a combination of X-ray crystallography, NMR spectroscopy, FTIR experiments, and DFT calculations, it was determined that the folding behavior of ATC-containing hybrid peptides is much more complex. The homochiral α/(S)-ATC sequences were unable to adopt a stable conformation, whereas the heterochiral α/(R)-ATC peptides displayed novel ribbon structures stabilized by unusual C 9/12 -bifurcated hydrogen bonds. These ribbon structures could be considered as a succession of pre-organized γ/α dipeptides and may provide the basis for designing original α-helix mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel.

    PubMed

    Etchebest, C; Pullman, A

    1985-02-01

    Computations on the energy profiles for Na+ in the gramicidin A (GA) channel have been extended by introducing the effect, previously neglected, of the amino acid side chains of GA, fixed in their most stable conformations. The calculations have been performed in two approximations: 1) with the ethanolamine tail fixed in its most stable conformation, 2) with the tail allowed to optimize its conformation upon the progression of the ion. In both approximations the overall shape of the energy profile is very similar to that obtained in the absence of the side chains. One observes, however, a general lowering of the profile upon the adjunction of the side chains. The analysis of the factors responsible for this energy lowering indicates that it is due essentially to the electrostatic and polarisation components of the interaction which interplay differently, however, in the different parts of the channel. A particular role is attributed in this respect to the tryptophan residues of GA. The role of the 4 tryptophans present, Trp 15, 13, 11 and 9, is individualized by stripping of one of them at a time. The strongest effect on the energy deepening is due to Trp 13 and is particularly prominent in the entrance zone at 14.5A from the center of the channel. The result indicates the possibility of investigating theoretically the effect on the energy profiles of the substitution of the "natural" side chain by others.

  17. Quantum clustering and network analysis of MD simulation trajectories to probe the conformational ensembles of protein-ligand interactions.

    PubMed

    Bhattacharyya, Moitrayee; Vishveshwara, Saraswathi

    2011-07-01

    In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.

  18. 40 CFR 180.910 - Inert ingredients used pre- and post-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., carrier Lactic acid Solvent Lactic acid, 2-ethylhexyl ester (CAS Reg. No. 6283-86-9) Solvent Lactic acid, 2-ethylhexyl ester, (2S)- (CAS Reg. No. 186817-80-1) Solvent Lactic acid, n-propyl ester, (S); (CAS... coating agent Petroleum wax, conforming to 21 CFR 172.886(d) Coating agent Phosphoric acid Buffer...

  19. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2013-01-01

    Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.

  20. Near-infrared and ultraviolet induced isomerization of crotonic acid in N{sub 2} and Xe cryomatrices: First observation of two high-energy trans C–O conformers and mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuş, Nihal; Department of Physics, Anadolu University, 26470 Eskişehir; Fausto, Rui, E-mail: rfausto@ci.uc.pt

    2014-12-21

    E-crotonic acid was isolated in cryogenic solid N{sub 2} and xenon matrices, and subjected to Laser ultraviolet (UV) and near-infrared (NIR) irradiations. In the deposited matrices, the two low-energy cis C–O E-cc and E-ct conformers, which are the only forms significantly populated in the gas phase, were observed. UV irradiation (λ= 250 nm) of the compound in N{sub 2} matrix allows for experimental detection, not just of the two low-energy cis C–O isomers of Z-crotonic acid previously observed in the experiments carried out in argon matrix [Z-cc and Z-ct; R. Fausto, A. Kulbida, and O. Schrems, J. Chem. Soc., Faradaymore » Trans. 91, 3755–3770 (1995)] but also of the never observed before high-energy forms of both E- and Z-crotonic acids bearing the carboxylic acid group in the trans arrangement (E-tc and Z-tc conformers). In turn, NIR irradiation experiments in the N{sub 2} matrix allow to produce the high-energy E-tc trans C–O conformer in a selective way, from the initially deposited E-cc form. The vibrational signatures of all the 6 rotameric structures of the crotonic acids experimentally observed, including those of the new trans C–O forms, were determined and the individual spectra fully assigned, also with support of theoretically obtained data. On the other hand, as found before for the compound isolated in argon matrix, the experiments performed in xenon matrix failed to experimental detection of the trans C–O forms. This demonstrates that in noble gas matrices these forms are not stable long enough to allow for their observation by steady state spectroscopy techniques. In these matrices, the trans C–O forms convert spontaneously into their cis C–O counterparts, by tunnelling. Some mechanistic details of the studied processes were extracted and discussed.« less

  1. The Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for γ-Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding†

    PubMed Central

    Clift, Michael; Ji, Haitao; Deniau, Gildas P.; O’Hagan, David; Silverman, Richard B.

    2008-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5’-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5’-phosphate (PLP) to pyridoxamine 5’-phosphate (PMP). The enzyme then catalyzes the conversion of α-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred based on the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical approaches. PMID:17988152

  2. Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng

    2017-04-01

    VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states.

  3. Conformational stability of apoflavodoxin.

    PubMed Central

    Genzor, C. G.; Beldarraín, A.; Gómez-Moreno, C.; López-Lacomba, J. L.; Cortijo, M.; Sancho, J.

    1996-01-01

    Flavodoxins are alpha/beta proteins that mediate electron transfer reactions. The conformational stability of apoflavodoxin from Anaboena PCC 7119 has been studied by calorimetry and urea denaturation as a function of pH and ionic strength. At pH > 12, the protein is unfolded. Between pH 11 and pH 6, the apoprotein is folded properly as judged from near-ultraviolet (UV) circular dichroism (CD) and high-field 1H NMR spectra. In this pH interval, apoflavodoxin is a monomer and its unfolding by urea or temperature follows a simple two-state mechanism. The specific heat capacity of unfolding for this native conformation is unusually low. Near its isoelectric point (3.9), the protein is highly insoluble. At lower pH values (pH 3.5-2.0), apoflavodoxin adopts a conformation with the properties of a molten globule. Although apoflavodoxin at pH 2 unfolds cooperatively with urea in a reversible fashion and the fluorescence and far-UV CD unfolding curves coincide, the transition midpoint depends on the concentration of protein, ruling out a simple two-state process at acidic pH. Apoflavodoxin constitutes a promising system for the analysis of the stability and folding of alpha/beta proteins and for the study of the interaction between apoflavoproteins and their corresponding redox cofactors. PMID:8819170

  4. Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations

    PubMed Central

    Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng

    2017-01-01

    VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states. PMID:28425502

  5. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    PubMed

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Role of the Local Conformation of a Cyclically Constrained β-AMINO Acid in the Secondary Structures of a Mixed α/β Diastereomer Pair

    NASA Astrophysics Data System (ADS)

    Blodgett, Karl N.; Zwier, Timothy S.

    2017-06-01

    Synthetic foldamers are non-natural polymers designed to fold into unique secondary structures that either mimic nature's preferred secondary structures, or expand their possibilities. Among the most studied synthetic foldamers are β-peptides, which lengthen the distance between amide groups from the single substituted carbon spacer in α-peptides by one (β) additional carbon. Cyclically constrained β-amino acids can impart rigidity to the secondary structure of oligomers by locking in a particular conformation. The β-residue cis-2-aminocyclohexanecarboxylic acid (cis-ACHC) is one such amino acid which has been shown to drive vastly different secondary structures as a function of the local conformation of the cyclohexane ring. We present data on two diastereomers of the mixed α/β tri-peptide Ac-Ala-β_{ACHC}-Ala-NHBn which differ from one another by the chirality along the ACHC residue (SRSS vs. SSRS). The first oligomer is known to crystallize to a 9/11 mixed helix while the second forms no intramolecular hydrogen bonds in the crystal state. This talk will describe the conformation-specific IR and UV spectroscopy of the above two diastereomers under jet cooled conditions in the gas phase. Assignments based on comparison with calculations show the presence of incipient 9/11 mixed helices and competing structures containing more tightly folded hydrogen-bonded networks. The calculated global minimum structures are observed in each case, and in each case these folded structures are reminiscent of a β-turn.

  7. Computational chemical analysis of unconjugated bilirubin anions and insights into pKa values clarification

    NASA Astrophysics Data System (ADS)

    Vega-Hissi, Esteban G.; Estrada, Mario R.; Lavecchia, Martín J.; Pis Diez, Reinaldo

    2013-01-01

    The pKa, the negative logarithm of the acid dissociation equilibrium constant, of the carboxylic acid groups of unconjugated bilirubin in water is a discussed issue because there are quite different experimental values reported. Using quantum mechanical calculations we have studied the conformational behavior of unconjugated bilirubin species (in gas phase and in solution modeled implicitly and explicitly) to provide evidence that may clarify pKa values because of its pathophysiological relevance. Our results show that rotation of carboxylate group, which is not restricted, settles it in a suitable place to establish stronger interactions that stabilizes the monoanion and the dianion to be properly solvated, demonstrating that the rationalization used to justify the high pKa values of unconjugated bilirubin is inappropriate. Furthermore, low unconjugated bilirubin (UCB) pKa values were estimated from a linear regression analysis.

  8. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    NASA Astrophysics Data System (ADS)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  9. Purification, crystallization and preliminary crystallographic analysis of the SH2 domain of IL-2-inducible T-cell kinase.

    PubMed

    Joseph, Raji E; Ginder, Nathaniel D; Hoy, Julie A; Nix, Jay C; Honzatko, Richard B; Andreotti, Amy H

    2011-02-01

    Proline is a unique amino acid owing to the relatively small energy difference between the cis and trans conformations of its peptide bond. The X-Pro imide bond readily undergoes cis-trans isomerization in the context of short peptides as well as some proteins. However, the direct detection of cis-trans proline isomerization in folded proteins is technically challenging. NMR spectroscopy is well suited to the direct detection of proline isomerization in folded proteins. It is less clear how well X-ray crystallography can reveal this conformational exchange event in folded proteins. Conformational heterogeneity owing to cis-trans proline isomerization in the Src homology 2 (SH2) domain of the IL-2-inducible T-cell kinase (ITK) has been extensively characterized by NMR. Using the ITK SH2 domain as a test system, an attempt was made to determine whether proline isomerization could be detected in a crystal structure of the ITK SH2 domain. As a first step towards this goal, the purification, crystallization and preliminary characterization of the ITK SH2 domain are described.

  10. A quantitative measure of chirality inside nucleic acid databank.

    PubMed

    Pietropaolo, Adriana; Parrinello, Michele

    2011-08-01

    We show the capability of a chirality index (Pietropaolo et al., Proteins 2008;70:667-677) to investigate nucleic acid structures because of its high sensitivity to helical conformations. By analyzing selected structures of DNA and RNA, we have found that sequences rich in cytosine and guanine have a tendency to left-handed chirality, in contrast to regions rich in adenine or thymine which show strong negative, right-handed, chirality values. We also analyze RNA structures, where specific loops and hairpin motifs are characterized by a well-defined chirality value. We find that in nucleosome the chirality is exalted, whereas in ribosome it is reduced. Our results illustrate the sensitivity of this descriptor for nucleic acid conformations. Copyright © 2011 Wiley-Liss, Inc.

  11. [Interconnection between architecture of protein globule and disposition of conformational conservative oligopeptides in proteins from one protein family].

    PubMed

    Batianovskiĭ, A V; Filatov, I V; Namiot, V A; Esipova, N G; Volotovskiĭ, I D

    2012-01-01

    It was shown that selective interactions between helical segments of macromolecules can realize in globular proteins in the segments characterized by the same periodicities of charge distribution i.e. between conformationally conservative oligopeptides. It was found that in the macromolecules of alpha-helical proteins conformationally conservative oligopeptides are disposed at a distance being characteristic of direct interactions. For representatives of many structural families of alpha-type proteins specific disposition of conformationally conservative segments is observed. This disposition is inherent to a particular structural family. Disposition of conformationally conservative segments is not related to homology of the amino acid sequence but reflects peculiarities of native 3D-architectures of protein globules.

  12. Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p

    PubMed Central

    Wu, Boqian; Ottow, Kim; Poulsen, Peter; Gaber, Richard F.; Albers, Eva; Kielland-Brandt, Morten C.

    2006-01-01

    Recent studies of Saccharomyces cerevisiae revealed sensors that detect extracellular amino acids (Ssy1p) or glucose (Snf3p and Rgt2p) and are evolutionarily related to the transporters of these nutrients. An intriguing question is whether the evolutionary transformation of transporters into nontransporting sensors reflects a homeostatic capability of transporter-like sensors that could not be easily attained by other types of sensors. We previously found SSY1 mutants with an increased basal level of signaling and increased apparent affinity to sensed extracellular amino acids. On this basis, we propose and test a general model for transporter- like sensors in which occupation of a single, central ligand binding site increases the activation energy needed for the conformational shift between an outward-facing, signaling conformation and an inward-facing, nonsignaling conformation. As predicted, intracellular leucine accumulation competitively inhibits sensing of extracellular amino acids. Thus, a single sensor allows the cell to respond to changes in nutrient availability through detection of the relative concentrations of intra- and extracellular ligand. PMID:16651382

  13. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    PubMed

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Theoretical study of the gas-phase structures of sodiated and cesiated leucine and isoleucine: zwitterionic structure disfavored in kinetic method experiments.

    PubMed

    Rozman, Marko

    2005-10-01

    The most stable charge-solvated (CS) and zwitterionic (ZW) structures of sodiated and cesiated leucine and isoleucine were studied by density functional theory methods. According to the Boltzmann distribution in gas phase, both forms of LeuNa+ and IleNa+ exist, but in LeuCs+ and IleCs+, the ZW forms are dominant. Results for the sodiated compounds are consistent with the relationship found between decrease in relative stability of CS versus ZW form and aliphatic amino acid side chain length. The observed degeneracy in energy for IleNa+ conformers is at odds with kinetic method results. Additional calculations showed that kinetic method structural determinations for IleNa+ do not reflect relative order of populations in the lowest energy conformers. Since complexation of cationized amino acids into ion-bound dimers disfavors ZW structure by approximately 8 kJ mol(-1), it is suggested that for energy close conformers of sodium-cationized amino acids, the kinetic method may not be reliable for structural determinations. Copyright (c) 2005 John Wiley & Sons, Ltd.

  15. Methods in Enzymology: “Flexible backbone sampling methods to model and design protein alternative conformations”

    PubMed Central

    Ollikainen, Noah; Smith, Colin A.; Fraser, James S.; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remains experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side chain conformations, native side chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid co-variation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity. PMID:23422426

  16. Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity.

    PubMed

    Laezza, Antonio; Casillo, Angela; Cosconati, Sandro; Biggs, Caroline I; Fabozzi, Antonio; Paduano, Luigi; Iadonisi, Alfonso; Novellino, Ettore; Gibson, Matthew I; Randazzo, Antonio; Corsaro, Maria M; Bedini, Emiliano

    2017-08-14

    Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units. In-depth NMR and computational analysis suggested a fairly linear conformation for the semisynthetic polysaccharide, for which the antifreeze activity by a quantitative ice recrystallization inhibition assay was measured. We compared the structure-activity relationships for the Thr-derivatized chondroitin and the natural Thr-decorated CPS from C. psychrerythraea.

  17. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2

    PubMed Central

    Pisani, Pasquale; Rastelli, Giulio

    2016-01-01

    Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome. PMID:27100206

  18. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2.

    PubMed

    Pisani, Pasquale; Caporuscio, Fabiana; Carlino, Luca; Rastelli, Giulio

    2016-01-01

    Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome.

  19. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Różycki, Bartosz, E-mail: rozycki@ifpan.edu.pl; Cieplak, Marek

    2014-12-21

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kineticsmore » of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.« less

  20. Conformational analyses of 2,3-dihydroxypropanoic acid as a function of solvent and ionization state as determined by NMR spectroscopy.

    PubMed

    Drake, Michael D; Harsha, Alex K; Terterov, Sergei; Roberts, John D

    2006-03-01

    Vicinal (1)H--(1)H coupling constants were used to determine the conformational preferences of 2,3-dihydroxypropanoic acid (1) (DL-glyceric acid) in various solvents and its different carboxyl ionization states. The stereospecific assignments of J(12) and J(13) were confirmed through the point-group substitution of the C-3 hydrogen with deuterium, yielding rac-(2SR,3RS)-[3-(2)H]-1, and the observation of only J(13) in the (1)H NMR spectra. While hydrogen bonding and steric strain may be expected to drive the conformational equilibrium, their role is overshadowed by a profound gauche effect between the vicinal hydroxyl groups that mimics other substituted ethanes, such as 1,2-ethanediol and 1,2-difluoroethane. At low pH, the conformational equilibrium is heavily weighted toward the gauche-hydroxyl rotamers with a range of 81% in DMSO-d(6) to 92% in tert-butyl alcohol-d(10). At high pH, the equilibrium exhibits a larger dependence upon the polarity and solvating capability of the medium, although the gauche effect still dominates in D(2)O, 1,4-dioxane-d(8), methanol-d(4), and ethanol-d(6) (96, 89, 85, and 83% gauche-hydroxyls respectively). The observed preference for the gauche-hydroxyl rotamers is believed to stem primarily from hyperconjugative sigma(C--H) --> sigma*(C--OH) interactions.

  1. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach.

    PubMed

    Curuksu, Jeremy; Zacharias, Martin

    2009-03-14

    Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.

  2. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    NASA Astrophysics Data System (ADS)

    RóŻycki, Bartosz; Cieplak, Marek

    2014-12-01

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.

  3. Two intermediate states of the conformational switch in dual specificity phosphatase 13a.

    PubMed

    Wei, Chun Hwa; Min, Hee Gyeong; Kim, Myeongbin; Kim, Gwan Hee; Chun, Ha-Jung; Ryu, Seong Eon

    2018-02-01

    Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes.

    PubMed

    Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-08-01

    Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.

  5. Background of the Hammett equation as observed for isolated molecules: meta- and para-substituted benzoic acids.

    PubMed

    Exner, Otto; Böhm, Stanislav

    2002-09-06

    Fundamental model compounds for the Hammett equation, meta- and para-substituted benzoic acids, were investigated by the density functional theory at the B3LYP/6-311+G(d,p) level. Energies of 25 acids and of their anions were calculated in all possible conformations and from them the energies of the assumed mixture of conformers. Relative acidities correlated with the experimental gas-phase acidities almost within the experimental uncertainty, much more precisely than in the case of previous calculations at lower levels. Dissection of the substituent effects into those operating in the acid molecule and in the anion was carried out by means of isodesmic reactions starting from monosubstituted benzenes. Both effects are cooperating in the resulting effect on the acidity; those in the acid molecule are smaller but not negligible. They are also responsible for some deviations from the Hammett equation (through-resonance of para donor substituents) and for the weaker resonance in the acid molecule in meta derivatives; in the anions the inductive and resonance effects are almost equal. On the other hand, the cooperation of effects in the acid and in the anion makes the relative acidity more sensitive to electron withdrawing and is probably one of the reasons why the Hammett equation is so generally valid.

  6. Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies.

    PubMed

    Bardhan, Munmun; Chowdhury, Joydeep; Ganguly, Tapan

    2011-01-10

    In this paper, the nature of the interactions between bovine serum albumin (BSA) and aurintricarboxylic acid (ATA) has been investigated by measuring steady state and time-resolved fluorescence, circular dichroism (CD), FT-IR and fluorescence anisotropy in protein environment under physiological conditions. From the analysis of the steady state and time-resolved fluorescence quenching of BSA in aqueous solution in presence of ATA it has been inferred that the nature of the quenching originates from the combined effect of static and dynamic modes. From the determination of the thermodynamic parameters obtained from temperature-dependent changes in K(b) (binding constant) it was apparent that the combined effect of hydrophobic association and electrostatic attraction is responsible for the interaction of ATA with BSA. The effect of ATA on the conformation of BSA has been examined by analyzing CD spectrum. Though the observed results demonstrate some conformational changes in BSA in presence of ATA but the secondary structure of BSA, predominantly of α-helix, is found to retain its identity. Molecular docking of ATA with BSA also indicates that ATA docks through hydrophobic interaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Simulation of Electronic Circular Dichroism of Nucleic Acids: From the Structure to the Spectrum.

    PubMed

    Padula, Daniele; Jurinovich, Sandro; Di Bari, Lorenzo; Mennucci, Benedetta

    2016-11-14

    We present a quantum mechanical (QM) simulation of the electronic circular dichroism (ECD) of nucleic acids (NAs). The simulation combines classical molecular dynamics, to obtain the structure and its temperature-dependent fluctuations, with a QM excitonic model to determine the ECD. The excitonic model takes into account environmental effects through a polarizable embedding and uses a refined approach to calculate the electronic couplings in terms of full transition densities. Three NAs with either similar conformations but different base sequences or similar base sequences but different conformations have been investigated and the results were compared with experimental observations; a good agreement was seen in all cases. A detailed analysis of the nature of the ECD bands in terms of their excitonic composition was also carried out. Finally, a comparison between the QM and the DeVoe models clearly revealed the importance of including fluctuations of the excitonic parameters and of accurately determining the electronic couplings. This study demonstrates the feasibility of the ab initio simulation of the ECD spectra of NAs, that is, without the need of experimental structural or electronic data. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conformation-dependent restraints for polynucleotides: I. Clustering of the geometry of the phosphodiester group

    PubMed Central

    Kowiel, Marcin; Brzezinski, Dariusz; Jaskolski, Mariusz

    2016-01-01

    The refinement of macromolecular structures is usually aided by prior stereochemical knowledge in the form of geometrical restraints. Such restraints are also used for the flexible sugar-phosphate backbones of nucleic acids. However, recent highly accurate structural studies of DNA suggest that the phosphate bond angles may have inadequate description in the existing stereochemical dictionaries. In this paper, we analyze the bonding deformations of the phosphodiester groups in the Cambridge Structural Database, cluster the studied fragments into six conformation-related categories and propose a revised set of restraints for the O-P-O bond angles and distances. The proposed restraints have been positively validated against data from the Nucleic Acid Database and an ultrahigh-resolution Z-DNA structure in the Protein Data Bank. Additionally, the manual classification of PO4 geometry is compared with geometrical clusters automatically discovered by machine learning methods. The machine learning cluster analysis provides useful insights and a practical example for general applications of clustering algorithms for automatic discovery of hidden patterns of molecular geometry. Finally, we describe the implementation and application of a public-domain web server for automatic generation of the proposed restraints. PMID:27521371

  9. Conformations of 2-carboxy-1,4-butanedioic acid as a function of ionization state in dimethyl sulfoxide.

    PubMed

    Nair, Gautham; Roberts, John D

    2003-10-02

    [reaction: see text] The conformational equilibria of 2-carboxy-1,4-butanedioic acid and its mono-, di-, and trianions were estimated by NMR couplings in dimethyl sulfoxide (DMSO). Intramolecular hydrogen bonding was inferred for the mono- and dianions, but not for the triacid. For the di- and trianions, the (3)J(HH) couplings were consistent with the negative carboxylate groups being much closer together than might be expected from electrostatic repulsion considerations. The successive triacid pK(a) values were estimated as 7.0, 13.4, and approximately 20(?) on the Bordwell scale.

  10. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by... derived from stearic acid that is obtained from edible sources and that conforms to the requirements of...

  11. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by... derived from stearic acid that is obtained from edible sources and that conforms to the requirements of...

  12. Hidden Markov model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity.

    PubMed

    Camproux, A C; Tufféry, P

    2005-08-05

    Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.

  13. Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core.

    PubMed

    Borders, Donald B; Leese, Richard A; Jarolmen, Howard; Francis, Noreen D; Fantini, Amadeo A; Falla, Tim; Fiddes, John C; Aumelas, André

    2007-03-01

    Laspartomycin was originally isolated and characterized in 1968 as a lipopeptide antibiotic related to amphomycin. The molecular weight and structure remained unknown until now. In the present study, laspartomycin was purified by a novel calcium chelate procedure, and the structure of the major component (1) was determined. The structure of laspartomycin C (1) differs from that of amphomycin and all related antibiotics as a result of its peptide region being acidic rather than amphoteric and the amino acid branching into the side chain being diaminopropionic rather than diaminobutyric. In addition, the fatty acid side chain is 2,3-unsaturated compared to 3,4-unsaturated for amphomycin and other related antibiotics. Calcium ion addition to stabilize a particular conformer was found to be important for an enzymatic deacylation of the antibiotic. A peptide resulting from the deacylation was critical for chemical structure determination by NMR studies, which also involved addition of calcium ions to stabilize a conformer.

  14. NMR conformational studies of micelle-bound orexin-B: a neuropeptide involved in the sleep/awake cycle and feeding regulation.

    PubMed

    Miskolzie, Mark; Lucyk, Scott; Kotovych, George

    2003-12-01

    The preferred conformation of orexin-B, an orphan G-protein coupled receptor agonist (the human sequence is RSGPPGLQGRLQRLLQASGNHAAGILTM-NH(2)) has been determined by (1)H and (13)C 2D NMR spectroscopy and molecular modeling. Orexin-B has been implicated in sleep-wakefulness and feeding regulation. The membrane mimetic, sodium dodecylsulphate-d(25) (SDS), was used to mimic a physiological environment for the peptide. The secondary structure of orexin-B in SDS consists of two helical sections; helix I spans Leu(7) to Ser(18) and helix II spans Ala(22) to Leu(26). Helices I and II are believed to be involved in membrane binding, as is supported by the results of the spin label studies with 5-doxylstearic acid. Lee et al. (Eur. J. Biochem. 266, 831-839 (1999)) determined the [Phe(1)]-orexin-B conformation in water solution by NMR and showed that helix II extends from Ala(23) to Met(28). The C-terminal dipeptide, Thr(27)-Met(28), is unstructured is SDS, whereas in water it forms the end of helix II. The lack of apparent structure for Thr(27)-Met(28) in SDS allows the dipeptide to have conformational freedom to interact with the receptor. The conformation of orexin-B can now be used to explain the Ala substitution mutagenesis experiments and the D-amino acid substitution experiments (S. Asahi et al., Bioorg. Med. Chem. Lett. 13, 111-113, 2003). Asahi et al. have shown that Ala substitution from Gly(24) to Met(28) or D-amino acid substitution from Ala(23) to Met(28) causes a significant reduction in the potency of orexin-B for both OX(1)R and OX(2)R receptors. We postulate that helix II is involved in membrane recognition, and its binding to the membrane is essential for Thr(27)-Met(28) to adopt the correct receptor-binding conformation.

  15. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors.

    PubMed

    Qian, Keduo; Kuo, Reen-Yun; Chen, Chin-Ho; Huang, Li; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2010-04-22

    In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl-betulinic acid (MSB) analogues were also designed to better understand the contribution of the C-3' dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3), was also employed to study the influence of the backbone and the C-3 modification toward the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents and led to the design and synthesis of compound 12 (EC(50): 0.0006 microM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.

  16. Comprehensive theoretical study towards the accurate proton affinity values of naturally occurring amino acids

    NASA Astrophysics Data System (ADS)

    Dinadayalane, T. C.; Sastry, G. Narahari; Leszczynski, Jerzy

    Systematic quantum chemical studies of Hartree-Fock (HF) and second-order Møller-Plesset (MP2) methods, and B3LYP functional, with a range of basis sets were employed to evaluate proton affinity values of all naturally occurring amino acids. The B3LYP and MP2 in conjunction with 6-311+G(d,p) basis set provide the proton affinity values that are in very good agreement with the experimental results, with an average deviation of ?1 kcal/mol. The number and the relative strength of intramolecular hydrogen bonding play a key role in the proton affinities of amino acids. The computational exploration of the conformers reveals that the global minima conformations of the neutral and protonated amino acids are different in eight cases. The present study reveals that B3LYP/6-311+G(d,p) is a very good choice of technique to evaluate the proton affinities of amino acids and the compounds derived from them reliably and economically.

  17. Crotoxin: Structural Studies, Mechanism of Action and Cloning of its Gene

    DTIC Science & Technology

    1988-03-01

    thirteen amino acids being acidic . Sequencing of the three peptides present in the acidic subunit, two of which are blocked by pyroglutamate ...the sequence determination of both the basic and acidic subunits of crotoxin- The acidic * subunit peptides were d!Tfficult, .sfi~n~e two of-ftflý...fluorescence spectroscopy. Results indicate a large conformational change occurs upon) ccmplex formation between the acidic and basic subunits of all four

  18. X-ray diffraction and infrared spectroscopy of N,N-dimethylformamide and dimethyl sulfoxide solvatomorphs of betulonic acid.

    PubMed

    Boryczka, Stanisław; Jastrzebska, Maria; Bębenek, Ewa; Kusz, Joachim; Zubko, Maciej; Kadela, Monika; Michalik, Ewa

    2012-12-01

    X-ray diffraction and infrared spectroscopy measurements for the N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvatomorphs of betulonic acid (BA) were investigated. BA [3-oxolup-20(29)-en-28-oic acid, C(30)H(46)O(3)] exhibits a wide spectrum of biological activities and is considered to be a promising natural agent for the treatment of various cancer diseases. BA as a noncrystalline substance was obtained by oxidation of betulin. Crystal structures and the spectral data allowed analysis of hydrogen bonding (H-bonding), molecular conformation, and crystal packing differences in the solvatomorphs. Crystals of BA solvates were grown from the DMF-acetone (1:10, v/v) and DMSO-water (9:1, v/v) solutions. BA-DMF (1:1) solvate crystallizes in the monoclinic P2(1) space group, Z = 2. The unit cell parameters are as follows: cell lengths a = 13.2458(5) Å, b = 6.6501(2) Å, c = 17.9766(7) Å, and β = 110.513(4)°. BA-DMSO (1:1) solvate crystallizes in the orthorhombic P2(1)2(1)2(1) (Z = 4) space group with the following unit cell parameters: a = 6.6484(4) Å, b = 13.3279(8) Å, and c = 32.6821(19) Å. Conformational analysis of the six-membered rings, cyclopentane ring, and isopropenyl group showed differences in comparison with other betulin derivatives examined earlier. For both solvates, the intermolecular packing arrangement was governed mainly by H-bonds. The shortest H-bonds with D···A distances of 2.604 and 2.657 Å, and almost linear DH···A connection occurred between OH of carboxylic group of BA and oxygen atoms from O=C and O=S groups of DMF and DMSO, respectively. Copyright © 2012 Wiley Periodicals, Inc.

  19. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    PubMed

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  20. Functional and structural analysis of the sialic acid-binding domain of rotaviruses.

    PubMed Central

    Isa, P; López, S; Segovia, L; Arias, C F

    1997-01-01

    The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8. PMID:9261399

  1. In silico molecular engineering for a targeted replacement in a tumor-homing peptide

    PubMed Central

    Zanuy, David; Flores-Ortega, Alejandra; Jiménez, Ana I.; Calaza, M. Isabel; Cativiela, Carlos; Nussinov, Ruth; Ruoslahti, Erkki; Alemán, Carlos

    2009-01-01

    A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and Molecular Dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone···backbone and side chain···side chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptide exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu and Lys side chains face the same side of the molecule, which is considered essential for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity. PMID:19432404

  2. Entropy-driven homochiral self-sorting of a dynamic library.

    PubMed

    Atcher, Joan; Bujons, Jordi; Alfonso, Ignacio

    2017-04-11

    A dynamic mixture of stereoisomeric macrocycles derived from glutamic acid displayed a homochiral self-selection when increasing the acetonitrile content of the aqueous mixed medium. The homochiral self-sorting required the anionic form of the side chains and increased at higher temperature, implying an entropic origin. Conformational analysis (NMR and MD simulations) allowed us to explain the observed behaviour. The results show that entropy can play a role in the homochiral self-sorting in adaptive bio-inspired chemical systems.

  3. Synthesis, biological activity and molecular modeling of 4-fluoro-N-[ω-(1,2,3,4-tetrahydroacridin-9-ylamino)-alkyl]-benzamide derivatives as cholinesterase inhibitors.

    PubMed

    Szymański, P; Markowicz, M; Bajda, M; Malawska, B; Mikiciuk-Olasik, E

    2012-12-01

    The aim of this study was to synthesize and determine the biological activity of new derivatives of 4-fluorobenzoic acid and tetrahydroacridine towards inhibition of cholinesterases. Compounds were synthesized in condensation reaction between 9-aminoalkyl-tetrahydroacridines and the activated 4-fluorobenzoic acid. Properties towards inhibition of acetyl- and butyrylcholinesterase were estimated according to Ellman's spectrophotometric method. Among synthesized compounds the most active were compounds 4a and 4d. These compounds, in comparison with tacrine, were characterized by the similar values of IC50. Among all obtained compounds, 4d presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling studies revealed that all derivatives presented similar extended conformation in the gorge of acetylcholinesterase, however, there were 2 main conformations in the active center of butyrylcholinesterase: bent and extended conformation. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Adsorption and Conformation Change of Helical Peptides on Colloidal Silica

    NASA Astrophysics Data System (ADS)

    Read, Michael; Zhang, Shuguang; Mayes, Anne; Burkett, Sandra

    2001-03-01

    Helical conformations of short peptides in solution are partly stabilized by the pattern of electrostatic charge formed by the amino acid sequence. We have studied the role of electrostatics in the adsorption and helix-coil transition of peptides on oxide surfaces. Adsorption isotherms, along with a combination of spectroscopic techniques, show that this is a reversible equilibrium process. Strong electrostatic forces between ionic side chains and charged surface sites increase the adsorbed amount, and promote a loss of helicity in the adsorbed state qualitatively different from that observed upon thermal or chemical perturbation. The electrical dipole of the peptide, arising from the amino acid side chains, serves to orient the molecules on the surface. Effects of adsorption, orientation, and conformation change on the activity of peptides in model biological reactions, as well as the relevance of this simplified system to protein adsorption, are considered.

  5. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  6. Cocrystals of acyclovir with promising physicochemical properties.

    PubMed

    Sarkar, Anindita; Rohani, Sohrab

    2015-01-01

    Cocrystal forming ability of antiviral drug acyclovir (ACV) with different coformers was studied. Three cocrystals containing ACV with fumaric acid, malonic acid, and DL-tartaric acid were isolated. Methods of cocrystallization included grinding with dropwise solvent addition and solvent evaporation. The cocrystals were characterized by powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The crystal structure of the cocrystal with fumaric acid as conformer was determined by single crystal X-ray diffraction. Formation of supramolecular synthon was observed in the cocrystal. Stability with respect to relative humidity for the three cocrystals was evaluated. The aqueous solubility of the ACV-cocrystal materials was significantly improved with a maximum of malonic acid cocrystal, which was about six times more soluble at 35°C compared with that of parent ACV. The dissolution profile indicates that at any particular dissolution time, the concentration of cocrystals in the solution was higher than that of the parent ACV, and malonic acid cocrystals had a maximum release of about twice than the hydrated ACV. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. A gratuitous β-Lactamase inducer uncovers hidden active site dynamics of the Staphylococcus aureus BlaR1 sensor domain.

    PubMed

    Frederick, Thomas E; Peng, Jeffrey W

    2018-01-01

    Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.

  8. Preferential deprotonation and conformational stability of dicarboxylic acids: A packing effect

    NASA Astrophysics Data System (ADS)

    Barooah, Nilotpal; Singh, W. Marjit; Baruah, Jubaraj B.

    2008-03-01

    Crystal structures of a series of salts of (6-carboxymethyl-1,3,5,7-tetraoxo-3,5,6,7-tetrahydro-1 H-pyrrolo[3,4- f]isoindol-2-yl)-acetic acid ( 1) and 2-carboxymethyl-1,3-dioxo-2,3-dihydro-1 H-isoinodole-5-carboxylic acid ( 2) with different polynuclear nitrogen containing heterocyclic compounds, namely, quinoline, 1,10-phenanthroline and 8-hydroxyquinoline are determined. In the case of salt of 1 with quinolinium and 1,10-phenanthrolinium cations syn disposition between the carboxylate anion and carboxylic acid groups is observed; whereas in the case of the 8-hydroxyquinolinium salt of 1, it is the anti disposition. It is also found that the solid state structure of 1,10-phenanthrolinium salt of 2 has deprotonation at the aromatic end, whereas in 8-hydroxy-quinolinium salt of 2 is formed by deprotonation of carboxylic acid group on the aliphatic side. The dicarboxylic acid 2 forms 1:2 co-crystals with quinoline. From crystallographic study it is shown that the weak interactions become prominent in stabilising the observed conformers and also in stabilising specific deprotonated species.

  9. Conformational restriction through C alpha i <--> C alpha i cyclization: Ac12c, the largest cycloaliphatic C alpha,alpha- disubstituted glycine known.

    PubMed

    Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C

    2000-02-01

    Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed. Copyright 2000 John Wiley & Sons, Inc.

  10. Conformationally constrained farnesoid X receptor (FXR) agonists: alternative replacements of the stilbene.

    PubMed

    Akwabi-Ameyaw, Adwoa; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2011-10-15

    To further explore the optimum placement of the acid moiety in conformationally constrained analogs of GW 4064 1a, a series of stilbene replacements were prepared. The benzothiophene 1f and the indole 1g display the optimal orientation of the carboxylate for enhanced FXR agonist potency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Guanidinium/ammonium competition and proton transfer in the interaction of the amino acid arginine with the tetracarboxylic 18-crown-6 ionophore.

    PubMed

    Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno

    2018-02-07

    The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.

  12. Chirped-Pulse Ftmw Spectroscopy of the Lactic ACID-H_2O System

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Białkowska-Jaworska, Ewa; Zaleski, Daniel P.; Neill, Justin L.; Steber, Amanda L.; Pate, Brooks H.

    2011-06-01

    The previous study of the rotational spectrum of lactic acid in supersonic expansion revealed rather temperamental behaviour of signal intensity suggestive of considerable clusterization. Lactic acid samples contain an appreciable amount of water so that the presence of clusters with water, as well as lactic dimers is suspected. Several, mainly computational, studies of such species have already been published. Investigation of the chirped-pulse rotational spectrum of a heated lactic acid (LA) sample diluted in Ne carrier gas allowed unambiguous assignment of the LA-H_2O, LA-(H_2O)_2, and LA-(H_2O)_3 species. In addition, the rotational spectrum of the AaT conformer of lactic acid has been assigned. This conformer involves an intramolecular hydrogen bond to the hydroxyl of the carboxylic group and it has been estimated to be less stable by ca 10 kJ/mol than the most stable SsC conformer. The evidence for the assignment and a discussion of the derived properties for the new species are presented. L.Pszczółkowski, E.Białkowska-Jaworska, Z.Kisiel, J. Mol. Spectrosc. 234, 106 (2005). J.Sadlej, J.Cz.Dobrowolski, J.E.Rode, M.H.Jamróz, PCCP 8, 101 (2006) M.Losada, H.Tran, Y.Xu, J. Chem. Phys. 128, 014508 (2008) A.Smaga, J.Sadlej, J. Phys. Chem. A 114, 4427 (2010). A.Borba, A.Gomez-Zavaglia, L.Łapinski, R.Fausto, PCCP 6, 2101 (2004).

  13. Photoreverse Reaction Dynamics of Octopus Rhodopsin

    PubMed Central

    Inoue, Keiichi; Tsuda, Motoyuki; Terazima, Masahide

    2007-01-01

    Photoreverse reactions of octopus rhodopsin (Rh) from acid-metarhodopsin (Acid-Meta), which is the final product of the photoreaction of Rh, to Rh were studied by the time-resolved transient absorption and transient grating methods. The time course of the absorption signal showed a rapid change within 500 ns followed by one phase with a time constant of ∼470 μs, whereas the transient grating signal indicates three phases with time constants of <500 ns, ∼490 μs, and 2.6 ms. The faster two phases indicate the conformational change in the vicinity of the chromophore, and the slowest one represents conformational change far from the chromophore. The absorption spectrum of the first intermediate created just after the laser excitation (<500 ns) is already very similar to the final product, Rh. This behavior is quite different from that of the forward reaction from Rh to Acid-Meta, in which several intermediates with different absorption spectra are involved within 50 ns–500 μs. This result indicates that the conformation around the chromophore is easily adjusted from all-trans to 11-cis forms compared with that from 11-cis to all-trans forms. Furthermore, it was found that the protein energy is quickly relaxed after the excitation. One of the significantly different properties between Rh and Acid-Meta is the diffusion coefficient (D). D is reduced by about half the transformation from Rh to Acid-Meta. This large reduction was interpreted in terms of the helix opening of the Rh structure. PMID:17325000

  14. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc.

    PubMed

    Tian, Yan-Ping; Valkonen, Jari P T

    2015-09-01

    Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  15. SCit: web tools for protein side chain conformation analysis.

    PubMed

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  16. Exploring the Active Center of the LSD1/CoREST Complex by Molecular Dynamics Simulation Utilizing Its Co-crystallized Co-factor Tetrahydrofolate as a Probe.

    PubMed

    Zalloum, Waleed A; Zalloum, Hiba M

    2017-12-26

    Epigenetic targeting of cancer is a recent effort to manipulate the gene without destroying the genetic material. Lysine-specific demethylase 1 (LSD1) is one of the enzymes associated with the chromatin for post-translational modifications, where it demethylates lysine amino acid in the chromatin H3 tail. Many studies showed that inhibiting LSD1 could potentially be used to treat cancer epigenetically. LSD1 is associated with its corepressor protein CoREST, and it uses tetrahydrofolate as a co-factor to accept CH 2 from the demethylation process. In this study, the co-crystallized co-factor tetrahydrofolate was utilized to determine possible binding regions in the active center of the LSD1/CoREST complex. Also, the flexibility of the complex has been investigated by molecular dynamics simulation and subsequent analysis by clustering and principal component analysis. This research supported other studies and showed that LSD1/CoREST complex exists in two main conformational structures: open and closed. Furthermore, this study showed that tetrahydrofolate stably binds to the LSD1/CoREST complex, in its open conformation, at its entrance. It then binds to the core of the complex, inducing the closed conformation. Furthermore, the interactions of tetrahydrofolate to these two binding regions and the corresponding binding mode of tetrahydrofolate were investigated to be used in structure-based drug design.

  17. Determination of molecular structure of succinic acid in a very complex conformational landscape: Gas-phase electron diffraction (GED) and ab initio studies

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Abaev, Maxim A.; Rykov, Anatolii N.; Shishkov, Igor F.

    2011-06-01

    The molecular structure of succinic acid has been investigated by the gas-phase electron diffraction (GED) method for the first time. According to predictions of MP2/cc-pVTZ calculations, the molecule has 18 stable conformers with the C sbnd C sbnd C sbnd C chain in the gauche ( G) or anti ( A) configuration, and four of them, I ( G), II ( A), III ( G) and IV ( A) belonging to the C 2, C 2h, C 1 and C 1 point groups, respectively, with relative energies ΔE ZPE within 2.2 kcal/mol can be present at the experimental temperature of 445 K in noticeable amounts. The ratio of the conformers I:II:III:IV = 45(15):20(15):10(assumed):25(15) (in %) has been determined in the GED analysis guided by theoretical predictions. To take into account vibrational effects, the corrections Δ( r e - r a) to the experimental r a bond lengths were calculated from the MP2/cc-pVTZ quadratic and cubic force constants. The obtained equilibrium structural parameters of the dominant conformer I are the following (bond lengths in Å, angles in degrees): r e(C sp3sbnd C sp3) = 1.508(3), r e(C sp3sbnd C sp2) = 1.499(2), r e(C sbnd O) = 1.343(2), r e(C dbnd O) = 1.202(1), e(C sbnd C sbnd C) = 111.8(4), e(C sbnd C sbnd O) = 112.0(4), e(O sbnd C dbnd O) = 123.0(1), τ(C sbnd C sbnd C sbnd C) = 69.9(11). Yielding the best agreement with the GED structure, the MP2/cc-pVQZ approximation overestimates the C sbnd O and C dbnd O bond lengths by ca. 0.005(2) Å.

  18. Vibrational spectroscopic study on polymorphism of erucic acid and palmitoleic acid: γ1→α1 and γ→α reversible solid state phase transitions

    NASA Astrophysics Data System (ADS)

    Kaneko, Fumitoshi; Yamazaki, Kazuhiro; Kobayashi, Masamichi; Sato, Kiyotaka; Suzuki, Masao

    1994-08-01

    The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid ( cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid ( cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [ J. Phys. Chem.90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.

  19. Inhibition of Bacterial Rna Polymerase by Streptolydigin: Stabilization of A Straight-Bridge-Helix Active-Center Conformation

    PubMed Central

    Tuske, Steven; Sarafianos, Stefan G.; Wang, Xinyue; Hudson, Brian; Sineva, Elena; Mukhopadhyay, Jayanta; Birktoft, Jens J.; Leroy, Olivier; Ismail, Sajida; Clark, Arthur D.; Dharia, Chhaya; Napoli, Andrew; Laptenko, Oleg; Lee, Jookyung; Borukhov, Sergei; Ebright, Richard H.; Arnold, Eddy

    2009-01-01

    We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic-acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to, but not overlapping, the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist, and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents. PMID:16122422

  20. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering.

    PubMed

    Nobili, Alberto; Tao, Yifeng; Pavlidis, Ioannis V; van den Bergh, Tom; Joosten, Henk-Jan; Tan, Tianwei; Bornscheuer, Uwe T

    2015-03-23

    In order to improve the efficiency of directed evolution experiments, in silico multiple-substrate clustering was combined with an analysis of the variability of natural enzymes within a protein superfamily. This was applied to a Pseudomonas fluorescens esterase (PFE I) targeting the enantioselective hydrolysis of 3-phenylbutyric acid esters. Data reported in the literature for nine substrates were used for the clustering meta-analysis of the docking conformations in wild-type PFE I, and this highlighted a tryptophan residue (W28) as an interesting target. Exploration of the most frequently, naturally occurring amino acids at this position suggested that the reduced flexibility observed in the case of the W28F variant leads to enhancement of the enantioselectivity. This mutant was subsequently combined with mutations identified in a library based on analysis of a correlated mutation network. By interrogation of <80 variants a mutant with 15-fold improved enantioselectivity was found. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microwave Spectroscopic Study of the Atmospheric Oxidation Product m-TOLUIC Acid and its Monohydrate

    NASA Astrophysics Data System (ADS)

    Al-Jabiri, Mohamad; Schnitzler, Elijah G.; Seifert, Nathan A.; Jäger, Wolfgang

    2017-06-01

    m-Toluic acid is a photo-oxidation product of m-xylene, a chemical byproduct of the oil and gas industry, and is a common component of secondary atmospheric aerosol. Organic acids, such as m-toluic acid, are also thought to play an important role in the initial steps of aerosol formation, which involves formation of hydrogen bonded clusters with molecular species, such as water, ammonia, and sulfuric acid. Somewhat surprisingly, the rotational spectrum of the m-toluic acid monomer has not been studied before. We have identified four stable conformers using ab initio calculations at the MP2/6-311++G(2df,2pd) level of theory. The two lowest energy conformers are rather close in energy and their rotational spectra were measured using a Balle-Flygare type microwave spectrometer. The structures and barriers to methyl internal rotation were determined. We have identified four isomers of the monohydrate of m-toluic acid using ab initio calculations. Measurements of the microwave spectra of the two lowest energy isomers are underway with a newly constructed chirped pulse microwave Fourier transform spectrometer in the frequency range from 2 to 6 GHz. The spectra and analyses will be presented.

  2. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments.

    PubMed

    Pandey, Gyanendra; Saxena, Anil K

    2006-01-01

    A set of 65 flexible peptidomimetic competitive inhibitors (52 in the training set and 13 in the test set) of protein tyrosine phosphatase 1B (PTP1B) has been used to compare the quality and predictive power of 3D quantitative structure-activity relationship (QSAR) comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models for the three most commonly used conformer-based alignments, namely, cocrystallized conformer-based alignment (CCBA), docked conformer-based alignment (DCBA), and global minima energy conformer-based alignment (GMCBA). These three conformers of 5-[(2S)-2-({(2S)-2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoyl}amino)3-oxo-3-pentylamino)propyl]-2-(carboxymethoxy)benzoic acid (compound number 66) were obtained from the X-ray structure of its cocrystallized complex with PTP1B (PDB ID: 1JF7), its docking studies, and its global minima by simulated annealing. Among the 3D QSAR models developed using the above three alignments, the CCBA provided the optimal predictive CoMFA model for the training set with cross-validated r2 (q2)=0.708, non-cross-validated r2=0.902, standard error of estimate (s)=0.165, and F=202.553 and the optimal CoMSIA model with q2=0.440, r2=0.799, s=0.192, and F=117.782. These models also showed the best test set prediction for the 13 compounds with predictive r2 values of 0.706 and 0.683, respectively. Though the QSAR models derived using the other two alignments also produced statistically acceptable models in the order DCBA>GMCBA in terms of the values of q2, r2, and predictive r2, they were inferior to the corresponding models derived using CCBA. Thus, the order of preference for the alignment selection for 3D QSAR model development may be CCBA>DCBA>GMCBA, and the information obtained from the CoMFA and CoMSIA contour maps may be useful in designing specific PTP1B inhibitors.

  3. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.

    PubMed

    Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng

    2010-05-03

    To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5 and 6 have also been studied.

  4. Metal binding characterization and conformational studies using Raman microscopy of resin-bound poly(aspartic acid).

    PubMed

    Stair, Jacqueline L; Holcombe, James A

    2007-03-01

    The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.

  5. The crystal structure of dihydrodipicolinate synthase from Escherichia coli with bound pyruvate and succinic acid semialdehyde: unambiguous resolution of the stereochemistry of the condensation product.

    PubMed

    Boughton, Berin A; Dobson, Renwick C J; Hutton, Craig A

    2012-08-01

    The crystal structure of Escherichia coli dihydrodipicolinate synthase with pyruvate and substrate analogue succinic acid semialdehyde condensed with the active site lysine-161 was solved to a resolution of 2.3 Å. Comparative analysis to a previously reported structure both resolves the configuration at the aldol addition center, where the final addition product clearly displays the (S)-configuration, and the final conformation of the adduct within the active site. Direct comparison to two other crystal structures found in the Protein Data Bank, 1YXC, and 3DU0, demonstrates significant similarity between the active site residues of these structures. Copyright © 2012 Wiley Periodicals, Inc.

  6. Conformational analysis of a synthetic fish kisspeptin 1 peptide in membrane mimicking environments

    PubMed Central

    Shahi, Neetu; Singh, Atul Kumar; Khangembam, Victoria Chanu; Singh, Arvind Kumar; Kumar, Satish

    2017-01-01

    Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokisspeptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and characterized using an integrated (experimental and in silico) approach. The far-UV circular dichroism (CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking solvents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn and β conformations in membrane like environments. The near-UV CD spectroscopy was also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a prominent negative band was observed at around 275 nm when membrane mimetic solution was added. The observed ordered conformations of kiss 1 peptide in the different solvents indicated its potential biological activity which could enhance the secretion of gonadotropin-releasing hormone (GnRH) at BPG axis. The conformational information generated from the present study reinforces the application prospects of bioactive synthetic peptide analogs of kisspeptin 1 in improving the reproductive performances of important cultivable fish species. PMID:28977030

  7. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    NASA Astrophysics Data System (ADS)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  8. The CH/π hydrogen bond: Implication in chemistry

    NASA Astrophysics Data System (ADS)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  9. Membrane fusion activity of vesicular stomatitis virus glycoprotein G is induced by low pH but not by heat or denaturant.

    PubMed

    Yao, Yi; Ghosh, Kakoli; Epand, Raquel F; Epand, Richard M; Ghosh, Hara P

    2003-06-05

    The fusogenic envelope glycoprotein G of the rhabdovirus vesicular stomatitis virus (VSV) induces membrane fusion at acidic pH. At acidic pH the G protein undergoes a major structural reorganization leading to the fusogenic conformation. However, unlike other viral fusion proteins, the low-pH-induced conformational change of VSV G is completely reversible. As well, the presence of an alpha-helical coiled-coil motif required for fusion by a number of viral and cellular fusion proteins was not predicted in VSV G protein by using a number of algorithms. Results of pH dependence of the thermal stability of G protein as determined by intrinsic Trp fluorescence and circular dichroism (CD) spectroscopy show that the G protein is equally stable at neutral or acidic pH. Destabilization of G structure at neutral pH with either heat or urea did not induce membrane fusion or conformational change(s) leading to membrane fusion. Taken together, these data suggest that the mechanism of VSV G-induced fusion is distinct from the fusion mechanism of fusion proteins that involve a coiled-coil motif.

  10. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.

    PubMed

    Um, I C; Kweon, H Y; Park, Y H; Hudson, S

    2001-08-20

    Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.

  11. Comparison of formation of visco-elastic masses and their properties between zeins and kafirins.

    PubMed

    Taylor, Janet; Anyango, Joseph O; Muhiwa, Peter J; Oguntoyinbo, Segun I; Taylor, John R N

    2018-04-15

    Zeins of differing sub-class composition much more readily formed visco-elastic masses in water or acetic acid solutions than equivalent kafirin preparations. Visco-elastic masses could be formed from both zein and kafirin preparations by coacervation from glacial acetic acid. Dissolving the prolamins in glacial acetic acid apparently enabled protonation and complete solvation. Stress-relaxation analysis of coacervated zein and kafirin visco-elastic masses showed they were initially soft. With storage, they became much firmer. Zein masses exhibited predominantly viscous flow properties, whereas kafirin masses were more elastic. The γ-sub-class is apparently necessary for the retention of visco-elastic mass softness with kafirin and zein, and for elastic recovery of kafirin. Generally, regardless of water or acetic acid treatment, all the zein preparations had similar FTIR spectra, with greater α-helical conformation, than the kafirin preparations which were also similar to each other. Kafirin visco-elastic masses have a much higher elastic character than zein masses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    NASA Astrophysics Data System (ADS)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  13. DNA Polymorphism: A Comparison of Force Fields for Nucleic Acids

    PubMed Central

    Reddy, Swarnalatha Y.; Leclerc, Fabrice; Karplus, Martin

    2003-01-01

    The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)2 in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies. PMID:12609851

  14. Effects of side-chain orientation on the backbone conformation of the dehydrophenylalanine residue. Theoretical and X-ray study.

    PubMed

    Buczek, Aneta; Siodłak, Dawid; Bujak, Maciej; Broda, Małgorzata A

    2011-04-21

    Two E isomers of α,β-dehydro-phenylalanine, Ac-(E)-ΔPhe-NHMe (1a) and Ac-(E)-ΔPhe-NMe(2) (2a), have been synthesized and their low temperature structures determined by single-crystal X-ray diffraction. A systematic theoretical analysis was performed on these molecules and their Z isomers (1b and 2b). The ϕ,ψ potential energy surfaces were calculated at the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels in the gas phase and at the B3LYP/6-31+G(d,p) level in the chloroform and water solutions with the SCRF-PCM method. All minima were fully optimized by the MP2 and DFT methods, and their relative stabilities were analyzed in terms of π-conjugation, internal H-bonds, and dipole-dipole interactions between carbonyl groups. The results indicate that all the studied compounds can adopt the conformation H (ϕ, ψ ≈ ±40°, ∓120°) which is atypical for standard amino acids residues. A different arrangement of the side chain in the E and Z isomers causes them to have different conformational preferences. In the presence of a polar solvent both Z isomers of ΔPhe (1b and 2b) are found to adopt the 3(10)-helical conformation (left- and right-handed are equally likely). On the other hand, this conformation is not accessible or highly energetic for E isomers of ΔPhe (1a and 2a). Those isomers have an intrinsic inclination to have an extended conformation. The conformational space of the Z isomers is much more restricted than that of the E derivative both in the gas phase and in solution. In the gas phase the E isomers of ΔPhe have lower energies than the Z ones, but in the aqueous solution the energy order is reversed.

  15. SCit: web tools for protein side chain conformation analysis

    PubMed Central

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  16. Lead/acid battery development for heat engine/electric hybrid vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, J.; Taylor, A.H.; Goebel, F.

    A program was undertaken to develop a lead/acid battery system for use in a hybrid heat engine/electric vehicle. The basic requirements are that the battery be capable of supplying high-rate power pulses and of accepting high-rate charge pulses, both of short duration. The feasibility of developing a bipolar lead/acid battery system which conforms to these specifications was investigated by using a modular approach to system design. In the preferred design, a vertical array of lead strips placed on either side of each substrate are connected with adjacent strips on the opposite side only over the top of the substrate tomore » provide electrical conduction through the substrate. The following topics are discussed concerning this system: study of electrochemical problem areas relevant to design of a high-power-density battery; corrosion of substrate materials; development and mechanical testing of structures; life testing; design and preliminary cost analysis.« less

  17. Fliposomes: pH-triggered conformational flip of new trans-2-aminocyclohexanol-based amphiphiles causes instant cargo release in liposomes.

    PubMed

    Liu, Xin; Zheng, Yu; Samoshina, Nataliya M; Franz, Andreas H; Guo, Xin; Samoshin, Vyacheslav V

    2012-12-01

    A new type of pH-sensitive liposomes (fliposomes) was designed based on the amphiphiles that are able to perform a pH-triggered conformational flip (flipids). This flip disrupts the liposome membrane and causes rapid release of the liposome cargo, specifically in response to lowered pH. The flipids (1) and (2) are equipped with a trans-2-aminocyclohexanol conformational switch. pH-sensitive fliposomes containing one or both of these flipids, as well as POPC and PEG ceramide, were constructed and characterized. These compositions were stable at 4°C and pH 7.4 for several months. Fliposomes loaded with ANTS/DPX performed an unusually quick content release within a few seconds at pH below 8.5 (in case of 2) and 6.0 (in case of 1). This difference in pH sensitivity demonstrates a potential for the custom design of flipids by variation of the amino group to target areas with specific pH values. The pH titration curves for the fliposome leakage parallel the curves for the acid-induced conformational flip of 1 and 2 studied by ¹H NMR. A plausible mechanism of pH sensitivity starts with an acid-triggered conformational flip of 1 or 2, which changes the molecular size and shape, shortens the lipid tails, and perturbs the liposome membrane, resulting in the content leakage.

  18. Disaggregation of Amylin Aggregate by Novel Conformationally Restricted Aminobenzoic Acid containing α/β and α/γ Hybrid Peptidomimetics

    PubMed Central

    Paul, Ashim; Kalita, Sourav; Kalita, Sujan; Sukumar, Piruthivi; Mandal, Bhubaneswar

    2017-01-01

    Diabetes has emerged as a threat to the current world. More than ninety five per cent of all the diabetic population has type 2 diabetes mellitus (T2DM). Aggregates of Amylin hormone, which is co-secreted with insulin from the pancreatic β-cells, inhibit the activities of insulin and glucagon and cause T2DM. Importance of the conformationally restricted peptides for drug design against T2DM has been invigorated by recent FDA approval of Symlin, which is a large conformationally restricted peptide. However, Symlin still has some issues including solubility, oral bioavailability and cost of preparation. Herein, we introduced a novel strategy for conformationally restricted peptide design adopting a minimalistic approach for cost reduction. We have demonstrated efficient inhibition of amyloid formation of Amylin and its disruption by a novel class of conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps). We have inserted β, γ and δ -aminobenzoic acid separately into an amyloidogenic peptide sequence, synthesized α/β, α/γ and α/δ hybrid peptidomimetics, respectively. Interestingly, we observed the aggregation inhibitory efficacy of α/β and α/γ BSBHps, but not of α/δ analogues. They also disrupt existing amyloids into non-toxic forms. Results may be useful for newer drug design against T2DM as well as other amyloidoses and understanding amyloidogenesis. PMID:28054630

  19. Disaggregation of Amylin Aggregate by Novel Conformationally Restricted Aminobenzoic Acid containing α/β and α/γ Hybrid Peptidomimetics

    NASA Astrophysics Data System (ADS)

    Paul, Ashim; Kalita, Sourav; Kalita, Sujan; Sukumar, Piruthivi; Mandal, Bhubaneswar

    2017-01-01

    Diabetes has emerged as a threat to the current world. More than ninety five per cent of all the diabetic population has type 2 diabetes mellitus (T2DM). Aggregates of Amylin hormone, which is co-secreted with insulin from the pancreatic β-cells, inhibit the activities of insulin and glucagon and cause T2DM. Importance of the conformationally restricted peptides for drug design against T2DM has been invigorated by recent FDA approval of Symlin, which is a large conformationally restricted peptide. However, Symlin still has some issues including solubility, oral bioavailability and cost of preparation. Herein, we introduced a novel strategy for conformationally restricted peptide design adopting a minimalistic approach for cost reduction. We have demonstrated efficient inhibition of amyloid formation of Amylin and its disruption by a novel class of conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps). We have inserted β, γ and δ -aminobenzoic acid separately into an amyloidogenic peptide sequence, synthesized α/β, α/γ and α/δ hybrid peptidomimetics, respectively. Interestingly, we observed the aggregation inhibitory efficacy of α/β and α/γ BSBHps, but not of α/δ analogues. They also disrupt existing amyloids into non-toxic forms. Results may be useful for newer drug design against T2DM as well as other amyloidoses and understanding amyloidogenesis.

  20. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method

    PubMed Central

    2013-01-01

    Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158

  1. Free-energy landscape of the villin headpiece in an all-atom force field.

    PubMed

    Herges, Thomas; Wenzel, Wolfgang

    2005-04-01

    We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.

  2. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors.

    PubMed

    Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A

    2017-07-14

    The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Chirality transfer effects in proline-substituted coumarin compounds.

    PubMed

    Park, Eun-Kyung; Park, Bongjeong; Choi, Jun-Ho; Choi, Kihang; Cho, Minhaeng

    2009-08-13

    Conformations of proline-substituted chromophores are determined by using circular dichroism (CD) spectroscopy and quantum chemistry calculation method. Coumarin is chosen for the optical chromophore and proline amino acid is attached to its C7 position. The coumarin-proline conjugate considered contains both fluorophore and peptide linker where any polypeptides or biomolecules can be additionally connected to the free carboxyl group of the proline. Thus, the coumarin-proline is a potentially useful composite chirality-probe system for studies of protein dynamics in solution. However, detailed conformation of coumarin ring with respect to the proline ring has to be determined first. We found that there are two possible conformers, which differ from each other by the relative orientation of the coumarin ring. Comparing the measured CD spectra with the calculated ones, we directly show that only one of the two conformers is dominant in polar solvents except for water. The present study suggests that the local structure around an optical chromophore, when it is introduced to polypeptides or other biomolecules, can be studied by examining the electronic optical activity of the probe chromophore, as long as the chirality transfer from the attached amino acid to the chromophore is significantly large.

  4. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  5. X-ray Crystallographic Analysis of [alpha]-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2010-11-03

    Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimickingmore » the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.« less

  6. The CC/DFT Route towards Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as Case Study

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina

    2018-01-01

    The structures, relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of Pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semi-experimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg. for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt- and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol−1. Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm−1 are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC calculations. PMID:26575928

  7. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection

    PubMed Central

    Buscaglia, Robert; Miller, M. Clarke; Dean, William L.; Gray, Robert D.; Lane, Andrew N.; Trent, John O.; Chaires, Jonathan B.

    2013-01-01

    Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation. PMID:23804761

  8. The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation

    PubMed Central

    Kanade, Santosh R.; Paul, Beena; Rao, A. G. Appu; Gowda, Lalitha R.

    2006-01-01

    Field bean (Dolichos lablab) contains a single isoform of PPO (polyphenol oxidase) – a type III copper protein that catalyses the o-hydroxylation of monophenols and oxidation of o-diphenols using molecular oxygen – and is a homotetramer with a molecular mass of 120 kDa. The enzyme is activated manyfold either in the presence of the anionic detergent SDS below its critical micellar concentration or on exposure to acid-pH. The enhancement of kcat upon activation is accompanied by a marked shift in the pH optimum for the oxidation of t-butyl catechol from 4.5 to 6.0, an increased sensitivity to tropolone, altered susceptibility to proteolytic degradation and decreased thermostability. The Stokes radius of the native enzyme is found to increase from 49.1±2 to 75.9±0.6 Å (1 Å=0.1 nm). The activation by SDS and acid-pH results in a localized conformational change that is anchored around the catalytic site of PPO that alters the microenvironment of an essential glutamic residue. Chemical modification of field bean and sweet potato PPO with 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide followed by kinetic analysis leads to the conclusion that both the enzymes possess a core carboxylate essential to activity. This enhanced catalytic efficiency of PPO, considered as an inducible defence oxidative enzyme, is vital to the physiological defence strategy adapted by plants to insect herbivory and pathogen attack. PMID:16393141

  9. Cholic acid derivatives containing both 2-naphthylcarbamate and 3,5-dinitrophenylcarbamate groups: a combined circular dichroism-molecular mechanics approach to the definition of their molecular conformation.

    PubMed

    Alagona, Giuliano; Ghio, Caterina; Iuliano, Anna; Monti, Susanna; Pieraccini, Ilaria; Salvadori, Piero

    2003-04-18

    CD spectra of the chiral auxiliaries for enantioselective HPLC N-allyl-N'-methyl-3,12-bis(2-naphthyl)carbamoyloxy-7-(3,5-dinitrophenyl)carbamoyloxycholan-24-amide (1), N-allyl-N'-methyl-3-(3,5-dinitrophenyl)carbamoyloxy-7,12-bis(2-naphthyl)carbamoyloxycholan-24-amide (2), N-allyl-N'-methyl-3,7-bis(2-naphthyl)carbamoyloxy-12-(3,5-dinitrophenyl)carbamoyloxycholan-24-amide (3), and N-allyl-N'-methyl-3,7,12-tris(2-naphthyl)carbamoyloxycholan-24-amide (4) are presented. To determine the preferred conformations of those chiral auxiliaries, a random search based on the aromatic side-chain conformational degrees of freedom was performed and the energy was minimized using two different molecular mechanics force fields. The low energy structures presenting common features were arranged in groups and selected exploiting appropriate filters. The calculation of theoretical CD spectra according to the De Voe model has allowed a further discrimination among the conformations, specifying which of them gave calculated CD spectra in acceptable agreement with the experimental ones. Finally, taking into account the additivity of the contributions of each 2-naphthylcarbamate chromophore to the CD spectrum of the cholic acid derivatives, and, hence, choosing, for derivatives 1-3, those conformations in which the 2-naphthylcarbamate groups take a similar disposition as in 4, the preferentially assumed conformation of each compound was obtained. A molecular dynamics simulation in the presence of acetonitrile allowed the fluctuations of one of the structures, used as a test case, depending on environmental effects, to be examined.

  10. Influence of side chain conformation and configuration on glycosyl donor reactivity and selectivity as illustrated by sialic acid donors epimeric at the 7-position.

    PubMed

    Kancharla, Pavan K; Crich, David

    2013-12-18

    Two N-acetyl 4O,5N-oxazolidinone-protected sialyl thioglycosides epimeric at the 7-position have been synthesized and their reactivity and stereoselectivity in glycosylation reactions have been compared. It is demonstrated that the natural 7S-donor is both more reactive and more α-selective than the unnatural 7R-isomer. The difference in reactivity is attributed to the side chain conformation and specifically to the proximity of O7 to the anomeric center. In the natural 7S-isomer, O7 is closer to the anomeric center than in its unnatural 7R-epimer and, therefore, better able to support incipient positive charge at the locus of reaction. The difference in selectivity is also attributed to the side conformation, which in the unnatural 7R-series is placed perpendicularly above the α-face of the donor and so shields it to a greater extent than in the 7S-series. These observations are consistent with earlier conclusions on the influence of the side chain conformation on reactivity and selectivity derived from conformationally locked models in the glucose and galactose series and corroborate the suggestion that those effects are predominantly stereoelectronic rather than torsional. The possible relevance of side chain conformation as a factor in the influence of glycosylation stereoselectivity by remote protecting groups and as a control element in enzymic processes for glycosidic bond formation and hydrolysis are discussed. Methods for assignment of the anomeric configuration in the sialic acid glycosides are critically surveyed.

  11. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system.

    PubMed

    Ip, Hermia; Stratton, Kelly; Zgurskaya, Helen; Liu, Jun

    2003-12-12

    The multidrug efflux system AcrA-AcrB-TolC of Escherichia coli expels a wide range of drugs directly into the external medium from the bacterial cell. The mechanism of the efflux process is not fully understood. Of an elongated shape, AcrA is thought to span the periplasmic space coordinating the concerted operation of the inner and outer membrane proteins AcrB and TolC. In this study, we used site-directed spin labeling (SDSL) EPR (electron paramagnetic resonance) spectroscopy to investigate the molecular conformations of AcrA in solution. Ten AcrA mutants, each with an alanine to cysteine substitution, were engineered, purified, and labeled with a nitroxide spin label. EPR analysis of spin-labeled AcrA variants indicates that the side chain mobilities are consistent with the predicted secondary structure of AcrA. We further demonstrated that acidic pH induces oligomerization and conformational change of AcrA, and that the structural changes are reversible. These results suggest that the mechanism of action of AcrA in drug efflux is similar to the viral membrane fusion proteins, and that AcrA actively mediates the efflux of substrates.

  12. Role of conformational sampling in computing mutation-induced changes in protein structure and stability.

    PubMed

    Kellogg, Elizabeth H; Leaver-Fay, Andrew; Baker, David

    2011-03-01

    The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling. Copyright © 2010 Wiley-Liss, Inc.

  13. Nuclear magnetic resonance study of the conformation and dynamics of beta-casein at the oil/water interface in emulsions.

    PubMed Central

    ter Beek, L C; Ketelaars, M; McCain, D C; Smulders, P E; Walstra, P; Hemminga, M A

    1996-01-01

    A (13)C and (31)P nuclear magnetic resonance (NMR) study has been carried out on beta-casein adsorbed at the interface of a tetradecane/water emulsion. (13)C NMR spectra show signals from the carbonyl, carboxyl, aromatic, and C alpha carbons in beta-casein, well resolved from solvent resonances. Only a small fraction of all carbon atoms in beta-casein contribute to detectable signals; intensity measurements show that the observable spectrum is derived from about 30 to 40 amino acid residues.(31)P NMR spectra show signals from the five phosphoserines on the hydrophilic N-terminal part of the protein. Analysis of T(1) relaxation times of these nuclei, using the model free approach for the spectral density function and the line shape of the alpha-carbon region, indicates that a large part of the protein is in a random coil conformation with restricted motion and a relatively long internal correlation time. The NMR results show that the conformation and dynamics of the N-terminal part of beta-casein are not strongly altered at the oil/water interface, as compared to beta-casein in micelle-like aggregates in aqueous solution. PMID:9172765

  14. Three cocrystals and a cocrystal salt of pyrimidin-2-amine and glutaric acid.

    PubMed

    Odiase, Isaac; Nicholson, Catherine E; Ahmad, Ruksanna; Cooper, Jerry; Yufit, Dmitry S; Cooper, Sharon J

    2015-04-01

    Four new cocrystals of pyrimidin-2-amine and propane-1,3-dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin-2-amine-glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin-2-amine-glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal-salt bis(2-aminopyrimidinium) glutarate-glutaric acid (1/2), 2C4H6N3(+)·C6H6O4(2-)·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal-salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)-(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen-bond patterns show certain similarities in all four structures.

  15. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    PubMed Central

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  16. Acid-induced aggregation propensity of nivolumab is dependent on the Fc.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao

    2016-01-01

    Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone.

  17. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    PubMed

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  18. 40 CFR 51.854 - Conformity analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Government taking an action subject to this subpart must make its own conformity determination... agency or develop its own analysis in order to make its conformity determination. Effective Date Note: At...

  19. Latent Class Analysis of Peer Conformity: Who Is Yielding to Pressure and Why?

    ERIC Educational Resources Information Center

    Kosten, Paul A.; Scheier, Lawrence M.; Grenard, Jerry L.

    2013-01-01

    This study used latent class analysis to examine typologies of peer conformity in a community sample of middle school students. Students responded to 31 items assessing diverse facets of conformity dispositions. The most parsimonious model produced three qualitatively distinct classes that differed on the basis of conformity to recreational…

  20. Potential mesogens based on pyridine derivatives: The geometric structure, conformational properties and characteristics of intermolecular hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Fedorov, Mikhail S.; Giricheva, Nina I.; Shpilevaya, Kseniya E.; Lapykina, Elena A.; Syrbu, Svetlana A.

    2017-03-01

    Conformational properties of the main part (excluding sbnd OC3H7 radicals) of the p-n-propyloxybenzoic (A1) and p-n-propyloxycinnamic (A2) acids molecules (relating to mesomorphic compounds) as well as p-n-propyloxybenzoic acid pyridine ester (B1) and p-n-propyloxyphenylazopyridine (B2) molecules (relating to non-mesomorphic compounds) were studied by DFT(B3LYP)/cc-pVTZ method. It was shown that the main parts of A1 and A2 acids are rigid. The barrier to internal rotation of pyridine fragment in the B1 and B2 molecules depends on the nature of the bridging group. It was determined that all studied A1⋯B1, A2⋯B1 and A2⋯B2 complexes are characterized by a strong hydrogen bond. The binding energy of complexes (≈14 kcal/mol, with BSSE corrections, DFT(B97D)/6-311++G**) exceeds the energy per hydrogen bond in the corresponding acid dimers (≈10 kcal/mol). The structural non-rigidity of A⋯B complexes is mainly caused by possibility of sbnd OC3H7 radicals internal rotation and A and B molecules rotation about the (H)O⋯N line. The characteristics of intermolecular hydrogen bonds were determined by NBO-analysis. The obtained results indicate that examined complexes correspond to the basic requirements to mesogen molecular forms. The thermodynamic functions of the gas-phase complexation reactions (idealized model of the complexes formation in the condensed state) were calculated. Preliminary studies of mesogen-non-mesogen A1⋯B2 system by differential scanning calorimetry and polarizing optical microscopy, showed that it has mesomorphic properties.

  1. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  2. Guiding Conformation Space Search with an All-Atom Energy Potential

    PubMed Central

    Brunette, TJ; Brock, Oliver

    2009-01-01

    The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015

  3. Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System

    NASA Technical Reports Server (NTRS)

    Tischler, Adelbert O.; Bellman, Donald R.

    1951-01-01

    Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.

  4. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. β N-O turns and helices induced by β2-aminoxy peptides: synthesis and conformational studies.

    PubMed

    Jiao, Zhi-Gang; Chang, Xiao-Wei; Ding, Wei; Liu, Guo-Jun; Song, Ke-Sheng; Zhu, Nian-Yong; Zhang, Dan-Wei; Yang, Dan

    2011-07-04

    Herein, we report an efficient route for the asymmetric synthesis of β(2)-aminoxy acids as well as experimental and theoretical studies of conformations of peptides composed of β(2)-aminoxy acids. The nine-membered-ring intramolecular hydrogen bonds, namely, β N-O turns, are generated between adjacent residues in those peptides, in accordance with our computational results. The presence of two consecutive homochiral β N-O turns leads to the formation of β N-O helical structures in solution, although both helical (composed of two β N-O turns of the same handedness) and reverse-turn (composed of two β N-O turns with opposite handedness) structures are of similar stability, as suggested by theoretical studies. Nevertheless, two slightly different conformations, with the same handedness, of β(2)-aminoxy monomers have been observed in the solid state and in solution according to our X-ray and 2D NOESY studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quantum theory of the structure and bonding in proteins. Part 11. A simplified method and its application to the α-amino-isobutyric acid residue

    NASA Astrophysics Data System (ADS)

    Peters, David; Peters, Jane

    Information about the preferred conformation of the α-amino-isobutyric acid residue (α-AIB) is obtained without explicit computation of its wave function. The conformation of lowest energy of this residue is close to the usual helical conformation and so the residue may occur at the 2 position of a type I or I' bend or in either position of a type III or III' bend. The available experimental information refers to a β bend formed from α-AIB-PRO and then the theory and experiment agree that the only possibility is a type III bend. It is predicted that a β sheet structure may be formed at rather higher energy and in the planar and not the pleated form. There is no apparent reason why this residue should not form an α helix. The simplified method used here is closely related to the partitioned potential energy methods which are widely used in this subject.

  7. Solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae SK1.

    PubMed

    Cescutti, P; Paoletti, S; Navarini, L; Flaibani, A

    1993-08-01

    The solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae SK1, SK1-CPS, were investigated by various methods. The SK1-CPS repeating unit is a branched pentasaccharide containing one glucuronic acid as single unit side chain; acetyl groups are present as non-carbohydrate substituents on the uronic acid residue in non-stoichiometric amounts. Chiro-optical, potentiometric, viscometric and rheological measurements have been performed in order to characterize the conformational behaviour of the polymer in water and in aqueous salt solutions. Under the investigated experimental conditions, changes of temperature, ionic strength and pH were shown not to induce any cooperative conformational transition. All the results obtained suggest that the solution conformation of SK1-CPS is a random coil with a certain degree of chain flexibility. The removal of the acetyl substituents apparently does not modify the overall conclusions drawn for the native polymer, except for an incipient tendency to aggregation revealed for high salt conditions.

  8. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Sandip; Schmandt, Nicolaus; Gicheru, Yvonne

    Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the openmore » conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.« less

  9. CADB: Conformation Angles DataBase of proteins

    PubMed Central

    Sheik, S. S.; Ananthalakshmi, P.; Bhargavi, G. Ramya; Sekar, K.

    2003-01-01

    Conformation Angles DataBase (CADB) provides an online resource to access data on conformation angles (both main-chain and side-chain) of protein structures in two data sets corresponding to 25% and 90% sequence identity between any two proteins, available in the Protein Data Bank. In addition, the database contains the necessary crystallographic parameters. The package has several flexible options and display facilities to visualize the main-chain and side-chain conformation angles for a particular amino acid residue. The package can also be used to study the interrelationship between the main-chain and side-chain conformation angles. A web based JAVA graphics interface has been deployed to display the user interested information on the client machine. The database is being updated at regular intervals and can be accessed over the World Wide Web interface at the following URL: http://144.16.71.148/cadb/. PMID:12520049

  10. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    PubMed

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  11. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  12. BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization.

    PubMed

    Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A; Ryu, Seong Eon; Kim, Deok-Soo

    2016-07-08

    Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Unfolding and inactivation during thermal denaturation of an enzyme that exhibits phytase and acid phosphatase activities.

    PubMed

    Wang, Xiao-Yun; Meng, Fan-Guo; Zhou, Hai-Meng

    2004-03-01

    The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.

  14. Mapping the Ca(2+) induced structural change in calreticulin.

    PubMed

    Boelt, Sanne Grundvad; Norn, Christoffer; Rasmussen, Morten Ib; André, Ingemar; Čiplys, Evaldas; Slibinskas, Rimantas; Houen, Gunnar; Højrup, Peter

    2016-06-16

    Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli.

    PubMed

    Rauschmeier, Martina; Schüppel, Valentina; Tetsch, Larissa; Jung, Kirsten

    2014-01-09

    The coordination of signal transduction and substrate transport represents a sophisticated way to integrate information on metabolite fluxes into transcriptional regulation. This widely distributed process involves protein-protein interactions between two integral membrane proteins. Here we report new insights into the molecular mechanism of the regulatory interplay between the lysine-specific permease LysP and the membrane-integrated pH sensor CadC, which together induce lysine-dependent adaptation of E. coli under acidic stress. In vivo analyses revealed that, in the absence of either stimulus, the two proteins form a stable association, which is modulated by lysine and low pH. In addition to its transmembrane helix, the periplasmic domain of CadC also participated in the interaction. Site-directed mutagenesis pinpointed Arg265 and Arg268 in CadC as well as Asp275 and Asp278 in LysP as potential periplasmic interaction sites. Moreover, a systematic analysis of 100 LysP variants with single-site replacements indicated that the lysine signal is transduced from co-sensor to sensor via lysine-dependent conformational changes (upon substrate binding and/or transport) of LysP. Our results suggest a scenario in which CadC is inhibited by LysP via intramembrane and periplasmic contacts under non-inducing conditions. Upon induction, lysine-dependent conformational changes in LysP transduce the lysine signal via a direct conformational coupling to CadC without resolving the interaction completely. Moreover, concomitant pH-dependent protonation of periplasmic amino acids in both proteins dissolves their electrostatic connections resulting in further destabilization of the CadC/LysP interaction. © 2013.

  16. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    PubMed

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    PubMed Central

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  18. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  19. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2018-05-02

    The dehydration process of gallic acid monohydrate was carried out by heating method and characterized using Raman spectroscopic technique. Density functional theory calculation with B3LYP function is applied to simulate optimized structures and vibrational frequencies of anhydrous gallic acid and its corresponding monohydrated form. Different vibrational modes are assigned by comparison between experimental and theoretical Raman spectra of above two polymorphs. Raman spectra show that vibrational modes of the monohydrate are distinctively different from those of anhydrous one. Meanwhile, the dynamic information about dehydration process of gallic acid monohydrate could also be observed and monitored directly with the help of Raman spectral analysis. The decay rate of the characteristic band from gallic acid monohydrate and the growth rate of anhydrous one are pretty consistent with each other. It indicates that there is no intermediate present during the dehydration process of gallic acid monohydrate. The results could offer us benchmark works for identifying both anhydrous and hydrated pharmaceutical compounds, characterizing their corresponding molecular conformation within various crystalline forms, and also providing useful information about the process of dehydration dynamic at the microscopic molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase.

    PubMed

    Levin, Mikhail K; Gurjar, Madhura; Patel, Smita S

    2005-05-01

    Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.

  1. Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis

    PubMed Central

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-01-01

    MicroRNAs (miRNAs) are endogenously produced ∼21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5′-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg2+) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago. PMID:20686687

  2. The research on conformal acid etching process of glass ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Kepeng; Guo, Peiji

    2014-08-01

    A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.

  3. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  4. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.

  5. The detection of conformational disorder by thermal analysis

    NASA Astrophysics Data System (ADS)

    Wunderlich, B.

    Conformational disorder in crystals is found in many molecules that possess a plurality of conformational isomers. Typical examples are linear macromolecules such as polyethylene, polytetrafluoroethylene and trans-1,4-polybutadiene; and small molecules such as paraffins, cycloparaffins, soaps, lipids and many liquid-crystal forming molecules. Conformational motion is often coupled with the cooperative creation of disorder. In this case a heat and entropy of transition is observed by thermal analysis. Levels of transition entropies can be estimated, assuming most of the disorder can be traced to conformational isomerism. In case there is conformational disorder frozen-in at low temperature, thermal analysis can be used to find the glass transition of a condis crystal. An Advanced Thermal Analysis System has been developed, and will be described that permits a detailed interpretation of the thermal analysis traces. It rests with the establishment of high quality heat capacity for the rigid solid state (vibration only) and the mobile liquid state (vibrations and large amplitude cooperative motion).

  6. The detection of conformational disorder by thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunderlich, B.

    1988-01-01

    Conformational disorder in crystals is found in many molecules that possess a plurality of conformational isomers. Typical examples are linear macromolecules such as polyethylene, polytetrafluoroethylene and trans-1,4-polybutadiene; and small molecules such as paraffins, cycloparaffins, soaps, lipids and many liquid-crystal forming molecules. Conformational motion is often coupled with the cooperative creation of disorder. In this case a heat and entropy of transition is observed by thermal analysis. Levels of transition entropies can be estimated, assuming most of the disorder can be traced to conformational isomerism. In case there is conformational disorder frozen-in at low temperature, thermal analysis can be used tomore » find the glass transition of a condis crystal. An Advanced Thermal Analysis System has been developed, and will be described that permits a detailed interpretation of the thermal analysis traces. It rests with the establishment of high quality heat capacity for the rigid solid state (vibration only) and the mobile liquid state (vibrations and large amplitude cooperative motion). 36 refs., 3 figs.« less

  7. Conformational flexibility of domain III of annexin V: the effect of pH and binding to membrane-water interfaces

    NASA Astrophysics Data System (ADS)

    Sopkova, Jana; Vincent, Michel; Takahashi, Maza; Lewit-Bentley, Anita; Gallay, Jacques

    1999-05-01

    Steady-state and time-resolved fluorescence of the single tryptophan residue (W187) of annexin V show that the conformation and the dynamics of domain III are strongly modified upon binding of the protein to negatively charged phospholipid vesicles in the presence of calcium, or upon incorporation into reverse micelles of water/sodium bis(2- ethylhexyl) sulfosuccinate (AOT) in iso-octane. In the protein at neutral pH, W187 is slightly mobile and buried in a hydrophobic pocket. It becomes more mobile and is moved in a more polar environment when the protein interacts with the model membranes. In each condition, the heterogeneity of the fluorescence intensity decay of W187 is likely due to the co- existence of local conformers with different dynamics. A similar change of conformation and dynamics can be provoked by mild acidic pH. This suggests that electrostatic interactions are important for the folding of domain III. An interplay of salt bridges implying charged amino-acid side-chains at the protein surface in domain III can be observed in the crystal structure. Local pH modifications at the membrane surface can therefore be responsible for the observed conformational change. The high flexibility of domain III in the membrane- bound protein suggests moreover that this domain may not be crucial for the interaction of the protein with the membrane, in agreement with recent atomic force microscope results (Reviakine et al., 1998, J. Struct. Biol. 121, 356-362).

  8. Molecular Modeling of Nucleic Acid Structure: Electrostatics and Solvation

    PubMed Central

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E.

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand the structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as means to sample conformational space for a better understanding of the relevance of a given model. From this discussion, the major limitations with modeling, in general, were highlighted. These are the difficult issues in sampling conformational space effectively—the multiple minima or conformational sampling problems—and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These are discussed in detail in this unit. PMID:18428877

  9. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    PubMed

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  10. The role of the conformational profile of polysaccharides on skin penetration: the case of hyaluronan and its sulfates.

    PubMed

    Cilurzo, Francesco; Vistoli, Giulio; Gennari, Chiara G M; Selmin, Francesca; Gardoni, Fabrizio; Franzè, Silvia; Campisi, Monica; Minghetti, Paola

    2014-04-01

    The literature data suggest the capacity of biomacromolecules to permeate the human skin, even though such a transdermal permeation appears to be governed by physicochemical parameters which are significantly different compared to those ruling the skin permeation of small molecules. On these grounds, the present study was undertaken to investigate the in vitro diffusion properties through the human epidermis of hyaluronic acid and their sulfates. Low- and medium-molecular-weight hyaluronic acids and the corresponding derivatives at two degrees of sulfation were then tested. In vitro studies evidenced that the sulfated polymers permeate better than the corresponding hyaluronic acid, despite their vastly greater polarity, while the observed permeation markedly decreases when increasing the polymer's molecular weight regardless of the sulfation degree. Using a fluorescent-labeled polysaccharide, it was also evidenced that hyaluronans have a great affinity for corneocytes and likely cross the stratum corneum mainly through a transcellular route. The molecular-dynamics study revealed how the observed permeations for the investigated polysaccharides can be rationalized by monitoring their conformational profiles, since the permeation was found to be directly related to their capacity to assume extended and flexible conformations. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Bioorganometallic chemistry. 8. The molecular recognition of aromatic and aliphatic amino acids and substituted aromatic and aliphatic carboxylic acid guests with supramolecular ({eta}{sup 5}-pentamethylcyclopentadienyl)rhodium - nucleobase, nucleoside, and nucleotide cyclic trimer hosts via non-covalent {pi}-{pi} and hydrophobic interactions in water: Steric, electronic, and conformational parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Ogo, Seiji; Fish, R.H.

    Molecular recognition, via non-covalent processes such as hydrogen bonding, {pi}-{pi}, and hydrophobic interactions, is an important biological phenomenon for guests, such as drugs, proteins, and other important biological molecules with, for example, host DNA/RNA. We have studied a novel molecular recognition process using guests that encompass aromatic and aliphatic amino acids [L-alanine, L-glutamine (L-Gln), L-histidine, L-isoleucine(L-Ile), L-leucine(L-Leu), L-phenylalanine(L-Phe), L-proline, L-tryptophan(L-Trp), L-valine(L-Val)], substituted aromatic carboxylic acids o-, m-, p-aminobenzoic acids (G1-3), benzoic acid (G4), phenylacetic acid (G5), p-methoxyphenylacetic acid (G6), o-methyoxybenozoic acid (G9), o-nitrobenzoic acid (G10), and aliphatic carboxylic acids [cyclohexylacetic acid (G7), 1-adamantanecarboxylic acid (G8)] with supramolecular, bioorganometallic hosts, ({eta}{supmore » 5}-pentamethylcyclopentadienyl)rhodium (Cp{sup *}Rh)-nucleobase, nucleoside, and nucleotide cyclic trimer complexes in aqueous solution at pH 7, utilizing {sup 1}H NMR, NOE, and molecular modeling techniques, and, as well, determining association constants (K{sub a}) and free energies of complexation ({Delta}{degree}G). The host-guest complexation occurs predominantly via non-covalent {pi}-{pi}, hydrophobic, and possible subtle H-bonding interactions, with steric, electronic, and molecular conformational parameters as important criteria. 8 refs., 6 figs., 3 tabs.« less

  12. Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain

    PubMed Central

    2015-01-01

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210

  13. Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain.

    PubMed

    Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L

    2014-11-04

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.

  14. The role of transmembrane segment 5 (TM5) in Na2 release and the conformational transition of neurotransmitter:sodium symporters toward the inward-open state

    PubMed Central

    Stolzenberg, Sebastian; Li, Zheng; Quick, Matthias; Malinauskaite, Lina; Nissen, Poul; Weinstein, Harel; Javitch, Jonathan A.; Shi, Lei

    2017-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by the reuptake of released neurotransmitters. This active accumulation of substrate against its concentration gradient is driven by the transmembrane Na+ gradient and requires that the transporter traverses several conformational states. LeuT, a prokaryotic NSS homolog, has been crystallized in outward-open, outward-occluded, and inward-open states. Two crystal structures of another prokaryotic NSS homolog, the multihydrophobic amino acid transporter (MhsT) from Bacillus halodurans, have been resolved in novel inward-occluded states, with the extracellular vestibule closed and the intracellular portion of transmembrane segment 5 (TM5i) in either an unwound or a helical conformation. We have investigated the potential involvement of TM5i in binding and unbinding of Na2, i.e. the Na+ bound in the Na2 site, by carrying out comparative molecular dynamics simulations of the models derived from the two MhsT structures. We find that the helical TM5i conformation is associated with a higher propensity for Na2 release, which leads to the repositioning of the N terminus and transition to an inward-open state. By using comparative interaction network analysis, we also identify allosteric pathways connecting TM5i and the Na2 binding site to the extracellular and intracellular regions. Based on our combined computational and mutagenesis studies of MhsT and LeuT, we propose that TM5i plays a key role in Na2 binding and release associated with the conformational transition toward the inward-open state, a role that is likely to be shared across the NSS family. PMID:28320858

  15. Different structural stability and toxicity of PrP(ARR) and PrP(ARQ) sheep prion protein variants.

    PubMed

    Paludi, Domenico; Thellung, Stefano; Chiovitti, Katia; Corsaro, Alessandro; Villa, Valentina; Russo, Claudio; Ianieri, Adriana; Bertsch, Uwe; Kretzschmar, Hans A; Aceto, Antonio; Florio, Tullio

    2007-12-01

    The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrP(ARQ) [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrP(ARR) [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrP(ARR) and PrP(ARQ) variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrP(ARR) form was more toxic than the scrapie susceptible PrP(ARQ) variant. Moreover, the alpha-helical conformation of PrP(ARR) was less stable than that of PrP(ARQ) and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrP(ARQ) variant displays a higher propensity to form large aggregates than PrP(ARR). Interestingly, in the presence of small amounts of PrP(ARR), PrP(ARQ) aggregability was reduced to levels similar to that of PrP(ARR). Thus, in contrast to PrP(ARR) toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrP(ARQ) that allows the formation of large amyloid fibrils.

  16. Mapping of the local environmental changes in proteins by cysteine scanning

    PubMed Central

    Yamazaki, Yoichi; Nagata, Tomoko; Terakita, Akihisa; Kandori, Hideki; Shichida, Yoshinori; Imamoto, Yasushi

    2014-01-01

    Protein conformational changes, which regulate the activity of proteins, are induced by the alternation of intramolecular interactions. Therefore, the detection of the local environmental changes around the key amino acid residues is essential to understand the activation mechanisms of functional proteins. Here we developed the methods to scan the local environmental changes using the vibrational band of cysteine S-H group. We validated the sensitivity of this method using bathorhodopsin, a photoproduct of rhodopsin trapped at liquid nitrogen temperature, which undergoes little conformational changes from the dark state as shown by the X-ray crystallography. The cysteine residues were individually introduced into 15 positions of Helix III, which contains several key amino acid residues for the light-induced conformational changes of rhodopsin. The shifts of S-H stretching modes of these cysteine residues and native cysteine residues upon the formation of bathorhodopsin were measured by Fourier transform infrared spectroscopy. While most of cysteine residues demonstrated no shift of S-H stretching mode, cysteine residues introduced at positions 117, 118, and 122, which are in the vicinity of the chromophore, demonstrated the significant changes. The current results are consistent with the crystal structure of bathorhodopsin, implying that the cysteine scanning is sensitive enough to detect the tiny conformational changes. PMID:27493492

  17. Incorporating beta-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded beta-sheets.

    PubMed

    Kaul, R; Angeles, A R; Jäger, M; Powers, E T; Kelly, J W

    2001-06-06

    To probe the conformational requirements of loop 1 in the Pin1 WW domain, the residues at the i + 2 and i + 3 positions of a beta-turn within this loop were replaced by dPro-Gly and Asn-Gly, which are known to prefer the conformations required at the i + 1 and i + 2 positions of type II' and type I' beta-turns. Conformational specificity or lack thereof was further examined by incorporating into the i + 2 and i + 3 positions a non-alpha-amino acid-based beta-turn mimetic (4-(2'-aminoethyl)-6-dibenzofuran propionic acid residue, 1), which was designed to replace the i + 1 and i + 2 positions of beta-turns. All these Pin WW variants are monomeric and folded as discerned by analytical ultracentrifugation, NMR, and CD. They exhibit cooperative two-state transitions and display thermodynamic stability within 0.5 kcal/mol of the wild-type WW domain, demonstrating that the acquisition of native structure and stability does not require a specific sequence and, by extension, conformation within loop 1. However, it could be that these loop 1 mutations alter the kinetics of antiparallel beta-sheet folding, which will be addressed by subsequent kinetic studies.

  18. Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.

    PubMed

    Lella, Muralikrishna; Mahalakshmi, Radhakrishnan

    2017-06-20

    Every amino acid exhibits a different propensity for distinct structural conformations. Hence, decoding how the primary amino acid sequence undergoes the transition to a defined secondary structure and its final three-dimensional fold is presently considered predictable with reasonable certainty. However, protein sequences that defy the first principles of secondary structure prediction (they attain two different folds) have recently been discovered. Such proteins, aptly named metamorphic proteins, decrease the conformational constraint by increasing flexibility in the secondary structure and thereby result in efficient functionality. In this review, we discuss the major factors driving the conformational switch related both to protein sequence and to structure using illustrative examples. We discuss the concept of an evolutionary transition in sequence and structure, the functional impact of the tertiary fold, and the pressure of intrinsic and external factors that give rise to metamorphic proteins. We mainly focus on the major components of protein architecture, namely, the α-helix and β-sheet segments, which are involved in conformational switching within the same or highly similar sequences. These chameleonic sequences are widespread in both cytosolic and membrane proteins, and these folds are equally important for protein structure and function. We discuss the implications of metamorphic proteins and chameleonic peptide sequences in de novo peptide design.

  19. Combining Ion Mobility and Cryogenic Spectroscopy for Structural and Analytical Studies of Biomolecular Ions.

    PubMed

    Kamrath, Michael Z; Rizzo, Thomas R

    2018-05-10

    Ion mobility spectrometry (IMS) has become a valuable tool in biophysical and bioanalytical chemistry because of its ability to separate and characterize the structure of gas-phase biomolecular ions on the basis of their collisional cross section (CCS). Its importance has grown with the realization that in many cases, biomolecular ions retain important structural characteristics when produced in the gas phase by electrospray ionization (ESI). While a CCS can help distinguish between structures of radically different types, one cannot expect a single number to differentiate similar conformations of a complex molecule. Molecular spectroscopy has also played an increasingly important role for structural characterization of biomolecular ions. Spectroscopic measurements, particularly when performed at cryogenic temperatures, can be extremely sensitive to small changes in a molecule's conformation and provide tight constraints for calculations of biomolecular structures. However, spectra of complex molecules can be heavily congested due to the presence of multiple stable conformations, each of which can have a distinct spectrum. This congestion can inhibit spectral analysis and complicate the extraction of structural information. Even when a single conformation is present, the conformational search process needed to match a measured spectrum with a computed structure can be overwhelming for peptides of more than a few amino acids, for example. We have recently combined ion mobility spectrometry and cryogenic ion spectroscopy (CIS) to characterize the structures of gas-phase biomolecular ions. In this Account, we illustrate how the coupling of IMS and CIS is by nature synergistic. On the one hand, IMS can be used as a conformational filter to reduce spectral congestion that arises from heterogeneous samples, facilitating structural analysis. On the other hand, highly resolved, cryogenic spectra can serve as a selective detector for IMS that can increase the effective resolution and hence the maximum number of distinct species that can be detected. Taken together, spectra and CCS measurements on the same system facilitates structural analysis and strengthens the conclusions that can be drawn from each type of data. After describing different approaches to combining these two techniques in such a way as to simplify the data obtained from each one separately, we present two examples that illustrate the type of insight gained from using spectra and CCS data together for characterizing gas-phase biomolecular ions. In one example, the CCS is used as a constraint for quantum chemical structure calculations of kinetically trapped species, where a lowest-energy criterion is not applicable. In a second example, we use both the CCS and a cryogenic infrared spectrum as a means to distinguish isomeric glycans.

  20. High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200K or D202N disease-related mutations of the human prion protein.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Bucciarelli, Tonino; Scotti, Luca; Chiovitti, Katia; Villa, Valentina; D'Arrigo, Cristina; Aceto, Antonio; Florio, Tullio

    2011-03-01

    Mutations in prion protein are thought to be causative of inherited prion diseases favoring the spontaneous conversion of the normal prion protein into the scrapie-like pathological prion protein. We previously reported that, by controlled thermal denaturation, human prion protein fragment 90-231 acquires neurotoxic properties when transformed in a β-rich conformation, resembling the scrapie-like conformation. In this study we generated prion protein fragment 90-231 bearing mutations identified in familial prion diseases (D202N and E200K), to analyze their role in the induction of a neurotoxic conformation. Prion protein fragment 90-231(wild type) and the D202N mutant were not toxic in native conformation but induced cell death only after thermal denaturation. Conversely, prion protein fragment 90-231(E200K) was highly toxic in its native structure, suggesting that E200K mutation per se favors the acquisition of a peptide neurotoxic conformation. To identify the structural determinants of prion protein fragment 90-231 toxicity, we show that while the wild type peptide is structured in α-helix, hPrP90-231 E200K is spontaneously refolded in a β-structured conformer characterized by increased proteinase K resistance and propensity to generate fibrils. However, the most significant difference induced by E200K mutation in prion protein fragment 90-231 structure in native conformation we observed, was an increase in the exposure of hydrophobic amino-acids on protein surface that was detected in wild type and D202N proteins only after thermal denaturation. In conclusion, we propose that increased hydrophobicity is one of the main determinants of toxicity induced by different mutations in prion protein-derived peptides. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Conformation of the Phosphate D-alanine Zwitterion in Bacterial Teichoic Acid from Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Garimella, Ravindranath; Halye, Jeffrey L.; Harrison, William; Klebba, Phillip E.; Rice, Charles V.

    2009-01-01

    The conformation of D-alanine (D-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The D-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH3+ group with the ability to form a contact-ion-pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the D-Ala cation; thus the ion-pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing 15N D-Ala and β-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling and the results demonstrate: 1) the metal-free amine-to-phosphate distance is 4.4 Å and 2) the amine-to-phosphate distance increases to 5.4 Å in the presence of Mg2+ ions. As a result, the zwitterion exists in a nitrogen-oxygen ion-pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of D-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies. PMID:19746945

  2. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  3. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D.

    PubMed

    Strynadka, N C; James, M N

    1991-07-20

    A structure of the trisaccharide 2-acetamido-2-deoxy-D-muramic acid-beta (1----4)-2-acetamido-2-deoxy-D-glucose-beta (1----4)-2-acetamido-2-deoxy-D-muramic acid (NAM-NAG-NAM), bound to subsites B, C and D in the active-site cleft of hen egg-white lysozyme has been determined and refined at 1.5 A resolution. The resulting atomic co-ordinates indicate that the NAM residue in site D is distorted from the full 4C1 chair conformation to one in which the ring atoms C-1, C-2, O-5 and C-5 are approximately coplanar, and the hydroxymethyl group is positioned axially (a conformation best described as a sofa). This finding supports the original proposals that suggested the ground-state conformation of the sugar bound in site D is strained to one that more closely resembles the geometry required for the oxocarbonium-ion transition state, the next step along the reaction pathway. Additionally, detailed analysis at 1.5 A resolution of the environments of the catalytic residues Glu35 and Asp52 provides new information on the properties that may allow lysozyme to promote the stabilization of an unusually long-lived oxocarbonium-ion transition state. Intermolecular interactions between the N-acetylmuramic acid residue in site D and the lysozyme molecule that contribute to the saccharide ring distortion include: close packing of the O-3' lactyl group with a hydrogen-bonded "platform" of enzyme residues (Asp52, Asn46, Asn59, Ser50 and Asp48), a close contact between the hydroxymethyl group of ring D and the 2'-acetamido group of ring C and a strong hydrogen-bonded interaction between the NH group of Val109 and O-6 of ring D that stabilizes the observed quasi-axial orientation of the -CH2OH group. Additionally, the structure of this complex shows a strong hydrogen bond between the carboxyl group of Glu35 and the beta-anomeric hydroxyl group of the NAM residue in site D. The hydrogen-bonded environment of Asp52 in the native enzyme and in the complex coupled with the very unfavorable direction of approach of the potential carboxylate nucleophile makes it most unlikely that there is a covalent glycosylenzyme intermediate on the hydrolysis pathway of hen egg-white lysozyme.

  4. Conformational analysis of a condensed macrocyclic β-lactam by NMR and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Vásárhelyi, Helga; Makara, Gergely

    1994-09-01

    The conformation of the new macrocyclic β-lactam ( 1) was investigated by NMR and molecular dynamics (MD) calculations. Restraints obtained from NOESY and ROESY experiments were introduced into MD simulations which led to well-defined conformations. The preference for the calculated minimum energy conformation was confirmed by the analysis of vicinal coupling constants. Experimental coupling constants agreed with computed values.

  5. Confocal Raman spectroscopy: In vivo biochemical changes in the human skin by topical formulations under UV radiation.

    PubMed

    Tosato, M G; Orallo, D E; Ali, S M; Churio, M S; Martin, A A; Dicelio, L

    2015-12-01

    A new approach to the study of the effects on human skin of mycosporine-like amino acids (MAAs) and gadusol (Gad) incorporated in polymer gel is proposed in this work. The depth profile and photoprotector effects of Pluronic F127® gels containing each of the natural actives were evaluated by in vivo confocal Raman spectroscopy aiming at the analysis of the biochemical changes on human skin. Hierarchical cluster analysis (HCA) showed that the data corresponding to different depths of the skin, from surface to 4 μm, and from 6 to 16 μm, remained in the same cluster. In vivo Raman spectra, classified into five different layers of epidermis according to their similarities, indicated that the amount of Gad gel increased by about 26% in the outermost layer of the stratum corneum (SC) and that MAAs gel at 2 μm depth was 103.4% higher than in the outermost layer of the SC. Variations in the SC of urocanic acid at 1490-1515 cm(-1) and 1652 cm(-1) and histidine at 1318 cm(-1) were calculated, before and after UV exposure with or without gels. With the application of gels the vibrational modes that correspond to lipids in trans conformation (1063 and 1128 cm(-1)) increased with respect to normal skin, whereas gauche conformation (1085 cm(-1)) disappeared. Our studies suggest that gels protected the skin against the stress of the natural defense mechanism caused by high levels of UV exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Conformation Analysis of T1 Lipase on Alcohols Solvent using Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Putri, A. M.; Sumaryada, T.; Wahyudi, S. T.

    2017-07-01

    Biodiesel usually is produced commercially via a transesterification reaction of vegetable oil with alcohol and alkali catalyst. The alkali catalyst has some drawbacks, such as the soap formation during the reaction. T1 Lipase enzyme had been known as a thermostable biocatalyst which is able to produce biodiesel through a cleaner process. In this paper the performance of T1 lipase enzyme as catalyst for transesterification reaction in pure ethanol, methanol, and water solvents were studied using a Molecular Dynamics (MD) Simulation at temperature of 300 K for 10 nanoseconds. The results have shown that in general the conformation of T1 lipase enzyme in methanol is more dynamics as shown by the value of root mean square deviation (RMSD), root mean squared fluctuation (RMSF), and radius of gyration. The highest solvent accessible surface area (SASA) total was also found in methanol due to the contribution of non-polar amino acid in the interior of the protein. Analysis of MD simulation has also revealed that the enzyme structure tend to be more rigid in ethanol environment. The analysis of electrostatic interactions have shown that Glu359-Arg270 salt-bridge pair might hold the key of thermostability of T1 lipase enzyme as shown by its strong and stable binding in all three solvents.

  7. Abundance of intrinsic structural disorder in the histone H1 subtypes.

    PubMed

    Kowalski, Andrzej

    2015-12-01

    The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses

    PubMed Central

    Jesús, Torres; Rogelio, López; Abraham, Cetina; Uriel, López; J- Daniel, García; Alfonso, Méndez-Tenorio; Lilia, Barrón Blanca

    2012-01-01

    There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results. PMID:23144542

  9. 2'β-Fluoro-Tricyclo Nucleic Acids (2'F-tc-ANA): Thermal Duplex Stability, Structural Studies, and RNase H Activation.

    PubMed

    Istrate, Alena; Katolik, Adam; Istrate, Andrei; Leumann, Christian J

    2017-08-01

    We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'β-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. On the calculation of puckering free energy surfaces

    NASA Astrophysics Data System (ADS)

    Sega, M.; Autieri, E.; Pederiva, F.

    2009-06-01

    Cremer-Pople puckering coordinates appear to be the natural candidate variables to explore the conformational space of cyclic compounds and in literature different parametrizations have been used to this end. However, while every parametrization is equivalent in identifying conformations, it is not obvious that they can also act as proper collective variables for the exploration of the puckered conformations free energy surface. It is shown that only the polar parametrization is fit to produce an unbiased estimate of the free energy landscape. As an example, the case of a six-membered ring, glucuronic acid, is presented, showing the artifacts that are generated when a wrong parametrization is used.

  11. On the structural intricacies of a metabolic precursor: Direct spectroscopic detection of water-induced conformational reshaping of mevalonolactone

    NASA Astrophysics Data System (ADS)

    Domingos, Sérgio R.; Pérez, Cristóbal; Schnell, Melanie

    2017-09-01

    We use high-resolution rotational spectroscopy to investigate the structural intricacies of the lactone form of mevalonic acid, precursor of the mevalonate pathway. By combining microwave spectroscopy with supersonic expansions and quantum-chemical calculations, we determine the two most stable conformations of the precursor. Complementary micro-solvation studies reveal that aggregation of the first water molecule induces a substantial structural rearrangement comprising a hydroxy rotation and an endocyclic core torsion to create a favourable geometry to accommodate the water molecule. We discuss the conformational aspects of the precursor in isolation and under micro-hydrated conditions.

  12. On the calculation of puckering free energy surfaces.

    PubMed

    Sega, M; Autieri, E; Pederiva, F

    2009-06-14

    Cremer-Pople puckering coordinates appear to be the natural candidate variables to explore the conformational space of cyclic compounds and in literature different parametrizations have been used to this end. However, while every parametrization is equivalent in identifying conformations, it is not obvious that they can also act as proper collective variables for the exploration of the puckered conformations free energy surface. It is shown that only the polar parametrization is fit to produce an unbiased estimate of the free energy landscape. As an example, the case of a six-membered ring, glucuronic acid, is presented, showing the artifacts that are generated when a wrong parametrization is used.

  13. PPII propensity of multiple-guest amino acids in a proline-rich environment.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-07-07

    There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.

  14. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  15. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers.

    PubMed

    Satoh, Hiroko; Oda, Tomohiro; Nakakoji, Kumiyo; Uno, Takeaki; Tanaka, Hiroaki; Iwata, Satoru; Ohno, Koichi

    2016-11-08

    This paper describes our approach that is built upon the potential energy surface (PES)-based conformational analysis. This approach automatically deduces a conformational transition network, called a conformational reaction route map (r-map), by using the Scaled Hypersphere Search of the Anharmonic Downward Distortion Following method (SHS-ADDF). The PES-based conformational search has been achieved by using large ADDF, which makes it possible to trace only low transition state (TS) barriers while restraining bond lengths and structures with high free energy. It automatically performs sampling the minima and TS structures by simply taking into account the mathematical feature of PES without requiring any a priori specification of variable internal coordinates. An obtained r-map is composed of equilibrium (EQ) conformers connected by reaction routes via TS conformers, where all of the reaction routes are already confirmed during the process of the deduction using the intrinsic reaction coordinate (IRC) method. The postcalculation analysis of the deduced r-map is interactively carried out using the RMapViewer software we have developed. This paper presents computational details of the PES-based conformational analysis and its application to d-glucose. The calculations have been performed for an isolated glucose molecule in the gas phase at the RHF/6-31G level. The obtained conformational r-map for α-d-glucose is composed of 201 EQ and 435 TS conformers and that for β-d-glucose is composed of 202 EQ and 371 TS conformers. For the postcalculation analysis of the conformational r-maps by using the RMapViewer software program we have found multiple minimum energy paths (MEPs) between global minima of 1 C 4 and 4 C 1 chair conformations. The analysis using RMapViewer allows us to confirm the thermodynamic and kinetic predominance of 4 C 1 conformations; that is, the potential energy of the global minimum of 4 C 1 is lower than that of 1 C 4 (thermodynamic predominance) and that the highest energy of those of all the TS structures along a route from 4 C 1 to 1 C 4 is lower than that of 1 C 4 to 4 C 1 (kinetic predominance).

  16. Changes in small angle X-ray scattering parameters observed upon ligand binding to rabbit muscle pyruvate kinase are not correlated with allosteric transitions†

    PubMed Central

    Fenton, Aron W.; Williams, Rachel; Trewhella, Jill

    2010-01-01

    Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M1-PYK). In the absence of substrate (phosphoenolpyruvate; PEP), SAXS-monitored conformational changes in M1-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M1-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under the current assay conditions, these small amino acids bind to the protein, but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, it can be concluded that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M1-PYK/small-amino-acid complexes (i.e. the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme vs. the M1-PYK/small-amino-acid complexes. PMID:20712377

  17. Antifreeze glycopeptide diastereomers.

    PubMed

    Nagel, Lilly; Budke, Carsten; Dreyer, Axel; Koop, Thomas; Sewald, Norbert

    2012-01-01

    Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4-55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments.

  18. Antifreeze glycopeptide diastereomers

    PubMed Central

    Nagel, Lilly; Budke, Carsten; Dreyer, Axel; Koop, Thomas

    2012-01-01

    Summary Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4–55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments. PMID:23209499

  19. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    PubMed Central

    Morando, Maria Agnese; Saladino, Giorgio; D’Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-01-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed. PMID:27087366

  20. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  1. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    NASA Astrophysics Data System (ADS)

    Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  2. Quantitative Structure-Cytotoxicity Relationship of Cinnamic Acid Phenetyl Esters.

    PubMed

    Uesawa, Yoshihiro; Sakagami, Hiroshi; Okudaira, Noriyuki; Toda, Kazuhiro; Takao, Koichi; Kagaya, Hajime; Sugita, Yoshiaki

    2018-02-01

    Many phenolic acid phenethyl esters possess diverse biological effects including antioxidant, cytoprotective, anti-inflammation and anti-tumor activities. However, most previous antitumor studies have not considered the cytotoxicity against normal cells. Ten cinnamic acid phenetyl esters were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity and tumor-specificity, in order to find their new biological activities. Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC 50 ) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC 50 against tumor cells. Apoptosis markers were detected by western blot analysis. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by force-field minimization. Western blot analysis demonstrated that [ 9 ] stimulated the cleavage of caspase-3, suggesting the induction of apoptosis. QSAR analysis demonstrated that TS values were correlated with shape, size and ionization potential. Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drugs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    PubMed

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  4. Conformational analysis by intersection: CONAN.

    PubMed

    Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve

    2003-01-15

    As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average <0.5 seconds/stereoisomer) a complete description of the low energy conformational space of a small molecule. The molecule is first decomposed into nonoverlapping nodes N (usually rings) and overlapping paths P with conformations (N and P) generated in an offline process. In a second step the node and path data are combined to form distinct conformers of the molecule. Finally, heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003

  5. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H.; Jonas, Ulrich

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  6. The structural study of acetohydroxamic and oxalodihydroxamic acids in DMSO solution based on the DFT calculations of NMR spectra

    NASA Astrophysics Data System (ADS)

    Kaczor, Agnieszka; Proniewicz, Leonard M.

    2004-10-01

    The 1H and 13C NMR spectra of acetohydroxamic (aha) and oxalodihydroxamic (oxha) acids were measured in DMSO- d6 solution. The atoms chemical shifts of chosen stable entgegen and zusammen conformers of monomeric acids were computed along with some clusters of the compounds with the solvent molecules [B3LYP/6-311++G(d,p), GIAO]. The latter were proposed to explain the differences between the theoretical and experimental resonances of the protons of the N-H and O-H groups. The computed chemical shifts of aha-(DMSO) 2 and oxha-(DMSO) 2 models are in good agreement with experimental data proving that the compounds existing in solution form aggregates with DMSO. The acids are H-bonded via all the labile protons to the oxygen atoms of the solvent molecules. aha exists in the zusammen and entgegen (relative to C-N bond) forms with the relative intensities of 8:1 while the sole z, E, z-conformers (notation refers to C-N, C-C and C-N bonds, respectively) were found for oxha.

  7. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers.

    PubMed

    Kaura, Mamta; Kumar, Pawan; Hrdlicka, Patrick J

    2014-07-03

    Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.

  8. Synthon preference in the cocrystal of 3,4,5-trifluorophenylboronic acid with urea.

    PubMed

    Kopczyńska, Karolina; Marek, Paulina H; Banaś, Bartłomiej; Madura, Izabela D

    2017-11-01

    The comprehensive description of the crystal structure of a novel 1:1 cocrystal of 3,4,5-trifluorophenylboronic acid with urea, C 6 H 4 BF 3 O 2 ·CH 4 N 2 O, is presented. Both components are good candidates for crystal engineering as they can create a variety of supramolecular synthons. The preference for the formation of different hetrosynthons is verified based on theoretical calculations. The syn-anti conformation of boronic acid has been found to be the most favourable in the formation of intermolecular interactions with urea. Moreover, the distortions present in the boron coordination sphere have been described quantitatively based on experimental data according to bond-valence vector model calculations. The results revealed that the deformation of the sphere is typical for a syn-anti conformation of boronic acids. The supramolecular structure of the cocrystal is composed of large synthons in the form of layers made up of O-H...O and N-H...O hydrogen bonds. The layers are joined via N-H...F hydrogen bonds which are unusual for urea cocrystal structures.

  9. Ethane-1,1,2-trisphosphonic acid hemihydrate.

    PubMed

    Delain-Bioton, Lise; Lohier, Jean François; Villemin, Didier; Sopková-de Oliveira Santos, Jana; Hix, Gary; Jaffrès, Paul Alain

    2008-02-01

    Ethane-1,1,2-trisphosphonic acid crystallizes as a hemihydrate, C(2)H(9)O(9)P(3).0.5H(2)O, in which the water O atom lies on an inversion centre in the space group P2(1)/c. The acid component, which contains a short but noncentred O-H...O hydrogen bond, adopts a gauche conformation. The acid components are linked by an extensive series of O-H...O hydrogen bonds to form layers, which are linked into pairs by the water molecules.

  10. Hydrogen bonding between phosphate and amino acid side chains

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Rodriguez, M. L.

    1986-03-01

    Hydrogen bonds between polar groups of amino acid side chains (histidine, lysine, glutamic acid) and phosphate ions have been studied by infrared spectroscopy. Proton transfer from amino acid groups to phosphate occur mainly in case that tribasic and dibasic phosphate ions take part in hydrogen bonds. Conformational changes and continuum are strongly related to the degree of proton transfer and hydration. It is pointed out that the aforementioned properties should be of great significance for nucleation and growth of prostatic and renal stones.

  11. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  12. Effects of Natural Osmolytes on the Protein Structure in Supercritical CO2: Molecular Level Evidence.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Nakhaei Pour, Ali

    2015-08-20

    Protein instability in supercritical CO2 limits the application of this green solvent in enzyme-catalyzed reactions. CO2 molecules act as a protein denaturant at high pressure under supercritical conditions. Here, for the first time, we show that natural osmolytes could stabilize protein conformation in supercritical CO2. Molecular dynamics simulation is used to monitor the effects of adding different natural osmolytes on the conformation and dynamics of chymotrypsin inhibitor 2 (CI2) in supercritical CO2. Simulations showed that CI2 is denatured at 200 bar in supercritical CO2, which is in agreement with experimental observations. Interestingly, the protein conformation remains native after addition of ∼1 M amino acid- and sugar-based osmolyte models. These molecules stabilize protein through the formation of supramolecular self-assemblies resulting from macromolecule-osmolyte hydrogen bonds. Nevertheless, trimethylamine N-oxide, which is known as a potent osmolyte for protein stabilization in aqueous solutions, amplifies protein denaturation in supercritical CO2. On the basis of our structural analysis, we introduce a new mechanism for the osmolyte effect in supercritical CO2, an "inclusion mechanism". To the best of our knowledge, this is the first study that introduces the application of natural osmolytes in a supercritical fluid and describes mechanistic insights into osmolyte action in nonaqueous media.

  13. I222 crystal form of despentapeptide (B26-B30) insulin provides new insights into the properties of monomeric insulin.

    PubMed

    Whittingham, Jean L; Youshang, Zhang; Záková, Lenka; Dodson, Eleanor J; Turkenburg, Johan P; Brange, Jens; Dodson, G Guy

    2006-05-01

    Despentapeptide (des-B26-B30) insulin (DPI), an active modified insulin, has been crystallized in the presence of 20% acetic acid pH 2. A crystal structure analysis to 1.8 A spacing (space group I222) revealed that the DPI molecule, which is unable to make beta-strand interactions for physiological dimer formation and is apparently monomeric in solution, formed an alternative lattice-generated dimer. The formation of this dimer involved interactions between surfaces which included the B9-B19 alpha-helices (usually buried by the dimer-dimer contacts within the native hexamer). The two crystallographically independent molecules within the dimer were essentially identical and were similar in conformation to T-state insulin as seen in the T(6) insulin hexamer. An unusual feature of each molecule in the dimer was the presence of two independent conformations at the B-chain C-terminus (residues B20-B25). Both conformations were different from that of native insulin, involving a 3.5 A displacement of the B20-B23 beta-turn and a repositioning of residue PheB25 such that it made close van der Waals contact with the main body of the molecule, appearing to stabilize the B-chain C-terminus.

  14. Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas

    DOE PAGES

    Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; ...

    2014-12-08

    Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less

  15. Effect of Clustering Algorithm on Establishing Markov State Model for Molecular Dynamics Simulations.

    PubMed

    Li, Yan; Dong, Zigang

    2016-06-27

    Recently, the Markov state model has been applied for kinetic analysis of molecular dynamics simulations. However, discretization of the conformational space remains a primary challenge in model building, and it is not clear how the space decomposition by distinct clustering strategies exerts influence on the model output. In this work, different clustering algorithms are employed to partition the conformational space sampled in opening and closing of fatty acid binding protein 4 as well as inactivation and activation of the epidermal growth factor receptor. Various classifications are achieved, and Markov models are set up accordingly. On the basis of the models, the total net flux and transition rate are calculated between two distinct states. Our results indicate that geometric and kinetic clustering perform equally well. The construction and outcome of Markov models are heavily dependent on the data traits. Compared to other methods, a combination of Bayesian and hierarchical clustering is feasible in identification of metastable states.

  16. Quantitative Analysis of Nucleic Acid Stability with Ligands Under High Pressure to Design Novel Drugs Targeting G-Quadruplexes.

    PubMed

    Takahashi, Shuntaro; Sugimoto, Naoki

    2017-09-18

    Nucleic acids (DNA and RNA) can form various non-canonical structures. Because some serious diseases are caused by the conformational change of G-quadruplex DNA structures, the development of ligands that bind and stabilize G-quadruplex DNA is of interest to the field of nucleic acid chemistry. Volumetric changes (ΔV) in the biomolecular reaction include the structural change of biomolecules and hydration behaviors, which provide information about the tertiary interaction between G-quadruplex DNA and ligands. Thus, it is valuable to investigate ΔV values to understand the mechanism of interaction between non-canonical structures and their ligands. This unit describes methods that can be used to quantitatively analyze the interaction between G-quadruplex DNA and ligands by using high-pressure UV melting. The combination of thermodynamic parameters (ΔG, ΔH, ΔS, and ΔV) is a powerful tool to elucidate the mechanism of ligand binding to G-quadruplex without real structural analysis by NMR and X-ray spectroscopy, and gives useful information to design novel drugs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Thermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides

    PubMed Central

    Pasternak, Anna; Wengel, Jesper

    2010-01-01

    Thermodynamics provides insights into the influence of modified nucleotide residues on stability of nucleic acids and is crucial for designing duplexes with given properties. In this article, we introduce detailed thermodynamic analysis of RNA duplexes modified with unlocked nucleic acid (UNA) nucleotide residues. We investigate UNA single substitutions as well as model mismatch and dangling end effects. UNA residues placed in a central position makes RNA duplex structure less favourable by 4.0–6.6 kcal/mol. Slight destabilization, by ∼0.5–1.5 kcal/mol, is observed for 5′- or 3′-terminal UNA residues. Furthermore, thermodynamic effects caused by UNA residues are extremely additive with ΔG°37 conformity up to 98%. Direct mismatches involving UNA residues decrease the thermodynamic stability less than unmodified mismatches in RNA duplexes. Additionally, the presence of UNA residues adjacent to unpaired RNA residues reduces mismatch discrimination. Thermodynamic analysis of UNA 5′- and 3′-dangling ends revealed that stacking interactions of UNA residues are always less favourable than that of RNA residues. Finally, circular dichroism spectra imply no changes in overall A-form structure of UNA–RNA/RNA duplexes relative to the unmodified RNA duplexes. PMID:20562222

  18. Dynamics of living matter: can we ``see'' collective motions in proteins?

    NASA Astrophysics Data System (ADS)

    Hekstra, Doeke

    2015-03-01

    Proteins are ideal model systems for quantitative study of the interplay of physical and evolutionary forces. Collective, anharmonic motions of amino acid residues within proteins are thought to be central to their function, and to explain, in large part, the complex dependence of protein function on its constituent parts. Currently, the experimental characterization of such motions poses a major stumbling block on the way to a physical understanding of protein function and evolution. We are addressing this problem in two ways. First, alternate conformations of protein residues can often be distinguished in the electron density estimated from room-temperature X-ray crystallography. The dense packing of residues in the folded protein requires that such conformational variations must propagate through networks of amino acids to preclude local steric clashes. Fraser and colleagues showed that such steric conflicts can be used to extract contact networks of residues collectively switching conformation. We ask if these networks are conserved over homologous sequences and connected to the functional reaction coordinate, both of which would demonstrate their fundamental importance. I will describe initial results for the family of PDZ domains: small ligand-binding proteins for which a network of energetically and conformationally coupled residues controlling ligand affinity has been demonstrated previously by a range of methods. Second, the analysis of collective motions in proteins, by nearly any means, is indirect: nothing is seen moving. To directly induce and ``see'' motions on a range of time scales, we developed a new approach based on (a) electric field pulses to induce motions within a protein crystal and (b) time-resolved crystallography to observe these motions. Since proteins generically have a heterogeneous, modifiable charge distribution, this method could provide a powerful, general way of probing the collective motions, and excited states, of proteins in kinetic and atomic detail. I will present initial experiments showing the method is feasible. Taken together, these experiments begin to provide a basis for the development of a physical theory of proteins consistent with their function and adaptation - the source of their survival throughout the evolutionary process.

  19. Cryo-EM of the pathogenic VCP variant R155P reveals long-range conformational changes in the D2 ATPase ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountassif, Driss; Fabre, Lucien; Zaid, Younes

    Single amino acid mutations in valosin containing protein (VCP/p97), a highly conserved member of the ATPases associated with diverse cellular activities (AAA) family of ATPases has been linked to a severe degenerative disease affecting brain, muscle and bone tissue. Previous studies have demonstrated the role of VCP mutations in altering the ATPase activity of the D2 ring; however the structural consequences of these mutations remain unclear. In this study, we report the three-dimensional (3D) map of the pathogenic VCP variant, R155P, as revealed by single-particle Cryo-Electron Microscopy (EM) analysis at 14 Å resolution. We show that the N-terminal R155P mutation inducesmore » a large structural reorganisation of the D2 ATPase ring. Results from docking studies using crystal structure data of available wild-type VCP in the EM density maps indicate that the major difference is localized at the interface between two protomers within the D2 ring. Consistent with a conformational change, the VCP R155P variant shifted the isoelectric point of the protein and reduced its interaction with its well-characterized cofactor, nuclear protein localization-4 (Npl4). Together, our results demonstrate that a single amino acid substitution in the N-terminal domain can relay long-range conformational changes to the distal D2 ATPase ring. Our results provide the first structural clues of how VCP mutations may influence the activity and function of the D2 ATPase ring. - Highlights: • p97{sub R155P} and p97{sub A232E} decrease the ability of p97 to bind to its co-factor Npl4. • p97{sub R155P} has a different isoelectric point than that of p97{sub R95G}, p97{sub A232E} and p97{sub WT}. • Mutation R155P changes principally the conformation of the D2 ring. • Mutation R155P modifies the interface between two protomers within the D2 ring.« less

  20. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships.

    PubMed

    Conlon, J M

    2001-07-01

    The conformation of insulin in the crystalline state has been known for more than 30 years but there remains uncertainty regarding the biologically active conformation and the structural features that constitute the receptor-binding domain. The primary structure of insulin has been determined for at least 100 vertebrate species. In addition to the invariant cysteines, only ten amino acids (GlyA1, IleA2, ValA3, TyrA19, LeuB6, GlyB8, LeuB11, ValB12, GlyB23 and PheB24) have been fully conserved during vertebrate evolution. This observation supports the hypothesis derived from alanine-scanning mutagenesis studies that five of these invariant residues (IleA2, ValA3, TyrA19, GlyB23, and Phe24) interact directly with the receptor and five additional conserved residues (LeuB6, GlyB8, LeuB11, GluB13 and PheB25) are important in maintaining the receptor-binding conformation. With the exception of the hagfish, only conservative substitutions are found at B13 (Glu --> Asp) and B25(Phe --> Tyr). In contrast, amino acid residues that were also considered to be important in receptor binding based upon the crystal structure of insulin (GluA4, GlnA5, AsnA21, TyrB16, TyrB26) have been much less well conserved and are probably not components of the receptor-binding domain. The hypothesis that LeuA13 and LeuB17 form part of a second receptor-binding site in the insulin molecule finds some support in terms of their conservation during vertebrate evolution, although the site is probably absent in some hystricomorph insulins. In general, the amino acid sequences of insulins are not useful in cladistic analyses especially when evolutionary distant taxa are compared but, among related species in a particular order or family, the presence of unusual structural features in the insulin molecule may permit a meaningful phylogenetic inference. For example, analysis of insulin sequences supports monophyletic status for Dipnoi, Elasmobranchii, Holocephali and Petromyzontiformes.

Top