NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
Study of Conical Pulsed Inductive Thruster with Multiple Modes of Operation
NASA Technical Reports Server (NTRS)
Miller, Robert; Eskridge, Richard; Martin, Adam; Rose, Frank
2008-01-01
An electrodeless, pulsed, inductively coupled thruster has several advantages over current electric propulsion designs. The efficiency of a pulsed inductive thruster is dependent upon the pulse characteristics of the device. Therefore, these thrusters are throttleable over a wide range of thrust levels by varying the pulse rate without affecting the thruster efficiency. In addition, by controlling the pulse energy and the mass bit together, the ISP of the thruster can also be varied with minimal efficiency loss over a wide range of ISP levels. Pulsed inductive thrusters will work with a multitude of propellants, including ammonia. Thus, a single pulsed inductive thruster could be used to handle a multitude of mission needs from high thrust to high ISP with one propulsion solution that would be variable in flight. A conical pulsed inductive lab thruster has been built to study this form of electric propulsion in detail. This thruster incorporates many advantages that are meant to enable this technology as a viable space propulsion technology. These advantages include incorporation of solid state switch technology for all switching needs of the thruster and pre-ionization of the propellant gas prior to acceleration. Pre-ionizing will significantly improve coupling efficiency between drive and bias fields and the plasma. This enables lower pulse energy levels without efficiency reduction. Pre-ionization can be accomplished at a small fraction of the drive pulse energy.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.
2013-01-01
Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.
2011-01-01
Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2011-01-01
A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.
Design of a Microwave Assisted Discharge Inductive Plasma Accelerator
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2010-01-01
A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.
NASA Astrophysics Data System (ADS)
Guo, Dawei; Cheng, Mousen; Li, Xiaokang
2017-10-01
In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.
Guo, Dawei; Cheng, Mousen; Li, Xiaokang
2017-10-01
In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.
Inductive Pulsed Plasma Thruster Development and Testing at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2013-01-01
THE inductive pulsed plasma thruster (IPPT) is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. In the present work, we present a summary of the IPPT research and development conducted at NASA's Marshall Space Flight Center (MSFC). As a higher-power, still relatively low readiness level system, there are many issues associated with the eventual deployment and use of the IPPT as a primary propulsion system on spacecraft that remain to be addressed. The present program aimed to fabricate and test hardware to explore how these issues could be addressed. The following specific areas were addressed within the program and will be discussed within this paper. a) Conical theta-pinch IPPT geometry thruster configuration. b) Repetition-rate multi-kW thruster pulsing. c) Long-lifetime pulsed gas valve. d) Fast pulsed gas valve driver and controller. e) High-voltage, repetitive capacitor charging power processing unit. During the course of testing, a number of specific tests were conducted, including several that, to our knowledge, have either never been previously conducted (such as multi-KW repetition-rate operation) or have not been performed since the early 1990s (direct IPPT thrust measurements).2 Conical theta-pinch IPPT thrust stand measurements are presented in Fig. 1 while various time-integrated and time
Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.
2011-01-01
A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.
Design of a Microwave Assisted Discharge Inductive Plasma Accelerator
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2010-01-01
The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.
Summary of the 2012 Inductive Pulsed Plasma Thruster Development and Testing Program
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Martin, A. K.; Eskridge, R. H.; Kimberlin, A. C.; Addona, B. M.; Devineni, A. P.; Dugal-Whitehead, N. R.; Hallock, A. K.
2013-01-01
Inductive pulsed plasma thrusters are spacecraft propulsion devices in which energy is capacitively stored and then discharged through an inductive coil. While these devices have shown promise for operation at high efficiency on a range of propellants, many technical issues remain before they can be used in flight applications. A conical theta-pinch thruster geometry was fabricated and tested to investigate potential improvements in propellant utilization relative to more common, flat-plate planar coil designs. A capacitor charging system is used to permit repetitive discharging of thrusters at multiple cycles per second, with successful testing accomplished at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The conical theta-pinch thruster geometry was tested at cone angles of 20deg, 38deg, and 60deg, with single-pulse operation at 500 J/pulse and repetitionrate operation with the 38deg model quantified through direct thrust measurement using a hanging pendulum thrust stand. A long-lifetime valve was designed and fabricated, and initial testing was performed to measure the valve response and quantify the leak rate at beginning-of-life. Subscale design and testing of a capacitor charging system required for operation on a spacecraft is reported, providing insights into the types of components needed in the circuit topology employed. On a spacecraft, this system would accept as input a lower voltage from the spacecraft DC bus and boost the output to the high voltage required to charge the capacitors of the thruster.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.
2008-01-01
Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard
2013-01-01
Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.
NASA Astrophysics Data System (ADS)
Dormidonov, A. E.; Kandidov, V. P.; Kompanets, V. O.; Chekalin, Sergei V.
2009-07-01
Supercontinuum emission observed upon filamentation of transform-limited collimated femtosecond laser pulses in a transparent condensed medium (fused KU-1 quartz) is studied experimentally and numerically. The splitting of diverging conical supercontinuum emission into discrete rings was observed with increasing the pulse energy.
Narrow band vacuum ultraviolet radiation, produced by fast conical discharge
NASA Astrophysics Data System (ADS)
Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.
2018-04-01
The article presents the experimental study of discharges in a conical cavity, filled with Ar at pressure 80 Pa. The electrical current driver (inductive storage with plasma erosion opening switch) supplies to the load electrical current pulse with growth rate about 1012 A s‑1 and maximal value 30–40 kA. The convergent conical shock wave starts from the inner surface of the discharge cavity and collapses in ‘zippering’ mode. The pin hole camera imaging with MCP detector (time resolution 5 ns) have demonstrated the appearance of effectively fast moving compact plasma with visible velocity v = (1.5 ± 0.14) × 107 cm s‑1. Plasma emits narrow band radiation in the spectral range of Rydberg series transitions of Ar VII, Ar VIII with quantum number up to n = 9 (wavelength about 11 nm). The intensity of radiation is comparable with the total plasma emission in the range 10–50 nm. Charge exchange between multiply charged Ar ions and cold Ar atoms of working gas is proposed as the possible mechanism of the origin of the radiation.
Modeling texture transitions in cholesteric liquid crystal droplets
NASA Astrophysics Data System (ADS)
Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew
2012-02-01
Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.
Grimmett, E.S.
1964-01-01
This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)
Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.
1958-11-11
An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.
Cone-shaped source characteristics and inductance effect of transient electromagnetic method
NASA Astrophysics Data System (ADS)
Yang, Hai-Yan; Li, Feng-Ping; Yue, Jian-Hua; Guo, Fu-Sheng; Liu, Xu-Hua; Zhang, Hua
2017-03-01
Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-offtime and a deep "blind zone". This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower "blind zone." Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a "smoke ring" inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep "blind zone" and also provide a theoretical indicator for further research.
Watching Electrons at Conical Intersections and Funnels
NASA Astrophysics Data System (ADS)
Jonas, David M.; Smith, Eric R.; Peters, William K.; Kitney, Katherine A.
2009-06-01
The electronic motion at conical intersections and funnels is probed after polarized excitation of aligned electronic wavepackets. The pulses have bandwidth sufficient to observe vibrations mainly through their effect on the electrons. Vibrational symmetry can be identified by the polarization anisotropy of vibrational quantum beats. The polarized transients show signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. For a conical intersection in a four-fold symmetric symmetry silicon naphthalocyanine molecule, electronic motions on a 100 fs timescale are driven by couplings of 1 meV. In the lower symmetry free-base naphthalocyanine, the conical intersection may be missed or missing (conical funnel), and the motions are nearly as rapid, but electronic equilibration is incomplete for red-edge excitation. These experiments probe non-adiabatic electronic dynamics with near-zero nuclear momentum - the electronic motions are determined by the principal slopes of the conical intersection and the width of the vibrational wavepacket.
Collective acceleration of laser plasma in a nonstationary and nonuniform magnetic field
NASA Astrophysics Data System (ADS)
Isaev, A.; Kozlovskiy, K.; Shikanov, A.; Vovchenko, E.
2017-12-01
This paper presents the new experimental results concerning acceleration of deuterium ions extracted from laser plasma in the rapid-growing nonuniform magnetic field in order to initiate the nuclear reactions D(d, n)3He and T(d, n)4He. For obtaining of laser plasma a Nd: YAG laser (λ = 1,06 μm) that generates in Q-switched mode the radiation pulses with the energy W ≤ 0,85 J and duration of τ ≈ 10 ns was used. Rapid-growing magnetic field was created with the discharge of Arkadyev-Marx pulsed-voltage generator to conical coil with the inductance of 0,65 μΗ. At characteristic discharge time of 30 ns, the rate of magnetic field growth achieved 2·107 T/s. Ion velocity was determined with the time-of-flight technique. During the experiment on deuterium plasma an ion flux velocity of ∼3 · 108 cm/s was obtained, which corresponds to the deuteron energy of ∼100 keV. Herewith, for target power density of ∼5·1011 W/cm2 obtaining of up to 1015 of accelerated deuterons and up to 108 of neutrons per a pulse is expected.
Full circuit calculation for electromagnetic pulse transmission in a high current facility
NASA Astrophysics Data System (ADS)
Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun
2014-11-01
We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuming; Liu Liang; Fan Shoushan
2005-02-07
Self-organized conical microstructures are fabricated by 308 nm XeCl excimer laser irradiation of cyanoacrylate-carbon nanotube composites in air. The morphology of the surface on the composite films is studied, varying the total number and fluence of the applied laser pulses. A simple mechanism of the fabrication based on the evaporation of cyanoacrylate and the burning of carbon nanotubes is proposed. The conical peak structures of cyanoacrylate-carbon nanotube composite films show good field-emission properties. Similar structures are also observed on carbon nanotube arrays.
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
Nested-cone transformer antenna
Ekdahl, C.A.
1991-05-28
A plurality of conical transmission lines are concentrically nested to form an output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated. 6 figures.
Nested-cone transformer antenna
Ekdahl, Carl A.
1991-01-01
A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.
2012-01-01
Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Choueiri, Edgar Y.; Polzin, Kurt A.
2007-01-01
The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Accelerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally with time-integrated photography. The goal is to help in understanding the mechanisms and conditions controlling the strength and extent of the current sheet, which are two indices important for FARAD as a propulsion concept. The profiles of these two indices along the inside walls of the conical acceleration coil are assumed to be related to the profiles of the strength and extent of the luminosity pattern derived from photographs of the discharge. The variations of these profiles as a function of uniform back-fill neutral pressure (with no background magnetic field and all parameters held constant) provided the first clues on the nature and qualitative dependencies of current sheet formation. It was found that there is an optimal pressure for which both indices reach a maximum and that the rate of change in these indices with pressure differs on either side of this optimal pressure. This allowed the inference that current sheet formation follows a Townsend-like breakdown mechanism modified by the existence of a finite pressure-dependent radio-frequency-generated electron density background. The observation that the effective location of the luminosity pattern favors the exit-half of the conical coil is explained as the result of the tendency of the inductive discharge circuit to operate near its minimal self-inductance. Movement of the peak in the luminosity pattern towards the upstream side of the cone with increasing pressure is believed to result from the need of the circuit to compensate for the increase in background plasma resistivity due to increasing pressure.
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-09-01
The paper describes the evolution of self-organized structures inside a pinched plasma column during the phase of the effective production of fusion neutrons, as observed in the mega-ampere plasma focus experiment performed with a conical tip placed in the centre of the anode face. In a comparison with the plane anode face configuration, the described anode shape facilitated transformations in the pinch column during the neutron production and increased the neutron yield several times. Simultaneously, it decreased the minimal diameter and the length of the pinched column, and it depressed the first neutron pulse. It also induced shorter pulses of X-rays and neutrons, which enabled the determination of a temporal difference between the emission of electron and deuteron beams. The fast electrons were produced mainly during a disruption of the pinch constriction, while the fast deuterons - during the formation and explosion of plasmoids. The paper also presents the temporal evolution of a current distribution in the plasmoid during the neutron production, as well as the appearance and stable positions of current filaments traces upon the surface of the conical anode tip.
Energy-flux characterization of conical and space-time coupled wave packets
NASA Astrophysics Data System (ADS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-02-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
NASA Astrophysics Data System (ADS)
Takayama, Ken; Briggs*, Richard J.
The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.
Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.
Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong
2006-12-01
The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.
Interaction of intense laser pulses with gas for two-color THz generation and remote magnetometry
NASA Astrophysics Data System (ADS)
Johnson, Luke A.
The interaction of intense laser pulses with atmospheric gases is studied in two contexts: (i) the generation of broadband terahertz radiation via two-color photoionization currents in nitrogen, and (ii) the generation of an electromagnetic wakefield by the induced magnetization currents of oxygen. (i) A laser pulse propagation simulation code was developed to investigate the radiation patterns from two-color THz generation in nitrogen. Understanding the mechanism for conical, two-color THz furthers the development of broadband THz sources. Two-color photoionization produces a cycle-averaged current driving broadband, conically emitted THz radiation. The THz emission angle is found to be determined by an optical Cherenkov effect, occurring when the front velocity of the ionization induced current source is greater than the THz phase velocity. (ii) A laser pulse propagating in the atmosphere is capable of exciting a magnetic dipole transition in molecular oxygen. The resulting transient current creates a co-propagating electromagnetic field behind the laser pulse, i.e. the wakefield, which has a rotated polarization that depends on the background magnetic field. This effect is analyzed to determine it's suitability for remote atmospheric magnetometry for the detection of underwater and underground objects. In the proposed approach, Kerr self-focusing is used to bring a polarized, high-intensity, laser pulse to focus at a remote detection site where the laser pulse induces a ringing in the oxygen magnetization. The detection signature for underwater and underground objects is the change in the wakefield polarization between different measurement locations. The magnetic dipole transition line that is considered is the b-X transition band of oxygen near 762 nm.
Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.
2008-01-01
Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.
Silfvast, W T; Ii, O R
1989-01-01
A conically shaped pumping geometry can produce an efficient burst of laser radiation, without the need for an optical cavity, by restricting amplified spontaneous emission losses to a small region near the apex of the cone. Requirements on the active medium and on the size and intensity of the pumping source to make such a burst laser are derived. We calculate that a 15-mJ pulse of energy at 37.2 nm at an efficiency of 0.15% can be extracted from sodium vapor photoionized with radiation from a 1.06-microm-laser-produced plasma using this pumping geometry.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).
Whole life cycle of femtosecond ultraviolet filaments in water
NASA Astrophysics Data System (ADS)
Jarnac, Amélie; Tamosauskas, Gintaras; Majus, Donatas; Houard, Aurélien; Mysyrowicz, André; Couairon, Arnaud; Dubietis, Audrius
2014-03-01
We present measurements fully characterizing the whole life cycle of femtosecond pulses undergoing filamentation in water at 400 nm. The complete pulse dynamics is monitored by means of a four-dimensional mapping technique for the intensity distribution I (x,y,z,t) during the nonlinear interaction. Measured events (focusing or defocusing cycles, pulse splitting and replenishment, supercontinuum generation, conical emission, nonlinear absorption peaks) are mutually connected.The filament evolution from laser energy deposition in water, which is of paramount importance for a wide range of technological and medical applications, is interpreted in light of simulation results.
40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction
NASA Astrophysics Data System (ADS)
Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.
2018-05-01
We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.
Watching the electronic motions driven by a conical intersection
NASA Astrophysics Data System (ADS)
Jonas, David
2007-03-01
In chemistry, the fastest electronic rearrangements proceed through ``conical intersections'' between electronic potential energy surfaces. With sufficiently short pulses, the electronic motion can be isolated by polarized excitation of aligned electronic wavepackets at a conical intersection. Polarized femtosecond probing reveals signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. After exciting a D4h symmetry silicon naphthalocyanine molecule onto a Jahn-Teller conical intersection in the first excited state, electronic motions cause a ˜100 fs drop in the pump-probe polarization anisotropy. The polarized vibrational modulations of the signal can be used to deduce the symmetry and stabilization energies for each vibration. The initial decay of the polarization anisotropy can be quantitatively predicted from these vibrational parameters. Both coupling and energy gap variations are important on the ˜100 fs timescale. A 1 meV stabilization drives electrons from orbital to orbital in 100 fs, and the theory indicates that a chemically reactive conical intersection with 1000x greater stabilization energy could cause electronic equilibration within 2 fs. We have recently carried out experiments on a nominally D2h symmetry free-base naphthalocyanine for which the splitting between x and y polarized transitions is not resolved in the linear spectrum. For this molecule, the anisotropy also decays on a similar timescale and exhibits damped modulations whose origin (vibrational or electronic) has not yet been determined. The role of the central protons and nominal D2h symmetry in the electronic dynamics will be discussed.
Lu, Haiyang; Chen, Guanglong; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan
2010-01-14
We present an experimental investigation of the dependence of the production of large methane clusters on the cluster source conditions. The clusters were produced at room temperature through supersonic expansion of methane gas at the backing pressures P(0) ranging from 10 to 84 bar using five conical nozzles of different geometries. The cluster size was characterized by Rayleigh scattering measurements and calibrated with Coulomb explosion of the clusters at P(0) = 44 bar subjected to an ultraintense laser pulse. A quantitative evaluation of the performance of the conical nozzles against the nozzle geometry and the backing pressure was made by introducing a parameter delta. Differ from the idealized case where the performance of the conical nozzle can be described by the equivalent sonic nozzle of diameter d(eq), in the present work, the "effective equivalent sonic-nozzle diameter" of the conical nozzle defined by d(eq)* = deltad(eq) is introduced. delta represents the deviation of the performance in cluster formation of the conical nozzles from that predicted on the basis of the concept of the equivalent diameter d(eq) = d/tan alpha, with d being the throat diameter, and alpha the half-opening angle of the conical nozzle. Experimental results show that the cluster growth process will be restricted when the gas backing pressure P(0) is higher and/or d/tan alpha of the conical nozzle becomes larger, resulting in smaller delta. From the experimental data, delta can be expressed by an empirical relation delta = A/[P(0)(B)(d/tan alpha)(1.36)], where A = 8.4 and B = 0.26 for 24 bar
Effect of varying Nd:YAG laser fiber tips on porcine dermal tissue
NASA Astrophysics Data System (ADS)
Pergadia, Vani R.; Vari, Sandor G.; Snyder, Wendy J.; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Thomas, Reem; Shi, Wei-Qiang; Tausend, Kevin J.; Grundfest, Warren S.
1994-02-01
We evaluated the effect of the 600 micrometers bare (flat tip) and 600/100 micrometers conical tip fibers on porcine skin. We compared their effect in both the continuous-wave (cw) and pulsed (P) modes (20 ms ON/OFF) at 20 W to that of the electrocautery at 100 W in the pure and blend 3 modes. On 11 farmer pigs, 6 cuts were made for each parameter combination. The samples were processed for histological evaluation. The cutting depth, cutting width, and total thermal damage (carbonization, coagulation and denaturation) were recorded for each parameter combination. The results show that the 600/100 micrometers conical fiber provides deeper resective capabilities than the 600 micrometers bare and electrocautery. In addition, the 600/100 micrometers conical tip fiber allows for narrower cuts with significantly less thermal necrosis when compared to the 600 micrometers bare and electrocautery. The results indicate that there is an advantage to using the sculptured tip fiber for creating incisions when compared to the bare fiber and electrocautery.
250 kA compact linear transformer driver for wire array z-pinch loads
NASA Astrophysics Data System (ADS)
Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.
2011-05-01
We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stygar, W.A.; Spielman, R.B.; Allshouse, G.O.
The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of themore » vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.« less
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, C.A.
In experiments involving pulsed high magnetic fields the appearance of the full induced voltage at the output terminals of large-area inductive sensors such as diamagnetic loops and Rogowski belts imposes severe requirements on the insulation near the output. Capacitive detection of the inductive-sensor output voltage provides an ideal geometry for high-voltage insulation, and also accomplishes the necessary voltage division. An inductive-shunt current monitor was designed to utilize the capacitive-detection principle. The contruction of this device and its performance are described in this paper.
Chen, C Y; Yu, D L; Feng, B B; Yao, L H; Song, X M; Zang, L G; Gao, X Y; Yang, Q W; Duan, X R
2016-09-01
On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.
Water depth measurement using an airborne pulsed neon laser system
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.; Frederick, E. B.
1980-01-01
The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.
Design of an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.
Linear induction accelerator and pulse forming networks therefor
Buttram, Malcolm T.; Ginn, Jerry W.
1989-01-01
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.
Design of a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.
2007-01-01
The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1986-01-01
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
Dynamics of conical wire array Z-pinch implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.
2007-10-15
A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less
Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source
Huang, Jinqing; Parobek, Alexander; Ganim, Ziad
2016-01-01
Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634
Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J
2014-10-01
Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.
Inspection of aircraft fastener holes using a conically shaped multi-element phased array probe
NASA Astrophysics Data System (ADS)
Selman, J. J.; Miller, J. T.; Moles, M. D. C.; Dupuis, O.; Herzog, P. G.
2002-05-01
A novel inspection technique is described using phased ultrasonic arrays to detect faying surface cracks in the first layer around the base of a fastener hole with fasteners installed. A unique phased array probe incorporates a matrix of ultrasonic elements arranged in a conical configuration encircling the fastener head. This arrangement permits deflection of the ultrasonic beam in three dimensions, and adapts to different hole diameters and skin thickness. Full circumferential scans are performed using a pre-programmed sequence of phased array focal laws. The inspection method uses pulse-echo at a variety of angles incident on the crack to thoroughly cover the fastener hole and surrounding area, and is designed to detect cracks as small as 0.030″ in length.
Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons
NASA Astrophysics Data System (ADS)
Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.
2016-07-01
Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.
A pulse-compression-ring circuit for high-efficiency electric propulsion.
Owens, Thomas L
2008-03-01
A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.
NASA Astrophysics Data System (ADS)
Letan, Amelie; Mishchik, Konstantin; Audouard, Eric; Hoenninger, Clemens; Mottay, Eric P.
2017-03-01
With the development of high average power, high repetition rate, industrial ultrafast lasers, it is now possible to achieve a high throughput with femtosecond laser processing, providing that the operating parameters are finely tuned to the application. Femtosecond lasers play a key role in these processes, due to their ability to high quality micro processing. They are able to drill high thickness holes (up to 1 mm) with arbitrary shapes, such as zero-conicity or even inversed taper, but can also perform zero-taper cutting. A clear understanding of all the processing steps necessary to optimize the processing speed is a main challenge for industrial developments. Indeed, the laser parameters are not independent of the beam steering devices. Pulses energy and repetition rate have to be precisely adjusted to the beam angle with the sample, and to the temporal and spatial sequences of pulses superposition. The purpose of the present work is to identify the role of these parameters for high aspect ratio drilling and cutting not only with experimental trials, but also with numerical estimations, using a simple engineering model based on the two temperature description of ultra-fast ablation. Assuming a nonlinear logarithmic response of the materials to ultrafast pulses, each material can be described by only two adjustable parameters. Simple assumptions allow to predict the effect of beam velocity and non-normal incident beams to estimate profile shapes and processing time.
Microjet Penetrator - medical use of laser induced shock waves and bubbles
NASA Astrophysics Data System (ADS)
Yoh, Jack
2013-06-01
The laser-driven microjet penetrator system accelerates liquids drug and delivers them without a needle, which is shown to overcome the weaknesses of existing piston-driven jet injectors. The system consists of two back-to-back chambers separated by a rubber membrane, one containing ``driving'' water behind another of the liquid drug to be delivered. The laser pulse is sent once, and a bubble forms in the water chamber, which puts elastic strain on the membrane, causing the drug to be forcefully ejected from a miniature nozzle in a narrow jet of 150 micron in diameter. The impacting jet pressure is higher than the skin tensile strength and thus causes the jet to penetrate into the targeted depth underneath the skin. Multiple pulses of the laser increase the desired dosage. The experiments are performed with commercially available Nd:YAG and Er:YAG lasers for clinical applications in laser dermatology and dentistry. The difference in bubble behavior within the water chamber comes from pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the bubble behavior close to that of a cavitation bubble (inertial), while in Er:YAG case the high absorption in water and the longer pulse duration change the initial behavior of the bubble making it close to a vapor bubble (thermal). The contraction and subsequent rebound for both cases were seen typical of cavitation bubble. The laser-induced microjet penetrators generate velocities which are sufficient for delivery of drug into a guinea-pig skin for both laser beams of different pulse duration and wavelength. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm, thus making it a contamination-free medical procedure. Hydrodynamic theory confirms the nozzle exit jet velocity obtained by the microjet system. A significant increase in the delivered dose of drugs is achieved with multiple pulses of a 2.9 μm Er:YAG laser at 250 μs pulse duration. At this wavelength, the beam is best absorbable by water. Further, to increase the bubble size, a sapphire based fiber tip is entered into a water chamber as a beam is gathered at the bottom of this fiber tip's conical end, which is polished at an angle graduated from 30° over the full core diameter. The power density at the exit of the conical fiber tip is increased in comparison with the direct radiation at water. The water superheats and thus a larger bubble forms right at the tip. The bubble is typically an elongated (stretched) shape in case of a direct laser irradiation in water, but when light is irradiated through a conical fiber tip, the resulting bubble is an enlarged spherical bubble which is several times larger in its volume when compared to the direct beam radiation in water. In this talk, a review of our recent research effort in achieving high-throughput injection of drug via the microjet penetrator is given with its potential medical applications. The financial support is provided by National Research Foundation of Korea (DOYAK-2010).
Operational Characteristics and Plasma Measurements in a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Best, S.; Rose, M. F.; Miller, R.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In this paper, we present measurements aimed at quantifying the thruster's overall operational characteristics and providing additional insight into the nature of operation. Measurements of the terminal current and voltage characteristics during the pulse help quantify the output of the pulsed power train driving the acceleration coil. A fast ionization gauge is used to measure the evolution of the neutral gas distribution in the accelerator prior to a pulse. The preionization process is diagnosed by monitoring light emission from the gas using a photodiode, and a time-resolved global view of the evolving, accelerating current sheet is obtained using a fast-framing camera. Local plasma and field measurements are obtained using an array of intrusive probes. The local induced magnetic field and azimuthal current density are measured using B-dot probes and mini-Rogowski coils, respectively. Direct probing of the number density and electron temperature is performed using a triple probe.
Deuteron flux production in a small high-voltage high-current diode with pulsed magnetic insulation
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Isaev, A. A.; Kozlovskii, K. I.; Shatokhin, V. L.
2017-06-01
The results of new studies on the production of accelerated deuteron fluxes in a small ion diode with pulsed magnetic insulation of electrons have been presented. A plasma anode of the diode has been formed under the action of a 1.06 μm laser radiation with a pulse duration of 10 ns, a pulse energy of up to 1 J, and a power density on the target of 5 × 1015 W m-2. An accelerating voltage of up to 300 kV has been created using an Arkad'ev-Marx pulsed voltage generator with a stored energy of 50 J and a repetition rate of 1 Hz. A magnetic field of higher than 0.6 T for insulating electrons has been formed by a current pulse of the first cascade of the generator in a spiral line before a conical cascade. Stable deuteron acceleration to 300 keV with a current of up to 1.5 kA and a pulse duration of 0.3 μs has been achieved.
Adiabatic description of superfocusing of femtosecond plasmon polaritons
NASA Astrophysics Data System (ADS)
Golovinski, P. A.; Manuylovich, E. S.; Astapenko, V. A.
2018-05-01
A surface plasmon polariton is a collective oscillation of free electrons at a metal-dielectric interface. As wave phenomena, surface plasmon polaritons can be focused with the use of an appropriate excitation geometry of metal structures. In the adiabatic approximation, we demonstrate a possibility to control nanoscale short pulse superfocusing based on generation of a radially polarized surface plasmon polariton mode of a conical metal needle in view of wave reflection. The results of numerical simulations of femtosecond pulse propagation along a nanoneedle are discussed. The space-time evolution of a pulse for the near field strongly depends on a linear chirp of an initial laser pulse, which can partially compensate wave dispersion. The field distribution is calculated for different metals, chirp parameters, cone opening angles and propagation distances. The electric field near a sharp tip is described as a field of a fictitious time-dependent electric dipole located at the tip apex.
A Dielectric Rod Antenna for Picosecond Pulse Stimulation of Neurological Tissue
Petrella, Ross A.; Schoenbach, Karl H.; Xiao, Shu
2016-01-01
A dielectrically loaded wideband rod antenna has been studied as a pulse delivery system to subcutaneous tissues. Simulation results applying 100 ps electrical pulse show that it allows us to generate critical electric field for biological effects, such as brain stimulation, in the range of several centimeters. In order to reach the critical electric field for biological effects, which is approximately 20 kV/cm, at a depth of 2 cm, the input voltage needs to be 175 kV. The electric field spot size in the brain at this position is approximately 1 cm2. Experimental studies in free space with a conical antenna (part of the antenna system) with aluminum nitride as the dielectric have confirmed the accuracy of the simulation. These results set the foundation for high voltage in situ experiments on the complete antenna system and the delivery of pulses to biological tissue. PMID:27563160
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.
2012-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.
Plasma Measurements in an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.
Preliminary results of Linear Induction Accelerator LIA-200
NASA Astrophysics Data System (ADS)
Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.
2010-05-01
Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.
Laboratory-Model Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.
2008-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.
NASA Astrophysics Data System (ADS)
Nandipati, K. R.; Kanakati, Arun Kumar; Singh, H.; Lan, Z.; Mahapatra, S.
2017-09-01
Optimal initiation of quantum dynamics of N-H photodissociation of pyrrole on the S0-1πσ∗(1A2) coupled electronic states by UV-laser pulses in an effort to guide the subsequent dynamics to dissociation limits is studied theoretically. Specifically, the task of designing optimal laser pulses that act on initial vibrational states of the system for an effective UV-photodissociation is considered by employing optimal control theory. The associated control mechanism(s) for the initial state dependent photodissociation dynamics of pyrrole in the presence of control pulses is examined and discussed in detail. The initial conditions determine implicitly the variation in the dissociation probabilities for the two channels, upon interaction with the field. The optimal pulse corresponds to the objective fixed as maximization of overall reactive flux subject to constraints of reasonable fluence and quantum dynamics. The simple optimal pulses obtained by the use of genetic algorithm based optimization are worth an experimental implementation given the experimental relevance of πσ∗-photochemistry in recent times.
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
Multiple-Coil, Pulse-Induction Metal Detector
NASA Technical Reports Server (NTRS)
Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.
1988-01-01
Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.
Linear induction accelerators made from pulse-line cavities with external pulse injection.
Smith, I
1979-06-01
Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
NASA Astrophysics Data System (ADS)
Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima
2016-08-01
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.
Coherent Control About a Conical Intersection
NASA Astrophysics Data System (ADS)
Liekhus-Schmaltz, Chelsea; McCracken, Gregory; Kaldun, Andreas; Cryan, James P.; Bucksbaum, Philip H.
2017-04-01
Conical intersections (CIs) are degeneracies between molecular potential energy surfaces that occur in essentially all molecules with more than three atoms. Many studies have established that CIs allow for non-Born-Oppenheimer (non-adiabatic) molecular dynamics. In addition, CIs have many useful attributes for coherent control that have not been fully studied. Here we demonstrate two modes of control around a CI that make use of these properties. The first method uses a continuous light field, resonant absorption, and stimulated emission to control the population on two intersecting electronic states. The second method uses a pulsed light field and the geometric phase accumulated by a wavepacket traversing a CI to control the shape of the wavepacket. This work was supported by the National Science Foundation under Grant No. PHY-0649578, the DOE SCGSR fellowship program, and the DOE, Office of Science, BES, Chemical Sciences, Geosciences, and Biosciences Division.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface inducemore » a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.« less
3D target array for pulsed multi-sourced radiography
Le Galloudec, Nathalie Joelle
2016-02-23
The various technologies presented herein relate to the generation of x-rays and other charged particles. A plurality of disparate source materials can be combined on an array to facilitate fabrication of co-located mixed tips (point sources) which can be utilized to form a polychromatic cloud, e.g., a plurality of x-rays having a range of energies and or wavelengths, etc. The tips can be formed such that the x-rays are emitted in a direction different to other charged particles to facilitate clean x-ray sourcing. Particles, such as protons, can be directionally emitted to facilitate generation of neutrons at a secondary target. The various particles can be generated by interaction of a laser irradiating the array of tips. The tips can be incorporated into a plurality of 3D conical targets, the conical target sidewall(s) can be utilized to microfocus a portion of a laser beam onto the tip material.
NASA Astrophysics Data System (ADS)
Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.
2017-11-01
The formation of a diffuse discharge plasma at a subnanosecond breakdown of a "cone-plane" gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.
Pulsed laser illumination of photovoltaic cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.
High-voltage pulse generator developed for wide-gap spark chambers
NASA Technical Reports Server (NTRS)
Keller, L. P.; Walschon, E. G.
1968-01-01
Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.
Investigation of accelerating ion triode with magnetic insulation for neutron generation
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Kozlovskij, K. I.; Vovchenko, E. D.; Rashchikov, V. I.; Shatokhin, V. L.; Isaev, A. A.
2017-12-01
Vacuum accelerating tube (AT) for neutron generation with the secondary electron emission suppressed by helical line pulse magnetic field which allocated inside accelerating gap in front of hollow conical cathodeis discussed. The central anode was covered by the hollow cathode. This technical solution of AT is an ion triode in which helical line serve as a grid. Computer simulation results of longitudinal magnetic field distributional along the axis are presented.
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Baker, P. L.
1982-01-01
A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.
Inductively generated streaming plasma ion source
Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.
2006-07-25
A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.
In-water gas combustion for thrust production
NASA Astrophysics Data System (ADS)
Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.
2017-07-01
The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104-105 s (105-106 m/s) with account for positive and negative components of impulse.
Laser supported detonation wave source of atomic oxygen for aerospace material testing
NASA Technical Reports Server (NTRS)
Krech, Robert H.; Caledonia, George E.
1990-01-01
A pulsed high-flux source of nearly monoenergetic atomic oxygen was developed to perform accelerated erosion testing of spacecraft materials in a simulated low-earth orbit (LEO) environment. Molecular oxygen is introduced into an evacuated conical expansion nozzle at several atmospheres pressure through a pulsed molecular beam valve. A laser-induced breakdown is generated in the nozzle throat by a pulsed CO2 TEA laser. The resulting plasma is heated by the ensuing laser-supported detonation wave, and then it rapidly expands and cools. An atomic oxygen beam is generated with fluxes above 10 to the 18th atoms per pulse at 8 + or - 1.6 km/s with an ion content below 1 percent for LEO testing. Materials testing yielded the same surface oxygen enrichment in polyethylene samples as observed on the STS mission, and scanning electron micrographs of the irradiated polymer surfaces showed an erosion morphology similar to that obtained on low earth orbit.
Higginson, D. P.; Khiar, B.; Revet, G.; ...
2017-12-22
Here, we investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10 12 W/cm 2) and, then, a main pulse (10 13 W/cm 2) arriving 9–19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that ismore » responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.« less
Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.
Vinokurov, Nikolay A; Jeong, Young Uk
2013-02-08
We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.
Pulsed laser illumination of photovoltaic cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.
1995-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.
HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2
NASA Technical Reports Server (NTRS)
Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin
2011-01-01
The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at high-altitudes using low peak power transmitters and pulse compression. The hardware will be described along with the methods and concepts for the system design. Finally, we will present recent preliminary results from flights on the NASA Global Hawk in support of the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign, and on the NASA ER-2 as fixed nadir pointing mode for the NASA Global Precipitation Measurement (GPM) ground validation (GV) mission - Midlatitude Continental Convective Cloud Experiment (MC3E)
Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions
NASA Astrophysics Data System (ADS)
Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.
2018-04-01
The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
NASA Technical Reports Server (NTRS)
Schafer, Charles
2000-01-01
The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.
Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Balla, Joseph V.
2010-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.
Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo
2013-01-01
To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.
Moderation of near-field pressure over a supersonic flight model using laser-pulse energy deposition
NASA Astrophysics Data System (ADS)
Furukawa, D.; Aoki, Y.; Iwakawa, A.; Sasoh, A.
2016-05-01
The impact of a thermal bubble produced by energy deposition on the near-field pressure over a Mach 1.7 free-flight model was experimentally investigated using an aeroballistic range. A laser pulse from a transversely excited atmospheric (TEA) CO2 laser was sent into a test chamber with 68 kPa ambient pressure, focused 10 mm below the flight path of a conically nosed cylinder with a diameter of 10 mm. The pressure history, which was measured 150 mm below the flight path along the acoustic ray past the bubble, exhibited precursory pressure rise and round-off peak pressure, thereby demonstrating the proof-of-concept of sonic boom alleviation using energy deposition.
NASA Astrophysics Data System (ADS)
Oshikane, Yasushi
2017-08-01
A novel nanostructured end cap for a truncated conical apex of optical fiber has been studied experimental and numerically. The peculiar cap is composed of asymmetric metal-insulator-metal (MIM) structure coupled with subwavelength holes. The MIM structure may act as reflective band cut filter or generator of surface plasmon polariton (SPP). And nano holes in the thicker metal layer could extract the SPP from the MIM structure and lead it to outer surface of the metal layer. For the purpose, the author has started to create the asymmetric MIM structure with TiN and AlN by pulsed laser deposition (PLD). The resultant structure was diagnosed by spectroscopic analyses.
The efficiency of photovoltaic cells exposed to pulsed laser light
NASA Technical Reports Server (NTRS)
Lowe, R. A.; Landis, G. A.; Jenkins, P.
1993-01-01
Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.
Burst mode FEL with the ETA-III induction linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasnier, C.J.; Allen, S.L.; Felker, B.
1993-05-13
Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Counterpulse railgun energy recovery circuit
Honig, E.M.
1984-09-28
The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.
Overpulse railgun energy recovery circuit
Honig, E.M.
1984-09-28
The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.
Simple functionalization method for single conical pores with a polydopamine layer
NASA Astrophysics Data System (ADS)
Horiguchi, Yukichi; Goda, Tatsuro; Miyahara, Yuji
2018-04-01
Resistive pulse sensing (RPS) is an interesting analytical system in which micro- to nanosized pores are used to evaluate particles or small analytes. Recently, molecular immobilization techniques to improve the performance of RPS have been reported. The problem in functionalization for RPS is that molecular immobilization by chemical reaction is restricted by the pore material type. Herein, a simple functionalization is performed using mussel-inspired polydopamine as an intermediate layer to connect the pore material with functional molecules.
FDTD simulation tools for UWB antenna analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brocato, Robert Wesley
2004-12-01
This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.
2000-06-01
An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.
Pulse generator with intermediate inductive storage as a lightning simulator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.
2016-06-01
Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.
Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons
2006-06-01
reliable high- current, high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor ...high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor -generator sets, so a solid...Rotating Flywheel) Pulse Forming Network Compensated Pulsed Alternators, or Compulsators as they are called, are essentially large motor -generator
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
Characteristics of the inductive nitrogen laser generation
NASA Astrophysics Data System (ADS)
Razhev, A. M.; Churkin, D. S.; Kargapoltsev, E. S.
2016-05-01
The results of the experimental study of energy, temporal, spectral and spatial characteristics of UV inductive laser generation are presented. The study has identified a number of characteristics which demonstrate the differences between electron parameters of inductively coupled plasma and the plasma of longitudinal and transverse electrical discharges. The mechanism of simultaneous occurrence of Lewis-Rayleigh afterglow representing transitions between higher vibrational substates of B3Πg and A3∑u+ states; laser generation at C3Πu→B3Πg transition as well as the absence of IR radiation at 1st positive system typical for electrical discharge nitrogen lasers has been thoroughly researched. The major characteristic is ring shaped laser beam which size and width depend on excitation conditions. Inductive UV nitrogen laser is found to operate in ASE regime, but has a low divergence of 0.4±0.1 mrad and high pulse-to-pulse stability (laser pulse deviation amplitude did not exceed 1%).
Status of the LIA-2. Double-pulse mode
NASA Astrophysics Data System (ADS)
Starostenko, D. A.; Akimov, A. V.; Bak, P. A.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Bolkhovityanov, D. Yu.; Eliseev, A. A.; Korepanov, A. A.; Kuznetsov, G. I.; Kulenko, Ya. V.; Logatchev, P. V.; Ottmar, A. V.; Pavlenko, A. V.; Pavlov, O. A.; Panov, A. N.; Pachkov, A. A.; Fatkin, G. A.; Akhmetov, A. R.; Kolesnikov, P. A.; Nikitin, O. A.; Petrov, D. V.
2016-12-01
The LIA-2 linear induction accelerator has been designed in the Budker Institute of Nuclear Physics as an electron-beam injector for a promising 20-MeV induction accelerator intended for tomography. Owing to the results of the first tests, it was decided to use the injector as an independent X-ray installation [1]. In 2014, the high-voltage power supply system of the LIA-2 was upgraded and tuned. The accelerator operates stably in the one-pulse mode at energies of up to 1.7 MeV; in the double-pulse mode it operates at energies of up to 1.5 MeV. The inhomogeneity in energy in each pulse does not exceed ±0.5%.
Scaling and Systems Considerations in Pulsed Inductive Thrusters
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2007-01-01
Performance scaling in pulsed inductive thrusters is discussed in the context of previous experimental studies and modeling results. Two processes, propellant ionization and acceleration, are interconnected where overall thruster performance and operation are concerned, but they are separated here to gain physical insight into each process and arrive at quantitative criteria that should be met to address or mitigate inherent inductive thruster difficulties. The effects of preionization in lowering the discharge energy requirements relative to a case where no preionization is employed, and in influencing the location of the initial current sheet, are described. The relevant performance scaling parameters for the acceleration stage are reviewed, emphasizing their physical importance and the numerical values required for efficient acceleration. The scaling parameters are then related to the design of the pulsed power train providing current to the acceleration stage. The impact of various choices in pulsed power train and circuit topology selection are reviewed, paying special attention to how these choices mitigate or exacerbate switching, lifetime, and power consumption issues.
An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection.
Nandipati, K R; Lan, Z; Singh, H; Mahapatra, S
2017-06-07
A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S 0 - 1 πσ * (A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.
An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection
Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.
2017-01-01
A first principles quantum dynamics study of N–H photodissociation of pyrrole on the S0−1πσ*(A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation. PMID:28595406
An alternative laser driven photodissociation mechanism of pyrrole via π*1σ/S0 conical intersection
NASA Astrophysics Data System (ADS)
Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.
2017-06-01
A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S0-1π σ*(A12) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the π*1σ state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the π*1σ photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.
Quarter-Rate Superconducting Modulator for Improved High Resolution Analog-to-Digital Converter
2006-08-01
third pulse to Output B2, and the fourth to Output C2. The fifth pulse goes to Output B1 and the pattern continues. The inductances LQA , LQB, LQC...inductance LQA . Junction JL1A is now biased with the loop phase being equal to – π. In the bottom left demultiplexer, junctions JR1B and JL2B are
NASA Astrophysics Data System (ADS)
Zhang, Yu; Liu, Jinliang
2013-02-01
As important devices for voltage boosting and switching, respectively, pulse transformer and magnetic switch are widely used in pulsed power technology. In this paper, a new kind of transformer type magnetic switch (TTMS) with coaxial cylindrical conductors is put forward to combine the functions of voltage boosting and switching in one power device. As a compact combination device of discrete pulse transformer and magnetic switch, the compact TTMS decreases the required volume of magnetic cores in a large scale. The primary windings of the TTMS have a parallel combination structure so that the TTMS which only has 3 turns of secondary windings has a step-up ratio at 1:9. Before the magnetic core saturates, the TTMS has low unsaturated inductances of windings and good pulse response characteristics, so it can be used to substitute the Marx generator to charge the pulse forming line (PFL) at the ranges of several hundred kV and several hundred ns. After the core saturates, the cylindrical conductors can decrease the saturated inductance of the secondary windings of TTMS to a level less than 400 nH. As a result, the proposed TTMS can be used as the boosting transformer and main switch of helical Blumlein PFL to form the quasi-square voltage pulse on the 160 Ω load with a short pulse rise time only at 60 ns.
Zhang, Yu; Liu, Jinliang
2013-02-01
As important devices for voltage boosting and switching, respectively, pulse transformer and magnetic switch are widely used in pulsed power technology. In this paper, a new kind of transformer type magnetic switch (TTMS) with coaxial cylindrical conductors is put forward to combine the functions of voltage boosting and switching in one power device. As a compact combination device of discrete pulse transformer and magnetic switch, the compact TTMS decreases the required volume of magnetic cores in a large scale. The primary windings of the TTMS have a parallel combination structure so that the TTMS which only has 3 turns of secondary windings has a step-up ratio at 1:9. Before the magnetic core saturates, the TTMS has low unsaturated inductances of windings and good pulse response characteristics, so it can be used to substitute the Marx generator to charge the pulse forming line (PFL) at the ranges of several hundred kV and several hundred ns. After the core saturates, the cylindrical conductors can decrease the saturated inductance of the secondary windings of TTMS to a level less than 400 nH. As a result, the proposed TTMS can be used as the boosting transformer and main switch of helical Blumlein PFL to form the quasi-square voltage pulse on the 160 Ω load with a short pulse rise time only at 60 ns.
A carbon dioxide radiance model of the earth planet using the conical earth sensor data
NASA Astrophysics Data System (ADS)
Deng, Loulou; Mei, Zhiwu; Tu, Zhijun; Yuan, Jun; He, Ting; Wei, Yi
2013-10-01
Climate Modeling results show that about 50% of the Earth's outgoing radiation and 75% of the atmospheric outgoing radiation are contained in the far infrared. Generally the earth is considered as a 220~230 K blackbody, and the peak breadth of the Earth's outgoing radiation is around the wavelength of 10 micron. The atmospheric outgoing radiation are contained with five spectral intervals: the water vapor band from 6.33 to 6.85 microns, the ozone band from 8.9 to 10.1microns, the atmospheric window from 10.75 to 11.75 microns, the carbon dioxide band from 14 to 16 microns, and finally the rotational water vapor band from 21 to 125 microns. The properties of the carbon dioxide band is stable than other bands which has been chosen for the work Spectrum of the earth sensors. But the radiation energy of carbon dioxide band is variety and it is a function of latitude, season and weather conditions. Usually the luminance of the Earth's radiation (14 to 16 μm) is from 3 to 7 W/m2Sr. Earth sensor is an important instrument of the Attitude and Orbit Control System (AOCS), and it is sensitive to the curve of the earth's and atmospheric outgoing radiation profile to determine the roll and pitch angles of satellite which are relative to nadir vector. Most earth sensors use profile data gathered form Project Scanner taken in August and December 1966. The earth sensor referred in this paper is the conical scanning earth sensor which is mainly used in the LEO (Low Earth Orbit) satellite. A method to determine the luminance of earth's and atmospheric outgoing radiation (carbon dioxide) using the earth sensor is discussed in this paper. When the conical scanning sensor scan form the space to the earth, a pulse is produced and the pulse breadth is scale with the infrared radiation luminance. Then the infrared radiation luminance can be calculated. A carbon dioxide radiance model of the earth's and atmospheric outgoing radiation is obtained according the luminance data about with different latitudes and seasons which are measured form the conical scanning earth sensors of ZY-1 satellite. When the carbon dioxide radiance model has been collected, it can be fed directly to the earth sensors to improve their accuracy. It also can be supplied for the research of the content and distribution of carbon dioxide in the atmosphere.
DAWN Coherent Wind Profiling Lidar Flights on NASA's DC-8 During GRIP
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Beyon, Jeffrey Y.; Creary, Garfield A.; Koch, Grady J.; Petros, Mulugeta; Petzar, Paul J.; Singh, Upendra N.; Trieu, Bo C.; Yu, Jirong
2011-01-01
Almost from their invention, lasers have been used to measure the velocity of wind and objects; over distances of cm to 10s of km. Long distance (remote) sensing of wind has been accomplished with continuous-wave (CW), focused pulsed, and collimated pulsed lasers; with direct and coherent (heterodyne) optical detection; and with a multitude of laser wavelengths. Airborne measurement of wind with pulsed, coherent-detection lidar was first performed in 1971 with a CW CO2 laser1, in 1972 with a pulsed CO2 laser2, in 1993 with a pulsed 2-micron laser3, and in 1999 with a pulsed CO2 laser and nadir-centered conical scanning4. Of course there were many other firsts and many other groups doing lidar wind remote sensing with coherent and direct detection. A very large FOM coherent wind lidar has been built by LaRC and flown on a DC-8. However a burn on the telescope secondary mirror prevented the full demonstration of high FOM. Both the GRIP science product and the technology and technique demonstration from aircraft are important to NASA. The technology and technique demonstrations contribute to our readiness for the 3D Winds space mission. The data analysis is beginning and we hope to present results at the conference.
Störmer method for a problem of point injection of charged particles into a magnetic dipole field
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.
2017-03-01
The problem of point injection of charged particles into a magnetic dipole field was considered. Analytical expressions were obtained by the Störmer method for regions of allowed pulses of charged particles at random points of a dipole field at a set position of the point source of particles. It was found that, for a fixed location of the studied point, there was a specific structure of the coordinate space in the form of a set of seven regions, where the injector location in each region corresponded to a definite form of an allowed pulse region at the studied point. It was shown that the allowed region boundaries in four of the mentioned regions were surfaces of conic section revolution.
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
Inductive gas line for pulsed lasers
Benett, William J.; Alger, Terry W.
1985-01-01
A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.
Inductive gas line for pulsed lasers
Benett, W.J.; Alger, T.W.
1982-09-29
A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.
A 1 MA, variable risetime pulse generator for high energy density plasma research
NASA Astrophysics Data System (ADS)
Greenly, J. B.; Douglas, J. D.; Hammer, D. A.; Kusse, B. R.; Glidden, S. C.; Sanders, H. D.
2008-07-01
COBRA is a 0.5Ω pulse generator driving loads of order 10nH inductance to >1MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95to230ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.
Energy sweep compensation of induction accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J
1990-09-12
The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less
Modeling of power control schemes in induction cooking devices
NASA Astrophysics Data System (ADS)
Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone
2005-06-01
In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.
Characterization of noncontact piezoelectric transducer with conically shaped piezoelement
NASA Technical Reports Server (NTRS)
Williams, James H., Jr.; Ochi, Simeon C. U.
1988-01-01
The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.
Super-luminescent jet light generated by femtosecond laser pulses
Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng
2014-01-01
Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1987-01-01
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Finding Equations of Tangents to Conics
ERIC Educational Resources Information Center
Baloglou, George; Helfgott, Michel
2004-01-01
A calculus-free approach is offered for determining the equation of lines tangent to conics. Four types of problems are discussed: line tangent to a conic at a given point, line tangent to a conic passing through a given point outside the conic, line of a given slope tangent to a conic, and line tangent to two conics simultaneously; in each case,…
Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed-Energy Capability
2017-03-01
Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed- Energy Capability Damian Urciuoli, Miguel Hinojosa, and Ronald Green US...were pulse tested in an inductive load circuit at peak powers of over 110 kW. Total pulsed- energy dissipation was kept nearly the same among the...voltages about which design provides the highest pulsed- energy capability. Keywords: Avalanche; Breakdown; Diode; Silicon Carbide Introduction
Note: A pulsed laser ion source for linear induction accelerators
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.
2015-01-01
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
Photovoltaic cells for laser power beaming
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Jain, Raj K.
1992-01-01
To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.
Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbelaez, D.; Madur, A.; Lipton, T.M.
2011-04-01
A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beammore » has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.« less
Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffer, J.; Encalada, N.; Huang, M.
We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.
Laboratory Study of the Shaping and Evolution of Magnetized Episodic Plasma Jets
NASA Astrophysics Data System (ADS)
Higginson, Drew
2015-11-01
The expansion of hot, dense plasma (100 eV, 1018 cm-3) into vacuum occupied by a strong magnetic field (β =Pkinetic /Pmag ~ 1) along the expansion axis is a seemingly elementary physics problem, yet it is one that has scarcely been investigated. As well as being a fundamental problem in plasma physics, understanding such a situation is important to provide an explanation of large-scale jets observed in the formation of young stellar objects (YSO). Additionally, the ability to manipulate such a situation (e.g. to optimize x-ray emission) may be essential to the feasibility of recently proposed inertial confinement fusion (ICF) schemes with an imposed magnetic field. To investigate these situations, a CF2 foil is irradiated with the ELFIE laser (1013 W/cm2, 0.6 ns) in an external axial magnetic field of 20 T. As the plasma expands radially it is restricted by magnetic pressure that creates a cavity with a shock at the expansion edge. This shock redirects flow back on axis and creates a strong, stationary, conical shock that collimates the flow into a jet traveling over 1000 km/s and extending many centimeters. The effect of episodic heating (e.g. from variable mass ejection in a YSO, or pulse shaping in ICF) was investigated by irradiating the target with a precursor laser (1012 W/cm2, 0.6 ns) at 9 to 19 ns prior to the main pulse. The addition of this relatively small addition of energy (<20% of the main pulse energy) changed the dynamics of the expansion dramatically by increasing the strength of the conical shock, reducing the forward expansion of the cavity and dramatically increasing emission. We also present MHD simulations that reproduce the experimental observables and help to understand dynamics of jet and cavity formation. Prepared by LLNL under Contract DE-AC52-07NA27344. Presently at Lawrence Livermore National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.
The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. Themore » results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.« less
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1987-02-10
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.
Energy deposition into heavy gas plasma via pulsed inductive theta-pinch
NASA Astrophysics Data System (ADS)
Pahl, Ryan Alan
The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created. In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer. In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 mΩ and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J. In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.
Note: A pulsed laser ion source for linear induction accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H., E-mail: bamboobbu@hotmail.com; School of Physics, Peking University, Beijing 100871; Zhang, K.
2015-01-15
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Ishino, H.; Kibayashi, A.; Kida, Y.; Hidehira, N.; Komatsu, K.; Hazumi, M.; Sato, N.; Sakai, K.; Yamamori, H.; Hirayama, F.; Kohjiro, S.
2018-04-01
We present the development of a frequency-domain multiplexing readout of kinetic inductance detectors (KIDs) for pulse signals with a self-trigger system. The KIDs consist of an array of superconducting resonators that have different resonant frequencies individually, allowing us to read out multiple channels in the frequency domain with a single wire using a microwave-frequency comb. The energy deposited to the resonators break Cooper pairs, changing the kinetic inductance and, hence, the amplitude and the phase of the probing microwaves. For some applications such as X-ray detections, the deposited energy is detected as a pulse signal shaped by the time constants of the quasiparticle lifetime, the resonator quality factor, and the ballistic phonon lifetime in the substrate, ranging from microseconds to milliseconds. A readout system commonly used converts the frequency-domain data to the time-domain data. For the short pulse signals, the data rate may exceed the data transfer bandwidth, as the short time constant pulses require us to have a high sampling rate. In order to overcome this circumstance, we have developed a KID readout system that contains a self-trigger system to extract relevant signal data and reduces the total data rate with a commercial off-the-shelf FPGA board. We have demonstrated that the system can read out pulse signals of 15 resonators simultaneously with about 10 Hz event rate by irradiating α particles from ^{241} Am to the silicon substrate on whose surface aluminum KID resonators are formed.
Approaches to solar cell design for pulsed laser power receivers
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Landis, Geoffrey A.
1993-01-01
Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.
Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation
NASA Astrophysics Data System (ADS)
Mackanos, Mark A.; Contag, Christopher H.
2011-07-01
Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress/damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress/injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO2 laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-02-19
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.
NASA Astrophysics Data System (ADS)
Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.
2016-12-01
A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.
A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less
Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding
Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao
2017-01-01
A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519
Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.
Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao
2017-02-10
A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.
Consolidation of materials by pulse-discharge processes
NASA Astrophysics Data System (ADS)
Strizhakov, E. L.; Nescoromniy, S. V.
2017-07-01
The article presents the research and the analysis of the pulse-discharge processes of capacitor discharge sintering: CD Stud Welding, capacitor discharge percussion welding (CDPW), high-voltage capacitor welding with an inductive-dynamic drive (HVCW with IDD), pulse electric current sintering (PECS) of powders. The comparative analysis of the impact parameter is presented.
Design and physical features of inductive coaxial copper vapor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batenin, V. M.; Kazaryan, M. A.; Karpukhin, V. T.
A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.
Alecu, C; Cuignet-Royer, E; Mertes, P M; Salvi, P; Vespignani, H; Lambert, M; Bouaziz, H; Benetos, A
2010-11-01
The aim of the present study was to establish whether elevated carotid-femoral pulse wave velocity (c-fPWV), an indicator of aortic stiffness, assessed before surgery, is correlated with variations in arterial pressure (AP) during induction of anaesthesia in elderly patients undergoing non-cardiovascular surgery. c-fPWV was measured with the PulsePen(®) device during pre-surgical anaesthetic evaluation. Monitoring included electrocardiography, pulse oximetry, non-invasive AP, heart rate, bispectral index (BIS), and oxygen concentration during induction of anaesthesia with propofol and remifentanil. Anaesthesia was induced so as to maintain BIS values between 40 and 50. Forty-five patients, aged [mean (sd)] 71.1 (5.8) yr, were studied. The mean value of c-fPWV was 12.1 (3.9) m s⁻¹. There was no correlation between hypotension during anaesthesia induction and total dosage or rate of administration of propofol or remifentanil. In univariate analysis, only age and PWV significantly correlated with the decreases in AP, and the association between c-fPWV and a decrease in AP was also seen in multivariate analysis (r = 0.36, P< 0.05). Patients classified as having 'high stiffness' (c-fPWV ≥ 12.9 m s⁻¹) had 25% further decrease in systolic AP during anaesthesia induction than those with lower PWV [75.2 (5.7) vs 60.2 (4.2) mm Hg, P < 0.05]. Increased aortic stiffness, as assessed by PWV measured during preoperative anaesthetic evaluation, is associated with more pronounced hypotension during induction of anaesthesia. Measurement of aortic stiffness in the elderly may thus represent a valid indicator of the risk of hypotension during anaesthesia induction.
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
NASA Astrophysics Data System (ADS)
Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien
2014-10-01
The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.
On random pressure pulses in the turbine draft tube
NASA Astrophysics Data System (ADS)
Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.
2017-04-01
The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.
Optical Control of Internal Conversion in Pyrazine
NASA Astrophysics Data System (ADS)
Barry, Grant; Singha, Sima; Hu, Zhan; Seideman, Tamar; Gordon, Robert
2014-03-01
We apply quantum control schemes previously reserved for atoms and small molecules to more complex polyatomic molecules. Pyrazine was chosen as a model polyatomic molecule for its well-studied conical intersection seam between the S1 and S2 potential energy surfaces (PESs). Using shaped ultraviolet femtosecond laser pulses, we demonstrate optical control of the excited state dynamics of this molecule under collisionless conditions. This was achieved in a pump-probe experiment by employing a genetic algorithm programmed to suppress ionization of the pyrazine molecules at a preselected time. Our findings indicate that the optimized pulses localize the wave packet for times up to 1.5 ps at a location on the coupled S1/S2 PESs where ionization is energetically forbidden. Our approach is general and does not require knowledge of the molecular Hamiltonian. Funding provided by National Science Foundation grant no. CHE-0848198.
Chromatic induction in space and time.
Coia, Andrew J; Shevell, Steven K
2018-04-01
The color appearance of a light depends on variation in the complete visual field over both space and time. In the spatial domain, a chromatic stimulus within a patterned chromatic surround can appear a different hue than the same stimulus within a uniform surround. In the temporal domain, a stimulus presented as an element of a continuously changing chromaticity can appear a different color compared to the identical stimulus, presented simultaneously but viewed alone. This is the flash-lag effect for color, which has an analog in the domain of motion: a pulsed object seen alone can appear to lag behind an identical pulsed object that is an element of a motion sequence. Studies of the flash-lag effect for motion have considered whether it is mediated by a neural representation for the moving physical stimulus or, alternatively, for the perceived motion. The current study addresses this question for the flash-lag effect for color by testing whether the color flash lag depends on a representation of only the changing chromatic stimulus or, alternatively, its color percept, which can be altered by chromatic induction. baseline measurements for spatial chromatic induction determined the chromaticity of a flashed ring within a uniform surround that matched a flashed ring within a patterned surround. Baseline measurements for the color flash-lag effect determined the chromaticity of a pulsed ring presented alone (within a uniform surround) that matched a pulsed ring presented in a sequence of changing chromaticity over time (also within a uniform surround). Finally, the main experiments combined chromatic induction from a patterned surround and the flash-lag effect, in three conditions: (1) both the changing and pulsed rings were within a patterned chromatic surround; (2) the changing ring was within a patterned surround and the pulsed ring within a uniform surround; and (3) the changing ring was within a uniform surround and the pulsed ring within a patterned surround. the flash-lag measurements for a changing chromaticity were affected by perceptual changes induced by the surrounding chromatic pattern. Thus, the color shifts induced by a chromatic surround are incorporated in the neural representation mediating the flash-lag effect for color.
High voltage pulse conditioning
Springfield, Ray M.; Wheat, Jr., Robert M.
1990-01-01
Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.
Pulsed magnetic field excitation sensitivity of match-type electric blasting caps
NASA Astrophysics Data System (ADS)
Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.
2010-10-01
This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.
Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.
Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A
2010-10-01
This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.
Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells.
Kim, Woong-Rae; Park, Hun; Choi, Won-Youl
2015-01-01
Ti conical island structures were fabricated using photolithography and the reactive ion etching method. The resulting conical island structures were anodized in ethylene glycol solution containing 0.25 wt% NH4F and 2 vol% H2O, and conical islands composed of TiO2 nanotubes were successfully formed on the Ti foils. The conical islands composed of TiO2 nanotubes were employed in photoelectrodes for dye-sensitized solar cells (DSCs). DSC photoelectrodes based on planar Ti structures covered with TiO2 nanotubes were also fabricated as a reference. The short-circuit current (J sc) and efficiency of DSCs based on the conical island structures were higher than those of the reference samples. The efficiency of DSCs based on the conical island structures reached up to 1.866%. From electrochemical impedance spectroscopy and open-circuit voltage (V oc) decay measurements, DSCs based on the conical island structures exhibited a lower charge transfer resistance at the counter cathode and a longer electron lifetime at the interface of the photoelectrode and electrolyte compared to the reference samples. The conical island structure was very effective at improving performances of DSCs based on TiO2 nanotubes. Graphical AbstractConical islands of TiO2 nanotube arrays are fabricated by an anodizing process with Ti protruding dots which have a conical shape. The conical islands are applied for use in DSC photoelectrodes. DSCs based on the conical islands of TiO2 nanotube arrays have the potential to achieve higher efficiency levels compared to DSCs based on normal TiO2 nanotubes and TiO2 nanoparticles because the conical islands of TiO2 nanotube arrays enlarge the surface area for dye adsorption.
Prototype Solid State Induction Modulator for SLAC NLC
NASA Astrophysics Data System (ADS)
Cassel, R. L.; DeLamare, J. E.; Nguyen, M. N.; Pappas, G. C.; Cook, E.
2002-08-01
The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3muS at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3muS (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.
Microwave-triggered laser switch
Piltch, M.S.
1982-05-19
A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Microwave-triggered laser switch
Piltch, Martin S.
1984-01-01
A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun
2018-02-01
Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.
2008-05-02
conduction capacity of the discharge switch; the discharge switch was a TRIAC (Littlefuse – Q6015L5) rated to block 600Vand conduct 15A. (For this circuit ...part of the test circuit to verify was the capacitor dump circuit . The capacitor bank was charged up to 200V and the TRIAC (S2 in Figure 17) was...be turned off by a GTO thyristor. During the course of the project, a series of GTO thyristors were used in an inductive pulse forming circuit to
Pulsed Laser Illumination of Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.
Exploring Conics: Why Does B Squared - 4AC Matter?
ERIC Educational Resources Information Center
Herman, Marlena
2012-01-01
The Ancient Greeks studied conic sections from a geometric point of view--by cutting a cone with a plane. Later, Apollonius (ca. 262-190 BCE) obtained the conic sections from one right double cone. The modern approach to the study of conics can be considered "analytic geometry," in which conic sections are defined in terms of distance…
Dynamic characteristics of pulsed supersonic fuel sprays
NASA Astrophysics Data System (ADS)
Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.
2008-06-01
This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.
Ioffe, Ilya; Dobryakov, Alexander L; Granovsky, Alexander A; Ernsting, Nikolaus P; Lustres, J Luis Pérez
2011-07-11
Photoisomerization around a central fulvene-type double bond is known to proceed through a conical intersection at the perpendicular geometry. The process is studied with an indenylidene-dihydropyridine model compound, allowing the use of visible excitation pulses. Transient absorption shows that 1) stimulated emission shifts to the red and loses oscillator strength on a 50 fs timescale, and 2) bleach recovery is highly nonexponential and not affected by solvent viscosity or methyl substitution at the dihydropyridine ring. Quantum-chemical calculations are used to explain point 1 as a result of initial elongation of the central C=C bond with mixing of S(2) and S(1) states. From point 2 it is concluded that internal conversion of S(1)→S(0) does not require torsional motion to the fully perpendicular state. The S(1) population appears to encounter a sink on the torsional coordinate before the conical intersection is reached. Rate equations cannot model the observed ground-state recovery adequately. Instead the dynamics are best described with a strongly damped oscillatory contribution, which could indicate coherent S(1)-S(0) population transfer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, D.; Gurovich, V. Tz.; Gleizer, S.
The results of experiments with underwater electrical explosion of modified conical arrays of copper and aluminum wires are presented. A pulsed generator producing a 550 kA-amplitude current with a 400 ns rise time was used in the explosion of the arrays. The array explosion generates water flows converging at the axis of the cone. This flow generates a fast-moving water jet with a velocity exceeding 1.8 × 10{sup 5 }cm/s, which was observed being ejected from the surface of the water covering the array. The positions of the water jet were measured by multiple-exposure fast framing imaging. In experiments, the apex angle of the array,more » the thickness of the water layer above the arrays, or the material of the wires was altered, which changed the resulting velocities and shapes of the emitted jets. A model that considers the converging stationary flow of a slightly compressible fluid is suggested. The velocities and shapes of the jets obtained by this model agree well with the experimentally measured jet velocities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panitz, J.K.G.
A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form strongly depend on: (1) argon energy (from 250 to 1500 eV), (2) fluence (10{sup 19} to 10{sup 20} ions/cm{sup 2}), and (3) flux (0.1 to 1 mA/cm{sup 2}). The texture morphology depends less strongly on the background ambient (Mo vs graphite), earlier alloy heat treatments and the temperature during bombardment (100{degree}C and 450{degree}C). As the texture matures with increasing fluence, the number of large features increases at the expensemore » of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical sidewall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including: (1) pulsed power Li+ beam anodes, (2) cold cathode field emission devices, (3) optical absorbers and (4) catalysis supports. 18 refs., 5 figs.« less
Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.
2016-01-01
Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr6+, manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions. PMID:26267301
Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T
2016-01-01
Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr(6+), manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions.
NASA Astrophysics Data System (ADS)
Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN
2018-02-01
At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
Meire, Maarten A; Havelaerts, Sophie; De Moor, Roeland J
2016-05-01
Laser-activated irrigation (LAI) using erbium lasers is an irrigant agitation technique with great potential for improved cleaning of the root canal system, as shown in many in vitro studies. However, lasing parameters for LAI vary considerably and their influence remains unclear. Therefore, this study sought to investigate the influence of pulse energy, pulse frequency, pulse length, irradiation time and fibre tip shape, position and diameter on the cleaning efficacy of LAI. Transparent resin blocks containing standardized root canals (apical diameter of 0.4 mm, 6% taper, 15 mm long, with a coronal reservoir) were used as the test model. A standardized groove in the apical part of each canal wall was packed with stained dentin debris. The canals were filled with irrigant, which was activated by an erbium: yttrium aluminium garnet (Er:YAG) laser (2940 nm, AT Fidelis, Fotona, Ljubljana, Slovenia). In each experiment, one laser parameter was varied, while the others remained constant. In this way, the influence of pulse energy (10-40 mJ), pulse length (50-1000 μs), frequency (5-30 Hz), irradiation time (5-40 s) and fibre tip shape (flat or conical), position (pulp chamber, canal entrance, next to groove) and diameter (300-600 μm) was determined by treating 20 canals per parameter. The amount of debris remaining in the groove after each LAI procedure was scored and compared among the different treatments. The parameters significantly (P < 0.05, Kruskal-Wallis) affecting debris removal from the groove were fibre tip position, pulse length, pulse energy, irradiation time and frequency. Fibre tip shape and diameter had no significant influence on the cleaning efficacy.
Steels with controlled hardenability for induction hardening
NASA Astrophysics Data System (ADS)
Shepelyakovskii, K. Z.
1980-07-01
Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.
Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli
2015-05-05
Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g.
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Steady-state inductive spheromak operation
Janos, A.C.; Jardin, S.C.; Yamada, M.
1985-02-20
The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.
Implementation and initial test result of a prototype solid state modulator for pulsed magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dake, Vishal; Mangalvedekar, H.A., E-mail: vishaldake90@gmail.com; Tillu, Abhijit
2014-07-01
A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluatingmore » the ESL of locally available metalized polypropylene capacitors will also be presented. (author)« less
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-01-01
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674
The seizure, not electricity, is essential in convulsive therapy: the flurothyl experience.
Fink, Max
2014-06-01
For more than 50 years, research in convulsive therapy has been focused on the impact of electricity and seizures on memory and not on brain chemistry or neurophysiology. Brief pulse and ultra-brief pulse currents replaced sinusoidal currents. Electrode placements were varied, energy dosing was altered, and electricity was replaced by magnetic currents. The published experiences and archival records of seizures induced by camphor, pentylenetetrazol, and flurothyl are reviewed and compared with the changes induced by electricity. The clinical efficacy of chemically induced seizures is equal to that of electrical inductions. Seizure durations are longer, and impairment of cognition and memory is less. Electroconvulsive therapy replaced chemical treatments for ease of use, not for greater efficacy or safety. The brain seizure, not the method of induction, is the essential element in the efficacy of convulsive therapy. Seizure induction with chemicals avoids the direct effects of electricity on brain functions with lesser effects on cognition. Reexamination of chemical inductions of seizures as replacements for electricity is encouraged.
NASA Astrophysics Data System (ADS)
Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.
2014-08-01
We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.
Enhancement of thickness uniformity of thin films grown by pulsed laser deposition
NASA Technical Reports Server (NTRS)
Fernandez, Felix E.
1995-01-01
A peculiarity of the pulsed laser deposition technique of thin-film growth which limits its applicability is the very rapid drop of resulting film thickness as a function of distance from the deposition axis. This is due to the narrow forward peaking of the emission plume characteristic of the laser ablation process. The plume is usually modeled by a cos(sup n) theta function with n greater, and in some cases, much higher, than 1. Based on this behavior, a method is presented to substantially enhance coverage uniformity in substrate zones of the order of the target-substrate distance h, and to within a specified thickness tolerance. Essentially, target irradiation is caused to form an annular emission source instead of the usual spot. By calculating the resulting thickness profiles, an optimum radius s is found for the annular source, corresponding to a given power in the emission characteristic and a given value of h. The radius of this annulus scales with h. Calculated numerical results for optimal s/h ratios corresponding to a wide range of values for n are provided for the case of +/- 1% tolerance in deviation from the thickness at deposition axis. Manners of producing annular illumination of the target by means of conic optics are presented for the case of a laser beam with radially symmetric profile. The region of uniform coverage at the substrate can be further augmented by extension of the method to multiple concentric annular sources. By using a conic optic of novel design, it is shown also how a single-laser beam can be focused onto a target in the required manner. Applicability of the method would be limited in practice by the available laser power. On the other hand, the effective emitting area can be large, which favors extremely high growth rates, and since growth can occur uniformly over the whole substrate for each laser pulse, single-shot depositions with substantial thicknesses are possible. In addition, the simultaneity of growth over the complete substrate is desirable when monitoring the growth in situ.
Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.
Adair, Alexander; Mastikhin, Igor V; Newling, Benedict
2018-06-01
The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.
Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser
NASA Astrophysics Data System (ADS)
Minami, Yasuo; Kurihara, Takayuki; Yamaguchi, Keita; Nakajima, Makoto; Suemoto, Tohru
2013-04-01
We have generated and detected a longitudinally polarized (Z-polarized) terahertz (THz) wave by focusing a conically propagating THz beam generated from a plasma filament induced by a femtosecond laser pulse. In the experiment, we observed a radially polarized field in a collimated region and Z-polarized field at focus in the time domain. The maximum value of the Z-polarized THz electric field reached 1.0 kV/cm. It was also quantitatively discussed about the Z-polarized field and the radial field at the focal point. We expect this technique to find application in THz time domain spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabovski, E. V.; Gribov, A. N.; Samokhin, A. A.
2016-08-15
Current leakages in the magnetically insulated transmission lines (MITL) impose restrictions on the transmission of electromagnetic pulses to the load in high-power electrophysical facilities. The multimodule Angara-5-1 facility with an output electric power of up to 6 TW is considered. In this work, the experimental and calculated profiles of leakage currents in two sections of the line are compared when the eight-module facility is loaded by a wire array. The azimuthal distribution of the current in the cylindrical section of the MITL is also considered.
NASA Technical Reports Server (NTRS)
Bert, C. W.; Clary, R. R.
1974-01-01
Various methods potentially usable for determining dynamic stiffness and damping of composite materials are reviewed. Of these, the following most widely used techniques are singled out for more detailed discussion: free vibration, pulse propagation, and forced vibration response. To illustrate the usefulness and validity of dynamic property data, their application in dynamic analyses and comparison with measured structural response are described for the following composite-material structures: free-free sandwich beam with glass-epoxy facings, clamped-edge sandwich plate with similar facings, free-end sandwich conical shell with similar facings, and boron-epoxy free plate with layers arranged at various orientations.
NASA Technical Reports Server (NTRS)
Knight, Doyle D.; Badekas, Dias
1991-01-01
The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.
A 800 kV compact peaking capacitor for nanosecond generator.
Jia, Wei; Chen, Zhiqiang; Tang, Junping; Chen, Weiqing; Guo, Fan; Sun, Fengrong; Li, Junna; Qiu, Aici
2014-09-01
An extremely compact high voltage peaking capacitor is developed. The capacitor has a pancake structure with a diameter of 315 mm, a thickness of 59 mm, and a mass of 6.1 kg. The novel structural design endows the capacitor with a better mechanical stability and reliability under hundreds of kilovolts pulse voltage and an inner gas pressure of more than 1.5 MPa. The theoretical value of the capacitor self-inductance is near to 17 nH. Proved by series of electrical experiments, the capacitor can endure a high-voltage pulse with a rise time of about 20 ns, a half-width duration of around 25 ns, and an amplitude of up to 800 kV in a single shot model. When the capacitor was used in an electromagnetic pulse simulator as a peaking capacitor, the rise time of the voltage pulse can be reduced from 20 ns to less than 3 ns. The practical value of the capacitor's inductance deduced from the experimental date is no more than 25 nH.
Pulsed thermionic converter study
NASA Technical Reports Server (NTRS)
1976-01-01
A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.
Design and Testing of a Small Inductive Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.
2015-01-01
The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.
Best-Fit Conic Approximation of Spacecraft Trajectory
NASA Technical Reports Server (NTRS)
Singh, Gurkipal
2005-01-01
A computer program calculates a best conic fit of a given spacecraft trajectory. Spacecraft trajectories are often propagated as conics onboard. The conic-section parameters as a result of the best-conic-fit are uplinked to computers aboard the spacecraft for use in updating predictions of the spacecraft trajectory for operational purposes. In the initial application for which this program was written, there is a requirement to fit a single conic section (necessitated by onboard memory constraints) accurate within 200 microradians to a sequence of positions measured over a 4.7-hour interval. The present program supplants a prior one that could not cover the interval with fewer than four successive conic sections. The present program is based on formulating the best-fit conic problem as a parameter-optimization problem and solving the problem numerically, on the ground, by use of a modified steepest-descent algorithm. For the purpose of this algorithm, optimization is defined as minimization of the maximum directional propagation error across the fit interval. In the specific initial application, the program generates a single 4.7-hour conic, the directional propagation of which is accurate to within 34 microradians easily exceeding the mission constraints by a wide margin.
Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozument, Kirill; Colombo, Anthony P.; Zhou Yan
2011-09-30
Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.
1983-01-01
An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.
The ETA-II induction linac as a high-average-power FEL driver
NASA Astrophysics Data System (ADS)
Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.
1990-10-01
The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.
Ablation and cone formation mechanism on CR-39 by ArF laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir
In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less
Kotur, Marija; Weinacht, Thomas C; Zhou, Congyi; Kistler, Kurt A; Matsika, Spiridoula
2011-05-14
We present a general method for tracking molecular relaxation along different pathways from an excited state down to the ground state. We follow the excited state dynamics of cytosine pumped near the S(0)-S(1) resonance using ultrafast laser pulses in the deep ultraviolet and probed with strong field near infrared pulses which ionize and dissociate the molecules. The fragment ions are detected via time of flight mass spectroscopy as a function of pump probe delay and probe pulse intensity. Our measurements reveal that different molecular fragments show different timescales, indicating that there are multiple relaxation pathways down to the ground state. We interpret our measurements with the help of ab initio electronic structure calculations of both the neutral molecule and the molecular cation for different conformations en route to relaxation back down to the ground state. Our measurements and calculations show passage through two seams of conical intersections between ground and excited states and demonstrate the ability of dissociative ionization pump probe measurements in conjunction with ab initio electronic structure calculations to track molecular relaxation through multiple pathways.
Bioaccessibility assessment of toxic and essential elements in produced pulses, Bahia, Brazil.
Santos, Wagna Piler Carvalho; Ribeiro, Nubia Moura; Santos, Daniele Cristina Muniz Batista; Korn, Maria Graças Andrade; Lopes, Mariângela Vieira
2018-02-01
The objective of this study was to analyze the effect of heat treatment on the bioaccessibility of major (K, Ca, Mg, P) and trace elements (As, Ba, Cu, Fe, Mn, Cd, Cr, Hg, Mo, Ni, Pb, Se, Sb, Sn, and Zn) in three different pulse species: Vigna unguiculata L. Walp (cowpea beans), Cajanus cajan L. (pigeon pea) and Lablab purpureus L. Sweet (mangalo). Analyte concentrations were determined in the samples by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. The results showed that thermal processing can affect the concentrations of the elements investigated in pulse samples. The influence of the heat treatment can range between legume species and chemical elements, as well as with the type of heat treatment, dry, wet, conductive heating and using microwaves. Copyright © 2017 Elsevier Ltd. All rights reserved.
A compact submicrosecond, high current generator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.
2009-08-01
Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.
NASA Astrophysics Data System (ADS)
Dunster, T. M.; Gil, A.; Segura, J.; Temme, N. M.
2017-08-01
Conical functions appear in a large number of applications in physics and engineering. In this paper we describe an extension of our module Conical (Gil et al., 2012) for the computation of conical functions. Specifically, the module includes now a routine for computing the function R-1/2+ iτ m (x) , a real-valued numerically satisfactory companion of the function P-1/2+ iτ m (x) for x > 1. In this way, a natural basis for solving Dirichlet problems bounded by conical domains is provided. The module also improves the performance of our previous algorithm for the conical function P-1/2+ iτ m (x) and it includes now the computation of the first order derivative of the function. This is also considered for the function R-1/2+ iτ m (x) in the extended algorithm.
Bandwidth-limited control and ringdown suppression in high-Q resonators.
Borneman, Troy W; Cory, David G
2012-12-01
We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya
Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.
Understanding the Conics through Augmented Reality
ERIC Educational Resources Information Center
Salinas, Patricia; Pulido, Ricardo
2017-01-01
This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…
Boring apparatus capable of boring straight holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, C.R.
The invention relates to a rock boring assembly for producing a straight hole for use in a drill string above a pilot boring bit of predetermined diameter smaller than the desired final hole size. The boring assembly comprises a small conical boring bit and a larger conical boring, the conical boring bits mounted on lower and upper ends of an enlongated spacer, respectively, and the major effective cutting diameters of each of the conical boring bits being at least 10% greater than the minor effective cutting diameter of the respective bit. The spacer has a cross-section resistant bending and spacesmore » the conical boring bits apart a distance at least 5 times the major cutting diameter of the small conical boring bit, thereby spacing the pivot points provided by the two conical boring bits to limit bodily angular deflection of the assembly and providing a substantial moment arm to resist lateral forces applied to the assembly by the pilot bit and drill string. The spacing between the conical bits is less than about 20 times the major cutting diameter of the lower conical boring bit to enable the spacer to act as a bend-resistant beam to resist angular deflection of the axis of either of the conical boring bits relative to the other when it receives uneven lateral force due to non-uniformity of cutting conditions about the circumference of the bit. Advantageously the boring bits also are self-advancing and feature skewed rollers. 7 claims.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrere, M.; Kaeppelin, V.; Torregrosa, F.
2006-11-13
In order to face the requirements for P+/N junctions requested for < 45 nm ITRS nodes, new doping techniques are studied. Among them Plasma Immersion Ion Implantation (PIII) has been largely studied. IBS has designed and developed its own PIII machine named PULSION registered . This machine is using a pulsed plasma. As other modem technological applications of low pressure plasma, PULSION registered needs a precise control over plasma parameters in order to optimise process characteristics. In order to improve pulsed plasma discharge devoted to PIII, a nitrogen pulsed plasma has been studied in the inductively coupled plasma (ICP) ofmore » PULSION registered and an argon pulsed plasma has been studied in the helicon discharge of the laboratory reactor of LPIIM (PHYSIS). Measurements of the Ion Energy Distribution Function (IEDF) with EQP300 (Hidden) have been performed in both pulsed plasma. This study has been done for different energies which allow to reconstruct the IEDF resolved in time (TREMS). By comparing these results, we found that the beginning of the plasma pulse, named ignition, exhaust at least three phases, or more. All these results allowed us to explain plasma dynamics during the pulse while observing transitions between capacitive and inductive coupling. This study leads in a better understanding of changes in discharge parameters as plasma potential, electron temperature, ion density.« less
Laser control of reactions of photoswitching functional molecules.
Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki
2006-07-21
Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.
Controlled motion of domain walls in submicron amorphous wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian
Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less
Electroporation of cells using EM induction of ac fields by a magnetic stimulator
NASA Astrophysics Data System (ADS)
Chen, C.; Evans, J. A.; Robinson, M. P.; Smye, S. W.; O'Toole, P.
2010-02-01
This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m-1. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.
Contact Whiskers for Millimeter Wave Diodes
NASA Technical Reports Server (NTRS)
Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.
1978-01-01
Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.
De Moerloose, Barbara; Suciu, Stefan; Bertrand, Yves; Mazingue, Françoise; Robert, Alain; Uyttebroeck, Anne; Yakouben, Karima; Ferster, Alice; Margueritte, Geneviève; Lutz, Patrick; Munzer, Martine; Sirvent, Nicolas; Norton, Lucilia; Boutard, Patrick; Plantaz, Dominique; Millot, Frederic; Philippet, Pierre; Baila, Liliana; Benoit, Yves; Otten, Jacques
2010-07-08
The European Organisation for Research and Treatment of Cancer 58951 trial for children with acute lymphoblastic leukemia (ALL) or non-Hodgkin lymphoma (NHL) addressed 3 randomized questions, including the evaluation of dexamethasone (DEX) versus prednisolone (PRED) in induction and, for average-risk patients, the evaluation of vincristine and corticosteroid pulses during continuation therapy. The corticosteroid used in the pulses was that assigned at induction. Overall, 411 patients were randomly assigned: 202 initially randomly assigned to PRED (60 mg/m(2)/d), 201 to DEX (6 mg/m(2)/d), and 8 nonrandomly assigned to PRED. At a median follow-up of 6.3 years, there were 19 versus 34 events for pulses versus no pulses; 6-year disease-free survival (DFS) rate was 90.6% (standard error [SE], 2.1%) and 82.8% (SE, 2.8%), respectively (hazard ratio [HR] = 0.54; 95% confidence interval, 0.31-0.94; P = .027). The effect of pulses was similar in the PRED (HR = 0.56) and DEX groups (HR = 0.59) but more pronounced in girls (HR = 0.24) than in boys (HR = 0.71). Grade 3 to 4 hepatic toxicity was 30% versus 40% in pulses versus no pulses group and grade 2 to 3 osteonecrosis was 4.4% versus 2%. For average-risk patients treated according to Berlin-Frankfurt-Muenster-based protocols, pulses should become a standard component of therapy.
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.
Two Approaches of Studying Singularity of Projective Conics
ERIC Educational Resources Information Center
Broyles, Chris; Muller, Lars; Tikoo, Mohan; Wang, Haohao
2010-01-01
The singularity of a projective conic can be determined via the associated matrix to the implicit equation of the projective conic. In this expository article, we will first derive a known result for determining the singularity of a projective conic via the associated matrix. Then we will introduce the concepts of [mu]-basis of the parametric…
Experiment with Conical Pendulum
ERIC Educational Resources Information Center
Tongaonkar, S. S.; Khadse, V. R.
2011-01-01
Conical pendulum is similar to simple pendulum with the difference that the bob, instead of moving back and forth, swings around in a horizontal circle. Thus, in a conical pendulum the bob moves at a constant speed in a circle with the string tracing out a cone. This paper describes an experiment with conical pendulum, with determination of g from…
Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2014-01-01
Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.
Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Shahab, Azin
In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.
A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.
Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K
2016-07-01
This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.
A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.
This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less
Self-reflection of extremely short light pulses in nonlinear optical waveguides
NASA Astrophysics Data System (ADS)
Kurasov, Alexander E.; Kozlov, Sergei A.
2004-07-01
An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.
Vacuum scanning capillary photoemission microscopy.
Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V
2017-08-01
We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.
Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell
NASA Astrophysics Data System (ADS)
Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong
2015-11-01
Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.
Analysis of High Power IGBT Short Circuit Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pappas, G.
2005-02-11
The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less
Conical pitch angle distributions of very low-energy ion fluxes observed by ISEE 1
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Baugher, C. R.; Chappell, C. R.; Shelley, E. G.; Young, D. T.
1982-01-01
Observations are presented of conical distributions of low-energy ion fluxes from throughout the magnetosphere. The data were provided by the plasma composition experiment (PCE) on ISEE 1. ISEE 1 was launched in October 1977 into a highly elliptical orbit with a 30 deg inclination to the equator and 22.5 earth radii apogee. Particular attention is given to data taken when the instrument was in its thermal plasma mode, sampling ions in the energy per charge range 0-100 eV/e. Attention is given to examples of conical distributions in 0- to 100-eV/e ions, the occurrence of conical distributions of 0- to 100-eV ions in local time-geocentric distance and latitude-geocentric distance coordinates, the cone angles in 0- to 100-eV ion conics, Kp distributions of 0- to 100-eV ion conics, and some compositional aspects of 0- to 100-eV ion conics.
Morphological record of oxygenic photosynthesis in conical stromatolites.
Bosak, Tanja; Liang, Biqing; Sim, Min Sub; Petroff, Alexander P
2009-07-07
Conical stromatolites are thought to be robust indicators of the presence of photosynthetic and phototactic microbes in aquatic environments as early as 3.5 billion years ago. However, phototaxis alone cannot explain the ubiquity of disrupted, curled, and contorted laminae in the crests of many Mesoproterozoic, Paleoproterozoic, and some Archean conical stromatolites. Here, we demonstrate that cyanobacterial production of oxygen in the tips of modern conical aggregates creates contorted laminae and submillimeter-to-millimeter-scale enmeshed bubbles. Similarly sized fossil bubbles and contorted laminae may be present only in the crestal zones of some conical stromatolites 2.7 billion years old or younger. This implies not only that cyanobacteria built Proterozoic conical stromatolites but also that fossil bubbles may constrain the timing of the evolution of oxygenic photosynthesis.
Conical Refraction: new observations and a dual cone model.
Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U
2013-05-06
We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.
2014-01-15
Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less
Suppressing beam-centroid motion in a long-pulse linear induction accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.
2011-12-01
The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.
Sommer, Martin; Norden, Christoph; Schmack, Lars; Rothkegel, Holger; Lang, Nicolas; Paulus, Walter
2013-05-01
Directional sensitivity is relevant for the excitability threshold of the human primary motor cortex, but its importance for externally induced plasticity is unknown. To study the influence of current direction on two paradigms inducing neuroplasticity by repetitive transcranial magnetic stimulation (rTMS). We studied short-lasting after-effects induced in the human primary motor cortex of 8 healthy subjects, using 5 Hz rTMS applied in six blocks of 200 pulses each, at 90% active motor threshold. We controlled for intensity, frequency, waveform and spinal effects. Only biphasic pulses with the effective component delivered in an anterioposterior direction (henceforth posteriorly directed) in the brain yielded an increase of motor-evoked potential (MEP) amplitudes outlasting rTMS. MEP latencies and F-wave amplitudes remained unchanged. Biphasic pulses directed posteroanterior (i.e. anteriorly) were ineffective, as were monophasic pulses from either direction. A 1 Hz study in a group of 12 healthy subjects confirmed facilitation after posteriorly directed biphasic pulses only. The anisotropy of the human primary motor cortex is relevant for induction of plasticity by subtreshold rTMS, with a current flow opposite to that providing lowest excitability thresholds. This is consistent with the idea of TMS primarily targeting cortical columns of the phylogenetically new M1 in the anterior bank of the central sulcus. For these, anteriorly directed currents are soma-depolarizing, therefore optimal for low thresholds, whereas posteriorly directed currents are soma-hyperpolarizing, likely dendrite-depolarizing and bested suited for induction of plasticity. Our findings should help focus and enhance rTMS effects in experimental and clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
The ETA-2 induction linac as a high average power FEL driver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.
1989-10-16
The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja
2017-12-01
The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.
DE 1 and Viking observations associated with electron conical distributions
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Weimer, D. R.; Andre, M.; Eliasson, L.
1994-01-01
Data from the electron detectors on board the Swedish Viking satellite launched during a period of low solar activity and from the Dynamic Explorer (DE) 1 satellite launched during active solar coditions have been examined for the occurrence and location of electron conical distributions and several conclusions can be drawn. First, we note that most of the best examples of electron conics observed by the V-3 experiment onboard Viking occurred in the afternoon sector in the range of magneitc local time 14 hours less than Magnetic Local Time (MLT) less than 18 hours, at midaltitudes in the range 10,000 km less than h less than 13,500 km, with few occurring in the nightside auroral region, a region poorly sampled at altitudes greater than 5000 km. For the Viking data there is an association of electron conics with upper hybrid waves. DE 1 observations made by the high-altitude plasma instrument (HAPI) indicate that electron conics were observed in the midmorning sector and the late evening sector, and as has been reported earlier, the correlation with upper hybird waves was good. The HAPI did not sample the afternoon sector. The electon conics observed on both satellites occurred in the presence of at least a modest (several kilovolts) potential difference beneath the satellite with a maximum energy that was usually, but not always, equal to or greater than the maximum energy of the electron conics. Two independent sets of observations by DE 1 suggest two distinct production mechanisms for electron conics. Examiniation of DE 1 electric field measurements from the plasma wave instrument during the observation of electron conics show simultaneous parallel oscillations in the frequency range of 0.2 Hz less than f less than 0.5 Hz during one and perhaps two of four events examined, and upper hybrid waves were observed on all four events. In addition, recent observations of '90-deg' electron conics associated with auroral kilometric radiation source regions suggest a perpendicular heating mechanism produced by wave-particle interaction. Such distributions may be observed as electron conics at higher altitudes. These results suggest more than one possible source mechanism may be responsible for electron conics.
Understanding Conic Sections Using Alternate Graph Paper
ERIC Educational Resources Information Center
Brown, Elizabeth M.; Jones, Elizabeth
2006-01-01
This article describes two alternative coordinate systems and their use in graphing conic sections. This alternative graph paper helps students explore the idea of eccentricity using the definitions of the conic sections.
Electric fence standards comport with human data and AC limits.
Kroll, Mark W; Perkins, Peter E; Panescu, Dorin
2015-08-01
The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.
Optically Controlled Devices and Ultrafast Laser Sources for Signal Processing.
1987-06-30
A2 are input/output cavity coupling elements. C1 and C2 are coaxial cables. The resistance (R) and inductance L) provide isolation between the DC power ...the same power . 3. The continuously operating phosphate Nd:glass laser has been modelocked for the first time ever to generate 7 ps pulses. We have...media in a modelocked laser to understand the fundamental pulse generation mechanism. 2. Develop compact, high- power sources of short pulses using
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.
The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinallymore » and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX-II beam is highly space-charge dominated. The 1-D ASP code was used to synthesize high voltage waveform for acceleration, while the 3-D Warp particle-in-cell code was used for detailed design of the lattice. The Li{sup +} ion was chosen because its Bragg Peak energy (at {approx} 2 MeV) coincides with the NDCX-II beam energy. The 130 keV injector will have a 10.9 cm diameter ion source. Testing of small (0.64 cm diameter) lithium doped alumino-silicate ion sources has demonstrated the current density ({approx} 1 mA/cm{sup 2}) used in the design, with acceptable lifetime. A 7.6 cm diameter source has been successfully produced to verify that the coating method can be applied to such a large emitting area. The ion source will operate at {approx} 1275 C; thus a significant effort was made in the design to manage the 4 kW heating power and the associated cooling requirements. In modifying the ATA induction cells for NDCX-II, the low-field DC solenoids were replaced with 2.5 T pulsed solenoids. The beam pipe diameter was decreased in order to reduce the axial extent of the solenoid fringe fields and to make room for water cooling. In addition, an outer copper cylinder (water-cooled) was used to exclude the solenoid magnetic flux from the ferrite cores. Precise alignment is essential because the beam has a large energy spread due to the rapid pulse compression, such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. A novel pulsed-wire measurement method is used to align the pulsed solenoid magnets. Alignment accuracy has been demonstrated to within 100 {micro}m of the induction cell axis. The neutralized drift compression region after the last induction cell is approximately 1.2 m long and includes ferroelectric plasma sources (FEPS) fabricated by PPPL similar to those successfully operating in NDCX-I. The 8-T final focus pulsed solenoid, filtered cathodic arc plasma sources (FCAPS), and target chamber from NDCX-I are to be relocated to NDCX-II. The NDCX-II project started in July 2009 and is expected to complete in fall of 2011. As future funds become available, additional induction cells and pulsed power systems will be added to increase the beam energy.« less
Generation of attosecond electron packets via conical surface plasmon electron acceleration
Greig, S. R.; Elezzabi, A. Y.
2016-01-01
We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2014-11-07
For conical intersections of two states (I,J = I + 1) the vectors defining the branching or g-h plane, the energy difference gradient vector g{sup I,J}, and the interstate coupling vector h{sup I,J}, can be made orthogonal by a one parameter rotation of the degenerate electronic eigenstates. The representation obtained from this rotation is used to construct the parameters that describe the vicinity of the conical intersection seam, the conical parameters, s{sup I,J}{sub x} (R), s{sup I,J}{sub y} (R), g{sup I,J}(R), and h{sup I,J}(R). As a result of the orthogonalization these parameters can be made continuous functions of R, themore » internuclear coordinates. In this work we generalize this notion to construct continuous parametrizations of conical intersection seams of three or more states. The generalization derives from a recently introduced procedure for using non-degenerate electronic states to construct coupled diabatic states that represent adiabatic states coupled by conical intersections. The procedure is illustrated using the seam of conical intersections of three states in parazolyl as an example.« less
Pulsed Inductive Thruster (PIT): Modeling and Validation Using the MACH2 Code
NASA Technical Reports Server (NTRS)
Schneider, Steven (Technical Monitor); Mikellides, Pavlos G.
2003-01-01
Numerical modeling of the Pulsed Inductive Thruster exercising the magnetohydrodynamics code, MACH2 aims to provide bilateral validation of the thruster's measured performance and the code's capability of capturing the pertinent physical processes. Computed impulse values for helium and argon propellants demonstrate excellent correlation to the experimental data for a range of energy levels and propellant-mass values. The effects of the vacuum tank wall and massinjection scheme were investigated to show trivial changes in the overall performance. An idealized model for these energy levels and propellants deduces that the energy expended to the internal energy modes and plasma dissipation processes is independent of the propellant type, mass, and energy level.
NASA Astrophysics Data System (ADS)
Moon, Sunghwan
2017-06-01
A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.
Capacitively-coupled inductive sensor
Ekdahl, Carl A.
1984-01-01
A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism
NASA Technical Reports Server (NTRS)
Gittleman, Mark; Johnston, Alistair
1996-01-01
The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung
2015-08-15
Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P{sub 2 MHz} = 2 MHz) and high (P{sub 13.56 MHz} = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF{sub 4} (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers frommore » 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P{sub 13.56 MHz}; however, it shows opposite trends with P{sub 2 MHz}. It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant.« less
Engineering model for ultrafast laser microprocessing
NASA Astrophysics Data System (ADS)
Audouard, E.; Mottay, E.
2016-03-01
Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.
Performance of conical abutment (Morse Taper) connection implants: a systematic review.
Schmitt, Christian M; Nogueira-Filho, Getulio; Tenenbaum, Howard C; Lai, Jim Yuan; Brito, Carlos; Döring, Hendrik; Nonhoff, Jörg
2014-02-01
In this systematic review, we aimed to compare conical versus nonconical implant-abutment connection systems in terms of their in vitro and in vivo performances. An electronic search was performed using PubMed, Embase, and Medline databases with the logical operators: "dental implant" AND "dental abutment" AND ("conical" OR "taper" OR "cone"). Names of the most common conical implant-abutment connection systems were used as additional key words to detect further data. The search was limited to articles published up to November 2012. Recent publications were also searched manually in order to find any relevant studies that might have been missed using the search criteria noted above. Fifty-two studies met the inclusion criteria and were included in this systematic review. As the data and methods, as well as types of implants used was so heterogeneous, this mitigated against the performance of meta-analysis. In vitro studies indicated that conical and nonconical abutments showed sufficient resistance to maximal bending forces and fatigue loading. However, conical abutments showed superiority in terms of seal performance, microgap formation, torque maintenance, and abutment stability. In vivo studies (human and animal) indicated that conical and nonconical systems are comparable in terms of implant success and survival rates with less marginal bone loss around conical connection implants in most cases. This review indicates that implant systems using a conical implant-abutment connection, provides better results in terms of abutment fit, stability, and seal performance. These design features could lead to improvements over time versus nonconical connection systems. © 2013 Wiley Periodicals, Inc.
European Science Notes Information Bulletin Report on Current European/ Middle Eastern Science
1990-08-01
evolved from pulse- power research activities generators charged by low-inductance, Marx-bank dating from the early 1960s at the Institute of Nuclear...Pulse Power at ISE tion rates up to 25 Hz. While I saw one of these gener- ators at ISE hooked to a microwave generator and The ISE has a very active ...program on repetitive pulse photographs for a commercial brochure, I have not seen power based upon oil-dielectric transformer technology, the output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, V.L.; Corcoran, P.; Droemer, D.
Recent experiments (1) have adapted existing magne-tically insulated induction voltage adders (Sabre, Hermes III) to drive a 10 MV diode immersed in magnetic fields as high as 50 T. In such a diode, an electron beam of tens of kA can be confined by the magnetic field to a diameter of about 1 mm, and when it strikes a high-Z anode it can create a bremsstrahlung x-ray source intense enough to radiograph massive objects with high resolution. RITS is an adder system designed specially to drive such diodes, and it will be used to develop and exploit them. As inmore » other adder-based pulsers such as Sabre, Hermes III, and Kalif-Heliq the induction cells have amorphous- iron cores, and the pulse-forming system consists of water dielectric pulse lines and self-closing water switches that are pulse-charged from Marx-charged intermediate water capacitors through laser-triggered Rimfire switches. An oil prepulse switch in series with each pulse line is designed to reduce cathode prepulse to less than ± 5 kV, and a means is provided to bias the cathode and avoid negative prepulse entirely. The RITS pulse-forming system consists of two modules. Each module has one Marx that charges two 3 MV intermediate stores, each of which charges three 7.8 ohm pulselines, making six pulselines per module. The two modules in concert can supply 1.35 MV, 50 ns pulses to a twelve-cell adder and thus drive a 16 MV diode with a single pulse. The 1.35 MV induction cells each have a single-point feed, from which a single, slotted azimuthal oil transmission line distributes energy uniformly around the cell. The modules can also be pulsed separately at different times, either to power two 8 MV adders that each drive one of two closely-spaced cathodes immersed in a common magnetic field, or to provide two separate pulses to a common six- cell adder and a single 8 NIV diode; in these two-pulse modes, the spacing of the two 50 ns pulses may be chosen to be anything from a few hundred ns upward. The use of only one pulse line per cell has been shown to increase the extent to which the cell voltages can vary with the timing of closure of the water switches. This and all other functions of RITS have been simulated in detail, and a conservative electrical design has been developed. This will be illustrated, along with the conceptual design of a pulse-sorting network that can couple two pulselines efilciently to one cell when the two RITS modules drive a common adder in two-pulse mode.« less
Simulation of femtosecond two-dimensional electronic spectra of conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang
2015-08-21
We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.
Magnetic field homogeneity of a conical coaxial coil pair.
Salazar, F J; Nieves, F J; Bayón, A; Gascón, F
2017-09-01
An analytical study of the magnetic field created by a double-conical conducting sheet is presented. The analysis is based on the expansion of the magnetic field in terms of Legendre polynomials. It is demonstrated analytically that the angle of the conical surface that produces a nearly homogeneous magnetic field coincides with that of a pair of loops that fulfills the Helmholtz condition. From the results obtained, we propose an electric circuit formed by pairs of isolated conducting loops tightly wound around a pair of conical surfaces, calculating numerically the magnetic field produced by this system and its heterogeneity. An experimental setup of the proposed circuit was constructed and its magnetic field was measured. The results were compared with those obtained by numerical calculation, finding a good agreement. The numerical results demonstrate a significant improvement in homogeneity in the field of the proposed pair of conical coils compared with that achieved with a simple pair of Helmholtz loops or with a double solenoid. Moreover, a new design of a double pair of conical coils based on Braunbek's four loops is also proposed to achieve greater homogeneity. Regarding homogeneity, the rating of the analyzed configurations from best to worst is as follows: (1) double pair of conical coils, (2) pair of conical coils, (3) Braunbek's four loops, (4) Helmholtz pair, and (5) solenoid pair.
Magnetic field homogeneity of a conical coaxial coil pair
NASA Astrophysics Data System (ADS)
Salazar, F. J.; Nieves, F. J.; Bayón, A.; Gascón, F.
2017-09-01
An analytical study of the magnetic field created by a double-conical conducting sheet is presented. The analysis is based on the expansion of the magnetic field in terms of Legendre polynomials. It is demonstrated analytically that the angle of the conical surface that produces a nearly homogeneous magnetic field coincides with that of a pair of loops that fulfills the Helmholtz condition. From the results obtained, we propose an electric circuit formed by pairs of isolated conducting loops tightly wound around a pair of conical surfaces, calculating numerically the magnetic field produced by this system and its heterogeneity. An experimental setup of the proposed circuit was constructed and its magnetic field was measured. The results were compared with those obtained by numerical calculation, finding a good agreement. The numerical results demonstrate a significant improvement in homogeneity in the field of the proposed pair of conical coils compared with that achieved with a simple pair of Helmholtz loops or with a double solenoid. Moreover, a new design of a double pair of conical coils based on Braunbek's four loops is also proposed to achieve greater homogeneity. Regarding homogeneity, the rating of the analyzed configurations from best to worst is as follows: (1) double pair of conical coils, (2) pair of conical coils, (3) Braunbek's four loops, (4) Helmholtz pair, and (5) solenoid pair.
Perform Experiments on LINUS-O and LTX Imploding Liquid Liner Fusion Systems.
1982-08-27
EXPERIMENTS .. .. .. ... 3 III. HOMOPOLAR GENERATOR/INDUCTOR POWER SUPPLY EXPERIMENTS. 11 IV. PLASMA SWITCH EXPERIMENTS. .. .. .. .... . ..... 18 V... homopolar generator (HPG) inductive load system. 0 Conduct an electromagnetic pulse (EMP) simulation demonstration using the NRL HPG/inductive storage...suggest solutions to the unstable flow problem, the research was suspended due to the program redirection. -10- IT III. HOMOPOLAR GENERATOR/INDUCTOR POWER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvetsov, N. K., E-mail: elmash@em.ispu.ru
2016-11-15
The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.
Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.
Axicon based conical resonators with high power copper vapor laser.
Singh, Bijendra; Subramaniam, V V; Daultabad, S R; Chakraborty, Ashim
2010-07-01
We report for the first time the performance of axicon based conical resonators (ABCRs) in a copper vapor laser, with novel results. The unstable conical resonator comprising of conical mirror (reflecting axicon) with axicon angle approximately pi/18, cone angle approximately 160 degrees, and a convex mirror of 60 cm radius of curvature was effective in reducing the average beam divergence to approximately 0.15 mrad (approximately 25 fold reduction compared to standard multimode plane-plane cavity) with output power of approximately 31 W. Extraction efficiency of approximately 50%-60% and beam divergence of <1 mrad was achieved in other stable ABCR configurations using flat and concave mirrors with the axicon. This is a significant improvement compared to 4-5 mrad normally observed in conventional stable resonators in copper vapor lasers. The conical resonators with copper vapor laser provide high misalignment tolerance beta approximately 4-5 mrad where beta is the tilt angle of the conical mirror from optimum position responsible for approximately 20% decline in laser power. The depth of focus d was approximately three times larger in case of conical resonator as compared to that of standard spherical unstable resonator under similar beam divergence and focusing conditions.
Modeling power flow in the induction cavity with a two dimensional circuit simulation
NASA Astrophysics Data System (ADS)
Guo, Fan; Zou, Wenkang; Gong, Boyi; Jiang, Jihao; Chen, Lin; Wang, Meng; Xie, Weiping
2017-02-01
We have proposed a two dimensional (2D) circuit model of induction cavity. The oil elbow and azimuthal transmission line are modeled with one dimensional transmission line elements, while 2D transmission line elements are employed to represent the regions inward the azimuthal transmission line. The voltage waveforms obtained by 2D circuit simulation and transient electromagnetic simulation are compared, which shows satisfactory agreement. The influence of impedance mismatch on the power flow condition in the induction cavity is investigated with this 2D circuit model. The simulation results indicate that the peak value of load voltage approaches the maximum if the azimuthal transmission line roughly matches the pulse forming section. The amplitude of output transmission line voltage is strongly influenced by its impedance, but the peak value of load voltage is insensitive to the actual output transmission line impedance. When the load impedance raises, the voltage across the dummy load increases, and the pulse duration at the oil elbow inlet and insulator stack regions also slightly increase.
NASA Astrophysics Data System (ADS)
Goraj, R.
2015-12-01
In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.
Linear transformer and primary low-inductance switch and capacitor modules for fast charging of PFL
NASA Astrophysics Data System (ADS)
Bykov, Yu A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.
2017-05-01
A step-up linear pulse transformer and a modular primary powering system were developed for fast (≈350 ns) charging of a pulse forming line (PFL) of a high-current electron accelerator. The linear transformer is assembled of a set of 20 inductors with circular ferromagnetic cores and one-turn primary windings. The secondary turn is formed by housing tube walls and a voltage adder with a film-glycerol insulation installed inside of the inductors. The primary powering system assembles 10 modules, each of them is a low-inductance site of two capacitors of 0,35 µF and one gas switch mounted at the same enclosure. The total stored energy is 5.5 kJ at the charging voltage of 40 kV. According to test results, the equivalent parameters at the output of the transformer are the next: a capacity - 17.5 nF, an inductance - 2 µH, a resistance - 3.2 Ohms.
Enumerative Algebraic Geometry of Conics
2008-10-01
polynomial defining the conic factors into a product of linear polynomials, then the conic is just the union of two lines. Such a conic is said to be...corresponds to the union of two varieties, so [H ] + [H ] will be the class representing the union of two hyperplanes. But the union of two...sets form a topology, the union S′ = S ∪ [(P5)5 × E] is also closed. Now one great fact about projective varieties is that if we have a projection
Yu, Yi; Zhou, Yujie; Ma, Qian; Jia, Shuo; Wu, Sijing; Sun, Yan; Liu, Xiaoli; Zhao, Yingxin; Liu, Yuyang; Shi, Dongmei
2017-01-15
This study sought to explore the efficacy of the conical stent implantation in the coronary artery by comparing the effects of cylindrical and conical stents on wall shear stress (WSS) and velocity of flow and fractional flow reserve (FFR). The traditional cylindrical stent currently used in the percutaneous coronary intervention (PCI) has a consistent diameter, which does not match the physiological change of the coronary artery. On the contrary, as a new patent, the conical stent with tapering lumen is consistent with the physiological change of vascular diameter. However, the effect of the conical stent implantation on the coronary hemodynamics remains unclear. The coronary artery, artery stenosis and two stent models were established by Solidworks software. All models were imported into the computational fluid dynamics (CFD) software ANSYS ICEM-CFD to establish the fluid model. After the boundary conditions were set, CFD analysis was proceeded to compare the effects of two stent implantation on the change of WSS, velocity of flow and FFR. Hemodynamic indexes including FFR, blood flow velocity distribution (BVD) and WSS were improved by either the cylindrical or the conical stent implantation. However, after the conical stent implantation, the change of FFR seemed to be slower and more homogenous; the blood flow velocity was more appropriate without any obvious blood stagnation and direction changes; the WSS after the conical stent implantation was uniform from the proximal to distal side of the stent. Compared with the cylindrical stent, the conical stent implantation in the coronary artery can make the changes of vascular hemodynamic more closer to the physiological condition, which can reduce the incidence of intra-stent restenosis and thrombosis, thus making it more suitable for PCI therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The PIT MkV pulsed inductive thruster
NASA Technical Reports Server (NTRS)
Dailey, C. Lee; Lovberg, Ralph H.
1993-01-01
The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.
Non-adiabatic dynamics close to conical intersections and the surface hopping perspective
Malhado, João Pedro; Bearpark, Michael J.; Hynes, James T.
2014-01-01
Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field. PMID:25485263
NASA Technical Reports Server (NTRS)
Mcalister, K. W.
1981-01-01
A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.
Cikhardt, J; Krása, J; De Marco, M; Pfeifer, M; Velyhan, A; Krouský, E; Cikhardtová, B; Klír, D; Rezáč, K; Ullschmied, J; Skála, J; Kubeš, P; Kravárik, J
2014-10-01
Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.
A 30 MW, 200 MHz Inductive Output Tube for RF Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Lawrence Ives; Michael Read
2008-06-19
This program investigated development of a multiple beam inductive output tube (IOT) to produce 30 MW pulses at 200 MHz. The program was successful in demonstrating feasibility of developing the source to achieve the desired power in microsecond pulses with 70% efficiency. The predicted gain of the device is 24 dB. Consequently, a 200 kW driver would be required for the RF input. Estimated cost of this driver is approximately $1.25 M. Given the estimated development cost of the IOT of approximately $750K and the requirements for a test set that would significantly increase the cost, it was determined thatmore » development could not be achieved within the funding constraints of a Phase II program.« less
Beam control in the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan
1992-08-21
Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system`s cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27{pi}.« less
Beam control in the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan.
1992-08-21
Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27[pi].« less
A coaxial-output capacitor-loaded annular pulse forming line.
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
A coaxial-output capacitor-loaded annular pulse forming line
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
Conical twist fields and null polygonal Wilson loops
NASA Astrophysics Data System (ADS)
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1982-01-01
A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.
Planar MEMS bio-chip for recording ion-channel currents in biological cells
NASA Astrophysics Data System (ADS)
Pandey, Santosh; Ferdous, Zannatul; White, Marvin H.
2003-10-01
We describe a planar MEMS silicon structure to record ion-channel currents in biological cells. The conventional method of performing an electrophysiological experiment, 'patch-clamping,' employs a glass micropipette. Despite careful treatments of the micropipette tip, such as fire polishing and surface coating, the latter is a source of thermal noise because of its inherent, tapered, conical structure, which gives rise to a large pipette resistance. This pipette resistance, when coupled with the self-capacitance of the biological cell, limits the available bandwidth and processing of fast transient, ion channel current pulses. In this work, we reduce considerably the pipette resistance with a planar micropipette on a silicon chip to permit the resolution of sub-millisecond, ion-channel pulses. We discuss the design topology of the device, describe the fabrication sequence, and highlight important critical issues. The design of an integrated on-chip CMOS instrumentation amplifier is described, which has a low-noise front-end, input-offset cancellation, correlated double sampling (CDS), and an ultra-high gain in the order of 1012V/A.
Manipulation by multiple filamentation of subpicosecond TW KrF laser beam
NASA Astrophysics Data System (ADS)
Zvorykin, V. D.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.
2018-05-01
A self-focusing of TW-level subpicosecond UV KrF laser pulses in ambient air produces a few 100 randomly distributed filaments over 100-m propagation distance. A control of multiple filamentation process by a number of methods was demonstrated in the present work envisaging applications for a HV discharge guiding, remote excitation of an atmospheric air laser, MW radiation transfer by virtual plasma waveguide, as well as filamentation suppression to improve short pulse parameters in direct amplification scheme. Under the laser beam focusing, a multitude of filaments coalesced into a superfilament with highly increased intensity and plasma conductivity. A superradiant forward lasing was obtained in the superfilament around 1.07-µm wavelength of atmospheric nitrogen. A regular 2D array of a 100 superfilaments was configured over 20-m distance by Fresnel diffraction on periodic amplitude masks. Effective Kerr defocusing and a subsequent filaments suppression over 50-m distance was demonstrated in Xe due to 2-photon resonance of laser radiation with 6p state being accompanied by a narrow-angle coherent conical emission at 828-nm wavelength.
Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes
NASA Astrophysics Data System (ADS)
Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron
2016-10-01
The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.
NASA Astrophysics Data System (ADS)
Cheng, Fuqiang; Hong, Yanji; Li, Qian; Wen, Ming
2011-11-01
Laser thrusters with a single nozzle, e.g. parabolic or conical, failed to constrict the flow field of high pressure effectively, resulting in poor propulsive performance. Under the condition of air-breathing mode, parabolic thruster models with an elongate cylinder nozzle were studied numerically by building a physical computation model. Initially, to verify the computation model, the influence of cylinder length on the momentum coupling coefficient was computed and compared with the experiments, which shows a good congruence. A model of diameter 20 mm and cylindrical length 80 mm obtains about 627.7 N/MW at single pulse energy density 1.5 J/cm2. Then, the influence of expanding angle of the parabolic nozzle on propulsion performance was gained for different laser pulse energies, and the evolution process of the flow field was analyzed. The results show: as the expanding angel increases, the momentum coupling coefficient increases remarkably at first and descends relative slowly after reaching a peak value; moreover, the peak positions stay constant around 33° with little variation when laser energy differs.
Magnetic-field generation by pulsed irradiation of aluminium in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, A N; Chekan, P V
Magnetic-field generation arising under irradiation of an aluminium barrier in the air by a series of laser pulses is studied experimentally. It is found that the magnetic field increases nonlinearly from 10{sup -5} to 10{sup -3} T with increasing laser power density from 10{sup 7} to 10{sup 9} W cm{sup -2}, the degree of nonlinearity being different for single nanosecond pulses, for a series of such pulses with a repetition rate of 100 – 150 μs and for a combination of a millisecond laser pulse and a series of nanosecond laser pulses. The dependences of the magnetic-field induction on themore » power density of laser radiation in the above-mentioned regimes are established. (interaction of laser radiation with matter)« less
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124
1999-06-10
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less
Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing
Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB
2000-03-13
A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.
Chalfant, Jr., Gordon G.
1984-01-01
A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.
Chalfant, G.G. Jr.
A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.
1978-01-01
Advantagas possessed tage mast be high enough to effectively couple energy by water include the self - healing nature of the di- into the excimer gas mix, which...optimum input chosen aggregate of section self -inductances and mutual inductance between sections was module parameters and the Rayleigh module upset...6b0 cm in diam- eter and 6.86 cm long. A solid copper wire with the same number of circular mls has a diameter of 0.583 cm. The self -inductance o 60
Status of Pulsed Inductive Thruster Research
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; LaPointe, Michael; Vondra, Robert; Lovberg, Ralph; Dailey, C. Lee; Schafer, Charles (Technical Monitor)
2002-01-01
The TRW Pulsed Inductive Thruster (PIT) is an electromagnetic propulsion system that can provide high thrust efficiency over a wide range of specific impulse values. In its basic form, the PIT consists of a flat spiral coil covered by a thin dielectric plate. A pulsed gas injection nozzle distributes a thin layer of gas propellant across the plate surface at the same time that a pulsed high current discharge is sent through the coil. The rising current creates a time varying magnetic field, which in turn induces a strong azimuthal electric field above the coil. The electric field ionizes the gas propellant and generates an azimuthal current flow in the resulting plasma. The current in the plasma and the current in the coil flow in opposite directions, providing a mutual repulsion that rapidly blows the ionized propellant away from the plate to provide thrust. The thrust and specific impulse can be tailored by adjusting the discharge power, pulse repetition rate, and propellant mass flow, and there is minimal if any erosion due to the electrodeless nature of the discharge. Prior single-shot experiment,; performed with a Diameter diameter version of the PIT at TRW demonstrated specific impulse values between 2,000 seconds and 8,000 seconds, with thruster efficiencies of about 52% for ammonia. This paper outlines current and planned activities to transition the single shot device into a multiple repetition rate thruster capable of supporting NASA strategic enterprise missions.
Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro
2017-01-01
Repetition suppression (RS) is evident as a weakened response to repeated stimuli after the initial response. RS has been demonstrated in motor-evoked potentials (MEPs) induced with transcranial magnetic stimulation (TMS). Here, we investigated the effect of inter-train interval (ITI) on the induction of RS of MEPs with the attempt to optimize the investigative protocols. Trains of TMS pulses, targeted to the primary motor cortex by neuronavigation, were applied at a stimulation intensity of 120% of the resting motor threshold. The stimulus trains included either four or twenty pulses with an inter-stimulus interval (ISI) of 1 s. The ITI was here defined as the interval between the last pulse in a train and the first pulse in the next train; the ITIs used here were 1, 3, 4, 6, 7, 12, and 17 s. RS was observed with all ITIs except with the ITI of 1 s, in which the ITI was equal to ISI. RS was more pronounced with longer ITIs. Shorter ITIs may not allow sufficient time for a return to baseline. RS may reflect a startle-like response to the first pulse of a train followed by habituation. Longer ITIs may allow more recovery time and in turn demonstrate greater RS. Our results indicate that RS can be studied with confidence at relatively short ITIs of 6 s and above.
Conical Pendulum--Linearization Analyses
ERIC Educational Resources Information Center
Dean, Kevin; Mathew, Jyothi
2016-01-01
A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period "T", as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m-2.130 m) are plotted with the theoretical lines and…
Laser cutting and drilling with zero conicity
NASA Astrophysics Data System (ADS)
Martin, Paul-Etienne; Estival, Sébastien; Dijoux, Mathieu; Laygue, Pierre; Kupisiewicz, Axel; Braunschweig, Robert
2017-02-01
This paper focuses on femtosecond laser cutting and drilling using a patent pending technology for suppressing the conicity generated by the ablation saturation. We will show that a common scanning system can be used thanks to this technology with a conicity suppression on a scanning field of 20x20mm.
1974-07-01
AD/A-002 982 COMPARATIVE MEASUREMENTS CF TOTAL TEMPERATURE IN A SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIB- RIUM AND COMBINED...SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIORIUM AND COMBINED TEMPERATURE-PRESSURE PROBE H.L.P. Vowt R.E. L" 0H.U. M.i July 1974 NAVAL...1 ~~o iotaPRO eig ature In A Supersonic Turbulent Boundary ____________ Layer Using A Conical Equilibrium and 6. 111111ORWING OR. 0111001117,~t
General theory of conical flows and its application to supersonic aerodynamics
NASA Technical Reports Server (NTRS)
Germain, Paul
1955-01-01
Points treated in this report are: homogeneous flows, the general study of conical flows with infinitesimal cone angles, the numerical or analogous methods for the study of flows flattened in one direction, and a certain number of results. A thorough consideration of the applications on conical flows and demonstration of how one may solve within the scope of linear theory, by combinations of conical flows, the general problems of the supersonic wing, taking into account dihedral and sweepback, and also fuselage and control surface effects.
Vaughn, Norman L.; Lowden, Richard A.
2003-04-15
The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.
Streamwise vorticity in a turbine rotor with conical endwalls
NASA Astrophysics Data System (ADS)
Kost, Friedrich
1993-04-01
To investigate the spatial flow structure caused by sweep and dihedral effects in turbomachinery blade rows, detailed measurements were conducted in a windtunnel for rotating annular cascades. The special configuration consisted of a turbine rotor equipped with straight blades, a conical hub, and a conical casing with a cone half angle of 30 deg. Numerous flow data were obtained from surface pressure distributions at seven radial blade sections and from laser velocimetry upstream, downstream, and inside the rotor. It is shown that large deviations from an axisymmetric surface exist in conical flow. The conical flow gives rise to the production of streamwise vorticity which results in increased flow losses. It is furthermore shown that the secondary flow structure is mainly determined by the rotation of the turbine.
Three-Level 48-Pulse STATCOM with Pulse Width Modulation
NASA Astrophysics Data System (ADS)
Singh, Bhim; Srinivas, Kadagala Venkata
2016-03-01
In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.
Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Salton, Stephen R J; Sealfon, Stuart C
2016-09-30
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gα s knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gα s knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gα s In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Sealfon, Stuart C.
2016-01-01
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs. In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. PMID:27466366
Lee, Jae Yeon; Lee, Sang Ui; Lim, Taekjoo; Choi, Seok Hwa
2014-01-01
Osteoarthritis is a major cause of pain and disability in joints. The present study investigated the effects of differences of wavelengths and continuous versus pulsed delivery modes of low-level laser therapy (LLT) in a rabbit model of osteoarthritis. Comparison of the healing effects and superoxide dismutase (SOD) activity between therapy using diode and Ga-As lasers was our primary interest. Simple continuous wave (808-nm diode) and super-pulsed wave (904-nm Ga-As) lasers were used. Osteoarthritis was induced by injecting hydrogen peroxide into the articular spaces of the right stifle in rabbits. The rabbits were randomly assigned to four groups: normal control without osteoarthritis induction (G1), osteoarthritis-induction group without treatment (G2), osteoarthritis induction with diode irradiation (G3), and osteoarthritis induction with Ga-As irradiation (G4). Laser irradiation was applied transcutaneously for 5 min every day for over four weeks, starting the first day after confirmation of induction of osteoarthritis. The induction of osteoarthritis and effects of LLT were evaluated by biochemistry, computed tomography, and histological analyses. The SOD activity in G3 and G4 rabbits at two and four weeks after laser irradiation was significantly higher than that of G1 animals (p<0.05). However, there was no significant difference between G3 and G4 animals. Moreover, there were significant differences at two and four weeks between the control and osteoarthritis-induction groups, but no significant difference between G3 and G4 in the computed tomographic analyses and histological findings. These results indicate that diode and Ga-As lasers are similarly effective in healing and inducing SOD activity for LLT applications in a rabbit model of OA. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Low and High-Power Inductive Pulsed Plasma Thruster Development Testing at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Martin, Adam K.; Greve, Christine M.; Riley, Daniel P.
2017-01-01
The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency (eta(sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where eta(sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered. In the present work, we present results from testing of both the small IPPT and the larger MkVI thruster. The smaller device (Fig. 1) is tested on a thrust stand on multiple gases to demonstrate its capability to operate in a repetition-rate mode and serve as a IPPT technology-development testbed. The larger MkVI (Fig. 2) is operated for the first time in its newly reconstituted state, demonstrating full-power pulsed operation and, for the first time, repetition-rate operation of a high-power IPPT. The additional upgrades required for synchronous operation of all the pulsed systems in single-pulse and repetition-rate mode are described in detail.
A Solid-State Modulator for High Speed Kickers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Cook, E G; Chen, Y J
2001-06-11
An all solid-state modulator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high-speed beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. It provides a nominal 18kV pulse with {+-} 10% amplitude modulation on the order of several MHz, rise times on the order of 10nS, and can be configured for either positive or negative polarity. The presentation will include measured performance data.
A design approach for systems based on magnetic pulse compression.
Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P
2008-04-01
A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.
Starrett, D. A.; Laties, G. G.
1993-01-01
Whereas intact postharvest avocado (Persea americana Mill.) fruit may take 1 or more weeks to ripen, ripening is hastened by pulsing fruit for 24 h with ethylene or propylene and is initiated promptly by cutting slices, or discs, of mesocarp tissue. Because the preclimacteric lag period constitutes the extended and variable component of the ripening syndrome, we postulated that selective gene expression during the lag period leads to the triggering of the climacteric. Accordingly, we sought to identify genes that are expressed gradually in the course of the lag period in intact fruit, are turned on sooner in response to a pulse, and are induced promptly in response to wounding (i.e. slicing). To this end, a mixed cDNA library was constructed from mRNA from untreated fruit, pulsed fruit, and aged slices, and the library was screened for genes induced by wounding or by pulsing and/or wounding. The time course of induction of genes encoding selected clones was established by probing northern blots of mRNA from tissues variously treated over a period of time. Four previously identified ripening-associated genes encoding cellulase, polygalacturonase (PG), cytochrome P-450 oxidase (P-450), and ethylene-forming enzyme (EFE, or 1-aminocyclopropane-1-carboxylic acid synthase), respectively, were studied in the same way. Whereas cellulase, PG, and EFE were ruled out as having a role in the initiation of the climacteric, the time course of P-450 induction, as well as the response of same to pulsing and wounding met the criteria[mdash]together with several clones from the mixed library[mdash]for a gene potentially involved in preclimacteric events leading to the onset of the climacteric. Further, it was established that the continuous presence of ethylene is required for persisting induction, and it is suggested that in selected cases wounding may exert a synergistic effect on ethylene action. PMID:12231929
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils
Li, Jian; Wu, Dan; Han, Yan
2016-01-01
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.
Li, Jian; Wu, Dan; Han, Yan
2016-09-30
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.
Project FOOTPRINT: Substation modeling and simulations for E1 pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Scott D.; Larson, D. J.; Kirkendall, B. A.
This report includes a presentation with an: Introduction to CW coupling; Introduction to single-pulse coupling; Description of E1 waveforms; Structures in a substation yard --articulated (as part of the substation's defined electrical functionality)--unarticulated (not as part of the substation's defined electrical functionality); Coupling --electrical coupling (capacitive coupling) --magnetic coupling (inductive coupling); Connectivity to long-line transmission lines; Control infrastructure; Summary; and References.
Solid state pulsed power generator
Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas
2014-02-11
A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.
5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits
NASA Technical Reports Server (NTRS)
Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.
2014-01-01
Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced forward conduction losses, faster reverse recovery time (faster turn-off), and lower-magnitude reverse recovery current. In addition, SiC devices have lower leakage current as compared to their Si counterparts, and a high thermal conductivity, potentially allowing the former to operate at higher temperatures with a smaller, lighter heatsink (or no heatsink at all).
A compact bipolar pulse-forming network-Marx generator based on pulse transformers.
Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao
2013-11-01
A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.
"Conical Hut": A Basic Form of House Types in Timor Island
NASA Astrophysics Data System (ADS)
Chen, Y. R.; Lim, Y. L.; Wang, M. H.; Chen, C. Y.
2015-08-01
Timor Island situates in the southeast end of Southeast Asia. The island accommodates many ethnic groups, which produce many diverse house types. As visiting East Timor in 2012 and Timor Island in 2014, we found the "Pair- House Type" widely spread over Timor Island. Uma Lulik (holy house), accommodating the ancestry soul, fireplace and elder's bed, and Uma Tidor (house for sleep), containing living, sleeping and working space, compose the pair-house. The research team visited 14 ethnic groups and their houses, some of which were measured and drawn into 3D models as back to Taiwan. Uma Tidors of each ethnic group are quite similar with rectangular volume and hip roof, however, one of the fourteen ethnic groups can build cylinder houses for Uma Tidor. Uma Luliks of different ethnic groups are diversified and special. One group of the Uma Luliks shows a rectangular or square volume sheltered by a hip roof. The other group of Uma Luliks presents a non-specific volume under a conical roof, that we called the "conical hut". Seven ethnic groups, Atoni, Weimua, Makassae, Mambai, Bunaq, Kemak and Bekais, have built "conical huts" for the use of Uma Lulik. People of the seven ethnic groups can construct a reasonable structural system to support the conical roof, and take good advantage of the space under the conical roof to meet their sacred needs and everyday life. "Conical Hut" may be regarded as the basic form of the house types adopted by the seven ethnic groups. It contains the basic spatial limits and the formal properties that the construction systems have to follow. Based on the concise rules of the basic form, people of each ethnic group use their talents, skills and building materials to generate variations of "conical hut", which are different in house scale, spatial layout, construction system and form. The "conical huts" contain the consistency that all the huts come from the basic form, meanwhile, they also present the diversification that each conical hut has differed. "Consistent but diversified", is one of the most interesting issues in typological study that we can observe in Timorese houses.
Characteristics of pulsed dual frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young
2015-01-01
To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.
Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.
Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan
2016-01-01
Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.
NASA Technical Reports Server (NTRS)
Ebert, D. H.; Chase, P. E.; Dye, J.; Fahline, W. C.; Johnson, R. H.
1973-01-01
The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data.
NASA Astrophysics Data System (ADS)
Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia
2016-09-01
A stable nanoscale thermal hot spot, with temperature approaching 100 °C , is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z , collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.
Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia
2016-09-23
A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.
NASA Astrophysics Data System (ADS)
Miyajima, Shigeyuki; Shishido, Hiroaki; Narukami, Yoshito; Yoshioka, Naohito; Fujimaki, Akira; Hidaka, Mutsuo; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu
2017-01-01
We successfully derived the time-dependent flux of pulsed neutrons using a superconducting Nb-based current-biased kinetic inductance detector (CB-KID) with a 10B conversion layer at Japan Proton Accelerator Research Complex. Our CB-KID is a meander line made of a 40-nm-thick Nb thin film with 1 - μm line width, which is covered with a 150-nm-thick 10B conversion layer. The detector works at a temperature below 4 K. The evaluated detection efficiency of the CB-KID in this experiment is 0.23 % at the neutron energy of 25.4 meV. The time-dependent flux spectra of pulsed neutrons thus obtained are in good agreement with the results obtained by the Monte Carlo simulations.
Pencil-like mm-size electron beams produced with linear inductive voltage adders
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.
1997-02-01
We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.
High-Voltage Characterization for the Prototype Induction Cells
NASA Astrophysics Data System (ADS)
Huacen, Wang; Kaizhi, Zhang; Long, Wen; Qinggui, Lai; Linwen, Zhang; Jianjun, Deng
2002-12-01
Two linear induction prototype cells expected to work at 250kV, 3kA,with accelerating voltage flattop (±1%) ⩾ 70ns, have been tested to determine their high-voltage characteristics. Each cell is composed of a ferrite core immersed in oil, a gap with curved stainless steel electrodes, a solenoid magnet, and a insulator. The experiments were carried out with full-scale cells. The high voltage pulses were applied to two cells using a 100ns, 12Ω pulse Blumlein. The tests were performed at various high-voltage levels ranging from -250kV to -350kV. No breakdown was observed during the test at vacuum level (7-10) ṡ10-4 Pa. The cell schematic, the experimental set up, and the measured voltage waveforms are presented in this paper.
New analysis strategies for micro aspheric lens metrology
NASA Astrophysics Data System (ADS)
Gugsa, Solomon Abebe
Effective characterization of an aspheric micro lens is critical for understanding and improving processing in micro-optic manufacturing. Since most microlenses are plano-convex, where the convex geometry is a conic surface, current practice is often limited to obtaining an estimate of the lens conic constant, which average out the surface geometry that departs from an exact conic surface and any addition surface irregularities. We have developed a comprehensive approach of estimating the best fit conic and its uncertainty, and in addition propose an alternative analysis that focuses on surface errors rather than best-fit conic constant. We describe our new analysis strategy based on the two most dominant micro lens metrology methods in use today, namely, scanning white light interferometry (SWLI) and phase shifting interferometry (PSI). We estimate several parameters from the measurement. The major uncertainty contributors for SWLI are the estimates of base radius of curvature, the aperture of the lens, the sag of the lens, noise in the measurement, and the center of the lens. In the case of PSI the dominant uncertainty contributors are noise in the measurement, the radius of curvature, and the aperture. Our best-fit conic procedure uses least squares minimization to extract a best-fit conic value, which is then subjected to a Monte Carlo analysis to capture combined uncertainty. In our surface errors analysis procedure, we consider the surface errors as the difference between the measured geometry and the best-fit conic surface or as the difference between the measured geometry and the design specification for the lens. We focus on a Zernike polynomial description of the surface error, and again a Monte Carlo analysis is used to estimate a combined uncertainty, which in this case is an uncertainty for each Zernike coefficient. Our approach also allows us to investigate the effect of individual uncertainty parameters and measurement noise on both the best-fit conic constant analysis and the surface errors analysis, and compare the individual contributions to the overall uncertainty.
Free-space optical polarization demultiplexing and multiplexing by means of conical refraction.
Turpin, Alex; Loiko, Yurii; Kalkandjiev, Todor K; Mompart, Jordi
2012-10-15
Polarization demultiplexing and multiplexing by means of conical refraction is proposed to increase the channel capacity for free-space optical communication applications. The proposed technique is based on the forward-backward optical transform occurring when a light beam propagates consecutively along the optic axes of two identical biaxial crystals with opposite orientations of their conical refraction characteristic vectors. We present an experimental proof of usefulness of the conical refraction demultiplexing and multiplexing technique by increasing in one order of magnitude the channel capacity at optical frequencies in a propagation distance of 4 m.
Conical-scan tracking with the 64-m-diameter antenna at goldstone
NASA Technical Reports Server (NTRS)
Ohlson, J. E.; Reid, M. S.
1976-01-01
The theory and experimental work which demonstrated the feasibility of conical-scan tracking with a 64 m diameter paraboloid antenna is documented. The purpose of this scheme is to actively track spacecraft and radio sources continuously with an accuracy superior to that obtained by manual correction of the computer driven pointing. The conical-scan implementation gives increased tracking accuracy with X-band spacecraft signals, as demonstrated in the Mariner Venus/Mercury 1973 mission. Also, the high accuracy and ease of measurement with conical-scan tracking allow evaluation of systematic and random antenna tracking errors.
Soft tissue modelling with conical springs.
Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan
2015-01-01
This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.
EM61-MK2 Response of Three Munitions Surrogates
2009-03-12
time-domain electromagnetic induction sensors, it produces a pulsed magnetic field (primary field) that induces a secondary field in metallic objects...selected and marked as potential metal targets. This initial list of anomalies is used as input to an analysis step that selects anomalies for digging...response of a metallic object to an Electromagnetic Induction sensor is most simply modeled as an induced dipole moment represented by a magnetic
Principles of Induction Accelerators
NASA Astrophysics Data System (ADS)
Briggs*, Richard J.
The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)
Existence of standard models of conic fibrations over non-algebraically-closed fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avilov, A A
2014-12-31
We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.
Tapering Timbers: Finding the Volume of Conical Frustums
ERIC Educational Resources Information Center
Jones, Dustin L.; Coleman, Max
2012-01-01
Throughout history, humans have developed and refined methods of measuring. For the volumes of some common shapes, they have derived formulas. One such formula is that for the volume of a conical frustum. The conical frustum is not usually on a short list of common geometric shapes, but students encounter it in their everyday experience. In the…
Field-Oriented Control Of Induction Motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.
1993-01-01
Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.
Small-Size High-Current Generators for X-Ray Backlighting
NASA Astrophysics Data System (ADS)
Chaikovsky, S. A.; Artyomov, A. P.; Zharova, N. V.; Zhigalin, A. S.; Lavrinovich, I. V.; Oreshkin, V. I.; Ratakhin, N. A.; Rousskikh, A. G.; Fedunin, A. V.; Fedushchak, V. F.; Erfort, A. A.
2017-12-01
The paper deals with the soft X-ray backlighting based on the X-pinch as a powerful tool for physical studies of fast processes. Proposed are the unique small-size pulsed power generators operating as a low-inductance capacitor bank. These pulse generators provide the X-pinch-based soft X-ray source (hν = 1-10 keV) of micron size at 2-3 ns pulse duration. The small size and weight of pulse generators allow them to be transported to any laboratory for conducting X-ray backlighting of test objects with micron space resolution and nanosecond exposure time. These generators also allow creating synchronized multi-frame radiographic complexes with frame delay variation in a broad range.
Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saroop, Sudesh
1999-09-01
Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.
NASA Astrophysics Data System (ADS)
Shamanin, V. I.; Stepanov, A. V.; Rysbaev, K. Zh.
2018-04-01
The ion Br-diode in which plasma is generated under the action of a negative pre-pulse voltage is presented. Preliminary plasma formation allows the energy released in the diode during a positive voltage pulse to be increased. The high-energy ion beam parameters are investigated for the magnetic field induction changing from 0.8Bcr to 1.7Bcr.
Coordinated Research Program in Pulsed Power Physics.
1984-12-20
heated array of Inductive energy storage is attractive in pulsed power 375-/am-diameter thoriated tungsten filaments. At a flia- applications because of...control system electrostatical- ly. It is positioned 0.6 cm above the control grid. The grids and cathode are connected to external power supplies through...energy storage density becomes even larger (by a factor of - 10). One should note that these comparisons do not account for power supplies , cooling
Comparison of lung sound transducers using a bioacoustic transducer testing system.
Kraman, Steve S; Wodicka, George R; Pressler, Gary A; Pasterkamp, Hans
2006-08-01
Sensors used for lung sound research are generally designed by the investigators or adapted from devices used in related fields. Their relative characteristics have never been defined. We employed an artificial chest wall with a viscoelastic surface and a white noise signal generator as a stable source of sound to compare the frequency response and pulse waveform reproduction of a selection of devices used for lung sound research. We used spectral estimation techniques to determine frequency response and cross-correlation of pulses to determine pulse shape fidelity. The sensors evaluated were the Siemens EMT 25 C accelerometer (Siemens); PPG 201 accelerometer (PPG); Sony ECM-T150 electret condenser microphone with air coupler (air coupler; with cylindrical air chambers of 5-, 10-, and 15-mm diameter and conical air chamber of 10-mm diameter); Littman classic stethoscope head (Littman) connected to an electret condenser microphone; and the Andries Tek (Andries) electronic stethoscope. We found that the size and shape of the air coupler chamber to have no important effect on the detected sound. The Siemens, air coupler, and Littman performed similarly with relatively flat frequency responses from 200 to 1,200 Hz. The PPG had the broadest frequency response, with useful sensitivity extending to 4,000 Hz. The Andries' frequency response was the poorest above 1,000 Hz. Accuracy in reproducing pulses roughly corresponded with the high-frequency sensitivity of the sensors. We conclude that there are important differences among commonly used lung sound sensors that have to be defined to allow the comparison of data from different laboratories.
Philippart, François; Gaudry, Stéphane; Quinquis, Laurent; Lau, Nicolas; Ouanes, Islem; Touati, Samia; Nguyen, Jean Claude; Branger, Catherine; Faibis, Frédéric; Mastouri, Maha; Forceville, Xavier; Abroug, Fekri; Ricard, Jean Damien; Grabar, Sophie; Misset, Benoît
2015-03-15
The occurrence of ventilator-associated pneumonia (VAP) is linked to the aspiration of contaminated pharyngeal secretions around the endotracheal tube. Tubes with cuffs made of polyurethane rather than polyvinyl chloride or with a conical rather than a cylindrical shape increase tracheal sealing. To test whether using polyurethane and/or conical cuffs reduces tracheal colonization and VAP in patients with acute respiratory failure. We conducted a multicenter, prospective, open-label, randomized study in four parallel groups in four intensive care units between 2010 and 2012. A cohort of 621 patients with expected ventilation longer than 2 days was included at intubation with a cuff composed of cylindrical polyvinyl chloride (n = 148), cylindrical polyurethane (n = 143), conical polyvinyl chloride (n = 150), or conical polyurethane (n = 162). We used Kaplan-Meier estimates and log-rank tests to compare times to events. After excluding 17 patients who secondarily refused participation or had met an exclusion criterion, 604 were included in the intention-to-treat analysis. Cumulative tracheal colonization greater than 10(3) cfu/ml at Day 2 was as follows (median [interquartile range]): cylindrical polyvinyl chloride, 0.66 (0.58-0.74); cylindrical polyurethane, 0.61 (0.53-0.70); conical polyvinyl chloride, 0.67 (0.60-0.76); and conical polyurethane, 0.62 (0.55-0.70) (P = 0.55). VAP developed in 77 patients (14.4%), and postextubational stridor developed in 28 patients (6.4%) (P = 0.20 and 0.28 between groups, respectively). Among patients requiring mechanical ventilation, polyurethane and/or conically shaped cuffs were not superior to conventional cuffs in preventing tracheal colonization and VAP. Clinical trial registered with clinicaltrials.gov (NCT01114022).
Nguyen, Van-Giang; Lee, Soo-Jin
2016-07-01
Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthil, K.; Mitra, S.; Sandeep, S., E-mail: sentilk@barc.gov.in
In a multi-gigawatt pulsed power system like KALI-30 GW, insulation coordination is required to achieve high voltages ranging from 0.3 MV to 1 MV. At the same time optimisation of the insulation parameters is required to minimize the inductance of the system, so that nanoseconds output can be achieved. The KALI-30GW pulse power system utilizes a combination of Perspex, delrin, epoxy, transformer oil, nitrogen/SF{sub 6} gas and vacuum insulation at its various stages in compressing DC high voltage to a nanoseconds pulse. This paper describes the operation and performance of the system from 400 kV to 1030 kV output voltagemore » pulse and insulation parameters utilized for obtaining peak 1 MV output. (author)« less
High-voltage, low-inductance gas switch
Gruner, Frederick R.; Stygar, William A.
2016-03-22
A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agustsson, Ronald
In this project, RadiaBeam Technologies was tasked with developing a novel solution for a cost effective quench protection based on fast expansion of the normal zone. By inductively coupling a strong electromagnetic pulse via a resonant LC circuit, we attempted to demonstrate accelerated normal zone propagation. The AC field induces currents in the superconducting layer with the current density exceeding that of the critical current density, J c. This creates a large normal zone, uniformly distributing the dissipation through the magnet body. The method does not rely on thermal heating of the conductor, thus enabling nearly instantaneous protection. Through themore » course of the Phase II project, RadiaBeam Technologies continued extensive numerical modeling of the inductive quench system, re-designed and built several iterations of the POC system for testing and observed evidence of a transient partial quench being induced. However the final device was not fabricated. This was a consequence of the fundamentally complex nature of the energy extraction process and the challenges associated even with demonstrating the proof of concept in a bench top device.« less
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia
2017-01-01
A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte. PMID:27715110
Spherical means of solutions of partial differential equations in a conical region
NASA Technical Reports Server (NTRS)
Ting, L.
1975-01-01
The spherical means of the solutions of a linear partial differential equation Lu = f in a conical region are studied. The conical region is bounded by a surface generated by curvilinear xi lines and by two truncating xi surfaces. The spherical mean is the average of u over a constant xi surface. Conditions on the linear differential operator, L, and on the orthogonal coordinates xi, eta, and zeta are established so that the problem for the determination of the spherical mean of the solution subjected to the appropriate boundary and initial conditions can be reduced to a problem with only one space variable. Conditions are then established so that the spherical mean of the solution in one conical region will be proportional to that of a known solution in another conical region. Applications to various problems of mathematical physics and their physical interpretations are presented.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.
1999-06-01
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less
A Specific Construction of a Conic from an Ellipse
ERIC Educational Resources Information Center
Lee, J. Todd
2004-01-01
The interesting construction of a conic from an ellipse given by Manuel Santos-Trigo is evaluated. The validity of the conclusion that the locus is a conic section, the nature of which is determined in a simple way by the location of the variable point R relative to its center point O and the major vertices of the ellipse are proved.
Study on Effects of The Shape of Cavitator on Supercavitation Flow Field Characteristics
NASA Astrophysics Data System (ADS)
Wang, Rui; Dang, Jianjun; Yao, Zhong
2018-03-01
The cavitator is the key part of the nose of the vehicle to induce the formation of supercavity, which has an important influence in the cavity formation rate, cavity shape and cavity stability. To study the influence of the shape on the supercavitation flew field characteristics, the cavity characteristics and the resistance characteristics of different shapes of cavitator under different working conditions are obtained by combining technical methods of numerical simulation and experimental research in water tunnel. The simulation results are contrast and analyzed with the test results. The analysis results show that : in terms of the cavity size, the inverted-conic cavitator can form the biggest cavity size, followed by the disk cavitator, and the truncated-conic cavitator is the least; in terms of the cavity formation speed, the inverted-conic cavitator has the fastest cavity formation speed, then is the truncated-conic cavitator, and the disk cavitator is the least; in terms of the drag characteristic, the truncated-conic cavitator has the maximum coefficient, disk cavitator is the next, the inverted-conic cavitator is the minimal. The research conclusion can provide reference and basis for the head shape design of supercavitating underwater ordnance and the design of hydrodynamic layout.
On the origin of jets from disc-accreting magnetized stars
NASA Astrophysics Data System (ADS)
Lovelace, Richard V. E.; Romanova, Marina M.; Lii, Patrick; Dyda, Sergei
2014-09-01
A brief review of the origin of jets from disc-accreting rotating magnetized stars is given. In most models, the interior of the disc is characterized by a turbulent viscosity and magnetic diffusivity ("alpha" discs) whereas the coronal region outside the disc is treated using ideal magnetohydrodynamics (MHD). Extensive MHD simulations have established the occurrence of long-lasting outflows in the case of both slowly and rapidly rotating stars. (1) Slowly rotating stars exhibit a new type of outflow, conical winds. Conical winds are generated when stellar magnetic flux is bunched up by the inward motion of the accretion disc. Near their region of origin, the winds have a thin conical shell shape with half opening angle of ˜30°. At large distances, their toroidal magnetic field collimates the outflow forming current carrying, matter dominated jets. These winds are predominantly magnetically and not centrifugally driven. About 10-30% of the disc matter from the inner disc is launched in the conical wind. Conical winds may be responsible for episodic as well as long lasting outflows in different types of stars. (2) Rapidly rotating stars in the "propeller regime" exhibit two-component outflows. One component is similar to the matter dominated conical wind, where a large fraction of the disc matter may be ejected in this regime. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the open polar field lines of the star. The axial jet has a mass flux of about 10% that of the conical wind, but its energy flux, due to the Poynting flux, can be as large as for the conical wind. The jet's magnetically dominated angular momentum flux causes the star to spin down rapidly. Propeller-driven outflows may be responsible for protostellar jets and their rapid spin-down. When the artificial requirement of symmetry about the equatorial plane is dropped, the conical winds are found to come alternately from one side of the disc and then the other, even for the case where the stellar magnetic field is a centered axisymmetric dipole. Recent MHD simulations of disc accretion to rotating stars in the propeller regime have been done with no turbulent viscosity and no diffusivity. The strong turbulence observed is due to the magneto-rotational instability. This turbulence drives accretion in the disc and leads to episodic conical winds and jets.
Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.
2013-08-01
The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.
Pulse perfusion value predicts eye opening after sevoflurane anaesthesia: an explorative study.
Enekvist, Bruno; Johansson, Anders
2015-08-01
The variables measured in modern pulse oximetry apparatuses include a graphical pulse curve and a specified perfusion value (PV) that could be a sensitive marker for detecting differences in sympathetic activity. We hypothesized that there is a correlation between a reduction of PV and the time to eye opening after general anaesthesia. The objective was to investigate whether PV can predict eye opening after sevoflurane anaesthesia. Prospective, explorative clinical study included 20 patients, ASA physical status 1 or 2, at Skåne University Hospital, Lund, Sweden, from November 2012 to January 2013 scheduled for elective breast tumour surgery. A general anaesthesia was delivered with inhalation of oxygen, nitrous oxide and sevoflurane anaesthesia to a depth of 1.2 minimal alveolar concentration. Sevoflurane inspiratory and expiratory concentrations were measured. Bispectral index monitoring, PV as measured by pulse oximeter, heart rate and carbon dioxide were registered at before anaesthesia, 15 min after induction (at 1.2 minimal alveolar concentration), at end of surgery and at eye opening at the end of anaesthesia. PV values were lower before anaesthesia and at eye opening compared to at 15 min after induction and at end of surgery (P < 0.05). The reduction of PV between end of surgery and eye opening was 0.76. We conclude that the pulse oximeter PV could be a useful variable to assess the timing of recovery, in terms of eye opening after a general anaesthesia.
High-energy, high-rate materials processing
NASA Astrophysics Data System (ADS)
Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.
1987-12-01
The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.
Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun
2014-01-15
We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.
Conceptual design of an intense positron source based on an LIA
NASA Astrophysics Data System (ADS)
Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui
2012-04-01
Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.
Role of Tranexamic Acid in Reducing Blood Loss in Vaginal Delivery.
Roy, Priyankur; Sujatha, M S; Bhandiwad, Ambarisha; Biswas, Bivas
2016-10-01
Anti-fibrinolytic agents are used to reduce obstetric blood loss as the fibrinolytic system is known to get activated after placental delivery. To evaluate the efficacy of parenteral tranexamic acid in reducing blood loss during normal labour and to compare it with the amount of blood loss in patients who received placebo in the third stage of labour. Patients with spontaneous labour or planned for induction of labour and fulfilling the inclusion criteria were recruited for the study. In each patient, the pre-delivery pulse rate, blood pressure, Hb gm% and PCV% were noted. Labour was monitored carefully using a partogram. The study group received Inj. Oxytocin and Inj. Tranexamic acid. The control group received Inj. Oxytocin and Placebo injection. Immediately after delivery of the baby, when all the liquor was drained, the patient was placed over a blood drape-a disposable conical, graduated plastic collection bag. The amount of blood collected in the blood drape was measured. Then the patient was given pre-weighed pads, which were weighed 2 h post-partum. The blood loss was measured by measuring the blood collected in the drape and by weighing the swabs before and after delivery. The total number of patients studied was 100-equally distributed in both the groups. The age group of the patients and BMI were comparable. There was a significant increase in the pulse rate and decrease in blood pressure in the control group as compared with the study group. The post-delivery haemoglobin and haematocrit were significantly reduced in the control group as compared to the study group. The mean blood loss at the end of 2 h was 105 ml in the study group and 252 ml in the control group. There was a significant increase in the usage of uterotonics and also in the need for blood transfusion in the control group; 12 % of the patients in the control group had to stay for more than 3 days compared to 2 % in the study group. Tranexamic acid injection, an antifibrinolytic agent when given prophylactically after the delivery of the baby, by intravenous route appears to reduce the blood loss and maternal morbidity during normal labour effectively.
NASA Astrophysics Data System (ADS)
Hua, Wei; Qi, Ji; Jia, Meng
2017-05-01
Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.
Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang
2010-09-01
A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.
NASA Astrophysics Data System (ADS)
Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang
2010-09-01
A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.
Measurements of reduced corkscrew motion on the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, S.L.; Brand, H.R.; Chambers, F.W.
1991-05-01
The ETA-II linear induction accelerator is used to drive a microwave free electron laser (FEL). Corkscrew motion, which previously limited performance, has been reduced by: (1) an improved pulse distribution system which reduces energy sweep, (2) improved magnetic alignment achieved with a stretched wire alignment technique (SWAT) and (3) a unique magnetic tuning algorithm. Experiments have been carried out on a 20-cell version of ETA-II operating at 1500 A and 2.7 MeV. The measured transverse beam motion is less than 0.5 mm for 40 ns of the pulse, an improvement of a factor of 2 to 3 over previous results.more » Details of the computerized tuning procedure, estimates of the corkscrew phase, and relevance of these results to future FEL experiments are presented. 11 refs.« less
Low power arcjet thruster pulse ignition
NASA Technical Reports Server (NTRS)
Sarmiento, Charles J.; Gruber, Robert P.
1987-01-01
An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.
Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments
2017-02-16
ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate
NASA Technical Reports Server (NTRS)
Surinov, Y. A.; Fedyanin, V. E.
1975-01-01
The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).
From the Dance of the Foci to a Strophoid
ERIC Educational Resources Information Center
Jobbings, Andrew
2011-01-01
The intersection of a plane and a cone is a conic section and rotating the plane leads to a family of conics. What happens to the foci of these conics as the plane rotates? A classical result gives the locus of the foci as an oblique strophoid when the plane rotates about a tangent to the cone. The analogous curve when the plane intersects a…
Lu, Haiyang; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan
2010-03-28
This work intends to get a better understanding of cluster formation in supersonic nozzles of different geometries. The throat diameters d are within 0.26 mm < or = d < or = 0.62 mm, the half-opening-angle alpha within 4.2 degrees < or = alpha < or = 11.3 degrees, and the length L of the conical section is 17.5 mm (eight nozzles) or 12 mm (two nozzles). Thus the so-called "equivalent sonic-nozzle diameter d(eq)" for these conical nozzle geometries, defined by d(eq)=0.74 d/tan alpha (for monatomic gases), is in the range of 1.59 mm < or = d(eq) < or = 5.21 mm. Source temperature for the clustering experiments was T(0)=298 K, and the backing pressure P(0) was between 0.5 and 30 bars. The (average) cluster sizes observed for these conical nozzles deviate from the predictions of the simple stream-tube-model. These deviations are accounted for by introducing the so-called "effective equivalent sonic-nozzle diameter d(eq)*," defined as the product of the equivalent sonic-nozzle diameter d(eq) and a new parameter delta, d(eq)*=deltad(eq). The parameter delta serves to modify the equivalent diameters d(eq) of the conical nozzles, which are applied in the idealized cases where the gas flows are suggested to be formed through free jet expansion. Then, delta represents the deviation of the performance in cluster formation of the practical conical nozzles from those predicted based on the idealized picture. The experimental results show that the values of delta can be described by an empirical formula, depending on the gas backing pressure P(0) and the parameter d(eq) of the conical nozzles. The degradation of the performance of the present conical nozzles was found with the increase in P(0) and the larger d(eq). It was revealed that delta is inversely proportional to a fractional power (approximately 0.5-0.6) of the molecular density n(mol) in the gas flows under the present experimental conditions. The boundary layers effects are considered to be mainly responsible for the restriction of the performance of the conical nozzles in cluster formation.
Evaluation of hollow fiberoptic tips for the conduction of Er:YAG laser.
Alves, Paulo Roberto Vieira; Aranha, Norberto; Alfredo, Edson; Marchesan, Melissa Andréia; Brugnera Junior, Aldo; Sousa-Neto, Manoel D
2005-08-01
The use of Er:YAG laser operating in the 3 microm range with adjustable power and pulses has become popular for dental and medical practice due to its high photoablative capacity, surgical precision and antimicrobial action. The existing fiberoptic tips irradiate lasers parallel to the long axes of the tooth limiting its efficiency in the root canal. We evaluated hollow fiberoptic tips obtained from silicate glass as a means of Er:YAG laser conduction in dental procedures. The fiber tips were molded from capillary tubes with different profiles so that their ends would have cylindric, conical or spherical shapes. The performance of the three fibers as a means of propagation of Er:YAG (lambda = 2.94 microm) laser radiation was compared to that of a solid sapphire fiber at 10 Hz and 200 mJ and of 20 Hz and 500 mJ. The profiles of frontal and lateral burning were visualized on thermal paper. Analysis of these profiles demonstrated that the sapphire tip and the hollow fiber of cylindric section did not differ significantly in the profiles of frontal burning, and no lateral burning was detected. The fibers of the conical and spherical sections, although presenting attenuation in the frontal output power, showed a larger burning area in the frontal profile, in addition to producing lateral burning. The results indicate that commercial hollow fiberoptics have advantages such as easy manufacture of the different tip shapes, great adaptability, low cost, and a low loss of transmission.
Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia
2015-09-01
Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.
Towards pump-probe experiments of defect dynamics with short ion beam pulses
NASA Astrophysics Data System (ADS)
Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.
2013-11-01
A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.
Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo
2015-10-01
In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.
Conical intersection in a bilirubin model A possible pathway for phototherapy of neonatal jaundice
NASA Astrophysics Data System (ADS)
Zietz, Burkhard; Blomgren, Fredrik
2006-03-01
Phototherapy of neonatal jaundice involves Z- E-isomerisation around an exocyclic double bond in bilirubin. Our results of a CASSCF study on dipyrrinone, a bilirubin model, show a conical intersection between the ground and first excited singlet states associated with the Z- E-isomerisation. The conical intersection, located ca. 50 kJ/mol below the Franck-Condon-point, together with the S 1 minimum, ca. 50 kJ/mol below the conical intersection, are able to explain the available time-resolved spectroscopic data (the very short lifetime of the initially excited state and transient 'dark state' intermediate) as well as bilirubin's very low fluorescence quantum yield and the medium-efficient photoisomerisation reaction.
Lin, Ying-he; Man, Yi; Liang, Xing; Qu, Yi-li; Lu, Xuan
2004-11-01
To study the stress distribution and displacement of edentulous alveolar ridge of removable partial denture which is retained by using conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static load was applied. The stress and displacement characteristics of these different types of materials which form the metal part of the conical telescope were compared and analyzed. Generally, the four materials produced almost the same stress and displacement at the site of the edentulous alveolar ridge. From the viewpoint of dynamics, the application of different materials in making the metal part of conical telescope is feasible.
Lightweight 3.66-meter-diameter conical mesh antenna reflector
NASA Technical Reports Server (NTRS)
Moore, D. M.
1974-01-01
A description is given of a 3.66 m diameter nonfurlable conical mesh antenna incorporating the line source feed principle recently developed. The weight of the mesh reflector and its support structure is 162 N. An area weighted RMS surface deviation of 0.28 mm was obtained. The RF performance measurements show a gain of 48.3 db at 8.448 GHz corresponding to an efficiency of 66%. During the design and development of this antenna, the technology for fabricating the large conical membranes of knitted mesh was developed. As part of this technology a FORTRAN computer program, COMESH, was developed which permits the user to predict the surface accuracy of a stretched conical membrane.
Effect of pH on ion current through conical nanopores
NASA Astrophysics Data System (ADS)
Chander, M.; Kumar, R.; Kumar, S.; Kumar, N.
2018-05-01
Here, we examined ionic current behavior of conical nanopores at different pH and a fixed ion concentration of potassium halide (KCl). Conical shaped nanopores have been developed by chemical etching technique in polyethylene terephthalate (PET) membrane/foil of thickness 12 micron. For this we employed a self-assembled electrochemical cell having two chambers and the foil was fitted in the centre of cell. The nanopores were produced in the foil using etching and stopping solutions. The experimental results show that ionic current rectification (ICR) occurs through synthesized conical nanopores. Further, ion current increases significantly with increase of voltage from the base side of nanopores to the tip side at fixed pH of electrolyte.
Preference pulses and the win-stay, fix-and-sample model of choice.
Hachiga, Yosuke; Sakagami, Takayuki; Silberberg, Alan
2015-11-01
Two groups of six rats each were trained to respond to two levers for a food reinforcer. One group was trained on concurrent variable-ratio 20 extinction schedules of reinforcement. The second group was trained on a concurrent variable-interval 27-s extinction schedule. In both groups, lever-schedule assignments changed randomly following reinforcement; a light cued the lever providing the next reinforcer. In the next condition, the light cue was removed and reinforcer assignment strictly alternated between levers. The next two conditions redetermined, in order, the first two conditions. Preference pulses, defined as a tendency for relative response rate to decline to the just-reinforced alternative with time since reinforcement, only appeared during the extinction schedule. Although the pulse's functional form was well described by a reinforcer-induction equation, there was a large residual between actual data and a pulse-as-artifact simulation (McLean, Grace, Pitts, & Hughes, 2014) used to discern reinforcer-dependent contributions to pulsing. However, if that simulation was modified to include a win-stay tendency (a propensity to stay on the just-reinforced alternative), the residual was greatly reduced. Additional modifications of the parameter values of the pulse-as-artifact simulation enabled it to accommodate the present results as well as those it originally accommodated. In its revised form, this simulation was used to create a model that describes response runs to the preferred alternative as terminating probabilistically, and runs to the unpreferred alternative as punctate with occasional perseverative response runs. After reinforcement, choices are modeled as returning briefly to the lever location that had been just reinforced. This win-stay propensity is hypothesized as due to reinforcer induction. © Society for the Experimental Analysis of Behavior.
Repetitive pulses and laser-induced retinal injury thresholds
NASA Astrophysics Data System (ADS)
Lund, David J.
2007-02-01
Experimental studies with repetitively pulsed lasers show that the ED 50, expressed as energy per pulse, varies as the inverse fourth power of the number of pulses in the exposure, relatively independently of the wavelength, pulse duration, or pulse repetition frequency of the laser. Models based on a thermal damage mechanism cannot readily explain this result. Menendez et al. proposed a probability-summation model for predicting the threshold for a train of pulses based on the probit statistics for a single pulse. The model assumed that each pulse is an independent trial, unaffected by any other pulse in the train of pulses and assumes that the probability of damage for a single pulse is adequately described by the logistic curve. The requirement that the effect of each pulse in the pulse train be unaffected by the effects of other pulses in the train is a showstopper when the end effect is viewed as a thermal effect with each pulse in the train contributing to the end temperature of the target tissue. There is evidence that the induction of cell death by microcavitation bubbles around melanin granules heated by incident laser irradiation can satisfy the condition of pulse independence as required by the probability summation model. This paper will summarize the experimental data and discuss the relevance of the probability summation model given microcavitation as a damage mechanism.
Stochastic-analytic approach to the calculation of multiply scattered lidar returns
NASA Astrophysics Data System (ADS)
Gillespie, D. T.
1985-08-01
The problem of calculating the nth-order backscattered power of a laser firing short pulses at time zero into an homogeneous cloud with specified scattering and absorption parameters, is discussed. In the problem, backscattered power is measured at any time less than zero by a small receiver colocated with the laser and fitted with a forward looking conical baffle. Theoretical calculations are made on the premise that the laser pulse is composed of propagating photons which are scattered and absorbed by the cloud particles in a probabilistic manner. The effect of polarization was not taken into account in the calculations. An exact formula is derived for backscattered power, based on direct physical arguments together with a rigorous analysis of random variables. It is shown that, for values of n less than or equal to 2, the obtained formula is a well-behaved (3n-4) dimensionless integral. The computational feasibility of the integral formula is demonstrated for a model cloud of isotropically scattering particles. An analytical formula is obtained for a value of n = 2, and a Monte Carlo program was used to obtain numerical results for values of n = 3, . . ., 6.
Multiple pulsed hypersonic liquid diesel fuel jetsdriven by projectile impact
NASA Astrophysics Data System (ADS)
Pianthong, K.; Takayama, K.; Milton, B. E.; Behnia, M.
2005-06-01
Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40^circ nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.
Holographic measurement of wave propagation in axi-symmetric shells
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.
1972-01-01
The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, A N; Orishich, A M; Terent'eva, Ya S
The spectral characteristics of the thermal wake of a pulsating optical discharge (POD) in a supersonic air flow are studied. The POD is stimulated by radiation of a mechanically Q-switched, repetitively pulsed CO{sub 2} laser with a pulse repetition rate of 7 – 150 kHz and a power up to 4.5 kW. The flow is produced by means of the supersonic aerodynamic MAU-M setup having a conic nozzle with a critical cross-section size of 50 mm, the Mach number being 1.3 – 1.6. We describe in detail the system of optical diagnostics that allows the detection of the spectrum ofmore » the weak thermal wake glow against the background of high-power POD radiation. The glow of the thermal wake is due to the emission of light by atoms and ions of nitrogen and oxygen, carried by the flow in the form of hot low-density gas clouds (caverns). The wavelengths of the thermal wake emission and the data on the transitions, corresponding to the spectral lines are presented. (laser applications and other topics in quantum electronics)« less
Fine structure of low-energy H(+) in the nightside auroral region
NASA Technical Reports Server (NTRS)
Liu, Chao; Perez, J. D.; Moore, T. E.; Chappell, C. R.; Slavin, J. A.
1994-01-01
Low-energy H(+) data with 6-s resolution from the retarding ion mass spectrometer instrument on Dynamics Explorer (DE) 1 have been analyzed to reveal the fine structure at middle altitudes of the nightside auroral region. A new method for deconvolving the energy-integrated count rate in the spin plane of the satellite has been used to derive the two-dimensional phase space density. A detailed analysis reveals an alternating conic-beam-conic pattern with the observed conics correlated with large earthward currents in the auroral region. The strong downward current (larger than 1 microamperes per sq m (equivalent value at ionosphere)) provides a free energy source for the perpendicular ion heating, that generates the ion conics with energies from several eV to tens of eV. The bowl shape distribution of the low-energy H(+) is caused by the extended perpendicular heating. The strong correlation between conics and large downward currents suggests that the current-driven electrostatic ion cyclotron wave is an appropriate candidate for the transverse heating mechanism.
Deciphering the Functional Composition of Fusogenic Liposomes
Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes
2018-01-01
Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187
Acoustic sensor for real-time control for the inductive heating process
Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.
2003-09-30
Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.
NASA Astrophysics Data System (ADS)
Priya Darshini, B.; Ranjit, M.; Babu, V. Ramesh
2018-04-01
In this paper different Multicarrier PWM (MCPWM) techniques are proposed for dual inverter fed open end induction motor (IM) drive to achieve multilevel operation. To generate the switching pulses for the dual inverter sinusoidal modulating signal is compared with multi carrier signals. A common mode voltage (CMV) has been analyzed in the proposed open end winding induction motor drive. All the proposed techniques mitigate the CMV along with the harmonic distortion in the phase voltage. To authenticate the proposed work several simulation techniques have been carried out using MATLAB/SIMULINK and the corresponding results are presented and compared.
A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)
Tóth, Szilvia Z; Schansker, Gert; Kissimon, Judit; Kovács, László; Garab, Gyozo; Strasser, Reto J
2005-02-01
Leaves of 7-day-old barley seedlings were subjected to heat pulses at 50 degrees C for 20 or 40s to inhibit partially or fully the oxygen evolution without inducing visible symptoms. By means of biophysical techniques, we investigated the time course and mechanism of photosystem II (PSII) recovery. After the heat treatment, the samples were characterized by typical heat stress symptoms: loss of oxygen evolution activity, strong decrease of Fv/Fm, induction of the K-step in the fluorescence induction transient, emergence of the AT-thermoluminescence-band and a dramatic increase in membrane permeability. In the first 4h in the light following the heat pulse, the AT-band and the K-step disappeared in parallel, indicating the loss of this restricted activity of PSII. This phase was followed by a recovery period, during which PSII-activity was gradually restored in the light. In darkness, no recovery, except for the membrane permeability, was observed. A model is presented that accounts for (i) the damage induced by the heat pulse on the membrane architecture and on the PSII donor side, (ii) the light-dependent removal of the impaired reaction centers from the disorganized membrane, and (iii) the subsequent light-independent restoration of the membrane permeability and the de novo synthesis of the PSII reaction centers in the light.
Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue
Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga
2013-01-01
Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291
Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.
Titova, Lyubov V; Ayesheshim, Ayesheshim K; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A; Kovalchuk, Olga
2013-04-01
Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).
Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis
NASA Astrophysics Data System (ADS)
Cadeau, Trevor J.; Krause, Thomas W.
2009-03-01
Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.
Pitting of Space Shuttle's Inconel Honeycomb Conical Seal Panel
NASA Technical Reports Server (NTRS)
Zimmerman, Frank; Gentz, Steven J.; Miller, James B.
2006-01-01
This paper describes the approach, findings, conclusions and recommendations associated with the investigation of the conical seal pitting. It documents the cause and contributing factors of the pitting, the means used to isolate each contributor, and the supporting evidence for the primary cause of the pitting. Finally, the selection, development and verification of the repair procedure used to restore the conical seal panel is described with supporting process and metallurgical rationale for selection.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2014-01-01
A design for a novel light-weight conical shaped energy absorbing (EA) composite subfloor structure is proposed. This composite EA is fabricated using repeated alternating patterns of a conical geometry to form long beam structures which can be implemented as aircraft subfloor keel beams or frame sections. The geometrical features of this conical design, along with the hybrid composite materials used in the manufacturing process give a strength tailored to achieve a constant 25-40 g sustained crush load, small peak crush loads and long stroke limits. This report will discuss the geometrical design and fabrication methods, along with results from static and dynamic crush testing of 12-in. long subcomponents.
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-01-01
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821
Technical data on new engineering products
NASA Astrophysics Data System (ADS)
1985-02-01
New grades of permanently magnetic materials; automatic digital radiolocator; bench winder; analog induction gauge; programmable pulse generator; portable defibrillators; pipe welders; two-component electromagnetic log; sulphur content analyzer; peristaltic pumps; function generators; welding manipulator; and tonsiometer are described.
Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency
Davis, Ryan Wesley; Singh, Seema; Wu, Huawen
2013-07-09
Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.
Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin
2014-01-01
Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705
NASA Astrophysics Data System (ADS)
Chikvashvili, Ioseb
2011-10-01
In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.
Arterial endothelial function measurement method and apparatus
Maltz, Jonathan S; Budinger, Thomas F
2014-03-04
A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.
METAL RESISTIVITY MEASURING DEVICE
Renken, J. Jr.; Myers, R.G.
1960-12-20
An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.
Metal Resistivity Measuring Device
Renken, Jr, C. J.; Myers, R. G.
1960-12-20
An eddy current device is designed for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The lorg pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities with the sample, and the short pulses give a resultant signal responsive only to probe-to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probeto-sample spacing contained in the detected signals from the long pulses. Thus a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.
Acceleration and collimation of magnetized winds
NASA Astrophysics Data System (ADS)
Okamoto, Isao
2000-10-01
The acceleration-collimation problem is discussed for stationary, axisymmetric, polytropic, non-relativistic MHD outflows, with causality and the current-closure condition taken into account. To elucidate the properties of physically realizable `quasi-conical' winds, we consider four kinds of rather unphysical flows in contrast, namely `radial', `asymptotic', `conical' and `current-free' flows. `Radial' flows are supposed to possess the radial structure from the source to infinity, thereby not fulfilling the transfield equation, though keeping causal contact with the source. `Asymptotic' flows coincide in the asymptotic domain with the `quasi-conical' winds, and ones extrapolated inwards from them through the subasymptotic domain to the source. Thirdly, `conical' flows are supposed to satisfy the transfield equation in the subasymptotic domain; thus they are not literally conical, but are supposed to satisfy the `solvability condition at infinity for the conical structure'. It is, however, argued that there is one difficulty in connecting the asymptotic conical structure causally to the structure upstream. Finally, `current-free' flows with no poloidal and toroidal currents everywhere in the wind zone are treated, but it is pointed out that there is no means of satisfying the current-closure condition in the wind zone. Of physical relevance are the `quasi-conical' winds, for which it is shown that the condition that open field lines in the wind zone can reach infinity leads to the requirement that the Poynting flux, proportional to ζ≡αρϖ2η, is not carried to infinity along these field lines, i.e., ζ->0, where α is the angular velocity of field lines, ρ the gas density, and η the mass flux per unit flux tube. While ζ decreases from a value of ζB≡ζA+4πηδα near the coronal base through χχΑ = 4πηαω2Α at the Alfvénic surface to null at infinity, the specific angular momentum of the flow increases up to αω2Α, and the flow energy reaches nearly α2ω2Α at infinity, where δ is a constant of the Bernouilli integral, and ϖA is the axial distance of the Alfvénic surface. It is also argued that `quasi-conical' winds with the current-closure condition fulfilled in the wind zone possess the two-componentness of outflow as one of their generic properties.
LOSA-M3: multi-wave polarization scanning lidar for research of the troposphere and cirrus clouds
NASA Astrophysics Data System (ADS)
Kokhanenko, G. P.; Balin, Yu. S.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.
2017-11-01
Lidar is designed to study the aerosol fields of the troposphere and the polarization characteristics of crystal clouds. Two laser wavelengths are used - 1064 and 532 nm, elastic scattering signals and spontaneous Raman scattering of nitrogen (607 nm) are recorded. Lidar is made in a mobile version, allowing its transportation by road and working under expeditionary conditions. The lidar transceiver is placed on a scanning column, which allows to change the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter and receiver can be changed by rotating the phase plates synchronously with the the laser pulses. In combination with conical scanning of the lidar, this makes it possible to detect the anisotropy of scattering and the possible azimuthal orientation of the crystal particles.
Note: Tesla transformer damping
NASA Astrophysics Data System (ADS)
Reed, J. L.
2012-07-01
Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.
Evaluation of a 10 kV, 400 kA Si SGTO at High dI/dt
2006-05-01
inspection and high-potting of each component module prior to pulsing. The complete unit was then switched in a low inductance RLC circuit to test...during triggering. A ring down RLC circuit (Fig. 3) was designed with minimum inductance to test for peak dI/dt of anode-cathode flowing current. A...single 860 µF capacitor was charged to a chosen high voltage, then the power supply was disconnected and the switch was triggered to rapidly
Liang, Junling; Meng, Jie; Guo, Mengzhe; Yang, Zhi; Wu, Shihua
2013-05-03
Modern counter-current chromatography (CCC) originated from the helical coil planet centrifuge. Recently, spiral coils were found to possess higher separation efficiency in both the retention of stationary phase and solutes resolution than other CCC coils like the helical and toroidal coils used on type-J CCC and cross-axis CCC. In this work, we built a novel conical coil CCC for the preparative isolation and purification of tanshinones from Salvia miltiorrhiza Bunge. The conical coils were wound on three identical upright tapered holders in head-to-tail and left-handed direction and connected in series. Compared with helical and spiral coil CCC, conical coil CCC not only placed CCC column in a two-dimensional centrifugal field, but also provided a potential centrifugal force gradient both in axial and radial directions. The extra centrifugal gradient made mobile phase move faster and enabled CCC much higher retention of stationary phase and better resolution. As a result, higher efficiency has been obtained with the solvent system of hexane-ethyl acetate-methanol-water (HEMWat) with the volume ratio of 5:5:7:3 by using conical coil CCC apparatus. Four tanshinones, including cryptotanshinone (1), tanshinone I (2), 1,2-dihydrotanshinquinone (3) and tanshinone IIA (4), were well resolved from 500mg to 1g crude samples with high purity. Furthermore, the conical coil CCC can make a much higher solid phase retention, which makes it to be a powerful separation tool with high throughput. This is the first report about conical coil CCC for separation of tanshinones and it may also be an important advancement for natural products isolation. Copyright © 2013 Elsevier B.V. All rights reserved.
Automating the selection of standard parallels for conic map projections
NASA Astrophysics Data System (ADS)
Šavriǒ, Bojan; Jenny, Bernhard
2016-05-01
Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.
Measurement uncertainty evaluation of conicity error inspected on CMM
NASA Astrophysics Data System (ADS)
Wang, Dongxia; Song, Aiguo; Wen, Xiulan; Xu, Youxiong; Qiao, Guifang
2016-01-01
The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IIEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.
Power supply and pulsing strategies for the future linear colliders
NASA Astrophysics Data System (ADS)
Brogna, A. S.; Göttlicher, P.; Weber, M.
2012-02-01
The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.
Vallejo, Abbe N.; Miller, Norman W.; Harvey, Nancy E.; Cuchens, Marvin A.; Warr, Gregory W.
1992-01-01
Studies were conducted to address further the role(s) of antigen processing and presentation in the induction of immune responses in a phylogenetically lower vertebrate, specifically a teleost, the channel catfish. In particular, studies were aimed at determining the subcellular compartments involved in antigen degradation by channel catfish antigen-presenting cells (APC) as well as ascertaining the reexpression of immunogenic peptides on the surfaces of APC. The results showed that exogenous protein antigens were actively endocytosed by APC as detected by flow cytometry. Use of radiolabeled antigen and subcellular fractionation protocols also showed that antigen localized in endosomes/lysosomes. Furthermore, there was an apparent redistribution of antigen between these organelles and the plasma membrane during the course of antigen pulsing. Functional assays for the induction of in vitro antigen-specific proliferation of immune catfish peripheral blood leukocytes (PBL) showed that membrane preparations from antigen-pulsed autologous APC were highly stimulatory. The magnitude of responses elicited with such membrane preparations was very similar to that of PBL cultures stimulated with native antigen-pulsed and fixed intact APC or prefixed intact APC incubated with a peptide fragment of the nominal antigen. Current data further corroborate our previous findings that steps akin to antigen processing and presentation are clearly important in the induction of immune responses in lower vertebrates like fish, in a manner similar to that seen in mammalian systems. Consequently, it would appear that many immune functions among the diverse taxa of vertebrates are remarkably conserved. PMID:1343103
Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei
2013-11-06
Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018-03-30
ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...Tube by Joel B Stewart Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. REPORT DOCUMENTATION
Hubble Space Telescope secondary mirror vertex radius/conic constant test
NASA Technical Reports Server (NTRS)
Parks, Robert
1991-01-01
The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.
Biophysical basis for the geometry of conical stromatolites.
Petroff, Alexander P; Sim, Min Sub; Maslov, Andrey; Krupenin, Mikhail; Rothman, Daniel H; Bosak, Tanja
2010-06-01
Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.
Omnidirectional structured light in a flexible configuration.
Paniagua, Carmen; Puig, Luis; Guerrero, José J
2013-10-14
Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light emitter. Since the light emitter is visible in the omnidirectional image, the computation of its location is possible. With this information and the projected conic in the omnidirectional image, we are able to compute the conic reconstruction, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance.
Decoding structural complexity in conical carbon nanofibers.
Zhu, Yi-An; Wang, Zi-Jun; Cheng, Hong-Ye; Yang, Qin-Min; Sui, Zhi-Jun; Zhou, Xing-Gui; Chen, De
2017-06-07
Conical carbon nanofibers (CNFs) exist primarily as graphitic ribbons that fold into a cylindrical structure with the formation of a hollow core. Structural analysis aided by molecular modeling proves useful for obtaining a full picture of how the size of the central channel varies from fiber to fiber. From a geometrical perspective, conical CNFs possibly have cone tips that are nearly closed. On the other hand, their fiber wall thickness can be reduced to a minimum possible value that is determined solely by the apex angle, regardless of the outer diameter. A formula has been developed to express the number of carbon atoms present in conical CNFs in terms of measurable structural parameters. It appears that the energetically preferred fiber wall thickness increases not only with the apex angle, but also with the number of atoms in the constituent graphitic cones. The origin of the empirical observation that conical CNFs with small apex angles tend to have a large hollow core lies in the fact that in graphene sheets that are more highly curved the curvature-induced strain energy rises more rapidly as the fiber wall thickens.
Fazle Akbar, Sk Md; Furukawa, Shinya; Yoshida, Osamu; Hiasa, Yoichi; Horiike, Norio; Onji, Morikazu
2007-07-01
Antigen-pulsed dendritic cells (DCs) are now used for treatment of patients with cancers, however, the efficacy of these DCs has never been evaluated for prophylactic purposes. The aim of this study was (1) to prepare hepatitis B surface antigen (HBsAg)-pulsed human blood DCs, (2) to assess immunogenicity of HBsAg-pulsed DCs in vitro and (3) to evaluate the efficacy of HBsAg-pulsed DCs in hepatitis B (HB) vaccine nonresponders. Human peripheral blood DCs were cultured with HBsAg to prepare HBsAg-pulsed DCs. The expression of immunogenic epitopes of HBsAg on HBsAg-pulsed DCs was assessed in vitro. Finally, HBsAg-pulsed DCs were administered, intradermally to six HB vaccine nonresponders and the levels of antibody to HBsAg (anti-HBs) in the sera were assessed. HB vaccine nonresponders did not exhibit features of immediate, early or delayed adverse reactions due to administration of HBsAg-pulsed DCs. Anti-HBs were detected in the sera of all HB vaccine nonresponders within 28 days after administration of HBsAg-pulsed DCs. This study opens a new field of application of antigen-pulsed DCs for prophylactic purposes when adequate levels of protective antibody cannot be induced by traditional vaccination approaches.
Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders
NASA Astrophysics Data System (ADS)
Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.
2000-04-01
In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.
Magnetic compression laser driving circuit
Ball, D.G.; Birx, D.; Cook, E.G.
1993-01-05
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Rise time of voltage pulses in NbN superconducting single photon detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, K. V.; CJSC “Superconducting Nanotechnology”; National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow
2016-08-01
We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.
Control Infrastructure for a Pulsed Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.
2016-10-01
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
Physics constraints on double-pulse LIA engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August Jr.
2015-05-20
The options for advanced-radiography double-pulse linear induction accelerators (LIA) under consideration naturally fall into three categories that differ by the number of cells required. Since the two major physics issues, beam breakup (BBU) and corkscrew, are also dependent on the number of cells, it may be useful for the decision process to review the engineering consequences of beam physics constraints for each class. The LIAs can be categorized three different ways, and this report compares the different categories based upon the physics of their beams.
Control Infrastructure for a Pulsed Ion Accelerator
Persaud, A.; Regis, M. J.; Stettler, M. W.; ...
2016-07-27
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
Vacuum Outgassing Behavior of Carbon Nanotube Cathode with High-Intensity Pulsed Electron Emission
NASA Astrophysics Data System (ADS)
Shen, Yi; Zhang, Huang; Xia, Liansheng; Liu, Xingguang; Pan, Haifeng; Lv, Lu; Yang, Anmin; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun
2015-02-01
Experimental investigations on the vacuum outgassing of a carbon nanotube (CNT) cathode with high-intensity pulsed electron emission on a 2 MeV linear induction accelerator injector are presented. Under the 1.60 MV diode voltage, the CNT cathode could provide 1.67 kA electron beam with the amount of outgassing of about 0.51 Pa·L. It is found that the amount of outgassing, which determines the cathode emission current, depends on the diode voltage and the vacuum.
Magnetic compression laser driving circuit
Ball, Don G.; Birx, Dan; Cook, Edward G.
1993-01-01
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Characterizing conical refraction optical tweezers.
McDonald, C; McDougall, C; Rafailov, E; McGloin, D
2014-12-01
Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focusing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots, and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focusing on the trap stiffness, and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot, but benefit from rotational control.
Flexible particle manipulation techniques with conical refraction-based optical tweezers
NASA Astrophysics Data System (ADS)
McDougall, C.; Henderson, Robert; Carnegie, David J.; Sokolovskii, Grigorii S.; Rafailov, Edik U.; McGloin, David
2012-10-01
We present an optimized optical tweezers system based upon the conical refraction of circularly polarized light in a biaxial crystal. The described optical arrangement avoids distortions to the Lloyd plane rings that become apparent when working with circularly polarized light in conventional optical tweezers. We demonstrate that the intensity distribution of the conically diffracted light permits optical manipulation of high and low refractive index particles simultaneously. Such trapping is in three dimensions and not limited to the Lloyd plane rings. By removal of a quarter waveplate the system also permits the study of linearly polarized conical refraction. We show that particle position in the Raman plane is determined by beam power, and indicates that true optical tweezing is not taking place in this part of the beam.
Characterizing conical refraction optical tweezers
NASA Astrophysics Data System (ADS)
McDonald, C.; McDougall, C.; Rafailov, E.; McGloin, D.
2014-12-01
Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.
Cleavage in conical sand dollar eggs.
Rappaport, R; Rappaport, B N
1994-07-01
Previous experiments have shown that the mitotic apparatus and the surface can interact and produce functional furrows in various unusual geometrical circumstances. The consistent development of the furrow in the plane equidistant from the aster centers has led to conjecture about the need for a special structural configuration of the subsurface in the future cleavage plane. In most experiments involving altered cell geometry, the relation between each aster and nearby surface was symmetrical, and the effect of that symmetry upon the position and orientation of the cleavage mechanism in the cortex has not been systematically analyzed. The normal symmetry of sand dollar eggs can be changed by reshaping them into cones. When the cone and mitotic axes are parallel, the aster center closer to the vertex is also closer to the nearby surface, and the cleavage plane develops on the vertex side of the midpoint between the asters. A mitotic apparatus oriented perpendicular to the cone axis produces in the base of the cone a normal unilateral furrow that advances toward the vertex, and a second contractile band that isolates the vertex region. This event only occurs when the surface is conical and the mitotic apparatus is perpendicular to the cone axis. Furrow formation is not restricted to the plane of the metaphase plate or the midpoint between the aster centers. The orientation of mitotic apparatus-produced contractile bands is not limited to the circumstances in normal cytokinesis, but may vary according to surface contour. These results confirm predictions of the Harris and Gewalt model of contractile ring induction.
Manufacture of conical springs with elastic medium technology improvement
NASA Astrophysics Data System (ADS)
Kurguzov, S. A.; Mikhailova, U. V.; Kalugina, O. B.
2018-01-01
This article considers the manufacturing technology improvement by using an elastic medium in the stamping tool forming space to improve the conical springs performance characteristics and reduce the costs of their production. Estimation technique of disk spring operational properties is developed by mathematical modeling of the compression process during the operation of a spring. A technique for optimizing the design parameters of a conical spring is developed, which ensures a minimum voltage value when operated in the edge of the spring opening.
Acute Inhalation Toxicity and Blood Absorption of 2,4-Dinitroanisole (DNAN) in Rats
2015-03-17
stainless steel cylinders with conical nose pieces. Rats were positioned in the exposure cylinder such that their noses were at the conical end of the...performed using a 16 gauge x 2-inch stainless steel gavage needle. A 16 milligram per milliliter (mg/mL) suspension of DNAN in corn oil was used for oral...considered to be the most appropriate mode. Rats will be individually restrained during exposure in perforated, stainless steel cylinders with conical
Lidar Data Products and Applications Enabled by Conical Scanning
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo
2004-01-01
Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.
Simple construction and performance of a conical plastic cryocooler
NASA Technical Reports Server (NTRS)
Lambert, N.
1985-01-01
Low power cryocoolers with conical displacers offer several advantages over stepped displacers. The described fabrication process allows quick and reproducible manufacturing of plastic conical displacer units. This could be of commercial interest, but it also makes systematic optimization feasible by constructing a number of different models. The process allows for a wide range of displacer profiles. Low temperature performance as dominated by regenerator losses, and several effects are discussed. A simple device is described which controls gas flow during expansion.
Centrifugal Size-Separation Sieve for Granular Materials
NASA Technical Reports Server (NTRS)
Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)
2015-01-01
A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.
1978-05-01
Measured Flight Effect for J85/ Aerotrain Conical Nozzle, 400 ft Sideline. 360 4-149. Comparison of Predicted and Measured Flight Velocity Exponent m for J85... Aerotrain Conical Nozzle. 362 4-150. Comparison of Measured and Predicted Flight Noise Spectra for J85/ Aerotrain Conical Nozzle, V = 2200 fps, 400 ft...Bertin Aerotrain simulated flight noise results which were obtained by Clapper, et al.( 72) in Task 4 of this program. Fig- ure 4-148 shows the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W Y
Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap withmore » a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.« less
Application of Electron-Beam Controlled Diffuse Discharges to Fast Switching
1983-06-01
pressure , switch area and length are estimated self-consistently for a given system efficiency is reviewed, The formalism is used to design a single pulse, 200 kV, 30 kA (6 omega) , 100 ns FWHM inductive storage generator.
DOT National Transportation Integrated Search
2011-03-01
Traffic Management applications such as ramp metering, incident detection, travel time prediction, and vehicle : classification greatly depend on the accuracy of data collected from inductive loop detectors, but these data are : prone to various erro...
NASA Astrophysics Data System (ADS)
Patchkovskii, Serguei; Schuurman, Michael S.
2017-11-01
We present derivation and implementation of the multiconfigurational strong-field approximation with Gaussian nuclear wave packets (MC-SFA-GWP)—a version of the molecular strong-field approximation which treats all electronic and nuclear degrees of freedom, including their correlations, quantum mechanically. The technique allows realistic simulation of high-order-harmonic emission in polyatomic molecules without invoking reduced-dimensionality models for the nuclear motion or the electronic structure. We use MC-SFA-GWP to model isotope effects in high-order-harmonic-generation (HHG) spectroscopy of methane. The HHG emission in this molecule transiently involves the strongly vibronically coupled F22 electronic state of the CH4+ cation. We show that the isotopic HHG ratio in methane contains signatures of (a) field-free vibronic dynamics at the conical intersection (CI); (b) resonant features in the recombination cross sections; (c) laser-driven bound-state dynamics; as well as (d) the well-known short-time Gaussian decay of the emission. We assign the intrinsic vibronic feature (a) to a relatively long-lived (≥4 fs) vibronic wave packet of the singly excited ν4 (t2) and ν2 (e ) vibrational modes, strongly coupled to the components of the F22 electronic state. We demonstrate that these physical effects differ in their dependence on the wavelength, intensity, and duration of the driving pulse, allowing them to be disentangled. We thus show that HHG spectroscopy provides a versatile tool for exploring both conical intersections and resonant features in photorecombination matrix elements in the regime not easily accessible with other techniques.
Peters, William K; Couch, David E; Mignolet, Benoit; Shi, Xuetao; Nguyen, Quynh L; Fortenberry, Ryan C; Schlegel, H Bernhard; Remacle, Françoise; Kapteyn, Henry C; Murnane, Margaret M; Li, Wen
2017-12-26
Highly excited electronic states are challenging to explore experimentally and theoretically-due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron-ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules-in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.
Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, Sajeev
2014-06-04
We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.
Interactive Reference Point Procedure Based on the Conic Scalarizing Function
2014-01-01
In multiobjective optimization methods, multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions. The conic scalarizing function is a general characterization of Benson proper efficient solutions of non-convex multiobjective problems in terms of saddle points of scalar Lagrangian functions. This approach preserves convexity. The conic scalarizing function, as a part of a posteriori or a priori methods, has successfully been applied to several real-life problems. In this paper, we propose a conic scalarizing function based interactive reference point procedure where the decision maker actively takes part in the solution process and directs the search according to her or his preferences. An algorithmic framework for the interactive solution of multiple objective optimization problems is presented and is utilized for solving some illustrative examples. PMID:24723795
Dettwiller, Luc
2006-04-17
Since 2001 the intrinsic birefringence of fluorine has been accessible to experiment. It is known that its intrinsic anisotropy is entirely due to spatial dispersion, and that the index surface of fluorine and crystals with the same symmetry has seven optical axes, four of them intersecting this surface at pairs of conical points. I point out the fact that there is no internal conical refraction, but only simple refraction (and without walkoff), with these conical points. I also explain why the rays are not a priori normal to the index surface in the case of fluorine because of its spatial dispersion; and I discuss two particular cases of spatial dispersion where the Poynting vector remains orthogonal to the index surface.
Ford, Helen D; Tatam, Ralph P
2017-04-17
Duct-profiling in test samples up to 25 mm in diameter has been demonstrated using a passive, low-coherence probe head with a depth resolution of 7.8 μm, incorporating an optical-fibre-linked conical mirror addressed by a custom-built array of single-mode fibres. Zemax modelling, and experimental assessment of instrument performance, show that degradation of focus, resulting from astigmatism introduced by the conical mirror, is mitigated by the introduction of a novel lens element. This enables a good beam focus to be achieved at distances of tens of millimetres from the cone axis, not achievable when the cone is used alone. Incorporation of the additional lens element is shown to provide a four-fold improvement in lateral imaging resolution, when compared with reflection from the conical mirror alone.
Spherical means of solutions of partial differential equations in a conical region
NASA Technical Reports Server (NTRS)
Ting, L.
1974-01-01
The spherical means of the solutions of a linear partial differential equation Lu = f in a conical region are studied. The conical region is bounded by a surface generated by curvilinear ti surfaces. The spherical mean is the average of u over a constant ti surface. The conditions on the linear differential operator, L, and on the orthogonal coordinates (ti, eta, zeta) are established so that the spherical mean of the solution subjected to the appropriate boundary and initial conditions can be determined directly as a problem with only space variable. Conditions are then established so that the spherical mean of the solution in one concial region will be proportional to that of a known solution in another conical region. Applications to various problems of mathematical physics and their physical interpretations are presented.
Hole Feature on Conical Face Recognition for Turning Part Model
NASA Astrophysics Data System (ADS)
Zubair, A. F.; Abu Mansor, M. S.
2018-03-01
Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.
Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.
Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin
2015-11-01
Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid
2015-02-01
In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.
NASA Astrophysics Data System (ADS)
Peach, Ken; Ekdahl, Carl
2014-02-01
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Control of energy sweep and transverse beam motion in induction linacs
NASA Astrophysics Data System (ADS)
Turner, W. C.
1991-05-01
Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
Spark gaps synchronization using electrical trigger pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Ritu; Saroj, P.C.; Sharma, Archana
In pulse power systems, it is required to have synchronized triggering of two or more high voltage spark gaps capable of switching large currents, using electrical trigger pulses. This paper intends to study the synchronization of spark gaps using electrical trigger. The trigger generator consists of dc supply, IGBT switch and driver circuit which generates 8kV, 400ns (FWHM) pulses. The experiment was carried out using two 0.15uF/50kV energy storage capacitors charged to 12kV and discharged through stainless steel spark gaps of diameter 9 mm across 10 ohm non inductive load. The initial experiment shows that synchronization has been achieved withmore » jitter of 50 to 100ns. Further studies carried out to reduce the jitter time by varying various electrical parameters will be presented. (author)« less
Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, E G; Hickman, B C; Lee, B S
2002-06-24
The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less
Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.
Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei
2014-09-23
Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.
NASA Technical Reports Server (NTRS)
Ebert, D. H.; Eppes, T. A.; Thomas, D. J.
1973-01-01
The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument was studied in terms of: (1) design modifications required in framing and continuous image recording devices; and (2) changes in configurations of an all-digital precision image processor. A baseline system was defined to provide the framework for comparison, and included pertinent spacecraft parameters, a conical MSS, a linear MSS, an image recording system, and an all-digital precision processor. Lateral offset pointing of the sensors over a range of plus or minus 20 deg was considered. The study addressed the conical scan impact on geometric, radiometric, and aperture correction of MSS data in terms of hardware and software considerations, system complexity, quality of corrections, throughput, and cost of implementation. It was concluded that: (1) if the MSS data are to be only film recorded, then there is only a nomial concial scan impact on the ground data processing system; and (2) if digital data are to be provided to users on computer compatible tapes in rectilinear format, then there is a significant conical scan impact on the ground data processing system.
Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.
Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit
2015-11-28
Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.
INTERIOR VIEW OF THE FIRST FLOOR, SHOWING COLUMNS WITH CONICAL ...
INTERIOR VIEW OF THE FIRST FLOOR, SHOWING COLUMNS WITH CONICAL CAPITALS. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI
The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.
ERIC Educational Resources Information Center
King, Roy W.; Williams, Kathryn R.
1989-01-01
Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.
2015-08-18
A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.
Transient analysis using conical shell elements
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Goeller, J. E.; Messick, W. T.
1973-01-01
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.
Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lapointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Molnar, L; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X
2009-02-06
Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta=1.37+/-0.02(stat)-0.07+0.06(syst), independent of p_{ perpendicular}.
1979-01-01
Characteristics - V z 1640ft/sec, ma 72 7-26. Comparison of Aerotrain and 4.0 in. Conical Nozzle OASPL Characteristics. 75 7-27. Comparison of Acrotrain and 4.0 in...Conical Nozzle PNL Characteristics. 76 ix LIST OF ILLUSTRATIONS (Continued) Figure Page 7-28. Conical Nozzle Spectra Comparisons with Aerotrain . 77 7...free jet and Aerotrain Test Series (References 6, 9, & 10) are used for com.aring all the static and flight noise results from the above scale model
An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)
NASA Technical Reports Server (NTRS)
Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.;
2001-01-01
An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.
Detonation Initiation and Evolution in Spray- Fueled Pulsed Detonation Rocket Engines
2007-06-28
shock by an nth fluid particle during the induction time is characterized by Z" = Uro ’, where o;,, is the induction time for that particle and o7, is a...12.5 15 z 15 s=20 25. 28 e 10 5 - 0 2.5 5 75 10 12.5 15 z 20 s=3.0, 31, 32 15- I- + E! lo 02.5 T 01251 2 T s 3.3.3.4, 3.5 20 10 F.... 0 25 5 75 10 12.5
Lu, Lianjun; Xu, Hui; Wang, Xiaowu; Guo, Guozhen
2009-04-06
To examine whether electromagnetic pulses (EMPs) affected the permeability of the blood-retinal barrier (BRB), gene expression of occludin and activity of nitric oxide synthase (NOS). Sprague-Dawley (SD) rats were used and randomized into EMP and control groups. Retinas were removed immediately, and 2 h or 24 h after EMP radiation. BRB permeability was analyzed by transmission electron microscopy and Evans Blue staining. Retinal NOS activity and concentrations of nitrite and nitrate were measured. Occludin mRNA and protein levels were detected by RT-PCR and Western blotting. Exposure of SD rats to EMP resulted in increased BRB permeability, with the greatest decrease in occludin at 24 h. Moreover, this permeability defect was also correlated with significant increases in the formation of NO and induction of NOS activity in SD rats. Furthermore, we found that treatment with NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) blocked BRB breakdown and prevented the increase in NO formation and induction of NOS activity, as well as the decrease in occluding expression. Taken together, these results support the view that NOS-dependent NO production is an important factor that contributes to EMP-induced BRB dysfunction, and suggests that NOS induction may play an important role in BRB breakdown.
Performances of a Compact, High-Power WB Source with Circular Polarization
NASA Astrophysics Data System (ADS)
Delmote, P.; Pinguet, S.; Bieth, F.
This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1984-01-01
The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.
Holographic studies of shock waves within transonic fan rotors
NASA Technical Reports Server (NTRS)
Benser, W. A.; Bailey, E. E.; Gelder, T. F.
1974-01-01
NASA has funded two separate contracts to apply pulsed laser holographic interferometry to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface.
Adiabatic model and design of a translating field reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, T. P.; Siemon, R. E.; Sieck, P. E.
We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it mustmore » be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.« less
A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.
Fan, Xuliang; Liu, Jinliang
2014-02-01
High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.
Introducing Conics without Eccentricity
ERIC Educational Resources Information Center
Glaister, Elizabeth M.; Glaister, Paul
2006-01-01
This note provides a self-contained introduction to conics as loci of points equidistant from circles, lines and points, including a study of the loci of points equidistant from two circles, separated, intersecting or touching. (Contains 1 table and 8 figures.)
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
A performance comparison of two small rocket nozzles
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Reed, Brian D.; Rivera, Angel, Jr.
1996-01-01
An experimental study was conducted on two small rockets (110 N thrust class) to directly compare a standard conical nozzle with a bell nozzle optimized for maximum thrust using the Rao method. In large rockets, with throat Reynolds numbers of greater than 1 x 10(exp 5), bell nozzles outperform conical nozzles. In rockets with throat Reynolds numbers below 1 x 10(exp 5), however, test results have been ambiguous. An experimental program was conducted to test two small nozzles at two different fuel film cooling percentages and three different chamber pressures. Test results showed that for the throat Reynolds number range from 2 x 10(exp 4) to 4 x 10(exp 4), the bell nozzle outperformed the conical nozzle. Thrust coefficients for the bell nozzle were approximately 4 to 12 percent higher than those obtained with the conical nozzle. As expected, testing showed that lowering the fuel film cooling increased performance for both nozzle types.
Free Vibration Characteristics of Functionally Graded Pre-twisted Conical Shells under Rotation
NASA Astrophysics Data System (ADS)
Das, Apurba; Karmakar, Amit
2017-06-01
This article deals with effect of rotation and pretwist angle on free vibration characteristics of functionally graded conical shells. The dynamic equilibrium equation is derived from Lagrange's equation neglecting the Coriolis effect for moderate rotational speeds. The materials properties of conical shell are varied with a power-law distribution of the volume fractions of their constituents through its thickness. Convergence studies are performed in respect of mesh sizes, and comparisons of the present solutions and those reported in open literature are provided to substantiate the accuracy of the proposed method. Computer codes developed to obtain the numerical results for the combined effects of twist angle and rotational speed on the natural frequencies of functionally graded conical shells. The mode shapes for a typical laminate configuration under different conditions are also illustrated. Numerical results are obtained for the non-dimensional fundamental (NDFF) and second frequencies (NDSF).
NASA Astrophysics Data System (ADS)
Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.
2012-03-01
In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.
The rectification of mono- and bivalent ions in single conical nanopores
NASA Astrophysics Data System (ADS)
Wei, Junzhe; Du, Guanghua; Guo, Jinlong; Li, Yaning; Liu, Wenjing; Yao, Huijun; Zhao, Jing; Wu, Ruqun; Chen, Hao; Ponomarov, Artem
2017-08-01
The polyethylene terephthalate (PET) films were irradiated with single 6.9 MeV/u 58Ni19+ ions at the Lanzhou Interdisciplinary Heavy Ion Microbeam (LIHIM), and single conical nanopores were produced by asymmetric chemical etching of the latent ion tracks. Then, the current-voltage (I-V) characteristic was measured in LiCl, NaCl, KCl, MgCl2, and CaCl2 solution at different concentrations to study the transport properties of different cations in the single conical nanopores respectively. The measured I-V data showed that the conical nanopores have rectified transportation of these cations at the applied voltage of between +2 V and -2 V. The rectification coefficient γ of the mono- and bivalent ions was determined in their solution of 0.0001-1 M measured at 1 V, the result showed that the rectification coefficient is dependent on the valence of the ions and the electrolyte solution.
Tapered whiskers are required for active tactile sensation.
Hires, Samuel Andrew; Pammer, Lorenz; Svoboda, Karel; Golomb, David
2013-11-19
Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001.
System for the production of plasma
Bakken, George S.
1978-01-01
The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.
Generation of spiral optical beams using a spatial light modulator
NASA Astrophysics Data System (ADS)
Rodrigo, Peter J.; Alonzo, Carlo A.; Gluckstad, Jesper
2005-08-01
Recently, a new type of beam termed "spiral optical beam" has been introduced [Alonzo, et al., Opt. Express 13, 1749 (2005)]. Spiral beams are created from multiplicative mixtures of helical and conical phase distributions. Helico-conical phase fronts that generate these novel beams are not achieved with a sequence of a corkscrew wave-plate and an axicon (as this sequence gives a sum of helical and conical phase terms). Nevertheless, the availability of phase-only spatial light modulators (SLM) allows one to directly imprint helico-conical phase functions on an incident plane wave and provides an easy way to modify the profile of the encoded phase. Focusing the phase-modified field results in spiral intensity distributions that may find use for optical manipulation of mesoscopic particles. In this paper, we have extended the discussion to translation and rotation (as well as chirality switching) of the spiral beams using SLM control.
Solenoid-free plasma startup in NSTX using transient CHI
NASA Astrophysics Data System (ADS)
Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.
2009-06-01
Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, W.C.; Barrett, D.M.; Sampayan, S.E.
1990-08-06
In this paper we discuss system issues and modeling requirements within the context of energy sweep in an electron linear induction accelerator. When needed, particular parameter values are taken from the ETA-II linear induction accelerator at Lawrence Livermore National Laboratory. For this paper, the most important parameter is energy sweep during a pulse. It is important to have low energy sweep to satisfy the FEL resonance condition and to limit the beam corkscrew motion. It is desired to achieve {Delta}E/E = {plus minus}1% for a 50-ns flattop whereas the present level of performance is {Delta}E/E = {plus minus}1% in 10more » ns. To improve this situation we will identify a number of areas in which modeling could help increase understanding and improve our ability to design linear induction accelerators.« less
Parate, Dinesh; Franco-Obregón, Alfredo; Fröhlich, Jürg; Beyer, Christian; Abbas, Azlina A; Kamarul, Tunku; Hui, James H P; Yang, Zheng
2017-08-25
Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
Chaplin, Vernon H; Bellan, Paul M
2015-07-01
An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.
The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less
Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro
2016-01-01
Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066
Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit
NASA Technical Reports Server (NTRS)
Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.
2014-01-01
Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle
High-intensity pulsed beam source with tunable operation mode
NASA Astrophysics Data System (ADS)
Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.
2017-05-01
The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.
Conical Perspective Image of an Architectural Object Close to Human Perception
NASA Astrophysics Data System (ADS)
Dzwierzynska, Jolanta
2017-10-01
The aim of the study is to develop a method of computer aided constructing conical perspective of an architectural object, which is close to human perception. The conical perspective considered in the paper is a central projection onto a projection surface being a conical rotary surface or a fragment of it. Whereas, the centre of projection is a stationary point or a point moving on a circular path. The graphical mapping results of the perspective representation is realized directly on an unrolled flat projection surface. The projective relation between a range of points on a line and the perspective image of the same range of points received on a cylindrical projection surface permitted to derive formulas for drawing perspective. Next, the analytical algorithms for drawing perspective image of a straight line passing through any two points were formulated. It enabled drawing a perspective wireframe image of a given 3D object. The use of the moving view point as well as the application of the changeable base elements of perspective as the variables in the algorithms enable drawing conical perspective from different viewing positions. Due to this fact, the perspective drawing method is universal. The algorithms are formulated and tested in Mathcad Professional software, but can be implemented in AutoCAD and majority of computer graphical packages, which makes drawing a perspective image more efficient and easier. The presented conical perspective representation, and the convenient method of its mapping directly on the flat unrolled surface can find application for numerous advertisement and art presentations.
Incorporation of an Energy Equation into a Pulsed Inductive Thruster Performance Model
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Reneau, Jarred P.; Sankaran, Kameshwaran
2011-01-01
A model for pulsed inductive plasma acceleration containing an energy equation to account for the various sources and sinks in such devices is presented. The model consists of a set of circuit equations coupled to an equation of motion and energy equation for the plasma. The latter two equations are obtained for the plasma current sheet by treating it as a one-element finite volume, integrating the equations over that volume, and then matching known terms or quantities already calculated in the model to the resulting current sheet-averaged terms in the equations. Calculations showing the time-evolution of the various sources and sinks in the system are presented to demonstrate the efficacy of the model, with two separate resistivity models employed to show an example of how the plasma transport properties can affect the calculation. While neither resistivity model is fully accurate, the demonstration shows that it is possible within this modeling framework to time-accurately update various plasma parameters.
Design of an Inductive Adder for the FCC injection kicker pulse generator
NASA Astrophysics Data System (ADS)
Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.
2017-07-01
The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.
An Algorithm Framework for Isolating Anomalous Signals in Electromagnetic Data
NASA Astrophysics Data System (ADS)
Kappler, K. N.; Schneider, D.; Bleier, T.; MacLean, L. S.
2016-12-01
QuakeFinder and its international collaborators have installed and currently maintain an array of 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. Based on research by Bleier et al. (2009), Fraser-Smith et al. (1990), and Freund (2007), the electromagnetic data from these instruments are being analyzed for pre-earthquake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, NOA in Greece, LASP at University of Colorado, Stanford, UCLA, NASA-ESI, NASA-AMES and USC-CSEP). QuakeFinder has developed an algorithm framework aimed at isolating anomalous signals (pulses) in the time series. Results are presented from an application of this framework to induction-coil magnetometer data. Our data driven approach starts with sliding windows applied to uniformly resampled array data with a variety of lengths and overlap. Data variance (a proxy for energy) is calculated on each window and a short-term average/ long-term average (STA/LTA) filter is applied to the variance time series. Pulse identification is done by flagging time intervals in the STA/LTA filtered time series which exceed a threshold. Flagged time intervals are subsequently fed into a feature extraction program which computes statistical properties of the resampled data. These features are then filtered using a Principal Component Analysis (PCA) based method to cluster similar pulses. We explore the extent to which this approach categorizes pulses with known sources (e.g. cars, lightning, etc.) and the remaining pulses of unknown origin can be analyzed with respect to their relationship with seismicity. We seek a correlation between these daily pulse-counts (with known sources removed) and subsequent (days to weeks) seismic events greater than M5 within 15km radius. Thus we explore functions which map daily pulse-counts to a time series representing the likelihood of a seismic event occurring at some future time. These "pseudo-probabilities" can in turn be represented as Molchan diagrams. The Molchan curve provides an effective cost function for optimization and allows for a rigorous statistical assessment of the validity of pre-earthquake signals in the electromagnetic data.
Correlation of Noise Signature to Pulsed Power Events at the HERMES III Accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Barbara; Joseph, Nathan Ryan; Salazar, Juan Diego
2016-11-01
The HERMES III accelerator, which is located at Sandia National Laboratories' Tech Area IV, is the largest pulsed gamma X-ray source in the world. The accelerator is made up of 20 inductive cavities that are charged to 1 MV each by complex pulsed power circuitry. The firing time of the machine components ranges between the microsecond and nanosecond timescales. This results in a variety of electromagnetic frequencies when the accelerator fires. Testing was done to identify the HERMES electromagnetic noise signal and to map it to the various accelerator trigger events. This report will show the measurement methods used tomore » capture the noise spectrum produced from the machine and correlate this noise signature with machine events.« less
20 T portable bipolar magnetic pulser.
Wolf Cruz, R R; Dias, A L B; Bonfim, M J C
2010-06-01
High magnetic fields are required for the study of hard magnetic materials and, in many cases, the reversal of these fields is essential. This paper describes a portable pulse generator capable of producing bipolar magnetic fields up to 20 T into a copper coil. The peak current around 7 kA is achieved by discharging two capacitor banks through a combination of thyristors and fast diodes. Each pulse polarity has a semisinusoidal shape with 18 mus base width. Pulse triggering is computer controlled and magnetic measurements are done by an induction coil or Kerr effect acquired by a sampling oscilloscope. The whole apparatus weighs less than 2 kg. Hysteresis loops of NdFeB magnets were done to demonstrate the viability of the system.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems
NASA Astrophysics Data System (ADS)
Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani
2018-05-01
Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.
Pulse width modulation inverter with battery charger
NASA Technical Reports Server (NTRS)
Slicker, James M. (Inventor)
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Gapeyev, A B; Lukyanova, N A
2015-01-01
Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.
Nuclear Fission Investigation with Twin Ionization Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.
2011-11-29
The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weightingmore » potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.« less
TDZ pulsing evaluation on the in vitro morphogenesis of peach palm.
Graner, Erika Mendes; Oberschelp, Gustavo Pedro Javier; Brondani, Gilvano Ebling; Batagin-Piotto, Katherine Derlene; de Almeida, Cristina Vieira; de Almeida, Marcílio
2013-04-01
Peach palm (Bactris gasipaes Kunth.) cropping is an excellent alternative to native species exploitation; nevertheless, the problems with seed germination and conventional propagation justify the use of in vitro culturing. Aiming to asses TDZ pulsing effect on B. gasipaes morphogenesis, explants obtained from unarmed microplants were maintained in two treatments, half of them in MS free medium (without growth regulator) and the other half in MS with TDZ (0.36 μM). Both groups were transferred to growth regulator-free MS medium following 14 days of culture. After 84 days of culture, TDZ pulsing increased the growth and development of the shoots, restricted the growth and development of the roots, with no influence on adventitious bud induction or somatic embryogenesis. Furthermore, development of prickles, thickening of roots and chlorotic leaves were noted under TDZ pulsing. Leaf sheath histological analysis showed an epidermal origin and no vascularization of these prickles.
DETAIL OF SPARE CONICAL CRUSHER AND GRINDING BURR WHEELS REMOVED ...
DETAIL OF SPARE CONICAL CRUSHER AND GRINDING BURR WHEELS REMOVED FROM THE MILLING MACHINE. - F. & H. Benning Company Oyster Mill, 14430 Solomons Island Road (moved from 1014 Benning Road, Galesville, Anne Arundel County, Maryland), Solomons, Calvert County, MD
A modal analysis of lamellar diffraction gratings in conical mountings
NASA Technical Reports Server (NTRS)
Li, Lifeng
1992-01-01
A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.
Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.
Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D
2010-06-25
Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, W.C.; Newby, R.A.; Lippert, T.E.
1997-08-05
The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.
1997-01-01
The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stygar, W. A.; Awe, T. J.; Bennett, N L
Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less
Stygar, W. A.; Awe, T. J.; Bennett, N L; ...
2015-11-30
Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less
NASA Astrophysics Data System (ADS)
Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.
2015-11-01
We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.
Rapid ultrasonic stimulation of inflamed tissue with diagnostic intent
McClintic, Abbi M.; Dickey, Trevor C.; Gofeld, Michael; Ray Illian, P.; Kliot, Michel; Kucewicz, John C.; Loeser, John D.; Richebe, Philippe G.; Mourad, Pierre D.
2013-01-01
Previous studies have observed that individual pulses of intense focused ultrasound (iFU) applied to inflamed and normal tissue can generate sensations, where inflamed tissue responds at a lower intensity than normal tissue. It was hypothesized that successively applied iFU pulses will generate sensation in inflamed tissue at a lower intensity and dose than application of a single iFU pulse. This hypothesis was tested using an animal model of chronic inflammatory pain, created by injecting an irritant into the rat hind paw. Ultrasound pulses were applied in rapid succession or individually to rats' rear paws beginning at low peak intensities and progressing to higher peak intensities, until the rats withdrew their paws immediately after iFU application. Focused ultrasound protocols consisting of successively and rapidly applied pulses elicited inflamed paw withdrawal at lower intensity and estimated tissue displacement values than single pulse protocols. However, both successively applied pulses and single pulses produced comparable threshold acoustic dose values and estimates of temperature increases. This raises the possibility that temperature increase contributed to paw withdrawal after rapid iFU stimulation. While iFU-induction of temporal summation may also play a role, electrophysiological studies are necessary to tease out these potential contributors to iFU stimulation. PMID:23927192
Variable volume combustor with a conical liner support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul
The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, W. J.; Erickson, P. J.; Yang, J.
The Van Allen Probe satellites were near apogee in the late evening local time sector during the 1 June 2013 magnetic storm's main phase. About an hour after crossing the ring current's “nose structure” into the plasma sheet, the satellites encountered a quasiperiodic sequence of 0.08–3 keV O + ions. Pitch angle distributions of this population consistently peaked nearly antiparallel to the local magnetic field. We then interpret this population as O + conics originating in the northern ionosphere. The sequences began as fairly steady state conic fluxes with energies in the ~ 80 to 100 eV range. Over aboutmore » a half hour buildup phase, O + energies peaked near 1 keV. During subsequent release phases lasting ~ 20 min, O + energies returned to low-energy starting points. We argue these observations reflect repeated formations and dissolutions of downward, magnetically aligned electric fields (ε||) layers trapping O + conics between mirror points within heating layers below and electrostatic barriers above. Nearly identical variations were observed at the locations of both satellites during 9 of these 13 conic cycles. Phase differences between cycles were observed at both spacecraft during the remaining events. Most “buildup” to “release” phase transitions coincided with AL index minima. But, in situ magnetometer measurements indicate only weak dipolarizations of tail-like magnetic fields. The lack of field-aligned reflected O + and tail-like magnetic fields suggest that both ionospheres may be active. However, Southern Hemisphere origin conics cannot be observed since they would be isotropized and accelerated during neutral sheet crossings.« less
Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures
NASA Astrophysics Data System (ADS)
Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.
2017-10-01
We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.