NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
Object-based target templates guide attention during visual search.
Berggren, Nick; Eimer, Martin
2018-05-03
During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (sustained posterior contralateral negativity; SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target features (incorrect conjunction objects, e.g., blue squares). Because feature-based guidance cannot distinguish these objects from targets, any selective bias for targets will reflect object-based attentional control. In Experiment 1, where search displays always contained only one object with target-matching features, targets and incorrect conjunction objects elicited identical N2pc and SPCN components, demonstrating that attentional guidance was entirely feature-based. In Experiment 2, where targets and incorrect conjunction objects could appear in the same display, clear evidence for object-based attentional control was found. The target N2pc became larger than the N2pc to incorrect conjunction objects from 250 ms poststimulus, and only targets elicited SPCN components. This demonstrates that after an initial feature-based guidance phase, object-based templates are activated when they are required to distinguish target and nontarget objects. These templates modulate visual processing and control access to working memory, and their activation may coincide with the start of feature integration processes. Results also suggest that while multiple feature templates can be activated concurrently, only a single object-based target template can guide attention at any given time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles
NASA Astrophysics Data System (ADS)
Berti, Lorenzo; Burley, Glenn A.
2008-02-01
Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2015-01-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. PMID:26369671
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2016-09-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2016; 84(Suppl 1):247-259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Poliovirus RNA recombination: mechanistic studies in the absence of selection.
Jarvis, T C; Kirkegaard, K
1992-01-01
Direct and quantitative detection of recombinant RNA molecules by polymerase chain reaction (PCR) provides a novel method for studying recombination in RNA viruses without selection for viable progeny. The parental poliovirus strains used in this study contained polymorphic marker loci approximately 600 bases apart; both exhibited wild-type growth characteristics. We established conditions under which the amount of PCR product was linearly proportional to the amount of input template, and the reproducibility was high. Recombinant progeny were predominantly homologous and arose at frequencies up to 2 x 10(-3). Recombination events increased in frequency throughout replication, indicating that there is no viral RNA sequestration or inhibition of recombination late in infection as proposed in earlier genetic studies. Previous studies have demonstrated that poliovirus recombination occurs by a copy-choice mechanism in which the viral polymerase switches templates during negative-strand synthesis. Varying the relative amount of input parental virus markedly altered reciprocal recombination frequencies. This, in conjunction with the kinetics data, indicated that acceptor template concentration is a determinant of template switching frequency. Since positive strands greatly outnumber negative strands throughout poliovirus infection, this would explain the bias toward recombination during negative-strand synthesis. Images PMID:1379178
Task relevance modulates the cortical representation of feature conjunctions in the target template.
Reeder, Reshanne R; Hanke, Michael; Pollmann, Stefan
2017-07-03
Little is known about the cortical regions involved in representing task-related content in preparation for visual task performance. Here we used representational similarity analysis (RSA) to investigate the BOLD response pattern similarity between task relevant and task irrelevant feature dimensions during conjunction viewing and target template maintenance prior to visual search. Subjects were cued to search for a spatial frequency (SF) or orientation of a Gabor grating and we measured BOLD signal during cue and delay periods before the onset of a search display. RSA of delay period activity revealed that widespread regions in frontal, posterior parietal, and occipitotemporal cortices showed general representational differences between task relevant and task irrelevant dimensions (e.g., orientation vs. SF). In contrast, RSA of cue period activity revealed sensory-related representational differences between cue images (regardless of task) at the occipital pole and additionally in the frontal pole. Our data show that task and sensory information are represented differently during viewing and during target template maintenance, and that task relevance modulates the representation of visual information across the cortex.
Tyszka, J. Michael; Pauli, Wolfgang M.
2016-01-01
The nuclei of the human amygdala remain difficult to distinguish in individual subject structural magnetic resonance images. However, interpretation of the amygdala’s role in whole brain networks requires accurate localization of functional activity to a particular nucleus or subgroup of nuclei. To address this, we constructed high spatial resolution, three-dimensional templates, using joint high accuracy diffeomorphic registration of T1- and T2-weighted structural images from 168 typical adults between 22 and 35 years old released by the Human Connectome Project. Several internuclear boundaries are clearly visible in these templates, which would otherwise be impossible to delineate in individual subject data. A probabilistic atlas of major nuclei and nuclear groups was constructed in this template space and mapped back to individual spaces by inversion of the individual diffeomorphisms. Group level analyses revealed a slight (approximately 2%) bias towards larger total amygdala and nuclear volumes in the right hemisphere. No substantial sex or age differences were found in amygdala volumes normalized to total intracranial volume, or subdivision volumes normalized to amygdala volume. The current delineation provides a finer parcellation of the amygdala with more accurate external boundary definition than current histology-based atlases when used in conjunction with high accuracy registration methods, such as diffeomorphic warping. These templates and delineation are intended to be an open and evolving resource for future functional and structural imaging studies of the human amygdala. PMID:27354150
The role of parallelism in the real-time processing of anaphora.
Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P
2012-06-01
Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution.
The role of parallelism in the real-time processing of anaphora
Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P.
2012-01-01
Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution. PMID:23741080
Sorted Index Numbers for Privacy Preserving Face Recognition
NASA Astrophysics Data System (ADS)
Wang, Yongjin; Hatzinakos, Dimitrios
2009-12-01
This paper presents a novel approach for changeable and privacy preserving face recognition. We first introduce a new method of biometric matching using the sorted index numbers (SINs) of feature vectors. Since it is impossible to recover any of the exact values of the original features, the transformation from original features to the SIN vectors is noninvertible. To address the irrevocable nature of biometric signals whilst obtaining stronger privacy protection, a random projection-based method is employed in conjunction with the SIN approach to generate changeable and privacy preserving biometric templates. The effectiveness of the proposed method is demonstrated on a large generic data set, which contains images from several well-known face databases. Extensive experimentation shows that the proposed solution may improve the recognition accuracy.
Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers
Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...
2016-03-16
Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less
Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten
2009-05-07
We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.
2014-01-01
zeolite template was used in conjunction with liquid cyanamide to form a carbon nitride structure with a better 2D mesoporous hexagonal framework, resulting...the core. Both hybrid inorganic–organic polymer networks and 139 zeolitic inorganic–organic polymer electrolyte materials were used to impregnate an
Template-based procedures for neural network interpretation.
Alexander, J A.; Mozer, M C.
1999-04-01
Although neural networks often achieve impressive learning and generalization performance, their internal workings are typically all but impossible to decipher. This characteristic of the networks, their opacity, is one of the disadvantages of connectionism compared to more traditional, rule-oriented approaches to artificial intelligence. Without a thorough understanding of the network behavior, confidence in a system's results is lowered, and the transfer of learned knowledge to other processing systems - including humans - is precluded. Methods that address the opacity problem by casting network weights in symbolic terms are commonly referred to as rule extraction techniques. This work describes a principled approach to symbolic rule extraction from standard multilayer feedforward networks based on the notion of weight templates, parameterized regions of weight space corresponding to specific symbolic expressions. With an appropriate choice of representation, we show how template parameters may be efficiently identified and instantiated to yield the optimal match to the actual weights of a unit. Depending on the requirements of the application domain, the approach can accommodate n-ary disjunctions and conjunctions with O(k) complexity, simple n-of-m expressions with O(k(2)) complexity, or more general classes of recursive n-of-m expressions with O(k(L+2)) complexity, where k is the number of inputs to an unit and L the recursion level of the expression class. Compared to other approaches in the literature, our method of rule extraction offers benefits in simplicity, computational performance, and overall flexibility. Simulation results on a variety of problems demonstrate the application of our procedures as well as the strengths and the weaknesses of our general approach.
WE-DE-201-08: Multi-Source Rotating Shield Brachytherapy Apparatus for Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadkhah, H; Wu, X; Kim, Y
Purpose: To introduce a novel multi-source rotating shield brachytherapy (RSBT) apparatus for the precise simultaneous angular and linear positioning of all partially-shielded 153Gd radiation sources in interstitial needles for treating prostate cancer. The mechanism is designed to lower the detrimental dose to healthy tissues, the urethra in particular, relative to conventional high-dose-rate brachytherapy (HDR-BT) techniques. Methods: Following needle implantation, the delivery system is docked to the patient template. Each needle is coupled to a multi-source afterloader catheter by a connector passing through a shaft. The shafts are rotated by translating a moving template between two stationary templates. Shaft walls asmore » well as moving template holes are threaded such that the resistive friction produced between the two parts exerts enough force on the shafts to bring about the rotation. Rotation of the shaft is then transmitted to the shielded source via several keys. Thus, shaft angular position is fully correlated with the position of the moving template. The catheter angles are simultaneously incremented throughout treatment as needed, and only a single 360° rotation of all catheters is needed for a full treatment. For each rotation angle, source depth in each needle is controlled by a multi-source afterloader, which is proposed as an array of belt-driven linear actuators, each of which drives a source wire. Results: Optimized treatment plans based on Monte Carlo dose calculations demonstrated RSBT with the proposed apparatus reduced urethral D{sub 1cc} below that of conventional HDR-BT by 35% for urethral dose gradient volume within 3 mm of the urethra surface. Treatment time to deliver 20 Gy with multi-source RSBT apparatus using nineteen 62.4 GBq {sup 153}Gd sources is 117 min. Conclusions: The proposed RSBT delivery apparatus in conjunction with multiple nitinol catheter-mounted platinum-shielded {sup 153}Gd sources enables a mechanically feasible urethra-sparing treatment technique for prostate cancer in a clinically reasonable timeframe.« less
Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto
2014-12-01
As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.
Berkley, Holly; Barnes, Matthew; Carnahan, David; Hayhurst, Janet; Bockhorst, Archie; Neville, James
2017-03-01
To describe the use of template-based screening for risk of infectious disease exposure of patients presenting to primary care medical facilities during the 2014 West African Ebola virus outbreak. The Military Health System implemented an Ebola risk-screening tool in primary care settings in order to create early notifications and early responses to potentially infected persons. Three time-sensitive, evidence-based screening questions were developed and posted to Tri-Service Workflow (TSWF) AHLTA templates in conjunction with appropriate training. Data were collected in January 2015, to assess the adoption of the TSWF-based Ebola risk-screening tool. Among encounters documented using TSWF templates, 41% of all encounters showed use of the TSWF-based Ebola risk-screening questions by the fourth day. The screening rate increased over the next 3 weeks, and reached a plateau at approximately 50%. This report demonstrates the MHS capability to deploy a standardized, globally applicable decision support aid that could be seen the same day by all primary care clinics across the military health direct care system, potentially improving rapid compliance with screening directives. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
A novel word spotting method based on recurrent neural networks.
Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst
2012-02-01
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.
Beyond the search surface: visual search and attentional engagement.
Duncan, J; Humphreys, G
1992-05-01
Treisman (1991) described a series of visual search studies testing feature integration theory against an alternative (Duncan & Humphreys, 1989) in which feature and conjunction search are basically similar. Here the latter account is noted to have 2 distinct levels: (a) a summary of search findings in terms of stimulus similarities, and (b) a theory of how visual attention is brought to bear on relevant objects. Working at the 1st level, Treisman found that even when similarities were calibrated and controlled, conjunction search was much harder than feature search. The theory, however, can only really be tested at the 2nd level, because the 1st is an approximation. An account of the findings is developed at the 2nd level, based on the 2 processes of input-template matching and spreading suppression. New data show that, when both of these factors are controlled, feature and conjunction search are equally difficult. Possibilities for unification of the alternative views are considered.
Redd, Andrew M; Gundlapalli, Adi V; Divita, Guy; Carter, Marjorie E; Tran, Le-Thuy; Samore, Matthew H
2017-07-01
Templates in text notes pose challenges for automated information extraction algorithms. We propose a method that identifies novel templates in plain text medical notes. The identification can then be used to either include or exclude templates when processing notes for information extraction. The two-module method is based on the framework of information foraging and addresses the hypothesis that documents containing templates and the templates within those documents can be identified by common features. The first module takes documents from the corpus and groups those with common templates. This is accomplished through a binned word count hierarchical clustering algorithm. The second module extracts the templates. It uses the groupings and performs a longest common subsequence (LCS) algorithm to obtain the constituent parts of the templates. The method was developed and tested on a random document corpus of 750 notes derived from a large database of US Department of Veterans Affairs (VA) electronic medical notes. The grouping module, using hierarchical clustering, identified 23 groups with 3 documents or more, consisting of 120 documents from the 750 documents in our test corpus. Of these, 18 groups had at least one common template that was present in all documents in the group for a positive predictive value of 78%. The LCS extraction module performed with 100% positive predictive value, 94% sensitivity, and 83% negative predictive value. The human review determined that in 4 groups the template covered the entire document, with the remaining 14 groups containing a common section template. Among documents with templates, the number of templates per document ranged from 1 to 14. The mean and median number of templates per group was 5.9 and 5, respectively. The grouping method was successful in finding like documents containing templates. Of the groups of documents containing templates, the LCS module was successful in deciphering text belonging to the template and text that was extraneous. Major obstacles to improved performance included documents composed of multiple templates, templates that included other templates embedded within them, and variants of templates. We demonstrate proof of concept of the grouping and extraction method of identifying templates in electronic medical records in this pilot study and propose methods to improve performance and scaling up. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Sharp, Greg C.; Alexander, Brian; Jiang, Steve B.
2007-02-01
For gated lung cancer radiotherapy, it is difficult to generate accurate gating signals due to the large uncertainties when using external surrogates and the risk of pneumothorax when using implanted fiducial markers. We have previously investigated and demonstrated the feasibility of generating gating signals using the correlation scores between the reference template image and the fluoroscopic images acquired during the treatment. In this paper, we present an in-depth study, aiming at the improvement of robustness of the algorithm and its validation using multiple sets of patient data. Three different template generating and matching methods have been developed and evaluated: (1) single template method, (2) multiple template method, and (3) template clustering method. Using the fluoroscopic data acquired during patient setup before each fraction of treatment, reference templates are built that represent the tumour position and shape in the gating window, which is assumed to be at the end-of-exhale phase. For the single template method, all the setup images within the gating window are averaged to generate a composite template. For the multiple template method, each setup image in the gating window is considered as a reference template and used to generate an ensemble of correlation scores. All the scores are then combined to generate the gating signal. For the template clustering method, clustering (grouping of similar objects together) is performed to reduce the large number of reference templates into a few representative ones. Each of these methods has been evaluated against the reference gating signal as manually determined by a radiation oncologist. Five patient datasets were used for evaluation. In each case, gated treatments were simulated at both 35% and 50% duty cycles. False positive, negative and total error rates were computed. Experiments show that the single template method is sensitive to noise; the multiple template and clustering methods are more robust to noise due to the smoothing effect of aggregation of correlation scores; and the clustering method results in the best performance in terms of computational efficiency and accuracy.
Radio-nuclide mixture identification using medium energy resolution detectors
Nelson, Karl Einar
2013-09-17
According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.
Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease
Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka
2012-01-01
In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228
NASA Astrophysics Data System (ADS)
Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.
2018-06-01
Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.
Visual cluster analysis and pattern recognition template and methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
1999-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
Visual cluster analysis and pattern recognition template and methods
Osbourn, G.C.; Martinez, R.F.
1999-05-04
A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Development of Total Knee Replacement Digital Templating Software
NASA Astrophysics Data System (ADS)
Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini
In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.
Nanostructure templating using low temperature atomic layer deposition
Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL
2011-12-20
Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.
Havert, Michael B.; Ji, Lin; Loeb, Daniel D.
2002-01-01
The synthesis of the hepadnavirus relaxed circular DNA genome requires two template switches, primer translocation and circularization, during plus-strand DNA synthesis. Repeated sequences serve as donor and acceptor templates for these template switches, with direct repeat 1 (DR1) and DR2 for primer translocation and 5′r and 3′r for circularization. These donor and acceptor sequences are at, or near, the ends of the minus-strand DNA. Analysis of plus-strand DNA synthesis of duck hepatitis B virus (DHBV) has indicated that there are at least three other cis-acting sequences that make contributions during the synthesis of relaxed circular DNA. These sequences, 5E, M, and 3E, are located near the 5′ end, the middle, and the 3′ end of minus-strand DNA, respectively. The mechanism by which these sequences contribute to the synthesis of plus-strand DNA was unclear. Our aim was to better understand the mechanism by which 5E and M act. We localized the DHBV 5E element to a short sequence of approximately 30 nucleotides that is 100 nucleotides 3′ of DR2 on minus-strand DNA. We found that the new 5E mutants were partially defective for primer translocation/utilization at DR2. They were also invariably defective for circularization. In addition, examination of several new DHBV M variants indicated that they too were defective for primer translocation/utilization and circularization. Thus, this analysis indicated that 5E and M play roles in both primer translocation/utilization and circularization. In conjunction with earlier findings that 3E functions in both template switches, our findings indicate that the processes of primer translocation and circularization share a common underlying mechanism. PMID:11861843
Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok
2018-06-07
The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.
Jenkins, Michael; Grubert, Anna; Eimer, Martin
2017-11-01
It is generally assumed that during search for targets defined by a feature conjunction, attention is allocated sequentially to individual objects. We tested this hypothesis by tracking the time course of attentional processing biases with the N2pc component in tasks where observers searched for two targets defined by a colour/shape conjunction. In Experiment 1, two displays presented in rapid succession (100 ms or 10 ms SOA) each contained a target and a colour-matching or shape-matching distractor on opposite sides. Target objects in both displays elicited N2pc components of similar size that overlapped in time when the SOA was 10 ms, suggesting that attention was allocated in parallel to both targets. Analogous results were found in Experiment 2, where targets and partially matching distractors were both accompanied by an object without target-matching features. Colour-matching and shape-matching distractors also elicited N2pc components, and the target N2pc was initially identical to the sum of the two distractor N2pcs, suggesting that the initial phase of attentional object selection was guided independently by feature templates for target colour and shape. Beyond 230 ms after display onset, the target N2pc became superadditive, indicating that attentional selection processes now started to be sensitive to the presence of feature conjunctions. Results show that independent attentional selection processes can be activated in parallel by two target objects in situations where these objects are defined by a feature conjunction.
Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi
2017-01-01
Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.
NASA Astrophysics Data System (ADS)
Chaudhari, Rajan; Heim, Andrew J.; Li, Zhijun
2015-05-01
Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.
Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki
2011-03-01
A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
Protein–DNA Interactions: The Story so Far and a New Method for Prediction
Jones, Susan; Thornton, Janet M.
2003-01-01
This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. Inmore » this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... methods for submitting multiple FFATA subaward reports: A batch upload template using Microsoft Excel, an... three methods for submitting multiple FFATA subaward reports: A batch upload template using Microsoft Excel, an XML report submission template and an XML web service. These methods do take advantage of the...
Creating Shape Templates for Patient Specific Biventricular Modeling in Congenital Heart Disease
Gilbert, Kathleen; Farrar, Genevieve; Cowan, Brett R.; Suinesiaputra, Avan; Occleshaw, Christopher; Pontré, Beau; Perry, James; Hegde, Sanjeet; Marsden, Alison; Omens, Jeff; McCulloch, Andrew; Young, Alistair A.
2018-01-01
Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices. PMID:26736353
New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Lu; Muhammad, Turghun; Yakup, Burabiye; Piletsky, Sergey A.
2017-06-01
As a novel imprinting method, solid-phase synthesis has proven to be a promising approach to prepare polymer nanoparticles with specific recognition sites for a template molecule. In this method, imprinted polymer nanoparticles were synthesized using template immobilized on a solid support. Herein, preparation of immobilized templates on quartz chips through homogeneous route was reported as an efficient alternative strategy to heterogeneous one. The template molecule indole-3-butyric acid (IBA) was reacted with 3-aminopropyltriethoxysilane (APTES) to produce silylated template (IBA-APTES), and it was characterized by IR, 1H NMR and GC-MS. Then, the silylated template molecule was grafted onto the activated surfaces of quartz chip to prepare immobilized template (SiO2@IBA-APTES). The immobilization was confirmed by contact angle, XPS, UV and fluorescence measurement. Immobilization protocol has shown good reproducibility and stability of the immobilized template. MIP nanoparticles were prepared with high selectivity toward the molecule immobilized onto the solid surface. This provides a new approach for the development of molecularly imprinted nanoparticles.
Cloning nanocrystal morphology with soft templates
NASA Astrophysics Data System (ADS)
Thapa, Dev Kumar; Pandey, Anshu
2016-08-01
In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.
The skeptic's guide to a movement for universal health insurance.
Nathanson, Constance A
2003-01-01
The social movement has become institutionalized as a form of political action. The aim of this article is to evaluate the possibilities presented by this form as a strategy to bring about universal health insurance in the United States. I draw on the work of social movement theorists, on the substantial body of empirical research on health-related social movements, and on relevant comparative work from Canada to develop a template for this evaluation. Using that template I compare the failed campaign for President Bill Clinton's health insurance plan with a recent, more successful campaign in the state of New York. I conclude that the keys to success are, first, a broad-based coalition that combines an ideologically and/or grievance-motivated grass roots with financially and politically well-endowed mainstream organizations; second, a "master frame" that resonates with the American people; and, third, a political window of opportunity. The prospects for such a conjunction are not hopeless, but they are not high.
Autoclave method for rapid preparation of bacterial PCR-template DNA.
Simmon, Keith E; Steadman, Dewey D; Durkin, Sarah; Baldwin, Amy; Jeffrey, Wade H; Sheridan, Peter; Horton, Rene; Shields, Malcolm S
2004-02-01
An autoclave method for preparing bacterial DNA for PCR template is presented, it eliminates the use of detergents, organic solvents, and mechanical cellular disruption approaches, thereby significantly reducing processing time and costs while increasing reproducibility. Bacteria are lysed by rapid heating and depressurization in an autoclave. The lysate, cleared by microcentrifugation, was either used directly in the PCR reaction, or concentrated by ultrafiltration. This approach was compared with seven established methods of DNA template preparation from four bacterial sources which included boiling Triton X-100 and SDS, bead beating, lysozyme/proteinase K, and CTAB lysis method components. Bacteria examined were Enterococcus and Escherichia coli, a natural marine bacterial community and an Antarctic cyanobacterial-mat. DNAs were tested for their suitability as PCR templates by repetitive element random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE) analysis. The autoclave method produced PCR amplifiable template comparable or superior to the other methods, with greater reproducibility, much shorter processing time, and at a significantly lower cost.
A new template matching method based on contour information
NASA Astrophysics Data System (ADS)
Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong
2014-11-01
Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.
Prediction of Protein Structure by Template-Based Modeling Combined with the UNRES Force Field.
Krupa, Paweł; Mozolewska, Magdalena A; Joo, Keehyoung; Lee, Jooyoung; Czaplewski, Cezary; Liwo, Adam
2015-06-22
A new approach to the prediction of protein structures that uses distance and backbone virtual-bond dihedral angle restraints derived from template-based models and simulations with the united residue (UNRES) force field is proposed. The approach combines the accuracy and reliability of template-based methods for the segments of the target sequence with high similarity to those having known structures with the ability of UNRES to pack the domains correctly. Multiplexed replica-exchange molecular dynamics with restraints derived from template-based models of a given target, in which each restraint is weighted according to the accuracy of the prediction of the corresponding section of the molecule, is used to search the conformational space, and the weighted histogram analysis method and cluster analysis are applied to determine the families of the most probable conformations, from which candidate predictions are selected. To test the capability of the method to recover template-based models from restraints, five single-domain proteins with structures that have been well-predicted by template-based methods were used; it was found that the resulting structures were of the same quality as the best of the original models. To assess whether the new approach can improve template-based predictions with incorrectly predicted domain packing, four such targets were selected from the CASP10 targets; for three of them the new approach resulted in significantly better predictions compared with the original template-based models. The new approach can be used to predict the structures of proteins for which good templates can be found for sections of the sequence or an overall good template can be found for the entire sequence but the prediction quality is remarkably weaker in putative domain-linker regions.
Visual cluster analysis and pattern recognition methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
2001-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Stanislaus; Koenigsmann, Christopher
The present invention includes a method of producing a segmented 1D nanostructure. The method includes providing a vessel containing a template wherein on one side of the template is a first metal reagent solution and on the other side of the template is a reducing agent solution, wherein the template comprises at least one pore; allowing a first segment of a 1D nanostructure to grow within a pore of the template until a desired length is reached; replacing the first metal reagent solution with a second metal reagent solution; allowing a second segment of a 1D nanostructure to grow frommore » the first segment until a desired length is reached, wherein a segmented 1D nanostructure is produced.« less
iTemplate: A template-based eye movement data analysis approach.
Xiao, Naiqi G; Lee, Kang
2018-02-08
Current eye movement data analysis methods rely on defining areas of interest (AOIs). Due to the fact that AOIs are created and modified manually, variances in their size, shape, and location are unavoidable. These variances affect not only the consistency of the AOI definitions, but also the validity of the eye movement analyses based on the AOIs. To reduce the variances in AOI creation and modification and achieve a procedure to process eye movement data with high precision and efficiency, we propose a template-based eye movement data analysis method. Using a linear transformation algorithm, this method registers the eye movement data from each individual stimulus to a template. Thus, users only need to create one set of AOIs for the template in order to analyze eye movement data, rather than creating a unique set of AOIs for all individual stimuli. This change greatly reduces the error caused by the variance from manually created AOIs and boosts the efficiency of the data analysis. Furthermore, this method can help researchers prepare eye movement data for some advanced analysis approaches, such as iMap. We have developed software (iTemplate) with a graphic user interface to make this analysis method available to researchers.
Ko, Junsu; Park, Hahnbeom; Seok, Chaok
2012-08-10
Protein structures can be reliably predicted by template-based modeling (TBM) when experimental structures of homologous proteins are available. However, it is challenging to obtain structures more accurate than the single best templates by either combining information from multiple templates or by modeling regions that vary among templates or are not covered by any templates. We introduce GalaxyTBM, a new TBM method in which the more reliable core region is modeled first from multiple templates and less reliable, variable local regions, such as loops or termini, are then detected and re-modeled by an ab initio method. This TBM method is based on "Seok-server," which was tested in CASP9 and assessed to be amongst the top TBM servers. The accuracy of the initial core modeling is enhanced by focusing on more conserved regions in the multiple-template selection and multiple sequence alignment stages. Additional improvement is achieved by ab initio modeling of up to 3 unreliable local regions in the fixed framework of the core structure. Overall, GalaxyTBM reproduced the performance of Seok-server, with GalaxyTBM and Seok-server resulting in average GDT-TS of 68.1 and 68.4, respectively, when tested on 68 single-domain CASP9 TBM targets. For application to multi-domain proteins, GalaxyTBM must be combined with domain-splitting methods. Application of GalaxyTBM to CASP9 targets demonstrates that accurate protein structure prediction is possible by use of a multiple-template-based approach, and ab initio modeling of variable regions can further enhance the model quality.
An automated method for modeling proteins on known templates using distance geometry.
Srinivasan, S; March, C J; Sudarsanam, S
1993-02-01
We present an automated method incorporated into a software package, FOLDER, to fold a protein sequence on a given three-dimensional (3D) template. Starting with the sequence alignment of a family of homologous proteins, tertiary structures are modeled using the known 3D structure of one member of the family as a template. Homologous interatomic distances from the template are used as constraints. For nonhomologous regions in the model protein, the lower and the upper bounds for the interatomic distances are imposed by steric constraints and the globular dimensions of the template, respectively. Distance geometry is used to embed an ensemble of structures consistent with these distance bounds. Structures are selected from this ensemble based on minimal distance error criteria, after a penalty function optimization step. These structures are then refined using energy optimization methods. The method is tested by simulating the alpha-chain of horse hemoglobin using the alpha-chain of human hemoglobin as the template and by comparing the generated models with the crystal structure of the alpha-chain of horse hemoglobin. We also test the packing efficiency of this method by reconstructing the atomic positions of the interior side chains beyond C beta atoms of a protein domain from a known 3D structure. In both test cases, models retain the template constraints and any additionally imposed constraints while the packing of the interior residues is optimized with no short contacts or bond deformations. To demonstrate the use of this method in simulating structures of proteins with nonhomologous disulfides, we construct a model of murine interleukin (IL)-4 using the NMR structure of human IL-4 as the template. The resulting geometry of the nonhomologous disulfide in the model structure for murine IL-4 is consistent with standard disulfide geometry.
Journal of Chemical Education: Software.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1989
1989-01-01
"Spreadsheets in Physical Chemistry" contains reviewed and classroom tested Lotus 1-2-3 and SuperCalc IV templates and handouts designed for use in physical chemistry courses. The 21 templates keyed to Atkins' physical chemistry textbook, the 7 numerical methods templates, and the 10 simulation templates are discussed. (MVL)
Modeling IrisCode and its variants as convex polyhedral cones and its security implications.
Kong, Adams Wai-Kin
2013-03-01
IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods.
Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR
Miner, Brooks E.; Stöger, Reinhard J.; Burden, Alice F.; Laird, Charles D.; Hansen, R. Scott
2004-01-01
PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes. PMID:15459281
THTM: A template matching algorithm based on HOG descriptor and two-stage matching
NASA Astrophysics Data System (ADS)
Jiang, Yuanjie; Ruan, Li; Xiao, Limin; Liu, Xi; Yuan, Feng; Wang, Haitao
2018-04-01
We propose a novel method for template matching named THTM - a template matching algorithm based on HOG (histogram of gradient) and two-stage matching. We rely on the fast construction of HOG and the two-stage matching that jointly lead to a high accuracy approach for matching. TMTM give enough attention on HOG and creatively propose a twice-stage matching while traditional method only matches once. Our contribution is to apply HOG to template matching successfully and present two-stage matching, which is prominent to improve the matching accuracy based on HOG descriptor. We analyze key features of THTM and perform compared to other commonly used alternatives on a challenging real-world datasets. Experiments show that our method outperforms the comparison method.
View-Invariant Gait Recognition Through Genetic Template Segmentation
NASA Astrophysics Data System (ADS)
Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.
2017-08-01
Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.
Jiang, Lianghai; Dong, Liang; Tan, Mingsheng; Qi, Yingna; Yang, Feng; Yi, Ping; Tang, Xiangsheng
2017-01-01
Background Atlantoaxial posterior pedicle screw fixation has been widely used for treatment of atlantoaxial instability (AAI). However, precise and safe insertion of atlantoaxial pedicle screws remains challenging. This study presents a modified drill guide template based on a previous template for atlantoaxial pedicle screw placement. Material/Methods Our study included 54 patients (34 males and 20 females) with AAI. All the patients underwent posterior atlantoaxial pedicle screw fixation: 25 patients underwent surgery with the use of a modified drill guide template (template group) and 29 patients underwent surgery via the conventional method (conventional group). In the template group, a modified drill guide template was designed for each patient. The modified drill guide template and intraoperative fluoroscopy were used for surgery in the template group, while only intraoperative fluoroscopy was used in the conventional group. Results Of the 54 patients, 52 (96.3%) completed the follow-up for more than 12 months. The template group had significantly lower intraoperative fluoroscopy frequency (p<0.001) and higher accuracy of screw insertion (p=0.045) than the conventional group. There were no significant differences in surgical duration, intraoperative blood loss, or improvement of neurological function between the 2 groups (p>0.05). Conclusions Based on the results of this study, it is feasible to use the modified drill guide template for atlantoaxial pedicle screw placement. Using the template can significantly lower the screw malposition rate and the frequency of intraoperative fluoroscopy. PMID:28301445
Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J
2013-10-09
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.
Fan fault diagnosis based on symmetrized dot pattern analysis and image matching
NASA Astrophysics Data System (ADS)
Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling
2016-07-01
To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.
Nanowire-templated lateral epitaxial growth of non-polar group III nitrides
Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM
2010-03-02
A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.
Assessing the applicability of template-based protein docking in the twilight zone.
Negroni, Jacopo; Mosca, Roberto; Aloy, Patrick
2014-09-02
The structural modeling of protein interactions in the absence of close homologous templates is a challenging task. Recently, template-based docking methods have emerged to exploit local structural similarities to help ab-initio protocols provide reliable 3D models for protein interactions. In this work, we critically assess the performance of template-based docking in the twilight zone. Our results show that, while it is possible to find templates for nearly all known interactions, the quality of the obtained models is rather limited. We can increase the precision of the models at expenses of coverage, but it drastically reduces the potential applicability of the method, as illustrated by the whole-interactome modeling of nine organisms. Template-based docking is likely to play an important role in the structural characterization of the interaction space, but we still need to improve the repertoire of structural templates onto which we can reliably model protein complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery
Lu, Ying; Sturek, Michael; Park, Kinam
2014-01-01
Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2 % and 92 % for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles. PMID:24333903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W; Miften, M; Jones, B
Purpose: Pancreatic SBRT relies on extremely accurate delivery of ablative radiation doses to the target, and intra-fractional tracking of fiducial markers can facilitate improvements in dose delivery. However, this requires algorithms that are able to find fiducial markers with high speed and accuracy. The purpose of this study was to develop a novel marker tracking algorithm that is robust against many of the common errors seen with traditional template matching techniques. Methods: Using CBCT projection images, a method was developed to create detailed template images of fiducial marker clusters without prior knowledge of the number of markers, their positions, ormore » their orientations. Briefly, the method (i) enhances markers in projection images, (ii) stabilizes the cluster’s position, (iii) reconstructs the cluster in 3D, and (iv) precomputes a set of static template images dependent on gantry angle. Furthermore, breathing data were used to produce 4D reconstructions of clusters, yielding dynamic template images dependent on gantry angle and breathing amplitude. To test these two approaches, static and dynamic templates were used to track the motion of marker clusters in more than 66,000 projection images from 75 CBCT scans of 15 pancreatic SBRT patients. Results: For both static and dynamic templates, the new technique was able to locate marker clusters present in projection images 100% of the time. The algorithm was also able to correctly locate markers in several instances where only some of the markers were visible due to insufficient field-of-view. In cases where clusters exhibited deformation and/or rotation during breathing, dynamic templates resulted in cross-correlation scores up to 70% higher than static templates. Conclusion: Patient-specific templates provided complete tracking of fiducial marker clusters in CBCT scans, and dynamic templates helped to provide higher cross-correlation scores for deforming/rotating clusters. This novel algorithm provides an extremely accurate method to detect fiducial markers during treatment. Research funding provided by Varian Medical Systems to Miften and Jones.« less
Low-template methods yield limited extra information for PowerPlex® Fusion 6C profiling.
Duijs, Francisca; van de Merwe, Linda; Sijen, Titia; Benschop, Corina C G
2018-06-01
Advances in autosomal DNA profiling systems enable analyzing increased numbers of short tandem repeat (STR) loci in one reaction. Increasing the number of STR loci increases the amount of information that may be obtained from a (crime scene) sample. In this study, we examined whether even more allelic information can be obtained by applying low-template methods. To this aim, the performance of the PowerPlex® Fusion 6C STR typing system was assessed when increasing the number of PCR cycles or enhancing the capillary electrophoresis (CE) injection settings. Results show that applying these low-template methods yields limited extra information and comes at cost of more background noise. In addition, the gain in detection of alleles was much smaller when compared to the gain when applying low-template methods to the 15-loci AmpFLSTR® NGM™ system. Consequently, the PowerPlex® Fusion 6C STR typing system was implemented using standard settings only; low-template methods were not implemented for our routine forensic casework. Copyright © 2018 Elsevier B.V. All rights reserved.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling.
Li, Jilong; Cheng, Jianlin
2016-05-10
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96-6.37% and 2.42-5.19% on the three datasets over using single templates. MTMG's performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling
Li, Jilong; Cheng, Jianlin
2016-01-01
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96–6.37% and 2.42–5.19% on the three datasets over using single templates. MTMG’s performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html. PMID:27161489
Petkovich, Nicholas D; Stein, Andreas
2013-05-07
Rigid, porous objects and surfactants serve as powerful templates for the formation of mesoporous and macroporous materials. When both types of template are combined in a single synthesis, materials with intricate architectures and hierarchical porosity can be obtained. In this tutorial review, we explain how to conduct syntheses with both soft and hard templates; moreover, we describe methods to control the final structure present in the templated material. Much of the foundation for multiple templating lies in the study of materials made with only one type of template. To establish a foundation in this area, a description of hard and soft templating is given, delving into the templates available and the steps required for effective templating. This leads into an extended discussion about materials templated with both hard and soft templates. Through the use of recent examples in the literature, we aim to show the diversity of structures possible through multiple templating and the advantages these structures can provide for a wide range of applications. An emphasis is placed on how various factors-such as the type of template, type of precursor, heat-treatment temperature, confinement within a small space, and template-template interactions-impact morphology.
ERIC Educational Resources Information Center
Hermann, Ronald S.; Miranda, Rommel J.
2010-01-01
This article provides an instructional approach to helping students generate open-inquiry research questions, which the authors call the "open-inquiry question template." This template was created based on their experience teaching high school science and preservice university methods courses. To help teachers implement this template, they…
Fast template matching with polynomials.
Omachi, Shinichiro; Omachi, Masako
2007-08-01
Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.
Template based rotation: A method for functional connectivity analysis with a priori templates☆
Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.
2014-01-01
Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630
Time limits during visual foraging reveal flexible working memory templates.
Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni
2018-06-01
During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
MnO2/carbon nanowalls composite electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Hassan, Sameh; Suzuki, Masaaki; Mori, Shinsuke; El-Moneim, Ahmed Abd
2014-03-01
Amorphous MnO2/carbon nanowalls composite films are developed for the supercapacitor applications. Synthesis of carbon nanowalls template is performed by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. A well dispersion of amorphous MnO2 domains throughout carbon nanowalls template is obtained by potentiostatic anodic deposition technique. Carbon nanowalls enable to improve the capacitive behavior and rate capability of MnO2, a specific capacitance of 851 F g-1 at a current density of 1 mA cm-2 and charge transfer resistance of 1.02 Ω are obtained. MnO2/carbon nanowalls composite film exhibits energy density of 118 wh kg-1, power density of 783 wh kg-1, and capacitance retention of 92% after long cycle life of 2000 cycles by charging and discharging at 3 mA cm-2. The high density of atomic scale graphitic edges and large surface area of carbon nanowalls in conjunction with the presence of amorphous MnO2 domains facilitate rapid electron and ion transport and hence offering the potential of the improved capacitive behavior.
2013-01-01
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174
Estimating B1+ in the breast at 7 T using a generic template.
van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J
2018-05-01
Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Estimating B 1 + in the breast at 7 T using a generic template
Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.
2018-01-01
Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887
Effects of 99mTc-TRODAT-1 drug template on image quantitative analysis
Yang, Bang-Hung; Chou, Yuan-Hwa; Wang, Shyh-Jen; Chen, Jyh-Cheng
2018-01-01
99mTc-TRODAT-1 is a type of drug that can bind to dopamine transporters in living organisms and is often used in SPCT imaging for observation of changes in the activity uptake of dopamine in the striatum. Therefore, it is currently widely used in studies on clinical diagnosis of Parkinson’s disease (PD) and movement-related disorders. In conventional 99mTc-TRODAT-1 SPECT image evaluation, visual inspection or manual selection of ROI for semiquantitative analysis is mainly used to observe and evaluate the degree of striatal defects. However, these methods are dependent on the subjective opinions of observers, which lead to human errors, have shortcomings such as long duration, increased effort, and have low reproducibility. To solve this problem, this study aimed to establish an automatic semiquantitative analytical method for 99mTc-TRODAT-1. This method combines three drug templates (one built-in SPECT template in SPM software and two self-generated MRI-based and HMPAO-based TRODAT-1 templates) for the semiquantitative analysis of the striatal phantom and clinical images. At the same time, the results of automatic analysis of the three templates were compared with results from a conventional manual analysis for examining the feasibility of automatic analysis and the effects of drug templates on automatic semiquantitative analysis results. After comparison, it was found that the MRI-based TRODAT-1 template generated from MRI images is the most suitable template for 99mTc-TRODAT-1 automatic semiquantitative analysis. PMID:29543874
A real-time TV logo tracking method using template matching
NASA Astrophysics Data System (ADS)
Li, Zhi; Sang, Xinzhu; Yan, Binbin; Leng, Junmin
2012-11-01
A fast and accurate TV Logo detection method is presented based on real-time image filtering, noise eliminating and recognition of image features including edge and gray level information. It is important to accurately extract the optical template using the time averaging method from the sample video stream, and then different templates are used to match different logos in separated video streams with different resolution based on the topology features of logos. 12 video streams with different logos are used to verify the proposed method, and the experimental result demonstrates that the achieved accuracy can be up to 99%.
Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures.
Kim, Hyehyun; Lah, Myoung Soo
2017-05-16
Various fabrication strategies for hollow metal-organic framework (MOF) superstructures are reviewed and classified using various types of external templates and their properties. Hollow MOF superstructures have also been prepared without external templates, wherein unstable intermediates obtained during reactions convert to the final hollow MOF superstructures. Many hollow MOF superstructures have been fabricated using hard templates. After the core-shell core@MOF structure was prepared using a hard template, the core was selectively etched to generate a hollow MOF superstructure. Another approach for generating hollow superstructures is to use a solid reactant as a sacrificial template; this method requires no additional etching process. Soft templates such as discontinuous liquid/emulsion droplets and gas bubbles in a continuous soft phase have also been employed to prepare hollow MOF superstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X; Lin, J; Diwanji, T
2014-06-01
Purpose: Recently, template matching has been shown to be able to track tumor motion on cine-MRI images. However, artifacts such as deformation, rotation, and/or out-of-plane movement could seriously degrade the performance of this technique. In this work, we demonstrate the utility of multiple templates derived from different phases of tumor motion in reducing the negative effects of artifacts and improving the accuracy of template matching methods. Methods: Data from 2 patients with large tumors and significant tumor deformation were analyzed from a group of 12 patients from an earlier study. Cine-MRI (200 frames) imaging was performed while the patients weremore » instructed to breathe normally. Ground truth tumor position was established on each frame manually by a radiation oncologist. Tumor positions were also automatically determined using template matching with either single or multiple (5) templates. The tracking errors, defined as the absolute differences in tumor positions determined by the manual and automated methods, when using either single or multiple templates were compared in both the AP and SI directions, respectively. Results: Using multiple templates reduced the tracking error of template matching. In the SI direction where the tumor movement and deformation were significant, the mean tracking error decreased from 1.94 mm to 0.91 mm (Patient 1) and from 6.61 mm to 2.06 mm (Patient 2). In the AP direction where the tumor movement was small, the reduction of the mean tracking error was significant in Patient 1 (from 3.36 mm to 1.04 mm), but not in Patient 2 ( from 3.86 mm to 3.80 mm). Conclusion: This study shows the effectiveness of using multiple templates in improving the performance of template matching when artifacts like large tumor deformation or out-of-plane motion exists. Accurate tumor tracking capabilities can be integrated with MRI guided radiation therapy systems. This work was supported in part by grants from NIH/NCI CA 124766 and Varian Medical Systems, Palo Alto, CA.« less
Template optimization and transfer in perceptual learning.
Kurki, Ilmari; Hyvärinen, Aapo; Saarinen, Jussi
2016-08-01
We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect. We used a new regression technique to directly estimate the template weight change and to test whether the direction of reweighting is significantly different from an optimal learning strategy. The subjects trained the task for six daily sessions, and we tested the transfer of training to a target in an orthogonal orientation. Strong learning and partial transfer were observed. We tested whether task precision (difficulty) had an effect on template change and transfer: Observers trained in either a high-precision (small, 60° phase difference) or a low-precision task (180°). Task precision did not have an effect on the amount of template change or transfer, suggesting that task precision per se does not determine whether learning generalizes. Classification images show that training made observers use more task-relevant features and unlearn some irrelevant features. The transfer templates resembled partially optimized versions of templates in training sessions. The template change direction resembles ideal learning significantly but not completely. The amount of template change was highly correlated with the amount of learning.
One New Method to Generate 3-Dimensional Virtual Mannequin
NASA Astrophysics Data System (ADS)
Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le
The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.
A novel approach for fabricating NiO hollow spheres for gas sensors
NASA Astrophysics Data System (ADS)
Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-03-01
Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.
A Fast Approach to Automatic Detection of Brain Lesions
Koley, Subhranil; Chakraborty, Chandan; Mainero, Caterina; Fischl, Bruce; Aganj, Iman
2017-01-01
Template matching is a popular approach to computer-aided detection of brain lesions from magnetic resonance (MR) images. The outcomes are often sufficient for localizing lesions and assisting clinicians in diagnosis. However, processing large MR volumes with three-dimensional (3D) templates is demanding in terms of computational resources, hence the importance of the reduction of computational complexity of template matching, particularly in situations in which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D Gaussian templates with varying radii and propose a new method to compute the normalized cross-correlation coefficient as a similarity metric between the MR volume and the template to detect brain lesions. Contrary to the conventional fast Fourier transform (FFT) based approach, whose runtime grows as O(N logN) with the number of voxels, the proposed method computes the cross-correlation in O(N). We show through our experiments that the proposed method outperforms the FFT approach in terms of computational time, and retains comparable accuracy. PMID:29082383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn
Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less
Sugawara, Taku; Higashiyama, Naoki; Kaneyama, Shuichi; Sumi, Masatoshi
2017-03-15
Prospective clinical trial of the screw insertion method for posterior C1-C2 fixation utilizing the patient-specific screw guide template technique. To evaluate the efficacy of this method for insertion of C1 lateral mass screws (LMS), C2 pedicle screws (PS), and C2 laminar screws (LS). Posterior C1LMS and C2PS fixation, also known as the Goel-Harms method, can achieve immediate rigid fixation and high fusion rate, but the screw insertion carries the risk of injury to neuronal and vascular structures. Dissection of venous plexus and C2 nerve root to confirm the insertion point of the C1LMS may also cause problems. We have developed an intraoperative screw guiding method using patient-specific laminar templates. Preoperative bone images of computed tomography (CT) were analyzed using three-dimensional (3D)/multiplanar imaging software to plan the trajectories of the screws. Plastic templates with screw guiding structures were created for each lamina using 3D design and printing technology. Three types of templates were made for precise multistep guidance, and all templates were specially designed to fit and lock on the lamina during the procedure. Surgery was performed using this patient-specific screw guide template system, and placement of the screws was postoperatively evaluated using CT. Twelve patients with C1-C2 instability were treated with a total of 48 screws (24 C1LMS, 20 C2PS, 4 C2LS). Intraoperatively, each template was found to exactly fit and lock on the lamina and screw insertion was completed successfully without dissection of the venous plexus and C2 nerve root. Postoperative CT showed no cortical violation by the screws, and mean deviation of the screws from the planned trajectories was 0.70 ± 0.42 mm. The multistep, patient-specific screw guide template system is useful for intraoperative screw navigation in posterior C1-C2 fixation. This simple and economical method can improve the accuracy of screw insertion, and reduce operation time and radiation exposure of posterior C1-C2 fixation surgery. 3.
Piatkowski, Pawel; Kasprzak, Joanna M; Kumar, Deepak; Magnus, Marcin; Chojnowski, Grzegorz; Bujnicki, Janusz M
2016-01-01
RNA encompasses an essential part of all known forms of life. The functions of many RNA molecules are dependent on their ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that either utilize information derived from known structures of other RNA molecules (by way of template-based modeling) or attempt to simulate the physical process of RNA structure formation (by way of template-free modeling). All computational methods suffer from various limitations that make theoretical models less reliable than high-resolution experimentally determined structures. This chapter provides a protocol for computational modeling of RNA 3D structure that overcomes major limitations by combining two complementary approaches: template-based modeling that is capable of predicting global architectures based on similarity to other molecules but often fails to predict local unique features, and template-free modeling that can predict the local folding, but is limited to modeling the structure of relatively small molecules. Here, we combine the use of a template-based method ModeRNA with a template-free method SimRNA. ModeRNA requires a sequence alignment of the target RNA sequence to be modeled with a template of the known structure; it generates a model that predicts the structure of a conserved core and provides a starting point for modeling of variable regions. SimRNA can be used to fold small RNAs (<80 nt) without any additional structural information, and to refold parts of models for larger RNAs that have a correctly modeled core. ModeRNA can be either downloaded, compiled and run locally or run through a web interface at http://genesilico.pl/modernaserver/ . SimRNA is currently available to download for local use as a precompiled software package at http://genesilico.pl/software/stand-alone/simrna and as a web server at http://genesilico.pl/SimRNAweb . For model optimization we use QRNAS, available at http://genesilico.pl/qrnas .
[Elaboration of the SPM template for the standardization of SPECT images with 123I-Ioflupane].
García-Gómez, F J; García-Solís, D; Luis-Simón, F J; Marín-Oyaga, V A; Carrillo, F; Mir, P; Vázquez-Albertino, R J
2013-01-01
Statistical parametric mapping (SPM) is a widely used produced for normalization of functional images. This study has aimed to develop a normalization template of (123)I-Ioflupane SPECT-imaging DaTSCAN(®), GE Healthcare), not available in SPM5, and to validate it compared to other quantification methods. In order to write the template we retrospectively selected 26 subjects who had no evidence of nigrostriatal degeneration and whose age distribution was similar to that of the patients in the usual practice of our Department: 2 subjects (7.6%) were < 35 years, 9 between 35-65 years (34.6%) and 15 > 65 years (57.7%). All the studies were normalized with the T1-template available in SPM5 and an average image of the value was obtained for each voxel. For validation we analyzed 60 patients: 30 with idiopathic Parkinson's disease patients (iPD) with right involvement (66.83±12.20 years) and 30 with essential tremor patients (ET) (67.27±8.33 years). Specific uptake rates (SUR) of different striatal regions were compared after image normalization with our template and the application of a semiautomated VOIs-map created with Analyze v9.0 ((©)BIR, Mayo Clinic), against two quantification methods: a) manual adjustment of a ROIs-map drawn in Analyze, and b) semi-automated method (HERMES-BRASS) with normalization and implementation of VOIs-map. No statistically significant differences in the iPD/ET discriminatory capacity between the three methods analyzed were observed (p<0,001). The correlation of SUR after normalization with our «template» was higher than that obtained by method b) (R>0,871, p<0,001). This difference was greater in patients with PD. Our study demonstrates the efficacy of our SPM «template» for (123)I-Ioflupane SPECT-imaging, obtained from normalization with «T1-template». Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.
Green, Stefan J.; Venkatramanan, Raghavee; Naqib, Ankur
2015-01-01
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible. PMID:25996930
Toward a practical template-based approach to semiquantitative SPECT myocardial perfusion imaging.
Hughes, Tyler; Celler, Anna
2012-03-01
Our template-based quantitative perfusion single photon emission computed tomography (SPECT) method (T-QPS) performs semiquantitative analysis for myocardial perfusion imaging (MPI) without the use of normal databases. However, in its current form, T-QPS requires extensive calculations, which limits its clinical application. In the interest of clinical feasibility, the authors examine the trade-off between accuracy and processing time as the method is simplified. The T-QPS method uses the reconstructed SPECT image of the patient to create a 3D digital template of his∕her healthy heart. This template is then projected, reconstructed, and sampled into the bulls-eye map domain. A ratio of the patient and template images produces a final corrected image in which a threshold is applied to identify perfusion defects. In principle, the template should be constructed with the heart and all extracardiac activity, and the projection step should include primary and scatter components; however, this leads to lengthy calculations. In an attempt to shorten the processing time, the authors analyzed the performance of four template (T) generation methods: T(P-HRT), T(PS-HRT), T(P-HRTBKG), and T(PS-HRTBKG), where P and S represent primary and scattered photons included in the projection step, respectively; and HRT and HRTBKG represent template constructed with the heart only and the heart with background activity, respectively. Forty-eight thorax phantoms and 21 randomly selected patient studies were analyzed using each approach. All studies used GE's Infinia Hawkeye SPECT∕CT system and followed a standard cardiac acquisition protocol. Approximate processing times for the T(P-HRT), T(PS-HRT), T(P-HRTBKG), and T(PS-HRTBKG) methods were less than a minute, 2-3 h, less than a minute and 3-4 h, respectively. In both the simulation and patient studies, a significant reduction in the quality of perfusion defect definition was exhibited by the T(P-HRT) method relative to the other three methods. The optimal method with respect to perfusion defect definition and processing time was T(P-HRTBKG) with a sensitivity, specificity, and accuracy in spatially defining the perfusion defects (simulation study) of 80%, 84%, and 83%, respectively. The T-QPS method using T(P-HRTBKG) leads to accurate and fast semiquantitative analysis of SPECT MPI, without the use of normal databases.
Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.
2007-10-01
Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.
Ferritin-Templated Quantum-Dots for Quantum Logic Gates
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.
2005-01-01
Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.
Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video
NASA Astrophysics Data System (ADS)
Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas
2018-06-01
In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.
Optimized Periocular Template Selection for Human Recognition
Sa, Pankaj K.; Majhi, Banshidhar
2013-01-01
A novel approach for selecting a rectangular template around periocular region optimally potential for human recognition is proposed. A comparatively larger template of periocular image than the optimal one can be slightly more potent for recognition, but the larger template heavily slows down the biometric system by making feature extraction computationally intensive and increasing the database size. A smaller template, on the contrary, cannot yield desirable recognition though the smaller template performs faster due to low computation for feature extraction. These two contradictory objectives (namely, (a) to minimize the size of periocular template and (b) to maximize the recognition through the template) are aimed to be optimized through the proposed research. This paper proposes four different approaches for dynamic optimal template selection from periocular region. The proposed methods are tested on publicly available unconstrained UBIRISv2 and FERET databases and satisfactory results have been achieved. Thus obtained template can be used for recognition of individuals in an organization and can be generalized to recognize every citizen of a nation. PMID:23984370
Culver, James N; Royston, Elizabeth; Brown, Adam; Harris, Michael
2013-02-26
The present invention relates to a system and method providing for increased silica growth on a bio-template, wherein the bio-template is pretreated with aniline to produce a uniform silica attractive surface and yielding a significant silica layers of at least 10 nm, and more preferably at least 20 nm in thickness, thereby providing for a high degree of stability to the bio-template.
Replication of patterned thin-film structures for use in plasmonics and metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, David J; Han, Sang Eon; Bhan, Aditya
The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.
Rational design of mesoporous metals and related nanomaterials by a soft-template approach.
Yamauchi, Yusuke; Kuroda, Kazuyuki
2008-04-07
We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.
Zhang, Shengwei; Arfanakis, Konstantinos
2012-01-01
Purpose To investigate the effect of standardized and study-specific human brain diffusion tensor templates on the accuracy of spatial normalization, without ignoring the important roles of data quality and registration algorithm effectiveness. Materials and Methods Two groups of diffusion tensor imaging (DTI) datasets, with and without visible artifacts, were normalized to two standardized diffusion tensor templates (IIT2, ICBM81) as well as study-specific templates, using three registration approaches. The accuracy of inter-subject spatial normalization was compared across templates, using the most effective registration technique for each template and group of data. Results It was demonstrated that, for DTI data with visible artifacts, the study-specific template resulted in significantly higher spatial normalization accuracy than standardized templates. However, for data without visible artifacts, the study-specific template and the standardized template of higher quality (IIT2) resulted in similar normalization accuracy. Conclusion For DTI data with visible artifacts, a carefully constructed study-specific template may achieve higher normalization accuracy than that of standardized templates. However, as DTI data quality improves, a high-quality standardized template may be more advantageous than a study-specific template, since in addition to high normalization accuracy, it provides a standard reference across studies, as well as automated localization/segmentation when accompanied by anatomical labels. PMID:23034880
NASA Astrophysics Data System (ADS)
Kosuga, M.
2013-12-01
The location of early aftershocks is very important to obtain information of mainshock fault, however, it is often difficult due to the long-lasting coda wave of mainshock and successive occurrence of afterrshocks. To overcome this difficulty, we developed a method of location using seismogram envelopes as templates, and applied the method to the early aftershock sequence of the 2004 Mid-Niigata Prefecture (Chuetsu) Earthquake (M = 6.8) in central Japan. The location method composes of three processes. The first process is the calculation of cross-correlation coefficients between a continuous (target) and template envelopes. We prepare envelopes by taking the logarithm of root-mean-squared amplitude of band-pass filtered seismograms. We perform the calculation by shifting the time window to obtain a set of cross-correlation values for each template. The second process is the event detection (selection of template) and magnitude estimate. We search for the events in descending order of cross-correlation in a time window excluding the dead times around the previously detected events. Magnitude is calculated by the amplitude ratio of target and template envelopes. The third process is the relative event location to the selected template. We applied this method to the Chuetsu earthquake, a large inland earthquake with extensive aftershock activity. The number of detected events depends on the number of templates, frequency range, and the threshold value of cross-correlation. We set the threshold as 0.5 by referring to the histogram of cross-correlation. During a period of one-hour from the mainshock, we could detect more events than the JMA catalog. The location of events is generally near the catalog location. Though we should improve the methods of relative location and magnitude estimate, we conclude that the proposed method works adequately even just after the mainshock of large inland earthquake. Acknowledgement: We thank JMA, NIED, and the University of Tokyo for providing arrival time data, and waveform data. This work was supported by JSPS KAKENHI Grant Number 23540487.
Toward Optimizing VEMP: Calculating VEMP Inhibition Depth With a Generic Template.
Noij, Kimberley S; van Tilburg, Mark J; Herrmann, Barbara S; Marciniak, Piotr; Rauch, Steven D; Guinan, John J
2018-04-05
Cervical vestibular evoked myogenic potentials (cVEMP) indirectly reveal the response of the saccule to acoustic stimuli through the inhibition of sternocleidomastoid muscle electromyographic response. VEMP inhibition depth (VEMPid) is a recently developed metric that estimates the percentage of saccular inhibition. VEMPid provides both normalization and better accuracy at low response levels than amplitude-normalized cVEMPs. Hopefully, VEMPid will aid in the clinical assessment of patients with vestibulopatholgy. To calculate VEMPid a template is needed. In the original method, a subject's own cVEMP was used as the template, but this method can be problematic in patients who do not have robust cVEMP responses. We hypothesize that a "generic" template, created by assembling cVEMPs from healthy subjects, can be used to compute VEMPid, which would facilitate the use of VEMPid in subjects with pathological conditions. A generic template was created by averaging cVEMP responses from 6 normal subjects. To compare VEMPid calculations using a generic versus a subject-specific template, cVEMPs were obtained in 40 healthy subjects using 500, 750, and 1000 Hz tonebursts at sound levels ranging from 98 to 123 dB peSPL. VEMPids were calculated both with the generic template and with the subject's own template. The ability of both templates to determine whether a cVEMP was present or not was compared with receiver operating characteristic curves. No significant differences were found between VEMPid calculations using a generic template versus using a subject-specific template for all frequencies and sound levels. Based on the receiver operating characteristic curves, the subject-specific and generic template did an equally good job at determining threshold. Within limits, the shape of the generic template did not affect these results. A generic template can be used instead of a subject-specific template to calculate VEMPid. Compared with cVEMP normalized by electromyographic amplitudes, VEMPid is advantageous because it averages zero when there is no sound stimulus and it allows the accumulating VEMPid value to be shown during data acquisition as a guide to deciding when enough data has been collected.
Template protection and its implementation in 3D face recognition systems
NASA Astrophysics Data System (ADS)
Zhou, Xuebing
2007-04-01
As biometric recognition systems are widely applied in various application areas, security and privacy risks have recently attracted the attention of the biometric community. Template protection techniques prevent stored reference data from revealing private biometric information and enhance the security of biometrics systems against attacks such as identity theft and cross matching. This paper concentrates on a template protection algorithm that merges methods from cryptography, error correction coding and biometrics. The key component of the algorithm is to convert biometric templates into binary vectors. It is shown that the binary vectors should be robust, uniformly distributed, statistically independent and collision-free so that authentication performance can be optimized and information leakage can be avoided. Depending on statistical character of the biometric template, different approaches for transforming biometric templates into compact binary vectors are presented. The proposed methods are integrated into a 3D face recognition system and tested on the 3D facial images of the FRGC database. It is shown that the resulting binary vectors provide an authentication performance that is similar to the original 3D face templates. A high security level is achieved with reasonable false acceptance and false rejection rates of the system, based on an efficient statistical analysis. The algorithm estimates the statistical character of biometric templates from a number of biometric samples in the enrollment database. For the FRGC 3D face database, the small distinction of robustness and discriminative power between the classification results under the assumption of uniquely distributed templates and the ones under the assumption of Gaussian distributed templates is shown in our tests.
Murphy, Marilyn K.; Kowalski, Kurt P.; Grapentine, Joel L.
2010-01-01
The geocontrol template method was developed to georeference multiple, overlapping analog aerial photographs without reliance upon conventionally obtained horizontal ground control. The method was tested as part of a long-term wetland habitat restoration project at a Lake Erie coastal wetland complex in the U.S. Fish and Wildlife Service Ottawa National Wildlife Refuge. As in most coastal wetlands, annually identifiable ground-control features required to georeference photo-interpreted data are difficult to find. The geocontrol template method relies on the following four components: (a) an uncontrolled aerial photo mosaic of the study area, (b) global positioning system (GPS) derived horizontal coordinates of each photo’s principal point, (c) a geocontrol template created by the transfer of fiducial markings and calculated principal points to clear acetate from individual photographs arranged in a mosaic, and (d) the root-mean-square-error testing of the system to ensure an acceptable level of planimetric accuracy. Once created for a study area, the geocontrol template can be registered in geographic information system (GIS) software to facilitate interpretation of multiple images without individual image registration. The geocontrol template enables precise georeferencing of single images within larger blocks of photographs using a repeatable and consistent method.
Template-based structure modeling of protein-protein interactions
Szilagyi, Andras; Zhang, Yang
2014-01-01
The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449
A simple cost-effective design for construction of a laparoscopic trainer.
Ricchiuti, Daniel; Ralat, Dane Arends; Evancho-Chapman, Michelle; Wyneski, Holly; Cerone, Jeffrey; Wegryn, John D
2005-10-01
Laparoscopic trainers have been shown to be effective tools for transitioning residents in surgical fields into live laparoscopic techniques. There have been few reports of homemade trainers, but each of these reports provides only scant detail about their construction, making production a novel task to those interested in employing this equipment. Virtual-reality trainers are gaining popularity and are exceptional modalities in the re-creation of laparoscopic surgery. In their present state, however, such trainers are very costly, making them unattainable by most urology residency programs. Numerous commercial non-virtual trainers are also available; however, these trainers are often cost-prohibitive or overly simplistic. We describe a detailed design template for creation of a laparoscopic trainer based on modifications of previous designs. This trainer can be made easily at a cost of approximately US$275.00 and may be used in conjunction with existing laparoscopic equipment. The methods described herein can be followed by any local machinist to create this trainer. The relatively low total cost, ready material availability, and ease of construction make this trainer an appropriate option for the training of residents in laparoscopic procedures.
Production of morphology-controllable porous hyaluronic acid particles using a spray-drying method.
Iskandar, Ferry; Nandiyanto, Asep Bayu Dani; Widiyastuti, W; Young, Lee Sin; Okuyama, Kikuo; Gradon, Leon
2009-05-01
Hyaluronic acid (HA) porous particles with controllable porosity and pore size, ranging from 100 to 300 nm, were successfully prepared using a colloidal templating and spray-drying method. HA powder and polystyrene latex (PSL) particles, which were used as the precursor and templating agent, respectively, were mixed in aqueous solution and spray-dried using a two-fluid nozzle system to produce HA and PSL composite particles. Water was evaporated during spray-drying using heated air with a temperature of 120 degrees C. This simple process was completed within several seconds. The prepared particles were collected and washed with an organic solvent to dissolve the PSL templating agent. The porosity and pore size of the resulting particles were easily controlled by changing the initial mass ratio of precursor to templating agent, i.e., HA to PSL, and by altering the size of the PSL template particles.
Incorporating User Input in Template-Based Segmentation
Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno
2015-01-01
We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532
Secure Minutiae-Based Fingerprint Templates Using Random Triangle Hashing
NASA Astrophysics Data System (ADS)
Jin, Zhe; Jin Teoh, Andrew Beng; Ong, Thian Song; Tee, Connie
Due to privacy concern on the widespread use of biometric authentication systems, biometric template protection has gained great attention in the biometric research recently. It is a challenging task to design a biometric template protection scheme which is anonymous, revocable and noninvertible while maintaining acceptable performance. Many methods have been proposed to resolve this problem, and cancelable biometrics is one of them. In this paper, we propose a scheme coined as Random Triangle Hashing which follows the concept of cancelable biometrics in the fingerprint domain. In this method, re-alignment of fingerprints is not required as all the minutiae are translated into a pre-defined 2 dimensional space based on a reference minutia. After that, the proposed Random Triangle hashing method is used to enforce the one-way property (non-invertibility) of the biometric template. The proposed method is resistant to minor translation error and rotation distortion. Finally, the hash vectors are converted into bit-strings to be stored in the database. The proposed method is evaluated using the public database FVC2004 DB1. An EER of less than 1% is achieved by using the proposed method.
Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian
2012-12-15
Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less
Solid-phase synthesis of molecularly imprinted nanoparticles.
Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey
2016-03-01
Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.
Liu, Ruimei; Feng, Feng; Chen, Guolin; Liu, Zhimin; Xu, Zhigang
2016-07-01
This study reports the development of a novel dummy template molecularly imprinted polymer (MIP)-coated barbell-shaped stir bar. The MIP stir bar coatings were prepared by using 2,2-bis(4-hydroxyphenyl)butane (BPB), 4,4'-dihydroxydiphenylmethane (BPF), 4-tert-butylphenol (PTBP), and tetrabromobisphenol A (TBBA) as dummy templates using a capillary in situ polymerization method. Uniform coatings can be prepared controllably. The method is simple, easy, and reproducible. The barbell-shaped stir bar was developed by using medical silicone tubes as wheels. The wheels could be removed and reinstalled when necessary; therefore, the barbell-shaped stir bar was easy to disassemble and reassemble. The novel MIP-coated stir bar showed good selectivity for the target analyte, bisphenol A (BPA). The established method is selective and sensitive with a lower detection limit for BPA of 0.003 μg/L. The dummy template MIP-coated stir bar is suitable for trace BPA analysis in real environmental water samples without template leakage. The novel stir bar can be used at least 100 times.
Day, Ryan; Qu, Xiaotao; Swanson, Rosemarie; Bohannan, Zach; Bliss, Robert
2011-01-01
Abstract Most current template-based structure prediction methods concentrate on finding the correct backbone conformation and then packing sidechains within that backbone. Our packing-based method derives distance constraints from conserved relative packing groups (RPGs). In our refinement approach, the RPGs provide a level of resolution that restrains global topology while allowing conformational sampling. In this study, we test our template-based structure prediction method using 51 prediction units from CASP7 experiments. RPG-based constraints are able to substantially improve approximately two-thirds of starting templates. Upon deeper investigation, we find that true positive spatial constraints, especially those non-local in sequence, derived from the RPGs were important to building nearer native models. Surprisingly, the fraction of incorrect or false positive constraints does not strongly influence the quality of the final candidate. This result indicates that our RPG-based true positive constraints sample the self-consistent, cooperative interactions of the native structure. The lack of such reinforcing cooperativity explains the weaker effect of false positive constraints. Generally, these findings are encouraging indications that RPGs will improve template-based structure prediction. PMID:21210729
Novel encoding methods for DNA-templated chemical libraries.
Li, Gang; Zheng, Wenlu; Liu, Ying; Li, Xiaoyu
2015-06-01
Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Porter, Edward K.
2007-11-01
In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various resummation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the last stable orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.
A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning.
Li, Haiou; Lyu, Qiang; Cheng, Jianlin
2016-12-01
Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein structure prediction using only the 3D structural coordinates of homologous template proteins as input. The templates were identified for a target protein by a PSI-BLAST search. 3DRobot (a program that automatically generates diverse and well-packed protein structure decoys) was used to generate initial decoy models for the target from the templates. A stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the target protein. The trained deep model was then used to reconstruct the final structural model for the target sequence. With target proteins that have highly similar template proteins as benchmarks, the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep autoencoder is a promising method for protein structure reconstruction.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
NASA Technical Reports Server (NTRS)
Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana
2017-01-01
Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
Sb-Te Phase-change Materials under Nanoscale Confinement
NASA Astrophysics Data System (ADS)
Ihalawela, Chandrasiri A.
Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with multilevel cells could be promising to achieve high data densities. However the size reduction may result in changes in material properties. If phase transition properties of the materials are also tunable with respect to the size, then more attractive solutions could be realized. So we have reported the size effect on crystallization temperature of prototypical Sb2Te3 nanowires synthesized in AAO templates. Moreover, we have found that the reduction of nanowire size can elevate the crystallization temperature, which is crucial for data retention in PCM technology. Energy dispersive X-ray spectroscopy, X-ray diffraction, electron microscopy and electrical resistivity measurements were used to characterize the composition, structure, morphology, and phase transition properties of the materials. We believe that this dissertation will provide new insights into the size effect of PC materials in addition to the controllable synthesis of PC thin films and nanowires through the novel electrochemical method.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903
Collett, Gemma K; Brown, Clare M; Shaw, Tim J; White, Kahren M; Beale, Philip J; Anderiesz, Cleola; Barnes, David J
2017-01-01
Objectives Few interventions have been designed that provide standardised information to primary care clinicians about the diagnostic and treatment recommendations resulting from cancer multidisciplinary team (MDT) (tumour board) meetings. This study aimed to develop, implement and evaluate a standardised template for lung cancer MDTs to provide clinical information and treatment recommendations to general practitioners (GPs). Specific objectives were to (1) evaluate template feasibility (acceptability, appropriateness and timeliness) with GPs and (2) document processes of preimplementation, implementation and evaluation within the MDT setting. Design A mixed-method study design using structured interviews with GPs and qualitative documentation of project logs about implementation processes. Setting Two hospitals in Central Sydney, New South Wales, Australia. Participants: 61 GPs evaluated the template. Two lung cancer MDTs, consisting of 33 clinicians, and eight researchers participated in template development and implementation strategy. Results The MDT-reporting template appears to be a feasible way of providing clinical information to GPs following patient presentation at a lung cancer MDT meeting. Ninety-five per cent of GPs strongly agreed or agreed that the standardised template provided useful and relevant information, that it was received in a timely manner (90%) and that the information was easy to interpret and communicate to the patient (84%). Implementation process data show that the investment made in the preimplementation stage to integrate the template into standard work practices was a critical factor in successful implementation. Conclusions This study demonstrates that it is feasible to provide lung cancer MDT treatment recommendations to GPs through implementation of a standardised template. A simple intervention, such as a standardised template, can help to address quality gaps and ensure that timely information is communicated between tertiary and primary care healthcare providers. PMID:29288182
Synthesis of macroporous structures
Stein, Andreas; Holland, Brian T.; Blanford, Christopher F.; Yan, Hongwei
2004-01-20
The present application discloses a method of forming an inorganic macroporous material. In some embodiments, the method includes: providing a sample of organic polymer particles having a particle size distribution of no greater than about 10%; forming a colloidal crystal template of the sample of organic polymer particles, the colloidal crystal template including a plurality of organic polymer particles and interstitial spaces therebetween; adding an inorganic precursor composition including a noncolloidal inorganic precursor to the colloidal crystal template such that the precursor composition permeates the interstitial spaces between the organic polymer particles; converting the noncolloidal inorganic precursor to a hardened inorganic framework; and removing the colloidal crystal template from the hardened inorganic framework to form a macroporous material. Inorganic macroporous materials are also disclosed.
Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage
Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi
2010-01-01
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527
Conducting polymer nanostructures: template synthesis and applications in energy storage.
Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi
2010-07-02
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.
NASA Astrophysics Data System (ADS)
Yang, Wanliang; Li, Baoshan
2014-01-01
A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods.A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04733d
CHENG, JIANLIN; EICKHOLT, JESSE; WANG, ZHENG; DENG, XIN
2013-01-01
After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques — template-based modeling and template-free modeling — have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can signicantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction. PMID:22809379
Wang, Hong; Zhang, Guangxing; Sui, Hong; Liu, Yanhua; Park, Kinam; Wang, Wenping
2015-12-30
The O/W emulsion method has been widely used for the production of poly (lactide-co-glycolide) (PLGA) microparticles. Recently, a template method has been used to make homogeneous microparticles with predefined size and shape, and shown to be useful in encapsulating different types of active compounds. However, differences between the template method and emulsion method have not been examined. In the current study, PLGA microparticles were prepared by the two methods using glycyrrhetinic acid (GA) as a model drug. The properties of obtained microparticles were characterized and compared on drug distribution, in vitro release, and degradation. An encapsulation efficiency of over 70% and a mean particle size of about 40μm were found for both methods. DSC thermograms and XRPD diffractograms indicated that GA was highly dispersed or in the amorphous state in the matrix of microparticles. The emulsion method produced microparticles of a broad size distribution with a core-shell type structure and many drug-rich domains inside each microparticle. Its drug release and matrix degradation was slow before Day 50 and then accelerated. In contrast, the template method formed microparticles with narrow size distribution and drug distribution without apparent drug-rich domains. The template microparticles with a loading efficiency of 85% exhibited a zero-order release profile for 3 months after the initial burst release of 26.7%, and a steady surface erosion process as well. The same microparticles made by two different methods showed two distinguished drug release profiles. The two different methods can be supplementary with each other in optimization of drug formulation for achieving predetermined drug release patterns. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient Multi-Atlas Registration using an Intermediate Template Image
Dewey, Blake E.; Carass, Aaron; Blitz, Ari M.; Prince, Jerry L.
2017-01-01
Multi-atlas label fusion is an accurate but time-consuming method of labeling the human brain. Using an intermediate image as a registration target can allow researchers to reduce time constraints by storing the deformations required of the atlas images. In this paper, we investigate the effect of registration through an intermediate template image on multi-atlas label fusion and propose a novel registration technique to counteract the negative effects of through-template registration. We show that overall computation time can be decreased dramatically with minimal impact on final label accuracy and time can be exchanged for improved results in a predictable manner. We see almost complete recovery of Dice similarity over a simple through-template registration using the corrected method and still maintain a 3–4 times speed increase. Further, we evaluate the effectiveness of this method on brains of patients with normal-pressure hydrocephalus, where abnormal brain shape presents labeling difficulties, specifically the ventricular labels. Our correction method creates substantially better ventricular labeling than traditional methods and maintains the speed increase seen in healthy subjects. PMID:28943702
Efficient multi-atlas registration using an intermediate template image
NASA Astrophysics Data System (ADS)
Dewey, Blake E.; Carass, Aaron; Blitz, Ari M.; Prince, Jerry L.
2017-03-01
Multi-atlas label fusion is an accurate but time-consuming method of labeling the human brain. Using an intermediate image as a registration target can allow researchers to reduce time constraints by storing the deformations required of the atlas images. In this paper, we investigate the effect of registration through an intermediate template image on multi-atlas label fusion and propose a novel registration technique to counteract the negative effects of through-template registration. We show that overall computation time can be decreased dramatically with minimal impact on final label accuracy and time can be exchanged for improved results in a predictable manner. We see almost complete recovery of Dice similarity over a simple through-template registration using the corrected method and still maintain a 3-4 times speed increase. Further, we evaluate the effectiveness of this method on brains of patients with normal-pressure hydrocephalus, where abnormal brain shape presents labeling difficulties, specifically the ventricular labels. Our correction method creates substantially better ventricular labeling than traditional methods and maintains the speed increase seen in healthy subjects.
Day, Ryan; Joo, Hyun; Chavan, Archana; Lennox, Kristin P.; Chen, Ann; Dahl, David B.; Vannucci, Marina; Tsai, Jerry W.
2012-01-01
As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. PMID:23266765
Day, Ryan; Joo, Hyun; Chavan, Archana C; Lennox, Kristin P; Chen, Y Ann; Dahl, David B; Vannucci, Marina; Tsai, Jerry W
2013-02-01
As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hughes, Paul; Deng, Wenjie; Olson, Scott C; Coombs, Robert W; Chung, Michael H; Frenkel, Lisa M
2016-03-01
Accurate analysis of minor populations of drug-resistant HIV requires analysis of a sufficient number of viral templates. We assessed the effect of experimental conditions on the analysis of HIV pol 454 pyrosequences generated from plasma using (1) the "Insertion-deletion (indel) and Carry Forward Correction" (ICC) pipeline, which clusters sequence reads using a nonsubstitution approach and can correct for indels and carry forward errors, and (2) the "Primer Identification (ID)" method, which facilitates construction of a consensus sequence to correct for sequencing errors and allelic skewing. The Primer ID and ICC methods produced similar estimates of viral diversity, but differed in the number of sequence variants generated. Sequence preparation for ICC was comparably simple, but was limited by an inability to assess the number of templates analyzed and allelic skewing. The more costly Primer ID method corrected for allelic skewing and provided the number of viral templates analyzed, which revealed that amplifiable HIV templates varied across specimens and did not correlate with clinical viral load. This latter observation highlights the value of the Primer ID method, which by determining the number of templates amplified, enables more accurate assessment of minority species in the virus population, which may be relevant to prescribing effective antiretroviral therapy.
Research on Signature Verification Method Based on Discrete Fréchet Distance
NASA Astrophysics Data System (ADS)
Fang, J. L.; Wu, W.
2018-05-01
This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.
Effect of template in MCM-41 on the adsorption of aniline from aqueous solution.
Yang, Xinxin; Guan, Qingxin; Li, Wei
2011-11-01
The effect of the surfactant template cetyltrimethylammonium bromide (CTAB) in MCM-41 on the adsorption of aniline was investigated. Various MCM-41 samples were prepared by controlling template removal using an extraction method. The samples were then used as adsorbents for the removal of aniline from aqueous solution. The results showed that the MCM-41 samples with the template partially removed (denoted as C-MCM-41) exhibited better adsorption performance than MCM-41 with the template completely removed (denoted as MCM-41). The reason for this difference may be that the C-MCM-41 samples had stronger hydrophobic properties and selectivity for aniline because of the presence of the template. The porosity and cationic sites generated by the template play an important role in the adsorption process. The optimal adsorbent with moderate template was achieved by changing the ratio of extractant; it has the potential for promising applications in the field of water pollution control. Copyright © 2011 Elsevier Ltd. All rights reserved.
Automated Epileptiform Spike Detection via Affinity Propagation-Based Template Matching
Thomas, John; Jin, Jing; Dauwels, Justin; Cash, Sydney S.; Westover, M. Brandon
2018-01-01
Interictal epileptiform spikes are the key diagnostic biomarkers for epilepsy. The clinical gold standard of spike detection is visual inspection performed by neurologists. This is a tedious, time-consuming, and expert-centered process. The development of automated spike detection systems is necessary in order to provide a faster and more reliable diagnosis of epilepsy. In this paper, we propose an efficient template matching spike detector based on a combination of spike and background waveform templates. We generate a template library by clustering a collection of spikes and background waveforms extracted from a database of 50 patients with epilepsy. We benchmark the performance of five clustering techniques based on the receiver operating characteristic (ROC) curves. In addition, background templates are integrated with existing spike templates to improve the overall performance. The affinity propagation-based template matching system with a combination of spike and background templates is shown to outperform the other four conventional methods with the highest area-under-curve (AUC) of 0.953. PMID:29060543
NASA Astrophysics Data System (ADS)
Balta, Christiana; Bouwman, Ramona W.; Sechopoulos, Ioannis; Broeders, Mireille J. M.; Karssemeijer, Nico; van Engen, Ruben E.; Veldkamp, Wouter J. H.
2017-03-01
Model observers (MOs) are being investigated for image quality assessment in full-field digital mammography (FFDM). Signal templates for the non-prewhitening MO with eye filter (NPWE) were formed using acquired FFDM images. A signal template was generated from acquired images by averaging multiple exposures resulting in a low noise signal template. Noise elimination while preserving the signal was investigated and a methodology which results in a noise-free template is proposed. In order to deal with signal location uncertainty, template shifting was implemented. The procedure to generate the template was evaluated on images of an anthropomorphic breast phantom containing microcalcification-related signals. Optimal reduction of the background noise was achieved without changing the signal. Based on a validation study in simulated images, the difference (bias) in MO performance from the ground truth signal was calculated and found to be <1%. As template generation is a building stone of the entire image quality assessment framework, the proposed method to construct templates from acquired images facilitates the use of the NPWE MO in acquired images.
A pilot study to measure marks in children with cerebral palsy using a novel measurement template.
Bennett, T; Jellinek, D; Bennett, M
2013-11-01
The primary aim of this pilot study was to trial a method of assessing bruises in a population of disabled children. If the method was found to be sufficiently robust it would be our intention to undertaking a more extensive observational study. Less is known about normal bruising patterns in children with disability than in those without. It is important that the method used to assess bruising is objective and repeatable. In an effort to define and improve repeatability, we employed a novel bruise measurement template which was printed onto transparent acetate sheets. Twenty primary school age children, the majority of whom were non-ambulant and severely disabled with cerebral palsy, underwent full skin examination. The template was used to assess any bruises seen. A comparison was then made between measurements made by experienced paediatricians using the template and using a standard tape measure on a series of bruise images in 25 photographs. The majority of children in our pilot were found to have bruises, with one child having 6 and one 7 bruises. This comparative study showed that the two techniques had a very similar precision and that the template was easy to use. Greater precision would require a tighter measurement protocol, whether with a template or a tape measure. Further evaluation of the application of such a template would be worthwhile. We would suggest that our finding of some bruising in this population of disabled children is borne in mind whenever bruising is found in a non-ambulant child. © 2012 John Wiley & Sons Ltd.
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery
NASA Astrophysics Data System (ADS)
Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.
2016-06-01
Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability of putative matches and the utilisation of templates instead of feature descriptors. In our experiments discussed in this paper, typical urban scenes have been used for evaluating the proposed method. Even though no additional outlier removal techniques have been used, our method yields almost 90% of correct correspondences. However, repetitive image patterns may still induce ambiguities which cannot be fully averted by this technique. Hence and besides, possible advancements will be briefly presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Peng; Zhang Milin; Hou Hongwei
2008-03-04
A novel strategy has been put forward to prepare hierarchical dendrites of silver nanorods via a simple integration method using 'Devarda's template' as a reducing agent and architecture template with the assistance of ultrasonic waves, in which the template was firstly fabricated and employed. The individual silver dendrite is composed of a long central trunk with secondary branches, which preferentially grew in a parallel direction with a definite angle to the trunk. The results reveal that the dendrites are single crystalline in nature and interestingly prove that the silver single crystal has the preferential orientation in <1 1 1> directionmore » in normal conditions. The contrast experiments demonstrated that both 'Devarda's template' and the ultrasonic irradiation are necessary for building hierarchically silver dendrites in a water system. Moreover, the experimental results show that the dendrites of silver nanorods are the superior electrode materials for the electrochemical sensors to detect directly NO{sub 2}{sup -} in aqueous solution.« less
Template-constrained macrocyclic peptides prepared from native, unprotected precursors
Lawson, Kenneth V.; Rose, Tristan E.; Harran, Patrick G.
2013-01-01
Peptide–protein interactions are important mediators of cellular-signaling events. Consensus binding motifs (also known as short linear motifs) within these contacts underpin molecular recognition, yet have poor pharmacological properties as discrete species. Here, we present methods to transform intact peptides into stable, templated macrocycles. Two simple steps install the template. The key reaction is a palladium-catalyzed macrocyclization. The catalysis has broad scope and efficiently forms large rings by engaging native peptide functionality including phenols, imidazoles, amines, and carboxylic acids without the necessity of protecting groups. The tunable reactivity of the template gives the process special utility. Defined changes in reaction conditions markedly alter chemoselectivity. In all cases examined, cyclization occurs rapidly and in high yield at room temperature, regardless of peptide composition or chain length. We show that conformational restraints imparted by the template stabilize secondary structure and enhance proteolytic stability in vitro. Palladium-catalyzed internal cinnamylation is a strong complement to existing methods for peptide modification. PMID:24043790
Brew, Christopher J; Simpson, Philip M; Whitehouse, Sarah L; Donnelly, William; Crawford, Ross W; Hubble, Matthew J W
2012-04-01
We describe a scaling method for templating digital radiographs using conventional acetate templates independent of template magnification without the need for a calibration marker. The mean magnification factor for the radiology department was determined (119.8%; range, 117%-123.4%). This fixed magnification factor was used to scale the radiographs by the method described. Thirty-two femoral heads on postoperative total hip arthroplasty radiographs were then measured and compared with the actual size. The mean absolute accuracy was within 0.5% of actual head size (range, 0%-3%) with a mean absolute difference of 0.16 mm (range, 0-1 mm; SD, 0.26 mm). Intraclass correlation coefficient showed excellent reliability for both interobserver and intraobserver measurements with intraclass correlation coefficient scores of 0.993 (95% CI, 0.988-0.996) for interobserver measurements and intraobserver measurements ranging between 0.990 and 0.993 (95% CI, 0.980-0.997). Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Development of highly porous crystalline titania photocatalysts
NASA Astrophysics Data System (ADS)
Marszewski, Michal
The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal is to introduce new, easily carbonizable groups in TIPO structure so that the modified precursor can serve as titania and carbon precursor simultaneously. Subsequently, during carbonization in inert atmosphere, a carbon framework is formed that works as a scaffold, protecting titania during its crystallization. Afterwards, the carbon scaffold is removed by calcination in air. This work explores the modified precursor strategy by 1) preparing titania materials from TIPO modified with different carboxylic acids and 2) investigating the effect of the modifying acid on the properties of the carbon-titania composites and the final titania materials.
Template based protein structure modeling by global optimization in CASP11.
Joo, Keehyoung; Joung, InSuk; Lee, Sun Young; Kim, Jong Yun; Cheng, Qianyi; Manavalan, Balachandran; Joung, Jong Young; Heo, Seungryong; Lee, Juyong; Nam, Mikyung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2016-09-01
For the template-based modeling (TBM) of CASP11 targets, we have developed three new protein modeling protocols (nns for server prediction and LEE and LEER for human prediction) by improving upon our previous CASP protocols (CASP7 through CASP10). We applied the powerful global optimization method of conformational space annealing to three stages of optimization, including multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain remodeling. For more successful fold recognition, a new alignment method called CRFalign was developed. It can incorporate sensitive positional and environmental dependence in alignment scores as well as strong nonlinear correlations among various features. Modifications and adjustments were made to the form of the energy function and weight parameters pertaining to the chain building procedure. For the side-chain remodeling step, residue-type dependence was introduced to the cutoff value that determines the entry of a rotamer to the side-chain modeling library. The improved performance of the nns server method is attributed to successful fold recognition achieved by combining several methods including CRFalign and to the current modeling formulation that can incorporate native-like structural aspects present in multiple templates. The LEE protocol is identical to the nns one except that CASP11-released server models are used as templates. The success of LEE in utilizing CASP11 server models indicates that proper template screening and template clustering assisted by appropriate cluster ranking promises a new direction to enhance protein 3D modeling. Proteins 2016; 84(Suppl 1):221-232. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Reducing nontemplated 3' nucleotide addition to polynucleotide transcripts
Kao, C. Cheng
2000-01-01
Non-template 3' nucleotide addition to a transcript is reduced by transcribing a transcript from a template comprising an ultimate and/or penultimate 5' ribose having a C'2 substituent such as methoxy, which reduces non-template 3' nucleotide addition to the transcript. The methods are shown to be applicable to a wide variety of polymerases, including Taq, T7 RNA polymerase, etc.
Templated Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Siochik Emilie J. (Inventor)
2007-01-01
A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.
Wang, Dong; Yang, Zhuang-qun; Hu, Xiao-yi
2007-08-01
To analyze the stress and displacement distribution of 3D-FE models in three conjunctive methods of vascularized iliac bone graft for established mandibular body defects. Using computer image process technique, a series of spiral CT images were put into Ansys preprocess programe to establish three 3D-FE models of different conjunctions. The three 3D-FE models of established mandibular body defects by vascularized iliac bone graft were built up. The distribution of Von Mises stress and displacement around mandibular segment, grafted ilium, plates and screws was obtained. It may be determined successfully that the optimal conjunctive shape be the on-lay conjunction.
Osmani, Feroz A; Thakkar, Savyasachi; Ramme, Austin; Elbuluk, Ameer; Wojack, Paul; Vigdorchik, Jonathan M
2017-12-01
Preoperative total hip arthroplasty templating can be performed with radiographs using acetate prints, digital viewing software, or with computed tomography (CT) images. Our hypothesis is that 3D templating is more precise and accurate with cup size prediction as compared to 2D templating with acetate prints and digital templating software. Data collected from 45 patients undergoing robotic-assisted total hip arthroplasty compared cup sizes templated on acetate prints and OrthoView software to MAKOplasty software that uses CT scan. Kappa analysis determined strength of agreement between each templating modality and the final size used. t tests compared mean cup-size variance from the final size for each templating technique. Interclass correlation coefficient (ICC) determined reliability of digital and acetate planning by comparing predictions of the operating surgeon and a blinded adult reconstructive fellow. The Kappa values for CT-guided, digital, and acetate templating with the final size was 0.974, 0.233, and 0.262, respectively. Both digital and acetate templating significantly overpredicted cup size, compared to CT-guided methods ( P < .001). There was no significant difference between digital and acetate templating ( P = .117). Interclass correlation coefficient value for digital and acetate templating was 0.928 and 0.931, respectively. CT-guided planning more accurately predicts hip implant cup size when compared to the significant overpredictions of digital and acetate templating. CT-guided templating may also lead to better outcomes due to bone stock preservation from a smaller and more accurate cup size predicted than that of digital and acetate predictions.
Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.
Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu
2009-02-01
Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).
Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A J
2010-10-29
Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.
NASA Astrophysics Data System (ADS)
Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A. J.
2010-10-01
Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.
Theory of adsorption in a polydisperse templated porous material: Hard sphere systems
NASA Astrophysics Data System (ADS)
RŻysko, Wojciech; Sokołowski, Stefan; Pizio, Orest
2002-03-01
A theoretical description of adsorption in a templated porous material, formed by an equilibrium quench of a polydisperse fluid composed of matrix and template particles and subsequent removal of the template particles is presented. The approach is based on the solution of the replica Ornstein-Zernike equations with Percus-Yevick and hypernetted chain closures. The method of solution uses expansions of size-dependent correlation functions into Fourier series, as described by Lado [J. Chem. Phys. 108, 6441 (1998)]. Specific calculations have been carried out for model systems, composed of hard spheres.
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.
2015-01-12
GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.
Bringing the cross-correlation method up to date
NASA Technical Reports Server (NTRS)
Statler, Thomas
1995-01-01
The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.
Virus templated metallic nanoparticles
NASA Astrophysics Data System (ADS)
Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.
2010-12-01
Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h
... developing methods of treatment and prevention. NINDS, in conjunction with the NIH Office of Rare Disorders, sponsored ... developing methods of treatment and prevention. NINDS, in conjunction with the NIH Office of Rare Disorders, sponsored ...
NASA Astrophysics Data System (ADS)
Akamatsu, G.; Ikari, Y.; Ohnishi, A.; Nishida, H.; Aita, K.; Sasaki, M.; Yamamoto, Y.; Sasaki, M.; Senda, M.
2016-08-01
Amyloid PET is useful for early and/or differential diagnosis of Alzheimer’s disease (AD). Quantification of amyloid deposition using PET has been employed to improve diagnosis and to monitor AD therapy, particularly in research. Although MRI is often used for segmentation of gray matter and for spatial normalization into standard Montreal Neurological Institute (MNI) space where region-of-interest (ROI) template is defined, 3D MRI is not always available in clinical practice. The purpose of this study was to examine the feasibility of PET-only amyloid quantification with an adaptive template and a pre-defined standard ROI template that has been empirically generated from typical cases. A total of 68 subjects who underwent brain 11C-PiB PET were examined. The 11C-PiB images were non-linearly spatially normalized to the standard MNI T1 atlas using the same transformation parameters of MRI-based normalization. The automatic-anatomical-labeling-ROI (AAL-ROI) template was applied to the PET images. All voxel values were normalized by the mean value of cerebellar cortex to generate the SUVR-scaled images. Eleven typical positive images and eight typical negative images were normalized and averaged, respectively, and were used as the positive and negative template. Positive and negative masks which consist of voxels with SUVR ⩾1.7 were extracted from both templates. Empirical PiB-prone ROI (EPP-ROI) was generated by subtracting the negative mask from the positive mask. The 11C-PiB image of each subject was non-rigidly normalized to the positive and negative template, respectively, and the one with higher cross-correlation was adopted. The EPP-ROI was then inversely transformed to individual PET images. We evaluated differences of SUVR between standard MRI-based method and PET-only method. We additionally evaluated whether the PET-only method would correctly categorize 11C-PiB scans as positive or negative. Significant correlation was observed between the SUVRs obtained with AAL-ROI and those with EPP-ROI when MRI-based normalization was used, the latter providing higher SUVR. When EPP-ROI was used, MRI-based method and PET-only method provided almost identical SUVR. All 11C-PiB scans were correctly categorized into positive and negative using a cutoff value of 1.7 as compared to visual interpretation. The 11C-PiB SUVR were 2.30 ± 0.24 and 1.25 ± 0.11 for the positive and negative images. PET-only amyloid quantification method with adaptive templates and EPP-ROI can provide accurate, robust and simple amyloid quantification without MRI.
Unconstrained and contactless hand geometry biometrics.
de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; Del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier
2011-01-01
This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely support vector machines (SVM) and k-nearest neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.
Unconstrained and Contactless Hand Geometry Biometrics
de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier
2011-01-01
This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices. PMID:22346634
Braun, Paul V [Savoy, IL; Yu, Xindi [Urbana, IL
2011-01-18
A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.
Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates
NASA Astrophysics Data System (ADS)
Guiliani, Jason; Cadena, John; Monton, Carlos
2018-02-01
We present a variant of the template-assisted electrodeposition method that enables the synthesis of large arrays of nanowires (NWs) on flat and curved substrates. This method uses ultra-thin (50 nm-10 μm) anodic aluminum oxide membranes as a template. We have developed a procedure that uses a two-polymer protective layer to transfer these templates onto almost any surface. We have applied this technique to the fabrication of large arrays of Ni and segmented composition Ni/Au NWs on silicon wafers, Cu tapes, and thin (0.2 mm) Cu wires. In all cases, a complete coverage with NWs is achieved. The magnetic properties of these samples show an accentuated in-plane anisotropy which is affected by the form of the substrate (flat or curve) and the length of the NWs. Unlike current lithography techniques, the fabrication method proposed here allows the integration of complex nanostructures into devices, which can be fabricated on unconventional surfaces.
Constructing and assessing brain templates from Chinese pediatric MRI data using SPM
NASA Astrophysics Data System (ADS)
Yin, Qingjie; Ye, Qing; Yao, Li; Chen, Kewei; Jin, Zhen; Liu, Gang; Wu, Xingchun; Wang, Tingting
2005-04-01
Spatial normalization is a very important step in the processing of magnetic resonance imaging (MRI) data. So the quality of brain templates is crucial for the accuracy of MRI analysis. In this paper, using the classical protocol and the optimized protocol plus nonlinear deformation, we constructed the T1 whole brain templates and apriori brain tissue data from 69 Chinese pediatric MRI data (age 7-16 years). Then we proposed a new assessment method to evaluate our templates. 10 pediatric subjects were chosen to do the assessment as the following steps. First, the cerebellum region, the region of interest (ROI), was located on both the pediatric volume and the template volume by an experienced neuroanatomist. Second, the pediatric whole brain was mapped to the template with affine and nonlinear deformation. Third, the parameter, derived from the second step, was used to only normalize the ROI of the child to the ROI of the template. Last, the overlapping ratio, which described the overlapping rate between the ROI of the template and the normalized ROI of the child, was calculated. The mean of overlapping ratio normalized to the classical template was 0.9687, and the mean normalized to the optimized template was 0.9713. The results show that the two Chinese pediatric brain templates are comparable and their accuracy is adequate to our studies.
Formation of template-switching artifacts by linear amplification.
Chakravarti, Dhrubajyoti; Mailander, Paula C
2008-07-01
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2013 CFR
2013-07-01
... One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for... to the plant's written procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot) template. 3.3Weigh product and obtain area weight (lb/ft2). 3.4Measure sample...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2014 CFR
2014-07-01
... One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for... to the plant's written procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot) template. 3.3Weigh product and obtain area weight (lb/ft2). 3.4Measure sample...
Bridge, Heather; Smolskis, Mary; Bianchine, Peter; Dixon, Dennis O.; Kelly, Grace; Herpin, Betsey; Tavel, Jorge
2009-01-01
Background: A clinical research protocol document must reflect both sound scientific rationale as well as local, national and, when applicable, international regulatory and human subject protections requirements. These requirements originate from a variety of sources, undergo frequent revision and are subject to interpretation. Tools to assist clinical investigators in the production of clinical protocols could facilitate navigating these requirements and ultimately increase the efficiency of clinical research. Purpose: The National Institute of Allergy and Infectious Diseases (NIAID) developed templates for investigators to serve as the foundation for protocol development. These protocol templates are designed as tools to support investigators in developing clinical protocols. Methods: NIAID established a series of working groups to determine how to improve its capacity to conduct clinical research more efficiently and effectively. The Protocol Template Working Group was convened to determine what protocol templates currently existed within NIAID and whether standard NIAID protocol templates should be produced. After review and assessment of existing protocol documents and requirements, the group reached consensus about required and optional content, determined the format and identified methods for distribution as well as education of investigators in the use of these templates. Results: The templates were approved by the NIAID Executive Committee in 2006 and posted as part of the NIAID Clinical Research Toolkit[1]website for broad access. These documents require scheduled revisions to stay current with regulatory and policy changes. Limitations: The structure of any clinical protocol template, whether comprehensive or specific to a particular study phase, setting or design, affects how it is used by investigators. Each structure presents its own set of advantages and disadvantages. While useful, protocol templates are not stand-alone tools for creating an optimal protocol document but must be complemented by institutional resources and support. Education and guidance of investigators in the appropriate use of templates is necessary to ensure a complete yet concise protocol document. Due to changing regulatory requirements, clinical protocol templates cannot become static but require frequent revisions. Conclusions: Standard protocol templates that meet applicable regulations can be important tools to assist investigators in the effective conduct of clinical research, but they require dedicated resources and ongoing input from key stakeholders. PMID:19625326
Azimifar, Farhad; Hassani, Kamran; Saveh, Amir Hossein; Ghomsheh, Farhad Tabatabai
2017-11-14
Several methods including free-hand technique, fluoroscopic guidance, image-guided navigation, computer-assisted surgery system, robotic platform and patient's specific templates are being used for pedicle screw placement. These methods have screw misplacements and are not always easy to be applied. Furthermore, it is necessary to expose completely a large portions of the spine in order to access fit entirely around the vertebrae. In this study, a multi-level patient's specific template with medium invasiveness was proposed for pedicle screw placement in the scoliosis surgery. It helps to solve the problems related to the soft tissues removal. After a computer tomography (CT) scan of the spine, the templates were designed based on surgical considerations. Each template was manufactured using three-dimensional printing technology under a semi-flexible post processing. The templates were placed on vertebras at four points-at the base of the superior-inferior articular processes on both left-right sides. This helps to obtain less invasive and more accurate procedure as well as true-stable and easy placement in a unique position. The accuracy of screw positions was confirmed by CT scan after screw placement. The result showed the correct alignment in pedicle screw placement. In addition, the template has been initially tested on a metal wire series Moulage (height 70 cm and material is PVC). The results demonstrated that it could be possible to implement it on a real patient. The proposed template significantly reduced screw misplacements, increased stability, and decreased the sliding & the intervention invasiveness.
High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image
NASA Astrophysics Data System (ADS)
Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore
2016-03-01
Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.
Characteristics of InN epilayers grown with H2-assistance
NASA Astrophysics Data System (ADS)
Zhou, Jin; Li, Jinchai; Lu, Shiqiang; Kang, Junyong; Lin, Wei
2017-11-01
A series of InN films were grown on GaN-on-sapphire template with H2 pulse flow by metal organic vapor phase epitaxy. The scanning electron microscopy and atomic force microscopy observations demonstrate that the smooth surface has been achieved. The X-ray diffraction and Raman spectra measurements indicate that InN layers experience stronger accommodated compressive stress, resulting in a larger fraction of (002) oriented InN grains. On the basics of the first-principles calculations, these features can be understand as competition between N-penetrating effect with the assistance of the H atom and the etching effect of H2. Finally, the absorption spectra in conjunction with simulated results reveal that the band gap energy predominantly increase with increasing compressive strain.
Discriminative structural approaches for enzyme active-site prediction.
Kato, Tsuyoshi; Nagano, Nozomi
2011-02-15
Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.
Multi-template polymerase chain reaction.
Kalle, Elena; Kubista, Mikael; Rensing, Christopher
2014-12-01
PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.
Hughes, Tyler; Shcherbinin, Sergey; Celler, Anna
2011-07-01
Normal patient databases (NPDs) are used to distinguish between normal and abnormal perfusion in SPECT myocardial perfusion imaging (MPI) and have gained wide acceptance in the clinical environment, yet there are limitations to this approach. This study introduces a template-based method for semi-quantitative MPI, which attempts to overcome some of the NPD limitations. Our approach involves the construction of a 3D digital healthy heart template from the delineation of the patient's left ventricle in the SPECT image. This patient-specific template of the heart, filled with uniform activity, is then analytically projected and reconstructed using the same algorithm as the original image. Subsequent to generating bulls-eye maps for the patient image (PB) and the template image (TB), a ratio (PB/TB) is calculated, which produces a reconstruction-artifact corrected image (CB). Finally, a threshold is used to define defects within CB enabling measurements of the perfusion defect extent (EXT). The SPECT-based template (Ts) measurements were compared to those of a CT-based "ideal" template (TI). Twenty digital phantoms were simulated: male and female, each with one healthy heart and nine hearts with various defects. Four physical phantom studies were performed modeling a healthy heart and three hearts with different defects. The phantom represented a thorax with spine, lung, and left ventricle inserts. Images were acquired on General Electric's (GE) Infinia Hawkeye SPECT/CT camera using standard clinical MPI protocol. Finally, our method was applied to 14 patient MPI rest/stress studies acquired on the GE Infinia Hawkeye SPECT/CT camera and compared to the results obtained from Cedars-Sinai's QPS software. In the simulation studies, the true EXT correlated well with the TI (slope= 1.08; offset = -0.40%; r = 0.99) and Ts (slope = 0.90; offset = 0.27%; r = 0.99) methods with no significant differences between them. Similarly, strong correlations were measured for EXT obtained from QPS and the template method for patient studies (slope =0.91; offset = 0.45%; r = 0.98). Mean errors in extent for the Ts method using simulation, physical phantom, and patient data were 2.7% +/- 2.4%, 0.9% +/- 0.5%, 2.0% +/- 2.7%, respectively. The authors introduced a method for semi-quantitative SPECT MPI, which offers a patient-specific approach to define the perfusion defect regions within the heart, as opposed to the patient-averaged NPD methodology.
Jamjoom, Faris Z; Kim, Do-Gyoon; Lee, Damian J; McGlumphy, Edwin A; Yilmaz, Burak
2018-02-05
Effects of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into cone-beam computed tomography (CBCT) scans has not been investigated. To evaluate the effect of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into CBCT scans using different methods. Direct digital scans of a completely dentate master model with removable radiopaque teeth were made using an intraoral scanner, and digital scans of stone duplicates of the master model were made using a laboratory scanner. Specific teeth were removed to simulate different clinical situations and their CBCT scans were made. Surface scans were registered onto the CBCT scans. Radiographic templates for each clinical situation were also fabricated and used during CBCT scans of the master models. Using metrology software, three-dimensional (3D) deviation was measured on standard tesselation language (STL) files created from the CBCT scans against an STL file of the master model created from a CBCT scan. Statistical analysis was done using the MIXED procedure in a statistical software and Tukey HSD test (α =.05). The interaction between location and method was significant (P = .009). Location had no significant effect on registration methods (P > .05), but on the radiographic templates (P = .011). Length of the edentulous area did not have any significant effect (P > .05). Accuracy of digital image registration methods was similar and higher than that of radiographic templates in all clinical situations. Tooth-bound radiographic templates were significantly more accurate than the free-end templates. The results of this study suggest using image registration instead of radiographic templates when planning dental implants, particularly in free-end situations. © 2018 Wiley Periodicals, Inc.
Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries
NASA Astrophysics Data System (ADS)
Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo
2013-05-01
This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp2-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.
Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries.
Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo
2013-06-07
This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.
System and method for detection of dispersed broadband signals
Qian, S.; Dunham, M.E.
1999-06-08
A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.
System and method for detection of dispersed broadband signals
Qian, Shie; Dunham, Mark E.
1999-06-08
A system and method for detecting the presence of dispersed broadband signals in real time. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos{2.phi.(t)}. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase .phi.(t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of .phi.'(t).
Volume estimation using food specific shape templates in mobile image-based dietary assessment
NASA Astrophysics Data System (ADS)
Chae, Junghoon; Woo, Insoo; Kim, SungYe; Maciejewski, Ross; Zhu, Fengqing; Delp, Edward J.; Boushey, Carol J.; Ebert, David S.
2011-03-01
As obesity concerns mount, dietary assessment methods for prevention and intervention are being developed. These methods include recording, cataloging and analyzing daily dietary records to monitor energy and nutrient intakes. Given the ubiquity of mobile devices with built-in cameras, one possible means of improving dietary assessment is through photographing foods and inputting these images into a system that can determine the nutrient content of foods in the images. One of the critical issues in such the image-based dietary assessment tool is the accurate and consistent estimation of food portion sizes. The objective of our study is to automatically estimate food volumes through the use of food specific shape templates. In our system, users capture food images using a mobile phone camera. Based on information (i.e., food name and code) determined through food segmentation and classification of the food images, our system choose a particular food template shape corresponding to each segmented food. Finally, our system reconstructs the three-dimensional properties of the food shape from a single image by extracting feature points in order to size the food shape template. By employing this template-based approach, our system automatically estimates food portion size, providing a consistent method for estimation food volume.
Oxidized film structure and method of making epitaxial metal oxide structure
Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA
2003-02-25
A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.
NASA Astrophysics Data System (ADS)
Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.
2015-03-01
We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.
Hossen, Md Mir; Bendickson, Lee; Palo, Pierre E; Yao, Zhiqi; Nilsen-Hamilton, Marit; Hillier, Andrew C
2018-08-31
DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.
Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai
2016-03-01
We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.
Organic or organometallic template mediated clay synthesis
Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.
1994-01-01
A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.
Organic or organometallic template mediated clay synthesis
Gregar, K.C.; Winans, R.E.; Botto, R.E.
1994-05-03
A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.
Lipid bilayers on nano-templates
Noy, Aleksandr [Belmont, CA; Artyukhin, Alexander B [Menlo Park, CA; Bakajin, Olgica [San Leandro, CA; Stoeve, Pieter [Davis, CA
2009-08-04
A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents
Biaxially oriented film on flexible polymeric substrate
Finkikoglu, Alp T [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM
2009-10-13
A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.
Characterization of molecularly imprinted polymers using a new polar solvent titration method.
Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D
2014-07-01
A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.
Reducing Individual Variation for fMRI Studies in Children by Minimizing Template Related Errors
Weng, Jian; Dong, Shanshan; He, Hongjian; Chen, Feiyan; Peng, Xiaogang
2015-01-01
Spatial normalization is an essential process for group comparisons in functional MRI studies. In practice, there is a risk of normalization errors particularly in studies involving children, seniors or diseased populations and in regions with high individual variation. One way to minimize normalization errors is to create a study-specific template based on a large sample size. However, studies with a large sample size are not always feasible, particularly for children studies. The performance of templates with a small sample size has not been evaluated in fMRI studies in children. In the current study, this issue was encountered in a working memory task with 29 children in two groups. We compared the performance of different templates: a study-specific template created by the experimental population, a Chinese children template and the widely used adult MNI template. We observed distinct differences in the right orbitofrontal region among the three templates in between-group comparisons. The study-specific template and the Chinese children template were more sensitive for the detection of between-group differences in the orbitofrontal cortex than the MNI template. Proper templates could effectively reduce individual variation. Further analysis revealed a correlation between the BOLD contrast size and the norm index of the affine transformation matrix, i.e., the SFN, which characterizes the difference between a template and a native image and differs significantly across subjects. Thereby, we proposed and tested another method to reduce individual variation that included the SFN as a covariate in group-wise statistics. This correction exhibits outstanding performance in enhancing detection power in group-level tests. A training effect of abacus-based mental calculation was also demonstrated, with significantly elevated activation in the right orbitofrontal region that correlated with behavioral response time across subjects in the trained group. PMID:26207985
In-situ preparation of functionalized molecular sieve material and a methodology to remove template
NASA Astrophysics Data System (ADS)
Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal
2016-03-01
A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.
Development of highly-ordered, ferroelectric inverse opal films using sol gel infiltration
NASA Astrophysics Data System (ADS)
Matsuura, N.; Yang, S.; Sun, P.; Ruda, H. E.
2005-07-01
Highly-ordered, ferroelectric, Pb-doped Ba0.7Sr0.3TiO3, inverse opal films were fabricated by spin-coating a sol gel precursor into a polystyrene artificial opal template followed by heat treatment. Thin films of the ferroelectric were independently studied and were shown to exhibit good dielectric properties and high refractive indices. The excellent quality of the final inverse opal film using this spin-coating infiltration method was confirmed by scanning electron microscopy images and the good correspondence between optical reflection data and theoretical simulations. Using this method, the structural and material parameters of the final ferroelectric inverse opal film were easily adjusted by template heating and through repeated infiltrations, without changes in the initial template or precursor. Also, crack-free inverse opal thin films were fabricated over areas comparable to that of the initial crack-free polystyrene template (˜100 by 100 μm2).
A catalog of M-type star candidates in the LAMOST data release 1
NASA Astrophysics Data System (ADS)
Zhong, Jing; Lépine, Sébastien; Li, Jing; Chen, Li; Hou, Jinliang
2016-08-01
In this work, we present a set of M-type star candidates selected from the LAMOST DR1. A discrimination method with the spectral index diagram is used to separate M giants and M dwarfs. Then, we have successfully assembled a set of M giants templates from M0 to M6, using the spectra identified from the LAMOST spectral database. After combining the M dwarf templates in Zhong et al. (2015a) and the new created M giant templates, we use the M-type spectral library to perform the template-fit method to classify and identify M-type stars in the LAMOST DR1. A catalog of M-type star candidates including 8639 M giants and 101690 M dwarfs/subdwarfs is provided. As an additional results, we also present other fundamental parameters like proper motion, photometry, radial velocity and spectroscopic distance.
In-situ preparation of functionalized molecular sieve material and a methodology to remove template.
Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal
2016-03-10
A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.
Synthesis mechanism and improved (100) oriented NaNbO3 templates by ultrasonication
NASA Astrophysics Data System (ADS)
Ramdasi, O. A.; Kolekar, Y. D.; Kim, D. J.; Song, T. K.; Kambale, R. C.
2016-05-01
The plate-like NaNbO3 (NN) templates with (100) preferential orientation was synthesized from bismuth layer structured ferroelectric Bi2.5Na3.5Nb5O18 (BNN) precursor by topochemical microcrystal conversion (TMC) method. The large platelets of BNN were first obtained by molten salt synthesis at the 1125 °C with a salt-to oxide weight ratio 1.5: 1. The anisotropic NN templates were derived from BNN at the 975 °C with BNN/ Na2CO3 molar ratio of 1:1.5. The NaNbO3 templates have an average length of ~ 10-14 µm. The NN templates retains their elemental constitutes of Na, Nb and O in stoichiometric proportion. The effect of ultrasonication on the orientation factor (Fh00) of NN templates was understood by X-ray diffraction (XRD) and scanning electron microscopy (SEM) results. The degree of (100) orientation of as synthesized NN templates (~57%) was found to be increased (~89%) after ultrasonication. Moreover, the microstructure i.e. alignment / shape of as synthesized NN templates was changed from rectangular (110) orientation to square (100) orientation geometry after ultrasonication. Hence, ultrasonication is a cost effective approach to preparing the textured piezoelectric ceramics by the template grain growth technique using tape casting.
Lorenzo, Rosa A.; Carro, Antonia M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods. PMID:21845081
Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.
Matta, Ragai-Edward; Bergauer, Bastian; Adler, Werner; Wichmann, Manfred; Nickenig, Hans-Joachim
2017-06-01
The use of a surgical template is a well-established method in advanced implantology. In addition to conventional fabrication, computer-aided design and computer-aided manufacturing (CAD/CAM) work-flow provides an opportunity to engineer implant drilling templates via a three-dimensional printer. In order to transfer the virtual planning to the oral situation, a highly accurate surgical guide is needed. The aim of this study was to evaluate the impact of the fabrication method on the three-dimensional accuracy. The same virtual planning based on a scanned plaster model was used to fabricate a conventional thermo-formed and a three-dimensional printed surgical guide for each of 13 patients (single tooth implants). Both templates were acquired individually on the respective plaster model using an optical industrial white-light scanner (ATOS II, GOM mbh, Braunschweig, Germany), and the virtual datasets were superimposed. Using the three-dimensional geometry of the implant sleeve, the deviation between both surgical guides was evaluated. The mean discrepancy of the angle was 3.479° (standard deviation, 1.904°) based on data from 13 patients. Concerning the three-dimensional position of the implant sleeve, the highest deviation was in the Z-axis at 0.594 mm. The mean deviation of the Euclidian distance, dxyz, was 0.864 mm. Although the two different fabrication methods delivered statistically significantly different templates, the deviations ranged within a decimillimeter span. Both methods are appropriate for clinical use. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.
Rauda, Iris E; Buonsanti, Raffaella; Saldarriaga-Lopez, Laura C; Benjauthrit, Kanokraj; Schelhas, Laura T; Stefik, Morgan; Augustyn, Veronica; Ko, Jesse; Dunn, Bruce; Wiesner, Ulrich; Milliron, Delia J; Tolbert, Sarah H
2012-07-24
Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.
Manufacturing method of photonic crystal
Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang
2013-01-29
A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.
Merc, Matjaz; Drstvensek, Igor; Vogrin, Matjaz; Brajlih, Tomaz; Recnik, Gregor
2013-07-01
The method of free-hand pedicle screw placement is generally safe although it carries potential risks. For this reason, several highly accurate computer-assisted systems were developed and are currently on the market. However, these devices have certain disadvantages. We have developed a method of pedicle screw placement in the lumbar and sacral region using a multi-level drill guide template, created with the rapid prototyping technology and have validated it in a clinical study. The aim of the study was to manufacture and evaluate the accuracy of a multi-level drill guide template for lumbar and first sacral pedicle screw placement and to compare it with the free-hand technique under fluoroscopy supervision. In 2011 and 2012, a randomized clinical trial was performed on 20 patients. 54 screws were implanted in the trial group using templates and 54 in the control group using the fluoroscopy-supervised free-hand technique. Furthermore, applicability for the first sacral level was tested. Preoperative CT-scans were taken and templates were designed using the selective laser sintering method. Postoperative evaluation and statistical analysis of pedicle violation, displacement, screw length and deviation were performed for both groups. The incidence of cortex perforation was significantly reduced in the template group; likewise, the deviation and displacement level of screws in the sagittal plane. In both groups there was no significantly important difference in deviation and displacement level in the transversal plane as not in pedicle screw length. The results for the first sacral level resembled the main investigated group. The method significantly lowers the incidence of cortex perforation and is therefore potentially applicable in clinical practice, especially in some selected cases. The applied method, however, carries a potential for errors during manufacturing and practical usage and therefore still requires further improvements.
Koh, Vicky Y; Buhari, Shaik A; Tan, Poh Wee; Tan, Yun Inn; Leong, Yuh Fun; Earnest, Arul; Tang, Johann I
2014-06-01
Currently, there are two described methods of catheter insertion for women undergoing multicatheter interstitial accelerated partial breast irradiation (APBI). These are a volume based template approach (template) and a non-template ultrasound guidance freehand approach (non-template). We aim to compare dosimetric endpoints between the template and non-template approach. Twenty patients, who received adjuvant multicatheter interstitial APBI between August 2008 to March 2010 formed the study cohort. Dosimetric planning was based on the RTOG 04-13 protocol. For standardization, the planning target volume evaluation (PTV-Eval) and organs at risk were contoured with the assistance of the attending surgeon. Dosimetric endpoints include D90 of the PTV-Eval, Dose Homogeneity Index (DHI), V200, maximum skin dose (MSD), and maximum chest wall dose (MCD). A median of 18 catheters was used per patient. The dose prescribed was 34 Gy in 10 fractions BID over 5 days. The average breast volume was 846 cm(3) (526-1384) for the entire cohort and there was no difference between the two groups (p = 0.6). Insertion time was significantly longer for the non-template approach (mean 150 minutes) compared to the template approach (mean: 90 minutes) (p = 0.02). The planning time was also significantly longer for the non-template approach (mean: 240 minutes) compared to the template approach (mean: 150 minutes) (p < 0.01). The template approach yielded a higher D90 (mean: 95%) compared to the non-template approach (mean: 92%) (p < 0.01). There were no differences in DHI (p = 0.14), V200 (p = 0.21), MSD (p = 0.7), and MCD (p = 0.8). Compared to the non-template approach, the template approach offered significant shorter insertion and planning times with significantly improved dosimetric PTV-Eval coverage without significantly compromising organs at risk dosimetrically.
Generation and evaluation of an ultra-high-field atlas with applications in DBS planning
NASA Astrophysics Data System (ADS)
Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.
2016-03-01
Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.
Template-free modeling by LEE and LEER in CASP11.
Joung, InSuk; Lee, Sun Young; Cheng, Qianyi; Kim, Jong Yun; Joo, Keehyoung; Lee, Sung Jong; Lee, Jooyoung
2016-09-01
For the template-free modeling of human targets of CASP11, we utilized two of our modeling protocols, LEE and LEER. The LEE protocol took CASP11-released server models as the input and used some of them as templates for 3D (three-dimensional) modeling. The template selection procedure was based on the clustering of the server models aided by a community detection method of a server-model network. Restraining energy terms generated from the selected templates together with physical and statistical energy terms were used to build 3D models. Side-chains of the 3D models were rebuilt using target-specific consensus side-chain library along with the SCWRL4 rotamer library, which completed the LEE protocol. The first success factor of the LEE protocol was due to efficient server model screening. The average backbone accuracy of selected server models was similar to that of top 30% server models. The second factor was that a proper energy function along with our optimization method guided us, so that we successfully generated better quality models than the input template models. In 10 out of 24 cases, better backbone structures than the best of input template structures were generated. LEE models were further refined by performing restrained molecular dynamics simulations to generate LEER models. CASP11 results indicate that LEE models were better than the average template models in terms of both backbone structures and side-chain orientations. LEER models were of improved physical realism and stereo-chemistry compared to LEE models, and they were comparable to LEE models in the backbone accuracy. Proteins 2016; 84(Suppl 1):118-130. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2011 CFR
2011-07-01
... insulation. The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
[Using neural networks based template matching method to obtain redshifts of normal galaxies].
Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng
2005-06-01
Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.
Predicting the accuracy of ligand overlay methods with Random Forest models.
Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J
2008-12-01
The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.
Synthesis of non-siliceous mesoporous oxides.
Gu, Dong; Schüth, Ferdi
2014-01-07
Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.
Directed deposition of inorganic oxide networks on patterned polymer templates
NASA Astrophysics Data System (ADS)
Ford, Thomas James Robert
Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.
Template-based protein-protein docking exploiting pairwise interfacial residue restraints.
Xue, Li C; Rodrigues, João P G L M; Dobbs, Drena; Honavar, Vasant; Bonvin, Alexandre M J J
2017-05-01
Although many advanced and sophisticated ab initio approaches for modeling protein-protein complexes have been proposed in past decades, template-based modeling (TBM) remains the most accurate and widely used approach, given a reliable template is available. However, there are many different ways to exploit template information in the modeling process. Here, we systematically evaluate and benchmark a TBM method that uses conserved interfacial residue pairs as docking distance restraints [referred to as alpha carbon-alpha carbon (CA-CA)-guided docking]. We compare it with two other template-based protein-protein modeling approaches, including a conserved non-pairwise interfacial residue restrained docking approach [referred to as the ambiguous interaction restraint (AIR)-guided docking] and a simple superposition-based modeling approach. Our results show that, for most cases, the CA-CA-guided docking method outperforms both superposition with refinement and the AIR-guided docking method. We emphasize the superiority of the CA-CA-guided docking on cases with medium to large conformational changes, and interactions mediated through loops, tails or disordered regions. Our results also underscore the importance of a proper refinement of superimposition models to reduce steric clashes. In summary, we provide a benchmarked TBM protocol that uses conserved pairwise interface distance as restraints in generating realistic 3D protein-protein interaction models, when reliable templates are available. The described CA-CA-guided docking protocol is based on the HADDOCK platform, which allows users to incorporate additional prior knowledge of the target system to further improve the quality of the resulting models. © The Author 2016. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, H.
1999-03-31
The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performedmore » in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.« less
Pen-chant: Acoustic emissions of handwriting and drawing
NASA Astrophysics Data System (ADS)
Seniuk, Andrew G.
The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.
Petretta, Robert; Strelzow, Jason; Ohly, Nicholas E; Misur, Peter; Masri, Bassam A
2015-12-01
Templating is an important aspect of preoperative planning for total hip arthroplasty and can help determine the size and positioning of the prosthesis. Historically, templating has been performed using acetate templates over printed radiographs. As a result of the increasing use of digital imaging, surgeons now either obtain additional printed radiographs solely for templating purposes or use specialized digital templating software, both of which carry additional cost. The purposes of this study was to compare acetate templating of digitally calibrated images on an LCD monitor to digital templating in terms of (1) accuracy; (2) reproducibility; and (3) time efficiency. Acetate onlay templating was performed directly over digital radiographs on an LCD monitor and was compared with digital templating. Five separate observers participated in this study templating on 52 total hip arthroplasties. For the acetate templating, the digital images were magnified to the scaled reference on the templates provided by the manufacturer (ratio 1.2:1) before templating using a 25-mm marker as a reference. Both the acetate and digital templating results were then compared with the actual implanted components to determine accuracy. Interobserver and intraobserver variability was determined by an intraclass correlation coefficient. Observers recorded time to complete templating from the time of complete upload of patients' imaging onto the system to completion of templating. Both acetate and digital templates demonstrated moderate accuracy in predicting within one size of the eventual implanted acetabular cup (77% [199 of 260]; 70% [181 of 260], respectively; p = 0.050; 95% confidence interval [CI], 0.058-0.32), whereas acetate templating was better at predicting the femoral stem compared to digital templating (75% [195 of 260]; 60% [155 of 260], respectively; p < 0.001; 95% CI, 0.084-0.32). Acetate templating showed moderate to substantial interobserver agreement (cup intraclass correlation coefficient [ICC] = 0.55; 95% CI, 0.14-0.86; femoral ICC = 0.75; 95% CI, 0.39-0.95) and both methods showed almost perfect intraobserver agreement in reproducibility (acetate cup ICC = 0.82; 95% CI, 0.66-0.97; acetate femoral ICC = 0.86; 95% CI, 0.74-0.97; digital cup ICC = 0.82; 95% CI, 0.68-0.97; digital femoral ICC = 0.88; 95% CI, 0.77-1.0). Acetate templating could be performed more quickly (acetate mean 119 seconds; range, 37-220 seconds versus 154 seconds; range, 73-343 seconds; p < 0.001). Acetate onlay templating on digitally calibrated images can be a reliable substitute for digital templating using specialized software. It is quicker to perform and much less expensive. Hospitals and practices need not purchase expensive software, particularly at lower volume centers. Level III, diagnostic study.
Storyboard method of end-user programming with natural language configuration
Bouchard, Ann M; Osbourn, Gordon C
2013-11-19
A technique for end-user programming includes populating a template with graphically illustrated actions and then invoking a command to generate a screen element based on the template. The screen element is rendered within a computing environment and provides a mechanism for triggering execution of a sequence of user actions. The sequence of user actions is based at least in part on the graphically illustrated actions populated into the template.
Refinement of protein termini in template-based modeling using conformational space annealing.
Park, Hahnbeom; Ko, Junsu; Joo, Keehyoung; Lee, Julian; Seok, Chaok; Lee, Jooyoung
2011-09-01
The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kronfeld, Andrea; Müller-Forell, Wibke; Buchholz, Hans-Georg
Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawleymore » rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates together with nonlinear registration algorithms allows for accurate spatial normalization of combined MRI/PET or PET-only studies.« less
Using dynamic programming to improve fiducial marker localization
NASA Astrophysics Data System (ADS)
Wan, Hanlin; Ge, Jiajia; Parikh, Parag
2014-04-01
Fiducial markers are used in a wide range of medical imaging applications. In radiation therapy, they are often implanted near tumors and used as motion surrogates that are tracked with fluoroscopy. We propose a novel and robust method based on dynamic programming (DP) for retrospectively localizing radiopaque fiducial markers in fluoroscopic images. Our method was compared to template matching (TM) algorithms on 407 data sets from 24 patients. We found that the performance of TM varied dramatically depending on the template used (ranging from 47% to 92% of data sets with a mean error <1 mm). DP by itself requires no template and performed as well as the best TM method, localizing the markers in 91% of the data sets with a mean error <1 mm. Finally, by combining DP and TM, we were able to localize the markers in 99% of the data sets with a mean error <1 mm, regardless of the template used. Our results show that DP can be a powerful tool for analyzing tumor motion, capable of accurately locating fiducial markers in fluoroscopic images regardless of marker type, shape, and size.
NASA Astrophysics Data System (ADS)
Leviandier, Thierry; Alber, A.; Le Ber, F.; Piégay, H.
2012-02-01
Seven methods designed to delineate homogeneous river segments, belonging to four families, namely — tests of homogeneity, contrast enhancing, spatially constrained classification, and hidden Markov models — are compared, firstly on their principles, then on a case study, and on theoretical templates. These templates contain patterns found in the case study but not considered in the standard assumptions of statistical methods, such as gradients and curvilinear structures. The influence of data resolution, noise and weak satisfaction of the assumptions underlying the methods is investigated. The control of the number of reaches obtained in order to achieve meaningful comparisons is discussed. No method is found that outperforms all the others on all trials. However, the methods with sequential algorithms (keeping at order n + 1 all breakpoints found at order n) fail more often than those running complete optimisation at any order. The Hubert-Kehagias method and Hidden Markov Models are the most successful at identifying subpatterns encapsulated within the templates. Ergodic Hidden Markov Models are, moreover, liable to exhibit transition areas.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
NASA Astrophysics Data System (ADS)
Bakre, Pratibha V.; Tilve, S. G.
2018-05-01
Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.
Volkmann, Niels
2004-01-01
Reduced representation templates are used in a real-space pattern matching framework to facilitate automatic particle picking from electron micrographs. The procedure consists of five parts. First, reduced templates are constructed either from models or directly from the data. Second, a real-space pattern matching algorithm is applied using the reduced representations as templates. Third, peaks are selected from the resulting score map using peak-shape characteristics. Fourth, the surviving peaks are tested for distance constraints. Fifth, a correlation-based outlier screening is applied. Test applications to a data set of keyhole limpet hemocyanin particles indicate that the method is robust and reliable.
Template-directed control of crystal morphologies.
Meldrum, Fiona C; Ludwigs, Sabine
2007-02-12
Biominerals are characterised by unique morphologies, and it is a long-term synthetic goal to reproduce these synthetically. We here apply a range of templating routes to investigate whether a fascinating category of biominerals, the single crystals with complex forms, can be produced using simple synthetic methods. Macroporous crystals with sponge-like morphologies identical to that of sea urchin skeletal plates were produced on templating with a sponge-like polymer membrane. Similarly, patterning of individual crystal faces was achieved from the micrometer to nanometer scale through crystallisation on colloidal particle monolayers and patterned polymer thin films. These experiments demonstrate the versatility of a templating approach to producing single crystals with unique morphologies.
[Synthesis of Circular DNA Templates with T4 RNA Ligase for Rolling Circle Amplification].
Sakhabutdinova, A R; Maksimova, M A; Garafutdinov, R R
2017-01-01
Currently, isothermal methods of nucleic acid amplification have been well established; in particular, rolling circle amplification is of great interest. In this approach, circular ssDNA molecules have been used as a target that can be obtained by the intramolecular template-dependent ligation of an oligonucleotide C-probe. Here, a new method of synthesizing small circular DNA molecules via the cyclization of ssDNA based on T4 RNA ligase has been proposed. Circular ssDNA is further used as the template for the rolling circle amplification. The maximum yield of the cyclization products was observed in the presence of 5-10% polyethylene glycol 4000, and the optimum DNA length for the cyclization constituted 50 nucleotides. This highly sensitive method was shown to detect less than 10^(2) circular DNA molecules. The method reliability was proved based on artificially destroyed dsDNA, which suggests its implementation for analyzing any significantly fragmented dsDNA.
larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.
Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit
2018-01-01
The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.
Nontemplated Approach to Tuning the Spectral Propertiesof Cyanine-Based Fluorescent NanoGUMBOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Susmita; Bwambok, David; El-Zahab, Bilal
2010-01-01
Template-free controlled aggregation and spectral properties in fluorescent organic nanoparticles (FONs) is highly desirable for various applications.Herein, we report a nontemplated method for controlling the aggregation in near-infrared (NIR) cyanine-based nanoparticles derived from a group of uniformmaterials based on organic salts (GUMBOS). Cationic heptamethine cyanine dye 1,10,3,3,30,30-hexamethylindotricarbocyanine (HMT) was coupled with five different anions, viz., [NTf2 -], [BETI-], [TFPB-], [AOT-], and [TFP4B-], by an ion-exchange method to obtain the respective GUMBOS. The nanoGUMBOS obtained via a reprecipitation method were primarily amorphous and spherical (30-100 nm) as suggested by selected area electron diffraction (SAED) and transmission electron microscopy (TEM). The formationmore » of tunable self-assemblies within the nanoGUMBOS was characterized using absorption and fluorescence spectroscopy in conjunction with molecular dynamics simulations. Counterion-controlled spectral properties observed in the nanoGUMBOS were attributed to variations in J/H ratios with different anions. Association with the [AOT-] anion afforded predominant J aggregation enabling the highest fluorescence intensity, whereas [TFP4B-] disabled the fluorescence due to predominantHaggregation in the nanoparticles. Analyses of the stacking angle of the cations based on molecular dynamic simulation results in [HMT][NTf2], [HMT][BETI], and [HMT][AOT] dispersed in water and a visual analysis of the representative simulation snapshots also imply that the type of aggregation was controlled through the counterion associated with the dye cation.« less
Kalle, Elena; Gulevich, Alexander; Rensing, Christopher
2013-11-01
In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.
Development of a template for the classification of traditional medical knowledge in Korea.
Kim, Sungha; Kim, Boyoung; Mun, Sujeong; Park, Jeong Hwan; Kim, Min-Kyeoung; Choi, Sunmi; Lee, Sanghun
2016-02-03
Traditional Medical Knowledge (TMK) is a form of Traditional Knowledge associated with medicine that is handed down orally or by written material. There are efforts to document TMK, and make database to conserve Traditional Medicine and facilitate future research to validate traditional use. Despite of these efforts, there is no widely accepted template in data file format that is specific for TMK and, at the same time, helpful for understanding and organizing TMK. We aimed to develop a template to classify TMK. First, we reviewed books, articles, and health-related classification systems, and used focus group discussion to establish the definition, scope, and constituents of TMK. Second, we developed an initial version of the template to classify TMK, and applied it to TMK data. Third, we revised the template, based on the results of the initial template and input from experts, and applied it to the data. We developed the template for classification of TMK. The constituents of the template were summary, properties, tools/ingredients, indication/preparation/application, and international standard classification. We applied International Patent Classification, International Classification of Diseases (Korea version), and Classification of Korean Traditional Knowledge Resources to provide legal protection of TMK and facilitate academic research. The template provides standard terms for ingredients, preparation, administration route, and procedure method to assess safety and efficacy. This is the first template that is specialized for TMK for arranging and classifying TMK. The template would have important roles in preserving TMK, and protecting intellectual property. TMK data classified with the template could be used as the preliminary data to screen potential candidates for new pharmaceuticals. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Peng; Luo, Ali; Li, Yinbi
2014-05-01
The LAMOST spectral analysis pipeline, called the 1D pipeline, aims to classify and measure the spectra observed in the LAMOST survey. Through this pipeline, the observed stellar spectra are classified into different subclasses by matching with template spectra. Consequently, the performance of the stellar classification greatly depends on the quality of the template spectra. In this paper, we construct a new LAMOST stellar spectral classification template library, which is supposed to improve the precision and credibility of the present LAMOST stellar classification. About one million spectra are selected from LAMOST Data Release One to construct the new stellar templates, andmore » they are gathered in 233 groups by two criteria: (1) pseudo g – r colors obtained by convolving the LAMOST spectra with the Sloan Digital Sky Survey ugriz filter response curve, and (2) the stellar subclass given by the LAMOST pipeline. In each group, the template spectra are constructed using three steps. (1) Outliers are excluded using the Local Outlier Probabilities algorithm, and then the principal component analysis method is applied to the remaining spectra of each group. About 5% of the one million spectra are ruled out as outliers. (2) All remaining spectra are reconstructed using the first principal components of each group. (3) The weighted average spectrum is used as the template spectrum in each group. Using the previous 3 steps, we initially obtain 216 stellar template spectra. We visually inspect all template spectra, and 29 spectra are abandoned due to low spectral quality. Furthermore, the MK classification for the remaining 187 template spectra is manually determined by comparing with 3 template libraries. Meanwhile, 10 template spectra whose subclass is difficult to determine are abandoned. Finally, we obtain a new template library containing 183 LAMOST template spectra with 61 different MK classes by combining it with the current library.« less
Template-based automatic breast segmentation on MRI by excluding the chest region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Muqing; Chen, Jeon-Hor; Wang, Xiaoyong
2013-12-15
Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as the template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the chest body region on a middle slice was used as the template. Within the chest template, three body landmarks (thoracic spine and bilateral boundary ofmore » the pectoral muscle) were identified for performing the initial V-shape cut to determine the posterior lateral boundary of the breast. The chest template was mapped to each subject's image space to obtain a subject-specific chest model for exclusion. On the remaining image, the chest wall muscle was identified and excluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the middle slice were used as the reference for the segmentation of adjacent slices, and the process continued superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evaluated by an experienced radiologist to mark voxels that were wrongly included or excluded for error analysis. Results: The breast volumes measured by the proposed algorithm were very close to the radiologist's corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of 3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to 2.52% with a mean of 1.03% ± 1.03%. The total error by adding the inclusion and exclusion errors ranged from 0.16% to 11.8%, with a mean of 2.89% ± 2.55%. Conclusions: The automatic chest template-based breast MRI segmentation method worked well for cases with different body and breast shapes and different density patterns. Compared to the radiologist-established truth, the mean difference in segmented breast volume was approximately 1%, and the total error by considering the additive inclusion and exclusion errors was approximately 3%. This method may provide a reliable tool for MRI-based segmentation of breast density.« less
NASA Astrophysics Data System (ADS)
Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo
2016-11-01
Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.
Templated Oligosaccharide Synthesis: The Linker Effect on the Stereoselectivity of Glycosylation
Pornsuriyasak, Papapida; Jia, Xiao G.; Kaeothip, Sophon; Demchenko, Alexei V.
2016-01-01
A new method for intramolecular oligosaccharide synthesis that is conceptually related to the general molecular clamp approach is introduced. Exceptional α-selectivity has been achieved in a majority of applications. Unlike other related concepts, this approach is based on the bisphenol A template, which allows one to connect multiple building blocks to perform templated oligosaccharide synthesis with complete stereoselectivity. This principle was demonstrated by the synthesis of an α,α-linked trisaccharide. PMID:27115718
Lin, Zeming; He, Bingwei; Chen, Jiang; D u, Zhibin; Zheng, Jingyi; Li, Yanqin
2012-08-01
To guide doctors in precisely positioning surgical operation, a new production method of minimally invasive implant guide template was presented. The mandible of patient was scanned by CT scanner, and three-dimensional jaw bone model was constructed based on CT images data The professional dental implant software Simplant was used to simulate the plant based on the three-dimensional CT model to determine the location and depth of implants. In the same time, the dental plaster models were scanned by stereo vision system to build the oral mucosa model. Next, curvature registration technology was used to fuse the oral mucosa model and the CT model, then the designed position of implant in the oral mucosa could be determined. The minimally invasive implant guide template was designed in 3-Matic software according to the design position of implant and the oral mucosa model. Finally, the template was produced by rapid prototyping. The three-dimensional registration technology was useful to fuse the CT data and the dental plaster data, and the template was accurate that could provide the doctors a guidance in the actual planting without cut-off mucosa. The guide template which fabricated by comprehensive utilization of three-dimensional registration, Simplant simulation and rapid prototyping positioning are accurate and can achieve the minimally invasive and accuracy implant surgery, this technique is worthy of clinical use.
Feasibility study of patient-specific surgical templates for the fixation of pedicle screws.
Salako, F; Aubin, C-E; Fortin, C; Labelle, H
2002-01-01
Surgery for scoliosis, as well as other posterior spinal surgeries, frequently uses pedicle screws to fix an instrumentation on the spine. Misplacement of a screw can lead to intra- and post-operative complications. The objective of this study is to design patient-specific surgical templates to guide the drilling operation. From the CT-scan of a vertebra, the optimal drilling direction and limit angles are computed from an inverse projection of the pedicle limits. The first template design uses a surface-to-surface registration method and was constructed in a CAD system by subtracting the vertebra from a rectangular prism and a cylinder with the optimal orientation. This template and the vertebra were built using rapid prototyping. The second design uses a point-to-surface registration method and has 6 adjustable screws to adjust the orientation and length of the drilling support device. A mechanism was designed to hold it in place on the spinal process. A virtual prototype was build with CATIA software. During the operation, the surgeon places either template on patient's vertebra until a perfect match is obtained before drilling. The second design seems better than the first one because it can be reused on different vertebra and is less sensible to registration errors. The next step is to build the second design and make experimental and simulations tests to evaluate the benefits of this template during a scoliosis operation.
NASA Astrophysics Data System (ADS)
Lubeck, Christopher Ryan
The use of nanostructured, hybrid materials possesses great future potential. Many examples of nanostructured materials exist within nature, such as animal bone, animal teeth, and seashells. This research, inspired by nature, strove to mimic salient properties of natural materials, utilizing methods observed within nature to produce materials. Further, this research increased the functionality of the templates from "mere" template to functional participant. Different chemical methods to produce hybrid materials were employed within this research to achieve these goals. First, electro-osmosis was utilized to drive ions into a polymeric matrix to form hybrid inorganic polymer material, creating a material inspired by naturally occurring bone or seashell in which the inorganic component provides strength and the polymeric material decreases the brittleness of the combined hybrid material. Second, self-assembled amphiphiles, forming higher ordered structures, acted as a template for inorganic cadmium sulfide. Electronically active molecules based on ethylene oxide and aniline segments were synthesized to create interaction between the templating material and the resulting inorganic cadmium sulfide. The templating process utilized self-assembly to create the inorganic structure through the interaction of the amphiphiles with water. The use of self-assembly is itself inspired by nature. Self-assembled structures are observed within living cells as cell walls and cell membranes are created through hydrophilic and hydrophobic interactions. Finally, the mesostructured inorganic cadmium sulfide was itself utilized as a template to form mesostructured copper sulfide.
Chen, Chunhong; Wang, Haiyan; Han, Chuanlong; Deng, Jiang; Wang, Jing; Li, Mingming; Tang, Minghui; Jin, Haiyan; Wang, Yong
2017-02-22
The soft template method is broadly applied to the fabrication of hollow-structured nanomaterials. However, due to the instability and the typical spherical shape of these soft templates, the resultant particles have a spherical morphology with a wide size distribution. Herein, we developed a sustainable route to fabricate asymmetric flasklike hollow carbonaceous structures with a highly uniform morphology and a narrow size distribution using the soft template method. A dynamic growth mechanism induced by the synergetic interactions between template and biomass is proposed. The precursors (ribose) provide an acidic environment for sodium oleate during the hydrothermal process in which oleic acid nanoemulsions are initially formed and serve as both template and benign solvent for the amphiphilic derivatives of the precursor. Simultaneously, the cosurfactant P123 facilitates the uniform dispersion of the nanoemulsion and is believed to cause the carbonaceous shells to rupture, providing openings through which the intermediates can enter. These subtle interactions facilitate the formation of the flasklike, asymmetric, hollow, carbonaceous nanoparticles. Furthermore, this unique structure contributes to the high surface area (2335 m 2 g -1 ) of the flasklike carbon particles, which enhances the performance of supercapacitors. These findings may open up an exciting field for exploring anisotropic carbonaceous nanomaterials and for understanding the related mechanisms to provide guidance for the design of increasingly complex carbonaceous materials.
Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li
2008-05-01
CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.
Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You
2017-03-01
Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Qian, S.; Dunham, M.E.
1996-11-12
A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.
Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.
Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong
2014-05-01
Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.
Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug
NASA Astrophysics Data System (ADS)
Tingming, Fu; Liwei, Guo; Kang, Le; Tianyao, Wang; Jin, Lu
2010-09-01
The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20PO 70EO 20) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.
Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.
Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R
2018-07-01
DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50 = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.
Multifunctionalities driven by ferroic domains
NASA Astrophysics Data System (ADS)
Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.
2014-08-01
Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.
Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung
2014-01-01
We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.
ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS
An extremely simple single-step method is described for the bulk synthesis of nanofibers of the electronic polymer polyaniline in fully reduced state (leucoemarldine form) without using any reducing agents, surfactants, and/or large amounts of insoluble templates. Chemical oxida...
A blind search for a common signal in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Liu, Hao; Creswell, James; von Hausegger, Sebastian; Jackson, Andrew D.; Naselsky, Pavel
2018-02-01
We propose a blind, template-free method for the extraction of a common signal between the Hanford and Livingston detectors and apply it especially to the GW150914 event. We construct a log-likelihood method that maximizes the cross-correlation between each detector and the common signal and minimizes the cross-correlation between the residuals. The reliability of this method is tested using simulations with an injected common signal. Finally, our method is used to assess the quality of theoretical gravitational wave templates for GW150914.
Novel techniques for the synthesis of three-way catalytic converter support materials
NASA Astrophysics Data System (ADS)
Anyaba, Prince Nwabueze
Current automobiles use catalytic converters, consisting of noble metals on an oxide support, to convert noxious engine exhaust pollutants into less harmful species. The development of mesoporous oxide supports with optimal pore geometries could enable these devises to decrease in size and weight and significantly reduce the metal loadings required to achieve optimal performance. Thus, in this work, I investigated a wide range of techniques for the synthesis of mesoporous oxides to determine if they could be adapted to ceria-zirconia-yttria mixed oxide (CZY) systems, which are the industry standard for the optimal oxide support for catalytic converter applications. Additionally, I compared and critically evaluated the catalytic performance of the CZY mixed oxides, which were synthesized from the various templating techniques. The catalytic performance test was broken up into two: catalyst activity test which was determined based on the light-off temperatures at which 50% conversion of the reacting species have been converted; and resistance to surface area loss under accelerated aging at heating rate of 20°C/min form 700 to 1000°C, with the final temperature being held fixed for 4 h. To date, the most cost effective methods for preparing mesoporous materials are via techniques that employ templates or structure directing agents. These templates can be divided into two groups: endo-templates (i.e., soft templates, such as surfactants, dendrimers, and block copolymers) and exo-templates (i.e., hard templates, such as porous carbons and resins). The soft templating techniques generally involve both sol-gel and templating methods, while the hard templates required no sol-gel chemistry to achieve the desired templating effect. The precursors for ceria, zirconia, and yttria used were cerium (III) nitrate hexahydrate, zirconyl nitrate, and yttrium nitrate hexahydrate, respectively. The mesoporous CZY materials that were synthesized had surface area values that were between 40 and 120 m2/g and pore diameters that range from 2.2 to 9.0 nm after calcination in air from ambient temperature to 600°C at heating rates varied from 1 to 20°C/min, with the final temperature being maintained for 4 h. The novel CZY oxides that were prepared from the different templating techniques were characterized using nitrogen physisorption to determine the Brunauer--Emmett--Teller (BET) surface area and the Barrett--Joyner--Halenda (BJH) pore size distribution. Samples that showed some promise were further examined by transmission electron microscopy (TEM) to study the morphology of the structure; scanning electron microscopy (SEM) to study the bulk surface structure; thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to determine physical and chemical changes occurring during calcination; elemental analysis to determine composition; powder X-ray diffraction (PXD) to determine the existence of crystalline structure; and small angle X-ray diffraction (SAXD) to determine the occurrence of mesoscale ordering of repeating units. Finally, selected samples underwent catalytic testing under simulated exhaust conditions. The results of the tests showed that CZY materials synthesized using sol-gel methods with the Pluronic P123 soft template were the most active (i.e., had the lowest light off temperature), while CZY material with least loss of surface area after accelerated aging from 700 to 1000°C was the polymeric resin templated CZY materials.
Shielding and activity estimator for template-based nuclide identification methods
Nelson, Karl Einar
2013-04-09
According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramdasi, O. A.; Kolekar, Y. D.; Kambale, R. C., E-mail: rckambale@gmail.com
The plate-like NaNbO{sub 3} (NN) templates with (100) preferential orientation was synthesized from bismuth layer structured ferroelectric Bi{sub 2.5}Na{sub 3.5}Nb{sub 5}O{sub 18} (BNN) precursor by topochemical microcrystal conversion (TMC) method. The large platelets of BNN were first obtained by molten salt synthesis at the 1125 °C with a salt-to oxide weight ratio 1.5: 1. The anisotropic NN templates were derived from BNN at the 975 °C with BNN/ Na{sub 2}CO{sub 3} molar ratio of 1:1.5. The NaNbO{sub 3} templates have an average length of ~ 10-14 µm. The NN templates retains their elemental constitutes of Na, Nb and O inmore » stoichiometric proportion. The effect of ultrasonication on the orientation factor (F{sub h00}) of NN templates was understood by X-ray diffraction (XRD) and scanning electron microscopy (SEM) results. The degree of (100) orientation of as synthesized NN templates (~57%) was found to be increased (~89%) after ultrasonication. Moreover, the microstructure i.e. alignment / shape of as synthesized NN templates was changed from rectangular (110) orientation to square (100) orientation geometry after ultrasonication. Hence, ultrasonication is a cost effective approach to preparing the textured piezoelectric ceramics by the template grain growth technique using tape casting.« less
How Accurate Are Infrared Luminosities from Monochromatic Photometric Extrapolation?
NASA Astrophysics Data System (ADS)
Lin, Zesen; Fang, Guanwen; Kong, Xu
2016-12-01
Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ({L}{IR}) of galaxies. By utilizing multi-wavelength data that covers across 0.35-500 μm in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated {L}{IR} based on three IR spectral energy distribution (SED) templates out to z˜ 3.5. We find that the Chary & Elbaz template provides the best estimate of {L}{IR} in Herschel/Photodetector Array Camera and Spectrometer (PACS) bands, while the Dale & Helou template performs best in Herschel/Spectral and Photometric Imaging Receiver (SPIRE) bands. To estimate {L}{IR}, we suggest that extrapolations from the available longest wavelength PACS band based on the Chary & Elbaz template can be a good estimator. Moreover, if the PACS measurement is unavailable, extrapolations from SPIRE observations but based on the Dale & Helou template can also provide a statistically unbiased estimate for galaxies at z≲ 2. The emission with a rest-frame 10-100 μm range of IR SED can be well described by all three templates, but only the Dale & Helou template shows a nearly unbiased estimate of the emission of the rest-frame submillimeter part.
Directional templates for real-time detection of coronal axis rotated faces
NASA Astrophysics Data System (ADS)
Perez, Claudio A.; Estevez, Pablo A.; Garate, Patricio
2004-10-01
Real-time face and iris detection on video images has gained renewed attention because of multiple possible applications in studying eye function, drowsiness detection, virtual keyboard interfaces, face recognition, video processing and multimedia retrieval. In this paper, a study is presented on using directional templates in the detection of faces rotated in the coronal axis. The templates are built by extracting the directional image information from the regions of the eyes, nose and mouth. The face position is determined by computing a line integral using the templates over the face directional image. The line integral reaches a maximum when it coincides with the face position. It is shown an improvement in localization selectivity by the increased value in the line integral computed with the directional template. Besides, improvements in the line integral value for face size and face rotation angle was also found through the computation of the line integral using the directional template. Based on these results the new templates should improve selectivity and hence provide the means to restrict computations to a fewer number of templates and restrict the region of search during the face and eye tracking procedure. The proposed method is real time, completely non invasive and was applied with no background limitation and normal illumination conditions in an indoor environment.
NASA Astrophysics Data System (ADS)
Lu, Xiao; Li, Jia; Zhu, Jian-Gang; Laughlin, David E.; Zhu, Jingxi
2018-06-01
Templated growth of two-phase thin films can achieve desirably ordered microstructures. In such cases, the microstructure of the growing films follows the topography of the template. By combining the Potts model Monte Carlo simulation and the "level set" method, an attempt was previously made to understand the physical mechanism behind the templated growth process. In the current work, this model is further used to study the effect of two parameters within the templated growth scenario, namely, the temperature and the geometric features of the template. The microstructure of the thin film grown with different lattice temperatures and domes is analyzed. It is found that within a moderate temperature range, the effect of geometric features took control of the ordering of the microstructure by its influence on the surface energy gradient. Interestingly, within this temperature range, as the temperature is increased, an ordered microstructure forms on a template without the optimal geometric features, which seems to be a result of competition between the kinetics and the thermodynamics during deposition. However, when the temperature was either above or below this temperature range, the template provided no guide to the whole deposition so that no ordered microstructure formed.
NASA Astrophysics Data System (ADS)
Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.
2016-12-01
The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.
Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.
Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A
2016-02-10
The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.
Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan
2011-03-01
We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.
Methods for Multiplex Template Sampling in Digital PCR Assays
Petriv, Oleh I.; Heyries, Kevin A.; VanInsberghe, Michael; Walker, David; Hansen, Carl L.
2014-01-01
The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision. PMID:24854517
Methods for multiplex template sampling in digital PCR assays.
Petriv, Oleh I; Heyries, Kevin A; VanInsberghe, Michael; Walker, David; Hansen, Carl L
2014-01-01
The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision.
Zhang, Kai; Wang, Ke; Zhu, Xue; Zhang, Jue; Xu, Lan; Huang, Biao; Xie, Minhao
2014-01-07
A general and reliable strategy for the detection of cocaine was proposed utilizing DNA-templated silver nanoclusters as signal indicators and the nicking endonuclease-assisted signal amplification method. This strategy can detect cocaine specifically with a detection limit as low as 2 nM by using a small volume of 5 μL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abulencia, A.; Acosta, D.; Adelman, Jahred A.
2006-02-01
The authors describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. They identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass.more » For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 {+-} 6.0(stat.) {+-} 4.1(syst.) GeV/c{sup 2}.« less
Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement
Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung
2017-01-01
This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219
Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates.
Kong, Dehui; Yeung, Wayland; Hili, Ryan
2016-07-11
Recent advances in nucleic acid-templated copolymerization have expanded the scope of sequence-controlled synthetic copolymers beyond the molecular architectures witnessed in nature. This has enabled the power of molecular evolution to be applied to synthetic copolymer libraries to evolve molecular function ranging from molecular recognition to catalysis. This Review seeks to summarize different approaches available to generate sequence-defined monodispersed synthetic copolymer libraries using nucleic acid-templated polymerization. Key concepts and principles governing nucleic acid-templated polymerization, as well as the fidelity of various copolymerization technologies, will be described. The Review will focus on methods that enable the combinatorial generation of copolymer libraries and their molecular evolution for desired function.
Metallic nanoshells on porphyrin-stabilized emulsions
Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J
2013-10-29
Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.
Macroporous ceramics by colloidal templating
NASA Astrophysics Data System (ADS)
Subramaniam, G.; Pine, David J.
2000-04-01
We describe a novel method of fabricating macroporous ceramics employing colloidal dispersion of ultrafine ceramic particles with latex particles as the templates. The colloidal particles form a particulate gel on drying and fill the voids of the ordered latex templates. Subsequent removal of the template by calcination results in the formation of an ordered macroporous ceramic. The process has significant advantages over the traditional sol-gel process employing alkoxide precursors. Most importantly, the much lower shrinkage compared to the sol-gel process enabled us to produce larger pieces of the sample. The larger shrinkage involved in the sol-gel process often results in small and fragile pieces of the macroporous material which has to be subsequently heat treated to induce crystallization. The ability to choose crystalline colloidal particles in our method obviates the need for heat treatment to achieve crystallinity. We have synthesized a variety of materials such as macroporous silica, titania, alumina and recently have also extended the approach to macroporous silicon which is not amenable to the sol-gel process.
A semi-automatic computer-aided method for surgical template design
NASA Astrophysics Data System (ADS)
Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan
2016-02-01
This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.
Sacrificial template method of fabricating a nanotube
Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA
2007-05-01
Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.
Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yunling, E-mail: zouyunling1999@126.com; Li, Yan; Guo, Ying
Highlights: ► Flower-like and corn-like CuO nanostructures were synthesized by a simple method. ► Cotton fibers purchased from commercially are used as template. ► The concentration of Cu(NO{sub 3}){sub 2} solution is an important parameter. -- Abstract: Flower-like and corn-like CuO nanostructures composed of CuO nanoparticles were successfully synthesized via ultrasound-assisted template method, respectively, by controlling the initial concentration of Cu(NO{sub 3}){sub 2} solution. Here, cotton fibers were used as template agent. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The results demonstrated that the initialmore » concentration of Cu(NO{sub 3}){sub 2} solution was an important parameter for determining whether CuO nanoparticles assembled into flower-like structures or corn-like structures. The mechanism of forming different nanostructures of CuO was discussed.« less
A semi-automatic computer-aided method for surgical template design
Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan
2016-01-01
This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method. PMID:26843434
A semi-automatic computer-aided method for surgical template design.
Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan
2016-02-04
This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.
Rutvisuttinunt, Wiriya; Meyer, Peter R.; Scott, Walter A.
2008-01-01
Background Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTP•RT•P/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnet•RT•P/T complex). Methods and Results UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTP•RT•P/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnet•RT•P/T complex (i.e., in the pre-translocation position). Conclusions For +1 dNTP•RT•P/T and foscarnet•RT•P/T stable complexes, tight interactions were observed between RT and the first unpaired template nucleotide following the bound dNTP or the primer terminus, respectively. PMID:18974785
Performance Evaluation of Fusing Protected Fingerprint Minutiae Templates on the Decision Level
Yang, Bian; Busch, Christoph; de Groot, Koen; Xu, Haiyun; Veldhuis, Raymond N. J.
2012-01-01
In a biometric authentication system using protected templates, a pseudonymous identifier is the part of a protected template that can be directly compared. Each compared pair of pseudonymous identifiers results in a decision testing whether both identifiers are derived from the same biometric characteristic. Compared to an unprotected system, most existing biometric template protection methods cause to a certain extent degradation in biometric performance. Fusion is therefore a promising way to enhance the biometric performance in template-protected biometric systems. Compared to feature level fusion and score level fusion, decision level fusion has not only the least fusion complexity, but also the maximum interoperability across different biometric features, template protection and recognition algorithms, templates formats, and comparison score rules. However, performance improvement via decision level fusion is not obvious. It is influenced by both the dependency and the performance gap among the conducted tests for fusion. We investigate in this paper several fusion scenarios (multi-sample, multi-instance, multi-sensor, multi-algorithm, and their combinations) on the binary decision level, and evaluate their biometric performance and fusion efficiency on a multi-sensor fingerprint database with 71,994 samples. PMID:22778583
Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A
2016-04-01
To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.
NASA Astrophysics Data System (ADS)
Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi
Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.
Terry, Tracy J.; Stack, T. Daniel P.
2009-01-01
Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763
Method for making surfactant-templated thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You
2010-08-31
An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Method for making surfactant-templated thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou
2002-01-01
An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.
Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng
2018-02-16
In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.
NASA Astrophysics Data System (ADS)
Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian
2016-08-01
A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.
Synthesis of metallic nanoshells on porphyrin-stabilized emulsions
Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA
2011-12-13
Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.
NASA Astrophysics Data System (ADS)
Suchitra, S. M.; Udayashankar, N. K.
2017-12-01
In the present study, we describe an effective method for the synthesis of Graphitic carbon nitride (GCN) nanostructures using porous anodic alumina (AAO) membrane as template by simple thermal condensation of cyanamide. Synthesized nanostructure was fully analysed by various techniques to detect its crystalline nature, morphology, luminescent properties followed by the evaluation of its photocatalytic activity in the degradation of Methylene blue dye. Structural analysis of synthesized GCNNF was systematically carried out using x-ray powder diffraction (XRD) and scanning electron microscope (SEM), and. The results confirmed the growth of GCN inside the nanochannels of anodic alumina templates. Luminescent properties of GCNNF were studied using photoluminescence (PL) spectroscopy. PL analysis showed the presence of a strong emission peak in the wavelength range of 350-600 nm in blue region. GCNNF displays higher photocatalytic performance in the photodegradation of methylene blue compare to the bulk GCN. Highlights 1. In the present paper, we report the synthesis of graphitic carbon nitride nanofibers (GCNNF) using porous anodic aluminium oxide membranes as templates through thermal condensation of cyanamide at 500 °C. 2. The synthesis of Graphitic carbon nitride nanofibers using porous andic alumina template is the efficient approach for increasing crystallinity and surface area. 3. The high surface area of graphitic carbon nitride nanofibers has a good impact on novel optical and photocatalytic properties of the bulkGCN. 4. AAO templating of GCN is one of the versatile method to produce tailorable GCN nanostructures with higher surface area and less number of structural defects. 5. Towards photocatalytic degradation of dyes, the tuning of physical properties is very essential thing hence we are succeeded in achieving better catalytic performance of GCN nanostructures by making use of AAO templates.
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.
2016-01-01
Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms, was found in left BA35 using both regional and summary thickness measures. Further, statistical maps of regional thickness difference between aMCI and controls revealed different patterns for the three anatomical variants. PMID:27702610
Zhang, Suoying; Liu, Hong; Liu, Pengfei; Yang, Zhuhong; Feng, Xin; Huo, Fengwei; Lu, Xiaohua
2015-06-07
Uniform CuO hollow microspheres were successfully achieved from a non-uniform metal organic framework by using a template-free method. The process mechanism has been revealed to be spherical aggregation and Ostwald ripening. When tested in CO oxidation and heat treatment, these assembled microspheres exhibited an excellent catalytic performance and show a much better stability than the inherited hollow structure from MOFs.
Comparison of Grouping Methods for Template Extraction from VA Medical Record Text.
Redd, Andrew M; Gundlapalli, Adi V; Divita, Guy; Tran, Le-Thuy; Pettey, Warren B P; Samore, Matthew H
2017-01-01
We investigate options for grouping templates for the purpose of template identification and extraction from electronic medical records. We sampled a corpus of 1000 documents originating from Veterans Health Administration (VA) electronic medical record. We grouped documents through hashing and binning tokens (Hashed) as well as by the top 5% of tokens identified as important through the term frequency inverse document frequency metric (TF-IDF). We then compared the approaches on the number of groups with 3 or more and the resulting longest common subsequences (LCSs) common to all documents in the group. We found that the Hashed method had a higher success rate for finding LCSs, and longer LCSs than the TF-IDF method, however the TF-IDF approach found more groups than the Hashed and subsequently more long sequences, however the average length of LCSs were lower. In conclusion, each algorithm appears to have areas where it appears to be superior.
Bridge, Heather; Smolskis, Mary; Bianchine, Peter; Dixon, Dennis O; Kelly, Grace; Herpin, Betsey; Tavel, Jorge
2009-08-01
A clinical research protocol document must reflect both sound scientific rationale as well as local, national and, when applicable, international regulatory and human subject protections requirements. These requirements originate from a variety of sources, undergo frequent revision and are subject to interpretation. Tools to assist clinical investigators in the production of clinical protocols could facilitate navigating these requirements and ultimately increase the efficiency of clinical research. The National Institute of Allergy and Infectious Diseases (NIAID) developed templates for investigators to serve as the foundation for protocol development. These protocol templates are designed as tools to support investigators in developing clinical protocols. NIAID established a series of working groups to determine how to improve its capacity to conduct clinical research more efficiently and effectively. The Protocol Template Working Group was convened to determine what protocol templates currently existed within NIAID and whether standard NIAID protocol templates should be produced. After review and assessment of existing protocol documents and requirements, the group reached consensus about required and optional content, determined the format and identified methods for distribution as well as education of investigators in the use of these templates. The templates were approved by the NIAID Executive Committee in 2006 and posted as part of the NIAID Clinical Research Toolkit [1] website for broad access. These documents require scheduled revisions to stay current with regulatory and policy changes. The structure of any clinical protocol template, whether comprehensive or specific to a particular study phase, setting or design, affects how it is used by investigators. Each structure presents its own set of advantages and disadvantages. While useful, protocol templates are not stand-alone tools for creating an optimal protocol document, but must be complemented by institutional resources and support. Education and guidance of investigators in the appropriate use of templates is necessary to ensure a complete yet concise protocol document. Due to changing regulatory requirements, clinical protocol templates cannot become static, but require frequent revisions.
Characterization of ZnO nanoparticles grown in presence of Folic acid template
2012-01-01
Background ZnO nanoparticles (grown in the template of folic acid) are biologically useful, luminescent material. It can be used for multifunctional purposes, e.g., as biosensor, bioimaging, targeted drug delivery and as growth promoting medicine. Methods Sol–gel chemical method was used to develop the uniform ZnO nanoparticles, in a folic acid template at room temperature and pH ~ 7.5. Agglomeration of the particles was prevented due to surface charge density of folic acid in the medium. ZnO nanoparticle was further characterized by different physical methods. Results Nanocrystalline, wurtzite ZnO particles thus prepared show interesting structural as well as band gap properties due to capping with folic acid. Conclusions A rapid, easy and chemical preparative method for the growth of ZnO nanoparticles with important surface physical properties is discussed. Emphatically, after capping with folic acid, its photoluminescence properties are in the visible region. Therefore, the same can be used for monitoring local environmental properties of biosystems. PMID:22788841
Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras
2015-08-01
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.
BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE
A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...
Matsusaki, Michiya; Yoshida, Hiroaki; Akashi, Mitsuru
2007-06-01
The three-dimensional (3D)-engineered tissues composed of only cells and extracellular matrices (ECM) were constructed by the hydrogel template approach. The disulfide-crosslinked poly(gamma-glutamic acid) hydrogels were prepared as a template hydrogel. These template hydrogels were easily decomposed under physiological conditions using reductants such as cysteine, glutathione and dithiothreitol by cleavage of disulfide crosslinkage to thiol groups. The decomposed polymers are soluble in cell culture medium. The cleaving of disulfide bond was determined by UV-vis and FT-IR spectroscopies. We successfully prepared the 3D-engineered tissues (thickness/diameter, 2mm/1cm) composed of mouse L929 fibroblast cells and ECM by the decomposition of only the template hydrogel with cysteine after 10 days 3D-cell culture on/in the template hydrogel. The size and thickness of the 3D-engineered tissues was completely transferred from the template hydrogel. The cultured L929 cells viability in the obtained engineered tissues was confirmed by a culture test, WST-1 method and LIVE/DEAD staining assay. The engineered tissue was self-standing and highly dense composite of the cultured cells and collagen produced by the cells. This hydrogel template approach may be useful as a new class of soft-tissue engineering technology to substitute a synthetic polymer scaffold to the ECM scaffold produced from the cultured cells.
Predict Brain MR Image Registration via Sparse Learning of Appearance and Transformation
Wang, Qian; Kim, Minjeong; Shi, Yonghong; Wu, Guorong; Shen, Dinggang
2014-01-01
We propose a new approach to register the subject image with the template by leveraging a set of intermediate images that are pre-aligned to the template. We argue that, if points in the subject and the intermediate images share similar local appearances, they may have common correspondence in the template. In this way, we learn the sparse representation of a certain subject point to reveal several similar candidate points in the intermediate images. Each selected intermediate candidate can bridge the correspondence from the subject point to the template space, thus predicting the transformation associated with the subject point at the confidence level that relates to the learned sparse coefficient. Following this strategy, we first predict transformations at selected key points, and retain multiple predictions on each key point, instead of allowing only a single correspondence. Then, by utilizing all key points and their predictions with varying confidences, we adaptively reconstruct the dense transformation field that warps the subject to the template. We further embed the prediction-reconstruction protocol above into a multi-resolution hierarchy. In the final, we refine our estimated transformation field via existing registration method in effective manners. We apply our method to registering brain MR images, and conclude that the proposed framework is competent to improve registration performances substantially. PMID:25476412
A Hospital-Specific Template for Benchmarking its Cost and Quality
Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A
2014-01-01
Objective Develop an improved method for auditing hospital cost and quality tailored to a specific hospital’s patient population. Data Sources/Setting Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, New York, and Texas between 2004 and 2006. Study Design A template of 300 representative patients from a single index hospital was constructed and used to match 300 patients at 43 hospitals that had a minimum of 500 patients over a 3-year study period. Data Collection/Extraction Methods From each of 43 hospitals we chose 300 patients most resembling the template using multivariate matching. Principal Findings We found close matches on procedures and patient characteristics, far more balanced than would be expected in a randomized trial. There were little to no differences between the index hospital’s template and the 43 hospitals on most patient characteristics yet large and significant differences in mortality, failure-to-rescue, and cost. Conclusion Matching can produce fair, directly standardized audits. From the perspective of the index hospital, “hospital-specific” template matching provides the fairness of direct standardization with the specific institutional relevance of indirect standardization. Using this approach, hospitals will be better able to examine their performance, and better determine why they are achieving the results they observe. PMID:25201167
Ten Steps to Create Virtual Smile Design Templates With Adobe Photoshop® CS6.
Sundar, Manoj Kumar; Chelliah, Venkataraman
2018-03-01
Computer design software has become a primary tool for communication among the dentist, patient, and ceramist. Virtual smile design can be carried out using various software programs, most of which use assorted forms of teeth templates that are made based on the concept of "golden proportion." Despite current advances in 3-dimensional imaging and smile designing, many clinicians still employ conventional design methods and analog (ie, man-made) mock-ups in assessing and establishing esthetic makeovers. To simplify virtual smile designing, the teeth templates should be readily available. No literature has provided details as to how to create these templates. This article explains a technique for creating different forms of teeth templates using Adobe Photoshop® CS6 that eventually can be used for smile design purposes, either in Photoshop or Microsoft Powerpoint. Clinically speaking, various smile design templates created using set proportions in Adobe Photoshop CS6 can be used in virtual smile designing, a valuable resource in diagnosis, treatment planning, and communicating with patients and ceramists, thus providing a platform for a successful esthetic rehabilitation.
NASA Astrophysics Data System (ADS)
Salgado, R.; Arteaga, G. C.; Arias, J. M.
2018-04-01
Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.
STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadely, Ross; Willman, Beth; Hogg, David W.
2012-11-20
Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r {approx}> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies-even very compact galaxies-outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM <0.2 arcsec. We consider unsupervised spectral energy distribution template fitting and supervised, data-driven support vector machines (SVMs). For template fitting, we use a maximum likelihood (ML) method and a new hierarchical Bayesian (HB) method, which learns the prior distribution of template probabilities from the data. SVM requires training datamore » to classify unknown sources; ML and HB do not. We consider (1) a best-case scenario (SVM{sub best}) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM{sub real}) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering {approx}80% completeness, with purity of {approx}60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM{sub best}, HB, ML, and SVM{sub real}. We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.« less
Xia, Wenjun; Mita, Yoshio; Shibata, Tadashi
2016-05-01
Aiming at efficient data condensation and improving accuracy, this paper presents a hardware-friendly template reduction (TR) method for the nearest neighbor (NN) classifiers by introducing the concept of critical boundary vectors. A hardware system is also implemented to demonstrate the feasibility of using an field-programmable gate array (FPGA) to accelerate the proposed method. Initially, k -means centers are used as substitutes for the entire template set. Then, to enhance the classification performance, critical boundary vectors are selected by a novel learning algorithm, which is completed within a single iteration. Moreover, to remove noisy boundary vectors that can mislead the classification in a generalized manner, a global categorization scheme has been explored and applied to the algorithm. The global characterization automatically categorizes each classification problem and rapidly selects the boundary vectors according to the nature of the problem. Finally, only critical boundary vectors and k -means centers are used as the new template set for classification. Experimental results for 24 data sets show that the proposed algorithm can effectively reduce the number of template vectors for classification with a high learning speed. At the same time, it improves the accuracy by an average of 2.17% compared with the traditional NN classifiers and also shows greater accuracy than seven other TR methods. We have shown the feasibility of using a proof-of-concept FPGA system of 256 64-D vectors to accelerate the proposed method on hardware. At a 50-MHz clock frequency, the proposed system achieves a 3.86 times higher learning speed than on a 3.4-GHz PC, while consuming only 1% of the power of that used by the PC.
Webb, Thomas R; Jiang, Luyong; Sviridov, Sergey; Venegas, Ruben E; Vlaskina, Anna V; McGrath, Douglas; Tucker, John; Wang, Jian; Deschenes, Alain; Li, Rongshi
2007-01-01
We report the further application of a novel approach to template and ligand design by the synthesis of agonists of the melanocortin receptor. This design method uses the conserved structural data from the three-dimensional conformations of beta-turn peptides to design rigid nonpeptide templates that mimic the orientation of the main chain C-alpha atoms in a peptide beta-turn. We report details on a new synthesis of derivatives of template 1 that are useful for the synthesis of exploratory libraries. The utility of this technique is further exemplified by several iterative rounds of high-throughput synthesis and screening, which result in new partially optimized nonpeptide agonists for several melanocortin receptors.
Template-Based Geometric Simulation of Flexible Frameworks
Wells, Stephen A.; Sartbaeva, Asel
2012-01-01
Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055
A Bayesian approach to the creation of a study-customized neonatal brain atlas
Zhang, Yajing; Chang, Linda; Ceritoglu, Can; Skranes, Jon; Ernst, Thomas; Mori, Susumu; Miller, Michael I.; Oishi, Kenichi
2014-01-01
Atlas-based image analysis (ABA), in which an anatomical “parcellation map” is used for parcel-by-parcel image quantification, is widely used to analyze anatomical and functional changes related to brain development, aging, and various diseases. The parcellation maps are often created based on common MRI templates, which allow users to transform the template to target images, or vice versa, to perform parcel-by-parcel statistics, and report the scientific findings based on common anatomical parcels. The use of a study-specific template, which represents the anatomical features of the study population better than common templates, is preferable for accurate anatomical labeling; however, the creation of a parcellation map for a study-specific template is extremely labor intensive, and the definitions of anatomical boundaries are not necessarily compatible with those of the common template. In this study, we employed a Volume-based Template Estimation (VTE) method to create a neonatal brain template customized to a study population, while keeping the anatomical parcellation identical to that of a common MRI atlas. The VTE was used to morph the standardized parcellation map of the JHU-neonate-SS atlas to capture the anatomical features of a study population. The resultant “study-customized” T1-weighted and diffusion tensor imaging (DTI) template, with three-dimensional anatomical parcellation that defined 122 brain regions, was compared with the JHU-neonate-SS atlas, in terms of the registration accuracy. A pronounced increase in the accuracy of cortical parcellation and superior tensor alignment were observed when the customized template was used. With the customized atlas-based analysis, the fractional anisotropy (FA) detected closely approximated the manual measurements. This tool provides a solution for achieving normalization-based measurements with increased accuracy, while reporting scientific findings in a consistent framework. PMID:25026155
Cellular localization and expression of template-activating factor I in different cell types.
Nagata, K; Saito, S; Okuwaki, M; Kawase, H; Furuya, A; Kusano, A; Hanai, N; Okuda, A; Kikuchi, A
1998-05-01
Template-activating factors I (TAF-I) alpha and beta have been identified as chromatin remodeling factors from human HeLa cells. TAF-I beta corresponds to the protein encoded by the set gene, which was found in an acute undifferentiated leukemia as a fusion version with the can gene via chromosomal translocation. To determine the localization of TAF-I, we raised both polyclonal and monoclonal antibodies against TAF-I. The proteins that react to the antibodies are present not only in human cells but also in mouse, frog, insect, and yeast cells. The mouse TAF-I homologue is ubiquitous in a variety of tissue cells, including liver, kidney, spleen, lung, heart, and brain. It is of interest that the amounts of TAF-I alpha and beta vary among hemopoietic cells and some specific cell types do not contain TAF-I alpha. The level of the TAF-I proteins does not change significantly during the cell cycle progression in either HeLa cells synchronized with an excess concentration of thymidine or NIH 3T3 cells released from the serum-depleted state. TAF-I is predominantly located in nuclei, while TAF-I that is devoid of its acidic region, the region which is essential for the TAF-I activity, shows both nuclear and cytoplasmic localization. The localization of TAF-I in conjunction with the regulation of its activity is discussed.
Qian, Shie; Dunham, Mark E.
1996-01-01
A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.
Methods for making thin layers of crystalline materials
Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy
2013-07-23
Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.
GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms.
Moraes, João P A; Pappa, Gisele L; Pires, Douglas E V; Izidoro, Sandro C
2017-07-03
Enzyme active sites are important and conserved functional regions of proteins whose identification can be an invaluable step toward protein function prediction. Most of the existing methods for this task are based on active site similarity and present limitations including performing only exact matches on template residues, template size restraints, despite not being capable of finding inter-domain active sites. To fill this gap, we proposed GASS-WEB, a user-friendly web server that uses GASS (Genetic Active Site Search), a method based on an evolutionary algorithm to search for similar active sites in proteins. GASS-WEB can be used under two different scenarios: (i) given a protein of interest, to match a set of specific active site templates; or (ii) given an active site template, looking for it in a database of protein structures. The method has shown to be very effective on a range of experiments and was able to correctly identify >90% of the catalogued active sites from the Catalytic Site Atlas. It also managed to achieve a Matthew correlation coefficient of 0.63 using the Critical Assessment of protein Structure Prediction (CASP 10) dataset. In our analysis, GASS was ranking fourth among 18 methods. GASS-WEB is freely available at http://gass.unifei.edu.br/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines
2013-01-01
Background and methods Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer. Results We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA. Conclusions Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future studies to uncover the underlying mechanisms driving asymmetric segregation of template DNA and dictating cell fate at the time of cell division may explain how CSCs are maintained in tumors. PMID:24238140
Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics
NASA Astrophysics Data System (ADS)
Chao, Tsu-An
A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.
NASA Astrophysics Data System (ADS)
Zhuang, Xin; Qian, Xufang; Lv, Jiahui; Wan, Ying
2010-06-01
Sulfuric acid is used as an extraction agent to remove PEO-PPO-PEO templates in the organic-inorganic mesoporous nanocomposites from the triconstituent co-assembly which includes the low-polymerized phenolic resins, TEOS and triblock copolymer F127. The XRD and TEM results show well ordered mesostructure after extraction with sulfuric acid. As followed from the N 2 sorption isotherms the extracted composites possess high surface areas (332-367 m 2/g), large pore volumes (0.66-0.78 cm 3/g), and large pore sizes (about 10.7 nm). The FT-IR analysis reveals almost complete elimination of triblock copolymer F127, and the maintenance of organic groups. This method shows potentials in removing templates from nanocomposites containing functional moieties.
A PBOM configuration and management method based on templates
NASA Astrophysics Data System (ADS)
Guo, Kai; Qiao, Lihong; Qie, Yifan
2018-03-01
The design of Process Bill of Materials (PBOM) holds a hinge position in the process of product development. The requirements of PBOM configuration design and management for complex products are analysed in this paper, which include the reuse technique of configuration procedure and urgent management need of huge quantity of product family PBOM data. Based on the analysis, the function framework of PBOM configuration and management has been established. Configuration templates and modules are defined in the framework to support the customization and the reuse of configuration process. The configuration process of a detection sensor PBOM is shown as an illustration case in the end. The rapid and agile PBOM configuration and management can be achieved utilizing template-based method, which has a vital significance to improve the development efficiency for complex products.
Synthesis of nano grade hollow silica sphere via a soft template method.
Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu
2008-06-01
The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.
Pittsburgh 2013 Energy Baseline: Consumption, Trends & Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarka, Thomas J.; James III, Robert E.; Withum, Jeffrey A.
2017-03-01
The United States (U.S.) Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) are working in conjunction with the City of Pittsburgh (City) to transform how energy is produced, transported, and consumed in the City. This transformation will rely on 21st Century Energy Infrastructure designs, which leverage advanced technology and design techniques to modernize energy infrastructure, create new business models and markets, and expand technology research and development opportunities. Achieving this vision will require developing solutions that are unique to the City: its climate, topography, energy needs, resources, and existing infrastructure.a In this way, the City will demonstratemore » what the American “City of the Future” looks like, with all its attendant environmental, economic, and job-creation benefits. It will also serve as a template for other cities seeking to reinvent their energy systems.« less
Chemoresponsive Colloidosomes via Ag⁺ Soldering of Surface-Assembled Nanoparticle Monolayers.
Liu, Miao; Tian, Qian; Li, Yulin; You, Bo; Xu, An; Deng, Zhaoxiang
2015-04-28
Colloidosomes with a hollow interior and a porous plasmonic shell are highly desired for many applications including nanoreactors, surface-enhanced Raman scattering (SERS), photothermal therapy, and controlled drug release. We herein report a silica nanosphere-templated electrostatic self-assembly in conjunction with a newly developed Ag(+) soldering to fabricate gold colloidosomes toward multifunctionality and stimuli-responsibility. The gold colloidosomes are capable of capturing a nanosized object and releasing it via structural dissociation upon responding to a biochemical input (GSH, glutathione) at a concentration close to its cellular level. In addition, the colloidosomes have a tunable nanoporous shell composed of strongly coupled gold nanoparticles, which exhibit broadened near-infrared plasmon resonance. These features along with the simplicity and high tunability of the fabrication process make the gold colloidosomes quite promising for applications in a chemical or cellular environment.
Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping
2012-12-15
Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Kiraz, Mehmet Sabir; Erdogan, Hakan; Savas, Erkay
2015-12-01
In this paper, we introduce a new biometric verification and template protection system which we call THRIVE. The system includes novel enrollment and authentication protocols based on threshold homomorphic encryption where a private key is shared between a user and a verifier. In the THRIVE system, only encrypted binary biometric templates are stored in a database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during authentication. Due to the underlying threshold homomorphic encryption scheme, a malicious database owner cannot perform full decryption on encrypted templates of the users in the database. In addition, security of the THRIVE system is enhanced using a two-factor authentication scheme involving user's private key and biometric data. Using simulation-based techniques, the proposed system is proven secure in the malicious model. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form, but needs to prove her identity by using biometrics. The system can be used with any biometric modality where a feature extraction method yields a fixed size binary template and a query template is verified when its Hamming distance to the database template is less than a threshold. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biometric templates on a desktop PC running with quad core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real-life applications.
Zhou, Jiayu; Pan, Bo; Yang, Qinghua; Zhao, Yanyong; He, Leren; Lin, Lin; Sun, Hengyun; Song, Yupeng; Yu, Xiaobo; Sun, Zhongyang; Jiang, Haiyue
2016-10-01
During microtia reconstruction, the intraoperative design of the cartilage framework is important for the appearance and symmetry of the bilateral auricles. Templates (traditionally, the X-ray film template) are usually utilized to complete the task, which can provide cues regarding size, cranioauricular angle and positioning to the surgeons. With a combination of three-dimensional (3D) scanning and additive manufacturing (AM) techniques, we utilized two different ear-shaped templates (sheet moulding and 3D templates) during the fabrication of 3D-customized autologous cartilage frameworks for auricle reconstruction. Forty unilateral microtia patients were included in the study. All the patients underwent auricle reconstruction using the tissue-expanding technique assisted by the new AM templates. Images were processed using computer-aided design software and exported to print two different AM ear-shaped templates: sheet moulding and 3D. Both templates were assisted by the 3D framework fabrication. The 3D images of each patient's head were captured preoperatively using a 3D scanner. X-ray film templates were also made for the patients. The lengths and widths of the contralateral auricles, X-ray film and sheet moulding templates were measured in triplicate. The error of the template and the contralateral auricle were used to compare the accuracy between the two templates. Between January and May 2014, 40 unilateral microtia patients aged 6-29 years were included in this study. All patients underwent auricle reconstruction using autogenous costal cartilage. The sterilized AM templates were used to assist in the framework fabrication. The operative time was decreased by an average of 15 min compared with the method assisted by the X-ray film template. Postoperative appearance evaluation (based on five indexes: symmetry, length, width, cranioauricular angle and the substructure of the reconstructed ear) was performed by both the doctors and the patients (or their parents). Follow-up (ranging from 9 to 18 months) showed that all of the patients obtained satisfactory results with life-like 3D configuration and symmetric cranioauricular angle. The follow-up showed that no surgery-related complications occurred. Comparing the accuracy of the X-ray film and sheet moulding templates, the average errors of length were 1.8 mm ± 1.44 mm and 0.39 mm ± 0.35 mm, respectively, and the average width errors were 1.32 mm ± 0.88 mm and 0.3 mm ± 0.47 mm, respectively. The new sheet moulding template was more accurate than the X-ray template. The new sheet-moulding template is much more accurate than the traditional X-ray film template. Framework fabrication assisted by accurate 3D and informative AM templates contributed to individualized cartilage framework fabrication and satisfactory results. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Biological Aerosol Test Method and Personal Protective Equipment (PPE) Decon
2011-05-01
supply to the porous tube diluter. This stops all air into the LSAT. 6. Power off the vacuum pump and the compressed air supply. 22 Distribution...Experiment from Template from the menu. 10. Scroll down the template list until you find APHL Flu Assay 04272009. 11. Highlight the test, then click
Performance Templates and the Regulation of Learning
ERIC Educational Resources Information Center
Lyons, Paul
2009-01-01
Purpose: The purpose of this paper is to provide a detailed, theoretical underpinning for the training and performance improvement method: performance template (P-T). The efficacy of P-T, with limitations, has been demonstrated in this journal and in others. However, the theoretical bases of the P-T approach had not been well-developed. The other…
A Conceptual Model and Assessment Template for Capacity Evaluation in Adult Guardianship
ERIC Educational Resources Information Center
Moye, Jennifer; Butz, Steven W.; Marson, Daniel C.; Wood, Erica
2007-01-01
Purpose: We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. Design and Methods: We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity…
Component extraction on CT volumes of assembled products using geometric template matching
NASA Astrophysics Data System (ADS)
Muramatsu, Katsutoshi; Ohtake, Yutaka; Suzuki, Hiromasa; Nagai, Yukie
2017-03-01
As a method of non-destructive internal inspection, X-ray computed tomography (CT) is used not only in medical applications but also for product inspection. Some assembled products can be divided into separate components based on density, which is known to be approximately proportional to CT values. However, components whose densities are similar cannot be distinguished using the CT value driven approach. In this study, we proposed a new component extraction algorithm from the CT volume, using a set of voxels with an assigned CT value with the surface mesh as the template rather than the density. The method has two main stages: rough matching and fine matching. At the rough matching stage, the position of candidate targets is identified roughly from the CT volume, using the template of the target component. At the fine matching stage, these candidates are precisely matched with the templates, allowing the correct position of the components to be detected from the CT volume. The results of two computational experiments showed that the proposed algorithm is able to extract components with similar density within the assembled products on CT volumes.
Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers
Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran
2015-08-14
Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 μm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore » were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less
An automatic search of Alzheimer patterns using a nonnegative matrix factorization
NASA Astrophysics Data System (ADS)
Giraldo, Diana L.; García-Arteaga, Juan D.; Romero, Eduardo
2013-11-01
This paper presents a fully automatic method that condenses relevant morphometric information from a database of magnetic resonance images (MR) labeled as either normal (NC) or Alzheimer's disease (AD). The proposed method generates class templates using Nonnegative Matrix Factorization (NMF) which will be used to develop an NC/AD classi cator. It then nds regions of interest (ROI) with discerning inter-class properties. by inspecting the di erence volume of the two class templates. From these templates local probability distribution functions associated to low level features such as intensities, orientation and edges within the found ROI are calculated. A sample brain volume can then be characterized by a similarity measure in the ROI to both the normal and the pathological templates. These characteristics feed a simple binary SVM classi er which, when tested with an experimental group extracted from a public brain MR dataset (OASIS), reveals an equal error rate measure which is better than the state-of-the-art tested on the same dataset (0:9 in the former and 0:8 in the latter).
Direct electrodeposition of porous gold nanowire arrays for biosensing applications.
Zhang, Xinyi; Li, Dan; Bourgeois, Laure; Wang, Huanting; Webley, Paul A
2009-02-02
Nanochannel alumina templates are used as templates for fabrication of porous gold nanowire arrays by a direct electrodeposition method. After modification with glucose oxidase, a porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose. The picture shows an SEM image of a nanowire array after removal of the alumina template by acid dissolution. We report the fabrication of porous gold nanowire arrays by means of a one-step electrodeposition method utilizing nanochannel alumina templates. The microstructure of gold nanowires depends strongly on the current density. The formation of porous gold nanowires is attributed to disperse crystallization under conditions of low nucleation rate. Interfacial electron transport through the porous gold nanowires is studied by electrochemical impedance spectroscopy. Cyclic voltammetric studies on the porous gold nanowire arrays reveal a low-potential electrocatalytic response towards hydrogen peroxide. The properties of the glucose oxidase modified porous gold nanowire array electrode are elucidated and compared with those of nonporous enzyme electrodes. The glucose oxidase modified porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose.
Top quark mass measurement using the template method at CDF
Aaltonen, T
2011-06-03
We present a measurement of the top quark mass in the lepton+jets and dilepton channels of tmore » $$\\bar{t}$$ decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb -1 of p$$\\bar{p}$$ collisions at Tevatron with √s = 1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decay in the lepton+jets channel, and a reconstructed top quark mass and m T2, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of M top = 172.1±1.1 (stat)±0.9 (syst) GeV/c 2.« less
Tibi, Rigobert; Young, Christopher; Gonzales, Antonio; ...
2017-07-04
The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this paper, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset ofmore » the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ~2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). Finally, the analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.« less
Understanding uncertainties in modeling the galactic diffuse gamma-ray emission
NASA Astrophysics Data System (ADS)
Storm, Emma; Calore, Francesca; Weniger, Christoph
2017-01-01
The nature of the Galactic diffuse gamma-ray emission as measured by the Fermi Gamma-ray Space Telescope has remained an active area of research for the last several years. A standard technique to disentangle the origins of the diffuse emission is the template fitting approach, where predictions for various diffuse components, such as emission from cosmic rays derived from Galprop or Dragon, are compared to the data. However, this method always results in an overall bad fit to the data, with strong residuals that are difficult to interpret. Additionally, there are instrinsic uncertainties in the predicted templates that are not accounted for naturally with this method. We therefore introduce a new template fitting approach to study the various components of the Galactic diffuse gamma-ray emission, and their correlations and uncertainties. We call this approach Sky Factorization with Adaptive Constrained Templates (SkyFACT). Rather than using fixed predictions from cosmic-ray propagation codes and examining the residuals to evaluate the quality of fits and the presence of excesses, we introduce additional fine-grained variations in the templates that account for uncertainties in the predictions, such as uncertainties in the gas tracers and from small scale variations in the density of cosmic rays. We show that fits to the gamma-ray diffuse emission can be dramatically improved by including an appropriate level of uncertainty in the initial spatial templates from cosmic-ray propagation codes. We further show that we can recover the morphology of the Fermi Bubbles from its spectrum alone with SkyFACT.
Christensen, Signe; Horowitz, Scott; Bardwell, James C.A.; Olsen, Johan G.; Willemoës, Martin; Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Winther, Jakob R.
2017-01-01
Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations. PMID:27659562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tibi, Rigobert; Young, Christopher; Gonzales, Antonio
The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this paper, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset ofmore » the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ~2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). Finally, the analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.« less
Johansson, Kristoffer E; Tidemand Johansen, Nicolai; Christensen, Signe; Horowitz, Scott; Bardwell, James C A; Olsen, Johan G; Willemoës, Martin; Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Winther, Jakob R
2016-10-23
Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Avishek; Campitelli, Paul; Thorpe, M F; Ozkan, S Banu
2015-12-01
The most successful protein structure prediction methods to date have been template-based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug-design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr-REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native-like structures from a template and to provide a set of persistent contacts to be employed during re-folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. © 2015 Wiley Periodicals, Inc.
Nestor, Adrian; Vettel, Jean M; Tarr, Michael J
2013-11-01
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.
Mojo Hand, a TALEN design tool for genome editing applications.
Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C
2013-01-16
Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Lenardo, B. G.; Lesko, K. T.; Liao, J.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Utku, U.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2018-06-01
Weakly interacting massive particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-2016 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46 keV, and we make, to our knowledge, a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74 keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.
Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.
2016-01-01
DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. PMID:26892770
Xia, Jiaqi; Peng, Zhenling; Qi, Dawei; Mu, Hongbo; Yang, Jianyi
2017-03-15
Protein fold classification is a critical step in protein structure prediction. There are two possible ways to classify protein folds. One is through template-based fold assignment and the other is ab-initio prediction using machine learning algorithms. Combination of both solutions to improve the prediction accuracy was never explored before. We developed two algorithms, HH-fold and SVM-fold for protein fold classification. HH-fold is a template-based fold assignment algorithm using the HHsearch program. SVM-fold is a support vector machine-based ab-initio classification algorithm, in which a comprehensive set of features are extracted from three complementary sequence profiles. These two algorithms are then combined, resulting to the ensemble approach TA-fold. We performed a comprehensive assessment for the proposed methods by comparing with ab-initio methods and template-based threading methods on six benchmark datasets. An accuracy of 0.799 was achieved by TA-fold on the DD dataset that consists of proteins from 27 folds. This represents improvement of 5.4-11.7% over ab-initio methods. After updating this dataset to include more proteins in the same folds, the accuracy increased to 0.971. In addition, TA-fold achieved >0.9 accuracy on a large dataset consisting of 6451 proteins from 184 folds. Experiments on the LE dataset show that TA-fold consistently outperforms other threading methods at the family, superfamily and fold levels. The success of TA-fold is attributed to the combination of template-based fold assignment and ab-initio classification using features from complementary sequence profiles that contain rich evolution information. http://yanglab.nankai.edu.cn/TA-fold/. yangjy@nankai.edu.cn or mhb-506@163.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi
2012-07-01
Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.
Ohtsubo, Ken'ichi; Suzuki, Keitaro; Haraguchi, Kazutomo; Nakamura, Sumiko
2008-04-24
As many rice wine brewers label the name of the cultivar of the material rice, authentication technology is necessary. The problems are (1) decomposition of DNAs during the fermentation, (2) contamination of DNAs from microorganisms, (3) co-existence of PCR inhibitors, such as polyphenols. The present authors improved the PCR method by (1) lyophilizing and pulverizing the rice wine to concentrate DNAs, (2) decomposition of starches and proteins so as not to inhibit DNA extraction by the use of heat-resistant amylase and proteinase K, (3) purification of the template DNA by the combination of CTAB method and fractional precipitation by 70% EtOH. To prevent the amplification of microorganism's DNAs during PCR, the present authors selected the suitable plant-specific primers. It became possible to prepare the template DNAs for PCR from the rice wine. The sequences of the amplified DNAs by PCR were ascertained to be same with those of material rice. Mislabeling of material rice cultivar was detected by PCR using the commercial rice wine. It became possible to extract and purify the template DNAs for PCR from the rice wine and to differentiate the material rice cultivars by the PCR using the rice wine as a sample.
Ullah, Khalil; Cescon, Corrado; Afsharipour, Babak; Merletti, Roberto
2014-12-01
A method to detect automatically the location of innervation zones (IZs) from 16-channel surface EMG (sEMG) recordings from the external anal sphincter (EAS) muscle is presented in order to guide episiotomy during child delivery. The new algorithm (2DCorr) is applied to individual motor unit action potential (MUAP) templates and is based on bidimensional cross correlation between the interpolated image of each MUAP template and two images obtained by flipping upside-down (around a horizontal axis) and left-right (around a vertical axis) the original one. The method was tested on 640 simulated MUAP templates of the sphincter muscle and compared with previously developed algorithms (Radon Transform, RT; Template Match, TM). Experimental signals were detected from the EAS of 150 subjects using an intra-anal probe with 16 equally spaced circumferential electrodes. The results of the three algorithms were compared with the actual IZ location (simulated signal) and with IZ location provided by visual analysis (VA) (experimental signals). For simulated signals, the inter quartile error range (IQR) between the estimated and the actual locations of the IZ was 0.20, 0.23, 0.42, and 2.32 interelectrode distances (IED) for the VA, 2DCorr, RT and TM methods respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R
2011-03-01
A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.
A Hybrid Approach to Protect Palmprint Templates
Sun, Dongmei; Xiong, Ke; Qiu, Zhengding
2014-01-01
Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach. PMID:24982977
A hybrid approach to protect palmprint templates.
Liu, Hailun; Sun, Dongmei; Xiong, Ke; Qiu, Zhengding
2014-01-01
Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.
Chen, Cheng; Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.
2013-01-01
We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model which captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model instance that best matches (in the normalized cross correlation sense) local neighborhood in the input image. We demonstrate the application of our method to segmenting nuclei from a variety of imaging modalities, and quantitatively compare our results to several other methods. Quantitative results using both simulated and real image data show that, while certain methods may work well for certain imaging modalities, our software is able to obtain high accuracy across several imaging modalities studied. Results also demonstrate that, relative to several existing methods, the template-based method we propose presents increased robustness in the sense of better handling variations in illumination, variations in texture from different imaging modalities, providing more smooth and accurate segmentation borders, as well as handling better cluttered nuclei. PMID:23568787
NASA Astrophysics Data System (ADS)
Duan, Rui; Xu, Xianjin; Zou, Xiaoqin
2018-01-01
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.
Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity
Lee, Hui Sun; Im, Wonpil
2013-01-01
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286
Robust Visual Tracking Revisited: From Correlation Filter to Template Matching.
Liu, Fanghui; Gong, Chen; Huang, Xiaolin; Zhou, Tao; Yang, Jie; Tao, Dacheng
2018-06-01
In this paper, we propose a novel matching based tracker by investigating the relationship between template matching and the recent popular correlation filter based trackers (CFTs). Compared to the correlation operation in CFTs, a sophisticated similarity metric termed mutual buddies similarity is proposed to exploit the relationship of multiple reciprocal nearest neighbors for target matching. By doing so, our tracker obtains powerful discriminative ability on distinguishing target and background as demonstrated by both empirical and theoretical analyses. Besides, instead of utilizing single template with the improper updating scheme in CFTs, we design a novel online template updating strategy named memory, which aims to select a certain amount of representative and reliable tracking results in history to construct the current stable and expressive template set. This scheme is beneficial for the proposed tracker to comprehensively understand the target appearance variations, recall some stable results. Both qualitative and quantitative evaluations on two benchmarks suggest that the proposed tracking method performs favorably against some recently developed CFTs and other competitive trackers.
Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian
2016-01-01
A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888
Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey
2013-09-24
The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.
Moving template analysis of crack growth. 1: Procedure development
NASA Astrophysics Data System (ADS)
Padovan, Joe; Guo, Y. H.
1994-06-01
Based on a moving template procedure, this two part series will develop a method to follow the crack tip physics in a self-adaptive manner which provides a uniformly accurate prediction of crack growth. For multiple crack environments, this is achieved by attaching a moving template to each crack tip. The templates are each individually oriented to follow the associated growth orientation and rate. In this part, the essentials of the procedure are derived for application to fatigue crack environments. Overall the scheme derived possesses several hierarchical levels, i.e. the global model, the interpolatively tied moving template, and a multilevel element death option to simulate the crack wake. To speed up computation, the hierarchical polytree scheme is used to reorganize the global stiffness inversion process. In addition to developing the various features of the scheme, the accuracy of predictions for various crack lengths is also benchmarked. Part 2 extends the scheme to multiple crack problems. Extensive benchmarking is also presented to verify the scheme.
Pozzi, A; Tallarico, M; Barlattani, A
2012-06-01
The aim of the study was to describe an unusual method to stabilize the surgical template during the treatment of a severely resorbed edentulous mandible by means of computer-guided implant surgery. Pre-operative computer-based planning revealed the difficulty to stabilize the surgical template in a 67-year-old healthy woman. A deviation of the original NobelGuide™ protocol was performed to ensure the stability of the surgical template: four anchor pins were used to stabilize the surgical template, two in the buccal side of the anterior template and two unusual pins were placed in the lingual site. Four straight TiUnite® Nobel Biocare™ implants were then placed, according to a modified All-on-4™ concept procedure, to avoid graft procedures and to reduce the cumulative chair-side treatment time and costs. A temporary restoration was placed immediately after implant placement. Three months later a definitive, full acrylic restoration was delivered.
Sun, Guang-Ying; Wang, Chao; Luo, Yu-Qin; Zhao, Yong-Xin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber
2016-05-01
The combination of molecular crowding and virtual imprinting was employed to develop a cost-effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin-imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid-phase extraction with the recovery of 85.3 ± 1.2%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acoustic transient classification with a template correlation processor.
Edwards, R T
1999-10-01
I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.
Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures
NASA Astrophysics Data System (ADS)
Melechko, A. V.; McKnight, T. E.; Guillorn, M. A.; Merkulov, V. I.; Ilic, B.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L.
2003-02-01
We report a method to fabricate nanoscale pipes ("nanopipes") suitable for fluidic transport. Vertically aligned carbon nanofibers grown by plasma-enhanced chemical vapor deposition are used as sacrificial templates for nanopipes with internal diameters as small as 30 nm and lengths up to several micrometers that are oriented perpendicular to the substrate. This method provides a high level of control over the nanopipe location, number, length, and diameter, permitting them to be deterministically positioned on a substrate and arranged into arrays.
Kinoshita, Kenji; Fujimoto, Kentaro; Yakabe, Toru; Saito, Shin; Hamaguchi, Yuzo; Kikuchi, Takayuki; Nonaka, Ken; Murata, Shigenori; Masuda, Daisuke; Takada, Wataru; Funaoka, Sohei; Arai, Susumu; Nakanishi, Hisao; Yokoyama, Kanehisa; Fujiwara, Kazuhiko; Matsubara, Kenichi
2007-01-01
DNA microarrays are routinely used to monitor gene expression profiling and single nucleotide polymorphisms (SNPs). However, for practically useful high performance, the detection sensitivity is still not adequate, leaving low expression genes undetected. To resolve this issue, we have developed a new plastic S-BIO® PrimeSurface® with a biocompatible polymer; its surface chemistry offers an extraordinarily stable thermal property for a lack of pre-activated glass slide surface. The oligonucleotides immobilized on this substrate are robust in boiling water and show no significant loss of hybridization activity during dissociation treatment. This allowed us to hybridize the templates, extend the 3′ end of the immobilized DNA primers on the S-Bio® by DNA polymerase using deoxynucleotidyl triphosphates (dNTP) as extender units, release the templates by denaturalization and use the same templates for a second round of reactions similar to that of the PCR method. By repeating this cycle, the picomolar concentration range of the template oligonucleotide can be detected as stable signals via the incorporation of labeled dUTP into primers. This method of Multiple Primer EXtension (MPEX) could be further extended as an alternative route for producing DNA microarrays for SNP analyses via simple template preparation such as reverse transcript cDNA or restriction enzyme treatment of genome DNA. PMID:17135189
Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei
2014-06-07
A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn
Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: {yields} Glass-slices were used as a template to induce formation and assembly of aragonite. {yields} Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. {yields} Planes were always appeared in these as-synthesized samples. {yields} Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theorymore » was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.« less
Mojtahedi, Mitra; Fouquier d'Hérouël, Aymeric; Huang, Sui
2014-01-01
Digital PCR (dPCR) exploits limiting dilution of a template into an array of PCR reactions. From this array the number of reactions that contain at least one (as opposed to zero) initial template is determined, allowing inferring the original template concentration. Here we present a novel protocol to efficiently infer the concentration of a sample and its optimal dilution for dPCR from few targeted qPCR assays. By taking advantage of the real-time amplification feature of qPCR as opposed to relying on endpoint PCR assessment as in standard dPCR prior knowledge of template concentration is not necessary. This eliminates the need for serial dilutions in a separate titration and reduces the number of necessary reactions. We describe the theory underlying our approach and discuss experimental moments that contribute to uncertainty. We present data from a controlled experiment where the initial template concentration is known as proof of principle and apply our method on directly monitoring transcript level change during cell differentiation as well as gauging amplicon numbers in cDNA samples after pre-amplification. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Template identification technology of nuclear warheads and components
NASA Astrophysics Data System (ADS)
Liu, Su-Ping; Gong, Jian; Hao, Fan-Hua; Hu, Guang-Chun
2008-02-01
Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.
Laskin, Julia [Richland, WA; Futrell, Jean H [Richland, WA
2008-04-29
The invention relates to a method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation (SID) in conjunction with mass spectrometric analysis. Results demonstrate formation of a wide distribution of structure-specific fragments having wide sequence coverage useful for sequencing and identifying the complex molecules.
Li, Na; Yang, Gongzheng; Sun, Yong; Song, Huawei; Cui, Hao; Yang, Guowei; Wang, Chengxin
2015-05-13
Transparency has never been integrated into freestanding flexible graphene paper (FF-GP), although FF-GP has been discussed extensively, because a thin transparent graphene sheet will fracture easily when the template or substrate is removed using traditional methods. Here, transparent FF-GP (FFT-GP) was developed using NaCl as the template and was applied in transparent and stretchable supercapacitors. The capacitance was improved by nearly 1000-fold compared with that of the laminated or wrinkled chemical vapor deposition graphene-film-based supercapacitors.
Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.
Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng
2014-03-17
The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.
NASA Astrophysics Data System (ADS)
Song, Jing; Jańczewski, Dominik; Guo, Yuanyuan; Xu, Jianwei; Vancso, G. Julius
2013-11-01
Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery.Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery. Electronic supplementary information (ESI) available: Nanotube wall thickness determination protocol. See DOI: 10.1039/c3nr03927g
Collaborative Data Publication Utilizing the Open Data Repository's (ODR) Data Publisher
NASA Technical Reports Server (NTRS)
Stone, N.; Lafuente, B.; Bristow, T.; Keller, R. M.; Downs, R. T.; Blake, D.; Fonda, M.; Dateo, C.; Pires, A.
2017-01-01
Introduction: For small communities in diverse fields such as astrobiology, publishing and sharing data can be a difficult challenge. While large, homogenous fields often have repositories and existing data standards, small groups of independent researchers have few options for publishing standards and data that can be utilized within their community. In conjunction with teams at NASA Ames and the University of Arizona, the Open Data Repository's (ODR) Data Publisher has been conducting ongoing pilots to assess the needs of diverse research groups and to develop software to allow them to publish and share their data collaboratively. Objectives: The ODR's Data Publisher aims to provide an easy-to-use and implement software tool that will allow researchers to create and publish database templates and related data. The end product will facilitate both human-readable interfaces (web-based with embedded images, files, and charts) and machine-readable interfaces utilizing semantic standards. Characteristics: The Data Publisher software runs on the standard LAMP (Linux, Apache, MySQL, PHP) stack to provide the widest server base available. The software is based on Symfony (www.symfony.com) which provides a robust framework for creating extensible, object-oriented software in PHP. The software interface consists of a template designer where individual or master database templates can be created. A master database template can be shared by many researchers to provide a common metadata standard that will set a compatibility standard for all derivative databases. Individual researchers can then extend their instance of the template with custom fields, file storage, or visualizations that may be unique to their studies. This allows groups to create compatible databases for data discovery and sharing purposes while still providing the flexibility needed to meet the needs of scientists in rapidly evolving areas of research. Research: As part of this effort, a number of ongoing pilot and test projects are currently in progress. The Astrobiology Habitable Environments Database Working Group is developing a shared database standard using the ODR's Data Publisher and has a number of example databases where astrobiology data are shared. Soon these databases will be integrated via the template-based standard. Work with this group helps determine what data researchers in these diverse fields need to share and archive. Additionally, this pilot helps determine what standards are viable for sharing these types of data from internally developed standards to existing open standards such as the Dublin Core (http://dublincore.org) and Darwin Core (http://rs.twdg.org) metadata standards. Further studies are ongoing with the University of Arizona Department of Geosciences where a number of mineralogy databases are being constructed within the ODR Data Publisher system. Conclusions: Through the ongoing pilots and discussions with individual researchers and small research teams, a definition of the tools desired by these groups is coming into focus. As the software development moves forward, the goal is to meet the publication and collaboration needs of these scientists in an unobtrusive and functional way.
Tuominen, Mark; Bal, Mustafa; Russell, Thomas P.; Ursache, Andrei
2007-03-13
Pathways to rapid and reliable fabrication of three-dimensional nanostructures are provided. Simple methods are described for the production of well-ordered, multilevel nanostructures. This is accomplished by patterning block copolymer templates with selective exposure to a radiation source. The resulting multi-scale lithographic template can be treated with post-fabrication steps to produce multilevel, three-dimensional, integrated nanoscale media, devices, and systems.
Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu
2017-07-15
We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, A; Poli, G; Beykan, S
Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for methodmore » development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a standard format for data collection, organization, as well as for dosimetry research and software development.« less
NASA Astrophysics Data System (ADS)
Djunaidi, M. C.; Haris, A.; Pardoyo; Rosdiana, K.
2018-04-01
The synthesis of IIP was carried out by variation of Fe(III) ion templates from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 compounds which then tested IIP selectivity to the Fe metal ions through adsorption process. Ionic Imprinted Polymer (IIP) is a method of printing metal ions bound in a polymer, subsequently released from the polymer matrix to produce a suitable imprint for the target ion. The purposes of this study were to produce IIP from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates, to know the effect of templates on adsorption selectivity of IIP involving imprint cavity, and to know the impact of metal competitor on the selectivity adsorption of IIP to the Fe metals. The results obtained showed that IIP synthesized by variations of Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates were successfully synthesized. The adsorption selectivity of Fe (III) metal ion in the Fe(NO3)3 template was greater than that of in the K3[Fe(CN)6] and NH4Fe(SO4)2 templates. The adsorption selectivity of Fe was greater on Fe-Cr compared to on Fe-Cd and Fe-Pb.
Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke
2015-09-01
In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). Copyright © 2015 Elsevier B.V. All rights reserved.
Traffic Sign Detection System for Locating Road Intersections and Roundabouts: The Chilean Case.
Villalón-Sepúlveda, Gabriel; Torres-Torriti, Miguel; Flores-Calero, Marco
2017-05-25
This paper presents a traffic sign detection method for signs close to road intersections and roundabouts, such as stop and yield (give way) signs. The proposed method relies on statistical templates built using color information for both segmentation and classification. The segmentation method uses the RGB-normalized (ErEgEb) color space for ROIs (Regions of Interest) generation based on a chromaticity filter, where templates at 10 scales are applied to the entire image. Templates consider the mean and standard deviation of normalized color of the traffic signs to build thresholding intervals where the expected color should lie for a given sign. The classification stage employs the information of the statistical templates over YCbCr and ErEgEb color spaces, for which the background has been previously removed by using a probability function that models the probability that the pixel corresponds to a sign given its chromaticity values. This work includes an analysis of the detection rate as a function of the distance between the vehicle and the sign. Such information is useful to validate the robustness of the approach and is often not included in the existing literature. The detection rates, as a function of distance, are compared to those of the well-known Viola-Jones method. The results show that for distances less than 48 m, the proposed method achieves a detection rate of 87.5 % and 95.4 % for yield and stop signs, respectively. For distances less than 30 m, the detection rate is 100 % for both signs. The Viola-Jones approach has detection rates below 20 % for distances between 30 and 48 m, and barely improves in the 20-30 m range with detection rates of up to 60 % . Thus, the proposed method provides a robust alternative for intersection detection that relies on statistical color-based templates instead of shape information. The experiments employed videos of traffic signs taken in several streets of Santiago, Chile, using a research platform implemented at the Robotics and Automation Laboratory of PUC to develop driver assistance systems.
Traffic Sign Detection System for Locating Road Intersections and Roundabouts: The Chilean Case
Villalón-Sepúlveda, Gabriel; Torres-Torriti, Miguel; Flores-Calero, Marco
2017-01-01
This paper presents a traffic sign detection method for signs close to road intersections and roundabouts, such as stop and yield (give way) signs. The proposed method relies on statistical templates built using color information for both segmentation and classification. The segmentation method uses the RGB-normalized (ErEgEb) color space for ROIs (Regions of Interest) generation based on a chromaticity filter, where templates at 10 scales are applied to the entire image. Templates consider the mean and standard deviation of normalized color of the traffic signs to build thresholding intervals where the expected color should lie for a given sign. The classification stage employs the information of the statistical templates over YCbCr and ErEgEb color spaces, for which the background has been previously removed by using a probability function that models the probability that the pixel corresponds to a sign given its chromaticity values. This work includes an analysis of the detection rate as a function of the distance between the vehicle and the sign. Such information is useful to validate the robustness of the approach and is often not included in the existing literature. The detection rates, as a function of distance, are compared to those of the well-known Viola–Jones method. The results show that for distances less than 48 m, the proposed method achieves a detection rate of 87.5% and 95.4% for yield and stop signs, respectively. For distances less than 30 m, the detection rate is 100% for both signs. The Viola–Jones approach has detection rates below 20% for distances between 30 and 48 m, and barely improves in the 20–30 m range with detection rates of up to 60%. Thus, the proposed method provides a robust alternative for intersection detection that relies on statistical color-based templates instead of shape information. The experiments employed videos of traffic signs taken in several streets of Santiago, Chile, using a research platform implemented at the Robotics and Automation Laboratory of PUC to develop driver assistance systems. PMID:28587071
Ilahi, Omer A; Mansfield, David J; Urrea, Luis H; Qadeer, Ali A
2014-10-01
To assess interobserver and intraobserver agreement of estimating anterior cruciate ligament (ACL) femoral tunnel positioning arthroscopically using circular and linear (noncircular) estimation methods and to determine whether overlay template visual aids improve agreement. Standardized intraoperative pictures of femoral tunnel pilot holes (taken with a 30° arthroscope through an anterolateral portal at 90° of knee flexion with horizontal being parallel to the tibial surface) in 27 patients undergoing single-bundle ACL reconstruction were presented to 3 fellowship-trained arthroscopists on 2 separate occasions. On both viewings, each surgeon estimated the femoral tunnel pilot hole location to the nearest half-hour mark using a whole clock face and half clock face, to the nearest 15° using a whole compass and half compass, in the top or bottom half of a linear quadrant, and in the top or bottom half of a linear trisector. Evaluations were performed first without and then with an overlay template of each estimation method. The average difference among reviewers was quite similar for all 4 circular methods with the use of visual aids. Without overlay template visual aids, pair-wise κ statistic values for interobserver agreement ranged from -0.14 to 0.56 for the whole clock face and from 0.16 to 0.42 for the half clock face. With overlay visual guides, interobserver agreement ranged from 0.29 to 0.63 for the whole clock face and from 0.17 to 0.66 for the half clock face. The quadrant method's interobserver agreement ranged from 0.22 to 0.60, and that of the trisection method ranged from 0.17 to 0.57. Neither linear estimation method's reliability uniformly improved with the use of overlay templates. Intraobserver agreement without overlay templates ranged from 0.17 to 0.49 for the whole clock face, 0.11 to 0.47 for the half clock face, 0.01 to 0.66 for the quadrant method, and 0.20 to 0.57 for the trisection method. Use of overlay templates did not uniformly improve intraobserver agreement for any estimation method. There does not appear to be any advantage of using a half clock face or compass for estimating femoral tunnel position compared with a whole clock-face analogy. Visual reference aids appear to improve interobserver agreement (reliability) of circular analogies. The linear quadrant appears to be the most reliable method (fair to moderate agreement) for estimating femoral tunnel position without a visual aid for reference, but even better reliability, ranging from fair to good agreement, may be obtained by using the whole clock-face analogy with a visual aid. Increasing femoral tunnel position reliability may improve outcomes of ACL reconstruction surgery. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming
2015-01-01
Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.
El Mendili, Mohamed-Mounir; Chen, Raphaël; Tiret, Brice; Villard, Noémie; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib
2015-01-01
To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.
NASA Astrophysics Data System (ADS)
Li, Xueming; Dong, Kun; Tang, Libin; Wu, Yongjun; Yang, Peizhi; Zhang, Pengxiang
2010-02-01
Vertical-aligned Ag nanoflake arrays are fabricated on the surface of an anodic aluminum oxide (AAO) template under a hydrothermal condition for the first time. The porous surface of AAO templates and the precursor solution may play key roles in the process of fabricating Ag nanoflakes. The rim of pores can provide many active sites for nucleation and growth, and then nanoflake arrays gradually form through self-assembly of Ag on the surface of AAO membranes. The product is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and a growth mechanism of nanoflake is deduced. This work demonstrates that it is possible to make ordered nanoarrays without dissolving templates using the hydrothermal method, and this interesting Ag nanoflake arrays may provide a wider range of nanoscale applications.
Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A
2013-01-01
A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.
NASA Astrophysics Data System (ADS)
Ye, S. K.; Fuh, J. Y. H.; Lu, L.
2012-06-01
<001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) lead-free piezoelectric ceramics were prepared by templated-grain growth method using BaTiO3 as template. The degree of orientation and the microstructure of the ceramics with different amount of template were investigated. The electrical properties of the textured-ceramics in the optimized condition were dramatically enhanced compared with randomly-oriented BCTZ ceramics. The textured BCTZ ceramics showed high piezoelectric constants d33 = 470 pC/N and d31 = -170 pC/N, and high electromechanical coupling factors kp = 44% and k31 = 22%. In addition, the Curie point of the textured ceramics revealed an increase with the template content.
NASA Astrophysics Data System (ADS)
Zaman, Mohammed Shahriar; Haberer, Elaine D.
2014-10-01
Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu2O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap of 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaman, Mohammed Shahriar; Haberer, Elaine D., E-mail: haberer@ucr.edu; Materials Science and Engineering Program, University of California, Riverside, California 92521
Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu₂O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap ofmore » 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.« less
NASA Astrophysics Data System (ADS)
Cho, Ilje; Jung, Taehyun; Zhao, Guang-Yao; Akiyama, Kazunori; Sawada-Satoh, Satoko; Kino, Motoki; Byun, Do-Young; Sohn, Bong Won; Shibata, Katsunori M.; Hirota, Tomoya; Niinuma, Kotaro; Yonekura, Yoshinori; Fujisawa, Kenta; Oyama, Tomoaki
2017-12-01
We present the results of a comparative study of amplitude calibrations for the East Asia VLBI Network (EAVN) at 22 and 43 GHz using two different methods of an "a priori" and a "template spectrum", particularly on lower declination sources. Using observational data sets of early EAVN observations, we investigated the elevation-dependence of the gain values at seven stations of the KaVA (KVN and VERA Array) and three additional telescopes in Japan (Takahagi 32 m, Yamaguchi 32 m, and Nobeyama 45 m). By comparing the independently obtained gain values based on these two methods, we found that the gain values from each method were consistent within 10% at elevations higher than 10°. We also found that the total flux densities of two images produced from the different amplitude calibrations were in agreement within 10% at both 22 and 43 GHz. By using the template spectrum method, furthermore, the additional radio telescopes can participate in KaVA (i.e., EAVN), giving a notable sensitivity increase. Therefore, our results will constrain the detailed conditions in order to measure the VLBI amplitude reliably using EAVN, and discuss the potential of possible expansion to telescopes comprising EAVN.
Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis.
Hutchinson, E B; Schwerin, S C; Radomski, K L; Sadeghi, N; Jenkins, J; Komlosh, M E; Irfanoglu, M O; Juliano, S L; Pierpaoli, C
2017-05-15
Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study - in-vivo MRI and DTI and ex-vivo MRI and DTI - using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders. Published by Elsevier Inc.
Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.
2011-01-01
Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746
Douw, Linda; Stam, Cornelis J.; Tewarie, Prejaas; Hillebrand, Arjan
2017-01-01
Abstract Introduction Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co‐registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology. Methods Seventeen healthy participants underwent resting‐state eyes‐closed MEG and anatomical MRI. These data were projected into source space using an atlas‐based peak voxel and a centroid beamforming approach either using (1) participants’ native MRIs or (2) the Montreal Neurological Institute's template. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power was determined in six classical frequency bands per region and globally averaged. Functional connectivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass correlation coefficients were calculated and Bland–Altman plots were made to quantify the consistency and potential bias of the use of template versus native MRI. Results Co‐registration with the template yielded largely consistent relative power, connectivity, and network estimates compared to native MRI. Discussion These findings indicate that there is no (systematic) bias or inconsistency between template and native MRI co‐registration of MEG. They open up possibilities for retrospective and prospective analyses to MEG datasets in the general population that have no native MRIs available. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Hum Brain Mapp 39:104–119, 2018. © 2017 Wiley Periodicals, Inc. PMID:28990264
Piekarczyk, Marcin; Ogiela, Marek R.
2017-01-01
The aim of this paper is to propose and evaluate the novel method of template generation, matching, comparing and visualization applied to motion capture (kinematic) analysis. To evaluate our approach, we have used motion capture recordings (MoCap) of two highly-skilled black belt karate athletes consisting of 560 recordings of various karate techniques acquired with wearable sensors. We have evaluated the quality of generated templates; we have validated the matching algorithm that calculates similarities and differences between various MoCap data; and we have examined visualizations of important differences and similarities between MoCap data. We have concluded that our algorithms works the best when we are dealing with relatively short (2–4 s) actions that might be averaged and aligned with the dynamic time warping framework. In practice, the methodology is designed to optimize the performance of some full body techniques performed in various sport disciplines, for example combat sports and martial arts. We can also use this approach to generate templates or to compare the correct performance of techniques between various top sportsmen in order to generate a knowledge base of reference MoCap videos. The motion template generated by our method can be used for action recognition purposes. We have used the DTW classifier with angle-based features to classify various karate kicks. We have performed leave-one-out action recognition for the Shorin-ryu and Oyama karate master separately. In this case, 100% actions were correctly classified. In another experiment, we used templates generated from Oyama master recordings to classify Shorin-ryu master recordings and vice versa. In this experiment, the overall recognition rate was 94.2%, which is a very good result for this type of complex action. PMID:29125560
Hirai, Kelsi K.; Groisser, Benjamin N.; Copen, William A.; Singhal, Aneesh B.; Schaechter, Judith D.
2015-01-01
Background Long-term motor outcome of acute stroke patients with severe motor impairment is difficult to predict. While measure of corticospinal tract (CST) injury based on diffusion tensor imaging (DTI) in subacute stroke patients strongly predicts motor outcome, its predictive value in acute stroke patients is unclear. Using a new DTI-based, density-weighted CST template approach, we demonstrated recently that CST injury measured in acute stroke patients with moderately-severe to severe motor impairment of the upper limb strongly predicts motor outcome of the limb at 6 months. New Method The current study compared the prognostic strength of CST injury measured in 10 acute stroke patients with moderately-severe to severe motor impairment of the upper limb by the new density-weighted CST template approach versus several variants of commonly used DTI-based approaches. Results and Comparison with Existing Methods Use of the density-weighted CST template approach yielded measurements of acute CST injury that correlated most strongly, in absolute magnitude, with 6-month upper limb strength (rs = 0.93), grip (rs = 0.94) and dexterity (rs = 0.89) compared to all other 11 approaches. Formal statistical comparison of correlation coefficients revealed that acute CST injury measured by the density-weighted CST template approach correlated significantly more strongly with 6-month upper limb strength, grip and dexterity than 9, 10 and 6 of the 11 alternative measurements, respectively. Conclusions Measurements of CST injury in acute stroke patients with substantial motor impairment by the density-weighted CST template approach may have clinical utility for anticipating healthcare needs and improving clinical trial design. PMID:26386285
Comparison of five-axis milling and rapid prototyping for implant surgical templates.
Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo
2014-01-01
This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.
Kleczka, Bernadette; Musiega, Anita; Rabut, Grace; Wekesa, Phoebe; Mwaniki, Paul; Marx, Michael; Kumar, Pratap
2018-06-01
The United Nations' Sustainable Development Goal #3.8 targets 'access to quality essential healthcare services'. Clinical practice guidelines are an important tool for ensuring quality of clinical care, but many challenges prevent their use in low-resource settings. Monitoring the use of guidelines relies on cumbersome clinical audits of paper records, and electronic systems face financial and other limitations. Here we describe a unique approach to generating digital data from paper using guideline-based templates, rubber stamps and mobile phones. The Guidelines Adherence in Slums Project targeted ten private sector primary healthcare clinics serving informal settlements in Nairobi, Kenya. Each clinic was provided with rubber stamp templates to support documentation and management of commonly encountered outpatient conditions. Participatory design methods were used to customize templates to the workflows and infrastructure of each clinic. Rubber stamps were used to print templates into paper charts, providing clinicians with checklists for use during consultations. Templates used bubble format data entry, which could be digitized from images taken on mobile phones. Besides rubber stamp templates, the intervention included booklets of guideline compilations, one Android phone for digitizing images of templates, and one data feedback/continuing medical education session per clinic each month. In this paper we focus on the effect of the intervention on documentation of three non-communicable diseases in one clinic. Seventy charts of patients enrolled in the chronic disease program (hypertension/diabetes, n=867; chronic respiratory diseases, n=223) at one of the ten intervention clinics were sampled. Documentation of each individual patient encounter in the pre-intervention (January-March 2016) and post-intervention period (May-July) was scored for information in four dimensions - general data, patient assessment, testing, and management. Control criteria included information with no counterparts in templates (e.g. notes on presenting complaints, vital signs). Documentation scores for each patient were compared between both pre- and post-intervention periods and between encounters documented with and without templates (post-intervention only). The total number of patient encounters in the pre-intervention (282) and post-intervention periods (264) did not differ. Mean documentation scores increased significantly in the post-intervention period on average by 21%, 24% and 17% for hypertension, diabetes and chronic respiratory diseases, respectively. Differences were greater (47%, 43% and 27%, respectively) when documentation with and without templates was compared. Changes between pre- vs.post-intervention, and with vs.without template, varied between individual dimensions of documentation. Overall, documentation improved more for general data and patient assessment than in testing or management. The use of templates improves paper-based documentation of patient care, a first step towards improving the quality of care. Rubber stamps provide a simple and low-cost method to print templates on demand. In combination with ubiquitously available mobile phones, information entered on paper can be easily and rapidly digitized. This 'frugal innovation' in m-Health can empower small, private sector facilities, where large numbers of urban patients seek healthcare, to generate digital data on routine outpatient care. These data can form the basis for evidence-based quality improvement efforts at large scale, and help deliver on the SDG promise of quality essential healthcare services for all. Copyright © 2017 Elsevier B.V. All rights reserved.
Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head
Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng
2017-01-01
Introduction Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Methods Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. Results The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Conclusions Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. PMID:28464029
Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2010-01-01
When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's
Qin, Ya-Ping; Wang, Hai-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui
2018-08-01
A novel dual-template epitope imprinting polymer coated on magnetic carbon nanotubes (MCNTs@D-EMIP) was successfully prepared for specific recognition of porcine serum albumin (PSA) via dual-template epitope imprinting, metal chelation imprinting and distillation-precipitation polymerization (DPP). C-terminal peptides and N-terminal peptides of PSA were selected as templates simultaneously, and zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were used as functional monomer and cross-linker, respectively. The epitope templates were immobilized by metal chelation and six-membered ring formed with zinc acrylate. Finally, MCNTs@D-EMIP was synthesized by DPP in only 30 min, which was much shorter than those of other polymerization methods. The prepared MCNTs@D-EMIP displayed specific recognition ability toward PSA and its adsorption amount and imprinting factor were 45.05 mg g -1 and 4.50, which were much higher than those of single template epitope imprinting polymers. Besides, high-performance liquid chromatography (HPLC) analysis of PSA in porcine blood serum real sample indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@D-EMIP had potential to be applied in bio-separation area. In addition, the results of cross-reactivity experiment proved that this strategy had generality to prepare dual-template epitope imprinting polymer for recognition of target protein. In summary, this study provided an efficient protocol to recognize target protein in complex sample via dual-template epitope imprinting approach, metal chelation imprinting and distillation-precipitation polymerization. Copyright © 2018 Elsevier B.V. All rights reserved.
Telford, Robert; Viney, Richard; Patel, Prashant
2016-01-01
Introduction We aim to present transperineal template-guided prostate biopsy (template biopsy) outcomes at a tertiary referral centre. Furthermore, to identify the detection rate of prostate cancer in those with a previous negative transrectal ultrasound guided prostate biopsy and the upgrade rate of those on active surveillance for Gleason 3 + 3 = 6 prostate adenocarcinoma. Material and methods We conducted a prospective study of 200 consecutive men who underwent template biopsy over a 22-month period in a tertiary referral centre, using a standard 24 region template prostate biopsy technique. Indications and histology results, as well as complications, were recorded. Results Median age was 67 years and median PSA was 10 ng/mL. Overall detection rate was 47%. 39.5% of cases with previous negative transrectal biopsies were found to have prostate adenocarcinoma. 47.5% of cases on active surveillance for Gleason 3 + 3 = 6 prostate adenocarcinoma were upgraded. The most frequent complication was acute urinary retention at a rate of 12.5%, however, the use of a single prophylactic dose of tamsulosin was found to be beneficial, with 13 cases needed to treat to prevent one episode. Conclusions Template biopsies are safe and efficacious with an overall detection rate of 47% in the present series. Due to the high detection rate, one must consider template biopsy following one negative transrectal biopsy where there is persistent clinical suspicion. Furthermore, those considering active surveillance for Gleason 3 + 3 = 6 disease should be offered template biopsy to confirm the grade of their disease. PMID:27123325
NASA Astrophysics Data System (ADS)
Aydogan, D.
2007-04-01
An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more powerful than the classical methods.
NASA Astrophysics Data System (ADS)
Yoo, S. H.
2017-12-01
Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend coda-based techniques to lower magnitude thresholds and low-yield local explosions.
Image scale measurement with correlation filters in a volume holographic optical correlator
NASA Astrophysics Data System (ADS)
Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan
2013-08-01
A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.
Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems.
Shi, J; Jiang, Y; Zhang, S; Yang, D; Jiang, Z
2016-01-01
Enzyme@capsule nano/microsystems, which refer to the enzyme-immobilized capsules, have received tremendous interest owing to the combination of the high catalytic activities of encapsulated enzymes and the hierarchical structure of the capsule. The preparation of capsules and simultaneous encapsulation of enzymes is recognized as the core process for the rational design and construction of enzyme@capsule nano/microsystems. The strategy used has three major steps: (a) generation of the templates, (b) surface coating on the templates, and (c) removal of the templates, and it has been proven to be effective and versatile for the construction of enzyme@capsule nano/microsystems. Several conventional methods, including layer-by-layer assembly of polyelectrolytes, liquid crystalline templating method, etc., were used to design and construct enzyme@capsule nano/microsystems, but these have two major drawbacks. One is the low mechanical stability of the systems and the second is the harsh conditions used in the construction process. Learning from nature, several biomimetic/bioinspired methods such as biomineralization, biomimetic/bioinspired adhesion, and their combination have been exploited for the construction of enzyme@capsule nano/microsystems. In this chapter, we will present a general protocol for the construction of enzyme@capsule nano/microsystems using the latter approach. Some suggestions for improved design, construction, and characterization will also be presented with detailed procedures for specific examples. © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wancun; Zhang, Qi; Qian, Zhiyu; Gu, Yueqing
2017-02-01
MicroRNAs (miRNAs) play important roles in a wide range of biological processes, including proliferation, development, metabolism, immunological response, tumorigenesis, and viral infection. The detection of miRNAs is imperative for gaining a better understanding of the functions of these biomolecules and has great potential for the early diagnosis of human disease as well as the discovery of new drugs through the use of miRNAs as targets. In this article, we develop a highly sensitive, and specific miRNA assay based on the two-stage isothermal amplification reactions and molecular beacon. The two-stage isothermal amplification reactions involves two templates and two-stage amplification reactions under isothermal conditions. The first template enables the amplification of miRNA, and the second template enables the conversion of miRNA to the reporter oligonucleotide(Y). Importantly, different miRNAs can be converted to the same Y seperately, which can hybridize with the same set of molecular beacon to generate fluorescent signals. This assay is highly sensitive and specific with a detection limit of 1 fM and can even discriminate single-nucleotide differences. Moreover, in combination with the specific templates, this method can be applied for multiplex miRNA assay by simply using the same molecular beacon. This method has potential to become a promising miRNA quantification method in biomedical research and clinical diagnosis.
Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu
2016-05-01
A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.
Formation of hierarchical macro porous YAlO:Ce multifunctional nanophosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayanthi Rajan, K., E-mail: k.jayanthirajan@gmail.com, E-mail: manorama@iict.res.in; Manorama, Sunkara V., E-mail: k.jayanthirajan@gmail.com, E-mail: manorama@iict.res.in
2016-03-21
Hierarchically macro-porous lumino-magnetic yttrium aluminium oxide (YAlO:- YAT: tetragonal; YAG: garnet; YAM: monoclinic) ceramic nanophosphors doped with trivalent cerium (Ce) ions have been synthesized by a novel and versatile self assembly route without the need of any external templates. X-ray diffraction and X-ray photoelectron spectroscopy studies confirm the presence of dopant and its valence state. Room temperature ferromagnetism in undoped and YAlO:Ce suggest an intrinsic nature of ferromagnetism dependent on host lattice imperfection along with yellow photoluminescence emission explicitly arising due to Ce doping established the non-interfering character of the two phenomena. Such a porous morphology has the potential ofmore » the biocarriers and could be engineered to make it suitable for spintronic applications by incorporation of dielectric into the pores and in conjunction with blue light emitting devices which could be used to obtain white light.« less
NASA Astrophysics Data System (ADS)
Lai, Billy; Li, Qiang; Lau, Kei May
2018-02-01
InAs/GaSb nanoridge heterostructures were grown on V-grooved (0 0 1) Si by metal organic chemical vapor deposition. Combining the aspect ratio trapping process and a low temperature GaAs buffer, we demonstrated high quality GaSb nanoridge templates for InAs/GaSb heterostructure growth. Two different interfaces, a transitional GaAsSb and an InSb-like interface, were investigated when growing these heterostructures. A 500 °C growth temperature in conjunction with a GaAsSb interface was determined to produce the optimal interface, properly compensating for the tensile strain accumulated when growing InAs on GaSb. Without the need for a complicated switching sequence, this GaAsSb-like interface utilized at the optimized temperature is the initial step towards InAs/GaSb type II superlattice and other device structures integrated onto Si.
Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C
2015-05-27
The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.
Graf, Neil J; Bowser, Michael T
2013-10-07
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.
Primer-independent RNA sequencing with bacteriophage phi6 RNA polymerase and chain terminators.
Makeyev, E V; Bamford, D H
2001-05-01
Here we propose a new general method for directly determining RNA sequence based on the use of the RNA-dependent RNA polymerase from bacteriophage phi6 and the chain terminators (RdRP sequencing). The following properties of the polymerase render it appropriate for this application: (1) the phi6 polymerase can replicate a number of single-stranded RNA templates in vitro. (2) In contrast to the primer-dependent DNA polymerases utilized in the sequencing procedure by Sanger et al. (Proc Natl Acad Sci USA, 1977, 74:5463-5467), it initiates nascent strand synthesis without a primer, starting the polymerization on the very 3'-terminus of the template. (3) The polymerase can incorporate chain-terminating nucleotide analogs into the nascent RNA chain to produce a set of base-specific termination products. Consequently, 3' proximal or even complete sequence of many target RNA molecules can be rapidly deduced without prior sequence information. The new technique proved useful for sequencing several synthetic ssRNA templates. Furthermore, using genomic segments of the bluetongue virus we show that RdRP sequencing can also be applied to naturally occurring dsRNA templates. This suggests possible uses of the method in the RNA virus research and diagnostics.
Fu, Yubin; Zhang, Lide; Zheng, Jiyong
2005-04-01
Halloysite template has a tubular microstructure; its wall has a multi-layer aluminosilicate structure. A new catalytic method is adopted here, through the in-situ reduction of Pd ions on the surface of tubular halloysite by methanol to initiate electroless plating; the detailed deposition features of Pd nanoparticles are investigated for the first time. The results indicate that an in-situ reduction and deposition of Pd occurs at room temperature, in which the halloysite template plays an important role. Impurities in halloysite (such as ferric oxide) influence the formation and distribution of the Pd nanoparticles. The Pd nanoparticles are of a non-spherical shape in most cases, which would be caused by the irregular appearance of halloysite. No intercalation of the nanoparticles occurs between the aluminosilicate layers in the halloysite. The diameter of Pd nanoparticles increases with time; the average diameter ranges from 1 nm to 4 nm. Pd nanoparticles on a halloysite template can catalyze electroless deposition of Ni to prepare a novel nano-sized cermet at low cost. This practicable catalytic method could also be used on other clay substrates for the initiation of metallization.
NASA Astrophysics Data System (ADS)
Nie, Qiulin; Yuan, Qiuli; Chen, Weixiang; Xu, Zhude
2004-05-01
CdS nanocrystallites were synthesized by the hydrothermal method and characterized by XRD, TEM, and XPS, respectively. Different coordination agents were chosen as the template to investigate their effects on the product morphology. It was found that the CdS nanocrystallites displayed a rod-like shape when ethylenediamine or methylamine were employed as the template. In contrast, only nanoparticles of CdS were observed when ammonia or pyridine were used. Based on our experimental results, a complex structure-controlling mechanism is proposed.
Preparation of porous Si and TiO 2 nanofibres using a sulphur-templating method for lithium storage
McCormac, Kathleen; Byrd, Ian; Brannen, Rodney; ...
2015-02-03
We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.
Stampless fabrication of sheet bars using disposable templates
NASA Astrophysics Data System (ADS)
Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.
2016-04-01
The article is devoted to the new method of small-scale fabrication of sheet bars. The procedure is performed by using disposable overlay templates, or those associated with a sheet, which parameters are obtained directly from the drawing. The proposed method used as a substitution of die cutting enables to intensify the preparatory technological process, which is particularly effective when launching the market-oriented items into production. It significantly increases the competitiveness of mechanical engineering and creates the conditions for technical support of present-day flexible production systems.
NASA Astrophysics Data System (ADS)
Duan, Guorong; Zhang, Chunxiang; Li, Aimei; Yang, Xujie; Lu, Lude; Wang, Xin
2008-03-01
Superfine powders of poly (methyl methacrylate) (PMMA) have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2 adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.
Operational Implementation of a Pc Uncertainty Construct for Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Newman, Lauri K.; Hejduk, Matthew D.; Johnson, Lauren C.
2016-01-01
Earlier this year the NASA Conjunction Assessment and Risk Analysis (CARA) project presented the theoretical and algorithmic aspects of a method to include the uncertainties in the calculation inputs when computing the probability of collision (Pc) between two space objects, principally uncertainties in the covariances and the hard-body radius. The output of this calculation approach is to produce rather than a single Pc value an entire probability density function that will represent the range of possible Pc values given the uncertainties in the inputs and bring CA risk analysis methodologies more in line with modern risk management theory. The present study provides results from the exercise of this method against an extended dataset of satellite conjunctions in order to determine the effect of its use on the evaluation of conjunction assessment (CA) event risk posture. The effects are found to be considerable: a good number of events are downgraded from or upgraded to a serious risk designation on the basis of consideration of the Pc uncertainty. The findings counsel the integration of the developed methods into NASA CA operations.
Reconstruction of ECG signals in presence of corruption.
Ganeshapillai, Gartheeban; Liu, Jessica F; Guttag, John
2011-01-01
We present an approach to identifying and reconstructing corrupted regions in a multi-parameter physiological signal. The method, which uses information in correlated signals, is specifically designed to preserve clinically significant aspects of the signals. We use template matching to jointly segment the multi-parameter signal, morphological dissimilarity to estimate the quality of the signal segment, similarity search using features on a database of templates to find the closest match, and time-warping to reconstruct the corrupted segment with the matching template. In experiments carried out on the MIT-BIH Arrhythmia Database, a two-parameter database with many clinically significant arrhythmias, our method improved the classification accuracy of the beat type by more than 7 times on a signal corrupted with white Gaussian noise, and increased the similarity to the original signal, as measured by the normalized residual distance, by more than 2.5 times.
Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching
2012-01-01
A template-free fabrication method for silicon nanostructures, such as silicon micropillar (MP)/nanowire (NW) composite structure is presented. Utilizing an improved metal-assisted electroless etching (MAEE) of silicon in KMnO4/AgNO3/HF solution and silicon composite nanostructure of the long MPs erected in the short NWs arrays were generated on the silicon substrate. The morphology evolution of the MP/NW composite nanostructure and the role of self-growing K2SiF6 particles as the templates during the MAEE process were investigated in detail. Meanwhile, a fabrication mechanism based on the etching of silver nanoparticles (catalyzed) and the masking of K2SiF6 particles is proposed, which gives guidance for fabricating different silicon nanostructures, such as NW and MP arrays. This one-step method provides a simple and cost-effective way to fabricate silicon nanostructures. PMID:23043719
NASA Astrophysics Data System (ADS)
Maes, Pieter-Jan; Amelynck, Denis; Leman, Marc
2012-12-01
In this article, a computational platform is presented, entitled "Dance-the-Music", that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers' models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method-can determine the quality of a student's performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures.
Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized. PMID:24688696
Conformational sampling in template-free protein loop structure modeling: an overview.
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.
Magnetotherapy in the treatment of viral conjunctivitis and keratitis.
Pasek, Jarosław; Pasek, Tomasz; Herba, Ewa; Misiak, Anna; Sieroń-Stołtny, Karolina; Sieroń, Aleksander
2008-01-01
Ocular infections are one of the most frequent causes of ailments among the patients coming to ophthalmologic offices. This article presents one of the physical medicine's methods--magnetotherapy--which uses the alternating low frequency magnetic fields in the therapy of viral conjunctivitis and keratitis in a 49-year-old female patient. Basing on the obtained results it was stated that this method broadens the treatment possibilities becoming a precious supplement and support treatment method in ophthalmology.
Broadband moth-eye antireflection coatings on silicon
NASA Astrophysics Data System (ADS)
Sun, Chih-Hung; Jiang, Peng; Jiang, Bin
2008-02-01
We report a bioinspired templating technique for fabricating broadband antireflection coatings that mimic antireflective moth eyes. Wafer-scale, subwavelength-structured nipple arrays are directly patterned on silicon using spin-coated silica colloidal monolayers as etching masks. The templated gratings exhibit excellent broadband antireflection properties and the normal-incidence specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis (RCWA) model. We further demonstrate that two common simulation methods, RCWA and thin-film multilayer models, generate almost identical prediction for the templated nipple arrays. This simple bottom-up technique is compatible with standard microfabrication, promising for reducing the manufacturing cost of crystalline silicon solar cells.
Sato, Takeshi; Uto, Koichiro; Aoyagi, Takao; Ebara, Mitsuhiro
2016-01-01
This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the potential of the SHT system for the manipulation of cells. PMID:28773983
Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach
Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.
1998-12-15
A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.
Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach
Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.
1998-01-01
A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.
Fabrication of polystyrene/gold nanotubes and nanostructure-controlled growth of aluminate.
Zhu, Haifeng; Ai, Sufen; He, Qiang; Cui, Yue; Li, Junbai
2007-07-01
Direct adsorption of gold nanoparticles in the inner of alumina template and following immersion of polystyrene (PS) dichloromethane solution in the template resulted in the fabrication of composite nanotubes of PS and gold nanoparticles. Several methods have been used to characterize the tubular structure. Nanostructured sodium aluminates were formed when the anodic alumina oxide membrane was dissolved by the sodium hydroxide. A "flower" shape was found after etching the template while the synthesis process was recorded as function of a time. The results demonstrate that the shape and size of the aluminates nanostructure can be controlled by etching time and the pore diameter of the alumina membrane.
Crosslinked Aspartic Acids as Helix-Nucleating Templates.
Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang
2016-09-19
Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frabicating hydroxyapatite nanorods using a biomacromolecule template
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng
2011-02-01
Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.
Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming
2006-02-08
Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.
Template-based automatic extraction of the joint space of foot bones from CT scan
NASA Astrophysics Data System (ADS)
Park, Eunbi; Kim, Taeho; Park, Jinah
2016-03-01
Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).
Automated antibody structure prediction using Accelrys tools: Results and best practices
Fasnacht, Marc; Butenhof, Ken; Goupil-Lamy, Anne; Hernandez-Guzman, Francisco; Huang, Hongwei; Yan, Lisa
2014-01-01
We describe the methodology and results from our participation in the second Antibody Modeling Assessment experiment. During the experiment we predicted the structure of eleven unpublished antibody Fv fragments. Our prediction methods centered on template-based modeling; potential templates were selected from an antibody database based on their sequence similarity to the target in the framework regions. Depending on the quality of the templates, we constructed models of the antibody framework regions either using a single, chimeric or multiple template approach. The hypervariable loop regions in the initial models were rebuilt by grafting the corresponding regions from suitable templates onto the model. For the H3 loop region, we further refined models using ab initio methods. The final models were subjected to constrained energy minimization to resolve severe local structural problems. The analysis of the models submitted show that Accelrys tools allow for the construction of quite accurate models for the framework and the canonical CDR regions, with RMSDs to the X-ray structure on average below 1 Å for most of these regions. The results show that accurate prediction of the H3 hypervariable loops remains a challenge. Furthermore, model quality assessment of the submitted models show that the models are of quite high quality, with local geometry assessment scores similar to that of the target X-ray structures. Proteins 2014; 82:1583–1598. © 2014 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:24833271
Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin
2013-11-05
The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.
Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.
Jaegle, Mike; Wong, Ee Lin; Tauber, Carolin; Nawrotzky, Eric; Arkona, Christoph; Rademann, Jörg
2017-06-19
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.
Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan
2009-08-01
In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu
2017-05-01
Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.
Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding.
Gu, Zhouye; Lin, Weisi; Lee, Bu-Sung; Lau, Chiew Tong; Sun, Ming-Ting
2012-09-01
In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.
Chitin Liquid-Crystal-Templated Oxide Semiconductor Aerogels.
Chau, Trang The Lieu; Le, Dung Quang Tien; Le, Hoa Thi; Nguyen, Cuong Duc; Nguyen, Long Viet; Nguyen, Thanh-Dinh
2017-09-13
Chitin nanocrystals have been used as a liquid crystalline template to fabricate layered oxide semiconductor aerogels. Anisotropic chitin liquid crystals are transformed to sponge-like aerogels by hydrothermally cross-linked gelation and lyophilization-induced solidification. The hydrothermal gelation of chitin aqueous suspensions then proceeds with peroxotitanate to form hydrogel composites that recover to form aerogels after freeze-drying. The homogeneous peroxotitanate/chitin composites are calcined to generate freestanding titania aerogels that exhibit the nanostructural integrity of layered chitin template. Our extended investigations show that coassembling chitin nanocrystals with other metal-based precursors also yielded semiconductor aerogels of perovskite BaTiO 3 and CuO x nanocrystals. The potential of these materials is great to investigate these chitin sponges for biomedicine and these semiconductor aerogels for photocatalysis, gas sensing, and other applications. Our results present a new aerogel templating method of highly porous, ultralight materials with chitin liquid crystals.
Robots in human biomechanics--a study on ankle push-off in walking.
Renjewski, Daniel; Seyfarth, André
2012-09-01
In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing.
Poly(cyclohexylethylene)- block-poly(ethylene oxide) block polymers for metal oxide templating
Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.
2015-09-01
A series of poly(cyclohexylethylene)- block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation producesmore » an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less
Davda, K; Osnes, C; Dillon, S; Wu, J; Hyde, P; Keeling, A
2017-12-01
To assess the trueness and precision of copy denture templates produced using traditional methods and 3D printing. Six copies of a denture were made using: 1. Conventional technique with silicone putty in an impression tray (CT). 2. Conventional technique with no impression tray (CNT). 3. 3D scanning and printing (3D). Scan trueness and precision was investigated by scanning a denture six times and comparing five scans to the sixth. Then the scans of the six CT, CNT and 3D dentures were compared by aligning, in turn, the copies of each denture to the scanned original. Outcome measures were the mean surface-to-surface distance, standard deviation of that distance and the maximum distance. Student's unpaired t-tests with Bonferroni correction were used to analyse the results. The repeated scans of the original denture showed a scan trueness of 0.013mm (SD 0.002) and precision of 0.013mm (SD 0.002). Trueness: CT templates, 0.168mm (0.047), CNT templates 0.195mm (0.034) and 3D 0.103mm (0.021). Precision: CT templates 0.158mm (0.037), CNT 0.233mm (0.073), 3D 0.090mm (0.017). For each outcome measure the 3D templates demonstrated an improvement which was statistically significant (p⟨0.05). 3D printed copy denture templates reproduced the original with greater trueness and precision than conventional techniques. Copyright© 2017 Dennis Barber Ltd.
Pu, Ying-Chih; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng
2006-09-06
This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.
Rethinking the Educator Portfolio: An Innovative Criteria-Based Model.
Shinkai, Kanade; Chen, Chen Amy; Schwartz, Brian S; Loeser, Helen; Ashe, Cynthia; Irby, David M
2017-11-07
Academic medical centers struggle to achieve parity in advancement and promotions between educators and discovery-oriented researchers in part because of narrow definitions of scholarship, lack of clear criteria for measuring excellence, and barriers to making educational contributions available for peer review. Despite recent progress in expanding scholarship definitions and identifying excellence criteria, these advances are not integrated into educator portfolio (EP) templates or curriculum vitae platforms. From 2013 to 2015, a working group from the Academy of Medical Educators (AME) at the University of California, San Francisco (UCSF) designed a streamlined, criteria-based EP (EP 2.0) template highlighting faculty members' recent activities in education and setting rigorous evaluation methods to enable educational scholarship to be objectively evaluated for academic advancement, AME membership, and professional development. The EP 2.0 template was integrated into the AME application, resulting in high overall satisfaction among candidates and the selection committee and positive feedback on the template's transparency, ease of use, and streamlined format. In 2016, the EP 2.0 template was integrated into the campus-wide curriculum vitae platform and academic advancement system. The authors plan to increase awareness of the EP 2.0 template by educating promotions committees and faculty at UCSF and partnering with other institutions to disseminate it for use. They also plan to study the impact of the template on supporting educators by making their important scholarly contributions available for peer review, providing guidance for professional development, and decreasing disparities in promotions.
NASA Astrophysics Data System (ADS)
Welter, Petra; Deserno, Thomas M.; Gülpers, Ralph; Wein, Berthold B.; Grouls, Christoph; Günther, Rolf W.
2010-03-01
The large and continuously growing amount of medical image data demands access methods with regards to content rather than simple text-based queries. The potential benefits of content-based image retrieval (CBIR) systems for computer-aided diagnosis (CAD) are evident and have been approved. Still, CBIR is not a well-established part of daily routine of radiologists. We have already presented a concept of CBIR integration for the radiology workflow in accordance with the Integrating the Healthcare Enterprise (IHE) framework. The retrieval result is composed as a Digital Imaging and Communication in Medicine (DICOM) Structured Reporting (SR) document. The use of DICOM SR provides interchange with PACS archive and image viewer. It offers the possibility of further data mining and automatic interpretation of CBIR results. However, existing standard templates do not address the domain of CBIR. We present a design of a SR template customized for CBIR. Our approach is based on the DICOM standard templates and makes use of the mammography and chest CAD SR templates. Reuse of approved SR sub-trees promises a reliable design which is further adopted to the CBIR domain. We analyze the special CBIR requirements and integrate the new concept of similar images into our template. Our approach also includes the new concept of a set of selected images for defining the processed images for CBIR. A commonly accepted pre-defined template for the presentation and exchange of results in a standardized format promotes the widespread application of CBIR in radiological routine.
Mechanism of chimera formation during the Multiple Displacement Amplification reaction.
Lasken, Roger S; Stockwell, Timothy B
2007-04-12
Multiple Displacement Amplification (MDA) is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2-21 nucleotides (nts) in the new templates. Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications.
A self-adapting system for the automated detection of inter-ictal epileptiform discharges.
Lodder, Shaun S; van Putten, Michel J A M
2014-01-01
Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form "IED nominations", each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20-30 min recordings 1 took approximately 5 min. The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.
Mechanism of chimera formation during the Multiple Displacement Amplification reaction
Lasken, Roger S; Stockwell, Timothy B
2007-01-01
Background Multiple Displacement Amplification (MDA) is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Results Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2–21 nucleotides (nts) in the new templates. Conclusion Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications. PMID:17430586
Hanson, R.T.; Flint, L.E.; Flint, A.L.; Dettinger, M.D.; Faunt, C.C.; Cayan, D.; Schmid, W.
2012-01-01
Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.
Tang, Weiyang; Li, Guizhen; Row, Kyung Ho; Zhu, Tao
2016-05-15
A novel double-templates technique was adopted for solid-phase extraction packing agent, and the obtained hybrid molecularly imprinted polymers with double-templates (theophylline and chlorogenic acid) were characterized by fourier transform infrared and field emission scanning electron microscope. The molecular recognition ability and binding capability for theophylline and chlorogenic acid of polymers was evaluated by static absorption and dynamic adsorption curves. A rapid and accurate approach was established for simultaneous purification of theophylline and chlorogenic acid in green tea by coupling hybrid molecularly imprinted solid-phase extraction with high performance liquid chromatography. With optimization of SPE procedure, a reliable analytical method was developed for highly recognition towards theophylline and chlorogenic acid in green tea with satisfactory extraction recoveries (theophylline: 96.7% and chlorogenic acid: 95.8%). The limit of detection and limit of quantity of the method were 0.01 μg/mL and 0.03 μg/mL for theophylline, 0.05 μg/mL and 0.17 μg/mL for chlorogenic acid, respectively. The recoveries of proposed method at three spiked levels analysis were 98.7-100.8% and 98.3-100.2%, respectively, with the relative standard deviation less than 1.9%. Hybrid molecularly imprinted polymers with double-templates showed good performance for two kinds of targets, and the proposed approach with high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Feng, Junzong; Jiang, Yonggang; Liu, Ping; Zhang, Qiuhua; Wei, Ronghui; Chen, Xiang; Feng, Jian
2018-01-01
The conventional sol-gel method for preparing porous carbons is tedious and high-cost to prepare porous carbons and the control over the nanoporous architecture by solvents and carbonization is restricted. A simple and novel self-sacrificial salt templating method was first presented to adjust the microporous structure of porous carbon monoliths synthesized via the solvothermal method. Apart from good monolithic appearance, the solvothermal route allowed for ambient drying because it made sure that the polymerization reaction was completed quickly and thoroughly. The intact and crack-free porous carbon monoliths were investigated by scanning electron microscopy (SEM), thermogravimetric differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and nitrogen sorption measurements. It was proven that the self-sacrificial salts NH4SCN had been removed during pyrolyzing and so, porous carbon monoliths could be directly obtained after carbonization without the need of washing removal of salts. Most importantly, the microporous specific surface area of the resultant porous carbon monoliths was dramatically increased up to 770 m2/g and the Brunauer–Emmett–Teller (BET) specific surface area was up to 1131 m2/g. That was because the salts NH4SCN as self-sacrificial templating helped to form more around 0.6 nm, 0.72 nm and 1.1 nm micropores. The self-sacrificial salt templating is also a suitable and feasible method for controlling the nanoporous structure of other porous materials. PMID:29671818
NASA Astrophysics Data System (ADS)
Lee, Gwo-Bin; Chen, Shu-Hui; Huang, Guan-Ruey; Lin, Yen-Heng; Sung, Wang-Chou
2000-08-01
Design and fabrication of microfluidic devices on polymethylmethacrylate (PMMA) substrates using novel microfabrication methods are described. The image of microfluidic devices is transferred from quartz master templates possessing inverse image of the devices to plastic plates by using hot embossing method. The micro channels on master templates are formed by the combination of metal etch mask and wet chemical etching. The micromachined quartz templates can be used repeatedly to fabricate cheap and disposable plastic devices. The reproducibility of the hot embossing method is evaluated after using 10 channels on different plastics. The relative standard deviation of the plastic channel profile from ones on quartz templates is less than 1%. In this study, the PMMA chips have been demonstrated as a micro capillary electrophoresis ((mu) -CE) device for DNA separation and detection. The capability of the fabricated chip for electrophoretic injection and separation is characterized via the analysis of DNA fragments (phi) X174. Results indicate that all of the 11 DNA fragments of the size marker could be identified in less than 3 minutes with relative standard deviations less than 0.4% and 8% for migration time and peak area, respectively. Moreover, with the use of near IR dye, fluorescence signals of the higher molecular weight fragments ($GTR 603 bp in length) could be detected at total DNA concentrations as low as 0.1 (mu) g/mL. In addition to DNA fragments (phi) X174, DNA sizing of hepatitis C viral (HCV) amplicon is also achieved using microchip electrophoresis fabricated on PMMA substrate.
A Framework for Analyzing Biometric Template Aging and Renewal Prediction
2009-03-01
databases has sufficient data to support template aging over an extended period of time. Another assumption is that there is significant variance to...mentioned above for enrollment also apply to verification. When combining enrollment and verification, there is a significant amount of variance that... significant advancement in the biometrics body of knowledge. This research presents the CTARP Framework, a novel foundational framework for methods of
Huang, Qi; Nie, Binbin; Ma, Chen; Wang, Jing; Zhang, Tianhao; Duan, Shaofeng; Wu, Shang; Liang, Shengxiang; Li, Panlong; Liu, Hua; Sun, Hua; Zhou, Jiangning; Xu, Lin; Shan, Baoci
2018-01-01
Tree shrews are proposed as an alternative animal model to nonhuman primates due to their close affinity to primates. Neuroimaging techniques are widely used to study brain functions and structures of humans and animals. However, tree shrews are rarely applied in neuroimaging field partly due to the lack of available species specific analysis methods. In this study, 10 PET/CT and 10 MRI images of tree shrew brain were used to construct PET and MRI templates; based on histological atlas we reconstructed a three-dimensional digital atlas with 628 structures delineated; then the digital atlas and templates were aligned into a stereotaxic space. Finally, we integrated the digital atlas and templates into a toolbox for tree shrew brain spatial normalization, statistical analysis and results localization. We validated the feasibility of the toolbox by simulated data with lesions in laterodorsal thalamic nucleus (LD). The lesion volumes of simulated PET and MRI images were (12.97±3.91)mm 3 and (7.04±0.84)mm 3 . Statistical results at p<0.005 showed the lesion volumes of PET and MRI were 13.18mm 3 and 8.06mm 3 in LD. To our knowledge, we report the first PET template and digital atlas of tree shrew brain. Compared to the existing MRI templates, our MRI template was aligned into stereotaxic space. And the toolbox is the first software dedicated for tree shrew brain analysis. The templates and digital atlas of tree shrew brain, as well as the toolbox, facilitate the use of tree shrews in neuroimaging field. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Background Health economics is increasingly used to inform resource allocation decision-making, however, there is comparatively little evidence relevant to minority groups. In part, this is due to lack of cost and effectiveness data specific to these groups upon which economic evaluations can be based. Consequently, resource allocation decisions often rely on mainstream evidence which may not be representative, resulting in inequitable funding decisions. This paper describes a method to overcome this deficiency for Australia’s Indigenous population. A template has been developed which can adapt mainstream health intervention data to the Indigenous setting. Methods The ‘Indigenous Health Service Delivery Template’ has been constructed using mixed methods, which include literature review, stakeholder discussions and key informant interviews. The template quantifies the differences in intervention delivery between best practice primary health care for the Indigenous population via Aboriginal Community Controlled Health Services (ACCHSs), and mainstream general practitioner (GP) practices. Differences in costs and outcomes have been identified, measured and valued. This template can then be used to adapt mainstream health intervention data to allow its economic evaluation as if delivered from an ACCHS. Results The template indicates that more resources are required in the delivery of health interventions via ACCHSs, due to their comprehensive nature. As a result, the costs of such interventions are greater, however this is accompanied by greater benefits due to improved health service access. In the example case of the polypill intervention, 58% more costs were involved in delivery via ACCHSs, with 50% more benefits. Cost-effectiveness ratios were also altered accordingly. Conclusions The Indigenous Health Service Delivery Template reveals significant differences in the way health interventions are delivered from ACCHSs compared to mainstream GP practices. It is important that these differences are included in the conduct of economic evaluations to ensure results are relevant to Indigenous Australians. Similar techniques would be generalisable to other disadvantaged minority populations. This will allow resource allocation decision-makers access to economic evidence that more accurately represents the needs and context of disadvantaged groups, which is particularly important if addressing health inequities is a stated goal. PMID:22954136
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
NASA Astrophysics Data System (ADS)
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.
Whole brain fiber-based comparison (FBC)-A tool for diffusion tensor imaging-based cohort studies.
Zimmerman-Moreno, Gali; Ben Bashat, Dafna; Artzi, Moran; Nefussy, Beatrice; Drory, Vivian; Aizenstein, Orna; Greenspan, Hayit
2016-02-01
We present a novel method for fiber-based comparison of diffusion tensor imaging (DTI) scans of groups of subjects. The method entails initial preprocessing and fiber reconstruction by tractography of each brain in its native coordinate system. Several diffusion parameters are sampled along each fiber and used in subsequent comparisons. A spatial correspondence between subjects is established based on geometric similarity between fibers in a template set (several choices for template are explored), and fibers in all other subjects. Diffusion parameters between groups are compared statistically for each template fiber. Results are presented at single fiber resolution. As an initial exploratory step in neurological population studies this method points to the locations affected by the pathology of interest, without requiring a hypothesis. It does not make any grouping assumptions on the fibers and no manual intervention is needed. The framework was applied here to 18 healthy subjects and 23 amyotrophic lateral sclerosis (ALS) patients. The results are compatible with previous findings and with the tract based spatial statistics (TBSS) method. Hum Brain Mapp 37:477-490, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J; Dierckx, Rudi A J O; Koole, Michel; Doorduin, Janine
2015-01-01
High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].
Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine
2015-01-01
High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community. PMID:25823005
2004-01-01
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs TH (5-methyl-2-pyrimidinone)/HS (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3′→5′ exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3′→5′ exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3′→5′ exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3′→5′ exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair TH/HS was 0.1 times that of A/T for TH in the template and 0.01 times that of A/T for HS in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or TH opposite a template hypoxanthine, 2×10−6; HS opposite a template cytosine, <3×10−4. The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template TH, showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication. PMID:15078225
SU-F-BRD-10: Lung IMRT Planning Using Standardized Beam Bouquet Templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, L; Wu, Q J.; Yin, F
2014-06-15
Purpose: We investigate the feasibility of choosing from a small set of standardized templates of beam bouquets (i.e., entire beam configuration settings) for lung IMRT planning to improve planning efficiency and quality consistency, and also to facilitate automated planning. Methods: A set of beam bouquet templates is determined by learning from the beam angle settings in 60 clinical lung IMRT plans. A k-medoids cluster analysis method is used to classify the beam angle configuration into clusters. The value of the average silhouette width is used to determine the ideal number of clusters. The beam arrangements in each medoid of themore » resulting clusters are taken as the standardized beam bouquet for the cluster, with the corresponding case taken as the reference case. The resulting set of beam bouquet templates was used to re-plan 20 cases randomly selected from the database and the dosimetric quality of the plans was evaluated against the corresponding clinical plans by a paired t-test. The template for each test case was manually selected by a planner based on the match between the test and reference cases. Results: The dosimetric parameters (mean±S.D. in percentage of prescription dose) of the plans using 6 beam bouquet templates and those of the clinical plans, respectively, and the p-values (in parenthesis) are: lung Dmean: 18.8±7.0, 19.2±7.0 (0.28), esophagus Dmean: 32.0±16.3, 34.4±17.9 (0.01), heart Dmean: 19.2±16.5, 19.4±16.6 (0.74), spinal cord D2%: 47.7±18.8, 52.0±20.3 (0.01), PTV dose homogeneity (D2%-D99%): 17.1±15.4, 20.7±12.2 (0.03).The esophagus Dmean, cord D02 and PTV dose homogeneity are statistically better in the plans using the standardized templates, but the improvements (<5%) may not be clinically significant. The other dosimetric parameters are not statistically different. Conclusion: It's feasible to use a small number of standardized beam bouquet templates (e.g. 6) to generate plans with quality comparable to that of clinical plans. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less
An Accurate Scalable Template-based Alignment Algorithm
Gardner, David P.; Xu, Weijia; Miranker, Daniel P.; Ozer, Stuart; Cannone, Jamie J.; Gutell, Robin R.
2013-01-01
The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at http://www.rna.ccbb.utexas.edu/SAE/2F/CRWAlign. PMID:24772376
Zhou, Hongyi; Skolnick, Jeffrey
2010-01-01
In this work, we develop a method called FTCOM for assessing the global quality of protein structural models for targets of medium and hard difficulty (remote homology) produced by structure prediction approaches such as threading or ab initio structure prediction. FTCOM requires the Cα coordinates of full length models and assesses model quality based on fragment comparison and a score derived from comparison of the model to top threading templates. On a set of 361 medium/hard targets, FTCOM was applied to and assessed for its ability to improve upon the results from the SP3, SPARKS, PROSPECTOR_3, and PRO-SP3-TASSER threading algorithms. The average TM-score improves by 5%–10% for the first selected model by the new method over models obtained by the original selection procedure in the respective threading methods. Moreover the number of foldable targets (TM-score ≥0.4) increases from least 7.6% for SP3 to 54% for SPARKS. Thus, FTCOM is a promising approach to template selection. PMID:20455261
El Mendili, Mohamed-Mounir; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib
2015-01-01
Objective To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. Materials and Methods A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Results Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. Conclusion A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template. PMID:25816143
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana (Inventor); Hoenk, Michael Eugene (Inventor); Nikzad, Shouleh (Inventor)
2010-01-01
A method is provided for growing a back surface contact on an imaging detector used in conjunction with back illumination. In operation, an imaging detector is provided. Additionally, a back surface contact (e.g. a delta-doped layer, etc.) is grown on the imaging detector utilizing a process that is performed at a temperature less than 450 degrees Celsius.
Time Dependence of Collision Probabilities During Satellite Conjunctions
NASA Technical Reports Server (NTRS)
Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.
2017-01-01
The NASA Conjunction Assessment Risk Analysis (CARA) team has recently implemented updated software to calculate the probability of collision (P (sub c)) for Earth-orbiting satellites. The algorithm can employ complex dynamical models for orbital motion, and account for the effects of non-linear trajectories as well as both position and velocity uncertainties. This “3D P (sub c)” method entails computing a 3-dimensional numerical integral for each estimated probability. Our analysis indicates that the 3D method provides several new insights over the traditional “2D P (sub c)” method, even when approximating the orbital motion using the relatively simple Keplerian two-body dynamical model. First, the formulation provides the means to estimate variations in the time derivative of the collision probability, or the probability rate, R (sub c). For close-proximity satellites, such as those orbiting in formations or clusters, R (sub c) variations can show multiple peaks that repeat or blend with one another, providing insight into the ongoing temporal distribution of risk. For single, isolated conjunctions, R (sub c) analysis provides the means to identify and bound the times of peak collision risk. Additionally, analysis of multiple actual archived conjunctions demonstrates that the commonly used “2D P (sub c)” approximation can occasionally provide inaccurate estimates. These include cases in which the 2D method yields negligibly small probabilities (e.g., P (sub c)) is greater than 10 (sup -10)), but the 3D estimates are sufficiently large to prompt increased monitoring or collision mitigation (e.g., P (sub c) is greater than or equal to 10 (sup -5)). Finally, the archive analysis indicates that a relatively efficient calculation can be used to identify which conjunctions will have negligibly small probabilities. This small-P (sub c) screening test can significantly speed the overall risk analysis computation for large numbers of conjunctions.
NASA Astrophysics Data System (ADS)
Wu, Changtong; Zhou, Chunyang; Wang, Erkang; Dong, Shaojun
2016-07-01
For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations.For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04069a
NASA Astrophysics Data System (ADS)
Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui
2016-02-01
We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.
Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui
2016-01-01
We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759
Triple helix purification and sequencing
Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.
1995-01-01
Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.
Biotemplated flagellar nanoswimmers
NASA Astrophysics Data System (ADS)
Ali, Jamel; Cheang, U. Kei; Darvish, Armin; Kim, Hoyeon; Kim, Min Jun
2017-11-01
In this article, a porous hollow biotemplated nanoscale helix that can serve as a low Reynolds number robotic swimmer is reported. The nanorobot utilizes repolymerized bacterial flagella from Salmonella typhimurium as a nanotemplate for biomineralization. We demonstrate the ability to generate templated nanotubes with distinct helical geometries by using specific alkaline pH values to fix the polymorphic form of flagellar templates. Using uniform rotating magnetic fields to mimic the motion of the flagellar motor, we explore the swimming characteristics of these silica templated flagella and demonstrate the ability to wirelessly control their trajectories. The results suggest that the biotemplated nanoswimmer can be a cost-effective alternative to the current top-down methods used to produce helical nanorobots.
Triple helix purification and sequencing
Wang, R.; Smith, L.M.; Tong, X.E.
1995-03-28
Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.
Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui
2016-02-02
We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.
Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.
Zhang, Zhang; Liu, Lifeng; Shimizu, Tomohiro; Senz, Stephan; Gösele, Ulrich
2010-02-05
Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.
Current Trends in Sensors Based on Conducting Polymer Nanomaterials
Yoon, Hyeonseok
2013-01-01
Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348
Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools
NASA Astrophysics Data System (ADS)
Cheung, Kwan Yee; Lai, Kwok Kei; Mak, Wing Cheung
2018-05-01
Microparticles have attracted much attention for medical, analytical and biological applications. Calcium carbonate (CaCO3) templating method with the advantages of having narrow size distribution, controlled morphology and good biocompatibility that has been widely used for the synthesis of various protein-based microparticles. Despite CaCO3 template is biocompatible, most of the conventional methods to create stable protein microparticles are mainly driven by chemical crosslink reagents which may induce potential harmful effect and remains undesirable especially for biomedical or clinical applications. In this article, we demonstrate the fabrication of protein microparticles and microcapsules with an innovative method using biomolecular tools such as enzymes and affinity molecules to trigger the assembling of protein molecules within a porous CaCO3 template followed by a template removal step. We demonstrated the enzyme-assisted fabrication of collagen microparticles triggered by transglutaminase, as well as the affinity-assisted fabrication of BSA-biotin avidin microcapsules triggered by biotin-avidin affinity interaction, respectively. Based on the different protein assemble mechanisms, the collagen microparticles appeared as a solid-structured particles, while the BSA-biotin avidin microcapsules appeared as hollow-structured morphology. The fabrication procedures are simple and robust that allows producing protein microparticles or microcapsules under mild conditions at physiological pH and temperature. In addition, the microparticle morphologies, protein compositions and the assemble mechanisms were studied. Our technology provides a facile approach to design and fabricate protein microparticles and microcapsules that are useful in the area of biomaterials, pharmaceuticals and analytical chemistry.
Holst, H; Aström, K; Järund, A; Palmer, J; Heyden, A; Kahl, F; Tägil, K; Evander, E; Sparr, G; Edenbrandt, L
2000-04-01
The purpose of this study was to develop a completely automated method for the interpretation of ventilation-perfusion (V-P) lung scintigrams used in the diagnosis of pulmonary embolism. An artificial neural network was trained for the diagnosis of pulmonary embolism using 18 automatically obtained features from each set of V-P scintigrams. The techniques used to process the images included their alignment to templates, the construction of quotient images based on the ventilation and perfusion images, and the calculation of measures describing V-P mismatches in the quotient images. The templates represented lungs of normal size and shape without any pathological changes. Images that could not be properly aligned to the templates were detected and excluded automatically. After exclusion of those V-P scintigrams not properly aligned to the templates, 478 V-P scintigrams remained in a training group of consecutive patients with suspected pulmonary embolism, and a further 87 V-P scintigrams formed a separate test group comprising patients who had undergone pulmonary angiography. The performance of the neural network, measured as the area under the receiver operating characteristic curve, was 0.87 (95% confidence limits 0.82-0.92) in the training group and 0.79 (0.69-0.88) in the test group. It is concluded that a completely automated method can be used for the interpretation of V-P scintigrams. The performance of this method is similar to others previously presented, whereby features were extracted manually.
Iterated function systems for DNA replication
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2017-10-01
The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.
Aligned crystalline semiconducting film on a glass substrate and method of making
Findikoglu, Alp T.
2010-08-24
A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.
Comparative study of minutiae selection algorithms for ISO fingerprint templates
NASA Astrophysics Data System (ADS)
Vibert, B.; Charrier, C.; Le Bars, J.-M.; Rosenberger, C.
2015-03-01
We address the selection of fingerprint minutiae given a fingerprint ISO template. Minutiae selection plays a very important role when a secure element (i.e. a smart-card) is used. Because of the limited capability of computation and memory, the number of minutiae of a stored reference in the secure element is limited. We propose in this paper a comparative study of 6 minutiae selection methods including 2 methods from the literature and 1 like reference (No Selection). Experimental results on 3 fingerprint databases from the Fingerprint Verification Competition show their relative efficiency in terms of performance and computation time.
Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki
2018-02-06
New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.
Synthesis of thin films and materials utilizing a gaseous catalyst
Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard
2013-10-29
A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2014-10-01
oxide ( AAO ) membranes were fabricated from high purity aluminum foil (99.999%) by electrochemical route using a controlled two-step anodization ...deposition of Fe and Co in anodized alumina templates. We used commercially prepared AAO templates which had pore diameters of 100 nm (300 nm), an...a thermal decomposition method. The final product was suspended in high-purity hexane to create a ferrofluid. Custom highly ordered anodic aluminum
Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures.
Chuan Tan, Ying; Chun Zeng, Hua
2016-10-04
An aqueous one-pot self-templating synthesis method to prepare highly uniform ZIF-67 hollow spheres (ZIF-67-HS) and their transition metal-doped derivatives (M/ZIF-67-HS, M = Cu and/or Zn) was developed. Extension of this approach to another important class of MOFs (metal carboxylates; e.g., HKUST-1) and facile design of derived nanostructures with complex architectures were also achieved.
Graf, Neil J.
2013-01-01
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263
Template Matching for Auditing Hospital Cost and Quality
Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Mukherjee, Nabanita; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A
2014-01-01
Objective Develop an improved method for auditing hospital cost and quality. Data Sources/Setting Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, Texas, and New York between 2004 and 2006. Study Design A template of 300 representative patients was constructed and then used to match 300 patients at hospitals that had a minimum of 500 patients over a 3-year study period. Data Collection/Extraction Methods From each of 217 hospitals we chose 300 patients most resembling the template using multivariate matching. Principal Findings The matching algorithm found close matches on procedures and patient characteristics, far more balanced than measured covariates would be in a randomized clinical trial. These matched samples displayed little to no differences across hospitals in common patient characteristics yet found large and statistically significant hospital variation in mortality, complications, failure-to-rescue, readmissions, length of stay, ICU days, cost, and surgical procedure length. Similar patients at different hospitals had substantially different outcomes. Conclusion The template-matched sample can produce fair, directly standardized audits that evaluate hospitals on patients with similar characteristics, thereby making benchmarking more believable. Through examining matched samples of individual patients, administrators can better detect poor performance at their hospitals and better understand why these problems are occurring. PMID:24588413
Ghafar, Abdul; Parikka, Kirsti; Tenkanen, Maija; Suuronen, Jussi-Petteri
2017-01-01
This study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels’ mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications. PMID:28773235
Taşaltın, Nevin; Oztürk, Sadullah; Kılınç, Necmettin; Yüzer, Hayrettin; Oztürk, Zaferziya
2010-05-01
A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current-time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm-2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.
2010-01-01
A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417
Muench, Falk; Schaefer, Sandra; Hagelüken, Lorenz; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Kleebe, Hans-Joachim; Brötz, Joachim; Vaskevich, Alexander; Rubinstein, Israel; Ensinger, Wolfgang
2017-09-13
Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nanowire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.
Hu, Ying Kai; Xie, Qian Yang; Yang, Chi; Xu, Guang Zhou
2017-01-01
Abstract The aim of this study was to introduce a novel method of mesiodens extraction using a vascularized pedicled bone flap by piezosurgery and to compare the differences between a computer-aided design surgical guide template and free-hand operation. A total of 8 patients with mesiodens, 4 with a surgical guide (group I), and 4 without it (group II) were included in the study. The surgical design was to construct a trapdoor pedicle on the superior mucoperiosteal attachment with application of piezosurgery. The bone lid was repositioned after mesiodens extraction. Group I patients underwent surgeries based on the preoperative planning with surgical guide templates, while group II patients underwent free-hand operation. The outcome variables were success rate, intraoperative time, anterior nasal spine (ANS) position, changes of nasolabial angle (NLA), and major complications. Data from the 2 groups were compared by SPSS 17.0, using Wilcoxon test. The operative time was significantly shorter in group I patients. All the mesiodentes were extracted successfully and no obvious differences of preoperative and postoperative ANS position and NLA value were found in both groups. The patients were all recovered uneventfully. Surgical guide templates can enhance clinical accuracy and reduce operative time by facilitating accurate osteotomies. PMID:28658139
Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok
2017-07-03
Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kim, Michele M; Zhu, Timothy C
2013-02-02
During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Varadharajan, C.; Detto, M.; Faybishenko, B.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Pastorello, G.; Powell, T.; Warren, J.; Wolfe, B.; McDowell, N. G.; Kueppers, L. M.; Chambers, J.; Agarwal, D.
2016-12-01
The U.S. Department of Energy's (DOE) Next Generation Ecosystem Experiment (NGEE) Tropics project aims to develop a process-rich tropical forest ecosystem model that is parameterized and benchmarked by field observations. Thus, data synthesis, quality assurance and quality control (QA/QC), and data product generation of a diverse and complex set of ecohydrological observations, including sapflux, leaf surface temperature, soil water content, and leaf gas exchange from sites across the Tropics, are required to support model simulations. We have developed a metadata reporting framework, implemented in conjunction with the NGEE Tropics Data Archive tool, to enable cross-site and cross-method comparison, data interpretability, and QA/QC. We employed a modified User-Centered Design approach, which involved short development cycles based on user-identified needs, and iterative testing with data providers and users. The metadata reporting framework currently has been implemented for sensor-based observations and leverages several existing metadata protocols. The framework consists of templates that define a multi-scale measurement position hierarchy, descriptions of measurement settings, and details about data collection and data file organization. The framework also enables data providers to define data-access permission settings, provenance, and referencing to enable appropriate data usage, citation, and attribution. In addition to describing the metadata reporting framework, we discuss tradeoffs and impressions from both data providers and users during the development process, focusing on the scalability, usability, and efficiency of the framework.
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-04-11
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.
In situ detection of warfarin using time-correlated single-photon counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga
Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction withmore » the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.« less
Short template switch events explain mutation clusters in the human genome.
Löytynoja, Ari; Goldman, Nick
2017-06-01
Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution. © 2017 Löytynoja and Goldman; Published by Cold Spring Harbor Laboratory Press.
Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.
2013-11-15
Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less
Accurate template-based modeling in CASP12 using the IntFOLD4-TS, ModFOLD6, and ReFOLD methods.
McGuffin, Liam J; Shuid, Ahmad N; Kempster, Robert; Maghrabi, Ali H A; Nealon, John O; Salehe, Bajuna R; Atkins, Jennifer D; Roche, Daniel B
2018-03-01
Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors. Secondly, the ReFOLD method for fixing errors through iterative QA guided refinement. For our automated predictions we developed the IntFOLD4-TS protocol, which integrates the ModFOLD6_rank method for scoring the multiple-template models that were generated using a number of alternative sequence-structure alignments. Overall, our selection of top models and ASE scores using ModFOLD6_rank was an improvement on our previous approaches. In addition, it was worthwhile attempting to repair the detected errors in the top selected models using ReFOLD, which gave us an overall gain in performance. According to the assessors' formula, the IntFOLD4 server ranked 3rd/5th (average Z-score > 0.0/-2.0) on the server only targets, and our manual predictions (McGuffin group) ranked 1st/2nd (average Z-score > -2.0/0.0) compared to all other groups. © 2017 Wiley Periodicals, Inc.
A hospital-specific template for benchmarking its cost and quality.
Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A
2014-10-01
Develop an improved method for auditing hospital cost and quality tailored to a specific hospital's patient population. Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, New York, and Texas between 2004 and 2006. A template of 300 representative patients from a single index hospital was constructed and used to match 300 patients at 43 hospitals that had a minimum of 500 patients over a 3-year study period. From each of 43 hospitals we chose 300 patients most resembling the template using multivariate matching. We found close matches on procedures and patient characteristics, far more balanced than would be expected in a randomized trial. There were little to no differences between the index hospital's template and the 43 hospitals on most patient characteristics yet large and significant differences in mortality, failure-to-rescue, and cost. Matching can produce fair, directly standardized audits. From the perspective of the index hospital, "hospital-specific" template matching provides the fairness of direct standardization with the specific institutional relevance of indirect standardization. Using this approach, hospitals will be better able to examine their performance, and better determine why they are achieving the results they observe. © Health Research and Educational Trust.
2014-01-01
Background This study aimed to evaluate the accuracy of surgical outcomes in free iliac crest mandibular reconstructions that were carried out with virtual surgical plans and rapid prototyping templates. Methods This study evaluated eight patients who underwent mandibular osteotomy and reconstruction with free iliac crest grafts using virtual surgical planning and designed guiding templates. Operations were performed using the prefabricated guiding templates. Postoperative three-dimensional computer models were overlaid and compared with the preoperatively designed models in the same coordinate system. Results Compared to the virtual osteotomy, the mean error of distance of the actual mandibular osteotomy was 2.06 ± 0.86 mm. When compared to the virtual harvested grafts, the mean error volume of the actual harvested grafts was 1412.22 ± 439.24 mm3 (9.12% ± 2.84%). The mean error between the volume of the actual harvested grafts and the shaped grafts was 2094.35 ± 929.12 mm3 (12.40% ± 5.50%). Conclusions The use of computer-aided rapid prototyping templates for virtual surgical planning appears to positively influence the accuracy of mandibular reconstruction. PMID:24957053
The Identification and Tracking of Uterine Contractions Using Template Based Cross-Correlation.
McDonald, Sarah C; Brooker, Graham; Phipps, Hala; Hyett, Jon
2017-09-01
The purpose of this paper is to outline a novel method of using template based cross-correlation to identify and track uterine contractions during labour. A purpose built six-channel Electromyography (EMG) device was used to collect data from consenting women during labour and birth. A range of templates were constructed for the purpose of identifying and tracking uterine activity when cross-correlated with the EMG signal. Peak finding techniques were applied on the cross-correlated result to simplify and automate the identification and tracking of contractions. The EMG data showed a unique pattern when a woman was contracting with key features of the contraction signal remaining consistent and identifiable across subjects. Contraction profiles across subjects were automatically identified using template based cross-correlation. Synthetic templates from a rectangular function with a duration of between 5 and 10 s performed best at identifying and tracking uterine activity across subjects. The successful application of this technique provides opportunity for both simple and accurate real-time analysis of contraction data while enabling investigations into the application of techniques such as machine learning which could enable automated learning from contraction data as part of real-time monitoring and post analysis.
Gül, O. Tolga; Pugliese, Kaitlin M.; Choi, Yongki; Sims, Patrick C.; Pan, Deng; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.
2016-01-01
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures. PMID:27348011
Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G
2016-06-24
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
40 CFR 227.29 - Initial mixing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... estimated by one of these methods, in order of preference: (1) When field data on the proposed dumping are... conjunction with an appropriate mathematical model acceptable to EPA or the District Engineer, as appropriate... proposed for discharge are available, these shall be used in conjunction with an appropriate mathematical...
Jirapatnakul, Artit C; Fotin, Sergei V; Reeves, Anthony P; Biancardi, Alberto M; Yankelevitz, David F; Henschke, Claudia I
2009-01-01
Estimation of nodule location and size is an important pre-processing step in some nodule segmentation algorithms to determine the size and location of the region of interest. Ideally, such estimation methods will consistently find the same nodule location regardless of where the the seed point (provided either manually or by a nodule detection algorithm) is placed relative to the "true" center of the nodule, and the size should be a reasonable estimate of the true nodule size. We developed a method that estimates nodule location and size using multi-scale Laplacian of Gaussian (LoG) filtering. Nodule candidates near a given seed point are found by searching for blob-like regions with high filter response. The candidates are then pruned according to filter response and location, and the remaining candidates are sorted by size and the largest candidate selected. This method was compared to a previously published template-based method. The methods were evaluated on the basis of stability of the estimated nodule location to changes in the initial seed point and how well the size estimates agreed with volumes determined by a semi-automated nodule segmentation method. The LoG method exhibited better stability to changes in the seed point, with 93% of nodules having the same estimated location even when the seed point was altered, compared to only 52% of nodules for the template-based method. Both methods also showed good agreement with sizes determined by a nodule segmentation method, with an average relative size difference of 5% and -5% for the LoG and template-based methods respectively.
Chang, Shy-Shin; Hsu, Hsung-Ling; Cheng, Ju-Chien; Tseng, Ching-Ping
2011-01-01
Background Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. Methodology/Principal Findings We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. Conclusions/Significance Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories. PMID:21637859
A Self-Adapting System for the Automated Detection of Inter-Ictal Epileptiform Discharges
Lodder, Shaun S.; van Putten, Michel J. A. M.
2014-01-01
Purpose Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Methods Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form “IED nominations”, each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Key Findings Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20–30 min recordings 1took approximately 5 min. Significance The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents. PMID:24454813
Block Copolymer-Templated Approach to Nanopatterned Metal-Organic Framework Films.
Zhou, Meimei; Wu, Yi-Nan; Wu, Baozhen; Yin, Xianpeng; Gao, Ning; Li, Fengting; Li, Guangtao
2017-08-17
The fabrication of patterned metal-organic framework (MOF) films with precisely controlled nanoscale resolution has been a fundamental challenge in nanoscience and nanotechnology. In this study, nanopatterned MOF films were fabricated using a layer-by-layer (LBL) growth method on functional templates (such as a bicontinuous nanoporous membrane or a structure with highly long-range-ordered nanoscopic channels parallel to the underlying substrate) generated by the microphase separation of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymers. HKUST-1 can be directly deposited on the templates without any chemical modification because the pyridine groups in P2VP interact with metal ions via metal-BCP complexes. As a result, nanopatterned HKUST-1 films with feature sizes below 50 nm and controllable thicknesses can be fabricated by controlling the number of LBL growth cycles. The proposed fabrication method further extends the applications of MOFs in various fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Kun; He, Yuan; Xu, Qingchi; Zhang, Qin'e; Zhou, An'an; Lu, Zihao; Yang, Li-Kun; Jiang, Yuan; Ge, Dongtao; Liu, Xiang Yang; Bai, Hua
2018-05-15
Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g -1 , a rate capability, and good cycling stability (∼83% capacitance retention after 10,000 cycles). This method was also extended to the preparation of polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.
Multilayer block copolymer meshes by orthogonal self-assembly
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218
RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon.
Tang, Hongxing; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Huimin; He, Lifang; Liu, Bin
2008-06-15
A novel RNA-templated single-base mutation detection method based on T4 DNA ligase and reverse molecular beacon (rMB) has been developed and successfully applied to identification of single-base mutation in codon 273 of the p53 gene. The discrimination was carried out using allele-specific primers, which flanked the variable position in the target RNA and was ligated using T4 DNA ligase only when the primers perfectly matched the RNA template. The allele-specific primers also carried complementary stem structures with end-labels (fluorophore TAMRA, quencher DABCYL), which formed a molecular beacon after RNase H digestion. One-base mismatch can be discriminated by analyzing the change of fluorescence intensity before and after RNase H digestion. This method has several advantages for practical applications, such as direct discrimination of single-base mismatch of the RNA extracted from cell; no requirement of PCR amplification; performance of homogeneous detection; and easily design of detection probes.
Lim, Young-Kyun; Lee, Eung-Seok; Lee, Choong-Hyun; Lim, Dae-Soon
2018-08-10
In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.
Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting
2017-03-08
Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guan, Buyuan; Wang, Xue; Xiao, Yu; Liu, Yunling; Huo, Qisheng
2013-03-21
A very simple cooperative template-directed coating method is developed for the preparation of core-shell, hollow, and yolk-shell microporous carbon nanocomposites. Particularly, the cationic surfactant C16TMA(+)·Br(-) used in the coating procedure improves the core dispersion in the reaction media and serves as the soft template for mesostructured resorcinol-formaldehyde resin formation, which results in the uniform polymer and microporous carbon shell coating on most functional cores with different surface properties. The core diameter and the shell thickness of the nanocomposites can be precisely tailored. This approach is highly reproducible and scalable. Several grams of polymer and carbon nanocomposites can be easily prepared by a facile one-pot reaction. The Au@hydrophobic microporous carbon yolk-shell catalyst favors the reduction of more hydrophobic nitrobenzene than hydrophilic 4-nitrophenol by sodium borohydride, which makes this type of catalyst@carbon yolk-shell composites promising nanomaterials as selective catalysts for hydrophobic reactants.
Developmental changes in hippocampal shape among preadolescent children.
Lin, Muqing; Fwu, Peter T; Buss, Claudia; Davis, Elysia P; Head, Kevin; Muftuler, L Tugan; Sandman, Curt A; Su, Min-Ying
2013-11-01
It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.