Fuzzy associative conjuncted maps network.
Goh, Hanlin; Lim, Joo-Hwee; Quek, Chai
2009-08-01
The fuzzy associative conjuncted maps (FASCOM) is a fuzzy neural network that associates data of nonlinearly related inputs and outputs. In the network, each input or output dimension is represented by a feature map that is partitioned into fuzzy or crisp sets. These fuzzy sets are then conjuncted to form antecedents and consequences, which are subsequently associated to form if-then rules. The associative memory is encoded through an offline batch mode learning process consisting of three consecutive phases. The initial unsupervised membership function initialization phase takes inspiration from the organization of sensory maps in our brains by allocating membership functions based on uniform information density. Next, supervised Hebbian learning encodes synaptic weights between input and output nodes. Finally, a supervised error reduction phase fine-tunes the network, which allows for the discovery of the varying levels of influence of each input dimension across an output feature space in the encoded memory. In the series of experiments, we show that each phase in the learning process contributes significantly to the final accuracy of prediction. Further experiments using both toy problems and real-world data demonstrate significant superiority in terms of accuracy of nonlinear estimation when benchmarked against other prominent architectures and exhibit the network's suitability to perform analysis and prediction on real-world applications, such as traffic density prediction as shown in this paper.
Adaptive Dynamic Bayesian Networks
Ng, B M
2007-10-26
A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.
Azari, Amir A.; Barney, Neal P.
2014-01-01
IMPORTANCE Conjunctivitis is a common problem. OBJECTIVE To examine the diagnosis, management, and treatment of conjunctivitis, including various antibiotics and alternatives to antibiotic use in infectious conjunctivitis and use of antihistamines and mast cell stabilizers in allergic conjunctivitis. EVIDENCE REVIEW A search of the literature published through March 2013, using PubMed, the ISI Web of Knowledge database, and the Cochrane Library was performed. Eligible articles were selected after review of titles, abstracts, and references. FINDINGS Viral conjunctivitis is the most common overall cause of infectious conjunctivitis and usually does not require treatment; the signs and symptoms at presentation are variable. Bacterial conjunctivitis is the second most common cause of infectious conjunctivitis, with most uncomplicated cases resolving in 1 to 2 weeks. Mattering and adherence of the eyelids on waking, lack of itching, and absence of a history of conjunctivitis are the strongest factors associated with bacterial conjunctivitis. Topical antibiotics decrease the duration of bacterial conjunctivitis and allow earlier return to school or work. Conjunctivitis secondary to sexually transmitted diseases such as chlamydia and gonorrhea requires systemic treatment in addition to topical antibiotic therapy. Allergic conjunctivitis is encountered in up to 40% of the population, but only a small proportion of these individuals seek medical help; itching is the most consistent sign in allergic conjunctivitis, and treatment consists of topical antihistamines and mast cell inhibitors. CONCLUSIONS AND RELEVANCE The majority of cases in bacterial conjunctivitis are self-limiting and no treatment is necessary in uncomplicated cases. However, conjunctivitis caused by gonorrhea or chlamydia and conjunctivitis in contact lens wearers should be treated with antibiotics. Treatment for viral conjunctivitis is supportive. Treatment with antihistamines and mast cell stabilizers
... Antibiotic medicines most often in the form of eye drops work well to treat bacterial conjunctivitis. Viral conjunctivitis will go away on its own. Mild steroid eye drops may help ease discomfort. Many doctors give ...
Alfonso, Susana A; Fawley, Jonie D; Alexa Lu, Xiaoqin
2015-09-01
Conjunctivitis is the most common cause of red eye in primary care. The 3 most common types of conjunctivitis are viral, allergic, and bacterial, and they can present in either acute or chronic forms; the age of the patient, time of year and physical examination findings are paramount to distinguish the different types of conjunctivitis. Distinguishing between acute viral and bacterial conjunctivitis remains difficult. Patients with prolonged symptoms, poor response to initial management, or evidence of severe disease should be referred to ophthalmology for consultation.
Pedestrian dynamics via Bayesian networks
NASA Astrophysics Data System (ADS)
Venkat, Ibrahim; Khader, Ahamad Tajudin; Subramanian, K. G.
2014-06-01
Studies on pedestrian dynamics have vital applications in crowd control management relevant to organizing safer large scale gatherings including pilgrimages. Reasoning pedestrian motion via computational intelligence techniques could be posed as a potential research problem within the realms of Artificial Intelligence. In this contribution, we propose a "Bayesian Network Model for Pedestrian Dynamics" (BNMPD) to reason the vast uncertainty imposed by pedestrian motion. With reference to key findings from literature which include simulation studies, we systematically identify: What are the various factors that could contribute to the prediction of crowd flow status? The proposed model unifies these factors in a cohesive manner using Bayesian Networks (BNs) and serves as a sophisticated probabilistic tool to simulate vital cause and effect relationships entailed in the pedestrian domain.
Space Shuttle RTOS Bayesian Network
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
A Bayesian network for mammography.
Burnside, E.; Rubin, D.; Shachter, R.
2000-01-01
The interpretation of a mammogram and decisions based on it involve reasoning and management of uncertainty. The wide variation of training and practice among radiologists results in significant variability in screening performance with attendant cost and efficacy consequences. We have created a Bayesian belief network to integrate the findings on a mammogram, based on the standardized lexicon developed for mammography, the Breast Imaging Reporting And Data System (BI-RADS). Our goal in creating this network is to explore the probabilistic underpinnings of this lexicon as well as standardize mammographic decision-making to the level of expert knowledge. PMID:11079854
Bayesian regularization of neural networks.
Burden, Frank; Winkler, Dave
2008-01-01
Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to "estimate" the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models.
Building classifiers using Bayesian networks
Friedman, N.; Goldszmidt, M.
1996-12-31
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state of the art classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we examine and evaluate approaches for inducing classifiers from data, based on recent results in the theory of learning Bayesian networks. Bayesian networks are factored representations of probability distributions that generalize the naive Bayes classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness which are characteristic of naive Bayes. We experimentally tested these approaches using benchmark problems from the U. C. Irvine repository, and compared them against C4.5, naive Bayes, and wrapper-based feature selection methods.
Quantum Inference on Bayesian Networks
NASA Astrophysics Data System (ADS)
Yoder, Theodore; Low, Guang Hao; Chuang, Isaac
2014-03-01
Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.
Modeling Diagnostic Assessments with Bayesian Networks
ERIC Educational Resources Information Center
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
An Intuitive Dashboard for Bayesian Network Inference
NASA Astrophysics Data System (ADS)
Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.
2014-03-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.
Bayesian Networks for Social Modeling
Whitney, Paul D.; White, Amanda M.; Walsh, Stephen J.; Dalton, Angela C.; Brothers, Alan J.
2011-03-28
This paper describes a body of work developed over the past five years. The work addresses the use of Bayesian network (BN) models for representing and predicting social/organizational behaviors. The topics covered include model construction, validation, and use. These topics show the bulk of the lifetime of such model, beginning with construction, moving to validation and other aspects of model ‘critiquing’, and finally demonstrating how the modeling approach might be used to inform policy analysis. To conclude, we discuss limitations of using BN for this activity and suggest remedies to address those limitations. The primary benefits of using a well-developed computational, mathematical, and statistical modeling structure, such as BN, are 1) there are significant computational, theoretical and capability bases on which to build 2) ability to empirically critique the model, and potentially evaluate competing models for a social/behavioral phenomena.
Diagnosis of Subtraction Bugs Using Bayesian Networks
ERIC Educational Resources Information Center
Lee, Jihyun; Corter, James E.
2011-01-01
Diagnosis of misconceptions or "bugs" in procedural skills is difficult because of their unstable nature. This study addresses this problem by proposing and evaluating a probability-based approach to the diagnosis of bugs in children's multicolumn subtraction performance using Bayesian networks. This approach assumes a causal network relating…
Learning Bayesian Networks from Correlated Data
NASA Astrophysics Data System (ADS)
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Bayesian networks in neuroscience: a survey.
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied.
Bayesian networks in neuroscience: a survey.
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied. PMID:25360109
Bayesian networks in neuroscience: a survey
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind–morphological, electrophysiological, -omics and neuroimaging–, thereby broadening the scope–molecular, cellular, structural, functional, cognitive and medical– of the brain aspects to be studied. PMID:25360109
Bayesian network learning for natural hazard analyses
NASA Astrophysics Data System (ADS)
Vogel, K.; Riggelsen, C.; Korup, O.; Scherbaum, F.
2014-09-01
Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks. In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach. Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments.
Network Plasticity as Bayesian Inference
Legenstein, Robert; Maass, Wolfgang
2015-01-01
General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099
Bayesian network learning for natural hazard assessments
NASA Astrophysics Data System (ADS)
Vogel, Kristin
2016-04-01
Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables
Software Health Management with Bayesian Networks
NASA Technical Reports Server (NTRS)
Mengshoel, Ole; Schumann, JOhann
2011-01-01
Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.
Bayesian belief networks in business continuity.
Phillipson, Frank; Matthijssen, Edwin; Attema, Thomas
2014-01-01
Business continuity professionals aim to mitigate the various challenges to the continuity of their company. The goal is a coherent system of measures that encompass detection, prevention and recovery. Choices made in one part of the system affect other parts as well as the continuity risks of the company. In complex organisations, however, these relations are far from obvious. This paper proposes the use of Bayesian belief networks to expose these relations, and presents a modelling framework for this approach. PMID:25193453
Node Augmentation Technique in Bayesian Network Evidence Analysis and Marshaling
Keselman, Dmitry; Tompkins, George H; Leishman, Deborah A
2010-01-01
Given a Bayesian network, sensitivity analysis is an important activity. This paper begins by describing a network augmentation technique which can simplifY the analysis. Next, we present two techniques which allow the user to determination the probability distribution of a hypothesis node under conditions of uncertain evidence; i.e. the state of an evidence node or nodes is described by a user specified probability distribution. Finally, we conclude with a discussion of three criteria for ranking evidence nodes based on their influence on a hypothesis node. All of these techniques have been used in conjunction with a commercial software package. A Bayesian network based on a directed acyclic graph (DAG) G is a graphical representation of a system of random variables that satisfies the following Markov property: any node (random variable) is independent of its non-descendants given the state of all its parents (Neapolitan, 2004). For simplicities sake, we consider only discrete variables with a finite number of states, though most of the conclusions may be generalized.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Bayesian information fusion networks for biosurveillance applications.
Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S
2009-01-01
This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.
A Bayesian Networks approach to Operational Risk
NASA Astrophysics Data System (ADS)
Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.
2010-04-01
A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks.
Sherif, Fayroz F; Zayed, Nourhan; Fakhr, Mahmoud
2015-01-01
Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively. PMID:26366461
Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks
Sherif, Fayroz F.; Zayed, Nourhan; Fakhr, Mahmoud
2015-01-01
Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively. PMID:26366461
Fuzzy Naive Bayesian for constructing regulated network with weights.
Zhou, Xi Y; Tian, Xue W; Lim, Joon S
2015-01-01
In the data mining field, classification is a very crucial technology, and the Bayesian classifier has been one of the hotspots in classification research area. However, assumptions of Naive Bayesian and Tree Augmented Naive Bayesian (TAN) are unfair to attribute relations. Therefore, this paper proposes a new algorithm named Fuzzy Naive Bayesian (FNB) using neural network with weighted membership function (NEWFM) to extract regulated relations and weights. Then, we can use regulated relations and weights to construct a regulated network. Finally, we will classify the heart and Haberman datasets by the FNB network to compare with experiments of Naive Bayesian and TAN. The experiment results show that the FNB has a higher classification rate than Naive Bayesian and TAN.
Linkage problem, distribution estimation, and Bayesian networks.
Pelikan, M; Goldberg, D E; Cantú-Paz, E
2000-01-01
This paper proposes an algorithm that uses an estimation of the joint distribution of promising solutions in order to generate new candidate solutions. The algorithm is settled into the context of genetic and evolutionary computation and the algorithms based on the estimation of distributions. The proposed algorithm is called the Bayesian Optimization Algorithm (BOA). To estimate the distribution of promising solutions, the techniques for modeling multivariate data by Bayesian networks are used. The BOA identifies, reproduces, and mixes building blocks up to a specified order. It is independent of the ordering of the variables in strings representing the solutions. Moreover, prior information about the problem can be incorporated into the algorithm, but it is not essential. First experiments were done with additively decomposable problems with both nonoverlapping as well as overlapping building blocks. The proposed algorithm is able to solve all but one of the tested problems in linear or close to linear time with respect to the problem size. Except for the maximal order of interactions to be covered, the algorithm does not use any prior knowledge about the problem. The BOA represents a step toward alleviating the problem of identifying and mixing building blocks correctly to obtain good solutions for problems with very limited domain information.
Calibrating Bayesian Network Representations of Social-Behavioral Models
Whitney, Paul D.; Walsh, Stephen J.
2010-04-08
While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empirical comparison with data taken from the Minorities at Risk Organizational Behaviors database.
[Logistic regression against a divergent Bayesian network].
Sánchez Trujillo, Noel Antonio
2015-02-03
This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered); we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Inference of Gene Regulatory Network Based on Local Bayesian Networks
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan
2016-01-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Filtering in Hybrid Dynamic Bayesian Networks
NASA Technical Reports Server (NTRS)
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2004-01-01
We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2 - T i e Slice DBN (2T-DBN) from [Koller & Lerner, 20001 to model fault detection in a watertank system. In [Koller & Lerner, 20001 a generic Particle Filter (PF) is used for inference. We extend the experiment and perform approximate inference using The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Furthermore, we combine these techniques in a 'non-strict' Rao-Blackwellisation framework and apply it to the watertank system. We show that UKF and UKF in a PF framework outperfom the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the water[ank simulation. Theory and implementation is based on the theory presented.
Filtering in Hybrid Dynamic Bayesian Networks
NASA Technical Reports Server (NTRS)
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Using Bayesian Networks to Improve Knowledge Assessment
ERIC Educational Resources Information Center
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
A wavelet neural network conjunction model for groundwater level forecasting
NASA Astrophysics Data System (ADS)
Adamowski, Jan; Chan, Hiu Fung
2011-09-01
SummaryAccurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, a new method based on coupling discrete wavelet transforms (WA) and artificial neural networks (ANN) for groundwater level forecasting applications is proposed. The relative performance of the proposed coupled wavelet-neural network models (WA-ANN) was compared to regular artificial neural network (ANN) models and autoregressive integrated moving average (ARIMA) models for monthly groundwater level forecasting. The variables used to develop and validate the models were monthly total precipitation, average temperature and average groundwater level data recorded from November 2002 to October 2009 at two sites in the Chateauguay watershed in Quebec, Canada. The WA-ANN models were found to provide more accurate monthly average groundwater level forecasts compared to the ANN and ARIMA models. The results of the study indicate the potential of WA-ANN models in forecasting groundwater levels. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.
ExpertBayes: Automatically refining manually built Bayesian networks
Almeida, Ezilda; Ferreira, Pedro; Vinhoza, Tiago; Dutra, Inês; Li, Jingwei; Wu, Yirong; Burnside, Elizabeth
2015-01-01
Bayesian network structures are usually built using only the data and starting from an empty network or from a naïve Bayes structure. Very often, in some domains, like medicine, a prior structure knowledge is already known. This structure can be automatically or manually refined in search for better performance models. In this work, we take Bayesian networks built by specialists and show that minor perturbations to this original network can yield better classifiers with a very small computational cost, while maintaining most of the intended meaning of the original model. PMID:27066596
Impact assessment of extreme storm events using a Bayesian network
den Heijer, C.(Kees); Knipping, Dirk T.J.A.; Plant, Nathaniel G.; van Thiel de Vries, Jaap S. M.; Baart, Fedor; van Gelder, Pieter H. A. J. M.
2012-01-01
This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a large part of the Dutch coast has been used to train the network. Corresponding storm impact on the dunes was calculated with an empirical dune erosion model named duros+. Comparison between the Bayesian Network predictions and the original duros+ results, here considered as observations, results in a skill up to 0.88, provided that the training data covers the range of predictions. Hence, the predictions from a deterministic model (duros+) can be captured in a probabilistic model (Bayesian Network) such that both the process knowledge and uncertainties can be included in impact and vulnerability assessments.
Model parameter updating using Bayesian networks
Treml, C. A.; Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
Bayesian networks as a tool for epidemiological systems analysis
NASA Astrophysics Data System (ADS)
Lewis, F. I.
2012-11-01
Bayesian network analysis is a form of probabilistic modeling which derives from empirical data a directed acyclic graph (DAG) describing the dependency structure between random variables. Bayesian networks are increasingly finding application in areas such as computational and systems biology, and more recently in epidemiological analyses. The key distinction between standard empirical modeling approaches, such as generalised linear modeling, and Bayesian network analyses is that the latter attempts not only to identify statistically associated variables, but to additionally, and empirically, separate these into those directly and indirectly dependent with one or more outcome variables. Such discrimination is vastly more ambitious but has the potential to reveal far more about key features of complex disease systems. Applying Bayesian network modeling to biological and medical data has considerable computational demands, combined with the need to ensure robust model selection given the vast model space of possible DAGs. These challenges require the use of approximation techniques, such as the Laplace approximation, Markov chain Monte Carlo simulation and parametric bootstrapping, along with computational parallelization. A case study in structure discovery - identification of an optimal DAG for given data - is presented which uses additive Bayesian networks to explore veterinary disease data of industrial and medical relevance.
Evaluation of Bayesian network to classify clustered microcalcifications
NASA Astrophysics Data System (ADS)
Patrocinio, Ana C.; Schiabel, Homero; Romero, Roseli A. F.
2004-05-01
The purpose of this work is the evaluation and analysis of Bayesian network models in order to classify clusters of microcalcifications to supply a second opinion to the specialists in the detection of breast diseases by mammography. Bayesian networks are statistics techniques, which provide explanation about the inferences and influences among features and classes of a determinated problem. Therefore, the technique investigation will aid in obtaining more detailed information to the diagnosis in a CAD scheme. From regions of interest (ROI), containing clusters of microcalcifications, detailed image analysis, pixel to pixel; in this step shape using geometric descriptors (Hu Invariant Moments, second and third order moments and radius gyration); irregularity measure; compactness; area and perimeter extracted descriptors. By using software of Bayesian network models construction, different Bayesian network classifier models could be generated, using the extracted features mentioned above in order to verify their behavior and probabilistic influences and used as the input to Bayesian network, some tests were performed in order to build the classifier. The results of generated nets models validation correspond to an average of 10 tests made with 6 different database sub-groups. The first results of validation have shown 83.17% of correct results.
Shah, Abhik; Woolf, Peter
2009-06-01
In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing. PMID:20161541
Bayesian-network-based soccer video event detection and retrieval
NASA Astrophysics Data System (ADS)
Sun, Xinghua; Jin, Guoying; Huang, Mei; Xu, Guangyou
2003-09-01
This paper presents an event based soccer video retrieval method, where the scoring even is detected based on Bayesian network from six kinds of cue information including gate, face, audio, texture, caption and text. The topology within the Bayesian network is predefined by hand according to the domain knowledge and the probability distributions are learned in the case of the known structure and full observability. The resulting event probability from the Bayesian network is used as the feature vector to perform the video retrieval. Experiments show that the true and false detection rations for the scoring event are about 90% and 16.67% respectively, and that the video retrieval result based on event is superior to that based on low-level features in the human visual perception.
Exploring the Noisy Threshold Function in Designing Bayesian Networks
NASA Astrophysics Data System (ADS)
Jurgelenaite, Rasa; Lucas, Peter; Heskes, Tom
Causal independence modelling is a well-known method both for reducing the size of probability tables and for explaining the underlying mechanisms in Bayesian networks. Many Bayesian network models incorporate causal independence assumptions; however, only the noisy OR and noisy AND, two examples of causal independence models, are used in practice. Their underlying assumption that either at least one cause, or all causes together, give rise to an effect, however, seems unnecessarily restrictive. In the present paper a new, more flexible, causal independence model is proposed, based on the Boolean threshold function. A connection is established between conditional probability distributions based on the noisy threshold model and Poisson binomial distributions, and the basic properties of this probability distribution are studied in some depth. The successful application of the noisy threshold model in the refinement of a Bayesian network for the diagnosis and treatment of ventilator-associated pneumonia demo nstrates the practical value of the presented theory.
Bayesian approach to neural-network modeling with input uncertainty.
Wright, W A
1999-01-01
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural-network framework which allows for input noise provided that some model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method gives an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input.
Model Criticism of Bayesian Networks with Latent Variables.
ERIC Educational Resources Information Center
Williamson, David M.; Mislevy, Robert J.; Almond, Russell G.
This study investigated statistical methods for identifying errors in Bayesian networks (BN) with latent variables, as found in intelligent cognitive assessments. BN, commonly used in artificial intelligence systems, are promising mechanisms for scoring constructed-response examinations. The success of an intelligent assessment or tutoring system…
Implementation of an Adaptive Learning System Using a Bayesian Network
ERIC Educational Resources Information Center
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Bayesian Network Models for Local Dependence among Observable Outcome Variables
ERIC Educational Resources Information Center
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
CausalTrail: Testing hypothesis using causal Bayesian networks
Trampert, Patrick; Lenhof, Hans-Peter
2015-01-01
Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administered drug. Whereas numerous packages for constructing causal Bayesian networks are available, hardly any program targeted at downstream analysis exists. In this paper we present CausalTrail, a tool for performing reasoning on causal Bayesian networks using the do-calculus. CausalTrail's features include multiple data import methods, a flexible query language for formulating hypotheses, as well as an intuitive graphical user interface. The program is able to account for missing data and thus can be readily applied in multi-omics settings where it is common that not all measurements are performed for all samples. Availability and Implementation CausalTrail is implemented in C++ using the Boost and Qt5 libraries. It can be obtained from https://github.com/dstoeckel/causaltrail PMID:26913195
Nursing Home Care Quality: Insights from a Bayesian Network Approach
ERIC Educational Resources Information Center
Goodson, Justin; Jang, Wooseung; Rantz, Marilyn
2008-01-01
Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…
Bayesian Inference and Online Learning in Poisson Neuronal Networks.
Huang, Yanping; Rao, Rajesh P N
2016-08-01
Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.
[A medical image semantic modeling based on hierarchical Bayesian networks].
Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu
2009-04-01
A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.
Predicting Software Suitability Using a Bayesian Belief Network
NASA Technical Reports Server (NTRS)
Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.
2005-01-01
The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
NASA Technical Reports Server (NTRS)
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Bayesian network models for error detection in radiotherapy plans
NASA Astrophysics Data System (ADS)
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T
2015-02-01
Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks.
2011-01-01
Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571
NASA Astrophysics Data System (ADS)
Abrishamchi, A.; Mehdikhani, H.; Tajrishy, M.; Marino, M. A.; Abrishamchi, A.
2007-12-01
Drought forecasting plays an important role in mitigation of economic, environmental and social impacts of drought. Traditional statistical time series methods have a limited ability to capture non-stationarities and nonlinearities in data. Artificial Neural Network (ANN) because of highly flexible function estimator that has self- learning and self-adaptive feature has shown great ability in forecasting nonlinear and nonstationary time series in hydrology. Recently wavelet transforms have become a common tool for analyzing local variation in time series. Wavelet transforms provide a useful decomposition of a signal, or time series; therefore, hybrid models have been proposed for forecasting a time series based on a wavelet transform preprocessing. Wavelet-transformed data aids in improving the ability of forecasting models by diagnosing signal's main frequency component and abstract local information of the original time series on various resolution levels. This paper presents a conjunctive nonlinear model using Wavelet Transforms and Artificial Neural Network. Application of the model in Zayandeh-Rood River basin (Iran) shows that the conjunctive model significantly improves the ability of artificial neural networks for 1, 3, 6 and 9 months ahead forecasting of EDI (effective drought indices) time series. Improved forecasts allow water resources decision makers to develop drought preparedness plans far in advance.
Conjunctive management of multi-reservoir network system and groundwater system
NASA Astrophysics Data System (ADS)
Mani, A.; Tsai, F. T. C.
2015-12-01
This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an
Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent
Wen, Dingqiao; Yu, Yun; Nakhleh, Luay
2016-01-01
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation. PMID:27144273
Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent.
Wen, Dingqiao; Yu, Yun; Nakhleh, Luay
2016-05-01
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation. PMID:27144273
Mobile sensor network noise reduction and recalibration using a Bayesian network
NASA Astrophysics Data System (ADS)
Xiang, Y.; Tang, Y.; Zhu, W.
2016-02-01
People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.
Parameter estimation of general regression neural network using Bayesian approach
NASA Astrophysics Data System (ADS)
Choir, Achmad Syahrul; Prasetyo, Rindang Bangun; Ulama, Brodjol Sutijo Suprih; Iriawan, Nur; Fitriasari, Kartika; Dokhi, Mohammad
2016-02-01
General Regression Neural Network (GRNN) has been applied in a large number of forecasting/prediction problem. Generally, there are two types of GRNN: GRNN which is based on kernel density; and Mixture Based GRNN (MBGRNN) which is based on adaptive mixture model. The main problem on GRNN modeling lays on how its parameters were estimated. In this paper, we propose Bayesian approach and its computation using Markov Chain Monte Carlo (MCMC) algorithms for estimating the MBGRNN parameters. This method is applied in simulation study. In this study, its performances are measured by using MAPE, MAE and RMSE. The application of Bayesian method to estimate MBGRNN parameters using MCMC is straightforward but it needs much iteration to achieve convergence.
Bayesian blind source separation for data with network structure.
Illner, Katrin; Fuchs, Christiane; Theis, Fabian J
2014-11-01
In biology, more and more information about the interactions in regulatory systems becomes accessible, and this often leads to prior knowledge for recent data interpretations. In this work we focus on multivariate signaling data, where the structure of the data is induced by a known regulatory network. To extract signals of interest we assume a blind source separation (BSS) model, and we capture the structure of the source signals in terms of a Bayesian network. To keep the parameter space small, we consider stationary signals, and we introduce the new algorithm emGrade, where model parameters and source signals are estimated using expectation maximization. For network data, we find an improved estimation performance compared to other BSS algorithms, and the flexible Bayesian modeling enables us to deal with repeated and missing observation values. The main advantage of our method is the statistically interpretable likelihood, and we can use model selection criteria to determine the (in general unknown) number of source signals or decide between different given networks. In simulations we demonstrate the recovery of the source signals dependent on the graph structure and the dimensionality of the data.
Bayesian blind source separation for data with network structure.
Illner, Katrin; Fuchs, Christiane; Theis, Fabian J
2014-11-01
In biology, more and more information about the interactions in regulatory systems becomes accessible, and this often leads to prior knowledge for recent data interpretations. In this work we focus on multivariate signaling data, where the structure of the data is induced by a known regulatory network. To extract signals of interest we assume a blind source separation (BSS) model, and we capture the structure of the source signals in terms of a Bayesian network. To keep the parameter space small, we consider stationary signals, and we introduce the new algorithm emGrade, where model parameters and source signals are estimated using expectation maximization. For network data, we find an improved estimation performance compared to other BSS algorithms, and the flexible Bayesian modeling enables us to deal with repeated and missing observation values. The main advantage of our method is the statistically interpretable likelihood, and we can use model selection criteria to determine the (in general unknown) number of source signals or decide between different given networks. In simulations we demonstrate the recovery of the source signals dependent on the graph structure and the dimensionality of the data. PMID:25302766
... How Can I Help a Friend Who Cuts? Pinkeye (Conjunctivitis) KidsHealth > For Teens > Pinkeye (Conjunctivitis) Print A A ... are common with allergic conjunctivitis. How Long Is Conjunctivitis Contagious? Conjunctivitis that's caused by bacteria is contagious ...
Discriminating complex networks through supervised NDR and Bayesian classifier
NASA Astrophysics Data System (ADS)
Yan, Ke-Sheng; Rong, Li-Li; Yu, Kai
2016-12-01
Discriminating complex networks is a particularly important task for the purpose of the systematic study of networks. In order to discriminate unknown networks exactly, a large set of network measurements are needed to be taken into account for comprehensively considering network properties. However, as we demonstrate in this paper, these measurements are nonlinear correlated with each other in general, resulting in a wide variety of redundant measurements which unintentionally explain the same aspects of network properties. To solve this problem, we adopt supervised nonlinear dimensionality reduction (NDR) to eliminate the nonlinear redundancy and visualize networks in a low-dimensional projection space. Though unsupervised NDR can achieve the same aim, we illustrate that supervised NDR is more appropriate than unsupervised NDR for discrimination task. After that, we perform Bayesian classifier (BC) in the projection space to discriminate the unknown network by considering the projection score vectors as the input of the classifier. We also demonstrate the feasibility and effectivity of this proposed method in six extensive research real networks, ranging from technological to social or biological. Moreover, the effectiveness and advantage of the proposed method is proved by the contrast experiments with the existing method.
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.
ERIC Educational Resources Information Center
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
Quantum Bayesian networks with application to games displaying Parrondo's paradox
NASA Astrophysics Data System (ADS)
Pejic, Michael
Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.
Bayesian Inference of Epidemics on Networks via Belief Propagation
NASA Astrophysics Data System (ADS)
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; Lage-Castellanos, Alejandro; Zecchina, Riccardo
2014-03-01
We study several Bayesian inference problems for irreversible stochastic epidemic models on networks from a statistical physics viewpoint. We derive equations which allow us to accurately compute the posterior distribution of the time evolution of the state of each node given some observations. At difference with most existing methods, we allow very general observation models, including unobserved nodes, state observations made at different or unknown times, and observations of infection times, possibly mixed together. Our method, which is based on the belief propagation algorithm, is efficient, naturally distributed, and exact on trees. As a particular case, we consider the problem of finding the "zero patient" of a susceptible-infected-recovered or susceptible-infected epidemic given a snapshot of the state of the network at a later unknown time. Numerical simulations show that our method outperforms previous ones on both synthetic and real networks, often by a very large margin.
Bayesian Inference of Natural Rankings in Incomplete Competition Networks
Park, Juyong; Yook, Soon-Hyung
2014-01-01
Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest – essential in determining reward and penalty – is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the “Natural Ranking,” an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks. PMID:25163528
Quantum-Like Bayesian Networks for Modeling Decision Making
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669
Quantum-Like Bayesian Networks for Modeling Decision Making.
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Application of Bayesian Networks to hindcast barrier island morphodynamics
Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.
2015-01-01
We refine a preliminary Bayesian Network by 1) increasing model experience through additional observations, 2) including anthropogenic modification history, and 3) replacing parameterized wave impact values with maximum run-up elevation. Further, we develop and train a pair of generalized models with an additional dataset encompassing a different storm event, which expands the observations beyond our hindcast objective. We compare the skill of the generalized models against the Nor'Ida specific model formulation, balancing the reduced skill with an expectation of increased transferability. Results of Nor'Ida hindcasts ranged in skill from 0.37 to 0.51 and accuracy of 65.0 to 81.9%.
Diagnosing Intermittent and Persistent Faults using Static Bayesian Networks
NASA Technical Reports Server (NTRS)
Megshoel, Ole Jakob
2010-01-01
Both intermittent and persistent faults may occur in a wide range of systems. We present in this paper the introduction of intermittent fault handling techniques into ProDiagnose, an algorithm that previously only handled persistent faults. We discuss novel algorithmic techniques as well as how our static Bayesian networks help diagnose, in an integrated manner, a range of intermittent and persistent faults. Through experiments with data from the ADAPT electrical power system test bed, generated as part of the Second International Diagnostic Competition (DXC-10), we show that this novel variant of ProDiagnose diagnoses intermittent faults accurately and quickly, while maintaining strong performance on persistent faults.
Simplifying Probability Elicitation and Uncertainty Modeling in Bayesian Networks
Paulson, Patrick R; Carroll, Thomas E; Sivaraman, Chitra; Neorr, Peter A; Unwin, Stephen D; Hossain, Shamina S
2011-04-16
In this paper we contribute two methods that simplify the demands of knowledge elicitation for particular types of Bayesian networks. The first method simplify the task of providing probabilities when the states that a random variable takes can be described by a new, fully ordered state set in which a state implies all the preceding states. The second method leverages Dempster-Shafer theory of evidence to provide a way for the expert to express the degree of ignorance that they feel about the estimates being provided.
Integrating Bayesian networks and geographic information systems: good practice examples.
Johnson, Sandra; Low-Choy, Sama; Mengersen, Kerrie
2012-07-01
Bayesian networks (BNs) are becoming increasingly common in problems with spatial aspects. The degree of spatial involvement may range from spatial mapping of BN outputs based on nodes in the BN that explicitly involve geographic features, to integration of different networks based on geographic information. In these situations, it is useful to consider how geographic information systems (GISs) could be used to enhance the conceptualization, quantification, and prediction of BNs. Here, we discuss some techniques that may be used to integrate GIS and BN models, with reference to some recent literature which illustrate these approaches. We then reflect on 2 case studies based on our own experience. The first involves the integration of GIS and a BN to assess the scientific factors associated with initiation of Lyngbya majuscula, a cyanobacterium that occurs in coastal waterways around the world. The 2nd case study involves the use of GISs as an aid for eliciting spatially informed expert opinion and expressing this information as prior distributions for a Bayesian model and as input into a BN. Elicitator, the prototype software package we developed for achieving this, is also briefly described. Whereas the 1st case study demonstrates a GIS-data driven specification of conditional probability tables for BNs with complete geographical coverage for all the data layers involved, the 2nd illustrates a situation in which we do not have complete coverage and we are forced to extrapolate based on expert judgement.
Newborn conjunctivitis; Conjunctivitis of the newborn; Ophthalmia neonatorum; Eye infection - neonatal conjunctivitis ... diseases spread through sexual contact to prevent newborn conjunctivitis caused by these infections. Putting eye drops into ...
ERIC Educational Resources Information Center
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.
2006-01-01
Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…
NASA Astrophysics Data System (ADS)
Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio
2016-04-01
The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new
A novel algorithm for scalable and accurate Bayesian network learning.
Brown, Laura E; Tsamardinos, Ioannis; Aliferis, Constantin F
2004-01-01
Bayesian Networks (BN) is a knowledge representation formalism that has been proven to be valuable in biomedicine for constructing decision support systems and for generating causal hypotheses from data. Given the emergence of datasets in medicine and biology with thousands of variables and that current algorithms do not scale more than a few hundred variables in practical domains, new efficient and accurate algorithms are needed to learn high quality BNs from data. We present a new algorithm called Max-Min Hill-Climbing (MMHC) that builds upon and improves the Sparse Candidate (SC) algorithm; a state-of-the-art algorithm that scales up to datasets involving hundreds of variables provided the generating networks are sparse. Compared to the SC, on a number of datasets from medicine and biology, (a) MMHC discovers BNs that are structurally closer to the data-generating BN, (b) the discovered networks are more probable given the data, (c) MMHC is computationally more efficient and scalable than SC, and (d) the generating networks are not required to be uniformly sparse nor is the user of MMHC required to guess correctly the network connectivity
A Bayesian network model for biomarker-based dose response.
Hack, C Eric; Haber, Lynne T; Maier, Andrew; Shulte, Paul; Fowler, Bruce; Lotz, W Gregory; Savage, Russell E
2010-07-01
A Bayesian network model was developed to integrate diverse types of data to conduct an exposure-dose-response assessment for benzene-induced acute myeloid leukemia (AML). The network approach was used to evaluate and compare individual biomarkers and quantitatively link the biomarkers along the exposure-disease continuum. The network was used to perform the biomarker-based dose-response analysis, and various other approaches to the dose-response analysis were conducted for comparison. The network-derived benchmark concentration was approximately an order of magnitude lower than that from the usual exposure concentration versus response approach, which suggests that the presence of more information in the low-dose region (where changes in biomarkers are detectable but effects on AML mortality are not) helps inform the description of the AML response at lower exposures. This work provides a quantitative approach for linking changes in biomarkers of effect both to exposure information and to changes in disease response. Such linkage can provide a scientifically valid point of departure that incorporates precursor dose-response information without being dependent on the difficult issue of a definition of adversity for precursors.
A Bayesian approach for structure learning in oscillating regulatory networks
Trejo Banos, Daniel; Millar, Andrew J.; Sanguinetti, Guido
2015-01-01
Motivation: Oscillations lie at the core of many biological processes, from the cell cycle, to circadian oscillations and developmental processes. Time-keeping mechanisms are essential to enable organisms to adapt to varying conditions in environmental cycles, from day/night to seasonal. Transcriptional regulatory networks are one of the mechanisms behind these biological oscillations. However, while identifying cyclically expressed genes from time series measurements is relatively easy, determining the structure of the interaction network underpinning the oscillation is a far more challenging problem. Results: Here, we explicitly leverage the oscillatory nature of the transcriptional signals and present a method for reconstructing network interactions tailored to this special but important class of genetic circuits. Our method is based on projecting the signal onto a set of oscillatory basis functions using a Discrete Fourier Transform. We build a Bayesian Hierarchical model within a frequency domain linear model in order to enforce sparsity and incorporate prior knowledge about the network structure. Experiments on real and simulated data show that the method can lead to substantial improvements over competing approaches if the oscillatory assumption is met, and remains competitive also in cases it is not. Availability: DSS, experiment scripts and data are available at http://homepages.inf.ed.ac.uk/gsanguin/DSS.zip. Contact: d.trejo-banos@sms.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26177966
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
NASA Astrophysics Data System (ADS)
Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei
2010-12-01
The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.
Reduced complexity turbo equalization using a dynamic Bayesian network
NASA Astrophysics Data System (ADS)
Myburgh, Hermanus C.; Olivier, Jan C.; van Zyl, Augustinus J.
2012-12-01
It is proposed that a dynamic Bayesian network (DBN) is used to perform turbo equalization in a system transmitting information over a Rayleigh fading multipath channel. The DBN turbo equalizer (DBN-TE) is modeled on a single directed acyclic graph by relaxing the Markov assumption and allowing weak connections to past and future states. Its complexity is exponential in encoder constraint length and approximately linear in the channel memory length. Results show that the performance of the DBN-TE closely matches that of a traditional turbo equalizer that uses a maximum a posteriori equalizer and decoder pair. The DBN-TE achieves full convergence and near-optimal performance after small number of iterations.
Assessing Requirements Volatility and Risk Using Bayesian Networks
NASA Technical Reports Server (NTRS)
Russell, Michael S.
2010-01-01
There are many factors that affect the level of requirements volatility a system experiences over its lifecycle and the risk that volatility imparts. Improper requirements generation, undocumented user expectations, conflicting design decisions, and anticipated / unanticipated world states are representative of these volatility factors. Combined, these volatility factors can increase programmatic risk and adversely affect successful system development. This paper proposes that a Bayesian Network can be used to support reasonable judgments concerning the most likely sources and types of requirements volatility a developing system will experience prior to starting development and by doing so it is possible to predict the level of requirements volatility the system will experience over its lifecycle. This assessment offers valuable insight to the system's developers, particularly by providing a starting point for risk mitigation planning and execution.
Aggregated Residential Load Modeling Using Dynamic Bayesian Networks
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai
2014-09-28
Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.
NML computation algorithms for tree-structured multinomial Bayesian networks.
Kontkanen, Petri; Wettig, Hannes; Myllymäki, Petri
2007-01-01
Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML) distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks. PMID:18382603
Development of a Bayesian Belief Network Runway Incursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Acquisition of causal models for local distributions in Bayesian networks.
Xiang, Yang; Truong, Minh
2014-09-01
To specify a Bayesian network, a local distribution in the form of a conditional probability table, often of an effect conditioned on its n causes, needs to be acquired, one for each non-root node. Since the number of parameters to be assessed is generally exponential in n , improving the efficiency is an important concern in knowledge engineering. Non-impeding noisy-AND (NIN-AND) tree causal models reduce the number of parameters to being linear in n , while explicitly expressing both reinforcing and undermining interactions among causes. The key challenge in NIN-AND tree modeling is the acquisition of the NIN-AND tree structure. In this paper, we formulate a concise structure representation and an expressive causal interaction function of NIN-AND trees. Building on these representations, we propose two structural acquisition methods, which are applicable to both elicitation-based and machine learning-based acquisitions. Their accuracy is demonstrated through experimental evaluations.
Bayesian network analyses of resistance pathways against efavirenz and nevirapine
Deforche, Koen; Camacho, Ricardo J.; Grossman, Zehave; Soares, Marcelo A.; Laethem, Kristel Van; Katzenstein, David A.; Harrigan, P. Richard; Kantor, Rami; Shafer, Robert; Vandamme, Anne-Mieke
2016-01-01
Objective To clarify the role of novel mutations selected by treatment with efavirenz or nevirapine, and investigate the influence of HIV-1 subtype on nonnucleoside reverse transcriptase inhibitor (nNRTI) resistance pathways. Design By finding direct dependencies between treatment-selected mutations, the involvement of these mutations as minor or major resistance mutations against efavirenz, nevirapine, or coadministrated nucleoside analogue reverse transcriptase inhibitors (NRTIs) is hypothesized. In addition, direct dependencies were investigated between treatment-selected mutations and polymorphisms, some of which are linked with subtype, and between NRTI and nNRTI resistance pathways. Methods Sequences from a large collaborative database of various subtypes were jointly analyzed to detect mutations selected by treatment. Using Bayesian network learning, direct dependencies were investigated between treatment-selected mutations, NRTI and nNRTI treatment history, and known NRTI resistance mutations. Results Several novel minor resistance mutations were found: 28K and 196R (for resistance against efavirenz), 101H and 138Q (nevirapine), and 31L (lamivudine). Robust interactions between NRTI mutations (65R, 74V, 75I/M, and 184V) and nNRTI resistance mutations (100I, 181C, 190E and 230L) may affect resistance development to particular treatment combinations. For example, an interaction between 65R and 181C predicts that the nevirapine and tenofovir and lamivudine/emtricitabine combination should be more prone to failure than efavirenz and tenofovir and lamivudine/emtricitabine. Conclusion Bayesian networks were helpful in untangling the selection of mutations by NRTI versus nNRTI treatment, and in discovering interactions between resistance mutations within and between these two classes of inhibitors. PMID:18832874
Mobile sensor network noise reduction and re-calibration using Bayesian network
NASA Astrophysics Data System (ADS)
Xiang, Y.; Tang, Y.; Zhu, W.
2015-08-01
People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potentials in atmosphere researches. However, such system usually suffers from the problem of sensor noises and drift. For the sensing systems to operate stably and reliably in the real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and re-calibrate the drifted sensors simultaneously. Specifically, we have (1) designed a Bayesian belief network based system to detect and recover the abnormal readings; (2) developed methods to update the sensor calibration functions in-field without requirement of ground truth; and (3) deployed a real-world mobile sensor network using the custom-built M-Pods to verify our assumptions and technique. Compared with the existing Bayesian belief network technique, the experiment results on the real-world data demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.
A Dynamic Bayesian Network Approach to Location Prediction in Ubiquitous Computing Environments
NASA Astrophysics Data System (ADS)
Lee, Sunyoung; Lee, Kun Chang; Cho, Heeryon
The ability to predict the future contexts of users significantly improves service quality and user satisfaction in ubiquitous computing environments. Location prediction is particularly useful because ubiquitous computing environments can dynamically adapt their behaviors according to a user's future location. In this paper, we present an inductive approach to recognizing a user's location by establishing a dynamic Bayesian network model. The dynamic Bayesian network model has been evaluated with a set of contextual data collected from undergraduate students. The evaluation result suggests that a dynamic Bayesian network model offers significant predictive power.
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
ERIC Educational Resources Information Center
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Making Supply Chains Resilient to Floods Using a Bayesian Network
NASA Astrophysics Data System (ADS)
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and
A Bayesian Belief Network of Threat Anticipation and Terrorist Motivations
Olama, Mohammed M; Allgood, Glenn O; Davenport, Kristen M; Schryver, Jack C
2010-01-01
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.
Bayesian Networks for Clinical Decision Support in Lung Cancer Care
Sesen, M. Berkan; Nicholson, Ann E.; Banares-Alcantara, Rene; Kadir, Timor; Brady, Michael
2013-01-01
Survival prediction and treatment selection in lung cancer care are characterised by high levels of uncertainty. Bayesian Networks (BNs), which naturally reason with uncertain domain knowledge, can be applied to aid lung cancer experts by providing personalised survival estimates and treatment selection recommendations. Based on the English Lung Cancer Database (LUCADA), we evaluate the feasibility of BNs for these two tasks, while comparing the performances of various causal discovery approaches to uncover the most feasible network structure from expert knowledge and data. We show first that the BN structure elicited from clinicians achieves a disappointing area under the ROC curve of 0.75 (± 0.03), whereas a structure learned by the CAMML hybrid causal discovery algorithm, which adheres with the temporal restrictions, achieves 0.81 (± 0.03). Second, our causal intervention results reveal that BN treatment recommendations, based on prescribing the treatment plan that maximises survival, can only predict the recorded treatment plan 29% of the time. However, this percentage rises to 76% when partial matches are included. PMID:24324773
A Bayesian belief network of threat anticipation and terrorist motivations
NASA Astrophysics Data System (ADS)
Olama, Mohammed M.; Allgood, Glenn O.; Davenport, Kristen M.; Schryver, Jack C.
2010-04-01
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.
Integrated Bayesian network framework for modeling complex ecological issues.
Johnson, Sandra; Mengersen, Kerrie
2012-07-01
The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development
Reconstruction of Biological Networks by Incorporating Prior Knowledge into Bayesian Network Models
Shin, Dong-Guk
2012-01-01
Abstract Bayesian network model is widely used for reverse engineering of biological network structures. An advantage of this model is its capability to integrate prior knowledge into the model learning process, which can lead to improving the quality of the network reconstruction outcome. Some previous works have explored this area with focus on using prior knowledge of the direct molecular links, except for a few recent ones proposing to examine the effects of molecular orderings. In this study, we propose a Bayesian network model that can integrate both direct links and orderings into the model. Random weights are assigned to these two types of prior knowledge to alleviate bias toward certain types of information. We evaluate our model performance using both synthetic data and biological data for the RAF signaling network, and illustrate the significant improvement on network structure reconstruction of the proposing models over the existing methods. We also examine the correlation between the improvement and the abundance of ordering prior knowledge. To address the issue of generating prior knowledge, we propose an approach to automatically extract potential molecular orderings from knowledge resources such as Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Gene Ontology (GO) annotation. PMID:23210479
Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models.
Pei, Baikang; Shin, Dong-Guk
2012-12-01
Bayesian network model is widely used for reverse engineering of biological network structures. An advantage of this model is its capability to integrate prior knowledge into the model learning process, which can lead to improving the quality of the network reconstruction outcome. Some previous works have explored this area with focus on using prior knowledge of the direct molecular links, except for a few recent ones proposing to examine the effects of molecular orderings. In this study, we propose a Bayesian network model that can integrate both direct links and orderings into the model. Random weights are assigned to these two types of prior knowledge to alleviate bias toward certain types of information. We evaluate our model performance using both synthetic data and biological data for the RAF signaling network, and illustrate the significant improvement on network structure reconstruction of the proposing models over the existing methods. We also examine the correlation between the improvement and the abundance of ordering prior knowledge. To address the issue of generating prior knowledge, we propose an approach to automatically extract potential molecular orderings from knowledge resources such as Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Gene Ontology (GO) annotation.
Simon; Nazmul Karim M
2001-01-01
Probabilistic neural networks (PNNs) were used in conjunction with the Gompertz model for bacterial growth to classify the lag, logarithmic, and stationary phases in a batch process. Using the fermentation time and the optical density of diluted cell suspensions, sampled from a culture of Bacillus subtilis, PNNs enabled a reliable determination of the growth phases. Based on a Bayesian decision strategy, the Gompertz based PNN used newly proposed definition of the lag and logarithmic phases to estimate the latent, logarithmic and stationary phases. This network topology has the potential for use with on-line turbidimeter for the automation and control of cultivation processes.
Evidence for single top quark production using Bayesian neural networks
Kau, Daekwang
2007-01-01
We present results of a search for single top quark production in p$\\bar{p}$ collisions using a dataset of approximately 1 fb^{-1} collected with the D0 detector. This analysis considers the muon+jets and electron+jets final states and makes use of Bayesian neural networks to separate the expected signals from backgrounds. The observed excess is associated with a p-value of 0.081%, assuming the background-only hypothesis, which corresponds to an excess over background of 3.2 standard deviations for a Gaussian density. The p-value computed using the SM signal cross section of 2.9 pb is 1.6%, corresponding to an expected significance of 2.2 standard deviations. Assuming the observed excess is due to single top production, we measure a single top quark production cross section of σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.4 ± 1.5 pb.
Using Bayesian Networks to Model Hierarchical Relationships in Epidemiological Studies
2011-01-01
OBJECTIVES To propose an alternative procedure, based on a Bayesian network (BN), for estimation and prediction, and to discuss its usefulness for taking into account the hierarchical relationships among covariates. METHODS The procedure is illustrated by modeling the risk of diarrhea infection for 2,740 children aged 0 to 59 months in Cameroon. We compare the procedure with a standard logistic regression and with a model based on multi-level logistic regression. RESULTS The standard logistic regression approach is inadequate, or at least incomplete, in that it does not attempt to account for potentially causal relationships between risk factors. The multi-level logistic regression does model the hierarchical structure, but does so in a piecewise manner; the resulting estimates and interpretations differ from those of the BN approach proposed here. An advantage of the BN approach is that it enables one to determine the probability that a risk factor (and/or the outcome) is in any specific state, given the states of the others. The currently available approaches can only predict the outcome (disease), given the states of the covariates. CONCLUSION A major advantage of BNs is that they can deal with more complex interrelationships between variables whereas competing approaches deal at best only with hierarchical ones. We propose that BN be considered as well as a worthwhile method for summarizing the data in epidemiological studies whose aim is understanding the determinants of diseases and quantifying their effects. PMID:21779534
Using a Bayesian network to predict barrier island geomorphologic characteristics
NASA Astrophysics Data System (ADS)
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron
2015-12-01
Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.
Trust-Based Security Level Evaluation Using Bayesian Belief Networks
NASA Astrophysics Data System (ADS)
Houmb, Siv Hilde; Ray, Indrakshi; Ray, Indrajit; Chakraborty, Sudip
Security is not merely about technical solutions and patching vulnerabilities. Security is about trade-offs and adhering to realistic security needs, employed to support core business processes. Also, modern systems are subject to a highly competitive market, often demanding rapid development cycles, short life-time, short time-to-market, and small budgets. Security evaluation standards, such as ISO 14508 Common Criteria and ISO/IEC 27002, are not adequate for evaluating the security of many modern systems for resource limitations, time-to-market, and other constraints. Towards this end, we propose an alternative time and cost effective approach for evaluating the security level of a security solution, system or part thereof. Our approach relies on collecting information from different sources, who are trusted to varying degrees, and on using a trust measure to aggregate available information when deriving security level. Our approach is quantitative and implemented as a Bayesian Belief Network (BBN) topology, allowing us to reason over uncertain information and seemingly aggregating disparate information. We illustrate our approach by deriving the security level of two alternative Denial of Service (DoS) solutions. Our approach can also be used in the context of security solution trade-off analysis.
Classification of Maize and Weeds by Bayesian Networks
NASA Astrophysics Data System (ADS)
Chapron, Michel; Oprea, Alina; Sultana, Bogdan; Assemat, Louis
2007-11-01
Precision Agriculture is concerned with all sorts of within-field variability, spatially and temporally, that reduces the efficacy of agronomic practices applied in a uniform way all over the field. Because of these sources of heterogeneity, uniform management actions strongly reduce the efficiency of the resource input to the crop (i.e. fertilization, water) or for the agrochemicals use for pest control (i.e. herbicide). Moreover, this low efficacy means high environmental cost (pollution) and reduced economic return for the farmer. Weed plants are one of these sources of variability for the crop, as they occur in patches in the field. Detecting the location, size and internal density of these patches, along with identification of main weed species involved, open the way to a site-specific weed control strategy, where only patches of weeds would receive the appropriate herbicide (type and dose). Herein, an automatic recognition method of vegetal species is described. First, the pixels of soil and vegetation are classified in two classes, then the vegetation part of the input image is segmented from the distance image by using the watershed method and finally the leaves of the vegetation are partitioned in two parts maize and weeds thanks to the two Bayesian networks.
Vehicle detection in aerial surveillance using dynamic Bayesian networks.
Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying
2012-04-01
We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.
Bayesian network model of crowd emotion and negative behavior
NASA Astrophysics Data System (ADS)
Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat
2014-12-01
The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.
Using a Bayesian network to predict barrier island geomorphologic characteristics
Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron
2015-01-01
Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
Utilization of extended bayesian networks in decision making under uncertainty
Van Eeckhout, Edward M; Leishman, Deborah A; Gibson, William L
2009-01-01
Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also has the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.
A Bayesian Network to Predict Barrier Island Geomorphologic Characteristics
NASA Astrophysics Data System (ADS)
Gutierrez, B.; Plant, N. G.; Thieler, E. R.; Turecek, A.; Stippa, S.
2014-12-01
Understanding how barrier islands along the Atlantic and Gulf coasts of the United States respond to storms and sea-level rise is an important management concern. Although these threats are well recognized, quantifying the integrated vulnerability is challenging due to the range of time and space scalesover which these processes act. Developing datasets and methods to identify the physical vulnerabilities of coastal environments due to storms and sea-level rise thus is an important scientific focus that supports land management decision making. Here we employ a Bayesian Network (BN) to model the interactions between geomorphic variables sampled from existing datasets that capture both storm-and sea-level rise related coastal evolution. The BN provides a means of estimating probabilities of changes in specific geomorphic characteristics such as foredune crest height, beach width, beach height, given knowledge of barrier island width, maximum barrier island elevation, distance from an inlet, the presence of anthropogenic modifications, and long-term shoreline change rates, which we assume to be directly related to sea-level rise. We evaluate BN skill and explore how different constraints, such as shoreline change characteristics (eroding, stable, accreting), distance to nearby inlets and island width, affect the probability distributions of future morphological characteristics. Our work demonstrates that a skillful BN can be constructed and that factors such as distance to inlet, shoreline change rate, and the presence of human alterations have the strongest influences on network performance. For Assateague Island, Maryland/Virginia, USA, we find that different shoreline change behaviors affect the probabilities of specific geomorphic characteristics, such as dune height, which allows us to identify vulnerable locations on the barrier island where habitat or infrastructure may be vulnerable to storms and sea-level rise.
An Anticipatory and Deceptive AI Utilizing Bayesian Belief Networks
Lake, Joe E; Allgood, Glenn O; Olama, Mohammed M; Saffold, JAy
2009-01-01
The U.S. military defines antiterrorism as the defensive posture taken against terrorist threats. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, interdicting an event in progress, and ultimately mitigating and managing the consequences of an event. Recent events highlight the need for efficient tools for training our military and homeland security officers for anticipating threats posed by terrorists. These tools need to be easy enough so that they are readily usable without substantial training, but still maintain the complexity to allow for a level of deceptive reasoning on the part of the opponent. To meet this need, we propose to integrate a Bayesian Belief Network (BBN) model for threat anticipation and deceptive reasoning into training simulation environments currently utilized by several organizations within the Department of Defense (DoD). BBNs have the ability to deal with various types of uncertainties; such as identities, capabilities, target attractiveness, and the combinations of the previous. They also allow for disparate types of data to be fused in a coherent, analytically defensible, and understandable manner. A BBN has been developed by ORNL uses a network engineering process that treats the probability distributions of each node with in the broader context of the system development effort as a whole, and not in isolation. The network will be integrated into the Research Network Inc,(RNI) developed Game Distributed Interactive Simulation (GDIS) as a smart artificial intelligence module. GDIS is utilized by several DoD and civilian organizations as a distributed training tool for a multiplicity of reasons. It has garnered several awards for its realism, ease of use, and popularity. One area that it still has room to excel in, as most video training tools do, is in the area of artificial intelligence of opponent combatants. It is believed that by
... water. This is called conjunctivitis, also known as “pink eye.” Causes & Risk Factors What causes allergic conjunctivitis? ... example, if you are allergic to pollen or mold, stay indoors when pollen and mold levels are ...
Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
Bitzer, Sebastian; Kiebel, Stefan J
2012-07-01
Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, e.g. fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of RNNs may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics.
Bayesian network representing system dynamics in risk analysis of nuclear systems
NASA Astrophysics Data System (ADS)
Varuttamaseni, Athi
2011-12-01
A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have
Emulation Modeling with Bayesian Networks for Efficient Decision Support
NASA Astrophysics Data System (ADS)
Fienen, M. N.; Masterson, J.; Plant, N. G.; Gutierrez, B. T.; Thieler, E. R.
2012-12-01
Bayesian decision networks (BDN) have long been used to provide decision support in systems that require explicit consideration of uncertainty; applications range from ecology to medical diagnostics and terrorism threat assessments. Until recently, however, few studies have applied BDNs to the study of groundwater systems. BDNs are particularly useful for representing real-world system variability by synthesizing a range of hydrogeologic situations within a single simulation. Because BDN output is cast in terms of probability—an output desired by decision makers—they explicitly incorporate the uncertainty of a system. BDNs can thus serve as a more efficient alternative to other uncertainty characterization methods such as computationally demanding Monte Carlo analyses and others methods restricted to linear model analyses. We present a unique application of a BDN to a groundwater modeling analysis of the hydrologic response of Assateague Island, Maryland to sea-level rise. Using both input and output variables of the modeled groundwater response to different sea-level (SLR) rise scenarios, the BDN predicts the probability of changes in the depth to fresh water, which exerts an important influence on physical and biological island evolution. Input variables included barrier-island width, maximum island elevation, and aquifer recharge. The variability of these inputs and their corresponding outputs are sampled along cross sections in a single model run to form an ensemble of input/output pairs. The BDN outputs, which are the posterior distributions of water table conditions for the sea-level rise scenarios, are evaluated through error analysis and cross-validation to assess both fit to training data and predictive power. The key benefit for using BDNs in groundwater modeling analyses is that they provide a method for distilling complex model results into predictions with associated uncertainty, which is useful to decision makers. Future efforts incorporate
Bayesian network classifiers for categorizing cortical GABAergic interneurons.
Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro
2015-04-01
An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons. PMID:25420745
Bayesian network classifiers for categorizing cortical GABAergic interneurons.
Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro
2015-04-01
An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons.
Exploring risk judgments in a trade dispute using Bayesian networks.
Wintle, Bonnie C; Nicholson, Ann
2014-06-01
Bayesian networks (BNs) are graphical modeling tools that are generally recommended for exploring what-if scenarios, visualizing systems and problems, and for communication between stakeholders during decision making. In this article, we investigate their potential for exploring different perspectives in trade disputes. To do so, we draw on a specific case study that was arbitrated by the World Trade Organization (WTO): the Australia-New Zealand apples dispute. The dispute centered on disagreement about judgments contained within Australia's 2006 import risk analysis (IRA). We built a range of BNs of increasing complexity that modeled various approaches to undertaking IRAs, from the basic qualitative and semi-quantitative risk analyses routinely performed in government agencies, to the more complex quantitative simulation undertaken by Australia in the apples dispute. We found the BNs useful for exploring disagreements under uncertainty because they are probabilistic and transparently represent steps in the analysis. Different scenarios and evidence can easily be entered. Specifically, we explore the sensitivity of the risk output to different judgments (particularly volume of trade). Thus, we explore how BNs could usefully aid WTO dispute settlement. We conclude that BNs are preferable to basic qualitative and semi-quantitative risk analyses because they offer an accessible interface and are mathematically sound. However, most current BN modeling tools are limited compared with complex simulations, as was used in the 2006 apples IRA. Although complex simulations may be more accurate, they are a black box for stakeholders. BNs have the potential to be a transparent aid to complex decision making, but they are currently computationally limited. Recent technological software developments are promising.
A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network
Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing
2015-01-01
This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information. PMID:25938760
A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.
Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing
2015-01-01
This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.
Explaining Inference on a Population of Independent Agents Using Bayesian Networks
ERIC Educational Resources Information Center
Sutovsky, Peter
2013-01-01
The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…
A new research tool for hybrid Bayesian networks using script language
NASA Astrophysics Data System (ADS)
Sun, Wei; Park, Cheol Young; Carvalho, Rommel
2011-06-01
While continuous variables become more and more inevitable in Bayesian networks for modeling real-life applications in complex systems, there are not much software tools to support it. Popular commercial Bayesian network tools such as Hugin, and Netica etc., are either expensive or have to discretize continuous variables. In addition, some free programs existing in the literature, commonly known as BNT, GeNie/SMILE, etc, have their own advantages and disadvantages respectively. In this paper, we introduce a newly developed Java tool for model construction and inference for hybrid Bayesian networks. Via the representation power of the script language, this tool can build the hybrid model automatically based on a well defined string that follows the specific grammars. Furthermore, it implements several inference algorithms capable to accommodate hybrid Bayesian networks, including Junction Tree algorithm (JT) for conditional linear Gaussian model (CLG), and Direct Message Passing (DMP) for general hybrid Bayesian networks with CLG structure. We believe this tool will be useful for researchers in the field.
Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study
NASA Technical Reports Server (NTRS)
Knox, W. Bradley; Mengshoel, Ole
2009-01-01
Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.
Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.
Biedermann, A; Taroni, F
2012-03-01
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.
Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.
Biedermann, A; Taroni, F
2012-03-01
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation. PMID:21775236
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks
NASA Astrophysics Data System (ADS)
Zhu, Shijia; Wang, Yadong
2015-12-01
Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.
Bayesian networks for knowledge discovery in large datasets: basics for nurse researchers.
Lee, Sun-Mi; Abbott, Patricia A
2003-01-01
The growth of nursing databases necessitates new approaches to data analyses. These databases, which are known to be massive and multidimensional, easily exceed the capabilities of both human cognition and traditional analytical approaches. One innovative approach, knowledge discovery in large databases (KDD), allows investigators to analyze very large data sets more comprehensively in an automatic or a semi-automatic manner. Among KDD techniques, Bayesian networks, a state-of-the art representation of probabilistic knowledge by a graphical diagram, has emerged in recent years as essential for pattern recognition and classification in the healthcare field. Unlike some data mining techniques, Bayesian networks allow investigators to combine domain knowledge with statistical data, enabling nurse researchers to incorporate clinical and theoretical knowledge into the process of knowledge discovery in large datasets. This tailored discussion presents the basic concepts of Bayesian networks and their use as knowledge discovery tools for nurse researchers.
Parameterizing Bayesian network Representations of Social-Behavioral Models by Expert Elicitation
Walsh, Stephen J.; Dalton, Angela C.; Whitney, Paul D.; White, Amanda M.
2010-05-23
Bayesian networks provide a general framework with which to model many natural phenomena. The mathematical nature of Bayesian networks enables a plethora of model validation and calibration techniques: e.g parameter estimation, goodness of fit tests, and diagnostic checking of the model assumptions. However, they are not free of shortcomings. Parameter estimation from relevant extant data is a common approach to calibrating the model parameters. In practice it is not uncommon to find oneself lacking adequate data to reliably estimate all model parameters. In this paper we present the early development of a novel application of conjoint analysis as a method for eliciting and modeling expert opinions and using the results in a methodology for calibrating the parameters of a Bayesian network.
Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Mengshoel, Ole
2008-01-01
Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.
Gueudry, J; Vera, L; Muraine, M
2010-10-01
Cicatricial conjunctivitis is chronic conjunctivitis with conjunctival fibrosis and may lead to alterations of conjunctival architecture, which are potentially sight-threatening. The patient's medical history, physical exam, and laboratory tests often provide the diagnosis of the underlying disease. Causes of conjunctival cicatrization are autoimmune diseases such as ocular cicatricial pemphigoid, thermal and chemical burns, postinfectious conjunctivitis, Stevens-Johnson syndrome, etc. Medical management varies according to specific causes and may lead to severe side effects. Furthermore, strategies may be necessary to restore corneal transparency and normal palpebral architecture.
Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks
NASA Astrophysics Data System (ADS)
Sun, Wei; Chang, K. C.
2005-05-01
Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.
Applying Bayesian belief networks in rapid response situations
Gibson, William L; Deborah, Leishman, A.; Van Eeckhout, Edward
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.
Bayesian networks for evaluation of evidence from forensic entomology.
Andersson, M Gunnar; Sundström, Anders; Lindström, Anders
2013-09-01
In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.
Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy.
Ducher, Michel; Kalbacher, Emilie; Combarnous, François; Finaz de Vilaine, Jérome; McGregor, Brigitte; Fouque, Denis; Fauvel, Jean Pierre
2013-01-01
Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.
Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy
Ducher, Michel; Kalbacher, Emilie; Combarnous, François; Finaz de Vilaine, Jérome; McGregor, Brigitte; Fouque, Denis; Fauvel, Jean Pierre
2013-01-01
Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation. PMID:24328031
Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.
Plankensteiner, Kathrin; Bluder, Olivia; Pilz, Jürgen
2015-09-01
In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.
ERIC Educational Resources Information Center
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Bayesian Network Meta-Analysis for Unordered Categorical Outcomes with Incomplete Data
ERIC Educational Resources Information Center
Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram
2014-01-01
We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…
A General Structure for Legal Arguments about Evidence Using Bayesian Networks
ERIC Educational Resources Information Center
Fenton, Norman; Neil, Martin; Lagnado, David A.
2013-01-01
A Bayesian network (BN) is a graphical model of uncertainty that is especially well suited to legal arguments. It enables us to visualize and model dependencies between different hypotheses and pieces of evidence and to calculate the revised probability beliefs about all uncertain factors when any piece of new evidence is presented. Although BNs…
A Bayesian network approach for causal inferences in pesticide risk assessment and management
Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...
Bayesian estimation inherent in a Mexican-hat-type neural network.
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Bayesian estimation inherent in a Mexican-hat-type neural network
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Chain Graph Models to Elicit the Structure of a Bayesian Network
Stefanini, Federico M.
2014-01-01
Bayesian networks are possibly the most successful graphical models to build decision support systems. Building the structure of large networks is still a challenging task, but Bayesian methods are particularly suited to exploit experts' degree of belief in a quantitative way while learning the network structure from data. In this paper details are provided about how to build a prior distribution on the space of network structures by eliciting a chain graph model on structural reference features. Several structural features expected to be often useful during the elicitation are described. The statistical background needed to effectively use this approach is summarized, and some potential pitfalls are illustrated. Finally, a few seminal contributions from the literature are reformulated in terms of structural features. PMID:24688427
Spatiotemporal Bayesian Networks for Malaria Prediction: Case Study of Northern Thailand.
Haddawy, Peter; Kasantikul, Rangwan; Hasan, A H M Imrul; Rattanabumrung, Chunyanuch; Rungrun, Pichamon; Suksopee, Natwipa; Tantiwaranpant, Saran; Niruntasuk, Natcha
2016-01-01
While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations of inferences. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating a village level model with weekly temporal resolution for Tha Song Yang district in northern Thailand. The network is learned using data on cases and environmental covariates. The network models incidence over time as well as evolution of the environmental variables, and captures time lagged and nonlinear effects. Out of sample evaluation shows the model to have high accuracy for one and two week predictions. PMID:27577491
A Bayesian network approach to the database search problem in criminal proceedings
2012-01-01
Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions
Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).
Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V.; Red-Horse, John Robert; Pebay, Philippe Pierre
2007-05-01
Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.
ERIC Educational Resources Information Center
Riddle, Bob
2007-01-01
This spring, as the school year starts to wind down, there will be many opportunities for students to observe bright planets and to wrap up the year with some great conjunctions and close occultation with the Moon, planets, bright stars, and star clusters). These observations can be coordinated with student observations of the Moon's phase cycle…
Walsh, Stephen J.; Whitney, Paul D.
2012-12-14
Bayesian networks have attained widespread use in data analysis and decision making. Well studied topics include: efficient inference, evidence propagation, parameter learning from data for complete and incomplete data scenarios, expert elicitation for calibrating Bayesian network probabilities, and structure learning. It is not uncommon for the researcher to assume the structure of the Bayesian network or to glean the structure from expert elicitation or domain knowledge. In this scenario, the model may be calibrated through learning the parameters from relevant data. There is a lack of work on model diagnostics for fitted Bayesian networks; this is the contribution of this paper. We key on the definition of (conditional) independence to develop a graphical diagnostic method which indicates if the conditional independence assumptions imposed when one assumes the structure of the Bayesian network are supported by the data. We develop the approach theoretically and describe a Monte Carlo method to generate uncertainty measures for the consistency of the data with conditional independence assumptions under the model structure. We describe how this theoretical information and the data are presented in a graphical diagnostic tool. We demonstrate the approach through data simulated from Bayesian networks under different conditional independence assumptions. We also apply the diagnostic to a real world data set. The results indicate that our approach is a reasonable way of visualizing and inspecting the conditional independence assumption of a Bayesian network given data.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis.
Herskovits, Edward H; Gerring, Joan P
2003-08-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics. PMID:12948721
Robert, Gabriel; Le Jeune, Florence; Dondaine, Thibault; Drapier, Sophie; Péron, Julie; Lozachmeur, Clément; Sauleau, Paul; Houvenaghel, Jean-François; Travers, David; Millet, Bruno; Vérin, Marc; Drapier, Dominique
2014-10-01
Apathy is a disabling non-motor symptom that is frequently observed in Parkinson's disease (PD). Its description and physiopathology suggest that it is partially mediated by emotional impairment, but this research issue has never been addressed at a clinical and metabolic level. We therefore conducted a metabolic study using (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in 36 PD patients without depression and dementia. Apathy was assessed on the Apathy Evaluation Scale (AES), and emotional facial recognition (EFR) performances (ie, percentage of correct responses) were calculated for each patient. Confounding factors such as age, antiparkinsonian and antidepressant medication, global cognitive functions and depressive symptoms were controlled for. We found a significant negative correlation between AES scores and performances on the EFR task. The apathy network was characterised by increased metabolism within the left posterior cingulate (PC) cortex (Brodmann area (BA) 31). The impaired EFR network was characterised by decreased metabolism within the bilateral PC gyrus (BA 31), right superior frontal gyrus (BAs 10, 9 and 6) and left superior frontal gyrus (BA 10 and 11). By applying conjunction analyses to both networks, we identified the right premotor cortex (BA 6), right orbitofrontal cortex (BA 10), left middle frontal gyrus (BA 8) and left posterior cingulate gyrus (BA 31) as the structures supporting the association between apathy and impaired EFR. These results confirm that apathy in PD is partially mediated by impaired EFR, opening up new prospects for alleviating apathy in PD, such as emotional rehabilitation. PMID:24403280
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes. PMID:27343475
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T
2014-06-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors
PETERSON, CHRISTINE; VANNUCCI, MARINA; KARAKAS, CEMAL; CHOI, WILLIAM; MA, LIHUA; MALETIĆ-SAVATIĆ, MIRJANA
2014-01-01
Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation. PMID:24533172
McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T
2014-06-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com. PMID:24922310
Constantinou, Anthony Costa; Fenton, Norman; Marsh, William; Radlinski, Lukasz
2016-01-01
Objectives 1) To develop a rigorous and repeatable method for building effective Bayesian network (BN) models for medical decision support from complex, unstructured and incomplete patient questionnaires and interviews that inevitably contain examples of repetitive, redundant and contradictory responses; 2) To exploit expert knowledge in the BN development since further data acquisition is usually not possible; 3) To ensure the BN model can be used for interventional analysis; 4) To demonstrate why using data alone to learn the model structure and parameters is often unsatisfactory even when extensive data is available. Method The method is based on applying a range of recent BN developments targeted at helping experts build BNs given limited data. While most of the components of the method are based on established work, its novelty is that it provides a rigorous consolidated and generalised framework that addresses the whole life-cycle of BN model development. The method is based on two original and recent validated BN models in forensic psychiatry, known as DSVM-MSS and DSVM-P. Results When employed with the same datasets, the DSVM-MSS demonstrated competitive to superior predictive performance (AUC scores 0.708 and 0.797) against the state-of-the-art (AUC scores ranging from 0.527 to 0.705), and the DSVM-P demonstrated superior predictive performance (cross-validated AUC score of 0.78) against the state-of-the-art (AUC scores ranging from 0.665 to 0.717). More importantly, the resulting models go beyond improving predictive accuracy and into usefulness for risk management purposes through intervention, and enhanced decision support in terms of answering complex clinical questions that are based on unobserved evidence. Conclusions This development process is applicable to any application domain which involves large-scale decision analysis based on such complex information, rather than based on data with hard facts, and in conjunction with the incorporation of
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
Kalet, A; Phillips, M; Gennari, J
2014-06-01
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the
A sub-space greedy search method for efficient Bayesian Network inference.
Zhang, Qing; Cao, Yong; Li, Yong; Zhu, Yanming; Sun, Samuel S M; Guo, Dianjing
2011-09-01
Bayesian network (BN) has been successfully used to infer the regulatory relationships of genes from microarray dataset. However, one major limitation of BN approach is the computational cost because the calculation time grows more than exponentially with the dimension of the dataset. In this paper, we propose a sub-space greedy search method for efficient Bayesian Network inference. Particularly, this method limits the greedy search space by only selecting gene pairs with higher partial correlation coefficients. Using both synthetic and real data, we demonstrate that the proposed method achieved comparable results with standard greedy search method yet saved ∼50% of the computational time. We believe that sub-space search method can be widely used for efficient BN inference in systems biology.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune
2016-01-01
Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.
Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.
2010-01-01
One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.
Bayesian Nonlinear Model Selection for Gene Regulatory Networks
Ni, Yang; Stingo, Francesco C.; Baladandayuthapani, Veerabhadran
2015-01-01
Summary Gene regulatory networks represent the regulatory relationships between genes and their products and are important for exploring and defining the underlying biological processes of cellular systems. We develop a novel framework to recover the structure of nonlinear gene regulatory networks using semiparametric spline-based directed acyclic graphical models. Our use of splines allows the model to have both flexibility in capturing nonlinear dependencies as well as control of overfitting via shrinkage, using mixed model representations of penalized splines. We propose a novel discrete mixture prior on the smoothing parameter of the splines that allows for simultaneous selection of both linear and nonlinear functional relationships as well as inducing sparsity in the edge selection. Using simulation studies, we demonstrate the superior performance of our methods in comparison with several existing approaches in terms of network reconstruction and functional selection. We apply our methods to a gene expression dataset in glioblastoma multiforme, which reveals several interesting and biologically relevant nonlinear relationships. PMID:25854759
Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.
Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei
2014-01-01
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying. PMID:25393784
Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.
Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei
2014-11-11
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.
Models and simulation of 3D neuronal dendritic trees using Bayesian networks.
López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier
2011-12-01
Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.
A Bayesian network to predict vulnerability to sea-level rise: data report
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert
2011-01-01
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
Models and simulation of 3D neuronal dendritic trees using Bayesian networks.
López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier
2011-12-01
Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology. PMID:21305364
Rigosi, Anna; Hanson, Paul; Hamilton, David P; Hipsey, Matthew; Rusak, James A; Bois, Julie; Sparber, Karin; Chorus, Ingrid; Watkinson, Andrew J; Qin, Boqiang; Kim, Bomchul; Brookes, Justin D
2015-01-01
A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the "high hazardous" category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227
NASA Astrophysics Data System (ADS)
Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.
2016-02-01
Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
NASA Astrophysics Data System (ADS)
Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael
2010-02-01
Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.
Bayesian neural networks for bivariate binary data: an application to prostate cancer study.
Chakraborty, Sounak; Ghosh, Malay; Maiti, Tapabrata; Tewari, Ashutosh
2005-12-15
Prostate cancer is one of the most common cancers in American men. The cancer could either be locally confined, or it could spread outside the organ. When locally confined, there are several options for treating and curing this disease. Otherwise, surgery is the only option, and in extreme cases of outside spread, it could very easily recur within a short time even after surgery and subsequent radiation therapy. Hence, it is important to know, based on pre-surgery biopsy results how likely the cancer is organ-confined or not. The paper considers a hierarchical Bayesian neural network approach for posterior prediction probabilities of certain features indicative of non-organ confined prostate cancer. In particular, we find such probabilities for margin positivity (MP) and seminal vesicle (SV) positivity jointly. The available training set consists of bivariate binary outcomes indicating the presence or absence of the two. In addition, we have certain covariates such as prostate specific antigen (PSA), gleason score and the indicator for the cancer to be unilateral or bilateral (i.e. spread on one or both sides) in one data set and gene expression microarrays in another data set. We take a hierarchical Bayesian neural network approach to find the posterior prediction probabilities for a test and validation set, and compare these with the actual outcomes for the first data set. In case of the microarray data we use leave one out cross-validation to access the accuracy of our method. We also demonstrate the superiority of our method to the other competing methods through a simulation study. The Bayesian procedure is implemented by an application of the Markov chain Monte Carlo numerical integration technique. For the problem at hand, our Bayesian bivariate neural network procedure is shown to be superior to the classical neural network, Radford Neal's Bayesian neural network as well as bivariate logistic models to predict jointly the MP and SV in a patient in both the
2012-01-01
Background We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population. Methods The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls. Altogether 66 single nucleotide polymorphisms (SNPs) in 19 candidate genes were genotyped. Results With logistic regression, we identified 6 SNPs in the ARID5B and IKZF1 genes associated with increased risk to B-cell ALL, and two SNPs in the STAT3 gene, which decreased the risk to hyperdiploid ALL. Because the associated SNPs were in linkage in each gene, these associations corresponded to one signal per gene. The odds ratio (OR) associated with the tag SNPs were: OR = 1.69, P = 2.22x10-7 for rs4132601 (IKZF1), OR = 1.53, P = 1.95x10-5 for rs10821936 (ARID5B) and OR = 0.64, P = 2.32x10-4 for rs12949918 (STAT3). With the BN-BMLA we confirmed the findings of the frequentist-based method and received additional information about the nature of the relations between the SNPs and the disease. E.g. the rs10821936 in ARID5B and rs17405722 in STAT3 showed a weak interaction, and in case of T-cell lineage sample group, the gender showed a weak interaction with three SNPs in three genes. In the hyperdiploid patient group the BN-BMLA detected a strong interaction among SNPs in the NOTCH1, STAT1, STAT3 and BCL2 genes. Evaluating the survival rate of the patients with ALL, the BN-BMLA showed that besides risk groups and subtypes, genetic variations in the BAX and CEBPA genes might also influence the probability of survival of the patients. Conclusions In the present study we confirmed the roles of genetic variations in ARID5B and IKZF1 in the susceptibility to B-cell ALL
CHAI, Lian En; LAW, Chow Kuan; MOHAMAD, Mohd Saberi; CHONG, Chuii Khim; CHOON, Yee Wen; DERIS, Safaai; ILLIAS, Rosli Md
2014-01-01
Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes. PMID:24876803
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
NASA Astrophysics Data System (ADS)
Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li
2016-06-01
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio
2015-12-01
Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.
Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio
2015-12-01
Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation. PMID:26689874
An empirical Bayesian approach for model-based inference of cellular signaling networks
2009-01-01
Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF) signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements. PMID:19900289
The Appeal to Expert Opinion: Quantitative Support for a Bayesian Network Approach.
Harris, Adam J L; Hahn, Ulrike; Madsen, Jens K; Hsu, Anne S
2016-08-01
The appeal to expert opinion is an argument form that uses the verdict of an expert to support a position or hypothesis. A previous scheme-based treatment of the argument form is formalized within a Bayesian network that is able to capture the critical aspects of the argument form, including the central considerations of the expert's expertise and trustworthiness. We propose this as an appropriate normative framework for the argument form, enabling the development and testing of quantitative predictions as to how people evaluate this argument, suggesting that such an approach might be beneficial to argumentation research generally. We subsequently present two experiments as an example of the potential for future research in this vein, demonstrating that participants' quantitative ratings of the convincingness of a proposition that has been supported with an appeal to expert opinion were broadly consistent with the predictions of the Bayesian model.
Learning an L1-regularized Gaussian Bayesian network in the equivalence class space.
Vidaurre, Diego; Bielza, Concha; Larrañaga, Pedro
2010-10-01
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant.
Learning an L1-regularized Gaussian Bayesian network in the equivalence class space.
Vidaurre, Diego; Bielza, Concha; Larrañaga, Pedro
2010-10-01
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant. PMID:20083459
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Binary tissue classification on wound images with neural networks and bayesian classifiers.
Veredas, Francisco; Mesa, Héctor; Morente, Laura
2010-02-01
A pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, or friction. Diagnosis, treatment, and care of pressure ulcers are costly for health services. Accurate wound evaluation is a critical task for optimizing the efficacy of treatment and care. Clinicians usually evaluate each pressure ulcer by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. In this paper, a hybrid approach based on neural networks and Bayesian classifiers is used in the design of a computational system for automatic tissue identification in wound images. A mean shift procedure and a region-growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multilayer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes which are determined by clinical experts. This training procedure is driven by a k-fold cross-validation method. Finally, a Bayesian committee machine is formed by training a Bayesian classifier to combine the classifications of the k neural networks. Specific heuristics based on the wound topology are designed to significantly improve the results of the classification. We obtain high efficiency rates from a binary cascade approach for tissue identification. Results are compared with other similar machine-learning approaches, including multiclass Bayesian committee machine classifiers and support vector machines. The different techniques analyzed in this paper show high global classification accuracy rates. Our binary cascade approach gives high global performance rates (average sensitivity =78.7% , specificity =94.7% , and accuracy =91.5% ) and shows the highest average sensitivity score ( =86.3%) when detecting
Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali
2015-01-21
Enzyme catalysis is one of the most essential and striking processes among of all the complex processes that have evolved in living organisms. Enzymes are biological catalysts, which play a significant role in industrial applications as well as in medical areas, due to profound specificity, selectivity and catalytic efficiency. Refining catalytic efficiency of enzymes has become the most challenging job of enzyme engineering, into acidic and alkaline. Discrimination of acidic and alkaline enzymes through experimental approaches is difficult, sometimes impossible due to lack of established structures. Therefore, it is highly desirable to develop a computational model for discriminating acidic and alkaline enzymes from primary sequences. In this study, we have developed a robust, accurate and high throughput computational model using two discrete sample representation methods Pseudo amino acid composition (PseAAC) and split amino acid composition. Various classification algorithms including probabilistic neural network (PNN), K-nearest neighbor, decision tree, multi-layer perceptron and support vector machine are applied to predict acidic and alkaline with high accuracy. 10-fold cross validation test and several statistical measures namely, accuracy, F-measure, and area under ROC are used to evaluate the performance of the proposed model. The performance of the model is examined using two benchmark datasets to demonstrate the effectiveness of the model. The empirical results show that the performance of PNN in conjunction with PseAAC is quite promising compared to existing approaches in the literature so for. It has achieved 96.3% accuracy on dataset1 and 99.2% on dataset2. It is ascertained that the proposed model might be useful for basic research and drug related application areas. PMID:25452135
Kaiser, Jacob L; Bland, Cassidy L; Klinke, David J
2016-03-01
Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016.
Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.
Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias
2015-04-01
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data. PMID:25631319
Bayesian Network Reconstruction Using Systems Genetics Data: Comparison of MCMC Methods
Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias
2015-01-01
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis–Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data. PMID:25631319
Veilleux, Andrea G.; Stedinger, Jery R.; Eash, David A.
2012-01-01
This paper summarizes methodological advances in regional log-space skewness analyses that support flood-frequency analysis with the log Pearson Type III (LP3) distribution. A Bayesian Weighted Least Squares/Generalized Least Squares (B-WLS/B-GLS) methodology that relates observed skewness coefficient estimators to basin characteristics in conjunction with diagnostic statistics represents an extension of the previously developed B-GLS methodology. B-WLS/B-GLS has been shown to be effective in two California studies. B-WLS/B-GLS uses B-WLS to generate stable estimators of model parameters and B-GLS to estimate the precision of those B-WLS regression parameters, as well as the precision of the model. The study described here employs this methodology to develop a regional skewness model for the State of Iowa. To provide cost effective peak-flow data for smaller drainage basins in Iowa, the U.S. Geological Survey operates a large network of crest stage gages (CSGs) that only record flow values above an identified recording threshold (thus producing a censored data record). CSGs are different from continuous-record gages, which record almost all flow values and have been used in previous B-GLS and B-WLS/B-GLS regional skewness studies. The complexity of analyzing a large CSG network is addressed by using the B-WLS/B-GLS framework along with the Expected Moments Algorithm (EMA). Because EMA allows for the censoring of low outliers, as well as the use of estimated interval discharges for missing, censored, and historic data, it complicates the calculations of effective record length (and effective concurrent record length) used to describe the precision of sample estimators because the peak discharges are no longer solely represented by single values. Thus new record length calculations were developed. The regional skewness analysis for the State of Iowa illustrates the value of the new B-WLS/BGLS methodology with these new extensions.
A program for the Bayesian Neural Network in the ROOT framework
NASA Astrophysics Data System (ADS)
Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang
2011-12-01
We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.
2012-01-01
The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.
Wang, Huiting; Liu, Renyuan; Zhang, Xin; Li, Ming; Yang, Yongbo; Yan, Jing; Niu, Fengnan; Tian, Chuanshuai; Wang, Kun; Yu, Haiping; Chen, Weibo; Wan, Suiren; Sun, Yu; Zhang, Bing
2016-01-01
Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance. PMID:27077923
Hu, Jisu; Wu, Wenbo; Zhu, Bin; Wang, Huiting; Liu, Renyuan; Zhang, Xin; Li, Ming; Yang, Yongbo; Yan, Jing; Niu, Fengnan; Tian, Chuanshuai; Wang, Kun; Yu, Haiping; Chen, Weibo; Wan, Suiren; Sun, Yu; Zhang, Bing
2016-01-01
Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance.
Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann; Clowers, Brian H.; Dowling, Chase P.; Wahl, Karen L.; Wunschel, David S.; Kreuzer, Helen W.
2014-03-21
The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict the production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.
Zhang, Xuesong; Zhao, Kaiguang
2012-06-01
Bayesian Neural Networks (BNNs) have been shown as useful tools to analyze modeling uncertainty of Neural Networks (NNs). This research focuses on the comparison of two BNNs. The first BNNs (BNN-I) use statistical methods to describe the characteristics of different uncertainty sources (input, parameter, and model structure) and integrate these uncertainties into a Markov Chain Monte Carlo (MCMC) framework to estimate total uncertainty. The second BNNs (BNN-II) lump all uncertainties into a single error term (i.e. the residual between model prediction and measurement). In this study, we propose a simple BNN-II, which use Genetic Algorithms (GA) and Bayesian Model Averaging (BMA) to calibrate Neural Networks with different structures (number of hidden units) and combine the predictions from different NNs to derive predictions and uncertainty analysis. We tested these two BNNs in two watersheds for daily and monthly hydrologic simulation. The BMA based BNNs developed in this study outperforms BNN-I in the two watersheds in terms of both accurate prediction and uncertainty estimation. These results show that, given incomplete understanding of the characteristics associated with each uncertainty source, the simple lumped error approach may yield better prediction and uncertainty estimation.
Decision-theoretic analysis of forensic sampling criteria using bayesian decision networks.
Biedermann, A; Bozza, S; Garbolino, P; Taroni, F
2012-11-30
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker--typically a client of a forensic examination or a scientist acting on behalf of a client--ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked
Hip Fracture in the Elderly: A Re-Analysis of the EPIDOS Study with Causal Bayesian Networks
Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie
2015-01-01
Objectives Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. Setting EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Results Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Conclusion Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people. PMID:25822373
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering
McDowell, Ian C.; Zhao, Shiwen; Brown, Christopher D.; Engelhardt, Barbara E.
2016-01-01
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.
Gao, Chuan; McDowell, Ian C; Zhao, Shiwen; Brown, Christopher D; Engelhardt, Barbara E
2016-07-01
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.
de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.
2014-01-01
The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance. PMID:25327826
Yang, Xiaorong; Li, Suyun; Pan, Lulu; Wang, Qiang; Li, Huijie; Han, Mingkui; Zhang, Nan; Jiang, Fan; Jia, Chongqi
2016-07-01
The association between psychological factors and smoking cessation is complicated and inconsistent in published researches, and the joint effect of psychological factors on smoking cessation is unclear. This study explored how psychological factors jointly affect the success of smoking cessation using a Bayesian network approach. A community-based case control study was designed with 642 adult male successful smoking quitters as the cases, and 700 adult male failed smoking quitters as the controls. General self-efficacy (GSE), trait coping style (positive-trait coping style (PTCS) and negative-trait coping style (NTCS)) and self-rating anxiety (SA) were evaluated by GSE Scale, Trait Coping Style Questionnaire and SA Scale, respectively. Bayesian network was applied to evaluate the relationship between psychological factors and successful smoking cessation. The local conditional probability table of smoking cessation indicated that different joint conditions of psychological factors led to different outcomes for smoking cessation. Among smokers with high PTCS, high NTCS and low SA, only 36.40% successfully quitted smoking. However, among smokers with low pack-years of smoking, high GSE, high PTCS and high SA, 63.64% successfully quitted smoking. Our study indicates psychological factors jointly influence smoking cessation outcome. According to different joint situations, different solutions should be developed to control tobacco in practical intervention.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. PMID:26433361
NASA Astrophysics Data System (ADS)
de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.
2014-10-01
The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.
Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors
Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.
2010-04-16
A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network
NASA Astrophysics Data System (ADS)
Mukashema, A.; Veldkamp, A.; Vrieling, A.
2014-12-01
African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents.
Stewart, G B; Mengersen, K; Meader, N
2014-03-01
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to 'empty' reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence.
Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks
Bennett, Kristin P.
2014-01-01
We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web. PMID:24864238
De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel
2011-04-30
There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD.
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
In-Hospital Death Caused by Pancreatic Cancer in Spain: Application with a Bayesian Network
Álvaro-Meca, A.; Gil-Prieto, R.; Gil de Miguel, A.
2011-01-01
Pancreatic cancer is one of the least common tumors (2.1%), but it remains one of the most lethal. This lethality is primarily due to late stage diagnosis in the vast majority of patients. Here we demonstrate, using a Bayesian network, that we can determine a posteriori, with a high probability of success, the probability of in-hospital death of pancreatic cancer in hospitals across Spain with information related to the type of admission, the type of procedure, the primary diagnosis or the Charlson co-morbidity index. The advantages of using a Bayesian network are that it allows us to examine multiple hypotheses and to measure the effect of the introduction of variables on our hypotheses. Being able to determine deceases in the probability of survival based on hospital admission data, such as the diagnosis resulting in the present admission or the presence of co-morbidities, could facilitate the detection of deficiencies in the patient treatment and improve hospital management. Moreover, the control of related co-morbidities may have an impact on the in-hospital deaths of these patients. PMID:23675228
Predicting Mycobacterium tuberculosis complex clades using knowledge-based Bayesian networks.
Aminian, Minoo; Couvin, David; Shabbeer, Amina; Hadley, Kane; Vandenberg, Scott; Rastogi, Nalin; Bennett, Kristin P
2014-01-01
We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web.
de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S
2014-10-20
The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Gonzalez, Ruben; Huang, Biao; Lau, Eric
2015-09-01
Principal component analysis has been widely used in the process industries for the purpose of monitoring abnormal behaviour. The process of reducing dimension is obtained through PCA, while T-tests are used to test for abnormality. Some of the main contributions to the success of PCA is its ability to not only detect problems, but to also give some indication as to where these problems are located. However, PCA and the T-test make use of Gaussian assumptions which may not be suitable in process fault detection. A previous modification of this method is the use of independent component analysis (ICA) for dimension reduction combined with kernel density estimation for detecting abnormality; like PCA, this method points out location of the problems based on linear data-driven methods, but without the Gaussian assumptions. Both ICA and PCA, however, suffer from challenges in interpreting results, which can make it difficult to quickly act once a fault has been detected online. This paper proposes the use of Bayesian networks for dimension reduction which allows the use of process knowledge enabling more intelligent dimension reduction and easier interpretation of results. The dimension reduction technique is combined with multivariate kernel density estimation, making this technique effective for non-linear relationships with non-Gaussian variables. The performance of PCA, ICA and Bayesian networks are compared on data from an industrial scale plant. PMID:25930233
Bayesian network meta-analysis for unordered categorical outcomes with incomplete data.
Schmid, Christopher H; Trikalinos, Thomas A; Olkin, Ingram
2014-06-01
We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of treatment effects across multiple treatments and multiple outcome categories. We apply the model to analyze 17 trials, each of which compares two of three treatments (high and low dose statins and standard care/control) for three outcomes for which data are complete: cardiovascular death, non-cardiovascular death and no death. We also analyze the cardiovascular death category divided into the three subcategories (coronary heart disease, stroke and other cardiovascular diseases) that are not completely observed. The multinomial and network representations show that high dose statins are effective in reducing the risk of cardiovascular disease. PMID:26052655
Sironi, Emanuele; Pinchi, Vilma; Taroni, Franco
2016-01-01
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.
Sironi, Emanuele; Pinchi, Vilma; Taroni, Franco
2016-01-01
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework. PMID:26699731
2011-01-01
Background Transcriptional regulation by transcription factor (TF) controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data. PMID:22166063
The Use of Bayesian Networks to Assess the Quality of Evidence from Research Synthesis: 1.
Stewart, Gavin B.; Higgins, Julian P. T.; Schünemann, Holger; Meader, Nick
2015-01-01
Background The grades of recommendation, assessment, development and evaluation (GRADE) approach is widely implemented in systematic reviews, health technology assessment and guideline development organisations throughout the world. A key advantage to this approach is that it aids transparency regarding judgments on the quality of evidence. However, the intricacies of making judgments about research methodology and evidence make the GRADE system complex and challenging to apply without training. Methods We have developed a semi-automated quality assessment tool (SAQAT) l based on GRADE. This is informed by responses by reviewers to checklist questions regarding characteristics that may lead to unreliability. These responses are then entered into the Bayesian network to ascertain the probabilities of risk of bias, inconsistency, indirectness, imprecision and publication bias conditional on review characteristics. The model then combines these probabilities to provide a probability for each of the GRADE overall quality categories. We tested the model using a range of plausible scenarios that guideline developers or review authors could encounter. Results Overall, the model reproduced GRADE judgements for a range of scenarios. Potential advantages over standard assessment are use of explicit and consistent weightings for different review characteristics, forcing consideration of important but sometimes neglected characteristics and principled downgrading where small but important probabilities of downgrading are accrued across domains. Conclusions Bayesian networks have considerable potential for use as tools to assess the validity of research evidence. The key strength of such networks lies in the provision of a statistically coherent method for combining probabilities across a complex framework based on both belief and evidence. In addition to providing tools for less experienced users to implement reliability assessment, the potential for sensitivity analyses and
2011-01-01
Background In the study of associations between genomic data and complex phenotypes there may be relationships that are not amenable to parametric statistical modeling. Such associations have been investigated mainly using single-marker and Bayesian linear regression models that differ in their distributions, but that assume additive inheritance while ignoring interactions and non-linearity. When interactions have been included in the model, their effects have entered linearly. There is a growing interest in non-parametric methods for predicting quantitative traits based on reproducing kernel Hilbert spaces regressions on markers and radial basis functions. Artificial neural networks (ANN) provide an alternative, because these act as universal approximators of complex functions and can capture non-linear relationships between predictors and responses, with the interplay among variables learned adaptively. ANNs are interesting candidates for analysis of traits affected by cryptic forms of gene action. Results We investigated various Bayesian ANN architectures using for predicting phenotypes in two data sets consisting of milk production in Jersey cows and yield of inbred lines of wheat. For the Jerseys, predictor variables were derived from pedigree and molecular marker (35,798 single nucleotide polymorphisms, SNPS) information on 297 individually cows. The wheat data represented 599 lines, each genotyped with 1,279 markers. The ability of predicting fat, milk and protein yield was low when using pedigrees, but it was better when SNPs were employed, irrespective of the ANN trained. Predictive ability was even better in wheat because the trait was a mean, as opposed to an individual phenotype in cows. Non-linear neural networks outperformed a linear model in predictive ability in both data sets, but more clearly in wheat. Conclusion Results suggest that neural networks may be useful for predicting complex traits using high-dimensional genomic information, a situation
Understanding the Scalability of Bayesian Network Inference using Clique Tree Growth Curves
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob
2009-01-01
Bayesian networks (BNs) are used to represent and efficiently compute with multi-variate probability distributions in a wide range of disciplines. One of the main approaches to perform computation in BNs is clique tree clustering and propagation. In this approach, BN computation consists of propagation in a clique tree compiled from a Bayesian network. There is a lack of understanding of how clique tree computation time, and BN computation time in more general, depends on variations in BN size and structure. On the one hand, complexity results tell us that many interesting BN queries are NP-hard or worse to answer, and it is not hard to find application BNs where the clique tree approach in practice cannot be used. On the other hand, it is well-known that tree-structured BNs can be used to answer probabilistic queries in polynomial time. In this article, we develop an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN's non-root nodes to the number of root nodes, or (ii) the expected number of moral edges in their moral graphs. Our approach is based on combining analytical and experimental results. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for each set. For the special case of bipartite BNs, we consequently have two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, we systematically increase the degree of the root nodes in bipartite Bayesian networks, and find that root clique growth is well-approximated by Gompertz growth curves. It is believed that this research improves the understanding of the scaling behavior of clique tree clustering, provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms, and presents an aid for analytical trade-off studies of clique tree clustering using
Signal-BNF: a Bayesian network fusing approach to predict signal peptides.
Zheng, Zhi; Chen, Youying; Chen, Liping; Guo, Gongde; Fan, Yongxian; Kong, Xiangzeng
2012-01-01
A signal peptide is a short peptide chain that directs the transport of a protein and has become the crucial vehicle in finding new drugs or reprogramming cells for gene therapy. As the avalanche of new protein sequences generated in the postgenomic era, the challenge of identifying new signal sequences has become even more urgent and critical in biomedical engineering. In this paper, we propose a novel predictor called Signal-BNF to predict the N-terminal signal peptide as well as its cleavage site based on Bayesian reasoning network. Signal-BNF is formed by fusing the results of different Bayesian classifiers which used different feature datasets as its input through weighted voting system. Experiment results show that Signal-BNF is superior to the popular online predictors such as Signal-3L and PrediSi. Signal-BNF is featured by high prediction accuracy that may serve as a useful tool for further investigating many unclear details regarding the molecular mechanism of the zip code protein-sorting system in cells.
Signal-BNF: A Bayesian Network Fusing Approach to Predict Signal Peptides
Zheng, Zhi; Chen, Youying; Chen, Liping; Guo, Gongde; Fan, Yongxian; Kong, Xiangzeng
2012-01-01
A signal peptide is a short peptide chain that directs the transport of a protein and has become the crucial vehicle in finding new drugs or reprogramming cells for gene therapy. As the avalanche of new protein sequences generated in the postgenomic era, the challenge of identifying new signal sequences has become even more urgent and critical in biomedical engineering. In this paper, we propose a novel predictor called Signal-BNF to predict the N-terminal signal peptide as well as its cleavage site based on Bayesian reasoning network. Signal-BNF is formed by fusing the results of different Bayesian classifiers which used different feature datasets as its input through weighted voting system. Experiment results show that Signal-BNF is superior to the popular online predictors such as Signal-3L and PrediSi. Signal-BNF is featured by high prediction accuracy that may serve as a useful tool for further investigating many unclear details regarding the molecular mechanism of the zip code protein-sorting system in cells. PMID:23118510
Bayesian model selection applied to artificial neural networks used for water resources modeling
NASA Astrophysics Data System (ADS)
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
Classification of mammographic masses using support vector machines and Bayesian networks
NASA Astrophysics Data System (ADS)
Samulski, Maurice; Karssemeijer, Nico; Lucas, Peter; Groot, Perry
2007-03-01
In this paper, we compare two state-of-the-art classification techniques characterizing masses as either benign or malignant, using a dataset consisting of 271 cases (131 benign and 140 malignant), containing both a MLO and CC view. For suspect regions in a digitized mammogram, 12 out of 81 calculated image features have been selected for investigating the classification accuracy of support vector machines (SVMs) and Bayesian networks (BNs). Additional techniques for improving their performance were included in their comparison: the Manly transformation for achieving a normal distribution of image features and principal component analysis (PCA) for reducing our high-dimensional data. The performance of the classifiers were evaluated with Receiver Operating Characteristics (ROC) analysis. The classifiers were trained and tested using a k-fold cross-validation test method (k=10). It was found that the area under the ROC curve (A z) of the BN increased significantly (p=0.0002) using the Manly transformation, from A z = 0.767 to A z = 0.795. The Manly transformation did not result in a significant change for SVMs. Also the difference between SVMs and BNs using the transformed dataset was not statistically significant (p=0.78). Applying PCA resulted in an improvement in classification accuracy of the naive Bayesian classifier, from A z = 0.767 to A z = 0.786. The difference in classification performance between BNs and SVMs after applying PCA was small and not statistically significant (p=0.11).
Patient specific seizure prediction system using Hilbert spectrum and Bayesian networks classifiers.
Ozdemir, Nilufer; Yildirim, Esen
2014-01-01
The aim of this paper is to develop an automated system for epileptic seizure prediction from intracranial EEG signals based on Hilbert-Huang transform (HHT) and Bayesian classifiers. Proposed system includes decomposition of the signals into intrinsic mode functions for obtaining features and use of Bayesian networks with correlation based feature selection for binary classification of preictal and interictal recordings. The system was trained and tested on Freiburg EEG database. 58 hours of preictal data, 40-minute data blocks prior to each of 87 seizures collected from 21 patients, and 503.1 hours of interictal data were examined resulting in 96.55% sensitivity with 0.21 false alarms per hour, 13.896% average proportion of time spent in warning, and 33.21 minutes of average detection latency using 30-second EEG segments with 50% overlap and a simple postprocessing technique resulting in a decision (a seizure is expected/not expected) every 5 minutes. High sensitivity and low false positive rate with reasonable detection latency show that HHT based features are acceptable for patient specific seizure prediction from intracranial EEG data. Time spent for testing an EEG segment was 4.1451 seconds on average, which makes the system viable for use in real-time seizure control systems.
NASA Astrophysics Data System (ADS)
Takeda, Norio
We verified the generalization ability of the response surfaces of artificial neural networks (NNs), and that the surfaces could be applied to an engineering-design problem. A Bayesian framework to regularize NNs, which was proposed by Gull and Skilling, can be used to generate NN response surfaces with excellent generalization ability, i.e., to determine the regularizing constants in an objective function minimized during NN learning. This well-generalized NN might be useful to find an optimal solution in the process of response surface methodology (RSM). We, therefore, describe three rules based on the Bayesian framework to update the regularizing constants, utilizing these rules to generate NN response surfaces with noisy teacher data drawn from a typical unimodal or multimodal function. Good generalization ability was achieved with regularized NN response surfaces, even though an update rule including trace evaluation failed to determine the regularizing constants regardless of the response function. We, next, selected the most appropriate update rule, which included eigenvalue evaluation, and then the NN response surface regularized using the update rule was applied to finding the optimal solution to an illustrative engineering-design problem. The NN response surface did not fit the noise in the teacher data, and consequently, it could effectively be used to achieve a satisfactory solution. This may increase the opportunities for using NN in the process of RSM.
Bayesian network structure learning based on the chaotic particle swarm optimization algorithm.
Zhang, Q; Li, Z; Zhou, C J; Wei, X P
2013-01-01
The Bayesian network (BN) is a knowledge representation form, which has been proven to be valuable in the gene regulatory network reconstruction because of its capability of capturing causal relationships between genes. Learning BN structures from a database is a nondeterministic polynomial time (NP)-hard problem that remains one of the most exciting challenges in machine learning. Several heuristic searching techniques have been used to find better network structures. Among these algorithms, the classical K2 algorithm is the most successful. Nonetheless, the performance of the K2 algorithm is greatly affected by a prior ordering of input nodes. The proposed method in this paper is based on the chaotic particle swarm optimization (CPSO) and the K2 algorithm. Because the PSO algorithm completely entraps the local minimum in later evolutions, we combined the PSO algorithm with the chaos theory, which has the properties of ergodicity, randomness, and regularity. Experimental results show that the proposed method can improve the convergence rate of particles and identify networks more efficiently and accurately. PMID:24222226
Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang
2011-11-09
Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associated with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.
Elucidation of Genetic Interactions in the Yeast GATA-Factor Network Using Bayesian Model Selection
Milias-Argeitis, Andreas; Oliveira, Ana Paula; Gerosa, Luca; Falter, Laura; Sauer, Uwe; Lygeros, John
2016-01-01
Understanding the structure and function of complex gene regulatory networks using classical genetic assays is an error-prone procedure that frequently generates ambiguous outcomes. Even some of the best-characterized gene networks contain interactions whose validity is not conclusively proven. Founded on dynamic experimental data, mechanistic mathematical models are able to offer detailed insights that would otherwise require prohibitively large numbers of genetic experiments. Here we attempt mechanistic modeling of the transcriptional network formed by the four GATA-factor proteins, a well-studied system of central importance for nitrogen-source regulation of transcription in the yeast Saccharomyces cerevisiae. To resolve ambiguities in the network organization, we encoded a set of five interactions hypothesized in the literature into a set of 32 mathematical models, and employed Bayesian model selection to identify the most plausible set of interactions based on dynamic gene expression data. The top-ranking model was validated on newly generated GFP reporter dynamic data and was subsequently used to gain a better understanding of how yeast cells organize their transcriptional response to dynamic changes of nitrogen sources. Our work constitutes a necessary and important step towards obtaining a holistic view of the yeast nitrogen regulation mechanisms; on the computational side, it provides a demonstration of how powerful Monte Carlo techniques can be creatively combined and used to address the great challenges of large-scale dynamical system inference. PMID:26967983
ERIC Educational Resources Information Center
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)
Fuster-Parra, P; García-Mas, A; Ponseti, F J; Leo, F M
2015-04-01
The purpose of this paper was to discover the relationships among 22 relevant psychological features in semi-professional football players in order to study team's performance and collective efficacy via a Bayesian network (BN). The paper includes optimization of team's performance and collective efficacy using intercausal reasoning pattern which constitutes a very common pattern in human reasoning. The BN is used to make inferences regarding our problem, and therefore we obtain some conclusions; among them: maximizing the team's performance causes a decrease in collective efficacy and when team's performance achieves the minimum value it causes an increase in moderate/high values of collective efficacy. Similarly, we may reason optimizing team collective efficacy instead. It also allows us to determine the features that have the strongest influence on performance and which on collective efficacy. From the BN two different coaching styles were differentiated taking into account the local Markov property: training leadership and autocratic leadership.
Pérez-Rodríguez, P; Gianola, D; Weigel, K A; Rosa, G J M; Crossa, J
2013-08-01
In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees, or both. These models include, among others, the Bayesian regularized neural networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R package described here (brnn) implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.
Probabilistic Model Building Genetic Programming based on Estimation of Bayesian Network
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko; Iba, Hitoshi
Genetic Programming (GP) is a powerful optimization algorithm, which employs the crossover for genetic operation. Because the crossover operator in GP randomly selects sub-trees, the building blocks may be destroyed by the crossover. Recently, algorithms called PMBGPs (Probabilistic Model Building GP) based on probabilistic techniques have been proposed in order to improve the problem mentioned above. We propose a new PMBGP employing Bayesian network for generating new individuals with a special chromosome called expanded parse tree, which much reduces a number of possible symbols at each node. Although the large number of symbols gives rise to the large conditional probability table and requires a lot of samples to estimate the interactions among nodes, a use of the expanded parse tree overcomes these problems. Computational experiments on two subjects demonstrate that our new PMBGP is much superior to prior probabilistic models.
Fuster-Parra, P; García-Mas, A; Ponseti, F J; Leo, F M
2015-04-01
The purpose of this paper was to discover the relationships among 22 relevant psychological features in semi-professional football players in order to study team's performance and collective efficacy via a Bayesian network (BN). The paper includes optimization of team's performance and collective efficacy using intercausal reasoning pattern which constitutes a very common pattern in human reasoning. The BN is used to make inferences regarding our problem, and therefore we obtain some conclusions; among them: maximizing the team's performance causes a decrease in collective efficacy and when team's performance achieves the minimum value it causes an increase in moderate/high values of collective efficacy. Similarly, we may reason optimizing team collective efficacy instead. It also allows us to determine the features that have the strongest influence on performance and which on collective efficacy. From the BN two different coaching styles were differentiated taking into account the local Markov property: training leadership and autocratic leadership. PMID:25546263
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182
Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
NASA Astrophysics Data System (ADS)
He, Zhiwei; Gao, Mingyu; Ma, Guojin; Liu, Yuanyuan; Chen, Sanxin
2014-12-01
Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries.
Development of Bayesian network models for risk-based ship design
NASA Astrophysics Data System (ADS)
Konovessis, Dimitris; Cai, Wenkui; Vassalos, Dracos
2013-06-01
In the past fifteen years, the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry. The risk-based ship design (RBD) methodology, advocating systematic integration of risk assessment within the conventional design process has started to takeoff. Despite this wide recognition and increasing popularity, important factors that could potentially undermine the quality of the results come from both quantitative and qualitative aspects during the risk assessment process. This paper details a promising solution by developing a formalized methodology for risk assessment through effective storing and processing of historical data combined with data generated through first-principle approaches. This method should help to generate appropriate risk models in the selected platform (Bayesian networks) which can be employed for decision making at design stage.
2015-01-01
Objectives: This study investigated the applicability of a Bayesian belief network (BBN) to MR images to diagnose temporomandibular disorders (TMDs). Our aim was to determine the progression of TMDs, focusing on how each finding affects the other. Methods: We selected 1.5-T MRI findings (33 variables) and diagnoses (bone changes and disc displacement) of patients with TMD from 2007 to 2008. There were a total of 295 cases with 590 sides of temporomandibular joints (TMJs). The data were modified according to the research diagnostic criteria of TMD. We compared the accuracy of the BBN using 11 algorithms (necessary path condition, path condition, greedy search-and-score with Bayesian information criterion, Chow–Liu tree, Rebane–Pearl poly tree, tree augmented naïve Bayes model, maximum log likelihood, Akaike information criterion, minimum description length, K2 and C4.5), a multiple regression analysis and an artificial neural network using resubstitution validation and 10-fold cross-validation. Results: There were 191 TMJs (32.4%) with bone changes and 340 (57.6%) with articular disc displacement. The BBN path condition algorithm using resubstitution validation and 10-fold cross-validation was >99% accurate. However, the main advantage of a BBN is that it can represent the causal relationships between different findings and assign conditional probabilities, which can then be used to interpret the progression of TMD. Conclusions: Osteoarthritic bone changes progressed from condyle to articular fossa and finally to mandibular bone contours. Disc displacement was directly related to severe bone changes. Early bone changes were not directly related to disc displacement. TMJ functional factors (condylar translation, bony space and disc form) and age mediated between bone changes and disc displacement. PMID:25472616
Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features
Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features
Pinkeye (Conjunctivitis) (For Parents)
... Story" 5 Things to Know About Zika & Pregnancy Pinkeye (Conjunctivitis) KidsHealth > For Parents > Pinkeye (Conjunctivitis) Print A A ... to Call the Doctor en español Conjuntivitis About Pinkeye Conjunctivitis, commonly called pinkeye, is an inflammation of ...
Bayesian spatial joint modeling of traffic crashes on an urban road network.
Zeng, Qiang; Huang, Helai
2014-06-01
This study proposes a Bayesian spatial joint model of crash prediction including both road segments and intersections located in an urban road network, through which the spatial correlations between heterogeneous types of entities could be considered. A road network in Hillsborough, Florida, with crash, road, and traffic characteristics data for a three-year period was selected in order to compare the proposed joint model with three site-level crash prediction models, that is, the Poisson, negative binomial (NB), and conditional autoregressive (CAR) models. According to the results, the CAR and Joint models outperform the Poisson and NB models in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-entity spatial correlations. Although the goodness-of-fit and predictive performance of the CAR and Joint models are equivalent in this case study, spatial correlations between segments and the connected intersections are found to be more significant than those solely between segments or between intersections, which supports the employment of the Joint model as an alternative in road-network-level safety modeling.
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.
A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks
Santra, Tapesh
2014-01-01
Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances. PMID:25152886
Venkataraman, Archana; Duncan, James S; Yang, Daniel Y-J; Pelphrey, Kevin A
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of "language" and "comprehension" as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes "social" and "person". The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Roth, Dan; Wilkins, David C.
2001-01-01
Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that
Dana L. Kelly; Albert Malkhasyan
2010-06-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performed for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Fytilis, N.; Stevens, L.
2012-12-01
Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The
Site-specific updating and aggregation of Bayesian belief network models for multiple experts.
Stiber, Neil A; Small, Mitchell J; Pantazidou, Marina
2004-12-01
A method for combining multiple expert opinions that are encoded in a Bayesian Belief Network (BBN) model is presented and applied to a problem involving the cleanup of hazardous chemicals at a site with contaminated groundwater. The method uses Bayes Rule to update each expert model with the observed evidence, then uses it again to compute posterior probability weights for each model. The weights reflect the consistency of each model with the observed evidence, allowing the aggregate model to be tailored to the particular conditions observed in the site-specific application of the risk model. The Bayesian update is easy to implement, since the likelihood for the set of evidence (observations for selected nodes of the BBN model) is readily computed by sequential execution of the BBN model. The method is demonstrated using a simple pedagogical example and subsequently applied to a groundwater contamination problem using an expert-knowledge BBN model. The BBN model in this application predicts the probability that reductive dechlorination of the contaminant trichlorethene (TCE) is occurring at a site--a critical step in the demonstration of the feasibility of monitored natural attenuation for site cleanup--given information on 14 measurable antecedent and descendant conditions. The predictions for the BBN models for 21 experts are weighted and aggregated using examples of hypothetical and actual site data. The method allows more weight for those expert models that are more reflective of the site conditions, and is shown to yield an aggregate prediction that differs from that of simple model averaging in a potentially significant manner.
Bayesian Markov Random Field analysis for protein function prediction based on network data.
Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F
2010-02-24
Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.
Longitudinal Prediction of the Infant Gut Microbiome with Dynamic Bayesian Networks
McGeachie, Michael J.; Sordillo, Joanne E.; Gibson, Travis; Weinstock, George M.; Liu, Yang-Yu; Gold, Diane R.; Weiss, Scott T.; Litonjua, Augusto
2016-01-01
Sequencing of the 16S rRNA gene allows comprehensive assessment of bacterial community composition from human body sites. Previously published and publicly accessible data on 58 preterm infants in the Neonatal Intensive Care Unit who underwent frequent stool collection was used. We constructed Dynamic Bayesian Networks from the data and analyzed predictive performance and network characteristics. We constructed a DBN model of the infant gut microbial ecosystem, which explicitly captured specific relationships and general trends in the data: increasing amounts of Clostridia, residual amounts of Bacilli, and increasing amounts of Gammaproteobacteria that then give way to Clostridia. Prediction performance of DBNs with fewer edges were overall more accurate, although less so on harder-to-predict subjects (p = 0.045). DBNs provided quantitative likelihood estimates for rare abruptions events. Iterative prediction was less accurate (p < 0.001), but showed remarkable insensitivity to initial conditions and predicted convergence to a mix of Clostridia, Gammaproteobacteria, and Bacilli. DBNs were able to identify important relationships between microbiome taxa and predict future changes in microbiome composition from measured or synthetic initial conditions. DBNs also provided likelihood estimates for sudden, dramatic shifts in microbiome composition, which may be useful in guiding further analysis of those samples. PMID:26853461
Shaw, Edward; Kumar, Vikas; Lange, Eckart; Lerner, David N
2016-01-01
Modelling cultural ecosystem services is challenging as they often involve subjective and intangible concepts. As a consequence they have been neglected in ecosystem service studies, something that needs remedying if environmental decision making is to be truly holistic. We suggest Bayesian Networks (BNs) have a number of qualities that may make them well-suited for dealing with cultural services. For example, they define relationships between variables probabilistically, enabling conceptual and physical variables to be linked, and therefore the numerical representation of stakeholder opinions. We assess whether BNs are a good method for modelling cultural services by building one collaboratively with canoeists to predict how the subjective concepts of fun and danger are impacted on by weir modification. The BN successfully captured the relationships between the variables, with model output being broadly consistent with verbal descriptions by the canoeists. There were however a number of discrepancies indicating imperfect knowledge capture. This is likely due to the structure of the network and the abstract and laborious nature of the probability elicitation stage. New techniques should be developed to increase the intuitiveness and efficiency of probability elicitation. The limitations we identified with BNs are avoided if their structure can be kept simple, and it is in such circumstances that BNs can offer a good method for modelling cultural ecosystem services.
Shaw, Edward; Kumar, Vikas; Lange, Eckart; Lerner, David N
2016-01-01
Modelling cultural ecosystem services is challenging as they often involve subjective and intangible concepts. As a consequence they have been neglected in ecosystem service studies, something that needs remedying if environmental decision making is to be truly holistic. We suggest Bayesian Networks (BNs) have a number of qualities that may make them well-suited for dealing with cultural services. For example, they define relationships between variables probabilistically, enabling conceptual and physical variables to be linked, and therefore the numerical representation of stakeholder opinions. We assess whether BNs are a good method for modelling cultural services by building one collaboratively with canoeists to predict how the subjective concepts of fun and danger are impacted on by weir modification. The BN successfully captured the relationships between the variables, with model output being broadly consistent with verbal descriptions by the canoeists. There were however a number of discrepancies indicating imperfect knowledge capture. This is likely due to the structure of the network and the abstract and laborious nature of the probability elicitation stage. New techniques should be developed to increase the intuitiveness and efficiency of probability elicitation. The limitations we identified with BNs are avoided if their structure can be kept simple, and it is in such circumstances that BNs can offer a good method for modelling cultural ecosystem services. PMID:26345252
NASA Astrophysics Data System (ADS)
Spence, P. L.; Jordan, S. J.
2011-12-01
Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and waste treatment) and supporting (i.e. nutrient cycling) ecosystem services. Wetlands generally respond both by sequestering Nr (i.e. soil accumulation and biomass assimilation) and converting Nr into inert gaseous forms via biogeochemical processes. It is important for wetlands to be efficient in removing excessive Nr inputs from polluted waters to reduce eutrophication in downstream receiving water bodies while producing negligible amounts of nitrous oxide (N2O), a potent greenhouse gas, which results from incomplete denitrification. Wetlands receiving excessive Nr lose their ability to provide a constant balance between regulating water quality and mitigating climate change. The purpose of this study is to explore the effects of Nr inputs on ecosystem services provided by wetlands using a Bayesian Belief Network (BBN). The network was developed from established relationships between a variety of wetland function indicators and biogeochemical process associated with Nr removal. Empirical data for 34 freshwater wetlands were gathered from a comprehensive review of published peer-reviewed and gray literature. The BBN was trained using 30 wetlands (88% of the freshwater wetland case file) and tested using 4 wetlands (12% of the freshwater wetland case file). Sensitivity analysis suggested that Nr removal, water quality, soil Nr accumulation and N2O emissions had the greatest influence on ecosystem service tradeoffs. The magnitude of Nr inputs did not affect ecosystem services. The network implies that Nr removal efficiency has a greater influence on final ecosystem services associated with water quality impairment and atmospheric pollution. A very low error rate, which was based on 4 wetland
A Bayesian network to predict coastal vulnerability to sea level rise
Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.
2011-01-01
Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.
2012-04-01
Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the
NASA Astrophysics Data System (ADS)
Shen, Tiyan; Li, Xi; Li, Maiqing
2009-10-01
The paper intends to employ Geographic Information System (GIS) and Bayesian Network to discover the spatial causality between enterprises and environmental factors in Beijing Metropolis. The census data of Beijing was spatialized by means of GIS in the beginning, and then the training data was made using density mapping technique. Base on the training data, the structure of a Bayesian Network was learnt with the help of Maximum Weight Spanning Tree. Eight direct relations were discussed in the end, of which, the most exciting discovery, "Enterprise-Run Society", as the symbol of the former planned economy, was emphasized in the spatial relations between heavy industry and schools. Though the final result is not so creative in economic perspective, it is of significance in technique view due to all discoveries were drawn from data, therefore leading to the realization of the importance of GIS and data mining to economic geography research.
NASA Astrophysics Data System (ADS)
Pang, A. P.; Sun, T.
2014-05-01
We proposed an approach for environmental flow decision-making based on Bayesian networks considering seasonal water use conflicts between agriculture and ecosystems. Three steps were included in the approach: water shortage assessment after environmental flow allocation using a production-loss model considering temporal variations of river flows; trade-off analysis of water use outcomes by Bayesian networks; and environmental flow decision-making based on a risk assessment under different management strategies. An agricultural water shortage model and a production-loss model were integrated after satisfying environmental flows with temporal variability. The case study in the Yellow River estuary indicated that the average difference of acceptable economic loss for winter wheat irrigation stakeholders was 10% between water saving measures and water diversion projects. The combination of water diversion projects and water-saving measures would allow 4.1% more river inflow to be allocated to ecological needs in normal years without further economic losses in agriculture.
NASA Astrophysics Data System (ADS)
Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.
2013-05-01
The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.
Goulding, R; Jayasuriya, N; Horan, E
2012-10-15
Overflows from sanitary sewers during wet weather, which occur when the hydraulic capacity of the sewer system is exceeded, are considered a potential threat to the ecological and public health of the waterways which receive these overflows. As a result, water retailers in Australia and internationally commit significant resources to manage and abate sewer overflows. However, whilst some studies have contributed to an increased understanding of the impacts and risks associated with these events, they are relatively few in number and there still is a general lack of knowledge in this area. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows is presented in this paper. The Bayesian network approach is shown to provide significant benefits in the assessment of public health risks associated with wet weather sewer overflows. In particular, the ability for the model to account for the uncertainty inherent in sewer overflow events and subsequent impacts through the use of probabilities is a valuable function. In addition, the paper highlights the benefits of the probabilistic inference function of the Bayesian network in prioritising management options to minimise public health risks associated with sewer overflows.
Grzegorczyk, Marco; Husmeier, Dirk
2012-07-12
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.
A Bayesian network model for assessing natural estrogen fate and transport in a swine waste lagoon.
Lee, Boknam; Kullman, Seth W; Yost, Erin; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H
2014-10-01
Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a probabilistic Bayesian network model was developed to assess natural estrogen fate and budget and then compared against data collected from a commercial swine field site. In general, the model was able to describe the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, whereas the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations demonstrated that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhance estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants. PMID:24798317
Money, Eric S; Barton, Lauren E; Dawson, Joseph; Reckhow, Kenneth H; Wiesner, Mark R
2014-03-01
The adaptive nature of the Forecasting the Impacts of Nanomaterials in the Environment (FINE) Bayesian network is explored. We create an updated FINE model (FINEAgNP-2) for predicting aquatic exposure concentrations of silver nanoparticles (AgNP) by combining the expert-based parameters from the baseline model established in previous work with literature data related to particle behavior, exposure, and nano-ecotoxicology via parameter learning. We validate the AgNP forecast from the updated model using mesocosm-scale field data and determine the sensitivity of several key variables to changes in environmental conditions, particle characteristics, and particle fate. Results show that the prediction accuracy of the FINEAgNP-2 model increased approximately 70% over the baseline model, with an error rate of only 20%, suggesting that FINE is a reliable tool to predict aquatic concentrations of nano-silver. Sensitivity analysis suggests that fractal dimension, particle diameter, conductivity, time, and particle fate have the most influence on aquatic exposure given the current knowledge; however, numerous knowledge gaps can be identified to suggest further research efforts that will reduce the uncertainty in subsequent exposure and risk forecasts.
A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation
NASA Astrophysics Data System (ADS)
Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah
2016-06-01
Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.
A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears
NASA Astrophysics Data System (ADS)
Amstrup, Steven C.; Marcot, Bruce G.; Douglas, David C.
To inform the U.S. Fish and Wildlife Service decision, whether or not to list polar bears as threatened under the Endangered Species Act (ESA), we projected the status of the world's polar bears (Ursus maritimus) for decades centered on future years 2025, 2050, 2075, and 2095. We defined four ecoregions based on current and projected sea ice conditions: seasonal ice, Canadian Archipelago, polar basin divergent, and polar basin convergent ecoregions. We incorporated general circulation model projections of future sea ice into a Bayesian network (BN) model structured around the factors considered in ESA decisions. This first-generation BN model combined empirical data, interpretations of data, and professional judgments of one polar bear expert into a probabilistic framework that identifies causal links between environmental stressors and polar bear responses. We provide guidance regarding steps necessary to refine the model, including adding inputs from other experts. The BN model projected extirpation of polar bears from the seasonal ice and polar basin divergent ecoregions, where ≈2/3 of the world's polar bears currently occur, by mid century. Projections were less dire in other ecoregions. Decline in ice habitat was the overriding factor driving the model outcomes. Although this is a first-generation model, the dependence of polar bears on sea ice is universally accepted, and the observed sea ice decline is faster than models suggest. Therefore, incorporating judgments of multiple experts in a final model is not expected to fundamentally alter the outlook for polar bears described here.
Spatially implemented Bayesian network model to assess environmental impacts of water management
NASA Astrophysics Data System (ADS)
Morrison, Ryan R.; Stone, Mark C.
2014-10-01
Bayesian networks (BNs) have become a popular method of assessing environmental impacts of water management. However, spatial attributes that influence ecological processes are rarely included in BN models. We demonstrate the benefits of combining two-dimensional hydrodynamic and BN modeling frameworks to explicitly incorporate the spatial variability within a system. The impacts of two diversion scenarios on riparian vegetation recruitment at the Gila River, New Mexico, USA, were evaluated using a coupled modeling framework. We focused on five individual sites in the Upper Gila basin. Our BN model incorporated key ecological drivers based on the "recruitment box" conceptual model, including the timing of seed availability, floodplain inundation, river recession rate, and groundwater depths. Results indicated that recruitment potential decreased by >20% at some locations within each study site, relative to existing conditions. The largest impacts occurring along dynamic fluvial landforms, such as side channels and sand bars. Reductions in recruitment potential varied depending on the diversion scenario. Our unique approach allowed us to evaluate recruitment consequences of water management scenarios at a fine spatial scale, which not only helped differentiate impacts at distinct channel locations but also was useful for informing stakeholders of possible ecological impacts. Our findings also demonstrate that minor changes to river flow may have large ecological implications.
Overlapping nuclei segmentation based on Bayesian networks and stepwise merging strategy.
Jeong, M-R; Ko, B C; Nam, J-Y
2009-08-01
This paper presents a new approach to the segmentation of fluorescence in situ hybridization images. First, to segment the cell nuclei from the background, a threshold is estimated using a Gaussian mixture model and maximizing the likelihood function of the grey values for the cell images. After the nuclei segmentation, the overlapping and isolated nuclei are classified to facilitate a more accurate nuclei analysis. To do this, the morphological features of the nuclei, such their compactness, smoothness and moments, are extracted from training data to generate three probability distribution functions that are then applied to a Bayesian network as evidence. Following the nuclei classification, the overlapping nuclei are segmented into isolated nuclei using an intensity gradient transform and watershed algorithm. A new stepwise merging strategy is also proposed to merge fragments into a major nucleus. Experimental results using fluorescence in situ hybridization images confirm that the proposed system produced better segmentation results when compared to previous methods, because of the nuclei classification before separating the overlapping nuclei.
A Parallel and Incremental Approach for Data-Intensive Learning of Bayesian Networks.
Yue, Kun; Fang, Qiyu; Wang, Xiaoling; Li, Jin; Liu, Weiyi
2015-12-01
Bayesian network (BN) has been adopted as the underlying model for representing and inferring uncertain knowledge. As the basis of realistic applications centered on probabilistic inferences, learning a BN from data is a critical subject of machine learning, artificial intelligence, and big data paradigms. Currently, it is necessary to extend the classical methods for learning BNs with respect to data-intensive computing or in cloud environments. In this paper, we propose a parallel and incremental approach for data-intensive learning of BNs from massive, distributed, and dynamically changing data by extending the classical scoring and search algorithm and using MapReduce. First, we adopt the minimum description length as the scoring metric and give the two-pass MapReduce-based algorithms for computing the required marginal probabilities and scoring the candidate graphical model from sample data. Then, we give the corresponding strategy for extending the classical hill-climbing algorithm to obtain the optimal structure, as well as that for storing a BN by
Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks
NASA Astrophysics Data System (ADS)
Gosangi, Rakesh; Gutierrez-Osuna, Ricardo
2011-09-01
We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.
Composite behavior analysis for video surveillance using hierarchical dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Cheng, Huanhuan; Shan, Yong; Wang, Runsheng
2011-03-01
Analyzing composite behaviors involving objects from multiple categories in surveillance videos is a challenging task due to the complicated relationships among human and objects. This paper presents a novel behavior analysis framework using a hierarchical dynamic Bayesian network (DBN) for video surveillance systems. The model is built for extracting objects' behaviors and their relationships by representing behaviors using spatial-temporal characteristics. The recognition of object behaviors is processed by the DBN at multiple levels: features of objects at low level, objects and their relationships at middle level, and event at high level, where event refers to behaviors of a single type object as well as behaviors consisting of several types of objects such as ``a person getting in a car.'' Furthermore, to reduce the complexity, a simple model selection criterion is addressed, by which the appropriated model is picked out from a pool of candidate models. Experiments are shown to demonstrate that the proposed framework could efficiently recognize and semantically describe composite object and human activities in surveillance videos.
NASA Astrophysics Data System (ADS)
Sebastian, A.; Dupuits, E. J. C.; Morales-Napoles, O.
2015-12-01
Hurricanes pose a major flood hazard to communities on the U.S. Atlantic and Gulf Coasts. Over the past decade, the economic costs associated with hurricane flood damages have escalated and recent studies indicate that a large percentage of flood damages are occurring outside of FEMA-designated flood hazard areas. While FEMA recently upgraded coastal flood hazard maps using the Advanced CIRCulation (ADCIRC) Model, these maps do not consider the flood hazard resulting from the joint occurrence of precipitation over the watershed and storm surge at the coast. Instead, the two individual hazards are mapped separately, ignoring the floodplain resulting from their interaction.In this study, a risk assessment methodology was developed to predict the damages associated with hurricane-induced flooding in the Houston Galveston Bay Area. Historical hurricanes were analyzed to derive probability distributions for storm surge height, cumulative precipitation, hurricane landfall, wind speed, angle of approach, radius to maximum winds, and forward speed. A Bayesian Network was built and used to simulate a large number of synthetic storms. The resulting 1% combinations of storm surge and precipitation were applied as boundary conditions to a hydraulic modeled and the maximum extent of flooding was compared to the FEMA-designated flood hazard areas. A high resolution GIS-based model was used to predict damages.
Mbakwe, Anthony C; Saka, Anthony A; Choi, Keechoo; Lee, Young-Jae
2016-08-01
Highway traffic accidents all over the world result in more than 1.3 million fatalities annually. An alarming number of these fatalities occurs in developing countries. There are many risk factors that are associated with frequent accidents, heavy loss of lives, and property damage in developing countries. Unfortunately, poor record keeping practices are very difficult obstacle to overcome in striving to obtain a near accurate casualty and safety data. In light of the fact that there are numerous accident causes, any attempts to curb the escalating death and injury rates in developing countries must include the identification of the primary accident causes. This paper, therefore, seeks to show that the Delphi Technique is a suitable alternative method that can be exploited in generating highway traffic accident data through which the major accident causes can be identified. In order to authenticate the technique used, Korea, a country that underwent similar problems when it was in its early stages of development in addition to the availability of excellent highway safety records in its database, is chosen and utilized for this purpose. Validation of the methodology confirms the technique is suitable for application in developing countries. Furthermore, the Delphi Technique, in combination with the Bayesian Network Model, is utilized in modeling highway traffic accidents and forecasting accident rates in the countries of research.
Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.
Halloran, John T; Bilmes, Jeff A; Noble, William S
2016-08-01
A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit .
García-Herrero, Susana; Mariscal, M A; Gutiérrez, J M; Ritzel, Dale O
2013-08-01
Occupational stress is a major health hazard and a serious challenge to the effective operation of any company and represents a major problem for both individuals and organizations. Previous researches have shown that high demands (e.g. workload, emotional) combined with low resources (e.g. support, control, rewards) are associated with adverse health (e.g. psychological, physical) and organizational impacts (e.g. reduced job satisfaction, sickness absence). The objective of the present work is to create a model to analyze how social support reduces the occupational stress caused by work demands. This study used existing Spanish national data on working conditions collected by the Spanish Ministry of Labour and Immigration in 2007, where 11,054 workers were interviewed by questionnaire. A probabilistic model was built using Bayesian networks to explain the relationships between work demands and occupational stress. The model also explains how social support contributes positively to reducing stress levels. The variables studied were intellectually demanding work, overwork, workday, stress, and social support. The results show the importance of social support and of receiving help from supervisors and co-workers in preventing occupational stress. The study provides a new methodology that explains and quantifies the effects of intellectually demanding work, overwork, and workday in occupational stress. Also, the study quantifies the importance of social support to reduce occupational stress.
Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam
NASA Astrophysics Data System (ADS)
Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit
2016-04-01
Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.
Bayesian-network-based safety risk assessment for steel construction projects.
Leu, Sou-Sen; Chang, Ching-Miao
2013-05-01
There are four primary accident types at steel building construction (SC) projects: falls (tumbles), object falls, object collapse, and electrocution. Several systematic safety risk assessment approaches, such as fault tree analysis (FTA) and failure mode and effect criticality analysis (FMECA), have been used to evaluate safety risks at SC projects. However, these traditional methods ineffectively address dependencies among safety factors at various levels that fail to provide early warnings to prevent occupational accidents. To overcome the limitations of traditional approaches, this study addresses the development of a safety risk-assessment model for SC projects by establishing the Bayesian networks (BN) based on fault tree (FT) transformation. The BN-based safety risk-assessment model was validated against the safety inspection records of six SC building projects and nine projects in which site accidents occurred. The ranks of posterior probabilities from the BN model were highly consistent with the accidents that occurred at each project site. The model accurately provides site safety-management abilities by calculating the probabilities of safety risks and further analyzing the causes of accidents based on their relationships in BNs. In practice, based on the analysis of accident risks and significant safety factors, proper preventive safety management strategies can be established to reduce the occurrence of accidents on SC sites.
Bayesian network for estimating the interaction between ecological health and waterfowl abundance
NASA Astrophysics Data System (ADS)
Teng, Te Hui; Fang, Wei Ta; Yu, Hwa Lung
2013-04-01
The serious decrease of biodiversity which is mainly induced by Habitat disappear is important issue of species field and in the world. The study area chooses Tauyuan County at subtropical area because of the most artificial farm ponds in Taiwan where the total area includes 27 km2. The effectiveness of these ponds is storage and irrigation and also supplies all kinds of environment like refuges for migratory birds, especially for water birds. Due to human development, farm ponds in this city not only suffer from largely disappear recent year, but also lead to the habitat and bird species reduce. Biological research usually contains incomplete and uncertain information, therefore, this study adopts Bayesian Network model to analyze interaction between land use and water birds. The habitat parameters include elevation, urbanization, building area, farm area, reconsolidation, forest area, irrigation area, farm pond area and lawn area; the biological factors have reproductive capacity, habitat condition, hydrological condition and food source. Using this structure can estimate the interaction of spatiotemporal abundance distribution between habitat parameter and biological parameter. In addition, the former results can define all the reasonable relationship of all hidden states and provide decision-makers with reasonable evaluation.
Liu, Zengkai; Liu, Yonghong; Wu, Xinlei; Yang, Dongwei; Cai, Baoping; Zheng, Chao
2016-09-01
Bayesian network (BN) is a widely used formalism for representing uncertainty in probabilistic systems and it has become a popular tool in reliability engineering. The GO-FLOW method is a success-oriented system analysis technique and capable of evaluating system reliability and risk. To overcome the limitations of GO-FLOW method and add new method for BN model development, this paper presents a novel approach on constructing a BN from GO-FLOW model. GO-FLOW model involves with several discrete time points and some signals change at different time points. But it is a static system at one time point, which can be described with BN. Therefore, the developed BN with the proposed method in this paper is equivalent to GO-FLOW model at one time point. The equivalent BNs of the fourteen basic operators in the GO-FLOW methodology are developed. Then, the existing GO-FLOW models can be mapped into equivalent BNs on basis of the developed BNs of operators. A case of auxiliary feedwater system of a pressurized water reactor is used to illustrate the method. The results demonstrate that the GO-FLOW chart can be successfully mapped into equivalent BNs. PMID:27282519
Integrating System Dynamics and Bayesian Networks with Application to Counter-IED Scenarios
Jarman, Kenneth D.; Brothers, Alan J.; Whitney, Paul D.; Young, Jonathan; Niesen, David A.
2010-06-06
The practice of choosing a single modeling paradigm for predictive analysis can limit the scope and relevance of predictions and their utility to decision-making processes. Considering multiple modeling methods simultaneously may improve this situation, but a better solution provides a framework for directly integrating different, potentially complementary modeling paradigms to enable more comprehensive modeling and predictions, and thus better-informed decisions. The primary challenges of this kind of model integration are to bridge language and conceptual gaps between modeling paradigms, and to determine whether natural and useful linkages can be made in a formal mathematical manner. To address these challenges in the context of two specific modeling paradigms, we explore mathematical and computational options for linking System Dynamics (SD) and Bayesian network (BN) models and incorporating data into the integrated models. We demonstrate that integrated SD/BN models can naturally be described as either state space equations or Dynamic Bayes Nets, which enables the use of many existing computational methods for simulation and data integration. To demonstrate, we apply our model integration approach to techno-social models of insurgent-led attacks and security force counter-measures centered on improvised explosive devices.
Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.
Halloran, John T; Bilmes, Jeff A; Noble, William S
2016-08-01
A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138
Stochastic hydro-economic model for groundwater quality management using Bayesian networks.
Molina, José-Luis; Pulido-Velázquez, Manuel; Llopis-Albert, Carlos; Peña-Haro, Salvador
2013-01-01
A strong normative development in Europe, including the Nitrate Directive (1991) and the Water Framework Directive (WFD) (2000), has been promulgated. The WFD states that all water bodies have to reach a good quantitative and chemical status by 2015. It is necessary to consider different objectives, often in conflict, for tackling a suitable assessment of the impacts generated by water policies aimed to reduce nitrate pollution in groundwater. For that, an annual lumped probabilistic model based on Bayesian networks (BNs) has been designed for hydro-economic modelling of groundwater quality control under uncertain conditions. The information introduced in the BN model comes from different sources such as previous groundwater flow and mass transport simulations, hydro-economic models, stakeholders and expert opinion, etc. The methodology was applied to the El Salobral-Los Llanos aquifer unit within the 'Easter Mancha' groundwater body, which is one of the largest aquifers in Spain (7,400 km(2)), included in the Júcar River Basin. Over the past 30 years, socioeconomic development within the region has been mainly depending on intensive use of groundwater resources for irrigating crops. This has provoked a continuous groundwater level fall in the last two decades and significant streamflow depletion in the connected Júcar River. This BN model has proved to be a robust Decision Support System for helping water managers in the decision making process.
Mbakwe, Anthony C; Saka, Anthony A; Choi, Keechoo; Lee, Young-Jae
2016-08-01
Highway traffic accidents all over the world result in more than 1.3 million fatalities annually. An alarming number of these fatalities occurs in developing countries. There are many risk factors that are associated with frequent accidents, heavy loss of lives, and property damage in developing countries. Unfortunately, poor record keeping practices are very difficult obstacle to overcome in striving to obtain a near accurate casualty and safety data. In light of the fact that there are numerous accident causes, any attempts to curb the escalating death and injury rates in developing countries must include the identification of the primary accident causes. This paper, therefore, seeks to show that the Delphi Technique is a suitable alternative method that can be exploited in generating highway traffic accident data through which the major accident causes can be identified. In order to authenticate the technique used, Korea, a country that underwent similar problems when it was in its early stages of development in addition to the availability of excellent highway safety records in its database, is chosen and utilized for this purpose. Validation of the methodology confirms the technique is suitable for application in developing countries. Furthermore, the Delphi Technique, in combination with the Bayesian Network Model, is utilized in modeling highway traffic accidents and forecasting accident rates in the countries of research. PMID:27183516
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
Varkey, Divya A; Pitcher, Tony J; McAllister, Murdoch K; Sumaila, Rashid S
2013-06-01
Proposals for marine conservation measures have proliferated in the last 2 decades due to increased reports of fishery declines and interest in conservation. Fishers and fisheries managers have often disagreed strongly when discussing controls on fisheries. In such situations, ecosystem-based models and fisheries-stock assessment models can help resolve disagreements by highlighting the trade-offs that would be made under alternative management scenarios. We extended the analytical framework for modeling such trade-offs by including additional stakeholders whose livelihoods and the value they place on conservation depend on the condition of the marine ecosystem. To do so, we used Bayesian decision-network models (BDNs) in a case study of an Indonesian coral reef fishery. Our model included interests of the fishers and fishery managers; individuals in the tourism industry; conservation interests of the state, nongovernmental organizations, and the local public; and uncertainties in ecosystem status, projections of fisheries revenues, tourism growth, and levels of interest in conservation. We calculated the total utility (i.e., value) of a range of restoration scenarios. Restricting net fisheries and live-fish fisheries appeared to be the best compromise solutions under several combinations of settings of modeled variables. Results of our case study highlight the implications of alternate formulations for coral reef stakeholder utility functions and discount rates for the calculation of the net benefits of alternative fisheries management options. This case study may also serve as a useful example for other decision analyses with multiple stakeholders. PMID:23530881
Dynamic Bayesian Networks to predict sequences of organ failures in patients admitted to ICU.
Sandri, Micol; Berchialla, Paola; Baldi, Ileana; Gregori, Dario; De Blasi, Roberto Alberto
2014-04-01
Multi Organ Dysfunction Syndrome (MODS) represents a continuum of physiologic derangements and is the major cause of death in the Intensive Care Unit (ICU). Scoring systems for organ failure have become an integral part of critical care practice and play an important role in ICU-based research by tracking disease progression and facilitating patient stratification based on evaluation of illness severity during ICU stay. In this study a Dynamic Bayesian Network (DBN) was applied to model SOFA severity score changes in 79 adult critically ill patients consecutively admitted to the general ICU of the Sant'Andrea University hospital (Rome, Italy) from September 2010 to March 2011, with the aim to identify the most probable sequences of organs failures in the first week after the ICU admission. Approximately 56% of patients were admitted into the ICU with lung failure and about 27% of patients with heart failure. Results suggest that, given the first organ failure at the ICU admission, a sequence of organ failures can be predicted with a certain degree of probability. Sequences involving heart, lung, hematologic system and liver turned out to be the more likely to occur, with slightly different probabilities depending on the day of the week they occur. DBNs could be successfully applied for modeling temporal systems in critical care domain. Capability to predict sequences of likely organ failures makes DBNs a promising prognostic tool, intended to help physicians in undertaking therapeutic decisions in a patient-tailored approach.
Novel dynamic Bayesian networks for facial action element recognition and understanding
NASA Astrophysics Data System (ADS)
Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong
2011-12-01
In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.
A Bayesian network model for assessing natural estrogen fate and transport in a swine waste lagoon.
Lee, Boknam; Kullman, Seth W; Yost, Erin; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H
2014-10-01
Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a probabilistic Bayesian network model was developed to assess natural estrogen fate and budget and then compared against data collected from a commercial swine field site. In general, the model was able to describe the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, whereas the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations demonstrated that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhance estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants.
Mani-Varnosfaderani, Ahmad; Kanginejad, Atefeh; Gilany, Kambiz; Valadkhani, Abolfazl
2016-10-12
The present work deals with the development of a new baseline correction method based on the comparative learning capabilities of artificial neural networks. The developed method uses the Bayes probability theorem for prevention of the occurrence of the over-fitting and finding a generalized baseline. The developed method has been applied on simulated and real metabolomic gas-chromatography (GC) and Raman data sets. The results revealed that the proposed method can be used to handle different types of baselines with cave, convex, curvelinear, triangular and sinusoidal patterns. For further evaluation of the performances of this method, it has been compared with benchmarking baseline correction methods such as corner-cutting (CC), morphological weighted penalized least squares (MPLS), adaptive iteratively-reweighted penalized least squares (airPLS) and iterative polynomial fitting (iPF). In order to compare the methods, the projected difference resolution (PDR) criterion has been calculated for the data before and after the baseline correction procedure. The calculated values of PDR after the baseline correction using iBRANN, airPLS, MPLS, iPF and CC algorithms for the GC metabolomic data were 4.18, 3.64, 3.88, 1.88 and 3.08, respectively. The obtained results in this work demonstrated that the developed iterative Bayesian regularized neural network (iBRANN) method in this work thoroughly detects the baselines and is superior over the CC, MPLS, airPLS and iPF techniques. A graphical user interface has been developed for the suggested algorithm and can be used for easy implementation of the iBRANN algorithm for the correction of different chromatography, NMR and Raman data sets. PMID:27662759
Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.
2004-01-01
Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component
Mani-Varnosfaderani, Ahmad; Kanginejad, Atefeh; Gilany, Kambiz; Valadkhani, Abolfazl
2016-10-12
The present work deals with the development of a new baseline correction method based on the comparative learning capabilities of artificial neural networks. The developed method uses the Bayes probability theorem for prevention of the occurrence of the over-fitting and finding a generalized baseline. The developed method has been applied on simulated and real metabolomic gas-chromatography (GC) and Raman data sets. The results revealed that the proposed method can be used to handle different types of baselines with cave, convex, curvelinear, triangular and sinusoidal patterns. For further evaluation of the performances of this method, it has been compared with benchmarking baseline correction methods such as corner-cutting (CC), morphological weighted penalized least squares (MPLS), adaptive iteratively-reweighted penalized least squares (airPLS) and iterative polynomial fitting (iPF). In order to compare the methods, the projected difference resolution (PDR) criterion has been calculated for the data before and after the baseline correction procedure. The calculated values of PDR after the baseline correction using iBRANN, airPLS, MPLS, iPF and CC algorithms for the GC metabolomic data were 4.18, 3.64, 3.88, 1.88 and 3.08, respectively. The obtained results in this work demonstrated that the developed iterative Bayesian regularized neural network (iBRANN) method in this work thoroughly detects the baselines and is superior over the CC, MPLS, airPLS and iPF techniques. A graphical user interface has been developed for the suggested algorithm and can be used for easy implementation of the iBRANN algorithm for the correction of different chromatography, NMR and Raman data sets.
Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R
2013-04-01
Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality. PMID:22899457
User-Adapted Recommendation of Content on Mobile Devices Using Bayesian Networks
NASA Astrophysics Data System (ADS)
Iwasaki, Hirotoshi; Mizuno, Nobuhiro; Hara, Kousuke; Motomura, Yoichi
Mobile devices, such as cellular phones and car navigation systems, are essential to daily life. People acquire necessary information and preferred content over communication networks anywhere, anytime. However, usability issues arise from the simplicity of user interfaces themselves. Thus, a recommendation of content that is adapted to a user's preference and situation will help the user select content. In this paper, we describe a method to realize such a system using Bayesian networks. This user-adapted mobile system is based on a user model that provides recommendation of content (i.e., restaurants, shops, and music that are suitable to the user and situation) and that learns incrementally based on accumulated usage history data. However, sufficient samples are not always guaranteed, since a user model would require combined dependency among users, situations, and contents. Therefore, we propose the LK method for modeling, which complements incomplete and insufficient samples using knowledge data, and CPT incremental learning for adaptation based on a small number of samples. In order to evaluate the methods proposed, we applied them to restaurant recommendations made on car navigation systems. The evaluation results confirmed that our model based on the LK method can be expected to provide better generalization performance than that of the conventional method. Furthermore, our system would require much less operation than current car navigation systems from the beginning of use. Our evaluation results also indicate that learning a user's individual preference through CPT incremental learning would be beneficial to many users, even with only a few samples. As a result, we have developed the technology of a system that becomes more adapted to a user the more it is used.
Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R
2013-04-01
Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.
NASA Astrophysics Data System (ADS)
Odbert, Henry; Hincks, Thea; Aspinall, Willy
2015-04-01
Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method
Probabilistic Subset Conjunction
ERIC Educational Resources Information Center
Kohli, Rajeev; Jedidi, Kamel
2005-01-01
The authors introduce subset conjunction as a classification rule by which an acceptable alternative must satisfy some minimum number of criteria. The rule subsumes conjunctive and disjunctive decision strategies as special cases. Subset conjunction can be represented in a binary-response model, for example, in a logistic regression, using only…
NASA Astrophysics Data System (ADS)
Maiti, Saumen; Tiwari, Ram Krishna
2010-10-01
A new probabilistic approach based on the concept of Bayesian neural network (BNN) learning theory is proposed for decoding litho-facies boundaries from well-log data. We show that how a multi-layer-perceptron neural network model can be employed in Bayesian framework to classify changes in litho-log successions. The method is then applied to the German Continental Deep Drilling Program (KTB) well-log data for classification and uncertainty estimation in the litho-facies boundaries. In this framework, a posteriori distribution of network parameter is estimated via the principle of Bayesian probabilistic theory, and an objective function is minimized following the scaled conjugate gradient optimization scheme. For the model development, we inflict a suitable criterion, which provides probabilistic information by emulating different combinations of synthetic data. Uncertainty in the relationship between the data and the model space is appropriately taken care by assuming a Gaussian a priori distribution of networks parameters (e.g., synaptic weights and biases). Prior to applying the new method to the real KTB data, we tested the proposed method on synthetic examples to examine the sensitivity of neural network hyperparameters in prediction. Within this framework, we examine stability and efficiency of this new probabilistic approach using different kinds of synthetic data assorted with different level of correlated noise. Our data analysis suggests that the designed network topology based on the Bayesian paradigm is steady up to nearly 40% correlated noise; however, adding more noise (˜50% or more) degrades the results. We perform uncertainty analyses on training, validation, and test data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a posteriori distribution about the peak model. We present a standard deviation error-map at the network output corresponding to the three types of the litho-facies present over the entire litho
Akutekwe, Arinze; Seker, Huseyin
2015-08-01
Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in systems biology. Most methods for modeling and inferring the dynamics of GRNs, such as those based on state space models, vector autoregressive models and G1DBN algorithm, assume linear dependencies among genes. However, this strong assumption does not make for true representation of time-course relationships across the genes, which are inherently nonlinear. Nonlinear modeling methods such as the S-systems and causal structure identification (CSI) have been proposed, but are known to be statistically inefficient and analytically intractable in high dimensions. To overcome these limitations, we propose an optimized ensemble approach based on support vector regression (SVR) and dynamic Bayesian networks (DBNs). The method called SVR-DBN, uses nonlinear kernels of the SVR to infer the temporal relationships among genes within the DBN framework. The two-stage ensemble is further improved by SVR parameter optimization using Particle Swarm Optimization. Results on eight insilico-generated datasets, and two real world datasets of Drosophila Melanogaster and Escherichia Coli, show that our method outperformed the G1DBN algorithm by a total average accuracy of 12%. We further applied our method to model the time-course relationships of ovarian carcinoma. From our results, four hub genes were discovered. Stratified analysis further showed that the expression levels Prostrate differentiation factor and BTG family member 2 genes, were significantly increased by the cisplatin and oxaliplatin platinum drugs; while expression levels of Polo-like kinase and Cyclin B1 genes, were both decreased by the platinum drugs. These hub genes might be potential biomarkers for ovarian carcinoma. PMID:26738192
NASA Astrophysics Data System (ADS)
Pham, H. V.; Tsai, F. T. C.
2014-12-01
Groundwater systems are complex and subject to multiple interpretations and conceptualizations due to a lack of sufficient information. As a result, multiple conceptual models are often developed and their mean predictions are preferably used to avoid biased predictions from using a single conceptual model. Yet considering too many conceptual models may lead to high prediction uncertainty and may lose the purpose of model development. In order to reduce the number of models, an optimal observation network design is proposed based on maximizing the Kullback-Leibler (KL) information to discriminate competing models. The KL discrimination function derived by Box and Hill [1967] for one additional observation datum at a time is expanded to account for multiple independent spatiotemporal observations. The Bayesian model averaging (BMA) method is used to incorporate existing data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. To consider the future observation uncertainty, the Monte Carlo realizations of BMA predicted future observations are used to calculate the mean and variance of posterior model probabilities of the competing models. The goal of the optimal observation network design is to find the number and location of observation wells and sampling rounds such that the highest posterior model probability of a model is larger than a desired probability criterion (e.g., 95%). The optimal observation network design is implemented to a groundwater study in the Baton Rouge area, Louisiana to collect new groundwater heads from USGS wells. The considered sources of uncertainty that create multiple groundwater models are the geological architecture, the boundary condition, and the fault permeability architecture. All possible design solutions are enumerated using high performance computing systems. Results show that total model variance (the sum of within-model variance and between
Long-Lead Quantitative Flood Forecasts in Ungauged Basins Using Bayesian Neural Networks
NASA Astrophysics Data System (ADS)
Barros, A. P.; Yoo, J.
2004-05-01
Previously, Kim and Barros (2001) demonstrated the use of a hierarchy of neural network models to forecast flood peaks in four small and medium size ungauged basins (750 to about 9,000 km-sq) in the Northern Appalachian Mountains in Pennsylvania. Using regional rainfall, radiosonde and mesoscale infrared (IR) satellite imagery, their approach consisted of identifying the presence and type of convective activity from the IR imagery, information which was subsequently used to characterize the dominant synoptic scale weather patters and predict storm path and evolution using rainfall and radiosonde data far away from the forecast location. In this regard, the organizational skeleton of the inputs is built to mimic our understanding of physical processes associated with rainstorms. The approach was very successful with skill scores on the order of 80-90 per cent for 18-hour lead-time forecasts of winter and spring floods in response to heavy rainfall (i.e. not associated with snowmelt alone). One weakness of this work was however the lack of a measure of forecast uncertainty, or alternatively a measure of forecast reliability that could be used in hydrometeorological operations. To address this question, we have modified and adapted the existing neural network models according to the principles of Bayesian statistics. In this context, forecasts are issued along with an error bar and are associated with a known probability distribution. One additional advantage of this methodology is that it provides an objective basis for selecting the best model during learning based on the posterior distribution of the parameters. In this context, forecasts are issued along with an error bar and are associated with a known probability distribution. An intercomparison study against Kim and Barros (2001) shows that the 18- and 24-hour lead time BNN forecasts are statistically more robust than those generated by the standard backward-learning NNs. We submit that given the consistently
Sang, Dong; Lv, Bin; He, Huiguang; He, Jiping; Wang, Feiyue
2010-01-01
In this work, we took the analysis of neural interaction based on the data recorded from the motor cortex of a monkey, when it was trained to complete multi-targets reach-to-grasp tasks. As a recently proved effective tool, Dynamic Bayesian Network (DBN) was applied to model and infer interactions of dependence between neurons. In the results, the gained networks of neural interactions, which correspond to different tasks with different directions and orientations, indicated that the target information was not encoded in simple ways by neuronal networks. We also explored the difference of neural interactions between delayed period and peri-movement period during reach-to-grasp task. We found that the motor control process always led to relatively more complex neural interaction networks than the plan thinking process. PMID:21096882
Kim, Dong-Chul; Yang, Chin-Rang; Wang, Xiaoyu; Zhang, Baoju; Wu, Xiaorong; Gao, Jean
2011-01-01
The goal of this paper is to infer the signaling pathway related to lung cancer using Reverse Phase Protein Microarray (RPPM), which provides information on post-translational phosphorylation events. The computational inferring of pathways is obtained by performing Bayesian network in combination with prior knowledge from Protein-Protein Interaction (PPI). A clustering based Linear Programming Relaxation is developed for the searching of optimal networks. The PPI prior knowledge is incorporated into a new scoring function definition based on minimum description length (MDL). In the experiment, we first evaluate the algorithm performance with synthetic networks and associated data. Then we show our signaling network inference for lung cancer using RPPM data. Through the study, we expect to derive new signalling pathways and insight on protein regulatory relationships, which are yet to be known for lung cancer study.
NASA Astrophysics Data System (ADS)
Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad
2016-09-01
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.
NASA Astrophysics Data System (ADS)
Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad
2016-07-01
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.
NASA Astrophysics Data System (ADS)
Odbert, Henry; Aspinall, Willy
2013-04-01
When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard
Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
Using Bayesian networks to guide the assessment of new evidence in an appeal case
Smit, Nadine M.; Lagnado, David A.; Morgan, Ruth M.; Fenton, Norman E.
2016-01-01
When new forensic evidence becomes available after a conviction there is no systematic framework to help lawyers to determine whether it raises sufficient questions about the verdict in order to launch an appeal. This paper presents such a framework driven by a recent case, in which a defendant was convicted primarily on the basis of audio evidence, but where subsequent analysis of the evidence revealed additional sounds that were not considered during the trial. The framework is intended to overcome the gap between what is generally known from scientific analyses and what is hypothesized in a legal setting. It is based on Bayesian networks (BNs) which have the potential to be a structured and understandable way to evaluate the evidence in a specific case context. However, BN methods suffered a setback with regards to the use in court due to the confusing way they have been used in some legal cases in the past. To address this concern, we show the extent to which the reasoning and decisions within the particular case can be made explicit and transparent. The BN approach enables us to clearly define the relevant propositions and evidence, and uses sensitivity analysis to assess the impact of the evidence under different assumptions. The results show that such a framework is suitable to identify information that is currently missing, yet clearly crucial for a valid and complete reasoning process. Furthermore, a method is provided whereby BNs can serve as a guide to not only reason with incomplete evidence in forensic cases, but also identify very specific research questions that should be addressed to extend the evidence base and solve similar issues in the future. PMID:27376015
Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
Prediction of near-term breast cancer risk using a Bayesian belief network
NASA Astrophysics Data System (ADS)
Zheng, Bin; Ramalingam, Pandiyarajan; Hariharan, Harishwaran; Leader, Joseph K.; Gur, David
2013-03-01
Accurately predicting near-term breast cancer risk is an important prerequisite for establishing an optimal personalized breast cancer screening paradigm. In previous studies, we investigated and tested the feasibility of developing a unique near-term breast cancer risk prediction model based on a new risk factor associated with bilateral mammographic density asymmetry between the left and right breasts of a woman using a single feature. In this study we developed a multi-feature based Bayesian belief network (BBN) that combines bilateral mammographic density asymmetry with three other popular risk factors, namely (1) age, (2) family history, and (3) average breast density, to further increase the discriminatory power of our cancer risk model. A dataset involving "prior" negative mammography examinations of 348 women was used in the study. Among these women, 174 had breast cancer detected and verified in the next sequential screening examinations, and 174 remained negative (cancer-free). A BBN was applied to predict the risk of each woman having cancer detected six to 18 months later following the negative screening mammography. The prediction results were compared with those using single features. The prediction accuracy was significantly increased when using the BBN. The area under the ROC curve increased from an AUC=0.70 to 0.84 (p<0.01), while the positive predictive value (PPV) and negative predictive value (NPV) also increased from a PPV=0.61 to 0.78 and an NPV=0.65 to 0.75, respectively. This study demonstrates that a multi-feature based BBN can more accurately predict the near-term breast cancer risk than with a single feature.
NASA Astrophysics Data System (ADS)
Xue, Jie; Gui, Dongwei; Zhao, Ying; Lei, Jiaqiang; Zeng, Fanjiang; Feng, Xinlong; Mao, Donglei; Shareef, Muhammad
2016-09-01
The competition for water resources between agricultural and natural oasis ecosystems has become an increasingly serious problem in oasis areas worldwide. Recently, the intensive extension of oasis farmland has led to excessive exploitation of water discharge, and consequently has resulted in a lack of water supply in natural oasis. To coordinate the conflicts, this paper provides a decision-making framework for modeling environmental flows in oasis areas using Bayesian networks (BNs). Three components are included in the framework: (1) assessment of agricultural economic loss due to meeting environmental flow requirements; (2) decision-making analysis using BNs; and (3) environmental flow decision-making under different water management scenarios. The decision-making criterion is determined based on intersection point analysis between the probability of large-level total agro-economic loss and the ratio of total to maximum agro-economic output by satisfying environmental flows. An application in the Qira oasis area of the Tarim Basin, Northwest China indicates that BNs can model environmental flow decision-making associated with agricultural economic loss effectively, as a powerful tool to coordinate water-use conflicts. In the case study, the environmental flow requirement is determined as 50.24%, 49.71% and 48.73% of the natural river flow in wet, normal and dry years, respectively. Without further agricultural economic loss, 1.93%, 0.66% and 0.43% of more river discharge can be allocated to eco-environmental water demands under the combined strategy in wet, normal and dry years, respectively. This work provides a valuable reference for environmental flow decision-making in any oasis area worldwide.
Bayesian network modeling: A case study of an epidemiologic system analysis of cardiovascular risk.
Fuster-Parra, P; Tauler, P; Bennasar-Veny, M; Ligęza, A; López-González, A A; Aguiló, A
2016-04-01
An extensive, in-depth study of cardiovascular risk factors (CVRF) seems to be of crucial importance in the research of cardiovascular disease (CVD) in order to prevent (or reduce) the chance of developing or dying from CVD. The main focus of data analysis is on the use of models able to discover and understand the relationships between different CVRF. In this paper a report on applying Bayesian network (BN) modeling to discover the relationships among thirteen relevant epidemiological features of heart age domain in order to analyze cardiovascular lost years (CVLY), cardiovascular risk score (CVRS), and metabolic syndrome (MetS) is presented. Furthermore, the induced BN was used to make inference taking into account three reasoning patterns: causal reasoning, evidential reasoning, and intercausal reasoning. Application of BN tools has led to discovery of several direct and indirect relationships between different CVRF. The BN analysis showed several interesting results, among them: CVLY was highly influenced by smoking being the group of men the one with highest risk in CVLY; MetS was highly influence by physical activity (PA) being again the group of men the one with highest risk in MetS, and smoking did not show any influence. BNs produce an intuitive, transparent, graphical representation of the relationships between different CVRF. The ability of BNs to predict new scenarios when hypothetical information is introduced makes BN modeling an Artificial Intelligence (AI) tool of special interest in epidemiological studies. As CVD is multifactorial the use of BNs seems to be an adequate modeling tool. PMID:26777431
Using Bayesian networks to assess the vulnerability of Hawaiian terrestrial biota to climate change
NASA Astrophysics Data System (ADS)
Fortini, L.; Jacobi, J.; Price, J.; Vorsino, A.; Paxton, E.; Amidon, F.; 'Ohukani'ohi'a Gon, S., III; Koob, G.; Brink, K.; Burgett, J.; Miller, S.
2012-12-01
As the effects of climate change on individual species become increasingly apparent, there is a clear need for effective adaptation planning to prevent an increase in species extinctions worldwide. Given the limited understanding of species responses to climate change, vulnerability assessments and species distribution models (SDMs) have been two common tools used to jump-start climate change adaptation efforts. However, although these two approaches generally serve the same purpose of understanding species future responses to climate change, they have rarely mixed. In collaboration with research and management partners from federal, state and non-profit organizations, we are conducting a climate change vulnerability assessment for hundreds of plant and forest bird species of the Main Hawaiian Islands. This assessment is the first to comprehensively consider the potential threats of climate change to a significant portion of Hawaii's fauna and flora (over one thousand species considered) and thus fills a critical gap defined by natural resource scientists and managers in the region. We have devised a flexible approach that effectively integrates species distribution models into a vulnerability assessment framework that can be easily updated with improved models and data. This tailors our assessment approach to the Pacific Island reality of often limited and fragmented information on species and large future climate uncertainties, This vulnerability assessment is based on a Bayesian network-based approach that integrates multiple landscape (e.g., topographic diversity, dispersal barriers), species trait (e.g., generation length, fecundity) and expert-knowledge based information (e.g., capacity to colonize restored habitat) relevant to long-term persistence of species under climate change. Our presentation will highlight some of the results from our assessment but will mainly focus on the utility of the flexible approach we have developed and its potential
NASA Astrophysics Data System (ADS)
Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
NASA Astrophysics Data System (ADS)
Tsai, F. T.; Pham, H. V.
2013-12-01
Bayesian model averaging (BMA) is often adopted to quantify model prediction and uncertainty using multiple models generated from various sources of uncertainty. Due to the lack of data and knowledge, the number of models with non-dominant posterior model probabilities can be overwhelming. Conducting prediction and uncertainty analysis using a great deal of computationally intensive simulation models (e.g., groundwater models) can become intractable under the BMA framework. Moreover, prediction results using the BMA can be useless when prediction uncertainty is very high. This study implements a monitoring network design under the BMA framework to discriminate groundwater models and in turn reduce the number of models. The posterior model probabilities are re-evaluated by using BMA prediction as 'future observation data' and historical data. Given a design criterion of posterior model probability (e.g. 85%), the monitoring network design aims to find the optimal number and location of monitoring wells at existing wells for continuous observation. If using existing wells cannot achieve the design criterion, then exploration of new monitoring well location is necessary. Once the design criterion is met, other models will be discriminated from the best model. Between-model variance will be significantly reduced. We use the monitoring network design to discriminate 18 complex groundwater models that include the '1,200-foot', '1,500-foot', and '1,700-foot' sands in the Baton Rouge area, southeastern Louisiana. The sources of uncertainty that creates the groundwater models are from hydrostratigraphic architecture, fault permeability architecture, and boundary conditions. To speed up model calibration, we develop a parallel version of CMA-ES and implement it to SuperMike II cluster at Louisiana State University. Results show that in the model calibration period from 1975 to 2010, eleven models have posterior model probabilities ranging from 3.5% to 17.4%. The purpose of
NASA Astrophysics Data System (ADS)
de Wit, Ralph W. L.; Valentine, Andrew P.; Trampert, Jeannot
2013-10-01
How do body-wave traveltimes constrain the Earth's radial (1-D) seismic structure? Existing 1-D seismological models underpin 3-D seismic tomography and earthquake location algorithms. It is therefore crucial to assess the quality of such 1-D models, yet quantifying uncertainties in seismological models is challenging and thus often ignored. Ideally, quality assessment should be an integral part of the inverse method. Our aim in this study is twofold: (i) we show how to solve a general Bayesian non-linear inverse problem and quantify model uncertainties, and (ii) we investigate the constraint on spherically symmetric P-wave velocity (VP) structure provided by body-wave traveltimes from the EHB bulletin (phases Pn, P, PP and PKP). Our approach is based on artificial neural networks, which are very common in pattern recognition problems and can be used to approximate an arbitrary function. We use a Mixture Density Network to obtain 1-D marginal posterior probability density functions (pdfs), which provide a quantitative description of our knowledge on the individual Earth parameters. No linearization or model damping is required, which allows us to infer a model which is constrained purely by the data. We present 1-D marginal posterior pdfs for the 22 VP parameters and seven discontinuity depths in our model. P-wave velocities in the inner core, outer core and lower mantle are resolved well, with standard deviations of ˜0.2 to 1 per cent with respect to the mean of the posterior pdfs. The maximum likelihoods of VP are in general similar to the corresponding ak135 values, which lie within one or two standard deviations from the posterior means, thus providing an independent validation of ak135 in this part of the radial model. Conversely, the data contain little or no information on P-wave velocity in the D'' layer, the upper mantle and the homogeneous crustal layers. Further, the data do not constrain the depth of the discontinuities in our model. Using additional
NASA Astrophysics Data System (ADS)
Papakosta, Panagiota; Botzler, Sebastian; Krug, Kai; Straub, Daniel
2013-04-01
areas and rare species is also included. Presence of cultural heritage sites, power stations and power line network influence social exposure. The conceptual framework is demonstrated with a Bayesian Network (BN). The BN model incorporates empirical observation, physical models and expert knowledge; it can also explicitly account for uncertainty in the indicators. The proposed model is applied to the island of Cyprus. Maps support the demonstration of results. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA. [2] UN/ISDR (International Strategy for Disaster Reduction (2004): Living with Risk: A Global Review of Disaster Reduction Initiatives, Geneva, UN Publications. [3] Birkmann, J. (2006): Measuring vulnerability to natural hazards: towards disaster resilient societies. United Nations University Press, Tokyo, Japan.
Lindström, Tom; Grear, Daniel A; Buhnerkempe, Michael; Webb, Colleen T; Miller, Ryan S; Portacci, Katie; Wennergren, Uno
2013-01-01
Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full
The influence of interference networks in QoS parameters in a WLAN 802.11g: a Bayesian approach
NASA Astrophysics Data System (ADS)
Araújo, Jasmine P. L.; Rodrigues, Josiane C.; Fraiha, Simone G. C.; Gomes, Hermínio S.; Reis, Jacklyn; Vijaykumar, Nandamudi L.; Cavalcante, Gervásio P. S.; Francês, Carlos R. L.
2007-09-01
In spite of the significant increase of the use of Wireless Local Area Network (WLAN) experienced in the last years, design aspects and capacity planning of the network are still systematically neglected during the network implementation. For instance, to determine the location of the access point (AP), important factors of the environment are not considered in the project. These factors become more important when several APs are installed, sometimes without a frequency planning, to cover a unique building. Faults such as these can cause interference among the cells generated by each AP. Therefore, the network will not obtain the QoS patterns required for each service. This paper proposes a strategy to determine how much a given network can affect the QoS parameters of another network, by interference. In order to achieve this, a measurement campaign was carried out in two stages: firstly with a single AP and later with two APs using the same channel. A VoIP application was used in the experiment and a protocol analyzer collected the QoS metrics. In each stage 46 points were measured , that are insufficient for statistically characterize the environment. For expanding this data, an Artificial Neural Network (ANN) was used. After the measurement, an analysis of the results and a set of inferences were made by using Bayesian Networks, whose inputs were the experimental data, i.e., QoS metrics like throughput, delay, jitter, packet loss, PMOS and physical metrics like power and distance.
Murakami, Yohei; Takada, Shoji
2013-01-01
When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate Bayesian computation (ABC) MCMC evaluates posterior distribution with use of qualitative fitness measure. However, none of these algorithms can deal with mixture of quantitative, i.e., likelihood, and qualitative fitness measures simultaneously. Here, to deal with this mixture, we formulated Bayesian formula for hybrid fitness measures (HFM). Then we implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback. Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them using both qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters that have experimental estimates were inferred without using these data and the results were consistent with experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed down the acceptable range of parameters.
Belciug, Smaranda; Gorunescu, Florin
2014-12-01
Automated medical diagnosis models are now ubiquitous, and research for developing new ones is constantly growing. They play an important role in medical decision-making, helping physicians to provide a fast and accurate diagnosis. Due to their adaptive learning and nonlinear mapping properties, the artificial neural networks are widely used to support the human decision capabilities, avoiding variability in practice and errors based on lack of experience. Among the most common learning approaches, one can mention either the classical back-propagation algorithm based on the partial derivatives of the error function with respect to the weights, or the Bayesian learning method based on posterior probability distribution of weights, given training data. This paper proposes a novel training technique gathering together the error-correction learning, the posterior probability distribution of weights given the error function, and the Goodman-Kruskal Gamma rank correlation to assembly them in a Bayesian learning strategy. This study had two main purposes; firstly, to develop anovel learning technique based on both the Bayesian paradigm and the error back-propagation, and secondly,to assess its effectiveness. The proposed model performance is compared with those obtained by traditional machine learning algorithms using real-life breast and lung cancer, diabetes, and heart attack medical databases. Overall, the statistical comparison results indicate that thenovellearning approach outperforms the conventional techniques in almost all respects.
Morrissey, Edward R; Juárez, Miguel A; Denby, Katherine J; Burroughs, Nigel J
2011-10-01
We propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of gene regulatory networks from low-resolution microarray time series, where existence of nonlinear interactions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators and providing these with either an overall or gene-wise hierarchical structure. Appropriate specification of the prior is crucial to control the flexibility of the splines, especially under circumstances of scarce data; thus, we provide an informative, proper prior. Substantive improvement in network inference over a linear model is demonstrated using synthetic data drawn from ordinary differential equation models and gene expression from an experimental data set of the Arabidopsis thaliana circadian rhythm.
NASA Astrophysics Data System (ADS)
Bai, Y.; Xu, Y.; Pan, J.; Lan, J. Q.; Gao, W. W.
2016-07-01
A toy detector array is designed to detect a shower generated by the interaction between a TeV cosmic ray and the atmosphere. In the present paper, the primary energies of showers detected by the detector array are reconstructed with the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment [1], respectively. Compared to the standard method, the energy resolutions are significantly improved using the BNNs. And the improvement is more obvious for the high energy showers than the low energy ones.
Peña, J M; Lozano, J A; Larrañaga, P
2005-01-01
Many optimization problems are what can be called globally multimodal, i.e., they present several global optima. Unfortunately, this is a major source of difficulties for most estimation of distribution algorithms, making their effectiveness and efficiency degrade, due to genetic drift. With the aim of overcoming these drawbacks for discrete globally multimodal problem optimization, this paper introduces and evaluates a new estimation of distribution algorithm based on unsupervised learning of Bayesian networks. We report the satisfactory results of our experiments with symmetrical binary optimization problems.
Overextension in Verb Conjunctions
ERIC Educational Resources Information Center
Jönsson, Martin L.
2015-01-01
Hampton (1988) discovered that people are subject to "overextension"--they categorize some things as falling under a conjunction (e.g., they categorize chess as a "sport which is also a game") but not as falling under both of the corresponding conjuncts (e.g., they do not categorize chess as a "sport"). Although…
Rainfall-Runoff Forecast and Model Parameter Estimation: a Dynamic Bayesian Networks Approach
NASA Astrophysics Data System (ADS)
Canon Barriga, J. E.; Morillo Leon, F. C.
2013-12-01
The suggested climate-driven non-stationarities and intrinsic uncertainties of hydrological processes such as precipitation (P) and runoff (R), represent a fruitful context to develop new methods that may be able to detect parametric variations in time series and incorporate them into forecasts. In this research, we developed a method to forecast runoff from precipitation time series based on Dynamic Bayesian Networks (DBN). The purpose of the research was to determine an appropriate structure of the DBN and the optimal lengths of hydrological time series required to establish statistical parameters (i.e., first two moments) of P and optimal fits of forecasted R at daily and weekly intervals. A DBN can be briefly interpreted as a set of nodes (representing conditional probabilistic variables) connected by arrows that establish a causal, time-oriented, relationship among them. A DBN is defined by two components: a static network (structure) and a transition probability matrix between consecutive stages. Similarly to neural networks, DBN must be trained in order to learn about the subjacent process and make useful predictions. To determine the ability of the DBN to forecast R from P we initially generated long synthetic P series and run a deterministic model (HEC-HMS) to generate R. The DBN were then trained with different lengths of these synthetic series to forecast R (using smoothing and filtering methods). Two structures were considered: 1) DBN with P(t), P(t-1) and R(t-1) and 2) DBN with P(t), P(t-1), R(t-1) and ΔR=[R(t-1)-R(t-2)]. Both smoothing and filtering methods were appropriate to make predictions on a daily and weekly basis (filtration performing better). Setting the complexity (number of states of the random variables) in a DBN proves to be a critical issue, since an increase in the number of states, which implies larger training sets, does not always mean an improvement in the prediction. We found that acceptable results could be obtained from DBN
Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks
NASA Astrophysics Data System (ADS)
de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth
2016-04-01
Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M
NASA Astrophysics Data System (ADS)
Oughton, R. H.; Wooff, D. A.; Hobbs, R. W.; Swarbrick, R. E.
2014-12-01
Pore pressure prediction is vital when drilling a well, as unexpected overpressure can cause drilling challenges and uncontrolled hydrocarbon leakage. One cause of overpressure is when pore fluid is trapped during burial and takes on part of the lithostatic load. Predictions often use porosity-based techniques, such as the Eaton Ratio method and equivalent depth method. These rely on an idealised compaction trend and use a single wireline log as a proxy for porosity. Such methods do not account for the many sources of uncertainty, or for the multivariate nature of the system. We propose a sequential dynamic Bayesian network (SDBN) as a solution to these issues. The SDBN models the quantities in the system (such as pressures, porosity, lithology, wireline logs, fluid properties and so on) using conditional probability distributions to capture their joint behaviour. A compaction model is central to the SDBN, relating porosity to vertical effective stress, with uncertainty in the relationship, so that the logic is similar to that of the equivalent depth method. The probability distribution for porosity depends on VES and lithology, with much more uncertainty in sandstone-like rocks than in shales to reflect a general lack of understanding of sandstone compaction. The distributions of the wireline logs depend on porosity and lithology, along with other quantities, and so when they are observed the SDBN learns about porosity and lithology and in turn VES and pore pressure, using Bayes theorem. The probability distribution for each quantity in the SDBN is updated in light of any data, so that rather than giving a single-valued prediction for pore pressure, the SDBN gives a prediction with uncertainty that takes into account the whole system, knowledge and data. The dynamic nature of the SDBN enables it to use the bulk density to calculate total vertical stress, and to account for the dissipation of pore pressure. The vertical correlation in the SDBN means it is suited to
NASA Astrophysics Data System (ADS)
van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.
2011-12-01
Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was
Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk
Lee, Sangkyu Ybarra, Norma; Jeyaseelan, Krishinima; Seuntjens, Jan; El Naqa, Issam; Faria, Sergio; Kopek, Neil; Brisebois, Pascale; Bradley, Jeffrey D.; Robinson, Clifford
2015-05-15
Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0
Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2015-01-01
One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly
NASA Astrophysics Data System (ADS)
Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard
2015-04-01
It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation.
Conjunctivitis outbreak among divers.
Olsson, D J; Grant, W D; Glick, J M
2008-01-01
In March 2006, an outbreak of conjunctivitis that occurred over a six day period among twenty-nine individuals who partook in recreational scuba diving trips on two boats off Vitu Levu Island, Fiji. We investigated the likelihood that a communal container used to store diving masks facilitated the spread of conjunctivitis among individuals. The diagnosis of conjunctivitis was based on clinical assessment by a physician. Transmission of conjunctivitis from person to person was documented with eventual identification of the index case, the dive master, a Fijian resident. Topical antibiotics were dispensed accordingly and detergent and bleach were used as mask cleaning agents in an effort to control the outbreak. Follow up surveys were mailed to all twenty-nine participants. Ultimately, fourteen cases of conjunctivitis were documented (46.7%). Eleven cases were verified during the six days in Fiji, two upon arrival back in the U.S., and one case of familial transmission in the U.S. All but two cases resolved within one week. Unknown to these divers was a coincidental, generalized outbreak of acute haemorrhagic conjunctivitis among the Fijian Residents. The communal container used to store diving masks was the likely vector for the spread of infectious conjunctivitis, the first such documented outbreak involving communal diving equipment.
Using of bayesian networks to estimate the probability of "NATECH" scenario occurrence
NASA Astrophysics Data System (ADS)
Dobes, Pavel; Dlabka, Jakub; Jelšovská, Katarína; Polorecká, Mária; Baudišová, Barbora; Danihelka, Pavel
2015-04-01
In the twentieth century, implementation of Bayesian statistics and probability was not much used (may be it wasn't a preferred approach) in the area of natural and industrial risk analysis and management. Neither it was used within analysis of so called NATECH accidents (chemical accidents triggered by natural events, such as e.g. earthquakes, floods, lightning etc.; ref. E. Krausmann, 2011, doi:10.5194/nhess-11-921-2011). Main role, from the beginning, played here so called "classical" frequentist probability (ref. Neyman, 1937), which rely up to now especially on the right/false results of experiments and monitoring and didn't enable to count on expert's beliefs, expectations and judgements (which is, on the other hand, one of the once again well known pillars of Bayessian approach to probability). In the last 20 or 30 years, there is possible to observe, through publications and conferences, the Renaissance of Baysssian statistics into many scientific disciplines (also into various branches of geosciences). The necessity of a certain level of trust in expert judgment within risk analysis is back? After several decades of development on this field, it could be proposed following hypothesis (to be checked): "We couldn't estimate probabilities of complex crisis situations and their TOP events (many NATECH events could be classified as crisis situations or emergencies), only by classical frequentist approach, but also by using of Bayessian approach (i.e. with help of prestaged Bayessian Network including expert belief and expectation as well as classical frequentist inputs). Because - there is not always enough quantitative information from monitoring of historical emergencies, there could be several dependant or independant variables necessary to consider and in generally - every emergency situation always have a little different run." In this topic, team of authors presents its proposal of prestaged typized Bayessian network model for specified NATECH scenario
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. PMID:26597639
Schmitt, Laetitia Helene Marie; Brugere, Cecile
2013-01-01
Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876
NASA Astrophysics Data System (ADS)
Kocabas, Verda; Dragicevic, Suzana
2013-10-01
Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.
Schmitt, Laetitia Helene Marie; Brugere, Cecile
2013-01-01
Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development.
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas.
NASA Technical Reports Server (NTRS)
Solakiewiz, Richard; Koshak, William
2008-01-01
Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian
Nojavan A, Farnaz; Qian, Song S; Paerl, Hans W; Reckhow, Kenneth H; Albright, Elizabeth A
2014-06-15
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions. PMID:24814252
Albrecht, S; Busch, J; Kloppenburg, M; Metze, F; Tavan, P
2000-12-01
By adding reverse connections from the output layer to the central layer it is shown how a generalized radial basis functions (GRBF) network can self-organize to form a Bayesian classifier, which is also capable of novelty detection. For this purpose, three stochastic sequential learning rules are introduced from biological considerations which pertain to the centers, the shapes, and the widths of the receptive fields of the neurons and allow ajoint optimization of all network parameters. The rules are shown to generate maximum-likelihood estimates of the class-conditional probability density functions of labeled data in terms of multivariate normal mixtures. Upon combination with a hierarchy of deterministic annealing procedures, which implement a multiple-scale approach, the learning process can avoid the convergence problems hampering conventional expectation-maximization algorithms. Using an example from the field of speech recognition, the stages of the learning process and the capabilities of the self-organizing GRBF classifier are illustrated.
Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.
Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis
2016-08-01
Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system. PMID:27076477
Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D
2015-08-01
Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted.
NASA Astrophysics Data System (ADS)
Palmsten, Margaret L.; Todd Holland, K.; Plant, Nathaniel G.
2013-09-01
Numerous numerical modeling studies have been completed in support of an extensive recovery program for the endangered white sturgeon (Acipenser transmontanus) on the Kootenai River near Bonner's Ferry, ID. A technical hurdle in the interpretation of these model results is the transfer of information from the specialist to nonspecialist such that practical decisions utilizing the numerical simulations can be made. To address this, we designed and trained a Bayesian network to provide probabilistic prediction of depth-averaged velocity. Prediction of this critical parameter governing suitable spawning habitat was obtained by exploiting the dynamic relationships between variables derived from model simulations with associated parameter uncertainties. Postdesign assessment indicates that the most influential environmental variables in order of importance are river discharge, depth, and width, and water surface slope. We demonstrate that the probabilistic network not only reproduces the training data with accuracy similar to the accuracy of a numerical model (root-mean-squared error of 0.10 m/s), but that it makes reliable predictions on the same river at times and locations other than where the network was trained (root mean squared error of 0.09 m/s). Additionally, the network showed similar skill (root mean square error of 0.04 m/s) when predicting velocity on the Apalachicola River, FL, a river of similar shape and size to the Kootenai River where a related sturgeon population is also threatened.
Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A; Phung, Hai N; Barnett, Bryanne E W
2013-09-01
The purpose is to explore the multilevel spatial distribution of depressive symptoms among migrant mothers in South Western Sydney and to identify any group level associations that could inform subsequent theory building and local public health interventions. Migrant mothers (n=7256) delivering in 2002 and 2003 were assessed at 2-3 weeks after delivery for risk factors for depressive symptoms. The binary outcome variables were Edinburgh Postnatal Depression Scale scores (EPDS) of >9 and >12. Individual level variables included were: financial income, self-reported maternal health, social support network, emotional support, practical support, baby trouble sleeping, baby demanding and baby not content. The group level variable reported here is aggregated social support networks. We used Bayesian hierarchical multilevel spatial modelling with conditional autoregression. Migrant mothers were at higher risk of having depressive symptoms if they lived in a community with predominantly Australian-born mothers and strong social capital as measured by aggregated social networks. These findings suggest that migrant mothers are socially isolated and current home visiting services should be strengthened for migrant mothers living in communities where they may have poor social networks.
2013-01-01
Background Artificial neural networks (ANN) mimic the function of the human brain and are capable of performing massively parallel computations for data processing and knowledge representation. ANN can capture nonlinear relationships between predictors and responses and can adaptively learn complex functional forms, in particular, for situations where conventional regression models are ineffective. In a previous study, ANN with Bayesian regularization outperformed a benchmark linear model when predicting milk yield in dairy cattle or grain yield of wheat. Although breeding values rely on the assumption of additive inheritance, the predictive capabilities of ANN are of interest from the perspective of their potential to increase the accuracy of prediction of molecular breeding values used for genomic selection. This motivated the present study, in which the aim was to investigate the accuracy of ANN when predicting the expected progeny difference (EPD) of marbling score in Angus cattle. Various ANN architectures were explored, which involved two training algorithms, two types of activation functions, and from 1 to 4 neurons in hidden layers. For comparison, BayesCπ models were used to select a subset of optimal markers (referred to as feature selection), under the assumption of additive inheritance, and then the marker effects were estimated using BayesCπ with π set equal to zero. This procedure is referred to as BayesCpC and was implemented on a high-throughput computing cluster. Results The ANN with Bayesian regularization method performed equally well for prediction of EPD as BayesCpC, based on prediction accuracy and sum of squared errors. With the 3K-SNP panel, for example, prediction accuracy was 0.776 using BayesCpC, and ranged from 0.776 to 0.807 using BRANN. With the selected 700-SNP panel, prediction accuracy was 0.863 for BayesCpC and ranged from 0.842 to 0.858 for BRANN. However, prediction accuracy for the ANN with scaled conjugate gradient back
ERIC Educational Resources Information Center
Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.
2012-01-01
In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…
A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...
Zador, Zsolt; Sperrin, Matthew; King, Andrew T.
2016-01-01
Background Traumatic brain injury remains a global health problem. Understanding the relative importance of outcome predictors helps optimize our treatment strategies by informing assessment protocols, clinical decisions and trial designs. In this study we establish importance ranking for outcome predictors based on receiver operating indices to identify key predictors of outcome and create simple predictive models. We then explore the associations between key outcome predictors using Bayesian networks to gain further insight into predictor importance. Methods We analyzed the corticosteroid randomization after significant head injury (CRASH) trial database of 10008 patients and included patients for whom demographics, injury characteristics, computer tomography (CT) findings and Glasgow Outcome Scale (GCS) were recorded (total of 13 predictors, which would be available to clinicians within a few hours following the injury in 6945 patients). Predictions of clinical outcome (death or severe disability at 6 months) were performed using logistic regression models with 5-fold cross validation. Predictive performance was measured using standardized partial area (pAUC) under the receiver operating curve (ROC) and we used Delong test for comparisons. Variable importance ranking was based on pAUC targeted at specificity (pAUCSP) and sensitivity (pAUCSE) intervals of 90–100%. Probabilistic associations were depicted using Bayesian networks. Results Complete AUC analysis showed very good predictive power (AUC = 0.8237, 95% CI: 0.8138–0.8336) for the complete model. Specificity focused importance ranking highlighted age, pupillary, motor responses, obliteration of basal cisterns/3rd ventricle and midline shift. Interestingly when targeting model sensitivity, the highest-ranking variables were age, severe extracranial injury, verbal response, hematoma on CT and motor response. Simplified models, which included only these key predictors, had similar performance (pAUCSP = 0
Douali, Nassim; Csaba, Huszka; De Roo, Jos; Papageorgiou, Elpiniki I; Jaulent, Marie-Christine
2014-01-01
Several studies have described the prevalence and severity of diagnostic errors. Diagnostic errors can arise from cognitive, training, educational and other issues. Examples of cognitive issues include flawed reasoning, incomplete knowledge, faulty information gathering or interpretation, and inappropriate use of decision-making heuristics. We describe a new approach, case-based fuzzy cognitive maps, for medical diagnosis and evaluate it by comparison with Bayesian belief networks. We created a semantic web framework that supports the two reasoning methods. We used database of 174 anonymous patients from several European hospitals: 80 of the patients were female and 94 male with an average age 45±16 (average±stdev). Thirty of the 80 female patients were pregnant. For each patient, signs/symptoms/observables/age/sex were taken into account by the system. We used a statistical approach to compare the two methods.
Exarchos, Themis P; Rigas, George; Goletsis, Yorgos; Stefanou, Kostas; Jacobs, Steven; Trivella, Maria-Giovanna; Fotiadis, Dimitrios I
2014-01-01
In this work we present a decision support tool for the calculation of time-dependent survival probability for patients after ventricular assist device implantation. Two different models have been developed, a short term one which predicts survival for the first three months and a long term one that predicts survival for one year after implantation. In order to model the time dependencies between the different time slices of the problem, a dynamic Bayesian network (DBN) approach has been employed. DBNs order to capture the temporal events of the patient disease and the temporal data availability. High accuracy results have been reported for both models. The short and long term DBNs reached an accuracy of 96.97% and 93.55% respectively. PMID:25570664
... message, please visit this page: About CDC.gov . Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... Treatment For Clinicians Conjunctivitis in Newborns Multimedia References Language: English Español (Spanish) File Formats Help: How do I ...
NASA Astrophysics Data System (ADS)
Iwasaki, Hirotoshi; Sega, Shinichiro; Hiraishi, Hironori; Mizoguchi, Fumio
In recent years, lots of music content can be stored in mobile computing devices, such as a portable digital music player and a car navigation system. Moreover, various information content like news or traffic information can be acquired always anywhere by a cellular communication and a wireless LAN. However, usability issues arise from the simple interfaces of mobile computing devices. Moreover, retrieving and selecting such content poses safety issues, especially while driving. Thus, it is important for the mobile system to recommend content automatically adapted to user's preference and situation. In this paper, we present the user-adapted program scheduling that generates sequences of content (Program) suiting user's preference and situation based on the Bayesian network and the Constraint Satisfaction Problem (CSP) technique. We also describe the design and evaluation of its realization system, the Personal Program Producer (P3). First, preference such as a genre ratio of content in a program is learned as a Bayesian network model using simple operations such as a skip behavior. A model including each content tends to become large-scale. In order to make it small, we present the model separation method that carries out losslessly compression of the model. Using the model, probabilistic distributions of preference to generate constraints are inferred. Finally satisfying the constraints, a program is produced. This kind of CSP has an issue of which the number of variables is not fixedness. In order to make it variable, we propose a method using metavariables. To evaluate the above methods, we applied them to P3 on a car navigation system. User evaluations helped us clarify that the P3 can produce the program that a user prefers and adapt it to the user.
Gudimov, Alexey; O'Connor, Eavan; Dittrich, Maria; Jarjanazi, Hamdi; Palmer, Michelle E; Stainsby, Eleanor; Winter, Jennifer G; Young, Joelle D; Arhonditsis, George B
2012-07-01
An ecosystem perspective to restoring beneficial uses in Areas of Concern can be interpreted as a shift from the traditional elucidation of simple cause-effect relationships to a multicausal way of thinking that more effectively accommodates ecosystem complexity. This holistic management paradigm has also pervaded the contemporary ecological modeling practice, making compelling the adoption of more sophisticated ecosystem modeling tools. In this study, our primary objective is to develop a Bayesian hierarchical network of simple ecological models for Lake Simcoe, Ontario, Canada, aiming to establish a realistic representation of the causal connections among exogenous nutrient loading, ambient nutrient conditions, and epilimnetic plankton dynamics. In particular, we used a spatially explicit simple mass-balance model forced with idealized sinusoidal loading to predict total phosphorus concentrations. A structural equation model was then used to delineate the interplay among nutrients, ambient light conditions, phytoplankton, and herbivorous biomass. Our analysis highlights the strength of the causal linkages between total phosphorus and water clarity with phytoplankton as well as the capacity of zooplankton grazing to modulate the algal standing crop. Our Bayesian network is also used to examine the exceedance frequency of threshold values for total phosphorus (15 μg/L) and chlorophyll a (4 μg/L) concentrations under scenarios of phosphorus loading reduction. Our study suggests that a 15% phosphorus loading decrease will still result in >25% violations of the 4 μg chla/L value in the two embayments of Lake Simcoe (Cook's Bay and Kempenfelt Bay). The TP levels will decrease in response to the exogenous loading reductions and this improvement will be primarily manifested in the northcentral segments of the system.
Conjunctivitis (Pink Eye) in Newborns
... Antibiotics Work Adenovirus Non-Polio Enterovirus Parent Portal Conjunctivitis (Pink Eye) in Newborns Language: English Español (Spanish) ... can be very serious. Symptoms and Causes of Conjunctivitis in Newborns Newborns with conjunctivitis develop drainage from ...
Weaver, Chris
2009-01-01
Visual exploration of multidimensional data is a process of isolating and extracting relationships within and between dimensions. Coordinated multiple view approaches are particularly effective for visual exploration because they support precise expression of heterogeneous multidimensional queries using simple interactions. Recent visual analytics research has made significant progress in identifying and understanding patterns of composed views and coordinations that support fast, flexible, and open-ended data exploration. What is missing is formalization of the space of expressible queries in terms of visual representation and interaction. This paper introduces the Conjunctive Visual Form model in which visual exploration consists of interactively-driven sequences of transitions between visual states that correspond to conjunctive normal forms in boolean logic. The model predicts several new and useful ways to extend the space of rapidly expressible queries through addition of simple interactive capabilities to existing compositional patterns. Two recent related visual tools offer a subset of these capabilities, providing a basis for conjecturing about such extensions.
Development of a Bayesian Network to Evaluate Sea-Level Rise Impacts for Decision Making
NASA Astrophysics Data System (ADS)
Gutierrez, B. T.; Plant, N.; Thieler, E. R.; Williams, S. J.; Cahoon, D. R.; Gesch, D.; Guntenspergen, G.; Masterson, J.
2008-12-01
Improving the ability to predict future sea-level rise effects on coasts is a major challenge. For example, predicting changes in shoreline position and land loss resulting from erosion and wetland losses, or the effects of seawater intrusion into coastal groundwater systems is difficult due to the complexity of coastal systems. This complexity arises from the wide range of variables and related feedbacks that influence responses to rising sea level. In addition to sea-level rise, there are large uncertainties in predictions of future climate conditions (e.g., storms, temperature, rainfall) that drive the relevant physical and biological processes. Applying a probabilistic approach to evaluate coastal environments seems promising. Here a Bayesian statistical framework that incorporates a wide range of geologic, biologic and hydrologic information about coastal systems, and related uncertainties in physical and process characterizations is developed and used to make probabilistic predictions of the future state of coastal environments. Inputs to the prediction include datasets that provide information regarding the initial states of coastal systems, relevant forcing factors, historical observations, and idealized model simulations. Competing hypotheses for the forcing are used to drive the model and resulting response scenarios and their uncertainties are compared. Initial results from the U.S. mid-Atlantic coastal region are presented and can be used to highlight relationships between forcing factors and response scenarios. The results from this analysis can also be used to prioritize the research needed to reduce uncertainty. In addition, the Bayesian approach also provides a framework to engage decision makers and helps users define and address specific management questions about alternatives for adapting to sea-level rise.
NASA Astrophysics Data System (ADS)
Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.
2016-09-01
Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.
Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli
2014-01-01
The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.
Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli
2014-01-01
The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204
Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli
2014-01-01
The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204
Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli
2016-02-01
Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. PMID:26224125
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha
2016-06-16
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
NASA Astrophysics Data System (ADS)
Mani, Amir; Tsai, Frank T.-C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha
2016-09-01
This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints.
A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny
Mithani, Aziz; Preston, Gail M.; Hein, Jotun
2010-01-01
The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions) or complex (incorporating dependencies among reactions) stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks. PMID:20700467
Zaknich, A
1997-01-01
An automatic process of isolating and characterizing individual aluminum hydroxide particles from the Bayer process in scanning electron microscope gray-scale images of samples is described. It uses image processing algorithms, neural nets and Bayesian classifiers. As the particles are amorphous and different greatly, there were complex nonlinear decisions and anomalies. The process is in two stages; isolation of particles, and classification of each particle. The isolation process correctly identifies 96.9% of the objects as complete and single particles after a 15.5% rejection of questionable objects. The sample set had a possible 2455 particles taken from 384 256x256-pixel images. Of the 15.5%, 14.2% were correctly rejected. With no rejection the accuracy drops to 91.8% which represents the accuracy of the isolation process alone. The isolated particles are classified by shape, single crystal protrusions, texture, crystal size, and agglomeration. The particle samples were preclassified by a human expert and the data were used to train the five classifiers to embody the expert knowledge. The system was designed to be used as a research tool to determine and study relationships between particle properties and plant parameters in the production of smelting grade alumina by the Bayer process.
Giant papillary conjunctivitis.
Donshik, P C
1994-01-01
Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881
NASA Human Spaceflight Conjunction Assessment: Recent Conjunctions of Interest
NASA Technical Reports Server (NTRS)
Browns, Ansley C.
2010-01-01
This viewgraph presentation discusses a brief history of NASA Human Spaceflight Conjunction Assessment (CA) activities, an overview of NASA CA process for ISS and Shuttle, and recent examples from Human Spaceflight conjunctions.
Lalande, Laure; Bourguignon, Laurent; Carlier, Chloé; Ducher, Michel
2013-06-01
Falls in geriatry are associated with important morbidity, mortality and high healthcare costs. Because of the large number of variables related to the risk of falling, determining patients at risk is a difficult challenge. The aim of this work was to validate a tool to detect patients with high risk of fall using only bibliographic knowledge. Thirty articles corresponding to 160 studies were used to modelize fall risk. A retrospective case-control cohort including 288 patients (88 ± 7 years) and a prospective cohort including 106 patients (89 ± 6 years) from two geriatric hospitals were used to validate the performances of our model. We identified 26 variables associated with an increased risk of fall. These variables were split into illnesses, medications, and environment. The combination of the three associated scores gives a global fall score. The sensitivity and the specificity were 31.4, 81.6, 38.5, and 90 %, respectively, for the retrospective and the prospective cohort. The performances of the model are similar to results observed with already existing prediction tools using model adjustment to data from numerous cohort studies. This work demonstrates that knowledge from the literature can be synthesized with Bayesian networks.
Waterhouse, M; Morton, A; Mengersen, K; Cook, D; Playford, G
2011-06-01
The transmission of multiple antibiotic-resistant organisms (MROs) in hospitals is affected by many inter-related factors. These include the background prevalence of the organism (burden), hand hygiene, the efficiency of patient screening, the isolation or cohorting of carriers, the quality of hospital cleaning, and bed occupancy. In addition, the prevalence of one MRO may influence the transmission of another by occupying isolation beds, and thus reducing isolation resources for the latter. For example, the overuse of third generation cephalosporin antibiotics can increase extended-spectrum β-lactamase-producing Klebsiella pneumoniae, thus indirectly influencing the transmission of meticillin-resistant Staphylococcus aureus (MRSA). In order to study this complex system of interrelationships, we have employed a Bayesian network. We report results of the first two years of analysis for a single public hospital. We conclude that, within this institution, the association between high bed occupancy and increased transmission of MRSA may be subject to a dynamic multidimensional threshold and tipping point. This may be influenced by other factors such as MRSA burden and whether the high bed occupancy interferes with preparation and cleaning of beds for new patients and with hand hygiene and efforts to isolate or cohort carriers.
Bashari, Hossein; Naghipour, Ali Asghar; Khajeddin, Seyed Jamaleddin; Sangoony, Hamed; Tahmasebi, Pejman
2016-09-01
Identifying areas that have a high risk of burning is a main component of fire management planning. Although the available tools can predict the fire risks, these are poor in accommodating uncertainties in their predictions. In this study, we accommodated uncertainty in wildfire prediction using Bayesian belief networks (BBNs). An influence diagram was developed to identify the factors influencing wildfire in arid and semi-arid areas of Iran, and it was populated with probabilities to produce a BBNs model. The behavior of the model was tested using scenario and sensitivity analysis. Land cover/use, mean annual rainfall, mean annual temperature, elevation, and livestock density were recognized as the main variables determining wildfire occurrence. The produced model had good accuracy as its ROC area under the curve was 0.986. The model could be applied in both predictive and diagnostic analysis for answering "what if" and "how" questions. The probabilistic relationships within the model can be updated over time using observation and monitoring data. The wildfire BBN model may be updated as new knowledge emerges; hence, it can be used to support the process of adaptive management. PMID:27553945
Shibanoki, Taro; Nakamura, Go; Shima, Keisuke; Chin, Takaaki; Tsuji, Toshio
2015-08-01
This paper proposes a Bayesian Network (BN) based prediction model for a layer-based selection and its application to an operation assistance for the environmental control system Bio-Remote (BR). In the proposed method, each node of the BN model is involved in the layer-based selection function, which corresponds to an individual operation command, appliance, etc., and previous logs of operation commands and time division are used as input factors to predict the user's intended operation. The prediction results are displayed on the layer-based selection for the BR, and the number of times of operations and time taken for the operations can be reduced with the proposed prediction model. In the experiments, life-logs were collected from a cervical spinal injury patient who used the BR in daily life, and the proposed model was trained based on these recorded life-logs. The prediction accuracy for control devices of the BR system using the proposed model was 84.3 ± 6.5 %. The results indicated that the proposed prediction model could be useful for the operation assistance of the BR system. PMID:26736472
NASA Astrophysics Data System (ADS)
Xu, Xiao-fu; Sun, Jian; Nie, Hong-tao; Yuan, De-kui; Tao, Jian-hua
2016-10-01
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.
Zabinski, Joseph W.; Garcia-Vargas, Gonzalo; Rubio-Andrade, Marisela; Fry, Rebecca C.; Gibson, Jacqueline MacDonald
2016-01-01
Dose-response functions used in regulatory risk assessment are based on studies of whole organisms and fail to incorporate genetic and metabolomic data. Bayesian belief networks (BBNs) could provide a powerful framework for incorporating such data, but no prior research has examined this possibility. To address this gap, we develop a BBN-based model predicting birthweight at gestational age from arsenic exposure via drinking water and maternal metabolic indicators using a cohort of 200 pregnant women from an arsenic-endemic region of Mexico. We compare BBN predictions to those of prevailing slope-factor and reference-dose approaches. The BBN outperforms prevailing approaches in balancing false-positive and false-negative rates. Whereas the slope-factor approach had 2% sensitivity and 99% specificity and the reference-dose approach had 100% sensitivity and 0% specificity, the BBN's sensitivity and specificity were 71% and 30%, respectively. BBNs offer a promising opportunity to advance health risk assessment by incorporating modern genetic and metabolomic data.
Lehikoinen, Annukka; Hänninen, Maria; Storgård, Jenni; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari
2015-05-01
The growth of maritime oil transportation in the Gulf of Finland (GoF), North-Eastern Baltic Sea, increases environmental risks by increasing the probability of oil accidents. By integrating the work of a multidisciplinary research team and information from several sources, we have developed a probabilistic risk assessment application that considers the likely future development of maritime traffic and oil transportation in the area and the resulting risk of environmental pollution. This metamodel is used to compare the effects of two preventative management actions on the tanker collision probabilities and the consequent risk. The resulting risk is evaluated from four different perspectives. Bayesian networks enable large amounts of information about causalities to be integrated and utilized in probabilistic inference. Compared with the baseline period of 2007-2008, the worst-case scenario is that the risk level increases 4-fold by the year 2015. The management measures are evaluated and found to decrease the risk by 4-13%, but the utility gained by their joint implementation would be less than the sum of their independent effects. In addition to the results concerning the varying risk levels, the application provides interesting information about the relationships between the different elements of the system. PMID:25780862
Uusitalo, Laura; Kuikka, Sakari; Kauppila, Pirkko; Söderkultalahti, Pirkko; Bäck, Saara
2012-07-01
Environmental conditions play a crucial role in the distribution and abundance of fish species in any area. Much research has been attributed to the requirements and tolerance limits of commercially exploited fish species. It is rare, however, that studies have been able to address the relative importance of potentially restrictive environmental factors; extensive enough to allow for estimation of the effect of several environmental factors through the fishes' life span. The coastline of Finland in the northern Baltic Sea offers a unique natural experimental setting that can be used to assess the relative importance of various environmental factors for the species occupying it. The area includes major variations in several crucial environmental factors: salinity, temperature regime, represented by winter ice duration, coastline characteristics, and eutrophic status. Furthermore, Finland has collected extensive and spatially representative data of water quality and environmental factors, as well as a long and extraordinarily spatially detailed data set of commercial catches of several fish species. In this article, we make an attempt to correlate the environmental data to the commercial catches of fish species, assuming that the commercial catches reflect, to some reasonable degree, the productivity of that species in that area (compared to other areas and combinations of environmental factors, not to other species). We use a Bayesian network approach to examine the sensitivity of the species to the environmental factors. PMID:21309077
Abdat, F; Leclercq, S; Cuny, X; Tissot, C
2014-09-01
A probabilistic approach has been developed to extract recurrent serious Occupational Accident with Movement Disturbance (OAMD) scenarios from narrative texts within a prevention framework. Relevant data extracted from 143 accounts was initially coded as logical combinations of generic accident factors. A Bayesian Network (BN)-based model was then built for OAMDs using these data and expert knowledge. A data clustering process was subsequently performed to group the OAMDs into similar classes from generic factor occurrence and pattern standpoints. Finally, the Most Probable Explanation (MPE) was evaluated and identified as the associated recurrent scenario for each class. Using this approach, 8 scenarios were extracted to describe 143 OAMDs in the construction and metallurgy sectors. Their recurrent nature is discussed. Probable generic factor combinations provide a fair representation of particularly serious OAMDs, as described in narrative texts. This work represents a real contribution to raising company awareness of the variety of circumstances, in which these accidents occur, to progressing in the prevention of such accidents and to developing an analysis framework dedicated to this kind of accident.
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.a
2005-01-01
The NASA Aviation Safety Program (AvSP) has defined several products that will potentially modify airline and/or ATC operations, enhance aircraft systems, and improve the identification of potential hazardous situations within the National Airspace System (NAS). Consequently, there is a need to develop methods for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the judgments to develop Bayesian Belief Networks (BBN's) that model the potential impact that specific interventions may have. Specifically, the present report summarizes methodologies for improving the elicitation of probability estimates during expert evaluations of AvSP products for use in BBN's. The work involved joint efforts between Professor James Luxhoj from Rutgers University and researchers at the University of Illinois. The Rutgers' project to develop BBN's received funding by NASA entitled "Probabilistic Decision Support for Evaluating Technology Insertion and Assessing Aviation Safety System Risk." The proposed project was funded separately but supported the existing Rutgers' program.
Brandmayr, Caterina; Kerber, Heide; Winker, Martina; Schramm, Engelbert
2015-11-01
The issue of pharmaceuticals in the environment has caused increasing concern in the recent years and various strategies have been proposed to tackle this problem. This work describes a Bayesian network (BN)-based socio-ecological impact assessment of a set of measures aimed at reducing the entry of pharmaceuticals in the aquatic environment. The measures investigated were selected across three sectors: public health market, environmental politics and drug design innovation. The BN model was developed for two drugs, Metformin and Metoprolol, and it models the distribution of the Predicted Environmental Concentration (PEC) values as a function of different measures. Results show that the sensitivity of the PEC for the two drugs to the measures investigated reflects the distinct drug characteristics, suggesting that in order to ensure the successful reduction of a broad range of substances, a spectrum of measures targeting the entire lifecycle of a pharmaceutical should be implemented. Furthermore, evaluation of two scenarios reflecting different emission management strategies highlights that the integrated implementation of a comprehensive set of measures across the three sectors results in a more extensive reduction of the contamination. Finally, the BN provides an initial forecasting tool to model the PEC of a drug as a function of a combination of measures in a context-specific manner and possible adaptations of the model are proposed.
NASA Astrophysics Data System (ADS)
Liedloff, A. C.; Woodward, E. L.; Harrington, G. A.; Jackson, S.
2013-08-01
The contributions indigenous ecological knowledge can make to better inform water management decisions are currently undervalued leading to an underrepresentation of indigenous values in water planning and policy. This paper outlines a novel approach in which indigenous ecological knowledge informs cause and effect relationships between species and aquatic habitats to promote broader ecosystem understanding. A Bayesian Network was developed to synthesise the seasonal aquatic knowledge of a group of Gooniyandi Aboriginal language speakers, including fish species’ availability, condition and required habitat, and integrate it with hydrogeological understanding obtained from research undertaken in a stretch of the Fitzroy River, Western Australia. This river system, like most in northern Australia, is highly seasonal and entirely dependent upon groundwater for maintaining flow during prolonged dry seasons. We found that potential changes in river flow rates caused by future water resource development, such as groundwater extraction and surface water diversion, may have detrimental effects on the ability to catch the high value aquatic food species such as Barramundi and Sawfish, but also that species such as Black Bream may benefit. These findings result from changes in availability of habitats at times when Gooniyandi understanding shows they are important for providing aquatic resources in good condition. This study raises awareness of the potential outcomes of future water management and stimulates communication between indigenous people, the scientific community and water managers by developing a model of indigenous understanding from which to predict eco-hydrological change.
NASA Astrophysics Data System (ADS)
Balbi, S.; Villa, F.; Mojtahed, V.; Hegetschweiler, K. T.; Giupponi, C.
2015-10-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of: (1) likelihood of non-fatal physical injury; (2) likelihood of post-traumatic stress disorder; (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the benefits of improving an existing Early Warning System, taking into account the reliability, lead-time and scope (i.e. coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event: about 75 % of fatalities, 25 % of injuries and 18 % of post-traumatic stress disorders could be avoided.
NASA Astrophysics Data System (ADS)
Balbi, Stefano; Villa, Ferdinando; Mojtahed, Vahid; Hegetschweiler, Karin Tessa; Giupponi, Carlo
2016-06-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; and produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of (1) likelihood of non-fatal physical injury, (2) likelihood of post-traumatic stress disorder and (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the effect of improving an existing early warning system, taking into account the reliability, lead time and scope (i.e., coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event.
NASA Astrophysics Data System (ADS)
Lee, Kun Chang; Park, Bong-Won
Many online game users purchase game items with which to play free-to-play games. Because of a lack of research into which there is no specified framework for categorizing the values of game items, this study proposes four types of online game item values based on an analysis of literature regarding online game characteristics. It then proposes to investigate how online game users perceive satisfaction and purchase intention from the proposed four types of online game item values. Though regression analysis has been used frequently to answer this kind of research question, we propose a new approach, a General Bayesian Network (GBN), which can be performed in an understandable way without sacrificing predictive accuracy. Conventional techniques, such as regression analysis, do not provide significant explanation for this kind of problem because they are fixed to a linear structure and are limited in explaining why customers are likely to purchase game items and if they are satisfied with their purchases. In contrast, the proposed GBN provides a flexible underlying structure based on questionnaire survey data and offers robust decision support on this kind of research question by identifying its causal relationships. To illustrate the validity of GBN in solving the research question in this study, 327 valid questionnaires were analyzed using GBN with what-if and goal-seeking approaches. The experimental results were promising and meaningful in comparison with regression analysis results.
Constantinou, Anthony Costa; Fenton, Norman; Neil, Martin
2016-01-01
When developing a causal probabilistic model, i.e. a Bayesian network (BN), it is common to incorporate expert knowledge of factors that are important for decision analysis but where historical data are unavailable or difficult to obtain. This paper focuses on the problem whereby the distribution of some continuous variable in a BN is known from data, but where we wish to explicitly model the impact of some additional expert variable (for which there is expert judgment but no data). Because the statistical outcomes are already influenced by the causes an expert might identify as variables missing from the dataset, the incentive here is to add the expert factor to the model in such a way that the distribution of the data variable is preserved when the expert factor remains unobserved. We provide a method for eliciting expert judgment that ensures the expected values of a data variable are preserved under all the known conditions. We show that it is generally neither possible, nor realistic, to preserve the variance of the data variable, but we provide a method towards determining the accuracy of expertise in terms of the extent to which the variability of the revised empirical distribution is minimised. We also describe how to incorporate the assessment of extremely rare or previously unobserved events. PMID:27378822
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2015-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.
Deriving the Distribution of Conjunctions.
ERIC Educational Resources Information Center
Zoerner, Ed
1994-01-01
This paper proposes an explanation for the limited possibilities of realized conjunctions in multitermed coordinations. It argues that conjunction "&" heads a fully articulated phrase (&P), which can iterate &P shells, similar to "V" in Larson's (1988) VP-shell hypothesis. This structure enables a single & to unify any number of conjuncts, and…
NASA Astrophysics Data System (ADS)
Odbert, Henry; Aspinall, Willy
2014-05-01
Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss
Felipe, Vivian P S; Silva, Martinho A; Valente, Bruno D; Rosa, Guilherme J M
2015-04-01
The prediction of total egg production (TEP) potential in poultry is an important task to aid optimized management decisions in commercial enterprises. The objective of the present study was to compare different modeling approaches for prediction of TEP in meat type quails (Coturnix coturnix coturnix) using phenotypes such as weight, weight gain, egg production and egg quality measurements. Phenotypic data on 30 traits from two lines (L1, n=180; and L2, n=205) of quail were modeled to predict TEP. Prediction models included multiple linear regression and artificial neural network (ANN). Moreover, Bayesian network (BN) and a stepwise approach were used as variable selection methods. BN results showed that TEP is independent from other earlier expressed traits when conditioned on egg production from 35 to 80 days of age (EP1). In addition, the prediction accuracy was much lower when EP1 was not included in the model. The best predictive model was ANN, after feature selection, showing prediction correlations of r=0.792 and r=0.714 for L1 and L2, respectively. In conclusion, machine learning methods may be useful, but reasonable prediction accuracies are obtained only when partial egg production measurements are included in the model.
Study of Single Top Quark Production Using Bayesian Neural Networks With D0 Detector at the Tevatron
Joshi, Jyoti
2012-01-01
Top quark, the heaviest and most intriguing among the six known quarks, can be created via two independent production mechanisms in {\\pp} collisions. The primary mode, strong {\\ttbar} pair production from a $gtt$ vertex, was used by the {\\d0} and CDF collaborations to establish the existence of the top quark in March 1995. The second mode is the electroweak production of a single top quark or antiquark, which has been observed recently in March 2009. Since single top quarks are produced at hadron colliders through a $Wtb$ vertex, thereby provide a direct probe of the nature of $Wtb$ coupling and of the Cabibbo-Kobayashi-Maskawa matrix element, $V_{tb}$. So this mechanism provides a sensitive probe for several, standard model and beyond standard model, parameters such as anomalous $Wtb$ couplings. In this thesis, we measure the cross section of the electroweak produced top quark in three different production modes, $s+t$, $s$ and $t$-channels using a technique based on the Bayesian neural networks. This technique is applied for analysis of the 5.4 $fb^{-1}$ of data collected by the {\\d0} detector. From a comparison of the Bayesian neural networks discriminants between data and the signal-background model using Bayesian statistics, the cross sections of the top quark produced through the electroweak mechanism have been measured as: \\[\\sigma(p\\bar{p}→tb+X,tqb+X) = 3.11^{+0.77}_{-0.71}\\;\\rm pb\\] \\[\\sigma(p\\bar{p}→tb+X) = 0.72^{+0.44}_{-0.43}\\;\\rm pb\\] \\[\\sigma(p\\bar{p}→tqb+X) = 2.92^{+0.87}_{-0.73}\\;\\rm pb\\] % The $s+t$-channel has a gaussian significance of $4.7\\sigma$, the $s$-channel $0.9\\sigma$ and the $t$-channel~$4.7\\sigma$. The results are consistent with the standard model predictions within one standard deviation. By combining these results with the results for two other analyses (using different MVA techniques) improved results \\[\\sigma(p\\bar{p}→tb+X,tqb+X) = 3.43^{+0.73}_{-0.74}\\;\\rm pb\\] \\[\\sigma
Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks.
Yargholi, Elahe'; Hossein-Zadeh, Gholam-Ali
2016-01-01
We are frequently exposed to hand written digits 0-9 in today's modern life. Success in decoding-classification of hand written digits helps us understand the corresponding brain mechanisms and processes and assists seriously in designing more efficient brain-computer interfaces. However, all digits belong to the same semantic category and similarity in appearance of hand written digits makes this decoding-classification a challenging problem. In present study, for the first time, augmented naïve Bayes classifier is used for classification of functional Magnetic Resonance Imaging (fMRI) measurements to decode the hand written digits which took advantage of brain connectivity information in decoding-classification. fMRI was recorded from three healthy participants, with an age range of 25-30. Results in different brain lobes (frontal, occipital, parietal, and temporal) show that utilizing connectivity information significantly improves decoding-classification and capability of different brain lobes in decoding-classification of hand written digits were compared to each other. In addition, in each lobe the most contributing areas and brain connectivities were determined and connectivities with short distances between their endpoints were recognized to be more efficient. Moreover, data driven method was applied to investigate the similarity of brain areas in responding to stimuli and this revealed both similarly active areas and active mechanisms during this experiment. Interesting finding was that during the experiment of watching hand written digits, there were some active networks (visual, working memory, motor, and language processing), but the most relevant one to the task was language processing network according to the voxel selection. PMID:27468261
Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks
Yargholi, Elahe'; Hossein-Zadeh, Gholam-Ali
2016-01-01
We are frequently exposed to hand written digits 0–9 in today's modern life. Success in decoding-classification of hand written digits helps us understand the corresponding brain mechanisms and processes and assists seriously in designing more efficient brain–computer interfaces. However, all digits belong to the same semantic category and similarity in appearance of hand written digits makes this decoding-classification a challenging problem. In present study, for the first time, augmented naïve Bayes classifier is used for classification of functional Magnetic Resonance Imaging (fMRI) measurements to decode the hand written digits which took advantage of brain connectivity information in decoding-classification. fMRI was recorded from three healthy participants, with an age range of 25–30. Results in different brain lobes (frontal, occipital, parietal, and temporal) show that utilizing connectivity information significantly improves decoding-classification and capability of different brain lobes in decoding-classification of hand written digits were compared to each other. In addition, in each lobe the most contributing areas and brain connectivities were determined and connectivities with short distances between their endpoints were recognized to be more efficient. Moreover, data driven method was applied to investigate the similarity of brain areas in responding to stimuli and this revealed both similarly active areas and active mechanisms during this experiment. Interesting finding was that during the experiment of watching hand written digits, there were some active networks (visual, working memory, motor, and language processing), but the most relevant one to the task was language processing network according to the voxel selection. PMID:27468261
NASA Astrophysics Data System (ADS)
Scherb, Anke; Papakosta, Panagiota; Straub, Daniel
2014-05-01
Wildfires cause severe damages to ecosystems, socio-economic assets, and human lives in the Mediterranean. To facilitate coping with wildfire risks, an understanding of the factors influencing wildfire occurrence and behavior (e.g. human activity, weather conditions, topography, fuel loads) and their interaction is of importance, as is the implementation of this knowledge in improved wildfire hazard and risk prediction systems. In this project, a probabilistic wildfire risk prediction model is developed, with integrated fire occurrence and fire propagation probability and potential impact prediction on natural and cultivated areas. Bayesian Networks (BNs) are used to facilitate the probabilistic modeling. The final BN model is a spatial-temporal prediction system at the meso scale (1 km2 spatial and 1 day temporal resolution). The modeled consequences account for potential restoration costs and production losses referred to forests, agriculture, and (semi-) natural areas. BNs and a geographic information system (GIS) are coupled within this project to support a semi-automated BN model parameter learning and the spatial-temporal risk prediction. The coupling also enables the visualization of prediction results by means of daily maps. The BN parameters are learnt for Cyprus with data from 2006-2009. Data from 2010 is used as validation data set. A special focus is put on the performance evaluation of the BN for fire occurrence, which is modeled as binary classifier and thus, could be validated by means of Receiver Operator Characteristic (ROC) curves. With the final best models, AUC values of more than 70% for validation could be achieved, which indicates potential for reliable prediction performance via BN. Maps of selected days in 2010 are shown to illustrate final prediction results. The resulting system can be easily expanded to predict additional expected damages in the mesoscale (e.g. building and infrastructure damages). The system can support planning of
Herring, Carlie E; Stinson, Jonah; Landis, Wayne G
2015-10-01
Many coastal regions are encountering issues with the spread of nonindigenous species (NIS). In this study, we conducted a regional risk assessment using a Bayesian network relative risk model (BN-RRM) to analyze multiple vectors of NIS introductions to Padilla Bay, Washington, a National Estuarine Research Reserve. We had 3 objectives in this study. The 1st objective was to determine whether the BN-RRM could be used to calculate risk from NIS introductions for Padilla Bay. Our 2nd objective was to determine which regions and endpoints were at greatest risk from NIS introductions. Our 3rd objective was to incorporate a management option into the model and predict endpoint risk if it were to be implemented. Eradication can occur at different stages of NIS invasions, such as the elimination of these species before being introduced to the habitat or removal of the species after settlement. We incorporated the ballast water treatment management scenario into the model, observed the risk to the endpoints, and compared this risk with the initial risk estimates. The model results indicated that the southern portion of the bay was at greatest risk because of NIS. Changes in community composition, Dungeness crab, and eelgrass were the endpoints most at risk from NIS introductions. The currents node, which controls the exposure of NIS to the bay from the surrounding marine environment, was the parameter that had the greatest influence on risk. The ballast water management scenario displayed an approximate 1% reduction in risk in this Padilla Bay case study. The models we developed provide an adaptable template for decision makers interested in managing NIS in other coastal regions and large bodies of water.
Takeuchi, Masato; Kano, Hirotsugu; Takahashi, Kenzo; Iwata, Tsutomu
2015-01-01
Introduction Use of inhaled corticosteroid (ICS) is the mainstream maintenance therapy for paediatric asthma. Several forms of ICS are available, but the relative effectiveness among ICS has not been well investigated in published, randomised, controlled trials. The paucity of direct comparisons between ICS may have resulted in insufficient estimation in former systematic reviews/meta-analyses. To supplement the information on the comparative effectiveness of ICS for paediatric asthma, we plan to conduct a network meta-analysis that will enable summary of direct and indirect evidence. Methods and analysis We will retrieve randomised, controlled trials that examined the effectiveness of ICS for paediatric asthma from the PubMed and Cochrane Central Register of Controlled Trials. After one author scans the title and abstract for eligible studies, two authors will independently review study data and assess the quality of the study. Studies of children (≤18 years old) with chronic asthma or recurrent wheezing episodes will be included if they used ICS for ≥4 weeks. We will define a priori core outcomes and supplemental outcomes of paediatric asthma, including exacerbation, healthcare use and pulmonary function. Studies reporting a minimum of one core outcome will be entered into the systematic review. After the systematic review is performed, extracted data of relevant studies will be synthesised in the Bayesian framework using a random-effects model. Ethics and dissemination The results will be disseminated through peer-reviewed publications and conference presentations. Protocol registration number UMIN (000016724) and PROSPERO (CRD42015025889). PMID:26493456
Dura-Bernal, Salvador; Wennekers, Thomas; Denham, Susan L.
2012-01-01
Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance). Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom-up interactions, for
Iyer, Swathi P; Shafran, Izhak; Grayson, David; Gates, Kathleen; Nigg, Joel T; Fair, Damien A
2013-07-15
Resting state functional connectivity MRI (rs-fcMRI) is a popular technique used to gauge the functional relatedness between regions in the brain for typical and special populations. Most of the work to date determines this relationship by using Pearson's correlation on BOLD fMRI timeseries. However, it has been recognized that there are at least two key limitations to this method. First, it is not possible to resolve the direct and indirect connections/influences. Second, the direction of information flow between the regions cannot be differentiated. In the current paper, we follow-up on recent work by Smith et al. (2011), and apply PC algorithm to both simulated data and empirical data to determine whether these two factors can be discerned with group average, as opposed to single subject, functional connectivity data. When applied on simulated individual subjects, the algorithm performs well determining indirect and direct connection but fails in determining directionality. However, when applied at group level, PC algorithm gives strong results for both indirect and direct connections and the direction of information flow. Applying the algorithm on empirical data, using a diffusion-weighted imaging (DWI) structural connectivity matrix as the baseline, the PC algorithm outperformed the direct correlations. We conclude that, under certain conditions, the PC algorithm leads to an improved estimate of brain network structure compared to the traditional connectivity analysis based on correlations.
Caballero, Julio; Fernández, Michael
2008-01-01
Artificial neural networks (ANNs) have been widely used for medicinal chemistry modeling. In the last two decades, too many reports used MATLAB environment as an adequate platform for programming ANNs. Some of these reports comprise a variety of applications intended to quantitatively or qualitatively describe structure-activity relationships. A powerful tool is obtained when there are combined Bayesian-regularized neural networks (BRANNs) and genetic algorithm (GA): Bayesian-regularized genetic neural networks (BRGNNs). BRGNNs can model complicated relationships between explanatory variables and dependent variables. Thus, this methodology is regarded as useful tool for QSAR analysis. In order to demonstrate the use of BRGNNs, we developed a reliable method for predicting the antagonistic activity of 5-amino-3-arylisoxazole derivatives against Human Platelet Thrombin Receptor (PAR-1), using classical 3D-QSAR methodologies: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). In addition, 3D vectors generated from the molecular structures were correlated with antagonistic activities by multivariate linear regression (MLR) and Bayesian-regularized neural networks (BRGNNs). All models were trained with 34 compounds, after which they were evaluated for predictive ability with additional 6 compounds. CoMFA and CoMSIA were unable to describe this structure-activity relationship, while BRGNN methodology brings the best results according to validation statistics.
Conjunction Illusions and Conjunction Fallacies in Episodic Memory
ERIC Educational Resources Information Center
Brainerd, C. J.; Holliday, Robyn E.; Nakamura, Koyuki; Reyna, Valerie F.
2014-01-01
Recent research on the overdistribution principle implies that episodic memory is infected by conjunction illusions. These are instances in which an item that was presented in a single context (e.g., List 1) is falsely remembered as having been presented in multiple contexts (e.g., List 1 and List 2). Robust conjunction illusions were detected in…
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M
2014-12-01
Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. PMID:25005053
[Follicular conjunctivitis of unknown origin].
Goebels, S; Hasenfus, A K; Kellner, B K; Löw, U; Seitz, B
2012-01-01
A 40-year-old female chemical laboratory assistant presented at our clinic with chronic conjunctivitis of 4 years' standing. We initially misdiagnosed her symptoms as giant papillary conjunctivitis. Topical treatment failed to produce an improvement and a biopsy was performed. Histopathological analysis showed bilateral follicular lymphoma, a subtype of the B-cell non-Hodgkin lymphoma. The patient was referred for radiotherapy. At follow-up 18 months later the patient was symptom-free.
NASA Astrophysics Data System (ADS)
Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.
2013-02-01
Despite the efforts made towards the millennium goals targets during the last decade, access to improved water supply or basic sanitation remains still not accessible for millions of people across the world. This paper proposes a set of models that use 25 key variables from the WatSan4Dev dataset and country profiles involving Water Supply and Sanitation (Dondeynaz et al., 2012). This paper proposes the use of Bayesian Network modelling methods because adapted to the management of non-normal distribution, and integrate a qualitative approach for data analysis. They also offer the advantage to integrate preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 80 and 95% which is very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow a quantification of the relationships between human development, external support, governance aspects, economic activities and Water Supply and Sanitation (WSS) access. According to models proposed in this paper, a strong poverty reduction will induce an increment of the WSS access equal to 75-76% through: (1) the organisation of on-going urbanisation process to avoid slums development; and, (2) the improvement of health care for instance for children. On one side, improving governance, such as institutional efficiency, capacities to make and apply rules or control of corruption will also have a positive impact on WSS sustainable development. The first condition for an increment of the WSS access remains of course an improvement of the economic development with an increment of household income. Moreover, a significant country environmental commitment associated with civil society freedom of expression constitutes a favourable environment for sustainable WSS services delivery. Intensive agriculture through irrigation practises also appears as a mean for sustainable WSS thanks to multi-uses and
NASA Astrophysics Data System (ADS)
Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.
2013-09-01
Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012). This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS) access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75-76% through: (1) the management of ongoing urbanisation processes to avoid slums development; and (2) the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty) remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable WSS thanks to
Guided search for triple conjunctions.
Nordfang, Maria; Wolfe, Jeremy M
2014-08-01
A key tenet of feature integration theory and of related theories such as guided search (GS) is that the binding of basic features requires attention. This would seem to predict that conjunctions of features of objects that have not been attended should not influence search. However, Found (1998) reported that an irrelevant feature (size) improved the efficiency of search for a Color × Orientation conjunction if it was correlated with the other two features across the display, as compared to the case in which size was not correlated with color and orientation features. We examined this issue with somewhat different stimuli. We used triple conjunctions of color, orientation, and shape (e.g., search for a red, vertical, oval-shaped item). This allowed us to manipulate the number of features that each distractor shared with the target (sharing) and it allowed us to vary the total number of distractor types (and, thus, the number of groups of identical items: grouping). We found that these triple conjunction searches were generally very efficient--producing very shallow Reaction Time × Set Size slopes, consistent with strong guidance by basic features. Nevertheless, both of the variables, sharing and grouping, modulated performance. These influences were not predicted by previous accounts of GS; however, both can be accommodated in a GS framework. Alternatively, it is possible, though not necessary, to see these effects as evidence for "preattentive binding" of conjunctions. PMID:25005070
Kolb Ayre, Kimberley; Caldwell, Colleen A.; Stinson, Jonah; Landis, Wayne G.
2014-01-01
Introduction and spread of the parasite Myxobolus cerebralis, the causative agent of whirling disease, has contributed to the collapse of wild trout populations throughout the intermountain west. Of concern is the risk the disease may have on conservation and recovery of native cutthroat trout. We employed a Bayesian belief network to assess probability of whirling disease in Colorado River and Rio Grande cutthroat trout (Oncorhynchus clarkii pleuriticus and Oncorhynchus clarkii virginalis, respectively) within their current ranges in the southwest United States. Available habitat (as defined by gradient and elevation) for intermediate oligochaete worm host, Tubifex tubifex, exerted the greatest influence on the likelihood of infection, yet prevalence of stream barriers also affected the risk outcome. Management areas that had the highest likelihood of infected Colorado River cutthroat trout were in the eastern portion of their range, although the probability of infection was highest for populations in the southern, San Juan subbasin. Rio Grande cutthroat trout had a relatively low likelihood of infection, with populations in the southernmost Pecos management area predicted to be at greatest risk. The Bayesian risk assessment model predicted the likelihood of whirling disease infection from its principal transmission vector, fish movement, and suggested that barriers may be effective in reducing risk of exposure to native trout populations. Data gaps, especially with regard to location of spawning, highlighted the importance in developing monitoring plans that support future risk assessments and adaptive management for subspecies of cutthroat trout.
Oral immunotherapy for allergic conjunctivitis.
Ishida, Waka; Fukuda, Ken; Harada, Yosuke; Yagita, Hideo; Fukushima, Atsuki
2014-11-01
Antigen-specific immunotherapy is expected to be a desirable treatment for allergic diseases. Currently, antigen-specific immunotherapy is performed by administering disease-causing antigens subcutaneously or sublingually. These approaches induce long-term remission in patients with allergic rhinitis or asthma. The oral route is an alternative to subcutaneous and sublingual routes, and can also induce long-term remission, a phenomenon known as "oral tolerance." The effectiveness of oral tolerance has been reported in the context of autoimmune diseases, food allergies, asthma, atopic dermatitis, and allergic rhinitis in both human patients and animal models. However, few studies have examined its efficacy in animal models of allergic conjunctivitis. Previously, we showed that ovalbumin feeding suppressed ovalbumin-induced experimental allergic conjunctivitis, indicating the induction of oral tolerance is effective in treating experimental allergic conjunctivitis. In recent years, transgenic rice has been developed that can induce oral tolerance and reduce the severity of anaphylaxis. The major Japanese cedar pollen antigens in transgenic rice, Cryptomeria japonica 1 and C. japonica 2, were deconstructed by molecular shuffling, fragmentation, and changes in the oligomeric structure. Thus, transgenic rice may be an effective treatment for allergic conjunctivitis.
Segovia, Fermín; Illán, Ignacio A; Górriz, Juan M; Ramírez, Javier; Rominger, Axel; Levin, Johannes
2015-01-01
Differentiating between Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using (18)F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided. PMID:26594165
Segovia, Fermín; Illán, Ignacio A.; Górriz, Juan M.; Ramírez, Javier; Rominger, Axel; Levin, Johannes
2015-01-01
Differentiating between Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using 18F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided. PMID:26594165
Cai, Baoping; Liu, Yonghong; Ma, Yunpeng; Liu, Zengkai; Zhou, Yuming; Sun, Junhe
2015-09-01
A novel real-time reliability evaluation methodology is proposed by combining root cause diagnosis phase based on Bayesian networks (BNs) and reliability evaluation phase based on dynamic BNs (DBNs). The root cause diagnosis phase exactly locates the root cause of a complex mechatronic system failure in real time to increase diagnostic coverage and is performed through backward analysis of BNs. The reliability evaluation phase calculates the real-time reliability of the entire system by forward inference of DBNs. The application of the proposed methodology is demonstrated using a case of a subsea pipe ram blowout preventer system. The value and the variation trend of real-time system reliability when the faults of components occur are studied; the importance degree sequence of components at different times is also determined using mutual information and belief variance. PMID:26169121
Eleye-Datubo, A G; Wall, A; Wang, J
2008-02-01
The incorporation of the human element into a probabilistic risk-based model is one that requires a possibilistic integration of appropriate techniques and/or that of vital inputs of linguistic nature. While fuzzy logic is an excellent tool for such integration, it tends not to cross its boundaries of possibility theory, except via an evidential reasoning supposition. Therefore, a fuzzy-Bayesian network (FBN) is proposed to enable a bridge to be made into a probabilistic setting of the domain. This bridge is formalized by way of the mass assignment theory. A framework is also proposed for its use in maritime safety assessment. Its implementation has been demonstrated in a maritime human performance case study that utilizes performance-shaping factors as the input variables of this groundbreaking FBN risk model.
NASA Astrophysics Data System (ADS)
Rope, R. C.; Ames, D. P.; Jerry, T. D.; Cherry, S. J.
2005-12-01
Invasive plant species, such as Bromus tectorum (cheatgrass), cost the United States over $36 billion per year and have encroached upon over 100 million acres while impacting range site productivity, disturbing wildlife habitat, altering the wildland fire regime and frequencies, and reducing biodiversity. Because of these adverse impacts, federal, tribal, state, and county land managers are faced with the challenge of prevention, early detection, management, and monitoring of invasive plants. Often these managers rely on the analysis of remotely sensed imagery as part of their management plan. However, it's difficult to predict specific phenological events that allow for the spectral discrimination of invasive species using only remotely sensed imagery. To address this issue tools are being developed to model and view optimal periods to collect high spatial and/or spectral resolution remotely sensed data for refined detection and mapping of invasive species and for use as a decision support tool for land managers. These tools involve the integration of historic and current climate data (cumulative growing days and precipitation) satellite imagery (MODIS) and Bayesian Belief Networks, and a web ArcIMS application to distribute the information. The general approach is to issue an initial forecast early in the year based on the previous years' data. As the year progresses, air temperature, precipitation and newly acquired low resolution MODIS satellite imagery will be used to update the prediction. Updating will be accomplished using a Bayesian Belief Network model that indicates the probabilistic relationships between prior years' conditions and those of the current year. These tools have specific application in providing a means for which land managers can efficiently and effectively detect, map, and monitor invasive plant species, specifically cheatgrass, in western rangelands. This information can then be integrated into management studies and plans to help land
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
In 1983 and 1984, the Infrared Astronomical Satellite (IRAS) detected 5,425 stellar objects and measured their infrared spectra. In 1987 a program called AUTOCLASS used Bayesian inference methods to discover the classes present in these data and determine the most probable class of each object, revealing unknown phenomena in astronomy. AUTOCLASS has rekindled the old debate on the suitability of Bayesian methods, which are computationally intensive, interpret probabilities as plausibility measures rather than frequencies, and appear to depend on a subjective assessment of the probability of a hypothesis before the data were collected. Modern statistical methods have, however, recently been shown to also depend on subjective elements. These debates bring into question the whole tradition of scientific objectivity and offer scientists a new way to take responsibility for their findings and conclusions.
NASA Astrophysics Data System (ADS)
Chen, Weijie; Zur, Richard M.; Giger, Maryellen L.
2007-03-01
Bayesian neural network (BNN) with automatic relevance determination (ARD) priors has the ability to assess the relevance of each input feature during network training. Our purpose is to investigate the potential use of BNN-with-ARD-priors for joint feature selection and classification in computer-aided diagnosis (CAD) of medical imaging. With ARD priors, each group of weights that connect an input feature to the hidden units is associated with a hyperparameter controlling the magnitudes of the weights. The hyperparameters and the weights are updated simultaneously during neural network training. A smaller hyperparameter will likely result in larger weight values and the corresponding feature will likely be more relevant to the output, and thus, to the classification task. For our study, a multivariate normal feature space is designed to include one feature with high classification performance in terms of both ideal observer and linear observer, two features with high ideal observer performance but low linear observer performance and 7 useless features. An exclusive-OR (XOR) feature space is designed to include 2 XOR features and 8 useless features. Our simulation results show that the ARD-BNN approach has the ability to select the optimal subset of features on the designed nonlinear feature spaces on which the linear approach fails. ARD-BNN has the ability to recognize features that have high ideal observer performance. Stepwise linear discriminant analysis (SWLDA) has the ability to select features that have high linear observer performance but fails to select features that have high ideal observer performance and low linear observer performance. The cross-validation results on clinical breast MRI data show that ARD-BNN yields statistically significant better performance than does the SWLDA-LDA approach. We believe that ARD-BNN is a promising method for pattern recognition in computer-aided diagnosis of medical imaging.
Gieder, Katherina D.; Karpanty, Sarah M.; Frasera, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert
2014-01-01
Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Pendleton, Elizabeth A.; Thieler, E. Robert
2014-01-01
Sea-level rise is an ongoing phenomenon that is expected to continue and is projected to have a wide range of effects on coastal environments and infrastructure during the 21st century and beyond. Consequently, there is a need to assemble relevant datasets and to develop modeling or other analytical approaches to evaluate the likelihood of particular sea-level rise impacts, such as coastal erosion, and to inform coastal management decisions with this information. This report builds on previous work that compiled oceanographic and geomorphic data as part of the U.S. Geological Survey’s Coastal Vulnerability Index (CVI) for the U.S. Atlantic coast, and developed a Bayesian Network to predict shoreline-change rates based on sea-level rise plus variables that describe the hydrodynamic and geologic setting. This report extends the previous analysis to include the Gulf and Pacific coasts of the continental United States and Alaska and Hawaii, which required using methods applied to the USGS CVI dataset to extract data for these regions. The Bayesian Network converts inputs that include observations of local rates of relative sea-level change, mean wave height, mean tide range, a geomorphic classification, coastal slope, and observed shoreline-change rates to calculate the probability of the shoreline-erosion rate exceeding a threshold level of 1 meter per year for the coasts of the United States. The calculated probabilities were compared to the historical observations of shoreline change to evaluate the hindcast success rate of the most likely probability of shoreline change. Highest accuracy was determined for the coast of Hawaii (98 percent success rate) and lowest accuracy was determined for the Gulf of Mexico (34 percent success rate). The minimum success rate rose to nearly 80 percent (Atlantic and Gulf coasts) when success included shoreline-change outcomes that were adjacent to the most likely outcome. Additionally, the probabilistic approach determines the
On the determinants of the conjunction fallacy: probability versus inductive confirmation.
Tentori, Katya; Crupi, Vincenzo; Russo, Selena
2013-02-01
Major recent interpretations of the conjunction fallacy postulate that people assess the probability of a conjunction according to (non-normative) averaging rules as applied to the constituents' probabilities or represent the conjunction fallacy as an effect of random error in the judgment process. In the present contribution, we contrast such accounts with a different reading of the phenomenon based on the notion of inductive confirmation as defined by contemporary Bayesian theorists. Averaging rule hypotheses along with the random error model and many other existing proposals are shown to all imply that conjunction fallacy rates would rise as the perceived probability of the added conjunct does. By contrast, our account predicts that the conjunction fallacy depends on the added conjunct being perceived as inductively confirmed. Four studies are reported in which the judged probability versus confirmation of the added conjunct have been systematically manipulated and dissociated. The results consistently favor a confirmation-theoretic account of the conjunction fallacy against competing views. Our proposal is also discussed in connection with related issues in the study of human inductive reasoning.
Thomsen, Lars P; Weinreich, Ulla M; Karbing, Dan S; Helbo Jensen, Vanja G; Vuust, Morten; Frøkjær, Jens B; Rees, Stephen E
2013-06-01
Diagnosis and classification of chronic obstructive pulmonary disease (COPD) may be seen as difficult. Causal reasoning can be used to relate clinical measurements with radiological representation of COPD phenotypes airways disease and emphysema. In this paper a causal probabilistic network was constructed that uses clinically available measurements to classify patients suffering from COPD into the main phenotypes airways disease and emphysema. The network grades the severity of disease and for emphysematous COPD, the type of bullae and its location central or peripheral. In four patient cases the network was shown to reach the same conclusion as was gained from the patients' High Resolution Computed Tomography (HRCT) scans. These were: airways disease, emphysema with central small bullae, emphysema with central large bullae, and emphysema with peripheral bullae. The approach may be promising in targeting HRCT in COPD patients, assessing phenotypes of the disease and monitoring its progression using clinical data.
Meibomian gland function and giant papillary conjunctivitis.
Mathers, W D; Billborough, M
1992-08-15
We examined 42 contact lens-wearing patients for clinical evidence of giant papillary conjunctivitis and for meibomian gland dysfunction with gland dropout. Fifteen patients were free of clinical signs and symptoms of giant papillary conjunctivitis, whereas 27 had clinical symptoms and evidence of giant papillary conjunctivitis. Patients with giant papillary conjunctivitis had significantly more gland dropout with an average of 0.6 +/- 1.2 gland absent in both lower eyelids compared with 0.2 +/- 0.4 gland absent in patients without giant papillary conjunctivitis. Additionally, the viscosity of meibomian gland excreta was greater in the giant papillary conjunctivitis group. There was no difference in tear osmolarity or in the Schirmer test results between the two groups. These results indicated patients with giant papillary conjunctivitis were more likely to have meibomian gland dysfunction with gland dropout than patients without giant papillary conjunctivitis.
Mahersia, Hela; Boulehmi, Hela; Hamrouni, Kamel
2016-04-01
Female breast cancer is the second most common cancer in the world. Several efforts in artificial intelligence have been made to help improving the diagnostic accuracy at earlier stages. However, the identification of breast abnormalities, like masses, on mammographic images is not a trivial task, especially for dense breasts. In this paper we describe our novel mass detection process that includes three successive steps of enhancement, characterization and classification. The proposed enhancement system is based mainly on the analysis of the breast texture. First of all, a filtering step with morphological operators and soft thresholding is achieved. Then, we remove from the filtered breast region, all the details that may interfere with the eventual masses, including pectoral muscle and galactophorous tree. The pixels belonging to this tree will be interpolated and replaced by the average of the neighborhood. In the characterization process, measurement of the Gaussian density in the wavelet domain allows the segmentation of the masses. Finally, a comparative classification mechanism based on the Bayesian regularization back-propagation networks and ANFIS techniques is proposed. The tests were conducted on the MIAS database. The results showed the robustness of the proposed enhancement method. PMID:26831269
Faverial, Julie; Cornet, Denis; Paul, Jacky
2016-01-01
Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement. PMID:27314950
Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López
2014-12-01
This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty.
NASA Astrophysics Data System (ADS)
Chen, Hao; Hua, Yi; Ren, Qinglong; Zhang, Ye
2016-01-01
Traditional remote sensing change-detection algorithms only generate change-detection map and few quantitative evaluation indicators as the results, but they are unable to provide comprehensive analysis and further understanding of the detected changes. Aiming to assess regional development, we develop a comprehensive analysis method for human-driven environmental change by multitemporal remote sensing images. In order to adapt to analyze the time-varying multiple changed objects, an observed object-specified dynamic Bayesian network (i.e., OOS-DBN) is first proposed to adjust DBN structure and variables. Using semantic analysis for the relationship between multiple changed objects and regional development, all levels of situations and evidences (i.e., detected attributes of changed objects) are extracted as hidden variables and observed variables and inputted to OOS-DBN. Furthermore, conditional probabilities are computed by levels and time slices in OOS-DBN, resulting in the comprehensive analysis results. The experiments on the coastal region in Huludao, China, from 2003 to 2014 demonstrate that comprehensive analysis of changes reflecting that reclamation, construction of infrastructure, and New Huludao port contributed to the regional development. During four time slices, this region experienced rapid and medium-speed development, whose corresponding probabilities are 0.90, 0.87, 0.41, and 0.54, respectively, which is consistent with our field surveys.
Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López
2014-12-01
This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. PMID:25041168
Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge
2016-01-01
Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement. PMID:27314950
Denman, Matthew R.; Groth, Katrina M.; Cardoni, Jeffrey N.; Wheeler, Timothy A.
2015-04-01
Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self-correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayesian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The authors would like to acknowledge the U.S. Department of Energy's Office of Nuclear Energy for funding this research through Work Package SR-14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at Argonne National Laboratory, Oak Ridge National Laboratory, and Idaho National Laboratory for their continue d contributions to the advanced reactor PRA mission area.
Kashuba, Roxolana; McMahon, Gerard; Cuffney, Thomas F.; Qian, Song; Reckhow, Kenneth; Gerritsen, Jeroen; Davies, Susan
2012-01-01
In realization of the aforementioned advantages, a Bayesian network model was constructed to characterize the effect of urban development on aquatic macroinvertebrate stream communities through three simultaneous, interacting ecological pathways affecting stream hydrology, habitat, and water quality across watersheds in the Northeastern United States. This model incorporates both empirical data and expert knowledge to calculate the probabilities of attaining desired aquatic ecosystem conditions under different urban stress levels, environmental conditions, and management options. Ecosystem conditions are characterized in terms of standardized Biological Condition Gradient (BCG) management endpoints. This approach to evaluating urban development-induced perturbations in watersheds integrates statistical and mechanistic perspectives, different information sources, and several ecological processes into a comprehensive description of the system that can be used to support decision making. The completed model can be used to infer which management actions would lead to the highest likelihood of desired BCG tier achievement. For example, if best management practices (BMP) were implemented in a highly urbanized watershed to reduce flashiness to medium levels and specific conductance to low levels, the stream would have a 70-percent chance of achieving BCG Tier 3 or better, relative to a 24-percent achievement likelihood for unmanaged high urban land cover. Results are reported probabilistically to account for modeling uncertainty that is inherent in sources such as natural variability and model simplification error.
Zeng, Xiaoning; Ma, Yuan
2016-01-01
Background The benefit of maintenance therapy has been confirmed in patients with non-progressing non-small cell lung cancer (NSCLC) after first-line therapy by many trials and meta-analyses. However, since few head-to-head trials between different regimens have been reported, clinicians still have little guidance on how to select the most efficacious single-agent regimen. Hence, we present a network meta-analysis to assess the comparative treatment efficacy of several single-agent maintenance therapy regimens for stage III/IV NSCLC. Methods A comprehensive literature search of public databases and conference proceedings was performed. Randomized clinical trials (RCTs) meeting the eligible criteria were integrated into a Bayesian network meta-analysis. The primary outcome was overall survival (OS) and the secondary outcome was progression free survival (PFS). Results A total of 26 trials covering 7,839 patients were identified, of which 24 trials were included in the OS analysis, while 23 trials were included in the PFS analysis. Switch-racotumomab-alum vaccine and switch-pemetrexed were identified as the most efficacious regimens based on OS (HR, 0.64; 95% CrI, 0.45–0.92) and PFS (HR, 0.54; 95% CrI, 0.26–1.04) separately. According to the rank order based on OS, switch-racotumomab-alum vaccine had the highest probability as the most effective regimen (52%), while switch-pemetrexed ranked first (34%) based on PFS. Conclusions Several single-agent maintenance therapy regimens can prolong OS and PFS for stage III/IV NSCLC. Switch-racotumomab-alum vaccine maintenance therapy may be the most optimal regimen, but should be confirmed by additional evidence. PMID:27781159
Bayesian Student Modeling and the Problem of Parameter Specification.
ERIC Educational Resources Information Center
Millan, Eva; Agosta, John Mark; Perez de la Cruz, Jose Luis
2001-01-01
Discusses intelligent tutoring systems and the application of Bayesian networks to student modeling. Considers reasons for not using Bayesian networks, including the computational complexity of the algorithms and the difficulty of knowledge acquisition, and proposes an approach to simplify knowledge acquisition that applies causal independence to…
Survey of Bayesian Models for Modelling of Stochastic Temporal Processes
Ng, B
2006-10-12
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
NASA Astrophysics Data System (ADS)
Isakson, Steve Wesley
2001-12-01
Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.
Corsetti, James P; Salzman, Peter; Ryan, Dan; Moss, Arthur J; Zareba, Wojciech; Sparks, Charles E
2016-09-01
Data is presented that was utilized as the basis for Bayesian network modeling of influence pathways focusing on the central role of a polymorphism of plasminogen activator inhibitor-2 (PAI-2) on recurrent cardiovascular disease risk in patients with high levels of HDL cholesterol and C-reactive protein (CRP) as a marker of inflammation, "Influences on Plasminogen Activator Inhibitor-2 Polymorphism-Associated Recurrent Cardiovascular Disease Risk in Patients with High HDL Cholesterol and Inflammation" (Corsetti et al., 2016; [1]). The data consist of occurrence of recurrent coronary events in 166 post myocardial infarction patients along with 1. clinical data on gender, race, age, and body mass index; 2. blood level data on 17 biomarkers; and 3. genotype data on 53 presumptive CVD-related single nucleotide polymorphisms. Additionally, a flow diagram of the Bayesian modeling procedure is presented along with Bayesian network subgraphs (root nodes to outcome events) utilized as the data from which PAI-2 associated influence pathways were derived (Corsetti et al., 2016; [1]).
Thorn, Graeme J; King, John R
2016-01-01
The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. PMID:26561777
Oba, Yuji; Lone, Nazir A
2014-01-01
Background A combination therapy with inhaled corticosteroid (ICS) and a long-acting beta agonist (LABA) is recommended in severe chronic obstructive pulmonary disease (COPD) patients experiencing frequent exacerbations. Currently, there are five ICS/LABA combination products available on the market. The purpose of this study was to systematically review the efficacy of various ICS/LABA combinations with a network meta-analysis. Methods Several databases and manufacturer’s websites were searched for relevant clinical trials. Randomized control trials, at least 12 weeks duration, comparing an ICS/LABA combination with active control or placebo were included. Moderate and severe exacerbations were chosen as the outcome assessment criteria. The primary analyses were conducted with a Bayesian Markov chain Monte Carlo method. Results Most of the ICS/LABA combinations reduced moderate-to-severe exacerbations as compared with placebo and LABA, but none of them reduced severe exacerbations. However, many studies excluded patients receiving long-term oxygen therapy. Moderate-dose ICS was as effective as high-dose ICS in reducing exacerbations when combined with LABA. Conclusion ICS/LABA combinations had a class effect with regard to the prevention of COPD exacerbations. Moderate-dose ICS/LABA combination therapy would be sufficient for COPD patients when indicated. The efficacy of ICS/LABA combination therapy appeared modest and had no impact in reducing severe exacerbations. Further studies are needed to evaluate the efficacy of ICS/LABA combination therapy in severely affected COPD patients requiring long-term oxygen therapy. PMID:24872685
NASA Astrophysics Data System (ADS)
Kuehn, N. M.; Carsten, R.; Frank, S.
2008-12-01
Empirical ground-motion models for use in seismic hazard analysis are commonly described by regression models, where the ground-motion parameter is assumed to be dependent on some earthquake- and site- specific parameters such as magnitude, distance or local vs30. In regression analysis only the target is treated as a random variable, while the predictors are not; they are implicitly assumed to be complete and error-free, which is not the case for magnitudes or distances in earthquake catalogs. However, in research areas such as machine learning or artificial intelligence techniques to overcome these issues exist. Borrowing from these fields, we present a novel multivariate approach to ground-motion estimation by means of the Bayesian network (BN) formalism. This elegant and intuitively appealing framework allows for reasoning under uncertainty by modeling directly the joint probability distribution of all variables, while at the same time offering explicit insight into the probabilistic relationships between variables. The formalism provides us with efficient methods for computing any marginal or conditional distribution of any subset of variables. In particular, if some earthquake- or site-related parameters are unknown, the distribution of the ground motion parameter of interest can still be calculated. In this case, the associated uncertainty is incorporated in the model framework. Here, we explore the use of BNs in the development of ground-motion models. Therefore, we construct BNs for both a synthetic and the NGA dataset, the most comprehensive strong ground motion dataset currently available. The analysis shows that BNs are able to capture the probabilistic dependencies between the different variables of interest. Comparison of the learned BN with the NGA model of Boore and Atkinson (2008) shows a reasonable agreement in distance and magnitude ranges with good data coverage.
Jayasurya, K.; Fung, G.; Yu, S.; Dehing-Oberije, C.; De Ruysscher, D.; Hope, A.; De Neve, W.; Lievens, Y.; Lambin, P.; Dekker, A. L. A. J.
2010-04-15
Purpose: Classic statistical and machine learning models such as support vector machines (SVMs) can be used to predict cancer outcome, but often only perform well if all the input variables are known, which is unlikely in the medical domain. Bayesian network (BN) models have a natural ability to reason under uncertainty and might handle missing data better. In this study, the authors hypothesize that a BN model can predict two-year survival in non-small cell lung cancer (NSCLC) patients as accurately as SVM, but will predict survival more accurately when data are missing. Methods: A BN and SVM model were trained on 322 inoperable NSCLC patients treated with radiotherapy from Maastricht and validated in three independent data sets of 35, 47, and 33 patients from Ghent, Leuven, and Toronto. Missing variables occurred in the data set with only 37, 28, and 24 patients having a complete data set. Results: The BN model structure and parameter learning identified gross tumor volume size, performance status, and number of positive lymph nodes on a PET as prognostic factors for two-year survival. When validated in the full validation set of Ghent, Leuven, and Toronto, the BN model had an AUC of 0.77, 0.72, and 0.70, respectively. A SVM model based on the same variables had an overall worse performance (AUC 0.71, 0.68, and 0.69) especially in the Ghent set, which had the highest percentage of missing the important GTV size data. When only patients with complete data sets were considered, the BN and SVM model performed more alike. Conclusions: Within the limitations of this study, the hypothesis is supported that BN models are better at handling missing data than SVM models and are therefore more suitable for the medical domain. Future works have to focus on improving the BN performance by including more patients, more variables, and more diversity.
Lee, Young Ho; Song, Gwan Gyu
2016-05-01
The aim of this study was to assess the relative efficacy and tolerability of duloxetine, pregabalin, and milnacipran at the recommended doses in patients with fibromyalgia. Randomized controlled trials (RCTs) examining the efficacy and safety of duloxetine 60 mg, pregabalin 300 mg, pregabalin 150 mg, milnacipran 200 mg, and milnacipran 100 mg compared to placebo in patients with fibromyalgia were included in this Bayesian network meta-analysis. Nine RCTs including 5140 patients met the inclusion criteria. The proportion of patients with >30 % improvement from baseline in pain was significantly higher in the duloxetine 60 mg, pregabalin 300 mg, milnacipran 100 mg, and milnacipran 200 mg groups than in the placebo group [pairwise odds ratio (OR) 2.33, 95 % credible interval (CrI) 1.50-3.67; OR 1.68, 95 % CrI 1.25-2.28; OR 1.62, 95 % CrI 1.16-2.25; and OR 1.61; 95 % CrI 1.15-2.24, respectively]. Ranking probability based on the surface under the cumulative ranking curve (SUCRA) indicated that duloxetine 60 mg had the highest probability of being the best treatment for achieving the response level (SUCRA = 0.9431), followed by pregabalin 300 mg (SUCRA = 0.6300), milnacipran 100 mg (SUCRA = 0.5680), milnacipran 200 mg (SUCRA = 0.5617), pregabalin 150 mg (SUCRA = 0.2392), and placebo (SUCRA = 0.0580). The risk of withdrawal due to adverse events was lower in the placebo group than in the pregabalin 300 mg, duloxetine 60 mg, milnacipran 100 mg, and milnacipran 200 mg groups. However, there was no significant difference in the efficacy and tolerability between the medications at the recommended doses. Duloxetine 60 mg, pregabalin 300 mg, milnacipran 100 mg, and milnacipran 200 mg were more efficacious than placebo. However, there was no significant difference in the efficacy and tolerability between the medications at the recommended doses. PMID:27000046
Decision generation tools and Bayesian inference
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas
2014-05-01
Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.
NASA Astrophysics Data System (ADS)
Hoi, K. I.; Yuen, K. V.; Mok, K. M.
2010-05-01
In this study the neural network based air quality prediction model was tested in a typical coastal city, Macau, with Latitude 22° 10'N and Longitude 113° 34'E. By using five years of air quality and meteorological data recorded at an ambient air quality monitoring station between 2001 and 2005, it was found that the performance of the ANN model was generally improved by increasing the number of hidden neurons in the training phase. However, the performance of the ANN model was not sensitive to the change in the number of hidden neurons during the prediction phase. Therefore, the improvement in the error statistics for a complex ANN model in the training phase may be only caused by the overfitting of the data. In addition, the posterior PDF of the parameter vector conditional on the training dataset was investigated for different number of hidden neurons. It was found that the parametric space for a simple ANN model was globally identifiable and the Levenberg-Marquardt backpropagation algorithm was able to locate the optimal parameter vector. However, the parameter vector might contain redundant parameters and the parametric space was not globally identifiable when the model class became complex. In addition, the Levenberg-Marquardt backpropagation algorithm was unable to locate the most optimal parameter vector in this situation. Finally, it was concluded that the a more complex MLP model, that fits the data better, is not necessarily better than a simple one.
Giacoppo, Daniele; Gargiulo, Giuseppe; Aruta, Patrizia; Capranzano, Piera; Tamburino, Corrado
2015-01-01
Study question What is the most safe and effective interventional treatment for coronary in-stent restenosis? Methods In a hierarchical Bayesian network meta-analysis, PubMed, Embase, Scopus, Cochrane Library, Web of Science, ScienceDirect, and major scientific websites were screened up to 10 August 2015. Randomised controlled trials of patients with any type of coronary in-stent restenosis (either of bare metal stents or drug eluting stents; and either first or recurrent instances) were included. Trials including multiple treatments at the same time in the same group or comparing variants of the same intervention were excluded. Primary endpoints were target lesion revascularisation and late lumen loss, both at six to 12 months. The main analysis was complemented by network subanalyses, standard pairwise comparisons, and subgroup and sensitivity analyses. Study answer and limitations Twenty four trials (4880 patients), including seven interventional treatments, were identified. Compared with plain balloons, bare metal stents, brachytherapy, rotational atherectomy, and cutting balloons, drug coated balloons and drug eluting stents were associated with a reduced risk of target lesion revascularisation and major adverse cardiac events, and with reduced late lumen loss. Treatment ranking indicated that drug eluting stents had the highest probability (61.4%) of being the most effective for target lesion vascularisation; drug coated balloons were similarly indicated as the most effective treatment for late lumen loss (probability 70.3%). The comparative efficacy of drug coated balloons and drug eluting stents was similar for target lesion revascularisation (summary odds ratio 1.10, 95% credible interval 0.59 to 2.01) and late lumen loss reduction (mean difference in minimum lumen diameter 0.04 mm, 95% credible interval −0.20 to 0.10). Risks of death, myocardial infarction, and stent thrombosis were comparable across all treatments, but these analyses were limited by a
Changes in Processing Adverbial Conjuncts Throughout Adulthood.
ERIC Educational Resources Information Center
Bloom, Ronald J.; And Others
1996-01-01
Examines the use and understanding of concordant and discordant adverbial conjuncts in the latter part of the life span. Young, middle-aged, and elderly adults, matched for education level, were studied. Results indicate a significant decline in processing adverbial conjuncts in the elderly, due to a deficit in linguistic processing rather than a…
Scalable Conjunction Processing using Spatiotemporally Indexed Ephemeris Data
NASA Astrophysics Data System (ADS)
Budianto-Ho, I.; Johnson, S.; Sivilli, R.; Alberty, C.; Scarberry, R.
2014-09-01
The collision warnings produced by the Joint Space Operations Center (JSpOC) are of critical importance in protecting U.S. and allied spacecraft against destructive collisions and protecting the lives of astronauts during space flight. As the Space Surveillance Network (SSN) improves its sensor capabilities for tracking small and dim space objects, the number of tracked objects increases from thousands to hundreds of thousands of objects, while the number of potential conjunctions increases with the square of the number of tracked objects. Classical filtering techniques such as apogee and perigee filters have proven insufficient. Novel and orders of magnitude faster conjunction analysis algorithms are required to find conjunctions in a timely manner. Stellar Science has developed innovative filtering techniques for satellite conjunction processing using spatiotemporally indexed ephemeris data that efficiently and accurately reduces the number of objects requiring high-fidelity and computationally-intensive conjunction analysis. Two such algorithms, one based on the k-d Tree pioneered in robotics applications and the other based on Spatial Hash Tables used in computer gaming and animation, use, at worst, an initial O(N log N) preprocessing pass (where N is the number of tracked objects) to build large O(N) spatial data structures that substantially reduce the required number of O(N^2) computations, substituting linear memory usage for quadratic processing time. The filters have been implemented as Open Services Gateway initiative (OSGi) plug-ins for the Continuous Anomalous Orbital Situation Discriminator (CAOS-D) conjunction analysis architecture. We have demonstrated the effectiveness, efficiency, and scalability of the techniques using a catalog of 100,000 objects, an analysis window of one day, on a 64-core computer with 1TB shared memory. Each algorithm can process the full catalog in 6 minutes or less, almost a twenty-fold performance improvement over the
Cox, Ruth; Revie, Crawford W; Hurnik, Daniel; Sanchez, Javier
2016-09-01
Identification and quantification of pathogen threats need to be a priority for the Canadian swine industry so that resources can be focused where they will be most effective. Here we create a tool based on a Bayesian Belief Network (BBN) to model the interaction between biosecurity practices and the probability of occurrence of four different diseases on Canadian swine farms. The benefits of using this novel approach, in comparison to other methods, is that it enables us to explore both the complex interaction and the relative importance of biosecurity practices on the probability of disease occurrence. In order to build the BBN we used two datasets. The first dataset detailed biosecurity practices employed on 218 commercial swine farms across Canada in 2010. The second dataset detailed animal health status and disease occurrence on 90 of those farms between 2010 and 2012. We used expert judgement to identify 15 biosecurity practices that were considered the most important in mitigating disease occurrence on farms. These included: proximity to other livestock holdings, the health status of purchased stock, manure disposal methods, as well as the procedures for admitting vehicles and staff. Four diseases were included in the BBN: Porcine reproductive and respiratory syndrome (PRRS), (a prevalent endemic aerosol pathogen), Swine influenza (SI) (a viral respiratory aerosol pathogen), Mycoplasma pneumonia (MP) (an endemic respiratory disease spread by close contact and aerosol) and Swine dysentery (SD) (an enteric disease which is re-emerging in North America). This model indicated that the probability of disease occurrence was influenced by a number of manageable biosecurity practices. Increased probability of PRRS and of MP were associated with spilt feed (feed that did not fall directly in a feeding trough), not being disposed of immediately and with manure being brought onto the farm premises and spread on land adjacent to the pigs. Increased probabilities of SI
Zhang, Yongyuan; Zhang, Tao; Zhang, Chengqi; Tang, Fang; Zhong, Nvjuan; Li, Hongkai; Song, Xinhong; Lin, Haiyan; Liu, Yanxun; Xue, Fuzhong
2015-01-01
Objectives It remains unclear whether non-alcoholic fatty liver disease (NAFLD) is a cause or a consequence of metabolic syndrome (MetS). We proposed a simplified Bayesian network (BN) and attempted to confirm their reciprocal causality. Setting Bidirectional longitudinal cohorts (subcohorts A and B) were designed and followed up from 2005 to 2011 based on a large-scale health check-up in a Chinese population. Participants Subcohort A (from NAFLD to MetS, n=8426) included the participants with or without NAFLD at baseline to follow-up the incidence of MetS, while subcohort B (from MetS to NAFLD, n=16 110) included the participants with or without MetS at baseline to follow-up the incidence of NAFLD. Results Incidence densities were 2.47 and 17.39 per 100 person-years in subcohorts A and B, respectively. Generalised estimating equation analyses demonstrated that NAFLD was a potential causal factor for MetS (relative risk, RR, 95% CI 5.23, 3.50 to 7.81), while MetS was also a factor for NAFLD (2.55, 2.23 to 2.92). A BN with 5 simplification strategies was used for the reciprocal causal inference. The BN's causal inference illustrated that the total effect of NAFLD on MetS (attributable risks, AR%) was 2.49%, while it was 19.92% for MetS on NAFLD. The total effect of NAFLD on MetS components was different, with dyslipidemia having the greatest (AR%, 10.15%), followed by obesity (7.63%), diabetes (3.90%) and hypertension (3.51%). Similar patterns were inferred for MetS components on NAFLD, with obesity having the greatest (16.37%) effect, followed by diabetes (10.85%), dyslipidemia (10.74%) and hypertension (7.36%). Furthermore, the most important causal pathway from NAFLD to MetS was that NAFLD led to elevated GGT, then to MetS components, while the dominant causal pathway from MetS to NAFLD began with dyslipidaemia. Conclusions The findings suggest a reciprocal causality between NAFLD and MetS, and the effect of MetS on NAFLD is significantly greater than that of
Song, Guo-Min; Tian, Xu; Zhang, Lei; Ou, Yang-Xiang; Yi, Li-Juan; Shuai, Ting; Zhou, Jian-Guo; Zeng, Zi; Yang, Hong-Ling
2015-07-01
Enteral immunonutrition (EIN) has been established to be as a significantly important modality to prevent the postoperative infectious and noninfectious complications, enhance the immunity of host, and eventually improve the prognosis of gastrointestinal (GI) cancer patients undergoing surgery. However, different support routes, which are the optimum option, remain unclear. To evaluate the effects of different EIN support regimes for patients who underwent selective surgery for resectable GI malignancy, a Bayesian network meta-analysis (NMA) of randomized controlled trials (RCTs) was conducted. A search of PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) was electronically searched until the end of December 2014. Moreover, we manually checked reference lists of eligible trials and review and retrieval unpublished literature. RCTs which investigated the comparative effects of EIN versus standard enteral nutrition (EN) or different EIN regimes were included if the clinical outcomes information can be extracted from it. A total of 27 RCTs were incorporated into this study. Pair-wise meta-analyses suggested that preoperative (relative risk [RR], 0.58; 95% confidence interval [CI], 0.43-0.78), postoperative (RR, 0.63; 95% CI, 0.52-0.76), and perioperative EIN methods (RR, 0.46; 95% CI, 0.34-0.62) reduced incidence of postoperative infectious complications compared with standard EN. Moreover, perioperative EIN (RR, 0.65; 95% CI, 0.44-0.95) reduced the incidence of postoperative noninfectious complications, and the postoperative (mean difference [MD], -2.38; 95% CI, -3.4 to -1.31) and perioperative EIN (MD, -2.64; 95% CI, -3.28 to -1.99) also shortened the length of postoperative hospitalization compared with standard EN. NMA found that EIN support effectively improved the clinical outcomes of patients who underwent selective surgery for GI cancer compared with standard EN. Our results suggest EIN support is promising alternative for
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Economic values for conjunctive use and water banking in southern California
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, Manuel; Jenkins, Marion W.; Lund, Jay R.
2004-03-01
The potential and limitations of conjunctive use of surface and groundwater are explored for southern California's water supply system. An economic-engineering network flow optimization model, CALVIN, is used to analyze the economic and reliability benefits from different conjunctive use alternatives. Flexible management of additional conjunctive use facilities and groundwater storage capacity under flexible water allocation can generate substantial economic benefits to the region. Conjunctive use adds operational flexibility to take better advantage of water market transfers, and transfers provide the allocation flexibility to take better advantage of conjunctive use. The value of conjunctive use programs along the Colorado River Aqueduct, in Coachella Valley, and north of the Tehachapi Mountains under economically optimized operation of the system is examined. Results reveal reductions of economic demand for increased imports into southern California, suggest changes in the system operations, and indicate significant economic benefits from expanding some conveyance and storage facilities.
NASA Astrophysics Data System (ADS)
Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David
2014-02-01
Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.
NASA Astrophysics Data System (ADS)
Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David
2009-12-01
Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.
Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro
2012-12-01
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.
Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro
2012-12-01
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least square