Sample records for connected subgraph problem

  1. Mining connected global and local dense subgraphs for bigdata

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  2. Solving Connected Subgraph Problems in Wildlife Conservation

    NASA Astrophysics Data System (ADS)

    Dilkina, Bistra; Gomes, Carla P.

    We investigate mathematical formulations and solution techniques for a variant of the Connected Subgraph Problem. Given a connected graph with costs and profits associated with the nodes, the goal is to find a connected subgraph that contains a subset of distinguished vertices. In this work we focus on the budget-constrained version, where we maximize the total profit of the nodes in the subgraph subject to a budget constraint on the total cost. We propose several mixed-integer formulations for enforcing the subgraph connectivity requirement, which plays a key role in the combinatorial structure of the problem. We show that a new formulation based on subtour elimination constraints is more effective at capturing the combinatorial structure of the problem, providing significant advantages over the previously considered encoding which was based on a single commodity flow. We test our formulations on synthetic instances as well as on real-world instances of an important problem in environmental conservation concerning the design of wildlife corridors. Our encoding results in a much tighter LP relaxation, and more importantly, it results in finding better integer feasible solutions as well as much better upper bounds on the objective (often proving optimality or within less than 1% of optimality), both when considering the synthetic instances as well as the real-world wildlife corridor instances.

  3. Better Decomposition Heuristics for the Maximum-Weight Connected Graph Problem Using Betweenness Centrality

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru

    We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.

  4. On the modification Highly Connected Subgraphs (HCS) algorithm in graph clustering for weighted graph

    NASA Astrophysics Data System (ADS)

    Albirri, E. R.; Sugeng, K. A.; Aldila, D.

    2018-04-01

    Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.

  5. Incremental k-core decomposition: Algorithms and evaluation

    DOE PAGES

    Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...

    2016-02-01

    A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less

  6. MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.

    PubMed

    He, Tiantian; Chan, Keith C C

    2018-05-01

    An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.

  7. Sudden emergence of q-regular subgraphs in random graphs

    NASA Astrophysics Data System (ADS)

    Pretti, M.; Weigt, M.

    2006-07-01

    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large q-regular subgraph, i.e., a subgraph with all vertices having degree equal to q. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q = 3, we find that the first large q-regular subgraphs appear discontinuously at an average vertex degree c3 - reg simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c3 - core simeq 3.3509. For q > 3, the q-regular subgraph percolation threshold is found to coincide with that of the q-core.

  8. Approximation algorithms for the min-power symmetric connectivity problem

    NASA Astrophysics Data System (ADS)

    Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad

    2016-10-01

    We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.

  9. Functional network organization of the human brain

    PubMed Central

    Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E

    2011-01-01

    Summary Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. PMID:22099467

  10. Dense Subgraphs with Restrictions and Applications to Gene Annotation Graphs

    NASA Astrophysics Data System (ADS)

    Saha, Barna; Hoch, Allison; Khuller, Samir; Raschid, Louiqa; Zhang, Xiao-Ning

    In this paper, we focus on finding complex annotation patterns representing novel and interesting hypotheses from gene annotation data. We define a generalization of the densest subgraph problem by adding an additional distance restriction (defined by a separate metric) to the nodes of the subgraph. We show that while this generalization makes the problem NP-hard for arbitrary metrics, when the metric comes from the distance metric of a tree, or an interval graph, the problem can be solved optimally in polynomial time. We also show that the densest subgraph problem with a specified subset of vertices that have to be included in the solution can be solved optimally in polynomial time. In addition, we consider other extensions when not just one solution needs to be found, but we wish to list all subgraphs of almost maximum density as well. We apply this method to a dataset of genes and their annotations obtained from The Arabidopsis Information Resource (TAIR). A user evaluation confirms that the patterns found in the distance restricted densest subgraph for a dataset of photomorphogenesis genes are indeed validated in the literature; a control dataset validates that these are not random patterns. Interestingly, the complex annotation patterns potentially lead to new and as yet unknown hypotheses. We perform experiments to determine the properties of the dense subgraphs, as we vary parameters, including the number of genes and the distance.

  11. Separation of ion types in tandem mass spectrometry data interpretation -- a graph-theoretic approach.

    PubMed

    Yan, Bo; Pan, Chongle; Olman, Victor N; Hettich, Robert L; Xu, Ying

    2004-01-01

    Mass spectrometry is one of the most popular analytical techniques for identification of individual proteins in a protein mixture, one of the basic problems in proteomics. It identifies a protein through identifying its unique mass spectral pattern. While the problem is theoretically solvable, it remains a challenging problem computationally. One of the key challenges comes from the difficulty in distinguishing the N- and C-terminus ions, mostly b- and y-ions respectively. In this paper, we present a graph algorithm for solving the problem of separating bfrom y-ions in a set of mass spectra. We represent each spectral peak as a node and consider two types of edges: a type-1 edge connects two peaks possibly of the same ion types and a type-2 edge connects two peaks possibly of different ion types, predicted based on local information. The ion-separation problem is then formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, namely b-, y-ions and others respectively, so to maximize the total weight of type-1 edges while minimizing the total weight of type-2 edges within each subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME. We have tested PRIME on 18 data sets of high accurate FT-ICR tandem mass spectra and found that it achieved ~90% accuracy for separation of b- and y- ions.

  12. Differentially Private Frequent Subgraph Mining

    PubMed Central

    Xu, Shengzhi; Xiong, Li; Cheng, Xiang; Xiao, Ke

    2016-01-01

    Mining frequent subgraphs from a collection of input graphs is an important topic in data mining research. However, if the input graphs contain sensitive information, releasing frequent subgraphs may pose considerable threats to individual's privacy. In this paper, we study the problem of frequent subgraph mining (FGM) under the rigorous differential privacy model. We introduce a novel differentially private FGM algorithm, which is referred to as DFG. In this algorithm, we first privately identify frequent subgraphs from input graphs, and then compute the noisy support of each identified frequent subgraph. In particular, to privately identify frequent subgraphs, we present a frequent subgraph identification approach which can improve the utility of frequent subgraph identifications through candidates pruning. Moreover, to compute the noisy support of each identified frequent subgraph, we devise a lattice-based noisy support derivation approach, where a series of methods has been proposed to improve the accuracy of the noisy supports. Through formal privacy analysis, we prove that our DFG algorithm satisfies ε-differential privacy. Extensive experimental results on real datasets show that the DFG algorithm can privately find frequent subgraphs with high data utility. PMID:27616876

  13. High performance genetic algorithm for VLSI circuit partitioning

    NASA Astrophysics Data System (ADS)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  14. On size-constrained minimum s–t cut problems and size-constrained dense subgraph problems

    DOE PAGES

    Chen, Wenbin; Samatova, Nagiza F.; Stallmann, Matthias F.; ...

    2015-10-30

    In some application cases, the solutions of combinatorial optimization problems on graphs should satisfy an additional vertex size constraint. In this paper, we consider size-constrained minimum s–t cut problems and size-constrained dense subgraph problems. We introduce the minimum s–t cut with at-least-k vertices problem, the minimum s–t cut with at-most-k vertices problem, and the minimum s–t cut with exactly k vertices problem. We prove that they are NP-complete. Thus, they are not polynomially solvable unless P = NP. On the other hand, we also study the densest at-least-k-subgraph problem (DalkS) and the densest at-most-k-subgraph problem (DamkS) introduced by Andersen andmore » Chellapilla [1]. We present a polynomial time algorithm for DalkS when k is bounded by some constant c. We also present two approximation algorithms for DamkS. In conclusion, the first approximation algorithm for DamkS has an approximation ratio of n-1/k-1, where n is the number of vertices in the input graph. The second approximation algorithm for DamkS has an approximation ratio of O (n δ), for some δ < 1/3.« less

  15. Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks

    NASA Astrophysics Data System (ADS)

    Cui, Yaozu; Wang, Xingyuan; Eustace, Justine

    2014-12-01

    Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.

  16. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.

    PubMed

    Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2009-11-01

    Protein function prediction is one of the central problems in computational biology. We present a novel automated protein structure-based function prediction method using libraries of local residue packing patterns that are common to most proteins in a known functional family. Critical to this approach is the representation of a protein structure as a graph where residue vertices (residue name used as a vertex label) are connected by geometrical proximity edges. The approach employs two steps. First, it uses a fast subgraph mining algorithm to find all occurrences of family-specific labeled subgraphs for all well characterized protein structural and functional families. Second, it queries a new structure for occurrences of a set of motifs characteristic of a known family, using a graph index to speed up Ullman's subgraph isomorphism algorithm. The confidence of function inference from structure depends on the number of family-specific motifs found in the query structure compared with their distribution in a large non-redundant database of proteins. This method can assign a new structure to a specific functional family in cases where sequence alignments, sequence patterns, structural superposition and active site templates fail to provide accurate annotation.

  17. Induced subgraph searching for geometric model fitting

    NASA Astrophysics Data System (ADS)

    Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi

    2017-11-01

    In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.

  18. Faster Mass Spectrometry-based Protein Inference: Junction Trees are More Efficient than Sampling and Marginalization by Enumeration

    PubMed Central

    Serang, Oliver; Noble, William Stafford

    2012-01-01

    The problem of identifying the proteins in a complex mixture using tandem mass spectrometry can be framed as an inference problem on a graph that connects peptides to proteins. Several existing protein identification methods make use of statistical inference methods for graphical models, including expectation maximization, Markov chain Monte Carlo, and full marginalization coupled with approximation heuristics. We show that, for this problem, the majority of the cost of inference usually comes from a few highly connected subgraphs. Furthermore, we evaluate three different statistical inference methods using a common graphical model, and we demonstrate that junction tree inference substantially improves rates of convergence compared to existing methods. The python code used for this paper is available at http://noble.gs.washington.edu/proj/fido. PMID:22331862

  19. A new augmentation based algorithm for extracting maximal chordal subgraphs

    DOE PAGES

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2014-10-18

    If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’more » parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.« less

  20. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.

    PubMed

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2015-02-01

    A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.

  1. A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex

    PubMed Central

    Markov, N. T.; Ercsey-Ravasz, M. M.; Ribeiro Gomes, A. R.; Lamy, C.; Magrou, L.; Vezoli, J.; Misery, P.; Falchier, A.; Quilodran, R.; Gariel, M. A.; Sallet, J.; Gamanut, R.; Huissoud, C.; Clavagnier, S.; Giroud, P.; Sappey-Marinier, D.; Barone, P.; Dehay, C.; Toroczkai, Z.; Knoblauch, K.; Van Essen, D. C.; Kennedy, H.

    2014-01-01

    Retrograde tracer injections in 29 of the 91 areas of the macaque cerebral cortex revealed 1,615 interareal pathways, a third of which have not previously been reported. A weight index (extrinsic fraction of labeled neurons [FLNe]) was determined for each area-to-area pathway. Newly found projections were weaker on average compared with the known projections; nevertheless, the 2 sets of pathways had extensively overlapping weight distributions. Repeat injections across individuals revealed modest FLNe variability given the range of FLNe values (standard deviation <1 log unit, range 5 log units). The connectivity profile for each area conformed to a lognormal distribution, where a majority of projections are moderate or weak in strength. In the G29 × 29 interareal subgraph, two-thirds of the connections that can exist do exist. Analysis of the smallest set of areas that collects links from all 91 nodes of the G29 × 91 subgraph (dominating set analysis) confirms the dense (66%) structure of the cortical matrix. The G29 × 29 subgraph suggests an unexpectedly high incidence of unidirectional links. The directed and weighted G29 × 91 connectivity matrix for the macaque will be valuable for comparison with connectivity analyses in other species, including humans. It will also inform future modeling studies that explore the regularities of cortical networks. PMID:23010748

  2. An Improved Heuristic Method for Subgraph Isomorphism Problem

    NASA Astrophysics Data System (ADS)

    Xiang, Yingzhuo; Han, Jiesi; Xu, Haijiang; Guo, Xin

    2017-09-01

    This paper focus on the subgraph isomorphism (SI) problem. We present an improved genetic algorithm, a heuristic method to search the optimal solution. The contribution of this paper is that we design a dedicated crossover algorithm and a new fitness function to measure the evolution process. Experiments show our improved genetic algorithm performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, our algorithm outperforms the traditional tree search algorithms. We find that the performance of our improved genetic algorithm does not decrease as the number of nodes in prototype graphs.

  3. A Coding Method for Efficient Subgraph Querying on Vertex- and Edge-Labeled Graphs

    PubMed Central

    Zhu, Lei; Song, Qinbao; Guo, Yuchen; Du, Lei; Zhu, Xiaoyan; Wang, Guangtao

    2014-01-01

    Labeled graphs are widely used to model complex data in many domains, so subgraph querying has been attracting more and more attention from researchers around the world. Unfortunately, subgraph querying is very time consuming since it involves subgraph isomorphism testing that is known to be an NP-complete problem. In this paper, we propose a novel coding method for subgraph querying that is based on Laplacian spectrum and the number of walks. Our method follows the filtering-and-verification framework and works well on graph databases with frequent updates. We also propose novel two-step filtering conditions that can filter out most false positives and prove that the two-step filtering conditions satisfy the no-false-negative requirement (no dismissal in answers). Extensive experiments on both real and synthetic graphs show that, compared with six existing counterpart methods, our method can effectively improve the efficiency of subgraph querying. PMID:24853266

  4. Unsupervised object segmentation with a hybrid graph model (HGM).

    PubMed

    Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou

    2010-05-01

    In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.

  5. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.

    PubMed

    Xu, Andrew Wei

    2010-09-01

    In genome rearrangement, given a set of genomes G and a distance measure d, the median problem asks for another genome q that minimizes the total distance [Formula: see text]. This is a key problem in genome rearrangement based phylogenetic analysis. Although this problem is known to be NP-hard, we have shown in a previous article, on circular genomes and under the DCJ distance measure, that a family of patterns in the given genomes--represented by adequate subgraphs--allow us to rapidly find exact solutions to the median problem in a decomposition approach. In this article, we extend this result to the case of linear multichromosomal genomes, in order to solve more interesting problems on eukaryotic nuclear genomes. A multi-way capping problem in the linear multichromosomal case imposes an extra computational challenge on top of the difficulty in the circular case, and this difficulty has been underestimated in our previous study and is addressed in this article. We represent the median problem by the capped multiple breakpoint graph, extend the adequate subgraphs into the capped adequate subgraphs, and prove optimality-preserving decomposition theorems, which give us the tools to solve the median problem and the multi-way capping optimization problem together. We also develop an exact algorithm ASMedian-linear, which iteratively detects instances of (capped) adequate subgraphs and decomposes problems into subproblems. Tested on simulated data, ASMedian-linear can rapidly solve most problems with up to several thousand genes, and it also can provide optimal or near-optimal solutions to the median problem under the reversal/HP distance measures. ASMedian-linear is available at http://sites.google.com/site/andrewweixu .

  6. Discovering interesting molecular substructures for molecular classification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2010-06-01

    Given a set of molecular structure data preclassified into a number of classes, the molecular classification problem is concerned with the discovering of interesting structural patterns in the data so that "unseen" molecules not originally in the dataset can be accurately classified. To tackle the problem, interesting molecular substructures have to be discovered and this is done typically by first representing molecular structures in molecular graphs, and then, using graph-mining algorithms to discover frequently occurring subgraphs in them. These subgraphs are then used to characterize different classes for molecular classification. While such an approach can be very effective, it should be noted that a substructure that occurs frequently in one class may also does occur in another. The discovering of frequent subgraphs for molecular classification may, therefore, not always be the most effective. In this paper, we propose a novel technique called mining interesting substructures in molecular data for classification (MISMOC) that can discover interesting frequent subgraphs not just for the characterization of a molecular class but also for the distinguishing of it from the others. Using a test statistic, MISMOC screens each frequent subgraph to determine if they are interesting. For those that are interesting, their degrees of interestingness are determined using an information-theoretic measure. When classifying an unseen molecule, its structure is then matched against the interesting subgraphs in each class and a total interestingness measure for the unseen molecule to be classified into a particular class is determined, which is based on the interestingness of each matched subgraphs. The performance of MISMOC is evaluated using both artificial and real datasets, and the results show that it can be an effective approach for molecular classification.

  7. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines themore » scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.« less

  8. An annealed chaotic maximum neural network for bipartite subgraph problem.

    PubMed

    Wang, Jiahai; Tang, Zheng; Wang, Ronglong

    2004-04-01

    In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.

  9. SING: Subgraph search In Non-homogeneous Graphs

    PubMed Central

    2010-01-01

    Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516

  10. Community structure and scale-free collections of Erdős-Rényi graphs.

    PubMed

    Seshadhri, C; Kolda, Tamara G; Pinar, Ali

    2012-05-01

    Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.

  11. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  12. A graph lattice approach to maintaining and learning dense collections of subgraphs as image features.

    PubMed

    Saund, Eric

    2013-10-01

    Effective object and scene classification and indexing depend on extraction of informative image features. This paper shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction of a graph lattice—a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category. We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.

  13. Multilayer motif analysis of brain networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  14. Classification of urine sediment based on convolution neural network

    NASA Astrophysics Data System (ADS)

    Pan, Jingjing; Jiang, Cunbo; Zhu, Tiantian

    2018-04-01

    By designing a new convolution neural network framework, this paper breaks the constraints of the original convolution neural network framework requiring large training samples and samples of the same size. Move and cropping the input images, generate the same size of the sub-graph. And then, the generated sub-graph uses the method of dropout, increasing the diversity of samples and preventing the fitting generation. Randomly select some proper subset in the sub-graphic set and ensure that the number of elements in the proper subset is same and the proper subset is not the same. The proper subsets are used as input layers for the convolution neural network. Through the convolution layer, the pooling, the full connection layer and output layer, we can obtained the classification loss rate of test set and training set. In the red blood cells, white blood cells, calcium oxalate crystallization classification experiment, the classification accuracy rate of 97% or more.

  15. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  16. Eigenvector synchronization, graph rigidity and the molecule problemR

    PubMed Central

    Cucuringu, Mihai; Singer, Amit; Cowburn, David

    2013-01-01

    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ3, and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms. PMID:24432187

  17. Epidemics in networks: a master equation approach

    NASA Astrophysics Data System (ADS)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  18. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.

    PubMed

    He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei

    2014-01-01

    Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies.

  19. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    PubMed Central

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies. PMID:25350277

  20. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    PubMed

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  1. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  2. Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing

    2016-01-01

    Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.

  3. Learning about learning: Mining human brain sub-network biomarkers from fMRI data

    PubMed Central

    Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Singh, Ambuj K.

    2017-01-01

    Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in “resting state” employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions. PMID:29016686

  4. Learning about learning: Mining human brain sub-network biomarkers from fMRI data.

    PubMed

    Bogdanov, Petko; Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S; Wymbs, Nicholas F; Grafton, Scott T; Singh, Ambuj K

    2017-01-01

    Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.

  5. Simultaneously Discovering and Localizing Common Objects in Wild Images.

    PubMed

    Wang, Zhenzhen; Yuan, Junsong

    2018-09-01

    Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad experiments on image retrieval benchmarks, Holidays and Oxford5k data sets, to show that our proposed method, which considers both the similarity between query and reference images and also similarities among reference images, can help to improve the retrieval results significantly.

  6. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    NASA Astrophysics Data System (ADS)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  7. Islands and Bridges: Making Sense of Marked Nodes in Large Graphs

    DTIC Science & Technology

    2012-08-01

    time-evolving graphs. References [1] Nouf M. Kh. Alsudairy, Vijay V. Raghavan, Alaaeldin M. Hafez, and Hassan I Mathkour. Connection subgraphs: A survey...Riedy, David A. Bader, Karl Jiang, Pushkar Pande, , and Richa Sharma . Detecting communities from given seeds in social networks. Technical Report GT-CSE

  8. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  9. A simple method for finding the scattering coefficients of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Seth S.

    2015-09-15

    Quantum walks are roughly analogous to classical random walks, and similar to classical walks they have been used to find new (quantum) algorithms. When studying the behavior of large graphs or combinations of graphs, it is useful to find the response of a subgraph to signals of different frequencies. In doing so, we can replace an entire subgraph with a single vertex with variable scattering coefficients. In this paper, a simple technique for quickly finding the scattering coefficients of any discrete-time quantum graph will be presented. These scattering coefficients can be expressed entirely in terms of the characteristic polynomial ofmore » the graph’s time step operator. This is a marked improvement over previous techniques which have traditionally required finding eigenstates for a given eigenvalue, which is far more computationally costly. With the scattering coefficients we can easily derive the “impulse response” which is the key to predicting the response of a graph to any signal. This gives us a powerful set of tools for rapidly understanding the behavior of graphs or for reducing a large graph into its constituent subgraphs regardless of how they are connected.« less

  10. What Causal Forces Shape Internet Connectivity at the AS-level?

    DTIC Science & Technology

    2003-01-01

    business “peering relationship .” By focusing on the AS subgraph ASPC whose links repre- sent provider- customer relationships , we present an empirical... customer relationships may be determined in the actual Internet, we develop a new optimization-driven model for Internet growth at the ASPC level...among ASs. Two ASs are connected in an AS graph by a link only if they have a “peering relationship ” between them, e.g., provider- customer or peer-to

  11. Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.

    PubMed

    Cui, Licong; Bodenreider, Olivier; Shi, Jay; Zhang, Guo-Qiang

    2018-02-01

    We introduce a structural-lexical approach for auditing SNOMED CT using a combination of non-lattice subgraphs of the underlying hierarchical relations and enriched lexical attributes of fully specified concept names. Our goal is to develop a scalable and effective approach that automatically identifies missing hierarchical IS-A relations. Our approach involves 3 stages. In stage 1, all non-lattice subgraphs of SNOMED CT's IS-A hierarchical relations are extracted. In stage 2, lexical attributes of fully-specified concept names in such non-lattice subgraphs are extracted. For each concept in a non-lattice subgraph, we enrich its set of attributes with attributes from its ancestor concepts within the non-lattice subgraph. In stage 3, subset inclusion relations between the lexical attribute sets of each pair of concepts in each non-lattice subgraph are compared to existing IS-A relations in SNOMED CT. For concept pairs within each non-lattice subgraph, if a subset relation is identified but an IS-A relation is not present in SNOMED CT IS-A transitive closure, then a missing IS-A relation is reported. The September 2017 release of SNOMED CT (US edition) was used in this investigation. A total of 14,380 non-lattice subgraphs were extracted, from which we suggested a total of 41,357 missing IS-A relations. For evaluation purposes, 200 non-lattice subgraphs were randomly selected from 996 smaller subgraphs (of size 4, 5, or 6) within the "Clinical Finding" and "Procedure" sub-hierarchies. Two domain experts confirmed 185 (among 223) suggested missing IS-A relations, a precision of 82.96%. Our results demonstrate that analyzing the lexical features of concepts in non-lattice subgraphs is an effective approach for auditing SNOMED CT. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Unapparent Information Revelation: Text Mining for Counterterrorism

    NASA Astrophysics Data System (ADS)

    Srihari, Rohini K.

    Unapparent information revelation (UIR) is a special case of text mining that focuses on detecting possible links between concepts across multiple text documents by generating an evidence trail explaining the connection. A traditional search involving, for example, two or more person names will attempt to find documents mentioning both these individuals. This research focuses on a different interpretation of such a query: what is the best evidence trail across documents that explains a connection between these individuals? For example, all may be good golfers. A generalization of this task involves query terms representing general concepts (e.g. indictment, foreign policy). Previous approaches to this problem have focused on graph mining involving hyperlinked documents, and link analysis exploiting named entities. A new robust framework is presented, based on (i) generating concept chain graphs, a hybrid content representation, (ii) performing graph matching to select candidate subgraphs, and (iii) subsequently using graphical models to validate hypotheses using ranked evidence trails. We adapt the DUC data set for cross-document summarization to evaluate evidence trails generated by this approach

  13. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Andy; Sanders, Geoffrey; Henson, Van

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less

  14. Event-based criteria in GT-STAF information indices: theory, exploratory diversity analysis and QSPR applications.

    PubMed

    Barigye, S J; Marrero-Ponce, Y; Martínez López, Y; Martínez Santiago, O; Torrens, F; García Domenech, R; Galvez, J

    2013-01-01

    Versatile event-based approaches for the definition of novel information theory-based indices (IFIs) are presented. An event in this context is the criterion followed in the "discovery" of molecular substructures, which in turn serve as basis for the construction of the generalized incidence and relations frequency matrices, Q and F, respectively. From the resultant F, Shannon's, mutual, conditional and joint entropy-based IFIs are computed. In previous reports, an event named connected subgraphs was presented. The present study is an extension of this notion, in which we introduce other events, namely: terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach's subgraphs, MACCs, E-state and substructure fingerprints and, finally, Ghose and Crippen atom-types for hydrophobicity and refractivity. Moreover, we define magnitude-based IFIs, introducing the use of the magnitude criterion in the definition of mutual, conditional and joint entropy-based IFIs. We also discuss the use of information-theoretic parameters as a measure of the dissimilarity of codified structural information of molecules. Finally, a comparison of the statistics for QSPR models obtained with the proposed IFIs and DRAGON's molecular descriptors for two physicochemical properties log P and log K of 34 derivatives of 2-furylethylenes demonstrates similar to better predictive ability than the latter.

  15. Node similarity within subgraphs of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Penner, Orion; Sood, Vishal; Musso, Gabriel; Baskerville, Kim; Grassberger, Peter; Paczuski, Maya

    2008-06-01

    We propose a biologically motivated quantity, twinness, to evaluate local similarity between nodes in a network. The twinness of a pair of nodes is the number of connected, labeled subgraphs of size n in which the two nodes possess identical neighbours. The graph animal algorithm is used to estimate twinness for each pair of nodes (for subgraph sizes n=4 to n=12) in four different protein interaction networks (PINs). These include an Escherichia coli PIN and three Saccharomyces cerevisiae PINs - each obtained using state-of-the-art high-throughput methods. In almost all cases, the average twinness of node pairs is vastly higher than that expected from a null model obtained by switching links. For all n, we observe a difference in the ratio of type A twins (which are unlinked pairs) to type B twins (which are linked pairs) distinguishing the prokaryote E. coli from the eukaryote S. cerevisiae. Interaction similarity is expected due to gene duplication, and whole genome duplication paralogues in S. cerevisiae have been reported to co-cluster into the same complexes. Indeed, we find that these paralogous proteins are over-represented as twins compared to pairs chosen at random. These results indicate that twinness can detect ancestral relationships from currently available PIN data.

  16. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-04-01

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph K_{N,N} has a MSC of N minors, from which K_{N+1} is identified as the largest clique minor of K_{N,N}. The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.

  17. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    DOE PAGES

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-02-23

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less

  18. Finding undetected protein associations in cell signaling by belief propagation.

    PubMed

    Bailly-Bechet, M; Borgs, C; Braunstein, A; Chayes, J; Dagkessamanskaia, A; François, J-M; Zecchina, R

    2011-01-11

    External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.

  19. Theoretic derivation of directed acyclic subgraph algorithm and comparisons with message passing algorithm

    NASA Astrophysics Data System (ADS)

    Ha, Jeongmok; Jeong, Hong

    2016-07-01

    This study investigates the directed acyclic subgraph (DAS) algorithm, which is used to solve discrete labeling problems much more rapidly than other Markov-random-field-based inference methods but at a competitive accuracy. However, the mechanism by which the DAS algorithm simultaneously achieves competitive accuracy and fast execution speed, has not been elucidated by a theoretical derivation. We analyze the DAS algorithm by comparing it with a message passing algorithm. Graphical models, inference methods, and energy-minimization frameworks are compared between DAS and message passing algorithms. Moreover, the performances of DAS and other message passing methods [sum-product belief propagation (BP), max-product BP, and tree-reweighted message passing] are experimentally compared.

  20. Coordination of networked systems on digraphs with multiple leaders via pinning control

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Lewis, Frank L.

    2012-02-01

    It is well known that achieving consensus among a group of multi-vehicle systems by local distributed control is feasible if and only if all nodes in the communication digraph are reachable from a single (root) node. In this article, we take into account a more general case that the communication digraph of the networked multi-vehicle systems is weakly connected and has two or more zero-in-degree and strongly connected subgraphs, i.e. there are two or more leader groups. Based on the pinning control strategy, the feasibility problem of achieving second-order controlled consensus is studied. At first, a necessary and sufficient condition is given when the topology is fixed. Then the method to design the controller and the rule to choose the pinned vehicles are discussed. The proposed approach allows us to extend several existing results for undirected graphs to directed balanced graphs. A sufficient condition is proposed in the case where the coupling topology is variable. As an illustrative example, a second-order controlled consensus scheme is applied to coordinate the movement of networked multiple mobile robots.

  1. Mining integrated semantic networks for drug repositioning opportunities

    PubMed Central

    Mullen, Joseph; Tipney, Hannah

    2016-01-01

    Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions. PMID:26844016

  2. Trapped surfaces and emergent curved space in the Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Caravelli, Francesco; Hamma, Alioscia; Markopoulou, Fotini; Riera, Arnau

    2012-02-01

    A Bose-Hubbard model on a dynamical lattice was introduced in previous work as a spin system analogue of emergent geometry and gravity. Graphs with regions of high connectivity in the lattice were identified as candidate analogues of spacetime geometries that contain trapped surfaces. We carry out a detailed study of these systems and show explicitly that the highly connected subgraphs trap matter. We do this by solving the model in the limit of no back-reaction of the matter on the lattice, and for states with certain symmetries that are natural for our problem. We find that in this case the problem reduces to a one-dimensional Hubbard model on a lattice with variable vertex degree and multiple edges between the same two vertices. In addition, we obtain a (discrete) differential equation for the evolution of the probability density of particles which is closed in the classical regime. This is a wave equation in which the vertex degree is related to the local speed of propagation of probability. This allows an interpretation of the probability density of particles similar to that in analogue gravity systems: matter inside this analogue system sees a curved spacetime. We verify our analytic results by numerical simulations. Finally, we analyze the dependence of localization on a gradual, rather than abrupt, falloff of the vertex degree on the boundary of the highly connected region and find that matter is localized in and around that region.

  3. Complexity and approximability for a problem of intersecting of proximity graphs with minimum number of equal disks

    NASA Astrophysics Data System (ADS)

    Kobylkin, Konstantin

    2016-10-01

    Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.

  4. Topographic Spreading Analysis of an Empirical Sex Workers' Network

    NASA Astrophysics Data System (ADS)

    Bjell, Johannes; Canright, Geoffrey; Engø-Monsen, Kenth; Remple, Valencia P.

    The problem of epidemic spreading over networks has received considerable attention in recent years, due both to its intrinsic intellectual challenge and to its practical importance. A good recent summary of such work may be found in Newman (8), while (9) gives an outstanding example of a non-trivial prediction which is obtained from explicitly modeling the network in the epidemic spreading. In the language of mathematicians and computer scientists, a network of nodes connected by edges is called a graph. Most work on epidemic spreading over networks focuses on whole-graph properties, such as the percentage of infected nodes at long time. Two of us have, in contrast, focused on understanding the spread of an infection over time and space (the network) (61; 63; 62). This work involves decomposing any given network into subgraphs called regions (61). Regions are precisely defined as disjoint subgraphs which may be viewed as coarse-grained units of infection—in that, once one node in a region is infected, the progress of the infection over the remainder of the region is relatively fast and predictable (63). We note that this approach is based on the ‘Susceptible-Infected’ (SI) model of infection, in which nodes, once infected, are never cured. This model is reasonable for some infections, such as HIV—which is one of the diseases studied here. We also study gonorrhea and chlamydia, for which a more appropriate model is Susceptible-Infected-Susceptible (SIS) (67) (since nodes can be cured); we discuss the limitations of our approach for these cases below.

  5. RNA Graph Partitioning for the Discovery of RNA Modularity: A Novel Application of Graph Partition Algorithm to Biology

    PubMed Central

    Elmetwaly, Shereef; Schlick, Tamar

    2014-01-01

    Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578

  6. Site- and bond-percolation thresholds in K_{n,n}-based lattices: Vulnerability of quantum annealers to random qubit and coupler failures on chimera topologies.

    PubMed

    Melchert, O; Katzgraber, Helmut G; Novotny, M A

    2016-04-01

    We estimate the critical thresholds of bond and site percolation on nonplanar, effectively two-dimensional graphs with chimeralike topology. The building blocks of these graphs are complete and symmetric bipartite subgraphs of size 2n, referred to as K_{n,n} graphs. For the numerical simulations we use an efficient union-find-based algorithm and employ a finite-size scaling analysis to obtain the critical properties for both bond and site percolation. We report the respective percolation thresholds for different sizes of the bipartite subgraph and verify that the associated universality class is that of standard two-dimensional percolation. For the canonical chimera graph used in the D-Wave Systems Inc. quantum annealer (n=4), we discuss device failure in terms of network vulnerability, i.e., we determine the critical fraction of qubits and couplers that can be absent due to random failures prior to losing large-scale connectivity throughout the device.

  7. NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.

    PubMed

    Schmidt, Matthew C; Rocha, Andrea M; Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R; Samatova, Nagiza F

    2012-01-01

    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS.

  8. NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    PubMed Central

    Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R.; Samatova, Nagiza F.

    2012-01-01

    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS. PMID:22589706

  9. Super (a*, d*)-ℋ-antimagic total covering of second order of shackle graphs

    NASA Astrophysics Data System (ADS)

    Hesti Agustin, Ika; Dafik; Nisviasari, Rosanita; Prihandini, R. M.

    2017-12-01

    Let H be a simple and connected graph. A shackle of graph H, denoted by G = shack(H, v, n), is a graph G constructed by non-trivial graphs H 1, H 2, …, H n such that, for every 1 ≤ s, t ≤ n, H s and Ht have no a common vertex with |s - t| ≥ 2 and for every 1 ≤ i ≤ n - 1, Hi and H i+1 share exactly one common vertex v, called connecting vertex, and those k - 1 connecting vertices are all distinct. The graph G is said to be an (a*, d*)-H-antimagic total graph of second order if there exist a bijective function f : V(G) ∪ E(G) → {1, 2, …, |V(G)| + |E(G)|} such that for all subgraphs isomorphic to H, the total H-weights W(H)=\\displaystyle {\\sum }v\\in V(H)f(v)+\\displaystyle {\\sum }e\\in E(H)f(e) form an arithmetic sequence of second order of \\{a* ,a* +d* ,a* +3d* ,a* +6d* ,\\ldots ,a* +(\\frac{{n}2-n}{2})d* \\}, where a* and d* are positive integers and n is the number of all subgraphs isomorphic to H. An (a*, d*)-H-antimagic total labeling of second order f is called super if the smallest labels appear in the vertices. In this paper, we study a super (a*, d*)-H antimagic total labeling of second order of G = shack(H, v, n) by using a partition technique of second order.

  10. Quality Assurance of NCI Thesaurus by Mining Structural-Lexical Patterns

    PubMed Central

    Abeysinghe, Rashmie; Brooks, Michael A.; Talbert, Jeffery; Licong, Cui

    2017-01-01

    Quality assurance of biomedical terminologies such as the National Cancer Institute (NCI) Thesaurus is an essential part of the terminology management lifecycle. We investigate a structural-lexical approach based on non-lattice subgraphs to automatically identify missing hierarchical relations and missing concepts in the NCI Thesaurus. We mine six structural-lexical patterns exhibiting in non-lattice subgraphs: containment, union, intersection, union-intersection, inference-contradiction, and inference union. Each pattern indicates a potential specific type of error and suggests a potential type of remediation. We found 809 non-lattice subgraphs with these patterns in the NCI Thesaurus (version 16.12d). Domain experts evaluated a random sample of 50 small non-lattice subgraphs, of which 33 were confirmed to contain errors and make correct suggestions (33/50 = 66%). Of the 25 evaluated subgraphs revealing multiple patterns, 22 were verified correct (22/25 = 88%). This shows the effectiveness of our structurallexical-pattern-based approach in detecting errors and suggesting remediations in the NCI Thesaurus. PMID:29854100

  11. Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease

    PubMed Central

    Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156

  12. The Construction of {P}_{2}\\vartriangleright H-antimagic graph using smaller edge-antimagic vertex labeling

    NASA Astrophysics Data System (ADS)

    Prihandini, Rafiantika M.; Agustin, I. H.; Dafik

    2018-04-01

    In this paper we use simple and non trivial graph. If there exist a bijective function g:V(G) \\cup E(G)\\to \\{1,2,\\ldots,|V(G)|+|E(G)|\\}, such that for all subgraphs {P}2\\vartriangleright H of G isomorphic to H, then graph G is called an (a, b)-{P}2\\vartriangleright H-antimagic total graph. Furthermore, we can consider the total {P}2\\vartriangleright H-weights W({P}2\\vartriangleright H)={\\sum }v\\in V({P2\\vartriangleright H)}f(v)+{\\sum }e\\in E({P2\\vartriangleright H)}f(e) which should form an arithmetic sequence {a, a + d, a + 2d, …, a + (n ‑ 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, b)-{P}2\\vartriangleright H antimagic total labeling for graph operation of comb product namely of G=L\\vartriangleright H, where L is a (b, d*)-edge antimagic vertex labeling graph and H is a connected graph.

  13. Sequential Monte Carlo for Maximum Weight Subgraphs with Application to Solving Image Jigsaw Puzzles.

    PubMed

    Adluru, Nagesh; Yang, Xingwei; Latecki, Longin Jan

    2015-05-01

    We consider a problem of finding maximum weight subgraphs (MWS) that satisfy hard constraints in a weighted graph. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., pairs of nodes that cannot belong to the same solution. Our main contribution is a novel inference approach for solving this problem in a sequential monte carlo (SMC) sampling framework. Usually in an SMC framework there is a natural ordering of the states of the samples. The order typically depends on observations about the states or on the annealing setup used. In many applications (e.g., image jigsaw puzzle problems), all observations (e.g., puzzle pieces) are given at once and it is hard to define a natural ordering. Therefore, we relax the assumption of having ordered observations about states and propose a novel SMC algorithm for obtaining maximum a posteriori estimate of a high-dimensional posterior distribution. This is achieved by exploring different orders of states and selecting the most informative permutations in each step of the sampling. Our experimental results demonstrate that the proposed inference framework significantly outperforms loopy belief propagation in solving the image jigsaw puzzle problem. In particular, our inference quadruples the accuracy of the puzzle assembly compared to that of loopy belief propagation.

  14. Sequential Monte Carlo for Maximum Weight Subgraphs with Application to Solving Image Jigsaw Puzzles

    PubMed Central

    Adluru, Nagesh; Yang, Xingwei; Latecki, Longin Jan

    2015-01-01

    We consider a problem of finding maximum weight subgraphs (MWS) that satisfy hard constraints in a weighted graph. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., pairs of nodes that cannot belong to the same solution. Our main contribution is a novel inference approach for solving this problem in a sequential monte carlo (SMC) sampling framework. Usually in an SMC framework there is a natural ordering of the states of the samples. The order typically depends on observations about the states or on the annealing setup used. In many applications (e.g., image jigsaw puzzle problems), all observations (e.g., puzzle pieces) are given at once and it is hard to define a natural ordering. Therefore, we relax the assumption of having ordered observations about states and propose a novel SMC algorithm for obtaining maximum a posteriori estimate of a high-dimensional posterior distribution. This is achieved by exploring different orders of states and selecting the most informative permutations in each step of the sampling. Our experimental results demonstrate that the proposed inference framework significantly outperforms loopy belief propagation in solving the image jigsaw puzzle problem. In particular, our inference quadruples the accuracy of the puzzle assembly compared to that of loopy belief propagation. PMID:26052182

  15. Prediction of missing common genes for disease pairs using network based module separation on incomplete human interactome.

    PubMed

    Akram, Pakeeza; Liao, Li

    2017-12-06

    Identification of common genes associated with comorbid diseases can be critical in understanding their pathobiological mechanism. This work presents a novel method to predict missing common genes associated with a disease pair. Searching for missing common genes is formulated as an optimization problem to minimize network based module separation from two subgraphs produced by mapping genes associated with disease onto the interactome. Using cross validation on more than 600 disease pairs, our method achieves significantly higher average receiver operating characteristic ROC Score of 0.95 compared to a baseline ROC score 0.60 using randomized data. Missing common genes prediction is aimed to complete gene set associated with comorbid disease for better understanding of biological intervention. It will also be useful for gene targeted therapeutics related to comorbid diseases. This method can be further considered for prediction of missing edges to complete the subgraph associated with disease pair.

  16. Growth and structure of the World Wide Web: Towards realistic modeling

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2002-08-01

    We simulate evolution of the World Wide Web from the dynamic rules incorporating growth, bias attachment, and rewiring. We show that the emergent double-hierarchical structure with distinct distributions of out- and in-links is comparable with the observed empirical data when the control parameter (average graph flexibility β) is kept in the range β=3-4. We then explore the Web graph by simulating (a) Web crawling to determine size and depth of connected components, and (b) a random walker that discovers the structure of connected subgraphs with dominant attractor and promoter nodes. A random walker that adapts its move strategy to mimic local node linking preferences is shown to have a short access time to "important" nodes on the Web graph.

  17. Limit of a nonpreferential attachment multitype network model

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2017-02-01

    Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.

  18. Optimal Co-segmentation of Tumor in PET-CT Images with Context Information

    PubMed Central

    Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.

    2014-01-01

    PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127

  19. VIGOR: Interactive Visual Exploration of Graph Query Results.

    PubMed

    Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng

    2018-01-01

    Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.

  20. Scale-free models for the structure of business firm networks.

    PubMed

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  1. Image Analysis and Modeling

    DTIC Science & Technology

    1975-05-01

    place "subgraphs" with more complicated subgraphs. There have beer many re- sults reported which extend string-grammar theorems to web grammar...W. Bacus and E. E. Gose , "Leukocyte Pattern Recognition," IEEE SMC-2. No. 2, pp. 513-536, September 1972. [4] J. K. Hawkins

  2. A PVS Graph Theory Library

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Sjogren, Jon A.

    1998-01-01

    This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all four notions of connectedness.

  3. Convergence analysis of directed signed networks via an M-matrix approach

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan

    2018-04-01

    This paper aims at solving convergence problems on directed signed networks with multiple nodes, where interactions among nodes are described by signed digraphs. The convergence analysis is achieved by matrix-theoretic and graph-theoretic tools, in which M-matrices play a central role. The fundamental digon sign-symmetry assumption upon signed digraphs can be removed with the proposed analysis approach. Furthermore, necessary and sufficient conditions are established for semi-positive and positive stabilities of Laplacian matrices of signed digraphs, respectively. A benefit of this result is that given strong connectivity, a directed signed network can achieve bipartite consensus (or state stability) if and only if the signed digraph associated with it is structurally balanced (or unbalanced). If the interactions between nodes are described by a signed digraph only with spanning trees, a directed signed network can achieve interval bipartite consensus (or state stability) if and only if the signed digraph contains a structurally balanced (or unbalanced) rooted subgraph. Simulations are given to illustrate the developed results by considering signed networks associated with digon sign-unsymmetric signed digraphs.

  4. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  5. Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.

    PubMed

    Itoh, Takayuki; Klein, Karsten

    2015-01-01

    Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.

  6. CUDA Enabled Graph Subset Examiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Jeremy T.

    2016-12-22

    Finding Godsil-McKay switching sets in graphs is one way to demonstrate that a specific graph is not determined by its spectrum--the eigenvalues of its adjacency matrix. An important area of active research in pure mathematics is determining which graphs are determined by their spectra, i.e. when the spectrum of the adjacency matrix uniquely determines the underlying graph. We are interested in exploring the spectra of graphs in the Johnson scheme and specifically seek to determine which of these graphs are determined by their spectra. Given a graph G, a Godsil-McKay switching set is an induced subgraph H on 2k verticesmore » with the following properties: I) H is regular, ii) every vertex in G/H is adjacent to either 0, k, or 2k vertices of H, and iii) at least one vertex in G/H is adjacent to k vertices in H. The software package examines each subset of a user specified size to determine whether or not it satisfies those 3 conditions. The software makes use of the massive parallel processing power of CUDA enabled GPUs. It also exploits the vertex transitivity of graphs in the Johnson scheme by reasoning that if G has a Godsil-McKay switching set, then it has a switching set which includes vertex 1. While the code (in its current state) is tuned to this specific problem, the method of examining each induced subgraph of G can be easily re-written to check for any user specified conditions on the subgraphs and can therefore be used much more broadly.« less

  7. A tensorial approach to access cognitive workload related to mental arithmetic from EEG functional connectivity estimates.

    PubMed

    Dimitriadis, S I; Sun, Yu; Kwok, K; Laskaris, N A; Bezerianos, A

    2013-01-01

    The association of functional connectivity patterns with particular cognitive tasks has long been a topic of interest in neuroscience, e.g., studies of functional connectivity have demonstrated its potential use for decoding various brain states. However, the high-dimensionality of the pairwise functional connectivity limits its usefulness in some real-time applications. In the present study, the methodology of tensor subspace analysis (TSA) is used to reduce the initial high-dimensionality of the pairwise coupling in the original functional connectivity network to a space of condensed descriptive power, which would significantly decrease the computational cost and facilitate the differentiation of brain states. We assess the feasibility of the proposed method on EEG recordings when the subject was performing mental arithmetic task which differ only in the difficulty level (easy: 1-digit addition v.s. 3-digit additions). Two different cortical connective networks were detected, and by comparing the functional connectivity networks in different work states, it was found that the task-difficulty is best reflected in the connectivity structure of sub-graphs extending over parietooccipital sites. Incorporating this data-driven information within original TSA methodology, we succeeded in predicting the difficulty level from connectivity patterns in an efficient way that can be implemented so as to work in real-time.

  8. Scale-free models for the structure of business firm networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H. Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a “nucleus,” which is a small well-connected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a “bulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution λ increases, and disappear for λ≥3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  9. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding.

    PubMed

    Guturu, Parthasarathy; Dantu, Ram

    2008-06-01

    Many graph- and set-theoretic problems, because of their tremendous application potential and theoretical appeal, have been well investigated by the researchers in complexity theory and were found to be NP-hard. Since the combinatorial complexity of these problems does not permit exhaustive searches for optimal solutions, only near-optimal solutions can be explored using either various problem-specific heuristic strategies or metaheuristic global-optimization methods, such as simulated annealing, genetic algorithms, etc. In this paper, we propose a unified evolutionary algorithm (EA) to the problems of maximum clique finding, maximum independent set, minimum vertex cover, subgraph and double subgraph isomorphism, set packing, set partitioning, and set cover. In the proposed approach, we first map these problems onto the maximum clique-finding problem (MCP), which is later solved using an evolutionary strategy. The proposed impatient EA with probabilistic tabu search (IEA-PTS) for the MCP integrates the best features of earlier successful approaches with a number of new heuristics that we developed to yield a performance that advances the state of the art in EAs for the exploration of the maximum cliques in a graph. Results of experimentation with the 37 DIMACS benchmark graphs and comparative analyses with six state-of-the-art algorithms, including two from the smaller EA community and four from the larger metaheuristics community, indicate that the IEA-PTS outperforms the EAs with respect to a Pareto-lexicographic ranking criterion and offers competitive performance on some graph instances when individually compared to the other heuristic algorithms. It has also successfully set a new benchmark on one graph instance. On another benchmark suite called Benchmarks with Hidden Optimal Solutions, IEA-PTS ranks second, after a very recent algorithm called COVER, among its peers that have experimented with this suite.

  10. Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.

    PubMed

    Miannay, Bertrand; Minvielle, Stéphane; Magrangeas, Florence; Guziolowski, Carito

    2018-03-21

    The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them include the directionality and underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by considering the network logic, however our approach does not require a prior species selection according to their gene expression level. We start by modeling the biological network representing its underlying logic using Logic Programming. This model points to reachable network discrete states that maximize a notion of harmony between the molecular species active or inactive possible states and the directionality of the pathways reactions according to their activator or inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states. These components allow us to decompose a large-scale network into subgraphs and their molecular species state assignments have different degrees of similarity when compared to the same GEP. We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer. We discover that the NCI-PID MM graph had 15 independent components, and when confronted to 611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy profiles.

  11. Super (a, d)-Cycle-Antimagic Total Labeling on Triangular Ladder Graph and Generalized Jahangir Graph

    NASA Astrophysics Data System (ADS)

    Roswitha, Mania; Amanda, Anna; Sri Martini, Titin; Winarno, Bowo

    2017-06-01

    Let G(V (G), E(G)) be a finite simple graph with |V (G)| = G and |E(G)| = eG . Let H be a subgraph of G. The graph G is said to be (a, d)-H-antimagic covering if every edge in G belongs to at least one of the subgraphs G isomorphic to H and there is a bijective function ξ : V ∪ E → {1, 2, …,νG + eG } such that all subgraphs H‧ isomorphic to H, the H‧ -weights w(H‧)=∑v∈V(H‧)ξ(v)+∑e∈E(H‧)ξ(e) constitutes an arithmetic progression {a, a + d, a + 2d, …, a + (t - 1)d}, where a and d are positive integers and t is the number of subgraphs G isomorphic to H. Such a labeling is called super if the vertices contain the smallest possible labels. This research provides super (a, d)-C 3-antimagic total labelng on triangular ladder TLn for n ≥ 2 and super (a, d)-C s+2-antimagic total labeling on generalized Jahangir Jk,s for k ≥ 2 and s ≥ 2.

  12. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  13. Super (a,d)-H-antimagic covering of möbius ladder graph

    NASA Astrophysics Data System (ADS)

    Indriyani, Novia; Sri Martini, Titin

    2018-04-01

    Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H 1, H 2, …, Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ :V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\}. The H‑-weights for all subgraphs H‑ isomorphic to H ω ({H}^{\\prime })={\\sum }v\\in V({H^{\\prime })}ξ (v)+{\\sum }e\\in E({H^{\\prime })}ξ (e). The weights of subgraphs constitutes an arithmatic progression {a, a + d, …, a + (t ‑ 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ (V(G))=\\{1,2,\\ldots,|V(G)|\\} then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd.

  14. On k-ary n-cubes: Theory and applications

    NASA Technical Reports Server (NTRS)

    Mao, Weizhen; Nicol, David M.

    1994-01-01

    Many parallel processing networks can be viewed as graphs called k-ary n-cubes, whose special cases include rings, hypercubes and toruses. In this paper, combinatorial properties of k-ary n-cubes are explored. In particular, the problem of characterizing the subgraph of a given number of nodes with the maximum edge count is studied. These theoretical results are then used to compute a lower bounding function in branch-and-bound partitioning algorithms and to establish the optimality of some irregular partitions.

  15. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    PubMed

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  16. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks

    PubMed Central

    Grierson, Claire S.

    2018-01-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941

  17. Renal cortex segmentation using optimal surface search with novel graph construction.

    PubMed

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2011-01-01

    In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.

  18. Biological network motif detection and evaluation

    PubMed Central

    2011-01-01

    Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624

  19. A graph theoretic approach to scene matching

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1991-01-01

    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.

  20. A nonlinear merging protocol for consensus in multi-agent systems on signed and weighted graphs

    NASA Astrophysics Data System (ADS)

    Feng, Shasha; Wang, Li; Li, Yijia; Sun, Shiwen; Xia, Chengyi

    2018-01-01

    In this paper, we investigate the multi-agent consensus for networks with undirected graphs which are not connected, especially for the signed graph in which some edge weights are positive and some edges have negative weights, and the negative-weight graph whose edge weights are negative. We propose a novel nonlinear merging consensus protocol to drive the states of all agents to converge to the same state zero which is not dependent upon the initial states of agents. If the undirected graph whose edge weights are positive is connected, then the states of all agents converge to the same state more quickly when compared to most other protocols. While the undirected graph whose edge weights might be positive or negative is unconnected, the states of all agents can still converge to the same state zero under the premise that the undirected graph can be divided into several connected subgraphs with more than one node. Furthermore, we also discuss the impact of parameter r presented in our protocol. Current results can further deepen the understanding of consensus processes for multi-agent systems.

  1. Characterization of known protein complexes using k-connectivity and other topological measures

    PubMed Central

    Gallagher, Suzanne R; Goldberg, Debra S

    2015-01-01

    Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183

  2. Partial Information Community Detection in a Multilayer Network

    DTIC Science & Technology

    2016-06-01

    Network was taken from the CORE Lab at the Naval Postgraduate School [27]. Facebook dataset We will use a subgraph of the Facebook network to build a...larger synthetic multilayer network. We want to use this Facebook data as a way to introduce a real world example of a network into our synthetic network...This data is provided by the Standford Large Network Dataset Collection [28]. This is a large anonymous subgraph of Facebook . It contains over 4,000

  3. The Development of Novel Chemical Fragment-Based Descriptors Using Frequent Common Subgraph Mining Approach and Their Application in QSAR Modeling.

    PubMed

    Khashan, Raed; Zheng, Weifan; Tropsha, Alexander

    2014-03-01

    We present a novel approach to generating fragment-based molecular descriptors. The molecules are represented by labeled undirected chemical graph. Fast Frequent Subgraph Mining (FFSM) is used to find chemical-fragments (subgraphs) that occur in at least a subset of all molecules in a dataset. The collection of frequent subgraphs (FSG) forms a dataset-specific descriptors whose values for each molecule are defined by the number of times each frequent fragment occurs in this molecule. We have employed the FSG descriptors to develop variable selection k Nearest Neighbor (kNN) QSAR models of several datasets with binary target property including Maximum Recommended Therapeutic Dose (MRTD), Salmonella Mutagenicity (Ames Genotoxicity), and P-Glycoprotein (PGP) data. Each dataset was divided into training, test, and validation sets to establish the statistical figures of merit reflecting the model validated predictive power. The classification accuracies of models for both training and test sets for all datasets exceeded 75 %, and the accuracy for the external validation sets exceeded 72 %. The model accuracies were comparable or better than those reported earlier in the literature for the same datasets. Furthermore, the use of fragment-based descriptors affords mechanistic interpretation of validated QSAR models in terms of essential chemical fragments responsible for the compounds' target property. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Searching social networks for subgraph patterns

    NASA Astrophysics Data System (ADS)

    Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises

    2013-06-01

    Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.

  5. Machine-Learning Classifier for Patients with Major Depressive Disorder: Multifeature Approach Based on a High-Order Minimum Spanning Tree Functional Brain Network.

    PubMed

    Guo, Hao; Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%.

  6. Machine-Learning Classifier for Patients with Major Depressive Disorder: Multifeature Approach Based on a High-Order Minimum Spanning Tree Functional Brain Network

    PubMed Central

    Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%. PMID:29387141

  7. Topological structure of dictionary graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Krzemiński, Mark

    2009-09-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  8. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  9. Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks

    PubMed Central

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R.

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a “rich club” of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931

  10. OLSVis: an animated, interactive visual browser for bio-ontologies

    PubMed Central

    2012-01-01

    Background More than one million terms from biomedical ontologies and controlled vocabularies are available through the Ontology Lookup Service (OLS). Although OLS provides ample possibility for querying and browsing terms, the visualization of parts of the ontology graphs is rather limited and inflexible. Results We created the OLSVis web application, a visualiser for browsing all ontologies available in the OLS database. OLSVis shows customisable subgraphs of the OLS ontologies. Subgraphs are animated via a real-time force-based layout algorithm which is fully interactive: each time the user makes a change, e.g. browsing to a new term, hiding, adding, or dragging terms, the algorithm performs smooth and only essential reorganisations of the graph. This assures an optimal viewing experience, because subsequent screen layouts are not grossly altered, and users can easily navigate through the graph. URL: http://ols.wordvis.com Conclusions The OLSVis web application provides a user-friendly tool to visualise ontologies from the OLS repository. It broadens the possibilities to investigate and select ontology subgraphs through a smooth visualisation method. PMID:22646023

  11. L-GRAAL: Lagrangian graphlet-based network aligner.

    PubMed

    Malod-Dognin, Noël; Pržulj, Nataša

    2015-07-01

    Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  12. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads.

    PubMed

    Lima, Leandro; Sinaimeri, Blerina; Sacomoto, Gustavo; Lopez-Maestre, Helene; Marchet, Camille; Miele, Vincent; Sagot, Marie-France; Lacroix, Vincent

    2017-01-01

    The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. The results of this work are threefold. First, we introduce a formal model for representing high copy-number and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous version of KisSplice (Sacomoto et al. in WABI, pp 99-111, 1), Trinity (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and Oases (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality of our work when compared to other transcriptome evaluation methods is that we use only the topology of the DBG, and not read nor coverage information. We show that our simple method gives better results than Rsem-Eval (Li et al. in Genome Biol 15(12):553, 4) and TransRate (Smith-Unna et al. in Genome Res 26(8):1134-1144, 5) on both real and simulated datasets for detecting chimeras, and therefore is able to capture assembly errors missed by these methods.

  13. The hypergraph regularity method and its applications

    PubMed Central

    Rödl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y.

    2005-01-01

    Szemerédi's regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, combinatorial geometry, combinatorial number theory, and theoretical computer science. Here, we report on recent advances in the regularity method for k-uniform hypergraphs, for arbitrary k ≥ 2. This method, purely combinatorial in nature, gives alternative proofs of density theorems originally due to E. Szemerédi, H. Furstenberg, and Y. Katznelson. Further results in extremal combinatorics also have been obtained with this approach. The two main components of the regularity method for k-uniform hypergraphs, the regularity lemma and the counting lemma, have been obtained recently: Rödl and Skokan (based on earlier work of Frankl and Rödl) generalized Szemerédi's regularity lemma to k-uniform hypergraphs, and Nagle, Rödl, and Schacht succeeded in proving a counting lemma accompanying the Rödl–Skokan hypergraph regularity lemma. The counting lemma is proved by reducing the counting problem to a simpler one previously investigated by Kohayakawa, Rödl, and Skokan. Similar results were obtained independently by W. T. Gowers, following a different approach. PMID:15919821

  14. Discrete geometric analysis of message passing algorithm on graphs

    NASA Astrophysics Data System (ADS)

    Watanabe, Yusuke

    2010-04-01

    We often encounter probability distributions given as unnormalized products of non-negative functions. The factorization structures are represented by hypergraphs called factor graphs. Such distributions appear in various fields, including statistics, artificial intelligence, statistical physics, error correcting codes, etc. Given such a distribution, computations of marginal distributions and the normalization constant are often required. However, they are computationally intractable because of their computational costs. One successful approximation method is Loopy Belief Propagation (LBP) algorithm. The focus of this thesis is an analysis of the LBP algorithm. If the factor graph is a tree, i.e. having no cycle, the algorithm gives the exact quantities. If the factor graph has cycles, however, the LBP algorithm does not give exact results and possibly exhibits oscillatory and non-convergent behaviors. The thematic question of this thesis is "How the behaviors of the LBP algorithm are affected by the discrete geometry of the factor graph?" The primary contribution of this thesis is the discovery of a formula that establishes the relation between the LBP, the Bethe free energy and the graph zeta function. This formula provides new techniques for analysis of the LBP algorithm, connecting properties of the graph and of the LBP and the Bethe free energy. We demonstrate applications of the techniques to several problems including (non) convexity of the Bethe free energy, the uniqueness and stability of the LBP fixed point. We also discuss the loop series initiated by Chertkov and Chernyak. The loop series is a subgraph expansion of the normalization constant, or partition function, and reflects the graph geometry. We investigate theoretical natures of the series. Moreover, we show a partial connection between the loop series and the graph zeta function.

  15. Modular biological function is most effectively captured by combining molecular interaction data types.

    PubMed

    Ames, Ryan M; Macpherson, Jamie I; Pinney, John W; Lovell, Simon C; Robertson, David L

    2013-01-01

    Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.

  16. A novel information cascade model in online social networks

    NASA Astrophysics Data System (ADS)

    Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu

    2016-02-01

    The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.

  17. Percolation critical polynomial as a graph invariant

    DOE PAGES

    Scullard, Christian R.

    2012-10-18

    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0; 1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer withmore » increasing subgraph size. In this paper, I show how the critical polynomial can be viewed as a graph invariant like the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p c = 0:52440572:::, which differs from the numerical value, p c = 0:52440503(5), by only 6:9 X 10 -7.« less

  18. [A retrieval method of drug molecules based on graph collapsing].

    PubMed

    Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z

    2018-04-18

    To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1.32% higher than WCSE on these metrics for top-10 retrieval results, respectively. Moreover, several retrieval cases were presented to intuitively compare with WCSE. The results of the above comparative study demonstrated that the proposed method outperformed the existing method with regard to accuracy and effectiveness. This paper proposes a graph-similarity-based retrieval approach for medicine information. To obtain satisfactory retrieval results, an isomorphism-based algorithm is proposed for dominant subgraph selection based on the subgraph overlapping analysis, as well as an effective and efficient hypergraph representation of molecules. Experiment results demonstrate the effectiveness of the proposed approach.

  19. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.

    PubMed

    Sendiña-Nadal, I; Danziger, M M; Wang, Z; Havlin, S; Boccaletti, S

    2016-02-18

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  20. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.

    2016-02-01

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  1. Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.

    PubMed

    Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi

    2014-02-10

    This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.

  2. Path scanning for the detection of anomalous subgraphs and use of DNS requests and host agents for anomaly/change detection and network situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, Joshua Charles; Fisk, Michael Edward; Brugh, Alexander William

    A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalousmore » behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.« less

  3. Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming

    NASA Astrophysics Data System (ADS)

    Gutin, Gregory; Kim, Eun Jung; Soleimanfallah, Arezou; Szeider, Stefan; Yeo, Anders

    The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U ⊎ V, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V |, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes W[1]-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.

  4. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    PubMed

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. © 2015 FEBS.

  5. FINAL REPORT (MILESTONE DATE 9/30/11) FOR SUBCONTRACT NO. B594099 NUMERICAL METHODS FOR LARGE-SCALE DATA FACTORIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Sterck, H

    2011-10-18

    The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead ofmore » the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be submitted some time later in 2011 to a data mining conference. PI Hans De Sterck has developed a new optimization algorithm for canonical tensor approximation, formulating an extension of the nonlinear GMRES method to optimization problems. Numerical results for tensors with up to 8 modes show that this new method is efficient for sparse and dense tensors. He has written a paper on this which has been submitted to the SIAM Journal on Scientific Computing. PI Hans De Sterck has further developed his new optimization algorithm for canonical tensor approximation, formulating an extension in terms of steepest-descent preconditioning, which makes the approach generally applicable for nonlinear optimization. He has written a paper on this extension which has been submitted to Numerical Linear Algebra with Applications.« less

  6. From near to eternity: Spin-glass planting, tiling puzzles, and constraint-satisfaction problems

    NASA Astrophysics Data System (ADS)

    Hamze, Firas; Jacob, Darryl C.; Ochoa, Andrew J.; Perera, Dilina; Wang, Wenlong; Katzgraber, Helmut G.

    2018-04-01

    We present a methodology for generating Ising Hamiltonians of tunable complexity and with a priori known ground states based on a decomposition of the model graph into edge-disjoint subgraphs. The idea is illustrated with a spin-glass model defined on a cubic lattice, where subproblems, whose couplers are restricted to the two values {-1 ,+1 } , are specified on unit cubes and are parametrized by their local degeneracy. The construction is shown to be equivalent to a type of three-dimensional constraint-satisfaction problem known as the tiling puzzle. By varying the proportions of subproblem types, the Hamiltonian can span a dramatic range of typical computational complexity, from fairly easy to many orders of magnitude more difficult than prototypical bimodal and Gaussian spin glasses in three space dimensions. We corroborate this behavior via experiments with different algorithms and discuss generalizations and extensions to different types of graphs.

  7. Topics on data transmission problem in software definition network

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Liang, Li; Xu, Tianwei; Gan, Jianhou

    2017-08-01

    In normal computer networks, the data transmission between two sites go through the shortest path between two corresponding vertices. However, in the setting of software definition network (SDN), it should monitor the network traffic flow in each site and channel timely, and the data transmission path between two sites in SDN should consider the congestion in current networks. Hence, the difference of available data transmission theory between normal computer network and software definition network is that we should consider the prohibit graph structures in SDN, and these forbidden subgraphs represent the sites and channels in which data can't be passed by the serious congestion. Inspired by theoretical analysis of an available data transmission in SDN, we consider some computational problems from the perspective of the graph theory. Several results determined in the paper imply the sufficient conditions of data transmission in SDN in the various graph settings.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Kathleen E.; Humble, Travis S.

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less

  9. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-02-02

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving net- works spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with promi- nent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphsmore » in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a “Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named “Relative Selectivity" that is used to se- lect between different query processing strategies. Our experiments performed on real online news, network traffic stream and a syn- thetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.« less

  10. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-05-27

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in amore » continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.« less

  11. Optimizing graph-based patterns to extract biomedical events from the literature

    PubMed Central

    2015-01-01

    In BioNLP-ST 2013 We participated in the BioNLP 2013 shared tasks on event extraction. Our extraction method is based on the search for an approximate subgraph isomorphism between key context dependencies of events and graphs of input sentences. Our system was able to address both the GENIA (GE) task focusing on 13 molecular biology related event types and the Cancer Genetics (CG) task targeting a challenging group of 40 cancer biology related event types with varying arguments concerning 18 kinds of biological entities. In addition to adapting our system to the two tasks, we also attempted to integrate semantics into the graph matching scheme using a distributional similarity model for more events, and evaluated the event extraction impact of using paths of all possible lengths as key context dependencies beyond using only the shortest paths in our system. We achieved a 46.38% F-score in the CG task (ranking 3rd) and a 48.93% F-score in the GE task (ranking 4th). After BioNLP-ST 2013 We explored three ways to further extend our event extraction system in our previously published work: (1) We allow non-essential nodes to be skipped, and incorporated a node skipping penalty into the subgraph distance function of our approximate subgraph matching algorithm. (2) Instead of assigning a unified subgraph distance threshold to all patterns of an event type, we learned a customized threshold for each pattern. (3) We implemented the well-known Empirical Risk Minimization (ERM) principle to optimize the event pattern set by balancing prediction errors on training data against regularization. When evaluated on the official GE task test data, these extensions help to improve the extraction precision from 62% to 65%. However, the overall F-score stays equivalent to the previous performance due to a 1% drop in recall. PMID:26551594

  12. Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2017-10-01

    The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.

  13. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  14. Probabilistic graphlet transfer for photo cropping.

    PubMed

    Zhang, Luming; Song, Mingli; Zhao, Qi; Liu, Xiao; Bu, Jiajun; Chen, Chun

    2013-02-01

    As one of the most basic photo manipulation processes, photo cropping is widely used in the printing, graphic design, and photography industries. In this paper, we introduce graphlets (i.e., small connected subgraphs) to represent a photo's aesthetic features, and propose a probabilistic model to transfer aesthetic features from the training photo onto the cropped photo. In particular, by segmenting each photo into a set of regions, we construct a region adjacency graph (RAG) to represent the global aesthetic feature of each photo. Graphlets are then extracted from the RAGs, and these graphlets capture the local aesthetic features of the photos. Finally, we cast photo cropping as a candidate-searching procedure on the basis of a probabilistic model, and infer the parameters of the cropped photos using Gibbs sampling. The proposed method is fully automatic. Subjective evaluations have shown that it is preferred over a number of existing approaches.

  15. Non-isolated Resolving Sets of certain Graphs Cartesian Product with a Path

    NASA Astrophysics Data System (ADS)

    Hasibuan, I. M.; Salman, A. N. M.; Saputro, S. W.

    2018-04-01

    Let G be a connected, simple, and finite graph. For an ordered subset W = {w 1 , w 2 , · · ·, wk } of vertices in a graph G and a vertex v of G, the metric representation of v with respect to W is the k-vector r(v|W ) = (d(v, w 1), d(v, w 2), · · ·, d(v, wk )). The set W is called a resolving set for G if every vertex of G has a distinct representation. The minimum cardinality of W is called the metric dimension of G, denoted by dim(G). If the induced subgraph < W> has no isolated vertices, then W is called a non-isolated resolving set. The minimum cardinality of non-isolated resolving set of G is called the non-isolated resolving number of G, denoted by nr(G). In this paper, we consider H\\square {P}n that is a graph obtained from Cartesian product between a connected graph H and a path Pn . We determine nr(H\\square {P}n), for some classes of H, including cycles, complete graphs, complete bipartite graphs, and friendship graphs.

  16. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  17. Graph-theoretic approach to quantum correlations.

    PubMed

    Cabello, Adán; Severini, Simone; Winter, Andreas

    2014-01-31

    Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.

  18. A novel sub-shot segmentation method for user-generated video

    NASA Astrophysics Data System (ADS)

    Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.

  19. Multi-Level Anomaly Detection on Time-Varying Graph Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Robert A; Collins, John P; Ferragut, Erik M

    This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, thismore » multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less

  20. Predicting and Detecting Emerging Cyberattack Patterns Using StreamWorks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Choudhury, Sutanay; Feo, John T.

    2014-06-30

    The number and sophistication of cyberattacks on industries and governments have dramatically grown in recent years. To counter this movement, new advanced tools and techniques are needed to detect cyberattacks in their early stages such that defensive actions may be taken to avert or mitigate potential damage. From a cybersecurity analysis perspective, detecting cyberattacks may be cast as a problem of identifying patterns in computer network traffic. Logically and intuitively, these patterns may take on the form of a directed graph that conveys how an attack or intrusion propagates through the computers of a network. Such cyberattack graphs could providemore » cybersecurity analysts with powerful conceptual representations that are natural to express and analyze. We have been researching and developing graph-centric approaches and algorithms for dynamic cyberattack detection. The advanced dynamic graph algorithms we are developing will be packaged into a streaming network analysis framework known as StreamWorks. With StreamWorks, a scientist or analyst may detect and identify precursor events and patterns as they emerge in complex networks. This analysis framework is intended to be used in a dynamic environment where network data is streamed in and is appended to a large-scale dynamic graph. Specific graphical query patterns are decomposed and collected into a graph query library. The individual decomposed subpatterns in the library are continuously and efficiently matched against the dynamic graph as it evolves to identify and detect early, partial subgraph patterns. The scalable emerging subgraph pattern algorithms will match on both structural and semantic network properties.« less

  1. Counting Triangles to Sum Squares

    ERIC Educational Resources Information Center

    DeMaio, Joe

    2012-01-01

    Counting complete subgraphs of three vertices in complete graphs, yields combinatorial arguments for identities for sums of squares of integers, odd integers, even integers and sums of the triangular numbers.

  2. Discovering protein complexes in protein interaction networks via exploring the weak ties effect

    PubMed Central

    2012-01-01

    Background Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. Results To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. Conclusions We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes. PMID:23046740

  3. Reproducibility of graph metrics of human brain structural networks.

    PubMed

    Duda, Jeffrey T; Cook, Philip A; Gee, James C

    2014-01-01

    Recent interest in human brain connectivity has led to the application of graph theoretical analysis to human brain structural networks, in particular white matter connectivity inferred from diffusion imaging and fiber tractography. While these methods have been used to study a variety of patient populations, there has been less examination of the reproducibility of these methods. A number of tractography algorithms exist and many of these are known to be sensitive to user-selected parameters. The methods used to derive a connectivity matrix from fiber tractography output may also influence the resulting graph metrics. Here we examine how these algorithm and parameter choices influence the reproducibility of proposed graph metrics on a publicly available test-retest dataset consisting of 21 healthy adults. The dice coefficient is used to examine topological similarity of constant density subgraphs both within and between subjects. Seven graph metrics are examined here: mean clustering coefficient, characteristic path length, largest connected component size, assortativity, global efficiency, local efficiency, and rich club coefficient. The reproducibility of these network summary measures is examined using the intraclass correlation coefficient (ICC). Graph curves are created by treating the graph metrics as functions of a parameter such as graph density. Functional data analysis techniques are used to examine differences in graph measures that result from the choice of fiber tracking algorithm. The graph metrics consistently showed good levels of reproducibility as measured with ICC, with the exception of some instability at low graph density levels. The global and local efficiency measures were the most robust to the choice of fiber tracking algorithm.

  4. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary nodemore » in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.« less

  5. On P2 ⋄ Pn -supermagic labeling of edge corona product of cycle and path graph

    NASA Astrophysics Data System (ADS)

    Yulianto, R.; Martini, Titin S.

    2018-04-01

    A simple graph G = (V, E) admits a H-covering, where H is subgraph of G, if every edge in E belongs to a subgraph of G isomorphic to H. Graph G is H-magic if there is a total labeling f:V(G)\\cup E(G)\\to 1,2,\\ldots,|V(G)|+|E(G)|, such that each subgraph {H}{\\prime }=({V}{\\prime },{E}{\\prime }) of G isomorphic to H and satisfying f{({H}{\\prime })}=def{\\sum }\\upsilon \\in {V{\\prime }}f(\\upsilon )+{\\sum }e\\in {E{\\prime }}f(e)=m(f) where m(f) is a constant magic sum. Additionaly, G admits H-supermagic if f(V)=1,2,\\ldots,|V|. The edge corona {C}n \\diamond {P}n of Cn and Pn is defined as the graph obtained by taking one copy of Cn and n copies of Pn , and then joining two end-vertices of the i-th edge of Cn to every vertex in the i-th copy of Pn . This research aim is to find H-supermagic covering on an edge corona product of cycle and path graph {C}n \\diamond {P}n where H is {P}2 \\diamond {P}n. We use k-balanced multiset to solve our reserarch. Here, we find that an edge corona product of cycle and path graph {C}n \\diamond {P}n is {P}2 \\diamond {P}n supermagic for n > 3.

  6. A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.

    This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less

  7. A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization

    DOE PAGES

    Bridges, Robert A.; Collins, John P.; Ferragut, Erik M.; ...

    2016-01-01

    This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating node probabilities, and these related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitatesmore » intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. Furthermore, to illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less

  8. Improved visibility of character conflicts in quasi-median networks with the EMPOP NETWORK software

    PubMed Central

    Zimmermann, Bettina; Röck, Alexander W.; Dür, Arne; Parson, Walther

    2014-01-01

    Aim To provide a valuable tool for graphical representation of mitochondrial DNA (mtDNA) data that enables visual emphasis on complex substructures within the network to highlight possible ambiguities and errors. Method We applied the new NETWORK graphical user interface, available via EMPOP (European DNA Profiling Group Mitochondrial DNA Population Database; www.empop.org) by means of two mtDNA data sets that were submitted for quality control. Results The quasi-median network torsi of the two data sets resulted in complex reticulations, suggesting ambiguous data. To check the corresponding raw data, accountable nodes and connecting branches of the network could be identified by highlighting induced subgraphs with concurrent dimming of their complements. This is achieved by accentuating the relevant substructures in the network: mouse clicking on a node displays a list of all mtDNA haplotypes included in that node; the selection of a branch specifies the mutation(s) connecting two nodes. It is indicated to evaluate these mutations by means of the raw data. Conclusion Inspection of the raw data confirmed the presence of phantom mutations due to suboptimal electrophoresis conditions and data misinterpretation. The network software proved to be a powerful tool to highlight problematic data and guide quality control of mtDNA data tables. PMID:24778097

  9. Clique-based data mining for related genes in a biomedical database.

    PubMed

    Matsunaga, Tsutomu; Yonemori, Chikara; Tomita, Etsuji; Muramatsu, Masaaki

    2009-07-01

    Progress in the life sciences cannot be made without integrating biomedical knowledge on numerous genes in order to help formulate hypotheses on the genetic mechanisms behind various biological phenomena, including diseases. There is thus a strong need for a way to automatically and comprehensively search from biomedical databases for related genes, such as genes in the same families and genes encoding components of the same pathways. Here we address the extraction of related genes by searching for densely-connected subgraphs, which are modeled as cliques, in a biomedical relational graph. We constructed a graph whose nodes were gene or disease pages, and edges were the hyperlink connections between those pages in the Online Mendelian Inheritance in Man (OMIM) database. We obtained over 20,000 sets of related genes (called 'gene modules') by enumerating cliques computationally. The modules included genes in the same family, genes for proteins that form a complex, and genes for components of the same signaling pathway. The results of experiments using 'metabolic syndrome'-related gene modules show that the gene modules can be used to get a coherent holistic picture helpful for interpreting relations among genes. We presented a data mining approach extracting related genes by enumerating cliques. The extracted gene sets provide a holistic picture useful for comprehending complex disease mechanisms.

  10. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    PubMed

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  11. Spectrum of walk matrix for Koch network and its application

    NASA Astrophysics Data System (ADS)

    Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi

    2015-06-01

    Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.

  12. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    PubMed

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  13. Augmenting computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  14. On the star partition dimension of comb product of cycle and path

    NASA Astrophysics Data System (ADS)

    Alfarisi, Ridho; Darmaji

    2017-08-01

    Let G = (V, E) be a connected graphs with vertex set V(G), edge set E(G) and S ⊆ V(G). Given an ordered partition Π = {S1, S2, S3, …, Sk} of the vertex set V of G, the representation of a vertex v ∈ V with respect to Π is the vector r(v|Π) = (d(v, S1), d(v, S2), …, d(v, Sk)), where d(v, Sk) represents the distance between the vertex v and the set Sk and d(v, Sk) = min{d(v, x)|x ∈ Sk }. A partition Π of V(G) is a resolving partition if different vertices of G have distinct representations, i.e., for every pair of vertices u, v ∈ V(G), r(u|Π) ≠ r(v|Π). The minimum k of Π resolving partition is a partition dimension of G, denoted by pd(G). The resolving partition Π = {S1, S2, S3, …, Sk } is called a star resolving partition for G if it is a resolving partition and each subgraph induced by Si, 1 ≤ i ≤ k, is a star. The minimum k for which there exists a star resolving partition of V(G) is the star partition dimension of G, denoted by spd(G). Finding the star partition dimension of G is classified to be a NP-Hard problem. In this paper, we will show that the partition dimension of comb product of cycle and path namely Cm⊳Pn and Pn⊳Cm for n ≥ 2 and m ≥ 3.

  15. Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks

    PubMed Central

    2014-01-01

    Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226

  16. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.

    2017-12-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  17. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari

    2017-07-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  18. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  19. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2017-07-04

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  20. Generalized monogamy of contextual inequalities from the no-disturbance principle.

    PubMed

    Ramanathan, Ravishankar; Soeda, Akihito; Kurzyński, Paweł; Kaszlikowski, Dagomir

    2012-08-03

    In this Letter, we demonstrate that the property of monogamy of Bell violations seen for no-signaling correlations in composite systems can be generalized to the monogamy of contextuality in single systems obeying the Gleason property of no disturbance. We show how one can construct monogamies for contextual inequalities by using the graph-theoretic technique of vertex decomposition of a graph representing a set of measurements into subgraphs of suitable independence numbers that themselves admit a joint probability distribution. After establishing that all the subgraphs that are chordal graphs admit a joint probability distribution, we formulate a precise graph-theoretic condition that gives rise to the monogamy of contextuality. We also show how such monogamies arise within quantum theory for a single four-dimensional system and interpret violation of these relations in terms of a violation of causality. These monogamies can be tested with current experimental techniques.

  1. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  2. Assembly planning based on subassembly extraction

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Shin, Yeong Gil

    1990-01-01

    A method is presented for the automatic determination of assembly partial orders from a liaison graph representation of an assembly through the extraction of preferred subassemblies. In particular, the authors show how to select a set of tentative subassemblies by decomposing a liaison graph into a set of subgraphs based on feasibility and difficulty of disassembly, how to evaluate each of the tentative subassemblies in terms of assembly cost using the subassembly selection indices, and how to construct a hierarchical partial order graph (HPOG) as an assembly plan. The method provides an approach to assembly planning by identifying spatial parallelism in assembly as a means of constructing temporal relationships among assembly operations and solves the problem of finding a cost-effective assembly plan in a flexible environment. A case study of the assembly planning of a mechanical assembly is presented.

  3. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application.

    PubMed

    Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J; Torrens, Francisco

    2012-11-01

    In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ([Formula: see text]) of a molecular graph (MG) with respect to a given event (E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub-graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns (n) and rows (m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ(i), can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ(i) for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.

  4. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  5. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  6. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  7. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text

    PubMed Central

    Xin, Yu; Hochberg, Ephraim; Joshi, Rohit; Uzuner, Ozlem; Szolovits, Peter

    2015-01-01

    Objective Extracting medical knowledge from electronic medical records requires automated approaches to combat scalability limitations and selection biases. However, existing machine learning approaches are often regarded by clinicians as black boxes. Moreover, training data for these automated approaches at often sparsely annotated at best. The authors target unsupervised learning for modeling clinical narrative text, aiming at improving both accuracy and interpretability. Methods The authors introduce a novel framework named subgraph augmented non-negative tensor factorization (SANTF). In addition to relying on atomic features (e.g., words in clinical narrative text), SANTF automatically mines higher-order features (e.g., relations of lymphoid cells expressing antigens) from clinical narrative text by converting sentences into a graph representation and identifying important subgraphs. The authors compose a tensor using patients, higher-order features, and atomic features as its respective modes. We then apply non-negative tensor factorization to cluster patients, and simultaneously identify latent groups of higher-order features that link to patient clusters, as in clinical guidelines where a panel of immunophenotypic features and laboratory results are used to specify diagnostic criteria. Results and Conclusion SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified latent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate the latent groups of higher-order features. PMID:25862765

  8. Exploring the structure and function of temporal networks with dynamic graphlets

    PubMed Central

    Hulovatyy, Y.; Chen, H.; Milenković, T.

    2015-01-01

    Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480

  9. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  10. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE PAGES

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; ...

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  11. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  12. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE PAGES

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...

    2017-07-10

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  13. Scalable Faceted Ranking in Tagging Systems

    NASA Astrophysics Data System (ADS)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  14. Computing the Edge-Neighbour-Scattering Number of Graphs

    NASA Astrophysics Data System (ADS)

    Wei, Zongtian; Qi, Nannan; Yue, Xiaokui

    2013-11-01

    A set of edges X is subverted from a graph G by removing the closed neighbourhood N[X] from G. We denote the survival subgraph by G=X. An edge-subversion strategy X is called an edge-cut strategy of G if G=X is disconnected, a single vertex, or empty. The edge-neighbour-scattering number of a graph G is defined as ENS(G) = max{ω(G/X)-|X| : X is an edge-cut strategy of G}, where w(G=X) is the number of components of G=X. This parameter can be used to measure the vulnerability of networks when some edges are failed, especially spy networks and virus-infected networks. In this paper, we prove that the problem of computing the edge-neighbour-scattering number of a graph is NP-complete and give some upper and lower bounds for this parameter.

  15. Significant Scales in Community Structure

    NASA Astrophysics Data System (ADS)

    Traag, V. A.; Krings, G.; van Dooren, P.

    2013-10-01

    Many complex networks show signs of modular structure, uncovered by community detection. Although many methods succeed in revealing various partitions, it remains difficult to detect at what scale some partition is significant. This problem shows foremost in multi-resolution methods. We here introduce an efficient method for scanning for resolutions in one such method. Additionally, we introduce the notion of ``significance'' of a partition, based on subgraph probabilities. Significance is independent of the exact method used, so could also be applied in other methods, and can be interpreted as the gain in encoding a graph by making use of a partition. Using significance, we can determine ``good'' resolution parameters, which we demonstrate on benchmark networks. Moreover, optimizing significance itself also shows excellent performance. We demonstrate our method on voting data from the European Parliament. Our analysis suggests the European Parliament has become increasingly ideologically divided and that nationality plays no role.

  16. Network Reliability: The effect of local network structure on diffusive processes

    PubMed Central

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2014-01-01

    This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321

  17. Research on Some Bus Transport Networks with Random Overlapping Clique Structure

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian

    2008-11-01

    On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.

  18. Spatial Fingerprints of Community Structure in Human Interaction Network for an Extensive Set of Large-Scale Regions

    PubMed Central

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization. PMID:25993329

  19. Top-K Interesting Subgraph Discovery in Information Networks

    DTIC Science & Technology

    2014-03-03

    Integrative Biomarker Discovery for Breast Cancer Metastasis from Gene Expression and Protein Interaction Data Using Error-tolerant Pattern Mining” at...Jiawei Han¶ ∗Microsoft, India . Email: gmanish@microsoft.com †State University of New York at Buffalo. Email: jing@buffalo.edu ‡University of California

  20. An effective trust-based recommendation method using a novel graph clustering algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin

    2015-10-01

    Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.

  1. Latent geometry of bipartite networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  2. Layer-by-layer growth of vertex graph of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-09-01

    The growth form for the vertex graph of Penrose tiling is found to be a regular decagon. The lower and upper bounds for this form, coinciding with it, are strictly proven. A fractal character of layer-by-layer growth is revealed for some subgraphs of the vertex graph of Penrose tiling.

  3. Approximate Subgraph Isomorphism for Image Localization (Author’s Manuscript)

    DTIC Science & Technology

    2016-02-18

    a working database for feature matching methods is nearly impossible to generate. In a proof of feasibility, Bansal et. al. [2] claim that overhead...of images in mountainous terrain. In Computer Vision–ECCV 2012, pages 517–530. Springer, 2012. 1 [2] M. Bansal , H. S. Sawhney, H. Cheng, and K

  4. A Natural Language Interface Concordant with a Knowledge Base.

    PubMed

    Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young

    2016-01-01

    The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively.

  5. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  6. Residuals-Based Subgraph Detection with Cue Vertices

    DTIC Science & Technology

    2015-11-30

    Workshop, 2012, pp. 129–132. [5] M. E. J. Newman , “Finding community structure in networks using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, no...from Data, vol. 1, no. 1, 2007. [7] M. W. Mahoney , L. Orecchia, and N. K. Vishnoi, “A spectral algorithm for improving graph partitions,” CoRR, vol. abs

  7. Network Approach to Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Sharma, Amitabh; Bashan, Amir; Barabasi, Alber-Laszlo

    2014-03-01

    Human diseases could be viewed as perturbations of the underlying biological system. A thorough understanding of the topological and dynamical properties of the biological system is crucial to explain the mechanisms of many complex diseases. Recently network-based approaches have provided a framework for integrating multi-dimensional biological data that results in a better understanding of the pathophysiological state of complex diseases. Here we provide a network-based framework to improve the diagnosis of complex diseases. This framework is based on the integration of transcriptomics and the interactome. We analyze the overlap between the differentially expressed (DE) genes and disease genes (DGs) based on their locations in the molecular interaction network (''interactome''). Disease genes and their protein products tend to be much more highly connected than random, hence defining a disease sub-graph (called disease module) in the interactome. DE genes, even though different from the known set of DGs, may be significantly associated with the disease when considering their closeness to the disease module in the interactome. This new network approach holds the promise to improve the diagnosis of patients who cannot be diagnosed using conventional tools. Support was provided by HL066289 and HL105339 grants from the U.S. National Institutes of Health.

  8. PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes.

    PubMed

    Vielva, Luis; de Toro, María; Lanza, Val F; de la Cruz, Fernando

    2017-12-01

    PLACNET is a graph-based tool for reconstruction of plasmids from next generation sequence pair-end datasets. PLACNET graphs contain two types of nodes (assembled contigs and reference genomes) and two types of edges (scaffold links and homology to references). Manual pruning of the graphs is a necessary requirement in PLACNET, but this is difficult for users without solid bioinformatic background. PLACNETw, a webtool based on PLACNET, provides an interactive graphic interface, automates BLAST searches, and extracts the relevant information for decision making. It allows a user with domain expertise to visualize the scaffold graphs and related information of contigs as well as reference sequences, so that the pruning operations can be done interactively from a personal computer without the need for additional tools. After successful pruning, each plasmid becomes a separate connected component subgraph. The resulting data are automatically downloaded by the user. PLACNETw is freely available at https://castillo.dicom.unican.es/upload/. delacruz@unican.es. A tutorial video and several solved examples are available at https://castillo.dicom.unican.es/placnetw_video/ and https://castillo.dicom.unican.es/examples/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Streaming data analytics via message passing with application to graph algorithms

    DOE PAGES

    Plimpton, Steven J.; Shead, Tim

    2014-05-06

    The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less

  10. Structure-preserving model reduction of large-scale logistics networks. Applications for supply chains

    NASA Astrophysics Data System (ADS)

    Scholz-Reiter, B.; Wirth, F.; Dashkovskiy, S.; Makuschewitz, T.; Schönlein, M.; Kosmykov, M.

    2011-12-01

    We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.

  11. Game Theory in Fleet Management

    NASA Astrophysics Data System (ADS)

    Dulai, Tibor; Jaskó, Szilárd; Muhi, Dániel

    2008-11-01

    In this survey we attempt to apply the results of cooperative game theory on fleet management problems. We deal with the aspect of a fleet where the members have their own goal, however the fleet has a common purpose too. These goals are to reach all destinations and get back to the center as quickly as possible. If we draw the map of the area-which contains the destination points and their environment-as a graph, we should determinate circles in it for each member of the fleet. Separating the nodes for each member, we should find Hamilton-circles of the sub-graphs. How to separate the destination points between the fleet members? How to route the members? What happens if there is an accident on a road which changes the way of a member? It may influence the other members' route too. What to communicate for getting the relevant information? How to change the routes in real time? We use cooperative game theory to find the solution.

  12. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  13. Towards comprehensive structural motif mining for better fold annotation in the "twilight zone" of sequence dissimilarity

    PubMed Central

    Jia, Yi; Huan, Jun; Buhr, Vincent; Zhang, Jintao; Carayannopoulos, Leonidas N

    2009-01-01

    Background Automatic identification of structure fingerprints from a group of diverse protein structures is challenging, especially for proteins whose divergent amino acid sequences may fall into the "twilight-" or "midnight-" zones where pair-wise sequence identities to known sequences fall below 25% and sequence-based functional annotations often fail. Results Here we report a novel graph database mining method and demonstrate its application to protein structure pattern identification and structure classification. The biologic motivation of our study is to recognize common structure patterns in "immunoevasins", proteins mediating virus evasion of host immune defense. Our experimental study, using both viral and non-viral proteins, demonstrates the efficiency and efficacy of the proposed method. Conclusion We present a theoretic framework, offer a practical software implementation for incorporating prior domain knowledge, such as substitution matrices as studied here, and devise an efficient algorithm to identify approximate matched frequent subgraphs. By doing so, we significantly expanded the analytical power of sophisticated data mining algorithms in dealing with large volume of complicated and noisy protein structure data. And without loss of generality, choice of appropriate compatibility matrices allows our method to be easily employed in domains where subgraph labels have some uncertainty. PMID:19208148

  14. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  15. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  16. Generalizing Experimental Findings

    DTIC Science & Technology

    2015-06-01

    ity.” In graphical terms, these assumptions may require several d-separation tests on several sub-graphs. It is utterly unimaginable therefore that...Education) (a) (Salary)(Education) (Skill) (b) S ( Test ) YX ZZ YX Figure 1: (a) A transportability model in which a post-treatment variable Z is S-admissible...observational studies to estimate population treatment ef- fects. Journal Royal Statistical Society: Series A (Statistics in Society) Forthcoming, doi

  17. Alignment of Tractograms As Graph Matching.

    PubMed

    Olivetti, Emanuele; Sharmin, Nusrat; Avesani, Paolo

    2016-01-01

    The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.

  18. Ground States of Random Spanning Trees on a D-Wave 2X

    NASA Astrophysics Data System (ADS)

    Hall, J. S.; Hobl, L.; Novotny, M. A.; Michielsen, Kristel

    The performances of two D-Wave 2 machines (476 and 496 qubits) and of a 1097-qubit D-Wave 2X were investigated. Each chip has a Chimera interaction graph calG . Problem input consists of values for the fields hj and for the two-qubit interactions Ji , j of an Ising spin-glass problem formulated on calG . Output is returned in terms of a spin configuration {sj } , with sj = +/- 1 . We generated random spanning trees (RSTs) uniformly distributed over all spanning trees of calG . On the 476-qubit D-Wave 2, RSTs were generated on the full chip with Ji , j = - 1 and hj = 0 and solved one thousand times. The distribution of solution energies and the average magnetization of each qubit were determined. On both the 476- and 1097-qubit machines, four identical spanning trees were generated on each quadrant of the chip. The statistical independence of these regions was investigated. In another study, on the D-Wave 2X, one hundred RSTs with random Ji , j ∈ { - 1 , 1 } and hj = 0 were generated on the full chip. Each RST problem was solved one hundred times and the number of times the ground state energy was found was recorded. This procedure was repeated for square subgraphs, with dimensions ranging from 7 ×7 to 11 ×11. Supported in part by NSF Grants DGE-0947419 and DMR-1206233. D-Wave time provided by D-Wave Systems and by the USRA Quantum Artificial Intelligence Laboratory Research Opportunity.

  19. The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.

    PubMed

    Carson, Cantwell G; Levine, Jonathan S

    2016-09-01

    The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. Origin of hyperbolicity in brain-to-brain coordination networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  1. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    PubMed

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  2. High-performance analysis of filtered semantic graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluc, Aydin; Fox, Armando; Gilbert, John R.

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less

  3. Multiscale weighted colored graphs for protein flexibility and rigidity analysis

    NASA Astrophysics Data System (ADS)

    Bramer, David; Wei, Guo-Wei

    2018-02-01

    Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.

  4. Concerted Perturbation Observed in a Hub Network in Alzheimer’s Disease

    PubMed Central

    Liang, Dapeng; Han, Guangchun; Feng, Xuemei; Sun, Jiya; Duan, Yong; Lei, Hongxing

    2012-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease involving the alteration of gene expression at the whole genome level. Genome-wide transcriptional profiling of AD has been conducted by many groups on several relevant brain regions. However, identifying the most critical dys-regulated genes has been challenging. In this work, we addressed this issue by deriving critical genes from perturbed subnetworks. Using a recent microarray dataset on six brain regions, we applied a heaviest induced subgraph algorithm with a modular scoring function to reveal the significantly perturbed subnetwork in each brain region. These perturbed subnetworks were found to be significantly overlapped with each other. Furthermore, the hub genes from these perturbed subnetworks formed a connected hub network consisting of 136 genes. Comparison between AD and several related diseases demonstrated that the hub network was robustly and specifically perturbed in AD. In addition, strong correlation between the expression level of these hub genes and indicators of AD severity suggested that this hub network can partially reflect AD progression. More importantly, this hub network reflected the adaptation of neurons to the AD-specific microenvironment through a variety of adjustments, including reduction of neuronal and synaptic activities and alteration of survival signaling. Therefore, it is potentially useful for the development of biomarkers and network medicine for AD. PMID:22815752

  5. Improving the Efficiency and Effectiveness of Community Detection via Prior-Induced Equivalent Super-Network.

    PubMed

    Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise

    2017-03-29

    Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.

  6. New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling.

    PubMed

    Yang, Chihae; Tarkhov, Aleksey; Marusczyk, Jörg; Bienfait, Bruno; Gasteiger, Johann; Kleinoeder, Thomas; Magdziarz, Tomasz; Sacher, Oliver; Schwab, Christof H; Schwoebel, Johannes; Terfloth, Lothar; Arvidson, Kirk; Richard, Ann; Worth, Andrew; Rathman, James

    2015-03-23

    Chemotypes are a new approach for representing molecules, chemical substructures and patterns, reaction rules, and reactions. Chemotypes are capable of integrating types of information beyond what is possible using current representation methods (e.g., SMARTS patterns) or reaction transformations (e.g., SMIRKS, reaction SMILES). Chemotypes are expressed in the XML-based Chemical Subgraphs and Reactions Markup Language (CSRML), and can be encoded not only with connectivity and topology but also with properties of atoms, bonds, electronic systems, or molecules. CSRML has been developed in parallel with a public set of chemotypes, i.e., the ToxPrint chemotypes, which are designed to provide excellent coverage of environmental, regulatory, and commercial-use chemical space, as well as to represent chemical patterns and properties especially relevant to various toxicity concerns. A software application, ChemoTyper has also been developed and made publicly available in order to enable chemotype searching and fingerprinting against a target structure set. The public ChemoTyper houses the ToxPrint chemotype CSRML dictionary, as well as reference implementation so that the query specifications may be adopted by other chemical structure knowledge systems. The full specifications of the XML-based CSRML standard used to express chemotypes are publicly available to facilitate and encourage the exchange of structural knowledge.

  7. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    DTIC Science & Technology

    2014-07-01

    to the query graph, or subgraph permutations with the same mismatch cost (often the case for homogeneous and/or symmetrical data/query). To avoid...decisions are generated in a bottom-up manner using the metric of entropy at the cluster level (Figure 9c). Using the definition of belief messages...for a cluster and a set of data nodes in this cluster , we compute the entropy for forward and backward messages as (,) = −∑ (

  8. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

    PubMed

    Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro

    2012-12-01

    Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The Challenge of Characterizing Branching in Molecular Species.

    DTIC Science & Technology

    1986-07-16

    representing respectively paths of lengths two and three. Strictly speaking, a septuple rather than a pair should have been used to account for all the paths...same counts, are of fundmental importance in the study of isospectral graphs. These facts were exploited by the latter workers to establish a 1-1...case of the Hosoya index, Z(G), a composition principle was given [38] from which it was apparent that Z(G) depends on certain subgraphs of C for

  10. Interactions of information transfer along separable causal paths

    NASA Astrophysics Data System (ADS)

    Jiang, Peishi; Kumar, Praveen

    2018-04-01

    Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.

  11. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    PubMed

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  12. Dynamic Visualization of Co-expression in Systems Genetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less

  13. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    PubMed Central

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  14. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  15. Some cycle-supermagic labelings of the calendula graphs

    NASA Astrophysics Data System (ADS)

    Pradipta, T. R.; Salman, A. N. M.

    2018-01-01

    In this paper, we introduce a calendula graph, denoted by Clm,n . It is a graph constructed from a cycle on m vertices Cm and m copies of Cn which are Cn1 , Cn2 , ⋯, Cnm and grafting the i-th edge of Cm to an edge of in Cni for each i ∈ {1,2,⋯,m}. A graph G = (V, E) admits a Cn -covering, if every edge e ∈ E(G) belongs to a subgraph of G isomorphic to Cn . The graph G is called cycle-magic, if there exists a total labeling ϕ: V ∪ E → {1,2,…,|V|+|E|} such that for every subgraph Cn ‧ = (V‧,E‧) of G isomorphic to Cn has the same weight. In this case, the weight of Cn , denoted by ϕ(Cn ’), is defined as ∑ v∈V(C’n ) ϕ(v) + ∑ e∈E(C’n ) ϕ(e). Furthermore, G is called cycle-supermagic, if ϕ:V→{1,2,…,|V|}. In this paper, we provide some cycle-supermagic labelings of calendula graphs. In order to prove it, we develop a technique, to make a partition of a multiset into m sub-multisets with the same cardinality such that the sum of all elements of each sub-multiset is same. The technique is called an m-balanced multiset.

  16. Matching and Vertex Packing: How Hard Are They?

    DTIC Science & Technology

    1991-01-01

    Theory, 29, Ann. Discrete Math ., North-Holland, Amsterdam, 1986. [2] M.D. Plummer, Matching theory - a sampler: from D~nes K~nig to the present...Ser. B, 28, 1980, 284-304. [20i N. Sbihi, Algorithme de recherche d’un stable de cardinalit6 maximum dans un graphe sans 6toile, Discrete Math ., 29...cliques and by finite families of graphs, Discrete Math ., 49, 1984, 45-59. [92] G. Cornu~jols, D. Hartvigsen and W.R. Pulleyblank, Packing subgraphs in

  17. Tracing Actual Causes

    DTIC Science & Technology

    2016-08-08

    actual values for variables in the SEM ), and an event e with M ,~u |= e, our definition answers the question : Which paths of the causal network G( M ...for each variable and a directed edge from vari- able X to Y if the equation for computing X uses Y . Given an SEM M , a context ~u (that supplies the...caused the event e1? Our definition answers this question as a set of causal slices, where each causal slice is a subgraph of G( M ). All paths in each

  18. Identification of informative subgraphs in brain networks

    NASA Astrophysics Data System (ADS)

    Marinazzo, D.; Wu, G.; Pellicoro, M.; Stramaglia, S.

    2013-01-01

    Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. Here we present a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be inferred from the sign of the contribution.

  19. Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns.

    PubMed

    Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian

    2015-01-01

    In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.

  20. Unified Photo Enhancement by Discovering Aesthetic Communities From Flickr.

    PubMed

    Hong, Richang; Zhang, Luming; Tao, Dacheng

    2016-03-01

    Photo enhancement refers to the process of increasing the aesthetic appeal of a photo, such as changing the photo aspect ratio and spatial recomposition. It is a widely used technique in the printing industry, graphic design, and cinematography. In this paper, we propose a unified and socially aware photo enhancement framework which can leverage the experience of photographers with various aesthetic topics (e.g., portrait and landscape). We focus on photos from the image hosting site Flickr, which has 87 million users and to which more than 3.5 million photos are uploaded daily. First, a tagwise regularized topic model is proposed to describe the aesthetic topic of each Flickr user, and coherent and interpretable topics are discovered by leveraging both the visual features and tags of photos. Next, a graph is constructed to describe the similarities in aesthetic topics between the users. Noticeably, densely connected users have similar aesthetic topics, which are categorized into different communities by a dense subgraph mining algorithm. Finally, a probabilistic model is exploited to enhance the aesthetic attractiveness of a test photo by leveraging the photographic experiences of Flickr users from the corresponding communities of that photo. Paired-comparison-based user studies show that our method performs competitively on photo retargeting and recomposition. Moreover, our approach accurately detects aesthetic communities in a photo set crawled from nearly 100000 Flickr users.

  1. Connectivity as an alternative to boundary integral equations: Construction of bases

    PubMed Central

    Herrera, Ismael; Sabina, Federico J.

    1978-01-01

    In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented. PMID:16592522

  2. Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem

    NASA Astrophysics Data System (ADS)

    Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.

    2018-01-01

    This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.

  3. A General Chemistry Assignment Analyzing Environmental Contamination for the Depue, IL, National Superfund Site

    ERIC Educational Resources Information Center

    Saslow Gomez, Sarah A.; Faurie-Wisniewski, Danielle; Parsa, Arlen; Spitz, Jeff; Spitz, Jennifer Amdur; Loeb, Nancy C.; Geiger, Franz M.

    2015-01-01

    The classroom exercise outlined here is a self-directed assignment that connects students to the environmental contamination problem surrounding the DePue Superfund site. By connecting chemistry knowledge gained in the classroom with a real-world problem, students are encouraged to personally connect with the problem while simultaneously…

  4. On the star partition dimension of comb product of cycle and complete graph

    NASA Astrophysics Data System (ADS)

    Alfarisi, Ridho; Darmaji; Dafik

    2017-06-01

    Let G = (V, E) be a connected graphs with vertex set V (G), edge set E(G) and S ⊆ V (G). For an ordered partition Π = {S 1, S 2, S 3, …, Sk } of V (G), the representation of a vertex v ∈ V (G) with respect to Π is the k-vectors r(v|Π) = (d(v, S 1), d(v, S 2), …, d(v, Sk )), where d(v, Sk ) represents the distance between the vertex v and the set Sk , defined by d(v, Sk ) = min{d(v, x)|x ∈ Sk}. The partition Π of V (G) is a resolving partition if the k-vektors r(v|Π), v ∈ V (G) are distinct. The minimum resolving partition Π is a partition dimension of G, denoted by pd(G). The resolving partition Π = {S 1, S 2, S 3, …, Sk} is called a star resolving partition for G if it is a resolving partition and each subgraph induced by Si , 1 ≤ i ≤ k, is a star. The minimum k for which there exists a star resolving partition of V (G) is the star partition dimension of G, denoted by spd(G). Finding a star partition dimension of G is classified to be a NP-Hard problem. Furthermore, the comb product between G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. By definition of comb product, we can say that V (G ⊲ H) = {(a, u)|a ∈ V (G), u ∈ V (H)} and (a, u)(b, v) ∈ E(G ⊲ H) whenever a = b and uv ∈ E(H), or ab ∈ E(G) and u = v = o. In this paper, we will study the star partition dimension of comb product of cycle and complete graph, namely Cn ⊲ Km and Km ⊲ Cn for n ≥ 3 and m ≥ 3.

  5. Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Frey, Hannes; Rührup, Stefan

    A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.

  6. Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.

    PubMed

    Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu

    2017-01-01

    Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.

  7. Eb&D: A new clustering approach for signed social networks based on both edge-betweenness centrality and density of subgraphs

    NASA Astrophysics Data System (ADS)

    Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan

    2017-09-01

    Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.

  8. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    PubMed

    Liu, Wei; Huang, Jie

    2018-03-01

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  9. Problem decomposition by mutual information and force-based clustering

    NASA Astrophysics Data System (ADS)

    Otero, Richard Edward

    The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.

  10. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks.

    PubMed

    Maere, Steven; Heymans, Karel; Kuiper, Martin

    2005-08-15

    The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results.

  11. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    PubMed

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.

  12. Maintaining Limited-Range Connectivity Among Second-Order Agents

    DTIC Science & Technology

    2016-07-07

    we consider ad-hoc networks of robotic agents with double integrator dynamics. For such networks, the connectivity maintenance problems are: (i) do...hoc networks of mobile autonomous agents. This loose ter- minology refers to groups of robotic agents with limited mobility and communica- tion...connectivity can be preserved. 3.1. Networks of robotic agents with second-order dynamics and the connectivity maintenance problem. We begin by

  13. Being around and knowing the players: networks of influence in health policy.

    PubMed

    Lewis, Jenny M

    2006-05-01

    The accumulation and use of power is crucial to the health policy process. This paper examines the power of the medical profession in the health policy arena, by analysing which actors are perceived as influential, and how influence is structured in health policy. It combines an analysis of policy networks and social networks, to examine positional and personal influence in health policy in the state of Victoria, Australia. In the sub-graph of the influence network examined here, those most widely regarded as influential are academics, medically qualified and male. Positional actors (the top politician, political advisor and bureaucrat in health and the top nursing official) form part of a core group within this network structure. A second central group consists of medical influentials working in academia, research institutes and health-related NGOs. In this network locale overall, medical academics appear to combine positional and personal influence, and play significant intermediary roles across the network. While many claim that the medical profession has lost power in health policy and politics, this analysis yields few signs that the power of medicine to shape the health policy process has been greatly diminished in Victoria. Medical expertise is a potent embedded resource connecting actors through ties of association, making it difficult for actors with other resources and different knowledge to be considered influential. The network concepts and analytical techniques used here provide a novel means for uncovering different types of influence in health policy.

  14. Lost in the city: revisiting Milgram's experiment in the age of social networks.

    PubMed

    Szüle, János; Kondor, Dániel; Dobos, László; Csabai, István; Vattay, Gábor

    2014-01-01

    As more and more users access social network services from smart devices with GPS receivers, the available amount of geo-tagged information makes repeating classical experiments possible on global scales and with unprecedented precision. Inspired by the original experiments of Milgram, we simulated message routing within a representative sub-graph of the network of Twitter users with about 6 million geo-located nodes and 122 million edges. We picked pairs of users from two distant metropolitan areas and tried to find a route between them using local geographic information only; our method was to forward messages to a friend living closest to the target. We found that the examined network is navigable on large scales, but navigability breaks down at the city scale and the network becomes unnavigable on intra-city distances. This means that messages usually arrived to the close proximity of the target in only 3-6 steps, but only in about 20% of the cases was it possible to find a route all the way to the recipient, in spite of the network being connected. This phenomenon is supported by the distribution of link lengths; on larger scales the distribution behaves approximately as P(d) ≈ 1/d, which was found earlier by Kleinberg to allow efficient navigation, while on smaller scales, a fractal structure becomes apparent. The intra-city correlation dimension of the network was found to be D2 = 1.25, less than the dimension D2 = 1.78 of the distribution of the population.

  15. An efficient, large-scale, non-lattice-detection algorithm for exhaustive structural auditing of biomedical ontologies.

    PubMed

    Zhang, Guo-Qiang; Xing, Guangming; Cui, Licong

    2018-04-01

    One of the basic challenges in developing structural methods for systematic audition on the quality of biomedical ontologies is the computational cost usually involved in exhaustive sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial lowest common ancestors (LCA) of each pair of concepts in the hierarchical order induced by an ontology. The computation of LCA is a fundamental step for non-lattice approach for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-LCA employs a simple but innovative algorithmic strategy combining topological order and dynamic programming to keep track of non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA achieved an average computation time of 30 and 3 sec per version for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best known approaches. Our algorithm overcomes a fundamental computational barrier in sub-graph based structural analysis of large ontological systems. It enables the implementation of a new breed of structural auditing methods that not only identifies potential problematic areas, but also automatically suggests changes to fix the issues. Such structural auditing methods can lead to more effective tools supporting ontology quality assurance work. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    PubMed Central

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  17. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    PubMed

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  18. Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    PubMed Central

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J.

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair. PMID:19399174

  19. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  20. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  1. Exact solution for the optimal neuronal layout problem.

    PubMed

    Chklovskii, Dmitri B

    2004-10-01

    Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.

  2. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2014-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903

  3. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod

    2015-05-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.

  4. Uncovering the overlapping community structure of complex networks by maximal cliques

    NASA Astrophysics Data System (ADS)

    Li, Junqiu; Wang, Xingyuan; Cui, Yaozu

    2014-12-01

    In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.

  5. The Communications and Networks Collaborative Technology Alliance Publication Network: A Case Study on Graph and Simplicial Complex Analysis

    DTIC Science & Technology

    2015-05-01

    Amer 26 19 Adarshpal S Sethi 24 20 Sunil Samtani 22 21 Alenka G Zajic 22 7 We study 2 important types of subgraphs on the C&N CTA network: 1) the...Maria Striki 0.0841 20 Sunil Samtani at least 4 times the end-of-program mean degree (4.8185). These authors also have at least 7 times the end-of...Lee Tarek N Saadawi 19 2 Mariusz A Fecko Sunil Samtani 18 3 Maitreya Natu Adarshpal S Sethi 17 3 Anthony J McAuley Raquel Morera 17 5 Richard Gopaul

  6. Exhibition of Monogamy Relations between Entropic Non-contextuality Inequalities

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Zhang, Wei; Huang, Yi-Dong

    2017-06-01

    We exhibit the monogamy relation between two entropic non-contextuality inequalities in the scenario where compatible projectors are orthogonal. We show the monogamy relation can be exhibited by decomposing the orthogonality graph into perfect induced subgraphs. Then we find two entropic non-contextuality inequalities are monogamous while the KCBS-type non-contextuality inequalities are not if the orthogonality graphs of the observable sets are two odd cycles with two shared vertices. Supported by 973 Programs of China under Grant Nos. 2011CBA00303 and 2013CB328700, Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList)

  7. Soft Computing Methods for Disulfide Connectivity Prediction.

    PubMed

    Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall'Anesey, Emiliano

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated usingmore » two unbalanced multiphase distribution feeders with both wye and delta connections.« less

  9. Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Hong

    One approach to guarantee the performance of underwater acoustic sensor networks is to deploy multiple Surface-level Gateways (SGs) at the surface. This paper addresses the connected (or survivable) Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D underwater acoustic sensor networks. Given a set of candidate locations where SGs can be placed, our objective is to place minimum number of SGs at a subset of candidate locations such that it is connected (or 2-connected) from any USN to the base station. We propose a polynomial time approximation algorithm for the connected C-SGP problem and survivable C-SGP problem, respectively. Simulations are conducted to verify our algorithms' efficiency.

  10. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  11. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application

    NASA Astrophysics Data System (ADS)

    Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J.; Torrens, Francisco

    2012-11-01

    In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ( partial ) of a molecular graph (MG) with respect to a given event ( E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub- graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns ( n) and rows ( m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ i , can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ i for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.

  12. Robust quantum optimizer with full connectivity.

    PubMed

    Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P

    2017-04-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.

  13. Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears

    NASA Astrophysics Data System (ADS)

    Musilek, Josef; Plachy, Jan

    2017-10-01

    Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.

  14. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins.

    PubMed

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-17

    A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

  15. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  16. From Students' Problem-Solving Strategies to Connections in Fractions

    ERIC Educational Resources Information Center

    Flores, Alfinio; Klein, Erika

    2005-01-01

    Strategies that children used to solve a fraction problem are presented, and an insight into how students think about divisions and fractions is described. Teachers can use these strategies to help students establish connections related to fractions.

  17. Are Balance Problems Connected to Reading Speed or the Familial Risk of Dyslexia?

    ERIC Educational Resources Information Center

    Viholainen, Helena; Aro, Mikko; Ahonen, Timo; Crawford, Susan; Cantell, Marja; Kooistra, Libbe

    2011-01-01

    Aim: The aim of this study was to examine the connection between balance problems and reading speed in children with and without a familial risk of dyslexia by controlling for the effects of attention, hyperactivity, and cognitive and motor functioning. Method: The prevalence of balance problems was studied in 94 children (48 females, 46 males)…

  18. Assessing Judgment Proficiency in Army Personnel

    DTIC Science & Technology

    2010-02-01

    concepts connected to those schemata are retrieved . Searching and encoding activities are principally guided by cues resulting from the problem...representation process (Reiter-Palmon & Illies, 2004). These cues activate relevant schemata, facilitating the retrieval of concepts connected to them. But...defined problems also involves searching and encoding activities that are guided by cues resulting from the problem representation process . The use of

  19. Adaptive random walks on the class of Web graphs

    NASA Astrophysics Data System (ADS)

    Tadić, B.

    2001-09-01

    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.

  20. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Meraculous2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-06-01

    meraculous2 is a whole genome shotgun assembler for short-reads that is capable of assembling large, polymorphic genomes with modest computational requirements. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. Additional features include (1) handling of allelic variation using "bubble" structures within the deBruijn graph, (2) gap closing of repetitive and low quality regions using localized assemblies, and (3) an improved scaffolding algorithm that produces more complete assemblies without compromising onmore » scaffolding accuracy« less

  2. Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, S. A., E-mail: volkoff-sergey@mail.ru

    2016-06-15

    A new subtractive procedure for canceling ultraviolet and infrared divergences in the Feynman integrals described here is developed for calculating QED corrections to the electron anomalous magnetic moment. The procedure formulated in the form of a forest expression with linear operators applied to Feynman amplitudes of UV-diverging subgraphs makes it possible to represent the contribution of each Feynman graph containing only electron and photon propagators in the form of a converging integral with respect to Feynman parameters. The application of the developed method for numerical calculation of two- and threeloop contributions is described.

  3. Robust quantum optimizer with full connectivity

    PubMed Central

    Nigg, Simon E.; Lörch, Niels; Tiwari, Rakesh P.

    2017-01-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation. PMID:28435880

  4. Wireless device connection problems and design solutions

    NASA Astrophysics Data System (ADS)

    Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng

    2016-09-01

    Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.

  5. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  6. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  7. Functional Dependence for Calculation of Additional Real-Power Losses in a Double-Wound Supply Transformer Caused by Unbalanced Active Inductive Load in a Star Connection with an Insulated Neutral

    ERIC Educational Resources Information Center

    Kostinskiy, Sergey S.; Troitskiy, Anatoly I.

    2016-01-01

    This article deals with the problem of calculating the additional real-power losses in double-wound supply transformers with voltage class 6 (10)/0,4 kV, caused by unbalanced active inductive load connected in a star connection with an insulated neutral. When solving the problem, authors used the theory of electric circuits, method of balanced…

  8. Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Connected Mathematics Project" (CMP) is a math curriculum for students in grades 6-8. It uses interactive problems and everyday situations to explore mathematical ideas, with a goal of fostering a problem-centered, inquiry-based learning environment. At each grade level, the curriculum covers numbers, algebra, geometry/measurement,…

  9. Examining the Impact of Writing and Literacy Connections on Mathematics Learning

    ERIC Educational Resources Information Center

    Martin, Christie; Polly, Drew

    2016-01-01

    In this study, we examine how literacy connections with multiple step mathematics problems affected mathematics learning for 4th grade students. Three fourth grade teachers incorporated writing activities in their mathematics classroom for two weeks. The level of teacher scaffolding decreased as students progressed through the problems. The…

  10. Early in-session cognitive-emotional problem-solving predicts 12-month outcomes in depression with personality disorder.

    PubMed

    McCarthy, Kye L; Mergenthaler, Erhard; Grenyer, Brin F S

    2014-01-01

    Therapist-patient verbalizations reveal complex cognitive-emotional linguistic data. How these variables contribute to change requires further research. Emotional-cognitive text analysis using the Ulm cycles model software was applied to transcripts of the third session of psychotherapy for 20 patients with depression and personality disorder. Results showed that connecting cycle sequences of problem-solving in the third hour predicted 12-month clinical outcomes. Therapist-patient dyads most improved spent significantly more time early in session in connecting cycles, whilst the least improved moved into connecting cycles late in session. For this particular sample, it was clear that positive emotional problem-solving in therapy was beneficial.

  11. Communications network design and costing model technical manual

    NASA Technical Reports Server (NTRS)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    This computer model provides the capability for analyzing long-haul trunking networks comprising a set of user-defined cities, traffic conditions, and tariff rates. Networks may consist of all terrestrial connectivity, all satellite connectivity, or a combination of terrestrial and satellite connectivity. Network solutions provide the least-cost routes between all cities, the least-cost network routing configuration, and terrestrial and satellite service cost totals. The CNDC model allows analyses involving three specific FCC-approved tariffs, which are uniquely structured and representative of most existing service connectivity and pricing philosophies. User-defined tariffs that can be variations of these three tariffs are accepted as input to the model and allow considerable flexibility in network problem specification. The resulting model extends the domain of network analysis from traditional fixed link cost (distance-sensitive) problems to more complex problems involving combinations of distance and traffic-sensitive tariffs.

  12. Kids without Family Privilege: Mobilizing Youth Development

    ERIC Educational Resources Information Center

    Seita, John R.

    2005-01-01

    While many youth are disconnected from adults, the people seem clueless as to what to do about this serious problem. The quality of connections is directly related to the quality of the total interpersonal environment. This article takes a systems perspective on the problem of connecting with youth, with particular emphasis on what communities,…

  13. Adaptive Connectivity Restoration from Node Failure(s) in Wireless Sensor Networks

    PubMed Central

    Wang, Huaiyuan; Ding, Xu; Huang, Cheng; Wu, Xiaobei

    2016-01-01

    Recently, there is a growing interest in the applications of wireless sensor networks (WSNs). A set of sensor nodes is deployed in order to collectively survey an area of interest and/or perform specific surveillance tasks in some of the applications, such as battlefield reconnaissance. Due to the harsh deployment environments and limited energy supply, nodes may fail, which impacts the connectivity of the whole network. Since a single node failure (cut-vertex) will destroy the connectivity and divide the network into disjoint blocks, most of the existing studies focus on the problem of single node failure. However, the failure of multiple nodes would be a disaster to the whole network and must be repaired effectively. Only few studies are proposed to handle the problem of multiple cut-vertex failures, which is a special case of multiple node failures. Therefore, this paper proposes a comprehensive solution to address the problems of node failure (single and multiple). Collaborative Single Node Failure Restoration algorithm (CSFR) is presented to solve the problem of single node failure only with cooperative communication, but CSFR-M, which is the extension of CSFR, handles the single node failure problem more effectively with node motion. Moreover, Collaborative Connectivity Restoration Algorithm (CCRA) is proposed on the basis of cooperative communication and node maneuverability to restore network connectivity after multiple nodes fail. CSFR-M and CCRA are reactive methods that initiate the connectivity restoration after detecting the node failure(s). In order to further minimize the energy dissipation, CCRA opts to simplify the recovery process by gridding. Moreover, the distance that an individual node needs to travel during recovery is reduced by choosing the nearest suitable candidates. Finally, extensive simulations validate the performance of CSFR, CSFR-M and CCRA. PMID:27690030

  14. Bayesian Community Detection in the Space of Group-Level Functional Differences

    PubMed Central

    Venkataraman, Archana; Yang, Daniel Y.-J.; Pelphrey, Kevin A.; Duncan, James S.

    2017-01-01

    We propose a unified Bayesian framework to detect both hyper- and hypo-active communities within whole-brain fMRI data. Specifically, our model identifies dense subgraphs that exhibit population-level differences in functional synchrony between a control and clinical group. We derive a variational EM algorithm to solve for the latent posterior distributions and parameter estimates, which subsequently inform us about the afflicted network topology. We demonstrate that our method provides valuable insights into the neural mechanisms underlying social dysfunction in autism, as verified by the Neurosynth meta-analytic database. In contrast, both univariate testing and community detection via recursive edge elimination fail to identify stable functional communities associated with the disorder. PMID:26955022

  15. Bayesian Community Detection in the Space of Group-Level Functional Differences.

    PubMed

    Venkataraman, Archana; Yang, Daniel Y-J; Pelphrey, Kevin A; Duncan, James S

    2016-08-01

    We propose a unified Bayesian framework to detect both hyper- and hypo-active communities within whole-brain fMRI data. Specifically, our model identifies dense subgraphs that exhibit population-level differences in functional synchrony between a control and clinical group. We derive a variational EM algorithm to solve for the latent posterior distributions and parameter estimates, which subsequently inform us about the afflicted network topology. We demonstrate that our method provides valuable insights into the neural mechanisms underlying social dysfunction in autism, as verified by the Neurosynth meta-analytic database. In contrast, both univariate testing and community detection via recursive edge elimination fail to identify stable functional communities associated with the disorder.

  16. Constraint Embedding for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  17. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.

  18. Extension of transformation groups of compact solvmanifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovanov, M V

    2015-04-30

    We indicate a way to extend connected simply connected soluble Lie groups acting transitively and locally effectively on a given compact solvmanifold. In 1973, Auslander posed the problem of describing all groups of this kind. The results obtained here lead to the conclusion that it is unlikely that this problem has an exhaustive solution. Bibliography: 10 titles.

  19. An Examination of Connections in Mathematical Processes in Students' Problem Solving: Connections between Representing and Justifying

    ERIC Educational Resources Information Center

    Stylianou, Despina A.

    2013-01-01

    Representation and justification are two central "mathematical practices". In the past, each has been examined to gain insights in the functions that they have in students' mathematical problem solving. Here, we examine the ways that representation and justification interact and influence the development of one another. We focus on the…

  20. Connection Capacity of the Transition Zone in Steel-Concrete Hybrid Beam

    NASA Astrophysics Data System (ADS)

    Kozioł, Piotr; Kożuch, Maciej; Lorenc, Wojciech; Rowiński, Sławomir

    2017-06-01

    The problem of transition zone of structural steel element connected to concrete is discussed in the following paper. This zone may be located for instance in specific bridge composite girder. In such case the composite beam passes smoothly into concrete beam. Because of several dowels usage in the transition zone, the problem of uneven force distribution were discussed through analogy to bolted and welded connections. The authors present innovative solution of transition zone and discuss the results, with emphasis put on the transition zone structural response in term of bending capacity, failure model and force distribution on the connection length. The article wider the already executed experimental test and presents its newest results.

  1. Sequencing the Connectome

    PubMed Central

    Zador, Anthony M.; Dubnau, Joshua; Oyibo, Hassana K.; Zhan, Huiqing; Cao, Gang; Peikon, Ian D.

    2012-01-01

    Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC (“barcoding of individual neuronal connections”), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale—sequencing billions of nucleotides per day is now routine—is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research. PMID:23109909

  2. Equilibrium statistical mechanics on correlated random graphs

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2011-02-01

    Biological and social networks have recently attracted great attention from physicists. Among several aspects, two main ones may be stressed: a non-trivial topology of the graph describing the mutual interactions between agents and, typically, imitative, weighted, interactions. Despite such aspects being widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a priori assumptions and, in most cases, implement constant intensities for links. Here we propose a simple shift [-1,+1]\\to [0,+1] in the definition of patterns in a Hopfield model: a straightforward effect is the conversion of frustration into dilution. In fact, we show that by varying the bias of pattern distribution, the network topology (generated by the reciprocal affinities among agents, i.e. the Hebbian rule) crosses various well-known regimes, ranging from fully connected, to an extreme dilution scenario, then to completely disconnected. These features, as well as small-world properties, are, in this context, emergent and no longer imposed a priori. The model is throughout investigated also from a thermodynamics perspective: the Ising model defined on the resulting graph is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. Overall, our findings show that, at least at equilibrium, dilution (of whatever kind) simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations is that, within our approach, replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible subgraphs belonging to the main one investigated: as a consequence, for these objects a closure for a self-consistent relation is achieved.

  3. Human Rights Event Detection from Heterogeneous Social Media Graphs.

    PubMed

    Chen, Feng; Neill, Daniel B

    2015-03-01

    Human rights organizations are increasingly monitoring social media for identification, verification, and documentation of human rights violations. Since manual extraction of events from the massive amount of online social network data is difficult and time-consuming, we propose an approach for automated, large-scale discovery and analysis of human rights-related events. We apply our recently developed Non-Parametric Heterogeneous Graph Scan (NPHGS), which models social media data such as Twitter as a heterogeneous network (with multiple different node types, features, and relationships) and detects emerging patterns in the network, to identify and characterize human rights events. NPHGS efficiently maximizes a nonparametric scan statistic (an aggregate measure of anomalousness) over connected subgraphs of the heterogeneous network to identify the most anomalous network clusters. It summarizes each event with information such as type of event, geographical locations, time, and participants, and provides documentation such as links to videos and news reports. Building on our previous work that demonstrates the utility of NPHGS for civil unrest prediction and rare disease outbreak detection, we present an analysis of human rights events detected by NPHGS using two years of Twitter data from Mexico. NPHGS was able to accurately detect relevant clusters of human rights-related tweets prior to international news sources, and in some cases, prior to local news reports. Analysis of social media using NPHGS could enhance the information-gathering missions of human rights organizations by pinpointing specific abuses, revealing events and details that may be blocked from traditional media sources, and providing evidence of emerging patterns of human rights violations. This could lead to more timely, targeted, and effective advocacy, as well as other potential interventions.

  4. Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and Major Depressive Disorder.

    PubMed

    Simas, Tiago; Chattopadhyay, Shayanti; Hagan, Cindy; Kundu, Prantik; Patel, Ameera; Holt, Rosemary; Floris, Dorothea; Graham, Julia; Ooi, Cinly; Tait, Roger; Spencer, Michael; Baron-Cohen, Simon; Sahakian, Barbara; Bullmore, Ed; Goodyer, Ian; Suckling, John

    2015-01-01

    The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD). Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome. These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders.

  5. Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and Major Depressive Disorder

    PubMed Central

    Simas, Tiago; Chattopadhyay, Shayanti; Hagan, Cindy; Kundu, Prantik; Patel, Ameera; Holt, Rosemary; Floris, Dorothea; Graham, Julia; Ooi, Cinly; Tait, Roger; Spencer, Michael; Baron-Cohen, Simon; Sahakian, Barbara; Bullmore, Ed; Goodyer, Ian; Suckling, John

    2015-01-01

    Introduction The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD). Results Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome. Conclusion These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders. PMID:26308854

  6. A Network of Networks Perspective on Global Trade.

    PubMed

    Maluck, Julian; Donner, Reik V

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990-2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector's role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network's substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to "normal" annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks.

  7. A Network of Networks Perspective on Global Trade

    PubMed Central

    Maluck, Julian; Donner, Reik V.

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990–2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector’s role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network’s substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to “normal” annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks. PMID:26197439

  8. A Multi-Hop Clustering Mechanism for Scalable IoT Networks.

    PubMed

    Sung, Yoonyoung; Lee, Sookyoung; Lee, Meejeong

    2018-03-23

    It is expected that up to 26 billion Internet of Things (IoT) equipped with sensors and wireless communication capabilities will be connected to the Internet by 2020 for various purposes. With a large scale IoT network, having each node connected to the Internet with an individual connection may face serious scalability issues. The scalability problem of the IoT network may be alleviated by grouping the nodes of the IoT network into clusters and having a representative node in each cluster connect to the Internet on behalf of the other nodes in the cluster instead of having a per-node Internet connection and communication. In this paper, we propose a multi-hop clustering mechanism for IoT networks to minimize the number of required Internet connections. Specifically, the objective of proposed mechanism is to select the minimum number of coordinators, which take the role of a representative node for the cluster, i.e., having the Internet connection on behalf of the rest of the nodes in the cluster and to map a partition of the IoT nodes onto the selected set of coordinators to minimize the total distance between the nodes and their respective coordinator under a certain constraint in terms of maximum hop count between the IoT nodes and their respective coordinator. Since this problem can be mapped into a set cover problem which is known as NP-hard, we pursue a heuristic approach to solve the problem and analyze the complexity of the proposed solution. Through a set of experiments with varying parameters, the proposed scheme shows 63-87.3% reduction of the Internet connections depending on the number of the IoT nodes while that of the optimal solution is 65.6-89.9% in a small scale network. Moreover, it is shown that the performance characteristics of the proposed mechanism coincide with expected performance characteristics of the optimal solution in a large-scale network.

  9. A Multi-Hop Clustering Mechanism for Scalable IoT Networks

    PubMed Central

    2018-01-01

    It is expected that up to 26 billion Internet of Things (IoT) equipped with sensors and wireless communication capabilities will be connected to the Internet by 2020 for various purposes. With a large scale IoT network, having each node connected to the Internet with an individual connection may face serious scalability issues. The scalability problem of the IoT network may be alleviated by grouping the nodes of the IoT network into clusters and having a representative node in each cluster connect to the Internet on behalf of the other nodes in the cluster instead of having a per-node Internet connection and communication. In this paper, we propose a multi-hop clustering mechanism for IoT networks to minimize the number of required Internet connections. Specifically, the objective of proposed mechanism is to select the minimum number of coordinators, which take the role of a representative node for the cluster, i.e., having the Internet connection on behalf of the rest of the nodes in the cluster and to map a partition of the IoT nodes onto the selected set of coordinators to minimize the total distance between the nodes and their respective coordinator under a certain constraint in terms of maximum hop count between the IoT nodes and their respective coordinator. Since this problem can be mapped into a set cover problem which is known as NP-hard, we pursue a heuristic approach to solve the problem and analyze the complexity of the proposed solution. Through a set of experiments with varying parameters, the proposed scheme shows 63–87.3% reduction of the Internet connections depending on the number of the IoT nodes while that of the optimal solution is 65.6–89.9% in a small scale network. Moreover, it is shown that the performance characteristics of the proposed mechanism coincide with expected performance characteristics of the optimal solution in a large-scale network. PMID:29570691

  10. General Tricomi-Rassias problem and oblique derivative problem for generalized Chaplygin equations

    NASA Astrophysics Data System (ADS)

    Wen, Guochun; Chen, Dechang; Cheng, Xiuzhen

    2007-09-01

    Many authors have discussed the Tricomi problem for some second order equations of mixed type, which has important applications in gas dynamics. In particular, Bers proposed the Tricomi problem for Chaplygin equations in multiply connected domains [L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958]. And Rassias proposed the exterior Tricomi problem for mixed equations in a doubly connected domain and proved the uniqueness of solutions for the problem [J.M. Rassias, Lecture Notes on Mixed Type Partial Differential Equations, World Scientific, Singapore, 1990]. In the present paper, we discuss the general Tricomi-Rassias problem for generalized Chaplygin equations. This is one general oblique derivative problem that includes the exterior Tricomi problem as a special case. We first give the representation of solutions of the general Tricomi-Rassias problem, and then prove the uniqueness and existence of solutions for the problem by a new method. In this paper, we shall also discuss another general oblique derivative problem for generalized Chaplygin equations.

  11. On the heteroclinic connection problem for multi-well gradient systems

    NASA Astrophysics Data System (ADS)

    Zuniga, Andres; Sternberg, Peter

    2016-10-01

    We revisit the existence problem of heteroclinic connections in RN associated with Hamiltonian systems involving potentials W :RN → R having several global minima. Under very mild assumptions on W we present a simple variational approach to first find geodesics minimizing length of curves joining any two of the potential wells, where length is computed with respect to a degenerate metric having conformal factor √{ W}. Then we show that when such a minimizing geodesic avoids passing through other wells of the potential at intermediate times, it gives rise to a heteroclinic connection between the two wells. This work improves upon the approach of [22] and represents a more geometric alternative to the approaches of e.g. [5,10,14,17] for finding such connections.

  12. Processes involved in solving mathematical problems

    NASA Astrophysics Data System (ADS)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  13. Impact of lightning strikes on hospital functions.

    PubMed

    Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan

    2009-01-01

    Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature.

  14. A shortest-path graph kernel for estimating gene product semantic similarity.

    PubMed

    Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui

    2011-07-29

    Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.

  15. Extended Graph-Based Models for Enhanced Similarity Search in Cavbase.

    PubMed

    Krotzky, Timo; Fober, Thomas; Hüllermeier, Eyke; Klebe, Gerhard

    2014-01-01

    To calculate similarities between molecular structures, measures based on the maximum common subgraph are frequently applied. For the comparison of protein binding sites, these measures are not fully appropriate since graphs representing binding sites on a detailed atomic level tend to get very large. In combination with an NP-hard problem, a large graph leads to a computationally demanding task. Therefore, for the comparison of binding sites, a less detailed coarse graph model is used building upon so-called pseudocenters. Consistently, a loss of structural data is caused since many atoms are discarded and no information about the shape of the binding site is considered. This is usually resolved by performing subsequent calculations based on additional information. These steps are usually quite expensive, making the whole approach very slow. The main drawback of a graph-based model solely based on pseudocenters, however, is the loss of information about the shape of the protein surface. In this study, we propose a novel and efficient modeling formalism that does not increase the size of the graph model compared to the original approach, but leads to graphs containing considerably more information assigned to the nodes. More specifically, additional descriptors considering surface characteristics are extracted from the local surface and attributed to the pseudocenters stored in Cavbase. These properties are evaluated as additional node labels, which lead to a gain of information and allow for much faster but still very accurate comparisons between different structures.

  16. OPEN PROBLEM: Turbulence transition in pipe flow: some open questions

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno

    2008-01-01

    The transition to turbulence in pipe flow is a longstanding problem in fluid dynamics. In contrast to many other transitions it is not connected with linear instabilities of the laminar profile and hence follows a different route. Experimental and numerical studies within the last few years have revealed many unexpected connections to the nonlinear dynamics of strange saddles and have considerably improved our understanding of this transition. The text summarizes some of these insights and points to some outstanding problems in areas where valuable contributions from nonlinear dynamics can be expected.

  17. Efficient reordering of PROLOG programs

    NASA Technical Reports Server (NTRS)

    Gooley, Markian M.; Wah, Benjamin W.

    1989-01-01

    PROLOG programs are often inefficient: execution corresponds to a depth-first traversal of an AND/OR graph; traversing subgraphs in another order can be less expensive. It is shown how the reordering of clauses within PROLOG predicates, and especially of goals within clauses, can prevent unnecessary search. The characterization and detection of restrictions on reordering is discussed. A system of calling modes for PROLOG, geared to reordering, is proposed, and ways to infer them automatically are discussed. The information needed for safe reordering is summarized, and which types can be inferred automatically and which must be provided by the user are considered. An improved method for determining a good order for the goals of PROLOG clauses is presented and used as the basis for a reordering system.

  18. Motif-based success scores in coauthorship networks are highly sensitive to author name disambiguation

    NASA Astrophysics Data System (ADS)

    Klosik, David F.; Bornholdt, Stefan; Hütt, Marc-Thorsten

    2014-09-01

    Following the work of Krumov et al. [Eur. Phys. J. B 84, 535 (2011), 10.1140/epjb/e2011-10746-5] we revisit the question whether the usage of large citation datasets allows for the quantitative assessment of social (by means of coauthorship of publications) influence on the progression of science. Applying a more comprehensive and well-curated dataset containing the publications in the journals of the American Physical Society during the whole 20th century we find that the measure chosen in the original study, a score based on small induced subgraphs, has to be used with caution, since the obtained results are highly sensitive to the exact implementation of the author disambiguation task.

  19. A tool for filtering information in complex systems

    PubMed Central

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-01-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. PMID:16027373

  20. A tool for filtering information in complex systems.

    PubMed

    Tumminello, M; Aste, T; Di Matteo, T; Mantegna, R N

    2005-07-26

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties.

  1. GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harshaw, Chris R; Bridges, Robert A; Iannacone, Michael D

    This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called \\textit{GraphPrints}. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets\\textemdash small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84\\% at the time-interval level, and 0.05\\% at the IP-level with 100\\% truemore » positive rates at both.« less

  2. The Effectiveness of Problem-Based Learning Approach Based on Multiple Intelligences in Terms of Student’s Achievement, Mathematical Connection Ability, and Self-Esteem

    NASA Astrophysics Data System (ADS)

    Kartikasari, A.; Widjajanti, D. B.

    2017-02-01

    The aim of this study is to explore the effectiveness of learning approach using problem-based learning based on multiple intelligences in developing student’s achievement, mathematical connection ability, and self-esteem. This study is experimental research with research sample was 30 of Grade X students of MIA III MAN Yogyakarta III. Learning materials that were implemented consisting of trigonometry and geometry. For the purpose of this study, researchers designed an achievement test made up of 44 multiple choice questions with respectively 24 questions on the concept of trigonometry and 20 questions for geometry. The researcher also designed a connection mathematical test and self-esteem questionnaire that consisted of 7 essay questions on mathematical connection test and 30 items of self-esteem questionnaire. The learning approach said that to be effective if the proportion of students who achieved KKM on achievement test, the proportion of students who achieved a minimum score of high category on the results of both mathematical connection test and self-esteem questionnaire were greater than or equal to 70%. Based on the hypothesis testing at the significance level of 5%, it can be concluded that the learning approach using problem-based learning based on multiple intelligences was effective in terms of student’s achievement, mathematical connection ability, and self-esteem.

  3. The problem of connectivity: A sociological study of the problem of connectedness of nationally produced science and national needs in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Assuliman, Abdusslam Wail Y.

    This study is to investigate the problem of connectivity between nationally produced science and national needs. It is a collective case study of two academic departments within Saudi academia, the departments of petroleum engineering at Alpha and Beta Universities. The rationale for using these departments is that Saudi Arabia has an advanced petroleum industry, making petroleum engineering a good case for investigating the connectivity of nationally produced science with national needs. The main tool of the study was in-depth tape-recorded interviews. Twenty-two interviews were conducted, sixteen with current and retired faculty members at the petroleum engineering departments of Alpha and Beta and six with administrators at both universities. In addition, documents and observation were used as tools. The two departments differ in their levels of connectivity with national industry. One is increasingly connected with national industry, while the other is completely isolated from national industry. Historical and regulatory factors play a role in this difference. Four themes were generated from the data: institutional arrangements, positive attitude and self confidence, social construction of the university, and rentier mentality. The data gathered show that the issue of connectivity is beyond the will and abilities of individual scientists; it is a result of organizational efforts of the scientific institutions reinforced by the willingness of the productive sectors to change their behavior toward national scientists.

  4. An assessment of the connection machine

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert

    1990-01-01

    The CM-2 is an example of a connection machine. The strengths and problems of this implementation are considered as well as important issues in the architecture and programming environment of connection machines in general. These are contrasted to the same issues in Multiple Instruction/Multiple Data (MIMD) microprocessors and multicomputers.

  5. Compressive Network Analysis

    PubMed Central

    Jiang, Xiaoye; Yao, Yuan; Liu, Han; Guibas, Leonidas

    2014-01-01

    Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets. PMID:25620806

  6. Computational Study for Planar Connected Dominating Set Problem

    NASA Astrophysics Data System (ADS)

    Marzban, Marjan; Gu, Qian-Ping; Jia, Xiaohua

    The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. [ESA2005, LNCS3669,pp95-106] introduce a new technique to generate 2^{O(sqrt{n})} time and fixed-parameter algorithms for a number of non-local hard problems, including the CDS problem in planar graphs. The practical performance of this algorithm is yet to be evaluated. We perform a computational study for such an evaluation. The results show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical result. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space. This suggests that the branch-decomposition based algorithms can be practical for the planar CDS problem.

  7. Sherlock Holmes, Master Problem Solver.

    ERIC Educational Resources Information Center

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  8. The archiving of meteor research information

    NASA Technical Reports Server (NTRS)

    Nechitailenko, V. A.

    1987-01-01

    The results obtained over the past years under GLOBMET are not reviewed but some of the problems the solution of which will guide further development of meteor investigation and international cooperation in this field for the near term are discussed. The main attention is paid to problems which the meteor community itself can solve, or at least expedite. Most of them are more or less connected with the problem of information archiving. Information archiving deals with methods and techniques of solving two closely connected groups of problems. The first is the analysis of data and information as an integral part of meteor research and deals with the solution of certain methodological problems. The second deals with gathering data and information for the designing of models of the atmosphere and/or meteor complex and its utilization. These problem solutions are discussed.

  9. Assessment of knowledge transfer in the context of biomechanics

    NASA Astrophysics Data System (ADS)

    Hutchison, Randolph E.

    The dynamic act of knowledge transfer, or the connection of a student's prior knowledge to features of a new problem, could be considered one of the primary goals of education. Yet studies highlight more instances of failure than success. This dissertation focuses on how knowledge transfer takes place during individual problem solving, in classroom settings and during group work. Through the lens of dynamic transfer, or how students connect prior knowledge to problem features, this qualitative study focuses on a methodology to assess transfer in the context of biomechanics. The first phase of this work investigates how a pedagogical technique based on situated cognition theory affects students' ability to transfer knowledge gained in a biomechanics class to later experiences both in and out of the classroom. A post-class focus group examined events the students remembered from the class, what they learned from them, and how they connected them to later relevant experiences inside and outside the classroom. These results were triangulated with conceptual gains evaluated through concept inventories and pre- and post- content tests. Based on these results, the next two phases of the project take a more in-depth look at dynamic knowledge transfer during independent problem-solving and group project interactions, respectively. By categorizing prior knowledge (Source Tools), problem features (Target Tools) and the connections between them, results from the second phase of this study showed that within individual problem solving, source tools were almost exclusively derived from "propagated sources," i.e. those based on an authoritative source. This differs from findings in the third phase of the project, in which a mixture of "propagated" sources and "fabricated" sources, i.e. those based on student experiences, were identified within the group project work. This methodology is effective at assessing knowledge transfer in the context of biomechanics through evidence of the ability to identify differing patterns of how different students apply prior knowledge and make new connections between prior knowledge and current problem features in different learning situations. Implications for the use of this methodology include providing insight into not only students' prior knowledge, but also how they connect this prior knowledge to problem features (i.e. dynamic knowledge transfer). It also allows the identification of instances in which external input from other students or the instructor prompted knowledge transfer to take place. The use of this dynamic knowledge transfer lens allows the addressing of gaps in student understanding, and permits further investigations of techniques that increase instances of successful knowledge transfer.

  10. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  11. Improving the image discontinuous problem by using color temperature mapping method

    NASA Astrophysics Data System (ADS)

    Jeng, Wei-De; Mang, Ou-Yang; Lai, Chien-Cheng; Wu, Hsien-Ming

    2011-09-01

    This article mainly focuses on image processing of radial imaging capsule endoscope (RICE). First, it used the radial imaging capsule endoscope (RICE) to take the images, the experimental used a piggy to get the intestines and captured the images, but the images captured by RICE were blurred due to the RICE has aberration problems in the image center and lower light uniformity affect the image quality. To solve the problems, image processing can use to improve it. Therefore, the images captured by different time can use Person correlation coefficient algorithm to connect all the images, and using the color temperature mapping way to improve the discontinuous problem in the connection region.

  12. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    PubMed

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  13. Problem Posing with the Multiplication Table

    ERIC Educational Resources Information Center

    Dickman, Benjamin

    2014-01-01

    Mathematical problem posing is an important skill for teachers of mathematics, and relates readily to mathematical creativity. This article gives a bit of background information on mathematical problem posing, lists further references to connect problem posing and creativity, and then provides 20 problems based on the multiplication table to be…

  14. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less

  15. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

    NASA Astrophysics Data System (ADS)

    Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.

    2000-06-01

    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the ``interior'' and ``exterior'' Hill's regions and other resonant phenomena.

  16. Marfan Syndrome

    MedlinePlus

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, blood vessels, ... A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, and ...

  17. Generalized Kustaanheimo-Stiefel transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komarov, L.I.; Van Hoang, L.

    1994-10-01

    A theory is given for the construction of generalized Kustaanheimo-Stiefel (KS) transformations for dimensions q+1 (q=2{sup h}, h=0, 1, 2,...) of the Kepler problem, and the following proposition is proved: A connection between the Kepler problem in a real space of dimension q+1 and the problem of an isotropic harmonic oscillator in a real space dimension N exists and can be established by means of generalized KS transformations in the cases in which N=2q and q=2{sup h} (h=0, 1, 2,...). A simple graphical prescription for constructing generalized KS transformations that realize this connection is proposed.

  18. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.

  19. Implications of Informal Education Experiences for Mathematics Teachers' Ability to Make Connections beyond Formal Classroom

    ERIC Educational Resources Information Center

    Popovic, Gorjana; Lederman, Judith S.

    2015-01-01

    The Common Core Standard for Mathematical Practice 4: Model with Mathematics specifies that mathematically proficient students are able to make connections between school mathematics and its applications to solving real-world problems. Hence, mathematics teachers are expected to incorporate connections between mathematical concepts they teach and…

  20. Connect the Book. George Washington's Teeth

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2005-01-01

    February celebrates both National Children's Dental Health Month and President's Day (February 21), so this month's "Connect the Book" column features a book with connections to both events. George Washington, the first President of the United States (1789-1797) and known as the "Father of Our Country," had a serious dental health problem that…

  1. Symposium Connects Government Problems with State of the Art Network Science Research

    DTIC Science & Technology

    2015-10-16

    Symposium Connects Government Problems with State-of-the- Art Network Science Research By Rajmonda S. Caceres and Benjamin A. Miller Network...the US Gov- ernment, and match these with the state-of-the- art models and techniques developed in the network science research community. Since its... science has grown significantly in the last several years as a field at the intersec- tion of mathematics, computer science , social science , and engineering

  2. Achieving full connectivity of sites in the multiperiod reserve network design problem

    USGS Publications Warehouse

    Jafari, Nahid; Nuse, Bryan L.; Moore, Clinton; Dilkina, Bistra; Hepinstall-Cymerman, Jeffrey

    2017-01-01

    The conservation reserve design problem is a challenge to solve because of the spatial and temporal nature of the problem, uncertainties in the decision process, and the possibility of alternative conservation actions for any given land parcel. Conservation agencies tasked with reserve design may benefit from a dynamic decision system that provides tactical guidance for short-term decision opportunities while maintaining focus on a long-term objective of assembling the best set of protected areas possible. To plan cost-effective conservation over time under time-varying action costs and budget, we propose a multi-period mixed integer programming model for the budget-constrained selection of fully connected sites. The objective is to maximize a summed conservation value over all network parcels at the end of the planning horizon. The originality of this work is in achieving full spatial connectivity of the selected sites during the schedule of conservation actions.

  3. Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS

    NASA Astrophysics Data System (ADS)

    Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas

    2016-06-01

    We investigate the problem of finding a pure spin-connection formulation of general relativity with nonvanishing cosmological constant. We first revisit the problem at the linearized level and find that the pure spin-connection, quadratic Lagrangian, takes a form reminiscent to Weyl gravity, given by the square of a Weyl-like tensor. Upon Hodge dualization, we show that the dual gauge field in (A )dSD transforms under G L (D ) in the same representation as a massive graviton in the flat spacetime of the same dimension. We give a detailed proof that the physical degrees of freedom indeed correspond to a massless graviton propagating around the (anti-) de Sitter background and finally speculate about a possible nonlinear pure-connection theory dual to general relativity with cosmological constant.

  4. Neural Correlates and Connectivity underlying Stress-related Impulse Control Difficulties in Alcoholism

    PubMed Central

    Seo, Dongju; Lacadie, Cheryl M.; Sinha, Rajita

    2016-01-01

    BACKGROUND Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. METHOD The current study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients and 37 demographically-matched healthy controls were examined during brief individualized imagery trials of stress, alcohol-cue and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale (DERS). RESULTS Impulse control difficulties in AUD patients were significantly associated with hypoactive response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p<0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex (ACC) compared to controls, which are core regions of emotion regulation, suggesting AUD patients’ decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p<0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p<0.05, with adjusted Bonferroni correction). CONCLUSION Hypoactive response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. PMID:27501356

  5. Neural Correlates and Connectivity Underlying Stress-Related Impulse Control Difficulties in Alcoholism.

    PubMed

    Seo, Dongju; Lacadie, Cheryl M; Sinha, Rajita

    2016-09-01

    Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. This study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients, and 37 demographically matched healthy controls were examined during brief individualized imagery trials of stress, alcohol cue, and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale. Impulse control difficulties in AUD patients were significantly associated with hypo-active response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p < 0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex compared to controls, which are core regions of emotion regulation, suggesting AUD patients' decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p < 0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p < 0.05, with adjusted Bonferroni correction). Hypo-active response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. Copyright © 2016 by the Research Society on Alcoholism.

  6. Indoor Air Quality Problem Solving Tool

    EPA Pesticide Factsheets

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  7. Distributed resource allocation under communication constraints

    NASA Astrophysics Data System (ADS)

    Dodin, Pierre; Nimier, Vincent

    2001-03-01

    This paper deals with a study of the multi-sensor management problem for multi-target tracking. The collaboration between many sensors observing the same target means that they are able to fuse their data during the information process. Then one must take into account this possibility to compute the optimal association sensors-target at each step of time. In order to solve this problem for real large scale system, one must both consider the information aspect and the control aspect of the problem. To unify these problems, one possibility is to use a decentralized filtering algorithm locally driven by an assignment algorithm. The decentralized filtering algorithm we use in our model is the filtering algorithm of Grime, which relaxes the usual full-connected hypothesis. By full-connected, one means that the information in a full-connected system is totally distributed everywhere at the same moment, which is unacceptable for a real large scale system. We modelize the distributed assignment decision with the help of a greedy algorithm. Each sensor performs a global optimization, in order to estimate other information sets. A consequence of the relaxation of the full- connected hypothesis is that the sensors' information set are not the same at each step of time, producing an information dis- symmetry in the system. The assignment algorithm uses a local knowledge of this dis-symmetry. By testing the reactions and the coherence of the local assignment decisions of our system, against maneuvering targets, we show that it is still possible to manage with decentralized assignment control even though the system is not full-connected.

  8. Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics.

    PubMed

    Datteri, Edoardo

    2013-03-01

    This article addresses prospective and retrospective responsibility issues connected with medical robotics. It will be suggested that extant conceptual and legal frameworks are sufficient to address and properly settle most retrospective responsibility problems arising in connection with injuries caused by robot behaviours (which will be exemplified here by reference to harms occurred in surgical interventions supported by the Da Vinci robot, reported in the scientific literature and in the press). In addition, it will be pointed out that many prospective responsibility issues connected with medical robotics are nothing but well-known robotics engineering problems in disguise, which are routinely addressed by roboticists as part of their research and development activities: for this reason they do not raise particularly novel ethical issues. In contrast with this, it will be pointed out that novel and challenging prospective responsibility issues may emerge in connection with harmful events caused by normal robot behaviours. This point will be illustrated here in connection with the rehabilitation robot Lokomat.

  9. The Motivation of Problem-Based Teaching and Learning in Translation

    ERIC Educational Resources Information Center

    Yingxue, Zheng

    2013-01-01

    Problem-Based Learning (PBL) has been one of the popular pedagogical strategies these years. PBL is about students connecting disciplinary knowledge to real-world problems--the motivation to solve a problem. To recognize general elements and typological differences of language in translation is the motivation to solve real problems such as…

  10. Known TCP Implementation Problems

    NASA Technical Reports Server (NTRS)

    Paxson, Vern (Editor); Allman, Mark; Dawson, Scott; Fenner, William; Griner, Jim; Heavens, Ian; Lahey, K.; Semke, J.; Volz, B.

    1999-01-01

    This memo catalogs a number of known TCP implementation problems. The goal in doing so is to improve conditions in the existing Internet by enhancing the quality of current TCP/IP implementations. It is hoped that both performance and correctness issues can be resolved by making implementors aware of the problems and their solutions. In the long term, it is hoped that this will provide a reduction in unnecessary traffic on the network, the rate of connection failures due to protocol errors, and load on network servers due to time spent processing both unsuccessful connections and retransmitted data. This will help to ensure the stability of the global Internet. Each problem is defined as follows: Name of Problem The name associated with the problem. In this memo, the name is given as a subsection heading. Classification one or more problem categories for which the problem is classified: "congestion control", "performance", "reliability", "resource management". Description A definition of the problem, succinct but including necessary background material. Significance A brief summary of the sorts of environments for which the problem is significant.

  11. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  12. The Influence of Extracurricular Activity Participation upon Youth Problem Behavior: School Connection as a Mediator.

    ERIC Educational Resources Information Center

    Brown, Randall Anthony

    How participation in extracurricular activity participation (EAP) encourages prosocial behavior is investigated. A sense of connection to prosocial entities is understood to influence youth behavior. This study tests the hypothesis that the impact of EAP is mediated by a youth's sense of connection to the school. Using a diverse sample of…

  13. Database Creation and Statistical Analysis: Finding Connections Between Two or More Secondary Storage Device

    DTIC Science & Technology

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE SECONDARY...BLANK ii Approved for public release. Distribution is unlimited. DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE...Problem and Motivation . . . . . . . . . . . . . . . . . . . 1 1.2 DOD Applicability . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Research

  14. Decompositions of large-scale biological systems based on dynamical properties.

    PubMed

    Soranzo, Nicola; Ramezani, Fahimeh; Iacono, Giovanni; Altafini, Claudio

    2012-01-01

    Given a large-scale biological network represented as an influence graph, in this article we investigate possible decompositions of the network aimed at highlighting specific dynamical properties. The first decomposition we study consists in finding a maximal directed acyclic subgraph of the network, which dynamically corresponds to searching for a maximal open-loop subsystem of the given system. Another dynamical property investigated is strong monotonicity. We propose two methods to deal with this property, both aimed at decomposing the system into strongly monotone subsystems, but with different structural characteristics: one method tends to produce a single large strongly monotone component, while the other typically generates a set of smaller disjoint strongly monotone subsystems. Original heuristics for the methods investigated are described in the article. altafini@sissa.it

  15. Centralities in simplicial complexes. Applications to protein interaction networks.

    PubMed

    Estrada, Ernesto; Ross, Grant J

    2018-02-07

    Complex networks can be used to represent complex systems which originate in the real world. Here we study a transformation of these complex networks into simplicial complexes, where cliques represent the simplices of the complex. We extend the concept of node centrality to that of simplicial centrality and study several mathematical properties of degree, closeness, betweenness, eigenvector, Katz, and subgraph centrality for simplicial complexes. We study the degree distributions of these centralities at the different levels. We also compare and describe the differences between the centralities at the different levels. Using these centralities we study a method for detecting essential proteins in PPI networks of cells and explain the varying abilities of the centrality measures at the different levels in identifying these essential proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Salimi, S.; Jafarizadeh, M. A.

    2009-06-01

    In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.

  17. A hypercube compact neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostykus, P.L.; Somani, A.K.

    1988-09-01

    A major problem facing implementation of neural networks is the connection problem. One popular tradeoff is to remove connections. Random disconnection severely degrades the capabilities. The hypercube based Compact Neural Network (CNN) has structured architecture combined with a rearrangement of the memory vectors gives a larger input space and better degradation than a cost equivalent network with more connections. The CNNs are based on a Hopfield network. The changes from the Hopfield net include states of -1 and +1 and when a node was evaluated to 0, it was not biased either positive or negative, instead it resumed its previousmore » state. L = PEs, N = memories and t/sub ij/s is the weights between i and j.« less

  18. The problem of estimating recent genetic connectivity in a changing world.

    PubMed

    Samarasin, Pasan; Shuter, Brian J; Wright, Stephen I; Rodd, F Helen

    2017-02-01

    Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent-based method (Migrate-n) and a disequilibrium-based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over-estimated recent migration rates; (ii) the coalescent-based method (Migrate-n) provided better estimates of recent migration rate than the disequilibrium-based method (BayesAss); (iii) the coalescent-based method did not accurately reflect long-term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic-connectivity changes over time could lead to inaccurate conclusions. © 2016 Society for Conservation Biology.

  19. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    NASA Astrophysics Data System (ADS)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  20. Using Problem Fields as a Method of Change.

    ERIC Educational Resources Information Center

    Pehkonen, Erkki

    1992-01-01

    Discusses the rationale and use of problem fields which are sets of related and/or connected open-ended problem-solving tasks within mathematics instruction. Polygons with matchsticks and the number triangle are two examples of problem fields presented along with variations in conditions that promote other matchstick puzzles. (11 references) (JJK)

  1. Gynecological considerations on the participation of females in future space flights

    NASA Technical Reports Server (NTRS)

    Mutke, H. G.; Burchard, E. C.

    1976-01-01

    The NASA Space Shuttle Program in connection with the European Spacelab will provide the opportunity for women to participate in space flight as scientist crew members within the 1980's and 1990's. It is, therefore, necessary to examine gynecologic problems which might have to be considered in connection with these activities. Possible problem areas are related to aspects of menstrual cycle, hormone production disturbances, conception, pregnancy, and delivery. Psychological factors concerning the employment of mixed male-female crews must also be taken into account. Approaches for investigating these problems are discussed, giving attention to the conduction of experiments with female animals.

  2. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.

  3. MedlinePlus Connect: Web Application

    MedlinePlus

    ... will result in a query to the MedlinePlus search engine. If you specify a code and the name/ ... system or problem code, will use the MedlinePlus search engine (English only): https://connect.medlineplus.gov/application?mainSearchCriteria. ...

  4. Connected vehicle enabled freeway merge management - field test.

    DOT National Transportation Integrated Search

    2016-01-01

    Freeway congestion is a major problem of the transportation system, resulting in major economic : loss in terms of traffic delays and fuel costs. With connected vehicle (CV) technologies, more : proactive traffic management strategies are possible. T...

  5. Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses.

    PubMed

    Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito

    2018-04-24

    Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.

  6. Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven

    2017-08-01

    This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studiesmore » on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.« less

  7. Flexible sampling large-scale social networks by self-adjustable random walk

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Ke; Zhu, Jonathan J. H.

    2016-12-01

    Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.

  8. Transfer matrix computation of generalized critical polynomials in percolation

    DOE PAGES

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2012-09-27

    Percolation thresholds have recently been studied by means of a graph polynomial PB(p), henceforth referred to as the critical polynomial, that may be defined on any periodic lattice. The polynomial depends on a finite subgraph B, called the basis, and the way in which the basis is tiled to form the lattice. The unique root of P B(p) in [0, 1] either gives the exact percolation threshold for the lattice, or provides an approximation that becomes more accurate with appropriately increasing size of B. Initially P B(p) was defined by a contraction-deletion identity, similar to that satisfied by the Tuttemore » polynomial. Here, we give an alternative probabilistic definition of P B(p), which allows for much more efficient computations, by using the transfer matrix, than was previously possible with contraction-deletion. We present bond percolation polynomials for the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, much larger than the previous limit of 36 edges using contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. For the largest bases, we obtain the thresholds p c(4, 82) = 0.676 803 329 · · ·, p c(kagome) = 0.524 404 998 · · ·, p c(3, 122) = 0.740 420 798 · · ·, comparable to the best simulation results. We also show that the alternative definition of P B(p) can be applied to study site percolation problems.« less

  9. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  10. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity.

    PubMed

    Brevers, Damien; Noël, Xavier; He, Qinghua; Melrose, James A; Bechara, Antoine

    2016-05-01

    The aim of this study was to examine the impact of different neural systems on monetary decision making in frequent poker gamblers, who vary in their degree of problem gambling. Fifteen frequent poker players, ranging from non-problem to high-problem gambling, and 15 non-gambler controls were scanned using functional magnetic resonance imaging (fMRI) while performing the Iowa Gambling Task (IGT). During IGT deck selection, between-group fMRI analyses showed that frequent poker gamblers exhibited higher ventral-striatal but lower dorsolateral prefrontal and orbitofrontal activations as compared with controls. Moreover, using functional connectivity analyses, we observed higher ventral-striatal connectivity in poker players, and in regions involved in attentional/motor control (posterior cingulate), visual (occipital gyrus) and auditory (temporal gyrus) processing. In poker gamblers, scores of problem gambling severity were positively associated with ventral-striatal activations and with the connectivity between the ventral-striatum seed and the occipital fusiform gyrus and the middle temporal gyrus. Present results are consistent with findings from recent brain imaging studies showing that gambling disorder is associated with heightened motivational-reward processes during monetary decision making, which may hamper one's ability to moderate his level of monetary risk taking. © 2015 Society for the Study of Addiction.

  11. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies

    PubMed Central

    López, Julio

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections. PMID:29670667

  12. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.

    PubMed

    Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  13. From play to problem solving to Common Core: The development of fluid reasoning.

    PubMed

    Prince, Pauline

    2017-01-01

    How and when does fluid reasoning develop and what does it look like at different ages, from a neurodevelopmental and functional perspective? The goal of this article is to discuss the development of fluid reasoning from a practical perspective of our children's lives: from play to problem solving to Common Core Curriculum. A review of relevant and current literature supports a connection between movement, including movement through free play, and the development of novel problem solving. As our children grow and develop, motor routines can become cognitive routines and can be evidenced not only in games, such as chess, but also in the acquisition and demonstration of academic skills. Finally, this article describes the connection between novel problem solving and the demands of the Common Core Curriculum.

  14. Cognitive Enhancement Therapy Improves Resting-State Functional Connectivity in Early Course Schizophrenia

    PubMed Central

    Eack, Shaun M.; Newhill, Christina E.; Keshavan, Matcheri S.

    2016-01-01

    Objective Cognitive remediation is emerging as an effective psychosocial intervention for addressing untreated cognitive and functional impairments in persons with schizophrenia, and might achieve its benefits through neuroplastic changes in brain connectivity. This study seeks to examine the effects of cognitive enhancement therapy (CET) on fronto-temporal brain connectivity in a randomized controlled trial with individuals in the early course of schizophrenia. Method Stabilized, early course outpatients with schizophrenia or schizoaffective disorder (N = 41) were randomly assigned to CET (n = 25) or an active enriched supportive therapy (EST) control (n = 16) and treated for 2 years. Functional MRI data were collected annually, and pseudo resting-state functional connectivity analysis was used to examine differential changes in fronto-temporal connectivity between those treated with CET compared with EST. Results Individuals receiving CET evidenced significantly less functional connectivity loss between the resting-state network and the left dorsolateral prefrontal cortex as well as significantly increased connectivity with the right insular cortex compared to EST (all corrected p < .01). These neural networks are involved in emotion processing and problem-solving. Increased connectivity with the right insula significantly mediated CET effects on improved emotion perception (z′ = −1.96, p = .021), and increased connectivity with the left dorsolateral prefrontal cortex mediated CET-related improvements in emotion regulation (z′ = −1.71, p = .052). Conclusions These findings provide preliminary evidence that CET, a psychosocial cognitive remediation intervention, may enhance connectivity between frontal and temporal brain regions implicated in problem-solving and emotion processing in service of cognitive enhancement in schizophrenia. PMID:27713804

  15. Different Procedures for Solving Mathematical Word Problems in High School

    ERIC Educational Resources Information Center

    Gasco, Javier; Villarroel, Jose Domingo; Zuazagoitia, Dani

    2014-01-01

    The teaching and learning of mathematics cannot be understood without considering the resolution of word problems. These kinds of problems not only connect mathematical concepts with language (and therefore with reality) but also promote the learning related to other scientific areas. In primary school, problems are solved by using basic…

  16. Equivalence between the Arquès-Walsh sequence formula and the number of connected Feynman diagrams for every perturbation order in the fermionic many-body problem

    NASA Astrophysics Data System (ADS)

    Castro, E.

    2018-02-01

    From the perturbative expansion of the exact Green function, an exact counting formula is derived to determine the number of different types of connected Feynman diagrams. This formula coincides with the Arquès-Walsh sequence formula in the rooted map theory, supporting the topological connection between Feynman diagrams and rooted maps. A classificatory summing-terms approach is used, in connection to discrete mathematical theory.

  17. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  18. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  19. Physics and the role of mind

    NASA Astrophysics Data System (ADS)

    Klein, Stanley A.; Cochran, Christopher

    2017-05-01

    This paper explores the role of the mind in the physical world. We begin with a brief introduction to distinct types of retrocausal phenomena connected with parapsychology and physics. We provide an introduction to laws of quantum mechanics (QM) that lead some to surmise connections between QM and psychic phenomena (psi). Next, we present our argument that verification of psi will require changes to QM. As a possible placeholder for these changes we introduce "Mind", from Cartesian dualism. This area of research points the way to connections between two fundamental issues in science: the mind-matter hard problem and the measurement problem of QM. Positive outcomes of carefully executed experiments could demonstrate a close relationship between these two problems, including the possibility that sentience plays an important role in the fundamental laws of physics. We focus on a version of Daryl Bem's seeing the future experiments, which should allow for discrimination between various interpretations of QM. Finally, although the authors are psi skeptics, we suggest methodologies that may enable psi phenomena to be acceptable to mainstream science.

  20. MedlinePlus Connect: Linking Patient Portals and Electronic Health Records to Health Information

    MedlinePlus

    ... Patient portals, patient health record (PHR) systems, and electronic health record (EHR) systems can use MedlinePlus Connect ... patient portal, patient health record (PHR) system, or electronic health record (EHR) system sends a problem, medication, ...

  1. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C., E-mail: waymire@math.oregonstate.edu

    2015-07-15

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturallymore » arise as a result of this investigation.« less

  2. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.

    PubMed

    Dascaliuc, Radu; Michalowski, Nicholas; Thomann, Enrique; Waymire, Edward C

    2015-07-01

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.

  3. Modular thought in the circuit analysis

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    2018-04-01

    Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.

  4. Southern Connections: Connecting with Each Other, Connecting with the Future. The Final Report of the 1998 Commission on the Future of the South.

    ERIC Educational Resources Information Center

    Morrison, Ed

    Supported by the state governments of the South, the Southern Growth Policies Board creates strategies for regional economic development. Every 6 years, the Board's chairman (a state governor) appoints a blue-ribbon commission to analyze the condition of the South, develop regional objectives, and recommend approaches to regional problems. This…

  5. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks

    PubMed Central

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  6. Internet addiction and physical and psychosocial behavior problems among rural secondary school students.

    PubMed

    Gür, Kamer; Yurt, Seher; Bulduk, Serap; Atagöz, Sinem

    2015-09-01

    The aim of this study was to determine secondary school students' levels of Internet addiction and the physical and psychosocial behavior problems they face while using the Internet. This descriptive study was conducted in three state secondary schools in a rural area in the western part of Turkey. This study's sample consisted of 549 students who agreed to participate, with the consent of their families, and who had an Internet connection at home. The data were evaluated using t-tests and variance analyses. In this study the students' score of Internet addiction was at medium level (mean addiction score 44.51 ± 17.90). There were significant differences between the students' Internet addiction scores and the presence of physical behavior problems (going to bed late, skipping meals, eating meals in front of the computer) and psychosocial behavior problems (suffering from conditions such as restlessness, anger, heart palpitations, or tremors when they could not connect to the Internet, decreased relationships with family and friends, feelings of anger, arguing with parents, and finding life boring and empty without an Internet connection). © 2014 Wiley Publishing Asia Pty Ltd.

  7. Learning in stochastic neural networks for constraint satisfaction problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Adorf, Hans-Martin

    1989-01-01

    Researchers describe a newly-developed artificial neural network algorithm for solving constraint satisfaction problems (CSPs) which includes a learning component that can significantly improve the performance of the network from run to run. The network, referred to as the Guarded Discrete Stochastic (GDS) network, is based on the discrete Hopfield network but differs from it primarily in that auxiliary networks (guards) are asymmetrically coupled to the main network to enforce certain types of constraints. Although the presence of asymmetric connections implies that the network may not converge, it was found that, for certain classes of problems, the network often quickly converges to find satisfactory solutions when they exist. The network can run efficiently on serial machines and can find solutions to very large problems (e.g., N-queens for N as large as 1024). One advantage of the network architecture is that network connection strengths need not be instantiated when the network is established: they are needed only when a participating neural element transitions from off to on. They have exploited this feature to devise a learning algorithm, based on consistency techniques for discrete CSPs, that updates the network biases and connection strengths and thus improves the network performance.

  8. Ibandronate

    MedlinePlus

    ... or other problems with your stomach or esophagus (tube that connects the throat to the stomach); cancer; any type of infection, especially in your mouth; problems with your mouth, teeth, or gums; any condition that stops your blood ...

  9. The Cybersecurity Challenge in Acquisition

    DTIC Science & Technology

    2016-04-30

    problems. Scarier yet, another group took control of a car’s computers through a cellular telephone and Bluetooth connections and could access...did more extensive work, hacking their way into a 2009 midsize car through its cellular, Bluetooth , and other wireless connections. Stefan Savage, a

  10. NSI operations center

    NASA Technical Reports Server (NTRS)

    Zanley, Nancy L.

    1991-01-01

    The NASA Science Internet (NSI) Network Operations Staff is responsible for providing reliable communication connectivity for the NASA science community. As the NSI user community expands, so does the demand for greater interoperability with users and resources on other networks (e.g., NSFnet, ESnet), both nationally and internationally. Coupled with the science community's demand for greater access to other resources is the demand for more reliable communication connectivity. Recognizing this, the NASA Science Internet Project Office (NSIPO) expands its Operations activities. By January 1990, Network Operations was equipped with a telephone hotline, and its staff was expanded to six Network Operations Analysts. These six analysts provide 24-hour-a-day, 7-day-a-week coverage to assist site managers with problem determination and resolution. The NSI Operations staff monitors network circuits and their associated routers. In most instances, NSI Operations diagnoses and reports problems before users realize a problem exists. Monitoring of the NSI TCP/IP Network is currently being done with Proteon's Overview monitoring system. The Overview monitoring system displays a map of the NSI network utilizing various colors to indicate the conditions of the components being monitored. Each node or site is polled via the Simple Network Monitoring Protocol (SNMP). If a circuit goes down, Overview alerts the Network Operations staff with an audible alarm and changes the color of the component. When an alert is received, Network Operations personnel immediately verify and diagnose the problem, coordinate repair with other networking service groups, track problems, and document problem and resolution into a trouble ticket data base. NSI Operations offers the NSI science community reliable connectivity by exercising prompt assessment and resolution of network problems.

  11. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  12. Comparing Networks from a Data Analysis Perspective

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yang, Jing-Yu

    To probe network characteristics, two predominant ways of network comparison are global property statistics and subgraph enumeration. However, they suffer from limited information and exhaustible computing. Here, we present an approach to compare networks from the perspective of data analysis. Initially, the approach projects each node of original network as a high-dimensional data point, and the network is seen as clouds of data points. Then the dispersion information of the principal component analysis (PCA) projection of the generated data clouds can be used to distinguish networks. We applied this node projection method to the yeast protein-protein interaction networks and the Internet Autonomous System networks, two types of networks with several similar higher properties. The method can efficiently distinguish one from the other. The identical result of different datasets from independent sources also indicated that the method is a robust and universal framework.

  13. Quantum Clique Gossiping.

    PubMed

    Li, Bo; Li, Shuang; Wu, Junfeng; Qi, Hongsheng

    2018-02-09

    This paper establishes a framework of quantum clique gossiping by introducing local clique operations to networks of interconnected qubits. Cliques are local structures in complex networks being complete subgraphs, which can be used to accelerate classical gossip algorithms. Based on cyclic permutations, clique gossiping leads to collective multi-party qubit interactions. We show that at reduced states, these cliques have the same acceleration effects as their roles in accelerating classical gossip algorithms. For randomized selection of cliques, such improved rate of convergence is precisely characterized. On the other hand, the rate of convergence at the coherent states of the overall quantum network is proven to be decided by the spectrum of a mean-square error evolution matrix. Remarkably, the use of larger quantum cliques does not necessarily increase the speed of the network density aggregation, suggesting quantum network dynamics is not entirely decided by its classical topology.

  14. Spectra of random networks in the weak clustering regime

    NASA Astrophysics Data System (ADS)

    Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen; Rodrigues, Francisco A.

    2018-03-01

    The asymptotic behavior of dynamical processes in networks can be expressed as a function of spectral properties of the corresponding adjacency and Laplacian matrices. Although many theoretical results are known for the spectra of traditional configuration models, networks generated through these models fail to describe many topological features of real-world networks, in particular non-null values of the clustering coefficient. Here we study effects of cycles of order three (triangles) in network spectra. By using recent advances in random matrix theory, we determine the spectral distribution of the network adjacency matrix as a function of the average number of triangles attached to each node for networks without modular structure and degree-degree correlations. Implications to network dynamics are discussed. Our findings can shed light in the study of how particular kinds of subgraphs influence network dynamics.

  15. New graph polynomials in parametric QED Feynman integrals

    NASA Astrophysics Data System (ADS)

    Golz, Marcel

    2017-10-01

    In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.

  16. Research on connection structure of aluminumbody bus using multi-objective topology optimization

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.

    2018-01-01

    For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.

  17. Registering Cortical Surfaces Based on Whole-Brain Structural Connectivity and Continuous Connectivity Analysis

    PubMed Central

    Gutman, Boris; Leonardo, Cassandra; Jahanshad, Neda; Hibar, Derrek; Eschen-burg, Kristian; Nir, Talia; Villalon, Julio; Thompson, Paul

    2014-01-01

    We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups. PMID:25320795

  18. The Dreaded "Work" Problems Revisited: Connections through Problem Solving from Basic Fractions to Calculus

    ERIC Educational Resources Information Center

    Shore, Felice S.; Pascal, Matthew

    2008-01-01

    This article describes several distinct approaches taken by preservice elementary teachers to solving a classic rate problem. Their approaches incorporate a variety of mathematical concepts, ranging from proportions to infinite series, and illustrate the power of all five NCTM Process Standards. (Contains 8 figures.)

  19. 32 CFR 727.6 - Functions of legal assistance officers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with their personal legal problems, or refer such persons to a civilian lawyer as provided in § 727.9... personal legal problems and may prepare and sign correspondence on behalf of a client, negotiate with..., persons eligible for assistance in connection with their personal legal problems. (4) Shall, subject to...

  20. 32 CFR 727.6 - Functions of legal assistance officers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with their personal legal problems, or refer such persons to a civilian lawyer as provided in § 727.9... personal legal problems and may prepare and sign correspondence on behalf of a client, negotiate with..., persons eligible for assistance in connection with their personal legal problems. (4) Shall, subject to...

  1. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  2. Quiet planting in the locked constraints satisfaction problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdeborova, Lenka; Krzakala, Florent

    2009-01-01

    We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble, thus providing hard satisfiable benchmarks. In a part of that hard region instances have with high probability a single satisfying assignment.

  3. Shorter unentangled proofs for ground state connectivity

    NASA Astrophysics Data System (ADS)

    Caha, Libor; Nagaj, Daniel; Schwarz, Martin

    2018-07-01

    Can one considerably shorten a proof for a quantum problem by using a protocol with a constant number of unentangled provers? We consider a frustration-free variant of the sf {QCMA}-complete ground state connectivity (GSCON) problem for a system of size n with a proof of superlinear size. We show that we can shorten this proof in sf {QMA}(2): There exists a two-copy, unentangled proof with length of order n, up to logarithmic factors, while the completeness-soundness gap of the new protocol becomes a small inverse polynomial in n.

  4. Area-Preserving Diffeomorphisms, W∞ and { U}q [sl(2)] in Chern-Simons Theory and the Quantum Hall System

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.

    We discuss a quantum { U}q [sl(2)] symmetry in the Landau problem, which naturally arises due to the relation between { U}q [sl(2)] and the group of magnetic translations. The latter is connected with W∞ and area-preserving (symplectic) diffeomorphisms which are the canonical transformations in the two-dimensional phase space. We shall discuss the hidden quantum symmetry in a 2 + 1 gauge theory with the Chern-Simons term and in a quantum Hall system, which are both connected with the Landau problem.

  5. Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Xu, Jiqiang; Lu, Wenzhou; Wu, Lei

    2017-05-01

    There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.

  6. Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach

    PubMed Central

    Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496

  7. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Abdoulaye, D.; Koalaga, Z.; Zougmore, F.

    2012-02-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  8. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012

    PubMed Central

    Love, William J.; Zawack, Kelson A.; Booth, James G.; Grӧhn, Yrjo T.

    2016-01-01

    Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data. PMID:27851767

  9. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012.

    PubMed

    Love, William J; Zawack, Kelson A; Booth, James G; Grӧhn, Yrjo T; Lanzas, Cristina

    2016-11-01

    Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data.

  10. Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

    PubMed Central

    Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed. PMID:22384178

  11. Environmental Health: Health Care Reform's Missing Pieces.

    ERIC Educational Resources Information Center

    Fadope, Cece Modupe; And Others

    1994-01-01

    A series of articles that examine environmental health and discuss health care reform; connections between chlorine, chlorinated pesticides, and dioxins and reproductive disorders and cancers; the rise in asthma; connections between poverty and environmental health problems; and organizations for health care professionals who want to address…

  12. Making connections: Where STEM learning and Earth science data services meet

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Weigel, A. M.

    2016-12-01

    STEM learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems. Micro articles are short academic texts that enable a reader to quickly understand a scientific phenomena, a case study, or an instrument used to collect data. While originally designed to increase data discovery and usability, micro articles also serve as a reliable starting point for project-based learning, an educational approach in STEM education, for high school and higher education environments. This presentation will highlight micro articles at the Global Hydrology Resource Center data center and will demonstrate the potential applications of micro articles in project-based learning.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visweswara Sathanur, Arun; Choudhury, Sutanay; Joslyn, Cliff A.

    Property graphs can be used to represent heterogeneous networks with attributed vertices and edges. Given one property graph, simulating another graph with same or greater size with identical statistical properties with respect to the attributes and connectivity is critical for privacy preservation and benchmarking purposes. In this work we tackle the problem of capturing the statistical dependence of the edge connectivity on the vertex labels and using the same distribution to regenerate property graphs of the same or expanded size in a scalable manner. However, accurate simulation becomes a challenge when the attributes do not completely explain the network structure.more » We propose the Property Graph Model (PGM) approach that uses an attribute (or label) augmentation strategy to mitigate the problem and preserve the graph connectivity as measured via degree distribution, vertex label distributions and edge connectivity. Our proposed algorithm is scalable with a linear complexity in the number of edges in the target graph. We illustrate the efficacy of the PGM approach in regenerating and expanding the datasets by leveraging two distinct illustrations.« less

  14. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  15. Electrification: Connecting the Pieces in the Broader View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Chris C

    Presented at the SELECT Annual Meeting on September 26, 2017, this PowerPoint presentation gives an overview of connectivity and automation and how these new technologies will impact society in both known and unknown ways. Electrification challenges and opportunities are also outlined as without electrification, connectivity and automation will just magnify the negative health, climate and economic problems of the current transportation systems. Electrification can provide benefits while mitigating the negative consequences. And with careful connection of all of the pieces from materials up through controls, a sustainable transportation eco-system is attainable.

  16. Parents' and Teachers' Opinions of Preschool Children's Social Problem-Solving and Behavioural Problems

    ERIC Educational Resources Information Center

    Kasik, László; Gál, Zita

    2016-01-01

    The aim of our study was to shed light on (1) what Hungarian mothers, fathers and teachers of 4-6-year-olds think of these children's social problem-solving (SPS) and their difficulties in terms of problem-solving, adaptability and prosocial behaviour; (2) studying any correlation between the examined aspects and (3) the connection between one's…

  17. Estimating time-dependent connectivity in marine systems

    USGS Publications Warehouse

    Defne, Zafer; Ganju, Neil K.; Aretxabaleta, Alfredo

    2016-01-01

    Hydrodynamic connectivity describes the sources and destinations of water parcels within a domain over a given time. When combined with biological models, it can be a powerful concept to explain the patterns of constituent dispersal within marine ecosystems. However, providing connectivity metrics for a given domain is a three-dimensional problem: two dimensions in space to define the sources and destinations and a time dimension to evaluate connectivity at varying temporal scales. If the time scale of interest is not predefined, then a general approach is required to describe connectivity over different time scales. For this purpose, we have introduced the concept of a “retention clock” that highlights the change in connectivity through time. Using the example of connectivity between protected areas within Barnegat Bay, New Jersey, we show that a retention clock matrix is an informative tool for multitemporal analysis of connectivity.

  18. Fatigue behavior of welded connections enhanced with ultrasonic impact treatment (UIT) and bolting.

    DOT National Transportation Integrated Search

    2008-11-01

    A common problem in bridges employing welded steel girders is development of fatigue cracks at the ends of girder coverplates. Fatigue cracks tend to form at the toes of the transverse welds connecting a coverplate to a girder flange since this detai...

  19. A Formula for Factoring.

    ERIC Educational Resources Information Center

    Roebuck, Kay I. Meeks

    1997-01-01

    Suggests use of the quadratic formula to build understanding that connections between factors and solutions to equations work both ways. Making use of natural connections among concepts allows students to work more efficiently. Presents four sample problems showing the roots of equations. Messy quadratic equations with rational roots can be solved…

  20. The School-to-Work Connection.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This document reports the proceedings of a national conference of government, business, and educational executives on the school-to-work connection. The proceedings provide short summaries of the speeches and discussions held during the conference, which focused on the problems of poorly educated youth--tomorrow's workers--and how businesses and…

  1. Ethics in the laboratory examination of patients

    PubMed Central

    Nyrhinen, T.; Leino-Kilpi, H.

    2000-01-01

    Various value problems are connected with the clinical examination of patients. The purpose of this literature review is to clarify: 1) in which patient examinations ethical problems are generally found; 2) what kind of ethical problems are found in the different phases of the examination process, and 3) what kind of ethical problems are found in connection with the use of examination results. Genetic testing, autopsy, prenatal and HIV examinations were ethically the most problematic laboratory examinations. The most problematic phase in the laboratory examination process proved to be the pre-analytic phase. At present the results of laboratory examination are used more and more often for the prediction of diseases. The problems appear when the examination results are used for discrimination and stigmatisation. Because of the lack of empirical ethical research, it is important to chart empirical knowledge about present value conflict situations involved in the laboratory examination process. Key Words: Ethic • laboratory • test • examination • diagnosis • patient PMID:10701173

  2. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  3. On the Resource Efficiency of Virtual Concatenation in SDH/SONET Mesh Transport Networks Bearing Protected Scheduled Connections

    NASA Astrophysics Data System (ADS)

    Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas

    2005-10-01

    Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs). As explained later, an SCD is a connection demand for which the set-up and tear-down dates are known in advance. We define mathematical models to quantify the add/drop and transmission resources required to instantiate a set of protected SCDs in VCAT-and CCAT-capable networks. Quantification of transmission resources requires a routing and slot assignment (RSA) problem to be solved. We formulate the RSA problem in VCAT-and CCAT-capable networks as two different combinatorial optimization problems: RSA in VCAT-capable networks (RSAv) and RSA in CCAT-capable networks (RSAc), respectively. Protection of the SCDs is considered in the formulations using a shared backup path protection (SBPP) technique. We propose a simulated annealing (SA)-based meta-heuristic algorithm to compute approximate solutions to these problems (i.e., solutions whose cost approximates the cost of the optimal ones). The gain in transmission resources and the cost structure of add/drop resources making VCAT-capable networks more economical are analyzed for different traffic scenarios.

  4. Attitudes about high school physics in relationship to gender and ethnicity: A mixed method analysis

    NASA Astrophysics Data System (ADS)

    Hafza, Rabieh Jamal

    There is an achievement gap and lack of participation in science, technology, engineering, and math (STEM) by minority females. The number of minority females majoring in STEM related fields and earning advanced degrees in these fields has not significantly increased over the past 40 years. Previous research has evaluated the relationship between self-identity concept and factors that promote the academic achievement as well the motivation of students to study different subject areas. This study examined the interaction between gender and ethnicity in terms of physics attitudes in the context of real world connections, personal interest, sense making/effort, problem solving confidence, and problem solving sophistication. The Colorado Learning Attitudes about Science Survey (CLASS) was given to 131 students enrolled in physics classes. There was a statistically significant Gender*Ethnicity interaction for attitude in the context of Real World Connections, Personal Interest, Sense Making/Effort, Problem Solving Confidence, and Problem Solving Sophistication as a whole. There was also a statistically significant Gender*Ethnicity interaction for attitude in the context of Real World Connections, Personal Interest, and Sense Making/Effort individually. Five Black females were interviewed to triangulate the quantitative results and to describe the experiences of minority females taking physics classes. There were four themes that emerged from the interviews and supported the findings from the quantitative results. The data supported previous research done on attitudes about STEM. The results reported that Real World Connections and Personal Interest could be possible factors that explain the lack of participation and achievement gaps that exists among minority females.

  5. Reading as Seduction: The Censorship Problem and the Educational Value of Literature.

    ERIC Educational Resources Information Center

    Bogdan, Deanne

    1992-01-01

    Uses examples from mass culture to show the relationship of the continuum theory and the gap theory to the connection between the censorship problem and the educational value of literary reading. (SR)

  6. Data parallel sorting for particle simulation

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  7. Does Calculation or Word-Problem Instruction Provide a Stronger Route to Prealgebraic Knowledge?

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and prealgebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other…

  8. Connecting Problem-Solving Style to Peer Evaluations of Performance in Secondary Cooperative Learning Projects

    ERIC Educational Resources Information Center

    Bush, Sarah A.; Friedel, Curtis R.; Hoerbert, Lindsey R.; Broyles, Thomas W.

    2017-01-01

    With an evolving and expanding agricultural industry, it is crucial to provide future professionals with valuable experiences and skills in problem solving, communication, and teamwork. Agricultural summer programs for secondary students, which provide cooperative learning experiences with a focus on group work and problem solving, aim to help…

  9. How Readability and Topic Incidence Relate to Performance on Mathematics Story Problems in Computer-Based Curricula

    ERIC Educational Resources Information Center

    Walkington, Candace; Clinton, Virginia; Ritter, Steven N.; Nathan, Mitchell J.

    2015-01-01

    Solving mathematics story problems requires text comprehension skills. However, previous studies have found few connections between traditional measures of text readability and performance on story problems. We hypothesized that recently developed measures of readability and topic incidence measured by text-mining tools may illuminate associations…

  10. North Dakota's Centennial Quilt and Problem Solvers: Solutions: The Library Problem

    ERIC Educational Resources Information Center

    Small, Marian

    2010-01-01

    Quilt investigations, such as the Barn quilt problem in the December 2008/January 2009 issue of "Teaching Children Mathematics" and its solutions in last month's issue, can spark interdisciplinary pursuits for teachers and exciting connections for the full range of elementary school students. This month, North Dakota's centennial quilt…

  11. Orangutans (Pongo pygmaeus and Pongo abelii) understand connectivity in the skewered grape tool task.

    PubMed

    Mulcahy, Nicholas J; Schubiger, Michèle N; Suddendorf, T

    2013-02-01

    Great apes appear to have limited knowledge of tool functionality when they are presented with tasks that involve a physical connection between a tool and a reward. For instance, they fail to understand that pulling a rope with a reward tied to its end is more beneficial than pulling a rope that only touches a reward. Apes show more success when both ropes have rewards tied to their ends but one rope is nonfunctional because it is clearly separated into aligned sections. It is unclear, however, whether this success is based on perceptual features unrelated to connectivity, such as perceiving the tool's separate sections as independent tools rather than one discontinuous tool. Surprisingly, there appears to be no study that has tested any type of connectivity problem using natural tools made from branches with which wild and captive apes often have extensive experience. It is possible that such ecologically valid tools may better help subjects understand connectivity that involves physical attachment. In this study, we tested orangutans with natural tools and a range of connectivity problems that involved the physical attachment of a reward on continuous and broken tools. We found that the orangutans understood tool connectivity involving physical attachment that apes from other studies failed when tested with similar tasks using artificial as opposed to natural tools. We found no evidence that the orangutans' success in broken tool conditions was based on perceptual features unrelated to connectivity. Our results suggest that artificial tools may limit apes' knowledge of connectivity involving physical attachment, whereas ecologically valid tools may have the opposite effect. PsycINFO Database Record (c) 2013 APA, all rights reserved

  12. Optimal stimulus scheduling for active estimation of evoked brain networks.

    PubMed

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  13. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  14. Steering Bell-diagonal states

    PubMed Central

    Quan, Quan; Zhu, Huangjun; Liu, Si-Yuan; Fei, Shao-Ming; Fan, Heng; Yang, Wen-Li

    2016-01-01

    We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality. PMID:26911250

  15. Sexual dysfunctions in non-heterosexual men - literature review.

    PubMed

    Grabski, Bartosz; Kasparek, Krzysztof

    2017-02-26

    The paper aims to present results and discuss methodology of research conducted so far on sexual dysfunction in non-heterosexual men, as well as to form suggestions for future research and clinical practice. The present paper is a continuation of our earlier paper, which discussed the specific context of the issue connected with the characteristics of gay sexual orientation and the social situation those men face. There is little research on dysfunctions and sexual problems in non-heterosexual men, and none has been conducted in Poland. The research that has been done is characterized by inconsistent methodology that is far from perfect, and varied results which cannot be compared. There are still many unanswered questions in the field. The issues connected with research that require attention include the choice of samples and their representativeness, and the accuracy of the methods used for identifying sexual dysfunctions. It is also still not clear whether sexual problems occur more often in non-heterosexual than heterosexual men, how non-heterosexual men deal with those problems, and how the problems influence their functioning. Another issue that requires a deeper understanding is the connections between sexual dysfunctions in this group and various aspects of the so-called minority stress, such as internalized homophobia and experiencing discrimination, psychoactive substance abuse, HIV infection, and the sexual and partnership lifestyle.

  16. Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam

    2018-04-01

    Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.

  17. Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations

    ERIC Educational Resources Information Center

    Timmerman, Maria A.

    2014-01-01

    If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…

  18. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    ERIC Educational Resources Information Center

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  19. Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat

    Treesearch

    John Hof; Curtis H. Flather

    1996-01-01

    This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...

  20. Mathematics & Economics: Connections for Life, Grades 6-8.

    ERIC Educational Resources Information Center

    Hoff, Jody; McCorkle, Sarapage; Suiter, Mary; Bettendorf, James; Breidenbach, Lisa; Cornwell, Pamela

    This book contains a set of 12 lessons for middle school students that demonstrate how mathematical processes and concepts may be applied to the study of economics and personal finance. Mathematics educators can find lessons connecting mathematics instruction to practical problems and issues that students encounter throughout their life. The…

  1. Routing in Networks with Random Topologies

    NASA Technical Reports Server (NTRS)

    Bambos, Nicholas

    1997-01-01

    We examine the problems of routing and server assignment in networks with random connectivities. In such a network the basic topology is fixed, but during each time slot and for each of tis input queues, each server (node) is either connected to or disconnected from each of its queues with some probability.

  2. Connection of Scattering Principles: A Visual and Mathematical Tour

    ERIC Educational Resources Information Center

    Broggini, Filippo; Snieder, Roel

    2012-01-01

    Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…

  3. How to Classify and Measure Ecosystem Services to Connect to Human Well Being -- Is there an Answer?

    EPA Science Inventory

    Abstract 2.0: Ecosystem services remain poorly defined despite an extensive and growing literature. While approaches are many and varied, none appear to adequately define a systematic, complete, and non-duplicative solution to the crucial problem of connecting ecosystems to hum...

  4. Media Violence and Young People.

    ERIC Educational Resources Information Center

    Oaks, Harold R.

    1995-01-01

    Discusses the possibility of a connection between violence in the media and actual adolescent behavior. Explores the nature of the connection, why it exists, and possible courses of action to correct the problem. States that 3,000 studies have explored the link between media violence and adolescent behavior. Concludes that the media should show…

  5. Connecting Levels of Representation: Emergent versus Submergent Perspective

    ERIC Educational Resources Information Center

    Rappoport, Lana T.; Ashkenazi, Guy

    2008-01-01

    Chemical phenomena can be described using three representation modes: macro, submicro, and symbolic. The way students use and connect these modes when solving conceptual problems was studied, using a think-aloud interview protocol. The protocol was validated through interviews with six faculty members, and then applied to four graduate and six…

  6. The Promise and Pitfalls of Making Connections in Mathematics

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; Alibali, Martha W.; Nathan, Mitchell J.

    2017-01-01

    Making connections during math instruction is a recommended practice, but may increase the difficulty of the lesson. We used an avatar video instructor to qualitatively examine the role of linking multiple representations for 24 middle school students learning algebra. Students were taught how to solve polynomial multiplication problems, such as…

  7. Identification of the connections in biologically inspired neural networks

    NASA Technical Reports Server (NTRS)

    Demuth, H.; Leung, K.; Beale, M.; Hicklin, J.

    1990-01-01

    We developed an identification method to find the strength of the connections between neurons from their behavior in small biologically-inspired artificial neural networks. That is, given the network external inputs and the temporal firing pattern of the neurons, we can calculate a solution for the strengths of the connections between neurons and the initial neuron activations if a solution exists. The method determines directly if there is a solution to a particular neural network problem. No training of the network is required. It should be noted that this is a first pass at the solution of a difficult problem. The neuron and network models chosen are related to biology but do not contain all of its complexities, some of which we hope to add to the model in future work. A variety of new results have been obtained. First, the method has been tailored to produce connection weight matrix solutions for networks with important features of biological neural (bioneural) networks. Second, a computationally efficient method of finding a robust central solution has been developed. This later method also enables us to find the most consistent solution in the presence of noisy data. Prospects of applying our method to identify bioneural network connections are exciting because such connections are almost impossible to measure in the laboratory. Knowledge of such connections would facilitate an understanding of bioneural networks and would allow the construction of the electronic counterparts of bioneural networks on very large scale integrated (VLSI) circuits.

  8. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.

    PubMed

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-15

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.

  9. Network connectivity value.

    PubMed

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-04-21

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. When Abelian = Hausdorff

    ERIC Educational Resources Information Center

    Kohl, Timothy

    2012-01-01

    A pair of elementary exercises, one from topology, the other from group theory are such that if one replaces three words in the topology problem, you get the group theory problem and vice-versa. This suggests connections between the two that are explored here.

  11. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  12. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2018-05-11

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  13. Operating characteristics of superconducting fault current limiter using 24kV vacuum interrupter driven by electromagnetic repulsion switch

    NASA Astrophysics Data System (ADS)

    Endo, M.; Hori, T.; Koyama, K.; Yamaguchi, I.; Arai, K.; Kaiho, K.; Yanabu, S.

    2008-02-01

    Using a high temperature superconductor, we constructed and tested a model Superconducting Fault Current Limiter (SFCL). SFCL which has a vacuum interrupter with electromagnetic repulsion mechanism. We set out to construct high voltage class SFCL. We produced the electromagnetic repulsion switch equipped with a 24kV vacuum interrupter(VI). There are problems that opening speed becomes late. Because the larger vacuum interrupter the heavier weight of its contact. For this reason, the current which flows in a superconductor may be unable to be interrupted within a half cycles of current. In order to solve this problem, it is necessary to change the design of the coil connected in parallel and to strengthen the electromagnetic repulsion force at the time of opening the vacuum interrupter. Then, the design of the coil was changed, and in order to examine whether the problem is solvable, the current limiting test was conducted. We examined current limiting test using 4 series and 2 parallel-connected YBCO thin films. We used 12-centimeter-long YBCO thin film. The parallel resistance (0.1Ω) is connected with each YBCO thin film. As a result, we succeed in interrupting the current of superconductor within a half cycle of it. Furthermore, series and parallel-connected YBCO thin film could limit without failure.

  14. An Algorithm to Automatically Generate the Combinatorial Orbit Counting Equations

    PubMed Central

    Melckenbeeck, Ine; Audenaert, Pieter; Michoel, Tom; Colle, Didier; Pickavet, Mario

    2016-01-01

    Graphlets are small subgraphs, usually containing up to five vertices, that can be found in a larger graph. Identification of the graphlets that a vertex in an explored graph touches can provide useful information about the local structure of the graph around that vertex. Actually finding all graphlets in a large graph can be time-consuming, however. As the graphlets grow in size, more different graphlets emerge and the time needed to find each graphlet also scales up. If it is not needed to find each instance of each graphlet, but knowing the number of graphlets touching each node of the graph suffices, the problem is less hard. Previous research shows a way to simplify counting the graphlets: instead of looking for the graphlets needed, smaller graphlets are searched, as well as the number of common neighbors of vertices. Solving a system of equations then gives the number of times a vertex is part of each graphlet of the desired size. However, until now, equations only exist to count graphlets with 4 or 5 nodes. In this paper, two new techniques are presented. The first allows to generate the equations needed in an automatic way. This eliminates the tedious work needed to do so manually each time an extra node is added to the graphlets. The technique is independent on the number of nodes in the graphlets and can thus be used to count larger graphlets than previously possible. The second technique gives all graphlets a unique ordering which is easily extended to name graphlets of any size. Both techniques were used to generate equations to count graphlets with 4, 5 and 6 vertices, which extends all previous results. Code can be found at https://github.com/IneMelckenbeeck/equation-generator and https://github.com/IneMelckenbeeck/graphlet-naming. PMID:26797021

  15. Teaching helix and problems connected with helix using GeoGebra

    NASA Astrophysics Data System (ADS)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  16. Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.

    PubMed

    Su, Shize; Lin, Zongli; Garcia, Alfredo

    2016-01-01

    This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.

  17. Nerves in northern Norway: the communication of emotions, illness experiences, and health-seeking behaviors.

    PubMed

    Foss, Nina

    2002-02-01

    The nature of nerves is the subject of a growing and dynamic body of anthropological research. The term nerves is often conceptualized as hard to define. Its meaning carries ambiguities, inconsistencies, and variation, although it is connected to reactions to the hardships of life. In the West, it is often associated with psychiatric problems. In this study, the researcher unveiled peoples' pragmatic use of the term nerves through diverse social settings in a coastal community in Northern Norway. The term was connected to psychological or psychiatric problems, privacy, and stigma, but had the capacity to communicate a continuum from normal emotional problems to severe mental illness. This study also showed the effect of the term in encounters between patients and professional health workers.

  18. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  19. A general method for computing Tutte polynomials of self-similar graphs

    NASA Astrophysics Data System (ADS)

    Gong, Helin; Jin, Xian'an

    2017-10-01

    Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.

  20. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  1. A tool for filtering information in complex systems

    NASA Astrophysics Data System (ADS)

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-07-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. This paper was submitted directly (Track II) to the PNAS office.Abbreviations: MST, minimum spanning tree; PMFG, Planar Maximally Filtered Graph; r-clique, clique of r elements.

  2. Ndarts

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2011-01-01

    Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.

  3. Quantify spatial relations to discover handwritten graphical symbols

    NASA Astrophysics Data System (ADS)

    Li, Jinpeng; Mouchère, Harold; Viard-Gaudin, Christian

    2012-01-01

    To model a handwritten graphical language, spatial relations describe how the strokes are positioned in the 2-dimensional space. Most of existing handwriting recognition systems make use of some predefined spatial relations. However, considering a complex graphical language, it is hard to express manually all the spatial relations. Another possibility would be to use a clustering technique to discover the spatial relations. In this paper, we discuss how to create a relational graph between strokes (nodes) labeled with graphemes in a graphical language. Then we vectorize spatial relations (edges) for clustering and quantization. As the targeted application, we extract the repetitive sub-graphs (graphical symbols) composed of graphemes and learned spatial relations. On two handwriting databases, a simple mathematical expression database and a complex flowchart database, the unsupervised spatial relations outperform the predefined spatial relations. In addition, we visualize the frequent patterns on two text-lines containing Chinese characters.

  4. A binary-decision-diagram-based two-bit arithmetic logic unit on a GaAs-based regular nanowire network with hexagonal topology.

    PubMed

    Zhao, Hong-Quan; Kasai, Seiya; Shiratori, Yuta; Hashizume, Tamotsu

    2009-06-17

    A two-bit arithmetic logic unit (ALU) was successfully fabricated on a GaAs-based regular nanowire network with hexagonal topology. This fundamental building block of central processing units can be implemented on a regular nanowire network structure with simple circuit architecture based on graphical representation of logic functions using a binary decision diagram and topology control of the graph. The four-instruction ALU was designed by integrating subgraphs representing each instruction, and the circuitry was implemented by transferring the logical graph structure to a GaAs-based nanowire network formed by electron beam lithography and wet chemical etching. A path switching function was implemented in nodes by Schottky wrap gate control of nanowires. The fabricated circuit integrating 32 node devices exhibits the correct output waveforms at room temperature allowing for threshold voltage variation.

  5. The braingraph.org database of high resolution structural connectomes and the brain graph tools.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-01

    Based on the data of the NIH-funded Human Connectome Project, we have computed structural connectomes of 426 human subjects in five different resolutions of 83, 129, 234, 463 and 1015 nodes and several edge weights. The graphs are given in anatomically annotated GraphML format that facilitates better further processing and visualization. For 96 subjects, the anatomically classified sub-graphs can also be accessed, formed from the vertices corresponding to distinct lobes or even smaller regions of interests of the brain. For example, one can easily download and study the connectomes, restricted to the frontal lobes or just to the left precuneus of 96 subjects using the data. Partially directed connectomes of 423 subjects are also available for download. We also present a GitHub-deposited set of tools, called the Brain Graph Tools, for several processing tasks of the connectomes on the site http://braingraph.org.

  6. The Potential of Automated Corrective Feedback to Remediate Cohesion Problems in Advanced Students' Writing

    ERIC Educational Resources Information Center

    Strobl, Carola

    2017-01-01

    This study explores the potential of a feedback environment using simple string-based pattern matching technology for the provision of automated corrective feedback on cohesion problems. Thirty-eight high-frequent problems, including non-target like use of connectives and co-references were addressed providing both direct and indirect feedback.…

  7. The Application of Problem Solving Method on Science Teacher Trainees on the Solution of the Environmental Problems

    ERIC Educational Resources Information Center

    Dogru, Mustafa

    2008-01-01

    Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…

  8. Integrating Problem-Based Learning with Community-Engaged Learning in Teaching Program Development and Implementation

    ERIC Educational Resources Information Center

    Hou, Su-I

    2014-01-01

    Purpose: Problem-based learning (PBL) challenges students to learn and work in groups to seek solutions to real world problems. Connecting academic study with community-engaged learning (CEL) experience can deeper learning and thinking. This paper highlights the integration of PBL with CEL in the Implementation Course to engage graduate students…

  9. Assessing the Possibility of Leadership Education as Psychosocial-Based Problem Behavior Prevention for Adolescents: A Review of the Literature

    ERIC Educational Resources Information Center

    Caputi, Theodore L.

    2017-01-01

    The purpose of this review is to examine theoretical connections between adolescent leadership education and problem behavior prevention. Both the problem behavior prevention literature and the leadership education literature were reviewed for studies pertaining to the development of psychosocial traits. In the leadership education literature this…

  10. The Influence of Rule Structure and Problem Composition on Conceptual Learning Among Rural Hawaiian Children. Technical Report #75.

    ERIC Educational Resources Information Center

    Ciborowski, Tom; Price-Williams, D.

    The conceptual and problem solving skills of Hawaiian rural elementary school students in the Kamehameha Early Education Program were investigated by comparing the logical connecting rules of conjunction (red and triangle) to inclusive disjunction (red and/or triangle) with respect to Traditional problems (selection of attributes from 2 different…

  11. Teaching for Connection: Critical Thinking Skills, Problem Solving, and Academic and Occupational Competencies. Lesson Plans.

    ERIC Educational Resources Information Center

    Hedges, Lowell E.

    This document contains 48 sample lesson plans that practicing teachers of vocational and academic education have developed to train vocational students to think critically and to solve problems. Discussed in the introduction are the following topics: critical thinking, problem solving, and decision making as the building blocks of teaching;…

  12. A Model for Ubiquitous Serious Games Development Focused on Problem Based Learning

    ERIC Educational Resources Information Center

    Dorneles, Sandro Oliveira; da Costa, Cristiano André; Rigo, Sandro José

    2015-01-01

    The possibility of using serious games with problem-based learning opens up huge opportunities to connect the experiences of daily life of students with learning. In this context, this article presents a model for serious and ubiquitous games development, focusing on problem based learning methodology. The model allows teachers to create games…

  13. Mind/Body Connection: How Your Emotions Affect Your Health

    MedlinePlus

    ... your doctor How can I better cope with stress? Are my health problems causing my stress or is my stress causing my health problems? I don’t think I’m under stress, but is my body telling me that I ...

  14. What Mathematical Competencies Are Needed for Success in College.

    ERIC Educational Resources Information Center

    Garofalo, Joe

    1990-01-01

    Identifies requisite math skills for a microeconomics course, offering samples of supply curves, demand curves, equilibrium prices, elasticity, and complex graph problems. Recommends developmental mathematics competencies, including problem solving, reasoning, connections, communication, number and operation sense, algebra, relationships,…

  15. Connecting Research to Teaching: Using Data to Motivate the Use of Empirical Sampling Distributions

    ERIC Educational Resources Information Center

    Lee, Hollylynne S.; Starling, Tina T.; Gonzalez, Marggie D.

    2014-01-01

    Research shows that students often struggle with understanding empirical sampling distributions. Using hands-on and technology models and simulations of problems generated by real data help students begin to make connections between repeated sampling, sample size, distribution, variation, and center. A task to assist teachers in implementing…

  16. Teaching (Un)Connected Mathematics: Two Teachers' Enactment of the Pizza Problem

    ERIC Educational Resources Information Center

    Hill, Heather C.; Charalambous, Charalambos Y.

    2012-01-01

    This paper documents the ways mathematical knowledge for teaching (MKT) and curriculum materials appear to contribute to the enactment of a 7th grade "Connected Mathematics Project" lesson on comparing ratios. Two teachers with widely differing MKT scores are compared teaching this lesson. The comparison of the teachers' lesson enactments suggests…

  17. Alice in the Real World

    ERIC Educational Resources Information Center

    Parker, Tom

    2012-01-01

    As a fifth-grade mathematics teacher, the author tries to create authentic problem-solving activities that connect to the world in which his students live. He discovered a natural connection to his students' real world at a computer camp. A friend introduced him to Alice, a computer application developed at Carnegie Mellon, under the leadership of…

  18. Mathematical Connections and Their Relationship to Mathematics Knowledge for Teaching Geometry

    ERIC Educational Resources Information Center

    Eli, Jennifer A.; Mohr-Schroeder, Margaret J.; Lee, Carl W.

    2013-01-01

    Effective competition in a rapidly growing global economy places demands on a society to produce individuals capable of higher-order critical thinking, creative problem solving, connection making, and innovation. We must look to our teacher education programs to help prospective middle grades teachers build the mathematical habits of mind that…

  19. Connecting Education and Cognitive Neuroscience: Where Will the Journey Take Us?

    ERIC Educational Resources Information Center

    Ansari, Daniel; Coch, Donna; De Smedt, Bert

    2011-01-01

    In recent years there have been growing calls for forging greater connections between education and cognitive neuroscience. As a consequence great hopes for the application of empirical research on the human brain to educational problems have been raised. In this article we contend that the expectation that results from cognitive neuroscience…

  20. Economy, Work, and Education: Critical Connections. Routledge Advances in Management and Business Studies

    ERIC Educational Resources Information Center

    Casey, Catherine

    2011-01-01

    "Economy, Work and Education: Critical Connections" addresses effects of neoliberal capitalism in particular regard to work and education. The book elaborates key aspects and problems of generalized policy models of knowledge-based economies and learning societies in contexts of liberalized firm action, accelerated competitiveness and labor market…

  1. MK Connects: Macedonia Links Education and Connectivity

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2009

    2009-01-01

    The Academy for Educational Development (AED) has many opportunities to apply expertise and creativity to the solution of perplexing human problems. It is much more rare, however, to find oneself at the nexus of a set of opportunities that make it possible to make a greater contribution than the original objective. Macedonia's commitment to…

  2. Using Bar Representations as a Model for Connecting Concepts of Rational Number.

    ERIC Educational Resources Information Center

    Middleton, James A.; van den Heuvel-Panhuizen, Marja; Shew, Julia A.

    1998-01-01

    Examines bar models as graphical representations of rational numbers and presents related real life problems. Concludes that, through pairing the fraction bars with ratio tables and other ways of teaching numbers, numeric strategies become connected with visual strategies that allow students with diverse ways of thinking to share their…

  3. Teachers' Instructional Practices within Connected Classroom Technology Environments to Support Representational Fluency

    ERIC Educational Resources Information Center

    Gunpinar, Yasemin; Pape, Stephen

    2018-01-01

    The purpose of this study was to investigate the ways that teachers use connected classroom technology (CCT) in conjunction with the Texas Instruments Nspire calculator to potentially support achievement on Algebra problems that require translation between representations (i.e., symbolic to graphical). Four Algebra I classrooms that initially…

  4. Teachers' Experiences Using Service-Learning in the High School Classroom

    ERIC Educational Resources Information Center

    Maguire, Lisa

    2016-01-01

    Teachers are looking for meaningful ways to connect with students and instill in them an understanding and appreciation for academic content that will extend beyond the classroom. Service-learning is a teaching pedagogy that connects classroom content with real-world problems that allow students to practice applying knowledge and skills while…

  5. Problem Scoping Design Thinking and Close Reading: Makerspaces in the School Library

    ERIC Educational Resources Information Center

    Blakemore, Megan

    2018-01-01

    Makerspaces, collaborative workspaces stocked with materials and tools for creating, building, designing, and learning, are becoming more and more common in schools and, in particular, in school libraries. Makerspaces in the school library allow for connections between making and literacy. Indeed, such connections are authentic and natural as…

  6. Optical link by using optical wiring method for reducing EMI

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Kwon, Jong-Hwa; Choi, Sung-Woong; Bondarik, Alexander; Yun, Je-Hoon; Kim, Chang-Joo; Ahn, Seung-Beom; Jeong, Myung-Yung; Park, Hyo Hoon

    2008-12-01

    A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx) for reducing EMI (electromagnetic interference). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. The key benefit of fiber optic link is the absence of electromagnetic interference (EMI) noise creation and susceptibility. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (i) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (ii) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (iii) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. Electronic interconnections have uniquely electronic problems such as EMI, shorting, and ground loops. Since these problems only arise during transduction (electronics-to-optics or opticsto- electronics), the purely optical part and optical link(interconnection) is free of these problems. 1 An optical link system constructed with TRx modules was fabricated and the optical characteristics about data links and EMI levels were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for reducing EMI of inter-chip interconnect. We successfully achieved a 4.5 Gb/s data transmission rate without EMI problems.

  7. Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, A L

    2010-12-15

    As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum valuemore » available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be replaced with the 64-bit integer. that need to be replaced. In the rest of this paper we describe the techniques used to facilitate this transformation, issues raised, and issues still to be addressed. This poster will describe the reasons, methods, issues associated with extending the ALE3D code to run problems larger than 700 million elements.« less

  8. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Human connectome module pattern detection using a new multi-graph MinMax cut model.

    PubMed

    De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng

    2014-01-01

    Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.

  10. Quantum annealing with all-to-all connected nonlinear oscillators

    PubMed Central

    Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre

    2017-01-01

    Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952

  11. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  12. New Finsler package

    NASA Astrophysics Data System (ADS)

    Youssef, Nabil L.; Elgendi, S. G.

    2014-03-01

    The book “Handbook of Finsler geometry” has been included with a CD containing an elegant Maple package, FINSLER, for calculations in Finsler geometry. Using this package, an example concerning a Finsler generalization of Einstein’s vacuum field equations was treated. In this example, the calculation of the components of the hv-curvature of Cartan connection leads to wrong expressions. On the other hand, the FINSLER package works only in dimension four. We introduce a new Finsler package in which we fix the two problems and solve them. Moreover, we extend this package to compute not only the geometric objects associated with Cartan connection but also those associated with Berwald, Chern and Hashiguchi connections in any dimension. These improvements have been illustrated by a concrete example. Furthermore, the problem of simplifying tensor expressions is treated. This paper is intended to make calculations in Finsler geometry more easier and simpler.

  13. Flocking with connectivity preservation for disturbed nonlinear multi-agent systems by output feedback

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhang, Baoyong; Ma, Qian; Xu, Shengyuan; Chen, Weimin; Zhang, Zhengqiang

    2018-05-01

    This paper considers the problem of flocking with connectivity preservation for a class of disturbed nonlinear multi-agent systems. In order to deal with the nonlinearities in the dynamic of all agents, some auxiliary variables are introduced into the state observer for stability analysis. By proposing a bounded potential function and using adaptive theory, a novel output feedback consensus algorithm is developed to guarantee that the states of all agents achieve flocking with connectivity preservation.

  14. Thin Client Architecture: The Promise and the Problems.

    ERIC Educational Resources Information Center

    Machovec, George S.

    1997-01-01

    Describes thin clients, a networking technology that allows organizations to provide software applications over networked workstations connected to a central server. Topics include corporate settings; major advantages, including cost effectiveness and increased computer security; problems; and possible applications for large public and academic…

  15. The missing link: district nurses as social connection for older people with type 2 diabetes mellitus.

    PubMed

    Lucas, Sandra

    2013-08-01

    The relationship between social connection and health is widely recognised. However, there is a paucity of literature regarding the impact of district nursing care on social connection for people with a chronic illness such as type 2 diabetes mellitus (T2DM). Using a mixed-method approach, an exploration of the perceptions of older people living in the community with T2DM regarding their health and social connections was carried out. Findings revealed a strong relationship between the clients and the district nurse. The district nurse is an important aspect of clients' social connection. For some clients where their social connection is limited, the district nurse is a central element. When the district nurse is the major social connection, problems can arise for the client, especially when they are being discharged or changes are made to their care.

  16. Supporting middle school students' construction of evidence-based arguments: Impact of and student interactions with computer-based argumentation scaffolds

    NASA Astrophysics Data System (ADS)

    Belland, Brian Robert

    Middle school students have difficulty creating evidence-based arguments (EBAs) during problem-based learning (PBL) units due to challenges (a) adequately representing the unit's central problem (Ge & Land, 2004; Liu & Bera, 2005), (b) determining and obtaining the most relevant evidence (Pedersen & Liu, 2002-2003), and (c) synthesizing gathered information to construct a sound argument (Cho & Jonassen, 2002). I designed and developed the Connection Log to support middle school students in this process. This study addressed (1) the Connection Log's impact on (a) argument evaluation ability, and (b) group argument quality and (2) how and why middle school science students used the Connection Log. Four sections of a 7th-grade science class participated. Student groups selected a stakeholder position related to the Human Genome Project (HGP) and needed to decide on and promote a plan to use $3 million to further their position as pertains to the HGP. I randomly assigned one higher-achieving and one lower-achieving class to Connection Log or no Connection Log conditions. Students completed an argument evaluation test, and impact on argument evaluation ability was determined using nested ANOVA. Two graduate students, blind to treatment conditions, rated group arguments, and impact on group argument quality was determined using nested MANOVA. To determine how and why students used the Connection Log, I videotaped and interviewed one small group from each class in the experimental condition. I coded transcripts and generated themes, triangulating the two data sources with informal observations during all class sessions and what students wrote in the Connection Log. I detected no significant differences on claim, evidence, or connection of claim to evidence ratings of debate performances. However, students used the Connection Log to counter different difficulties, and I found a significant main effect of the Connection Log on argument evaluation ability, as well as a significant simple main effect of the Connection Log on argument evaluation ability of lower-achieving students. Implications include the Connection Log's potential to facilitate the creation of evidence-based arguments and the importance of (a) supporting English as a New Language students' efforts and (b) redundancy in communication.

  17. Reduced Default Mode Connectivity in Adolescents With Conduct Disorder.

    PubMed

    Broulidakis, M John; Fairchild, Graeme; Sully, Kate; Blumensath, Thomas; Darekar, Angela; Sonuga-Barke, Edmund J S

    2016-09-01

    Conduct disorder (CD) is characterized by impulsive, aggressive, and antisocial behaviors that might be related to deficits in empathy and moral reasoning. The brain's default mode network (DMN) has been implicated in self-referential cognitive processes of this kind. This study examined connectivity between key nodes of the DMN in 29 adolescent boys with CD and 29 age- and sex-matched typically developing adolescent boys. The authors ensured that group differences in DMN connectivity were not explained by comorbidity with other disorders by systematically controlling for the effects of substance use disorders (SUDs), attention-deficit/hyperactivity disorder (ADHD) symptoms, psychopathic traits, and other common mental health problems. Only after adjusting for co-occurring ADHD symptoms, the group with CD showed hypoconnectivity between core DMN regions compared with typically developing controls. ADHD symptoms were associated with DMN hyperconnectivity. There was no effect of psychopathic traits on DMN connectivity in the group with CD, and the key results were unchanged when controlling for SUDs and other common mental health problems. Future research should directly investigate the possibility that the aberrant DMN connectivity observed in the present study contributes to CD-related deficits in empathy and moral reasoning and examine self-referential cognitive processes in CD more generally. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. All rights reserved.

  18. Superior Temporal Sulcus Disconnectivity During Processing of Metaphoric Gestures in Schizophrenia

    PubMed Central

    Straube, Benjamin; Green, Antonia; Sass, Katharina; Kircher, Tilo

    2014-01-01

    The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients. PMID:23956120

  19. Prediction of Sea Surface Temperature Using Long Short-Term Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wang, Hui; Dong, Junyu; Zhong, Guoqiang; Sun, Xin

    2017-10-01

    This letter adopts long short-term memory(LSTM) to predict sea surface temperature(SST), which is the first attempt, to our knowledge, to use recurrent neural network to solve the problem of SST prediction, and to make one week and one month daily prediction. We formulate the SST prediction problem as a time series regression problem. LSTM is a special kind of recurrent neural network, which introduces gate mechanism into vanilla RNN to prevent the vanished or exploding gradient problem. It has strong ability to model the temporal relationship of time series data and can handle the long-term dependency problem well. The proposed network architecture is composed of two kinds of layers: LSTM layer and full-connected dense layer. LSTM layer is utilized to model the time series relationship. Full-connected layer is utilized to map the output of LSTM layer to a final prediction. We explore the optimal setting of this architecture by experiments and report the accuracy of coastal seas of China to confirm the effectiveness of the proposed method. In addition, we also show its online updated characteristics.

  20. An Annotated Bibliography of Identifying and Meeting the Needs of the Student with Chronic Health Problems.

    ERIC Educational Resources Information Center

    Greenlee, Karen M.

    A 56-citation review is presented of literature on chronic illness or chronic health problems in school-aged children, as well as policies connected with the medication a child may be taking for management of a physical condition. The initial section discusses the prevalence of chronic health problems, the psychological manifestations, the…

  1. Building a Career Mathematics File: Challenging Students to Find the Importance of Mathematics in a Variety of Occupations

    ERIC Educational Resources Information Center

    Keleher, Lori A.

    2006-01-01

    The Career Mathematics file is an occupational problem-solving system, which includes a wide range of mathematical problems and solutions, collected from various resources and helps students establish connections between mathematics and their environment. The study shows that the problems given can be used as realistic examples to study and…

  2. JPRS Report East Europe.

    DTIC Science & Technology

    1990-11-26

    Class Creation Necessary for Success of Reforms [LIDOVE NOVINY18 Sep] 21 Problem of Increasing Food Inventories Viewed [ZEMEDELSKE NOVINY 29 Sep...KULGAZDASAG Sep] 27 Industry: Difficulties Predicted; Trends, Problems Analyzed [FIGYELO 11 Oct] 37 Semiannual Investment Report [FIGYELO 13 Sep...MLADA FRONTA] And is not the problem of Czech politics connected with the nonexistence of Czech con- sciousness and self-confidence? [Battek] It

  3. Partner violence and substance abuse are intertwined: women's perceptions of violence-substance connections.

    PubMed

    Macy, Rebecca J; Renz, Connie; Pelino, Emily

    2013-07-01

    Research shows that co-occurring partner violence and substance abuse are problems for many women. However, less is known about women's varied experiences with partner violence and substance abuse. This exploratory, qualitative study investigates these two issues among a sample of 15 women in substance abuse treatment who experienced partner violence. Overall, findings show participants' experience of violence-substance connections varied in important ways; complicating factors exacerbate both problems; and domestic violence services and substance abuse treatments should account for these variations and complications. We discuss directions for providers, researchers, and policymakers concerned with partner violence or substance abuse.

  4. Selected problems associated with the treatment and care for patients with colostomy - part 2.

    PubMed

    Muzyczka, Katarzyna; Kachaniuk, Hanna; Szadowska-Szlachetka, Zdzisława; Charzyńska-Gula, Marianna; Kocka, Katarzyna; Bartoszek, Agnieszka; Celej-Szuster, Jolanta

    2013-01-01

    Generally, ostomy is a purposeful connection of the lumen of the intestine with abdominal integuments by surgery. The study presents practical solutions related to care for the colostomy patient, i.e. an ostomy on the large intestine. The following issues will be discussed: regulating the defecation cycle, risk connected with improper selection of ostomy equipment, instruction on colostomy irrigation with practical advice and irrigation equipment supply. The knowledge of these rules and mastering them in practice is to provide ostomy patients not only with highest-standard care and help but also to prepare them for dealing with problems independently, i.e. for self-care.

  5. A heuristic for efficient data distribution management in distributed simulation

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj; Guha, Ratan K.

    2005-05-01

    In this paper, we propose an algorithm for reducing the complexity of region matching and efficient multicasting in data distribution management component of High Level Architecture (HLA) Run Time Infrastructure (RTI). The current data distribution management (DDM) techniques rely on computing the intersection between the subscription and update regions. When a subscription region and an update region of different federates overlap, RTI establishes communication between the publisher and the subscriber. It subsequently routes the updates from the publisher to the subscriber. The proposed algorithm computes the update/subscription regions matching for dynamic allocation of multicast group. It provides new multicast routines that exploit the connectivity of federation by communicating updates regarding interactions and routes information only to those federates that require them. The region-matching problem in DDM reduces to clique-covering problem using the connections graph abstraction where the federations represent the vertices and the update/subscribe relations represent the edges. We develop an abstract model based on connection graph for data distribution management. Using this abstract model, we propose a heuristic for solving the region-matching problem of DDM. We also provide complexity analysis of the proposed heuristics.

  6. Development of a new semi-analytical model for cross-borehole flow experiments in fractured media

    USGS Publications Warehouse

    Roubinet, Delphine; Irving, James; Day-Lewis, Frederick D.

    2015-01-01

    Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.

  7. Real-world educational experience through project-oriented graduate classes in collaboration with industry

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Thomas H.

    2007-04-01

    There is a need for a motivated and innovative work force for the U.S. aerospace industry. The education of such engineers and scientists typically revolves around a fundamental knowledge of basic important technologies, such as the mechanics relevant to orbit-design, structures, avionics, and many others. A few years ago, the University of Michigan developed a Masters of Engineering program that provides students with skills that are not taught as part of a typical engineering curriculum. This program is focused on open problem solving, space systems, and space policy, as well as other classes that further their understanding of the connections between technologies and the nontechnical aspects of managing a space mission. The value of such an education is substantially increased through a direct connection to industry. An innovative problem-oriented approach has been developed that enables direct connections between industry and classroom teaching. The class works as a system study group and addresses problems of interest to and defined by a company with a specific application. We discuss such an application, a near-space lidar wind measurement system to enhance weather predictions, as well as the approach taken to link educational rationales.

  8. A new optimized GA-RBF neural network algorithm.

    PubMed

    Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan

    2014-01-01

    When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  9. Connecting orbits and invariant manifolds in the spatial restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Gómez, G.; Koon, W. S.; Lo, M. W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2004-09-01

    The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometrical point of view. In particular, the stable and unstable invariant manifold tubes associated with libration point orbits are the phase space conduits transporting material between primary bodies for separate three-body systems. These tubes can be used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. This work extends the results to the three-dimensional case. Besides providing a full description of different kinds of libration motions in a large vicinity of these points, this paper numerically demonstrates the existence of heteroclinic connections between pairs of libration orbits, one around the libration point L1 and the other around L2. Since these connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from one libration point orbit to the other. A knowledge of these orbits can be very useful in the design of missions such as the Genesis Discovery Mission, and may provide the backbone for other interesting orbits in the future.

  10. Apollo management: A key to the solution of the social-economical dilemma - The transferability of space-travel managerial techniques to the civil sector

    NASA Technical Reports Server (NTRS)

    Puttkamer, J. V.

    1973-01-01

    An analysis has been conducted to find out whether the management techniques developed in connection with the Apollo project could be used for dealing with such urgent problems of modern society as the crisis of the cities, the increasing environmental pollution, and the steadily growing traffic. Basic concepts and definitions of program and system management are discussed together with details regarding the employment of these concepts in connection with the solution of the problems of the Apollo program. Principles and significance of a systems approach are considered, giving attention to planning, system analysis, system integration, and project management. An application of the methods of project management to the problems of the civil sector is possible if the special characteristics of each particular case are taken into account.

  11. A Brokering Protocol for Agent-Based Grid Resource Discovery

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyong; Sim, Kwang Mong

    Resource discovery is one of the basic and key aspects in grid resource management, which aims at searching for the suitable resources for satisfying the requirement of users' applications. This paper introduces an agent-based brokering protocol which connects users and providers in grid environments. In particular, it focuses on addressing the problem of connecting users and providers. A connection algorithm that matches advertisements of users and requests from providers based on pre-specified multiple criteria is devised and implemented. The connection algorithm mainly consists of four stages: selection, evaluation, filtering, and recommendation. A series of experiments that were carried out in executing the protocol, and favorable results were obtained.

  12. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; Kragh-Poulsen, J.-C.; Thage, K. J.; Andreassen, M. J.

    2017-12-01

    The monopile foundation is the dominant solution for support of wind turbines in offshore wind farms. It is normally grouted to the transition piece which connects the foundation to the turbine. Currently, the bolted steel ring flange connection is investigated as an alternative. The monopile--transition piece connection has specific problems, such as out-of-verticality and installation damage from driving the MP into the seabed and it is not fully known how to design for these. This paper presents the status of the ongoing development work and an estimate of what still needs to be covered in order to use the connection in practice. This involves presentation of an analytical and non-linear FE analysis procedure for the monopile-transition piece connection composed of two L flanges connected with preloaded bolts. The connection is verified for ultimate and fatigue limit states based on an integrated load simulation carried out by the turbine manufacturer.

  13. Students without Borders: Global Collaborative Learning Connects School to the Real World

    ERIC Educational Resources Information Center

    Bickley, Mali; Carleton, Jim

    2009-01-01

    Kids can't help but get engaged when they're collaborating with peers across the globe to solve real-life problems. Global collaborative learning is about connecting students in communities of learners around the world so they can work together on projects that make a difference locally and globally. It is about building relationships and…

  14. A Model Intervention for Girls with Disruptive Behaviour Disorders: The Earlscourt Girls Connection.

    ERIC Educational Resources Information Center

    Walsh, Margaret M.; Pepler, Debra J.; Levene, Kathryn S.

    2002-01-01

    Reports on the evaluation of the Earlscourt Girls Connection, a program for young girls with conduct problems. Analyses of behavioral change according to primary caregivers' ratings were conducted comparing admission scores with 6-month and 12-month follow-up. At follow-up, the girls were rated as lower on the total score for externalizing…

  15. Humour and Connecting with Kids in Pain

    ERIC Educational Resources Information Center

    Digney, John

    2009-01-01

    Emotional pain which manifests itself in problem behaviours is, for many children and youth, a part of their everyday struggle through life. Kids growing up in residential care or in a dysfunctional family or setting suffer this pain. Connecting with kids in pain, the primary task for youth workers, is made all the more difficult, the greater the…

  16. Connecting Instructional and Cognitive Aspects of an LE: A Study of the Global Seminar Project

    ERIC Educational Resources Information Center

    Savelyeva, Tamara

    2012-01-01

    My research problem is based on the lack of unifying conceptual cohesion between the discourses concerning cognitive and instructional aspects of learning environments (LE). I contrast that lack with practical developments of LE studies connected at the level of practical implementation and evaluation. Next, I briefly review the LE boundaries,…

  17. Cultural Community Connection and College Success: An Examination of Southeast Asian American College Students

    ERIC Educational Resources Information Center

    Museus, Samuel D.; Shiroma, Kiana; Dizon, Jude Paul

    2016-01-01

    Low rates of college success continue to be a persisting problem in the United States, particularly among Southeast Asian Americans and other populations of color. The purpose of the current inquiry was to understand how cultural community connections influence the success of Southeast Asian American college students. Qualitative methods were…

  18. Connecting Boys with Books 2: Closing the Reading Gap

    ERIC Educational Resources Information Center

    Sullivan, Michael

    2009-01-01

    In his hugely successful "Connecting Boys with Books" (2003), the author delved into the problem that reading skills of pre-adolescent boys lag behind those of girls in the same age group. In this companion book, Sullivan digs even deeper, melding his own experiences as an activist with perspectives gleaned from other industry experts to help…

  19. Structure-Function Network Mapping and Its Assessment via Persistent Homology

    PubMed Central

    2017-01-01

    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127

  20. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

Top