Spreading Sequence System for Full Connectivity Relay Network
NASA Technical Reports Server (NTRS)
Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)
2018-01-01
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
Data-Driven Sequence of Changes to Anatomical Brain Connectivity in Sporadic Alzheimer's Disease.
Oxtoby, Neil P; Garbarino, Sara; Firth, Nicholas C; Warren, Jason D; Schott, Jonathan M; Alexander, Daniel C
2017-01-01
Model-based investigations of transneuronal spreading mechanisms in neurodegenerative diseases relate the pattern of pathology severity to the brain's connectivity matrix, which reveals information about how pathology propagates through the connectivity network. Such network models typically use networks based on functional or structural connectivity in young and healthy individuals, and only end-stage patterns of pathology, thereby ignoring/excluding the effects of normal aging and disease progression. Here, we examine the sequence of changes in the elderly brain's anatomical connectivity over the course of a neurodegenerative disease. We do this in a data-driven manner that is not dependent upon clinical disease stage, by using event-based disease progression modeling. Using data from the Alzheimer's Disease Neuroimaging Initiative dataset, we sequence the progressive decline of anatomical connectivity, as quantified by graph-theory metrics, in the Alzheimer's disease brain. Ours is the first single model to contribute to understanding all three of the nature, the location, and the sequence of changes to anatomical connectivity in the human brain due to Alzheimer's disease. Our experimental results reveal new insights into Alzheimer's disease: that degeneration of anatomical connectivity in the brain may be a viable, even early, biomarker and should be considered when studying such neurodegenerative diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X.; Wilcox, G.L.
1993-12-31
We have implemented large scale back-propagation neural networks on a 544 node Connection Machine, CM-5, using the C language in MIMD mode. The program running on 512 processors performs backpropagation learning at 0.53 Gflops, which provides 76 million connection updates per second. We have applied the network to the prediction of protein tertiary structure from sequence information alone. A neural network with one hidden layer and 40 million connections is trained to learn the relationship between sequence and tertiary structure. The trained network yields predicted structures of some proteins on which it has not been trained given only their sequences.more » Presentation of the Fourier transform of the sequences accentuates periodicity in the sequence and yields good generalization with greatly increased training efficiency. Training simulations with a large, heterologous set of protein structures (111 proteins from CM-5 time) to solutions with under 2% RMS residual error within the training set (random responses give an RMS error of about 20%). Presentation of 15 sequences of related proteins in a testing set of 24 proteins yields predicted structures with less than 8% RMS residual error, indicating good apparent generalization.« less
Pike, William A; Riensche, Roderick M; Best, Daniel M; Roberts, Ian E; Whyatt, Marie V; Hart, Michelle L; Carr, Norman J; Thomas, James J
2012-09-18
Systems and computer-implemented processes for storage and management of information artifacts collected by information analysts using a computing device. The processes and systems can capture a sequence of interactive operation elements that are performed by the information analyst, who is collecting an information artifact from at least one of the plurality of software applications. The information artifact can then be stored together with the interactive operation elements as a snippet on a memory device, which is operably connected to the processor. The snippet comprises a view from an analysis application, data contained in the view, and the sequence of interactive operation elements stored as a provenance representation comprising operation element class, timestamp, and data object attributes for each interactive operation element in the sequence.
Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models
NASA Technical Reports Server (NTRS)
Keeler, James D.
1987-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
NASA Technical Reports Server (NTRS)
Keeler, James D.
1988-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
Dual-echo ASL based assessment of motor networks: a feasibility study
NASA Astrophysics Data System (ADS)
Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria
2018-04-01
Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.
[Learning and Repetive Reproduction of Memorized Sequences by the Right and the Left Hand].
Bobrova, E V; Lyakhovetskii, V A; Bogacheva, I N
2015-01-01
An important stage of learning a new skill is repetitive reproduction of one and the same sequence of movements, which plays a significant role in forming of the movement stereotypes. Two groups of right-handers repeatedly memorized (6-10 repetitions) the sequences of their hand transitions by experimenter in 6 positions, firstly by the right hand (RH), and then--by the left hand (LH) or vice versa. Random sequences previously unknown to the volunteers were reproduced in the 11 series. Modified sequences were tested in the 2nd and 3rd series, where the same elements' positions were presented in different order. The processes of repetitive sequence reproduction were similar for RH and LH. However, the learning of the modified sequences differed: Information about elements' position disregarding the reproduction order was used only when LH initiated task performing. This information was not used when LH followed RH and when RH performed the task. Consequently, the type of information coding activated by LH helped learn the positions of sequence elements, while the type of information coding activated by RH prevented learning. It is supposedly connected with the predominant role of right hemisphere in the processes of positional coding and motor learning.
Integrated segmentation and recognition of connected Ottoman script
NASA Astrophysics Data System (ADS)
Yalniz, Ismet Zeki; Altingovde, Ismail Sengor; Güdükbay, Uğur; Ulusoy, Özgür
2009-11-01
We propose a novel context-sensitive segmentation and recognition method for connected letters in Ottoman script. This method first extracts a set of segments from a connected script and determines the candidate letters to which extracted segments are most similar. Next, a function is defined for scoring each different syntactically correct sequence of these candidate letters. To find the candidate letter sequence that maximizes the score function, a directed acyclic graph is constructed. The letters are finally recognized by computing the longest path in this graph. Experiments using a collection of printed Ottoman documents reveal that the proposed method provides >90% precision and recall figures in terms of character recognition. In a further set of experiments, we also demonstrate that the framework can be used as a building block for an information retrieval system for digital Ottoman archives.
Evolution, language and analogy in functional genomics.
Benner, S A; Gaucher, E A
2001-07-01
Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.
Evolution, language and analogy in functional genomics
NASA Technical Reports Server (NTRS)
Benner, S. A.; Gaucher, E. A.
2001-01-01
Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.
Thalamic amplification of cortical connectivity sustains attentional control
Schmitt, L. Ian; Wimmer, Ralf D.; Nakajima, Miho; Happ, Michael; Mofakham, Sima; Halassa, Michael M.
2017-01-01
While interactions between the thalamus and cortex are critical for cognitive function1–3, the exact contribution of the thalamus to these interactions is often unclear. Recent studies have shown diverse connectivity patterns across the thalamus 4,5, but whether this diversity translates to thalamic functions beyond relaying information to or between cortical regions6 is unknown. Here, by investigating prefrontal cortical (PFC) representation of two rules used to guide attention, we find that the mediodorsal thalamus (MD) sustains these representations without relaying categorical information. Specifically, MD input amplifies local PFC connectivity, enabling rule-specific neural sequences to emerge and thereby maintain rule representations. Consistent with this notion, broadly enhancing PFC excitability diminishes rule specificity and behavioral performance, while enhancing MD excitability improves both. Overall, our results define a previously unknown principle in neuroscience; thalamic control of functional cortical connectivity. This function indicates that the thalamus plays much more central roles in cognition than previously thought. PMID:28467827
Smoothness within ruggedness: the role of neutrality in adaptation.
Huynen, M A; Stadler, P F; Fontana, W
1996-01-01
RNA secondary structure folding algorithms predict the existence of connected networks of RNA sequences with identical structure. On such networks, evolving populations split into subpopulations, which diffuse independently in sequence space. This demands a distinction between two mutation thresholds: one at which genotypic information is lost and one at which phenotypic information is lost. In between, diffusion enables the search of vast areas in genotype space while still preserving the dominant phenotype. By this dynamic the success of phenotypic adaptation becomes much less sensitive to the initial conditions in genotype space. Images Fig. 2 PMID:8552647
Chen, He; Yao, Jiacheng; Fu, Yusi; Pang, Yuhong; Wang, Jianbin; Huang, Yanyi
2018-04-11
The next generation sequencing (NGS) technologies have been rapidly evolved and applied to various research fields, but they often suffer from losing long-range information due to short library size and read length. Here, we develop a simple, cost-efficient, and versatile NGS library preparation method, called tagmentation on microbeads (TOM). This method is capable of recovering long-range information through tagmentation mediated by microbead-immobilized transposomes. Using transposomes with DNA barcodes to identically label adjacent sequences during tagmentation, we can restore inter-read connection of each fragment from original DNA molecule by fragment-barcode linkage after sequencing. In our proof-of-principle experiment, more than 4.5% of the reads are linked with their adjacent reads, and the longest linkage is over 1112 bp. We demonstrate TOM with eight barcodes, but the number of barcodes can be scaled up by an ultrahigh complexity construction. We also show this method has low amplification bias and effectively fits the applications to identify copy number variations.
Structural genomics reveals EVE as a new ASCH/PUA-related domain
Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P.; Seetharaman, Jayaraman; Abashidze, Mariam; Ramelot, Theresa A.; Kennedy, Michael A.; Cort, John R.; Belachew, Adam; Hunt, John F.; Tong, Liang; Montelione, Gaetano T.; Rost, Burkhard
2014-01-01
Summary We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links. PMID:19191354
Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertonati, C.; Punta, M; Fischer, M
2008-01-01
We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE.more » Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.« less
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Ghashghaei, H T; Hilgetag, C C; Barbas, H
2007-02-01
The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.
A Maxwell Demon Model Connecting Information and Thermodynamics
NASA Astrophysics Data System (ADS)
Peng, Pei-Yan; Duan, Chang-Kui
2016-08-01
In the past decade several theoretical Maxwell's demon models have been proposed exhibiting effects such as refrigerating, doing work at the cost of information, and some experiments have been done to realise these effects. Here we propose a model with a two level demon, information represented by a sequence of bits, and two heat reservoirs. Which reservoir the demon interact with depends on the bit. If information is pure, one reservoir will be refrigerated, on the other hand, information can be erased if temperature difference is large. Genuine examples of such a system are discussed.
Applications of statistical physics and information theory to the analysis of DNA sequences
NASA Astrophysics Data System (ADS)
Grosse, Ivo
2000-10-01
DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.
Sequence information signal processor for local and global string comparisons
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1997-01-01
A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.
Connected Component Model for Multi-Object Tracking.
He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan
2016-08-01
In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.
IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics.
Hintzsche, Jennifer D; Yoo, Minjae; Kim, Jihye; Amato, Carol M; Robinson, William A; Tan, Aik Choon
2018-04-20
With the advancement of next generation sequencing technology, researchers are now able to identify important variants and structural changes in DNA and RNA in cancer patient samples. With this information, we can now correlate specific variants and/or structural changes with actionable therapeutics known to inhibit these variants. We introduce the creation of the IMPACT Web Portal, a new online resource that connects molecular profiles of tumors to approved drugs, investigational therapeutics and pharmacogenetics associated drugs. IMPACT Web Portal contains a total of 776 drugs connected to 1326 target genes and 435 target variants, fusion, and copy number alterations. The online IMPACT Web Portal allows users to search for various genetic alterations and connects them to three levels of actionable therapeutics. The results are categorized into 3 levels: Level 1 contains approved drugs separated into two groups; Level 1A contains approved drugs with variant specific information while Level 1B contains approved drugs with gene level information. Level 2 contains drugs currently in oncology clinical trials. Level 3 provides pharmacogenetic associations between approved drugs and genes. IMPACT Web Portal allows for sequencing data to be linked to actionable therapeutics for translational and drug repurposing research. The IMPACT Web Portal online resource allows users to query genes and variants to approved and investigational drugs. We envision that this resource will be a valuable database for personalized medicine and drug repurposing. IMPACT Web Portal is freely available for non-commercial use at http://tanlab.ucdenver.edu/IMPACT .
Recurrent Network models of sequence generation and memory
Rajan, Kanaka; Harvey, Christopher D; Tank, David W
2016-01-01
SUMMARY Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here, we demonstrate that starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network training (PINning), to model and match cellular-resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced choice task [Harvey, Coen and Tank, 2012]. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures. PMID:26971945
Brian J. Knaus; Richard Cronn; Aaron Liston; Kristine Pilgrim; Michael K. Schwartz
2011-01-01
Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the...
ERIC Educational Resources Information Center
Wood, Marianne
2007-01-01
This article presents a lesson called Memory Palaces. A memory palace is a memory tool used to remember information, usually as visual images, in a sequence that is logical to the person remembering it. In his book, "In the Palaces of Memory", George Johnson calls them "...structure(s) for arranging knowledge. Lots of connections to language arts,…
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman
2016-09-01
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.
Continuous Chinese sign language recognition with CNN-LSTM
NASA Astrophysics Data System (ADS)
Yang, Su; Zhu, Qing
2017-07-01
The goal of sign language recognition (SLR) is to translate the sign language into text, and provide a convenient tool for the communication between the deaf-mute and the ordinary. In this paper, we formulate an appropriate model based on convolutional neural network (CNN) combined with Long Short-Term Memory (LSTM) network, in order to accomplish the continuous recognition work. With the strong ability of CNN, the information of pictures captured from Chinese sign language (CSL) videos can be learned and transformed into vector. Since the video can be regarded as an ordered sequence of frames, LSTM model is employed to connect with the fully-connected layer of CNN. As a recurrent neural network (RNN), it is suitable for sequence learning tasks with the capability of recognizing patterns defined by temporal distance. Compared with traditional RNN, LSTM has performed better on storing and accessing information. We evaluate this method on our self-built dataset including 40 daily vocabularies. The experimental results show that the recognition method with CNN-LSTM can achieve a high recognition rate with small training sets, which will meet the needs of real-time SLR system.
Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic
2015-01-01
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338
NMR-based diffusion lattice imaging
NASA Astrophysics Data System (ADS)
Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm
2016-03-01
Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.
NG6: Integrated next generation sequencing storage and processing environment.
Mariette, Jérôme; Escudié, Frédéric; Allias, Nicolas; Salin, Gérald; Noirot, Céline; Thomas, Sylvain; Klopp, Christophe
2012-09-09
Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data.
High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.
Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M
2016-09-07
Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.
Meiler, Arno; Klinger, Claudia; Kaufmann, Michael
2012-09-08
The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.
2012-01-01
Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836
Zador, Anthony M.; Dubnau, Joshua; Oyibo, Hassana K.; Zhan, Huiqing; Cao, Gang; Peikon, Ian D.
2012-01-01
Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC (“barcoding of individual neuronal connections”), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale—sequencing billions of nucleotides per day is now routine—is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research. PMID:23109909
Brain Connectivity as a DNA Sequencing Problem
NASA Astrophysics Data System (ADS)
Zador, Anthony
The mammalian cortex consists of millions or billions of neurons, each connected to thousands of other neurons. Traditional methods for determining the brain connectivity rely on microscopy to visualize neuronal connections, but such methods are slow, labor-intensive and often lack single neuron resolution. We have recently developed a new method, MAPseq, to recast the determination of brain wiring into a form that can exploit the tremendous recent advances in high-throughput DNA sequencing. DNA sequencing technology has outpaced even Moore's law, so that the cost of sequencing the human genome has dropped from a billion dollars in 2001 to below a thousand dollars today. MAPseq works by introducing random sequences of DNA-``barcodes''-to tag neurons uniquely. With MAPseq, we can determine the connectivity of over 50K single neurons in a single mouse cortex in about a week, an unprecedented throughput, ushering in the era of ``big data'' for brain wiring. We are now developing analytical tools and algorithms to make sense of these novel data sets.
Patterson, Sara E; Liu, Rangjiao; Statz, Cara M; Durkin, Daniel; Lakshminarayana, Anuradha; Mockus, Susan M
2016-01-16
Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult. To support clinical decision-making, we have developed a data loader and mapper that connects sequence information from oncology patients to data stored in an in-house database, the JAX Clinical Knowledgebase (JAX-CKB), which can be queried readily to access comprehensive data for clinical reporting via customized reporting queries. JAX-CKB functions as a repository to house expertly curated clinically relevant data surrounding our 358-gene panel, the JAX Cancer Treatment Profile (JAX CTP), and supports annotation of functional significance of molecular variants. Through queries of data housed in JAX-CKB, we have analyzed the landscape of clinical trials relevant to our 358-gene targeted sequencing panel to evaluate strengths and weaknesses in current molecular targeting in oncology. Through this analysis, we have identified patient indications, molecular aberrations, and targeted therapy classes that have strong or weak representation in clinical trials. Here, we describe the development and disseminate system methods for associating patient genomic sequence data with clinically relevant information, facilitating interpretation and providing a mechanism for informing therapeutic decision-making. Additionally, through customized queries, we have the capability to rapidly analyze the landscape of targeted therapies in clinical trials, enabling a unique view into current therapeutic availability in oncology.
Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments
NASA Astrophysics Data System (ADS)
Atwal, Gurinder S.; Kinney, Justin B.
2016-03-01
A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.
Sublinear growth of information in DNA sequences.
Menconi, Giulia
2005-07-01
We introduce a novel method to analyse complete genomes and recognise some distinctive features by means of an adaptive compression algorithm, which is not DNA-oriented, based on the Lempel-Ziv scheme. We study the Information Content as a function of the number of symbols encoded by the algorithm and we analyse the dictionary created by the algorithm. Preliminary results are shown concerning regions showing a sublinear type of information growth, which is strictly connected to the presence of highly repetitive subregions that might be supposed to have a regulatory function within the genome.
Representations of mechanical assembly sequences
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.
A Revised Model of Short-Term Memory and Long-Term Learning of Verbal Sequences
ERIC Educational Resources Information Center
Burgess, Neil; Hitch, Graham J.
2006-01-01
The interaction between short- and long-term memory is studied within a model in which phonemic and (temporal) contextual information have separate influences on immediate verbal serial recall via connections with short- and long-term plasticity [Burgess, N., & Hitch, G.J. (1999). Memory for serial order: a network model of the phonological loop…
ERIC Educational Resources Information Center
Berndsen, Christopher E.; Young, Byron H.; McCormick, Quinlin J.; Enke, Raymond A.
2016-01-01
Single nucleotide polymorphisms (SNPs) in DNA can result in phenotypes where the biochemical basis may not be clear due to the lack of protein structures. With the growing number of modeling and simulation software available on the internet, students can now participate in determining how small changes in genetic information impact cellular…
Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter
2017-01-01
This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A
2016-10-15
Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
NASA Technical Reports Server (NTRS)
Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.
2012-01-01
A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.
2010-01-01
Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org. PMID:20459805
Gaytán-Tocavén, Lorena; López-Vázquez, Miguel Ángel; Guevara, Miguel Ángel; Olvera-Cortés, María Esther
2017-09-01
Cerebellar participation in timing and sensory-motor sequences has been supported by several experimental and clinical studies. A relevant role of the cerebellum in timing of conditioned responses in the range of milliseconds has been demonstrated, but less is known regarding the role of the cerebellum in supra-second timing of operant responses. A dissociated role of the cerebellum and striatum in timing in the millisecond and second range had been reported, respectively. The climbing fibre-Purkinje cell synapse is crucial in timing models; thus, the aberrant connection between these cellular elements is a suitable model for evaluating the contribution of the cerebellum in timing in the supra-second range. The aberrant connection between climbing fibres and Purkinje cells was induced by administration of the antagonist of NMDA receptors MK-801 to Sprague-Dawley rats at postnatal days 7-14. The timing of an operant response with two fixed intervals (5 and 8 s) and egocentric sequential learning was evaluated in 60-day-old adult rats. The aberrant connections caused a reduced accuracy in the timing of the instrumental response that was more evident in the 8-s interval and a reduced number of successive correct responses (responses emitted in the correct second without any other response between them) in the 8-s interval. In addition, an inability to incorporate new information in a sequence previously learned in egocentric-based sequence learning was apparent in rats with aberrant CF-PC synapses. These results support a relevant role for the cerebellum in the fine-tuning of the timing of operant responses in the supra-second range.
Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin
2007-12-01
Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide
How to Compress Sequential Memory Patterns into Periodic Oscillations: General Reduction Rules
Zhang, Kechen
2017-01-01
A neural network with symmetric reciprocal connections always admits a Lyapunov function, whose minima correspond to the memory states stored in the network. Networks with suitable asymmetric connections can store and retrieve a sequence of memory patterns, but the dynamics of these networks cannot be characterized as readily as that of the symmetric networks due to the lack of established general methods. Here, a reduction method is developed for a class of asymmetric attractor networks that store sequences of activity patterns as associative memories, as in a Hopfield network. The method projects the original activity pattern of the network to a low-dimensional space such that sequential memory retrievals in the original network correspond to periodic oscillations in the reduced system. The reduced system is self-contained and provides quantitative information about the stability and speed of sequential memory retrievals in the original network. The time evolution of the overlaps between the network state and the stored memory patterns can also be determined from extended reduced systems. The reduction procedure can be summarized by a few reduction rules, which are applied to several network models, including coupled networks and networks with time-delayed connections, and the analytical solutions of the reduced systems are confirmed by numerical simulations of the original networks. Finally, a local learning rule that provides an approximation to the connection weights involving the pseudoinverse is also presented. PMID:24877729
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.
Yamada, Takuji; Waller, Alison S; Raes, Jeroen; Zelezniak, Aleksej; Perchat, Nadia; Perret, Alain; Salanoubat, Marcel; Patil, Kiran R; Weissenbach, Jean; Bork, Peer
2012-01-01
Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently are not amenable to modern systemic analyses. As 555 of these orphan enzymes have metabolic pathway neighbours, we developed a global framework that utilizes the pathway and (meta)genomic neighbour information to assign candidate sequences to orphan enzymes. For 131 orphan enzymes (37% of those for which (meta)genomic neighbours are available), we associate sequences to them using scoring parameters with an estimated accuracy of 70%, implying functional annotation of 16 345 gene sequences in numerous (meta)genomes. As a case in point, two of these candidate sequences were experimentally validated to encode the predicted activity. In addition, we augmented the currently available genome-scale metabolic models with these new sequence–function associations and were able to expand the models by on average 8%, with a considerable change in the flux connectivity patterns and improved essentiality prediction. PMID:22569339
NASA Astrophysics Data System (ADS)
Castro, E.
2018-02-01
From the perturbative expansion of the exact Green function, an exact counting formula is derived to determine the number of different types of connected Feynman diagrams. This formula coincides with the Arquès-Walsh sequence formula in the rooted map theory, supporting the topological connection between Feynman diagrams and rooted maps. A classificatory summing-terms approach is used, in connection to discrete mathematical theory.
Genetic composition and connectivity of the Antillean manatee (Trichechus manatus manatus) in Panama
Díaz-Ferguson, Edgardo; Hunter, Margaret; Guzmán, Héctor M.
2017-01-01
Genetic diversity and haplotype composition of the West Indian manatee (Trichechus manatus) population from the San San Pond Sak wetland in Bocas del Toro, Panama was studied using a segment of mitochondrial DNA (D’loop). No genetic information has been published to date for Panamanian populations. Due to the secretive behavior and small population size of the species in the area, DNA extraction was conducted from opportunistically collected fecal (N=20), carcass tissue (N=4) and bone (N=4) samples. However, after DNA processing only 10 samples provided good quality DNA for sequencing (3 fecal, 4 tissue and 3 bone samples). We found three haplotypes in total; two of these haplotypes are reported for the first time, J02 (N=3) and J03 (N=4), and one J01 was previously published (N=3). Genetic diversity showed similar values to previous studies conducted in other Caribbean regions with moderate values of nucleotide diversity (π= 0.00152) and haplotipic diversity (Hd= 0.57). Connectivity assessment was based on sequence similarity, genetic distance and genetic differentiation between San San population and other manatee populations previously studied. The J01 haplotype found in the Panamanian population is shared with populations in the Caribbean mainland and the Gulf of Mexico showing a reduced differentiation corroborated with Fst value between HSSPS and this region of 0.0094. In contrast, comparisons between our sequences and populations in the Eastern Caribbean (South American populations) and North Western Caribbean showed fewer similarities (Fst =0.049 and 0.058, respectively). These results corroborate previous phylogeographic patterns already established for manatee populations and situate Panamanian populations into the Belize and Mexico cluster. In addition, these findings will be a baseline for future studies and comparisons with manatees in other areas of Panama and Central America. These results should be considered to inform management decisions regarding conservation of genetic diversity, future controlled introductions, connectivity and effective population size of the West Indian manatee along the Central American corridor.
The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)
Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; ...
2016-02-24
The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provide d via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation ismore » followed by functional annotation including assignment of protein product names and connection to various protein family databases.« less
The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos
The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provide d via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation ismore » followed by functional annotation including assignment of protein product names and connection to various protein family databases.« less
Spatiotemporal discrimination in neural networks with short-term synaptic plasticity
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Miller, Paul
2015-03-01
Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.
Finding similar nucleotide sequences using network BLAST searches.
Ladunga, Istvan
2009-06-01
The Basic Local Alignment Search Tool (BLAST) is a keystone of bioinformatics due to its performance and user-friendliness. Beginner and intermediate users will learn how to design and submit blastn and Megablast searches on the Web pages at the National Center for Biotechnology Information. We map nucleic acid sequences to genomes, find identical or similar mRNA, expressed sequence tag, and noncoding RNA sequences, and run Megablast searches, which are much faster than blastn. Understanding results is assisted by taxonomy reports, genomic views, and multiple alignments. We interpret expected frequency thresholds, biological significance, and statistical significance. Weak hits provide no evidence, but hints for further analyses. We find genes that may code for homologous proteins by translated BLAST. We reduce false positives by filtering out low-complexity regions. Parsed BLAST results can be integrated into analysis pipelines. Links in the output connect to Entrez, PUBMED, structural, sequence, interaction, and expression databases. This facilitates integration with a wide spectrum of biological knowledge.
Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A.
2016-01-01
Abstract Motivation: Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool—Genome Puzzle Master (GPM)—that enables the integration of additional genomic signposts to edit and build ‘new-gen-assemblies’ that result in high-quality ‘annotation-ready’ pseudomolecules. Results: With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to ‘group,’ ‘merge,’ ‘order and orient’ sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user’s total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. Availability and Implementation: The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS Contacts: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318200
Howe, Adina; Chain, Patrick S. G.
2015-07-09
Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats. While numerous tools have been developed based on these methodological concepts, theymore » present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Adina; Chain, Patrick S. G.
Metagenomic investigations hold great promise for informing the genetics, physiology, and ecology of environmental microorganisms. Current challenges for metagenomic analysis are related to our ability to connect the dots between sequencing reads, their population of origin, and their encoding functions. Assembly-based methods reduce dataset size by extending overlapping reads into larger contiguous sequences (contigs), providing contextual information for genetic sequences that does not rely on existing references. These methods, however, tend to be computationally intensive and are again challenged by sequencing errors as well as by genomic repeats. While numerous tools have been developed based on these methodological concepts, theymore » present confounding choices and training requirements to metagenomic investigators. To help with accessibility to assembly tools, this review also includes an IPython Notebook metagenomic assembly tutorial. This tutorial has instructions for execution any operating system using Amazon Elastic Cloud Compute and guides users through downloading, assembly, and mapping reads to contigs of a mock microbiome metagenome. Despite its challenges, metagenomic analysis has already revealed novel insights into many environments on Earth. As software, training, and data continue to emerge, metagenomic data access and its discoveries will to grow.« less
High-cost, high-capacity backbone for global brain communication.
van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf
2012-07-10
Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.
Tran, T T Nha; Brinkworth, Craig S; Bowie, John H
2015-01-30
To use negative-ion nano-electrospray ionization mass spectrometry of peptides from the tryptic digest of ricin D, to provide sequence information; in particular, to identify disulfide position and connectivity. Negative-ion fragmentations of peptides from the tryptic digest of ricin D was studied using a Waters QTOF2 mass spectrometer operating in MS and MS(2) modes. Twenty-three peptides were obtained following high-performance liquid chromatography and studied by negative-ion mass spectrometry covering 73% of the amino-acid residues of ricin D. Five disulfide-containing peptides were identified, three intermolecular and two intramolecular disulfide-containing peptides. The [M-H](-) anions of the intermolecular disulfides undergo facile cleavage of the disulfide units to produce fragment peptides. In negative-ion collision-induced dissociation (CID) these source-formed anions undergo backbone cleavages, which provide sequencing information. The two intramolecular disulfides were converted proteolytically into intermolecular disulfides, which were identified as outlined above. The positions of the five disulfide groups in ricin D may be determined by characteristic negative-ion cleavage of the disulfide groups, while sequence information may be determined using the standard negative-ion backbone cleavages of the resulting cleaved peptides. Negative-ion mass spectrometry can also be used to provide partial sequencing information for other peptides (i.e. those not containing Cys) using the standard negative-ion backbone cleavages of these peptides. Copyright © 2014 John Wiley & Sons, Ltd.
Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.
Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry
2017-01-01
The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
The Enigmatic Origin of Papillomavirus Protein Domains
Kirsip, Heleri; Gaston, Kevin
2017-01-01
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae. However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific. PMID:28832519
The Enigmatic Origin of Papillomavirus Protein Domains.
Puustusmaa, Mikk; Kirsip, Heleri; Gaston, Kevin; Abroi, Aare
2017-08-23
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae . However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific.
Angulo-Garcia, David; Berke, Joshua D; Torcini, Alessandro
2016-02-01
Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.
Van Overwalle, Frank; Mariën, Peter
2016-01-01
This multi-study connectivity analysis explores the functional connectivity of the cerebellum with the cerebrum in social mentalizing, that is, understanding the mind of another person. The analysis covers 5 studies (n=92) involving abstract and complex forms of social mentalizing such as (a) person and group impression formation based on behavioral descriptions and (b) constructing personal counterfactual events (i.e., how the past could have turned out better). The results suggest that cerebellar activity during these social processes reflects a domain-specific mentalizing functionality that is strongly connected with a corresponding mentalizing network in the cerebrum. A significant pattern of connectivity was found linking the dorsal medial prefrontal cortex (mPFC) and the right temporo-parietal junction (TPJ) with the right posterior cerebellum, and linking the latter with the left TPJ. In addition, in the cerebrum, further connectivity was found through links of the bilateral TPJ with the dorsal mPFC, orbitofrontal cortex and between right and left TPJ. The discussion centers on the role of these cerebro-cerebellar connections in matching external information from the cerebrum with internal predictions generated by the cerebellum. These internal predictions might involve the sequencing of the person's behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Utility of QR codes in biological collections
Diazgranados, Mauricio; Funk, Vicki A.
2013-01-01
Abstract The popularity of QR codes for encoding information such as URIs has increased exponentially in step with the technological advances and availability of smartphones, digital tablets, and other electronic devices. We propose using QR codes on specimens in biological collections to facilitate linking vouchers’ electronic information with their associated collections. QR codes can efficiently provide such links for connecting collections, photographs, maps, ecosystem notes, citations, and even GenBank sequences. QR codes have numerous advantages over barcodes, including their small size, superior security mechanisms, increased complexity and quantity of information, and low implementation cost. The scope of this paper is to initiate an academic discussion about using QR codes on specimens in biological collections. PMID:24198709
Utility of QR codes in biological collections.
Diazgranados, Mauricio; Funk, Vicki A
2013-01-01
The popularity of QR codes for encoding information such as URIs has increased exponentially in step with the technological advances and availability of smartphones, digital tablets, and other electronic devices. We propose using QR codes on specimens in biological collections to facilitate linking vouchers' electronic information with their associated collections. QR codes can efficiently provide such links for connecting collections, photographs, maps, ecosystem notes, citations, and even GenBank sequences. QR codes have numerous advantages over barcodes, including their small size, superior security mechanisms, increased complexity and quantity of information, and low implementation cost. The scope of this paper is to initiate an academic discussion about using QR codes on specimens in biological collections.
EuroPineDB: a high-coverage web database for maritime pine transcriptome
2011-01-01
Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488
Jin, Seung-Hyun; Joutsen, Atte; Poston, Brach; Aizen, Joshua; Ellenstein, Aviva; Hallett, Mark
2012-01-01
Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline. PMID:22442568
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris
2017-01-01
Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.
Quantized phase coding and connected region labeling for absolute phase retrieval.
Chen, Xiangcheng; Wang, Yuwei; Wang, Yajun; Ma, Mengchao; Zeng, Chunnian
2016-12-12
This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M
2012-01-01
Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.
Connection method of separated luminal regions of intestine from CT volumes
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Hirooka, Yoshiki; Goto, Hidemi; Mori, Kensaku
2015-03-01
This paper proposes a connection method of separated luminal regions of the intestine for Crohn's disease diagnosis. Crohn's disease is an inflammatory disease of the digestive tract. Capsule or conventional endoscopic diagnosis is performed for Crohn's disease diagnosis. However, parts of the intestines may not be observed in the endoscopic diagnosis if intestinal stenosis occurs. Endoscopes cannot pass through the stenosed parts. CT image-based diagnosis is developed as an alternative choice of the Crohn's disease. CT image-based diagnosis enables physicians to observe the entire intestines even if stenosed parts exist. CAD systems for Crohn's disease using CT volumes are recently developed. Such CAD systems need to reconstruct separated luminal regions of the intestines to analyze intestines. We propose a connection method of separated luminal regions of the intestines segmented from CT volumes. The luminal regions of the intestines are segmented from a CT volume. The centerlines of the luminal regions are calculated by using a thinning process. We enumerate all the possible sequences of the centerline segments. In this work, we newly introduce a condition using distance between connected ends points of the centerline segments. This condition eliminates unnatural connections of the centerline segments. Also, this condition reduces processing time. After generating a sequence list of the centerline segments, the correct sequence is obtained by using an evaluation function. We connect the luminal regions based on the correct sequence. Our experiments using four CT volumes showed that our method connected 6.5 out of 8.0 centerline segments per case. Processing times of the proposed method were reduced from the previous method.
Solving the problem of Trans-Genomic Query with alignment tables.
Parker, Douglass Stott; Hsiao, Ruey-Lung; Xing, Yi; Resch, Alissa M; Lee, Christopher J
2008-01-01
The trans-genomic query (TGQ) problem--enabling the free query of biological information, even across genomes--is a central challenge facing bioinformatics. Solutions to this problem can alter the nature of the field, moving it beyond the jungle of data integration and expanding the number and scope of questions that can be answered. An alignment table is a binary relationship on locations (sequence segments). An important special case of alignment tables are hit tables ? tables of pairs of highly similar segments produced by alignment tools like BLAST. However, alignment tables also include general binary relationships, and can represent any useful connection between sequence locations. They can be curated, and provide a high-quality queryable backbone of connections between biological information. Alignment tables thus can be a natural foundation for TGQ, as they permit a central part of the TGQ problem to be reduced to purely technical problems involving tables of locations.Key challenges in implementing alignment tables include efficient representation and indexing of sequence locations. We define a location datatype that can be incorporated naturally into common off-the-shelf database systems. We also describe an implementation of alignment tables in BLASTGRES, an extension of the open-source POSTGRESQL database system that provides indexing and operators on locations required for querying alignment tables. This paper also reviews several successful large-scale applications of alignment tables for Trans-Genomic Query. Tables with millions of alignments have been used in queries about alternative splicing, an area of genomic analysis concerning the way in which a single gene can yield multiple transcripts. Comparative genomics is a large potential application area for TGQ and alignment tables.
Chip-based in situ hybridization for identification of bacteria from the human microbiome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, Yooli Kim; Meagher, Robert J.; Singh, Anup K.
2010-11-01
The emerging field of metagenomics seeks to assess the genetic diversity of complex mixed populations of bacteria, such as those found at different sites within the human body. A single person's mouth typically harbors up to 100 bacterial species, while surveys of many people have found more than 700 different species, of which {approx}50% have never been cultivated. In typical metagenomics studies, the cells themselves are destroyed in the process of gathering sequence information, and thus the connection between genotype and phenotype is lost. A great deal of sequence information may be generated, but it is impossible to assign anymore » given sequence to a specific cell. We seek non-destructive, culture-independent means of gathering sequence information from selected individual cells from mixed populations. As a first step, we have developed a microfluidic device for concentrating and specifically labeling bacteria from a mixed population. Bacteria are electrophoretically concentrated against a photopolymerized membrane element, and then incubated with a specific fluorescent label, which can include antibodies as well as specific or non-specific nucleic acid stains. Unbound stain is washed away, and the labeled bacteria are released from the membrane. The stained cells can then be observed via epifluorescence microscopy, or counted via flow cytometry. We have tested our device with three representative bacteria from the human microbiome: E. coli (gut, Gram-negative), Lactobacillus acidophilus (mouth, Gram-positive), and Streptococcus mutans (mouth, Gram-positive), with results comparable to off-chip labeling techniques.« less
NASA Astrophysics Data System (ADS)
Acquisti, Claudia; Allegrini, Paolo; Bogani, Patrizia; Buiatti, Marcello; Catanese, Elena; Fronzoni, Leone; Grigolini, Paolo; Mersi, Giuseppe; Palatella, Luigi
2004-04-01
We investigate on a possible way to connect the presence of Low-Complexity Sequences (LCS) in DNA genomes and the nonstationary properties of base correlations. Under the hypothesis that these variations signal a change in the DNA function, we use a new technique, called Non-Stationarity Entropic Index (NSEI) method, and we prove that this technique is an efficient way to detect functional changes with respect to a random baseline. The remarkable aspect is that NSEI does not imply any training data or fitting parameter, the only arbitrarity being the choice of a marker in the sequence. We make this choice on the basis of biological information about LCS distributions in genomes. We show that there exists a correlation between changing the amount in LCS and the ratio of long- to short-range correlation.
Heteroassociative storage of hippocampal pattern sequences in the CA3 subregion
Recio, Renan S.; Reyes, Marcelo B.
2018-01-01
Background Recent research suggests that the CA3 subregion of the hippocampus has properties of both autoassociative network, due to its ability to complete partial cues, tolerate noise, and store associations between memories, and heteroassociative one, due to its ability to store and retrieve sequences of patterns. Although there are several computational models of the CA3 as an autoassociative network, more detailed evaluations of its heteroassociative properties are missing. Methods We developed a model of the CA3 subregion containing 10,000 integrate-and-fire neurons with both recurrent excitatory and inhibitory connections, and which exhibits coupled oscillations in the gamma and theta ranges. We stored thousands of pattern sequences using a heteroassociative learning rule with competitive synaptic scaling. Results We showed that a purely heteroassociative network model can (i) retrieve pattern sequences from partial cues with external noise and incomplete connectivity, (ii) achieve homeostasis regarding the number of connections per neuron when many patterns are stored when using synaptic scaling, (iii) continuously update the set of retrievable patterns, guaranteeing that the last stored patterns can be retrieved and older ones can be forgotten. Discussion Heteroassociative networks with synaptic scaling rules seem sufficient to achieve many desirable features regarding connectivity homeostasis, pattern sequence retrieval, noise tolerance and updating of the set of retrievable patterns. PMID:29312826
Utro, Filippo; Di Benedetto, Valeria; Corona, Davide F V; Giancarlo, Raffaele
2016-03-15
Thanks to research spanning nearly 30 years, two major models have emerged that account for nucleosome organization in chromatin: statistical and sequence specific. The first is based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no training on the data for their computation. The latter is based on some sequence regularities but, as opposed to the statistical model, it lacks the same type of closed-form formulas that, in this case, should be based on the DNA sequence only. We contribute to close this important methodological gap between the two models by providing three very simple formulas for the sequence specific one. They are all based on well-known formulas in Computer Science and Bioinformatics, and they give different quantifications of how complex a sequence is. In view of how remarkably well they perform, it is very surprising that measures of sequence complexity have not even been considered as candidates to close the mentioned gap. We provide experimental evidence that the intrinsic level of combinatorial organization and information-theoretic content of subsequences within a genome are strongly correlated to the level of DNA encoded nucleosome organization discovered by Kaplan et al Our results establish an important connection between the intrinsic complexity of subsequences in a genome and the intrinsic, i.e. DNA encoded, nucleosome organization of eukaryotic genomes. It is a first step towards a mathematical characterization of this latter 'encoding'. Supplementary data are available at Bioinformatics online. futro@us.ibm.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Integrating Resources into Curriculum with the Systems Connect Planning Guide
NASA Astrophysics Data System (ADS)
Oshry, A.; Bean, J. R.
2017-12-01
A broadly applicable and guided approach for planning curriculum and instruction around new academic standards or initiatives is critical for implementation success. Curriculum and assessment differs across schools and districts, so built-in adaptability is important for maximal adoption and ease of use by educators. The Systems Connect Planning Guide directs the flow of instruction for building conceptual links between topics in a unit/curriculum through critical vetting and integration of relevant resources. This curricular template is flexible for use in any setting or subject area, and ensures applicability, high impact and responsiveness to academic standards while providing inquiry-based, real-world investigations and action that incorporate authentic research and data. These needs are what informed the creation of the three components of the planning guide:• Curriculum Anchor: alignment with academic standards & learning outcomes and setting the context of the topic• Issues Investigations: informing how students explore topics, and incorporate authentic research and data into learning progressions• Civic Action: development of how students could apply their knowledgeThe Planning Guide also incorporates criteria from transdisciplinary practices, cross-cutting concepts, and organizational charts for outlining guiding questions and conceptual links embedded in the guide. Integration of experiential learning and real-world connections into curricula is important for proficiency and deeper understanding of content, replacing discrete, stand-alone experiences which are not explicitly connected. Rather than information being dispelled through individual activities, relying on students to make the connections, intentionally documenting explicit connections provides opportunities to foster deeper understanding by building conceptual links between topics, which is how fundamental knowledge about earth and living systems is gained. Through the critical vetting and sequencing of these resources, educators establish cohesive learning progressions that explicitly build conceptual links between topics, enabling students to use these activities to develop evidence-based explanations of the natural world.
Coordination sequences and information spreading in small-world networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2002-10-01
We study the spread of information in small-world networks generated from different d-dimensional regular lattices, with d=1, 2, and 3. With this purpose, we analyze by numerical simulations the behavior of the coordination sequence, e.g., the average number of sites C(n) that can be reached from a given node of the network in n steps along its bonds. For sufficiently large networks, we find an asymptotic behavior C(n)~ρn, with a constant ρ that depends on the network dimension d and on the rewiring probability p (which measures the disorder strength of a given network). A simple model of information spreading in these networks is studied, assuming that only a fraction q of the network sites are active. The number of active nodes reached in n steps has an asymptotic form λn, λ being a constant that depends on p and q, as well as on the dimension d of the underlying lattice. The information spreading presents two different regimes depending on the value of λ: For λ>1 the information propagates along the whole system, and for λ<1 the spreading is damped and the information remains confined in a limited region of the network. We discuss the connection of these results with site percolation in small-world networks.
DNAAlignEditor: DNA alignment editor tool
Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D
2008-01-01
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684
Choi, Jung-Han
2011-01-01
This study aimed to evaluate the effect of different screw-tightening sequences, torques, and methods on the strains generated on an internal-connection implant (Astra Tech) superstructure with good fit. An edentulous mandibular master model and a metal framework directly connected to four parallel implants with a passive fit to each other were fabricated. Six stone casts were made from a dental stone master model by a splinted impression technique to represent a well-fitting situation with the metal framework. Strains generated by four screw-tightening sequences (1-2-3-4, 4-3-2-1, 2-4-3-1, and 2-3-1-4), two torques (10 and 20 Ncm), and two methods (one-step and two-step) were evaluated. In the two-step method, screws were tightened to the initial torque (10 Ncm) in a predetermined screw-tightening sequence and then to the final torque (20 Ncm) in the same sequence. Strains were recorded twice by three strain gauges attached to the framework (superior face midway between abutments). Deformation data were analyzed using multiple analysis of variance at a .05 level of statistical significance. In all stone casts, strains were produced by connection of the superstructure, regardless of screw-tightening sequence, torque, and method. No statistically significant differences in superstructure strains were found based on screw-tightening sequences (range, -409.8 to -413.8 μm/m), torques (-409.7 and -399.1 μm/m), or methods (-399.1 and -410.3 μm/m). Within the limitations of this in vitro study, screw-tightening sequence, torque, and method were not critical factors for the strain generated on a well-fitting internal-connection implant superstructure by the splinted impression technique. Further studies are needed to evaluate the effect of screw-tightening techniques on the preload stress in various different clinical situations.
An information-based network approach for protein classification
Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.
2017-01-01
Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835
Multipartite entanglement via the Mayer-Vietoris theorem
NASA Astrophysics Data System (ADS)
Patrascu, Andrei T.
2017-10-01
The connection between entanglement and topology manifests itself in the form of the ER-EPR duality. This statement however refers to the maximally entangled states only. In this article I study the multipartite entanglement and the way in which it relates to the topological interpretation of the ER-EPR duality. The 2 dimensional genus 1 torus will be generalised to a n-dimensional general torus, where the information about the multipartite entanglement will be encoded in the higher inclusion maps of the Mayer-Vietorist sequence.
Knoch, Tobias A; Wachsmuth, Malte; Kepper, Nick; Lesnussa, Michael; Abuseiris, Anis; Ali Imam, A M; Kolovos, Petros; Zuin, Jessica; Kockx, Christel E M; Brouwer, Rutger W W; van de Werken, Harmen J G; van IJcken, Wilfred F J; Wendt, Kerstin S; Grosveld, Frank G
2016-01-01
The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function-the storage, expression, and replication of genetic information-is still one of the central issues in biology. Here, we describe the much debated 3D architecture of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture ( T2C ), polymer simulations, and scaling analysis of the 3D architecture and the DNA sequence. The genome is compacted into a chromatin quasi-fibre with ~5 ± 1 nucleosomes/11 nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types and functional states. The architecture and the DNA sequence show very similar fine-structured multi-scaling behaviour confirming their co-evolution and the above. This architecture, its dynamics, and accessibility, balance stability and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization of (in)active units already in proximity. Our results agree with the heuristics of the field and allow "architectural sequencing" at a genome mechanics level to understand the inseparable systems genomic properties.
Causality, Measurement, and Elementary Interactions
NASA Astrophysics Data System (ADS)
Gillis, Edward J.
2011-12-01
Signal causality, the prohibition of superluminal information transmission, is the fundamental property shared by quantum measurement theory and relativity, and it is the key to understanding the connection between nonlocal measurement effects and elementary interactions. To prevent those effects from transmitting information between the generating and observing process, they must be induced by the kinds of entangling interactions that constitute measurements, as implied in the Projection Postulate. They must also be nondeterministic as reflected in the Born Probability Rule. The nondeterminism of entanglement-generating processes explains why the relevant types of information cannot be instantiated in elementary systems, and why the sequencing of nonlocal effects is, in principle, unobservable. This perspective suggests a simple hypothesis about nonlocal transfers of amplitude during entangling interactions, which yields straightforward experimental consequences.
Cell density signal protein suitable for treatment of connective tissue injuries and defects
Schwarz, Richard I.
2002-08-13
Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.
NASA Astrophysics Data System (ADS)
Clark, M. R.; Gardner, J.; Holland, L.; Zeng, C.; Hamilton, J. S.; Rowden, A. A.
2016-02-01
In the New Zealand region vulnerable marine ecosystems (VMEs) are at risk from commercial fishing activity and future seabed mining. Understanding connectivity among VMEs is important for the design of effective spatial management strategies, i.e. a network of protected areas. To date however, genetic connectivity in the New Zealand region has rarely been documented. As part of a project developing habitat suitability models and spatial management options for VMEs we used DNA sequence data and microsatellite genotyping to assess genetic connectivity for a range of VME indicator taxa, including the coral Desmophyllum dianthus, and the sponges Poecilastra laminaris and Penares palmatoclada. Overall, patterns of connectivity were inconsistent amonst taxa. Nonetheless, genetic data from each taxon were relevant to inform management at a variety of spatial scales. D. dianthus populations in the Kermadec volcanic arc and the Louisville Seamount Chain were indistinguishable, highlighting the importance of considering source-sink dynamics between populations beyond the EEZ in conservation planning. Poecilastra laminaris populations showed significant divergence across the Chatham Rise, in contrast to P. palmatoclada, which had a uniform haplotypic distribution. However, both sponge species exhibited the highest genetic diversity on the Chatham Rise, suggesting that this area is a genetic hotspot. The spatial heterogeneity of genetic patterns of structure suggest that inclusion of several taxa is necessary to facilitate understanding of regional connectivity patterns, variation in which may be attributed to alternate life history strategies, local hydrodynamic regimes, or in some cases, suboptimal sample sizes. Our findings provide important information for use by environmental managers, including summary maps of genetic diversity and barriers to gene flow, which will be used in spatial management decision-support tools.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... them in sequence for entry into the System for execution. Each of Phlx's current connection offerings... connectivity and installation fees for a 10Gb Ultra low latency fiber connection option, and provide a waiver... bandwidth options for connectivity to the Exchange, including a 40Gb fiber connection, a 10Gb fiber...
Spiking neural network model for memorizing sequences with forward and backward recall.
Borisyuk, Roman; Chik, David; Kazanovich, Yakov; da Silva Gomes, João
2013-06-01
We present an oscillatory network of conductance based spiking neurons of Hodgkin-Huxley type as a model of memory storage and retrieval of sequences of events (or objects). The model is inspired by psychological and neurobiological evidence on sequential memories. The building block of the model is an oscillatory module which contains excitatory and inhibitory neurons with all-to-all connections. The connection architecture comprises two layers. A lower layer represents consecutive events during their storage and recall. This layer is composed of oscillatory modules. Plastic excitatory connections between the modules are implemented using an STDP type learning rule for sequential storage. Excitatory neurons in the upper layer project star-like modifiable connections toward the excitatory lower layer neurons. These neurons in the upper layer are used to tag sequences of events represented in the lower layer. Computer simulations demonstrate good performance of the model including difficult cases when different sequences contain overlapping events. We show that the model with STDP type or anti-STDP type learning rules can be applied for the simulation of forward and backward replay of neural spikes respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Memory replay in balanced recurrent networks
Chenkov, Nikolay; Sprekeler, Henning; Kempter, Richard
2017-01-01
Complex patterns of neural activity appear during up-states in the neocortex and sharp waves in the hippocampus, including sequences that resemble those during prior behavioral experience. The mechanisms underlying this replay are not well understood. How can small synaptic footprints engraved by experience control large-scale network activity during memory retrieval and consolidation? We hypothesize that sparse and weak synaptic connectivity between Hebbian assemblies are boosted by pre-existing recurrent connectivity within them. To investigate this idea, we connect sequences of assemblies in randomly connected spiking neuronal networks with a balance of excitation and inhibition. Simulations and analytical calculations show that recurrent connections within assemblies allow for a fast amplification of signals that indeed reduces the required number of inter-assembly connections. Replay can be evoked by small sensory-like cues or emerge spontaneously by activity fluctuations. Global—potentially neuromodulatory—alterations of neuronal excitability can switch between network states that favor retrieval and consolidation. PMID:28135266
Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.
Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z
2018-03-15
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
NASA Astrophysics Data System (ADS)
Yemane, K.; Kelts, K.
This paper compares Karoo deposits within the Lower Beaufort (Late Permian) time interval from southern to central Africa. Facies aspects are summarized for selected sequences and depositional environments assessed in connection with the palaeogeography. The comparison shows that thickness of Lower Beaufort sequences varies greatly; sequences are over a kilometre thick at the southern tip, but decrease drastically to the north, northwest and northeast, and is commonly absent from the western part of the subcontinent. Depositional environments are continental except for small estuarine intervals from a sequence in Tanzania. The commonest lithologies comprise mudstones, siltstones, arkoses and carbonates. In spite of the dominance of fluvial facies, the records preserved by intervals of lacustrine sequences suggest that large lakes were major features of the palaeogeography, and that lacustrine environments may have been dominant deposition environments. The Lower Beaufort landscape is generally interpreted as an expansive cratonic lowland with meandering rivers and streams crossing vast floodplains, which were indented by concomitant shallow lakes of various sizes. The lakes from the Karoo tectono-sedimentary terrain were often ephemeral and closely linked with fluvial processes, but large, anoxic lakers are also documented. On the other hand, giant, freshwater lakes, covered large areas of the Zambezian tectono-sedimentary terrain and may have been locally connected. Evidence from abundant freshwater fossil assemblages, particularly from the Zambezian tectono-sedimentary terrain suggest that in spite of the generally semi-arid global climate of the Upper Permian, seasonal precipitation (monsoonal?) supplied enough moisture to sustain large perennial lakes. Because of the unique nature of the Permian cotinental configuration and palaeogeography, however, modern analogues of large systems are lacking. The general lithological and palaeontological correlability of Lower Beaufort sequences suggests a similar regional palaeoclimate, whereas the differences in distribution are taken to be a result of control of tectonic settings. From the widespread occurrences of lake deposits in the African subcontinent, over relatively long interval, we conclude that lake deposits provide more information for a better understanding of Karoo palaeogeography than previously thought, since such lacustrine sequences should hold sensitive, high resolution records for palaeoenvironmental interpretations.
Ascarrunz, F G; Kisley, M A; Flach, K A; Hamilton, R W; MacGregor, R J
1995-07-01
This paper applies a general mathematical system for characterizing and scaling functional connectivity and information flow across the diffuse (EC) and discrete (DG) input junctions to the CA3 hippocampus. Both gross connectivity and coordinated multiunit informational firing patterns are quantitatively characterized in terms of 32 defining parameters interrelated by 17 equations, and then scaled down according to rules for uniformly proportional scaling and for partial representation. The diffuse EC-CA3 junction is shown to be uniformly scalable with realistic representation of both essential spatiotemporal cooperativity and coordinated firing patterns down to populations of a few hundred neurons. Scaling of the discrete DG-CA3 junction can be effected with a two-step process, which necessarily deviates from uniform proportionality but nonetheless produces a valuable and readily interpretable reduced model, also utilizing a few hundred neurons in the receiving population. Partial representation produces a reduced model of only a portion of the full network where each model neuron corresponds directly to a biological neuron. The mathematical analysis illustrated here shows that although omissions and distortions are inescapable in such an application, satisfactorily complete and accurate models the size of pattern modules are possible. Finally, the mathematical characterization of these junctions generates a theory which sees the DG as a definer of the fine structure of embedded traces in the hippocampus and entire coordinated patterns of sequences of 14-cell links in CA3 as triggered by the firing of sequences of individual neurons in DG.
Musical Sequence Learning and EEG Correlates of Audiomotor Processing
Schalles, Matt D.; Pineda, Jaime A.
2015-01-01
Our motor and auditory systems are functionally connected during musical performance, and functional imaging suggests that the association is strong enough that passive music listening can engage the motor system. As predictive coding constrains movement sequence selections, could the motor system contribute to sequential processing of musical passages? If this is the case, then we hypothesized that the motor system should respond preferentially to passages of music that contain similar sequential information, even if other aspects of music, such as the absolute pitch, have been altered. We trained piano naive subjects with a learn-to play-by-ear paradigm, to play a simple melodic sequence over five days. After training, we recorded EEG of subjects listening to the song they learned to play, a transposed version of that song, and a control song with different notes and sequence from the learned song. Beta band power over sensorimotor scalp showed increased suppression for the learned song, a moderate level of suppression for the transposed song, and no suppression for the control song. As beta power is associated with attention and motor processing, we interpret this as support of the motor system's activity during covert perception of music one can play and similar musical sequences. PMID:26527118
Robust sequential working memory recall in heterogeneous cognitive networks
Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert
2014-01-01
Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717
Quignard, E; Fazakerley, G V; van der Marel, G; van Boom, J H; Guschlbauer, W
1987-01-01
We have recorded NOESY spectra of two non-selfcomplementary undecanucleotide duplexes. From the observed NOEs we do not detect any significant distortion of the helix when a G-C pair is replaced by a G-T pair and the normal interresidue connectivities can be followed through the mismatch site. We conclude that the 2D spectra of the non-exchangeable protons do not allow differentiation between a wobble or rare tautomer form for the mismatch. NOE measurements in H2O, however, clearly show that the mismatch adopts a wobble structure and give information on the hydration in the minor groove for the G-T base pair which is embedded between two A-T base pairs in the sequence. PMID:3033602
Parallel-Connected Photovoltaic Inverters: Zero Frequency Sequence Harmonic Analysis and Solution
NASA Astrophysics Data System (ADS)
Carmeli, Maria Stefania; Mauri, Marco; Frosio, Luisa; Bezzolato, Alberto; Marchegiani, Gabriele
2013-05-01
High-power photovoltaic (PV) plants are usually constituted of the connection of different PV subfields, each of them with its interface transformer. Different solutions have been studied to improve the efficiency of the whole generation system. In particular, transformerless configurations are the more attractive one from efficiency and costs point of view. This paper focuses on transformerless PV configurations characterised by the parallel connection of interface inverters. The problem of zero sequence current due to both the parallel connection and the presence of undesirable parasitic earth capacitances is considered and a solution, which consists of the synchronisation of pulse-width modulation triangular carrier, is proposed and theoretically analysed. The theoretical analysis has been validated through simulation and experimental results.
Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro
2015-01-01
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
2010-01-01
Background Cultivated strawberry is a hybrid octoploid species (Fragaria xananassa Duchesne ex. Rozier) whose fruit is highly appreciated due to its organoleptic properties and health benefits. Despite recent studies on the control of its growth and ripening processes, information about the role played by different hormones on these processes remains elusive. Further advancement of this knowledge is hampered by the limited sequence information on genes from this species, despite the abundant information available on genes from the wild diploid relative Fragaria vesca. However, the diploid species, or one ancestor, only partially contributes to the genome of the cultivated octoploid. We have produced a collection of expressed sequence tags (ESTs) from different cDNA libraries prepared from different fruit parts and developmental stages. The collection has been analysed and the sequence information used to explore the involvement of different hormones in fruit developmental processes, and for the comparison of transcripts in the receptacle of ripe fruits of diploid and octoploid species. The study is particularly important since the commercial fruit is indeed an enlarged flower receptacle with the true fruits, the achenes, on the surface and connected through a network of vascular vessels to the central pith. Results We have sequenced over 4,500 ESTs from Fragaria xananassa, thus doubling the number of ESTs available in the GenBank of this species. We then assembled this information together with that available from F. xananassa resulting a total of 7,096 unigenes. The identification of SSRs and SNPs in many of the ESTs allowed their conversion into functional molecular markers. The availability of libraries prepared from green growing fruits has allowed the cloning of cDNAs encoding for genes of auxin, ethylene and brassinosteroid signalling processes, followed by expression studies in selected fruit parts and developmental stages. In addition, the sequence information generated in the project, jointly with previous information on sequences from both F. xananassa and F. vesca, has allowed designing an oligo-based microarray that has been used to compare the transcriptome of the ripe receptacle of the diploid and octoploid species. Comparison of the transcriptomes, grouping the genes by biological processes, points to differences being quantitative rather than qualitative. Conclusions The present study generates essential knowledge and molecular tools that will be useful in improving investigations at the molecular level in cultivated strawberry (F. xananassa). This knowledge is likely to provide useful resources in the ongoing breeding programs. The sequence information has already allowed the development of molecular markers that have been applied to germplasm characterization and could be eventually used in QTL analysis. Massive transcription analysis can be of utility to target specific genes to be further studied, by their involvement in the different plant developmental processes. PMID:20849591
Choi, Jung-Han; Lim, Young-Jun; Kim, Chang-Whe; Kim, Myung-Joo
2009-01-01
This study evaluated the effect of different screw-tightening sequences, forces, and methods on the stresses generated on a well-fitting internal-connection implant (Astra Tech) superstructure. A metal framework directly connected to four parallel implants was fabricated on a fully edentulous mandibular resin model. Six stone casts with four implant replicas were made from a pickup impression of the superstructure to represent a "well-fitting" situation. Stresses generated by four screw-tightening sequences (1-2-3-4, 4-3-2-1, 2-4-3-1, and 2-3-1-4), two forces (10 and 20 Ncm), and two methods (one-step and two-step) were evaluated. In the two-step method, screws were tightened to the initial torque (10 Ncm) in a predetermined screw-tightening sequence and then to the final torque (20 Ncm) in the same sequence. Stresses were recorded twice by three strain gauges attached to the framework (superior face midway between abutments). Deformation data were analyzed using multiple analysis of variance at a .05 level of statistical significance. In all stone casts, stresses were produced by the superstructure connection, regardless of screw-tightening sequence, force, and method. No statistically significant differences for superstructure preload stresses were found based on screw-tightening sequences (-180.0 to -181.6 microm/m) or forces (-163.4 and -169.2 microm/m) (P > .05). However, different screw-tightening methods induced different stresses on the superstructure. The two-step screw-tightening method (-180.1 microm/m) produced significantly higher stress than the one-step method (-169.2 microm/m) (P = .0457). Within the limitations of this in vitro study, screw-tightening sequence and force were not critical factors in the stress generated on a well-fitting internal-connection implant superstructure. The stress caused by the two-step method was greater than that produced using the one-step method. Further studies are needed to evaluate the effect of screw-tightening techniques on preload stress in various different clinical situations.
Dong, Zheng; Zhou, Hongyu; Tao, Peng
2018-02-01
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.
The Evaluation of Unscrewing Torque Values of Implant-Abutment Connections: An In Vitro Study.
Bruna, Ezio; Fabianelli, Andrea; Mastriforti, Giacomo; Papacchini, Federica
This study investigated the stability of titanium screws in implant-abutment connections by measuring the force necessary to induce unscrewing. A total of 60 implant-abutment couplings were assigned to two groups (n = 30 each). The sequence 10-20-32 Ncm was tested in Group 1; the sequence 10-20-32-32-32 Ncm was tested in Group 2. The force necessary to unscrew each abutment-implant sample was recorded and statistically analyzed. The significance level was set at P < .05. Significant differences were found between the two sequences. Group 2 required higher forces than Group 1 to unscrew. The stability of the implant-abutment joint may be improved by tightening with the sequence 10-20-32-32-32 Ncm.
NASA Astrophysics Data System (ADS)
Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.
2018-02-01
Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.
Sustained State-Independent Quantum Contextual Correlations from a Single Ion
NASA Astrophysics Data System (ADS)
Leupold, F. M.; Malinowski, M.; Zhang, C.; Negnevitsky, V.; Alonso, J.; Home, J. P.; Cabello, A.
2018-05-01
We use a single trapped-ion qutrit to demonstrate the quantum-state-independent violation of noncontextuality inequalities using a sequence of randomly chosen quantum nondemolition projective measurements. We concatenate 53 ×106 sequential measurements of 13 observables, and unambiguously violate an optimal noncontextual bound. We use the same data set to characterize imperfections including signaling and repeatability of the measurements. The experimental sequence was generated in real time with a quantum random number generator integrated into our control system to select the subsequent observable with a latency below 50 μ s , which can be used to constrain contextual hidden-variable models that might describe our results. The state-recycling experimental procedure is resilient to noise and independent of the qutrit state, substantiating the fact that the contextual nature of quantum physics is connected to measurements and not necessarily to designated states. The use of extended sequences of quantum nondemolition measurements finds applications in the fields of sensing and quantum information.
A proteome-scale map of the human interactome network
Rolland, Thomas; Taşan, Murat; Charloteaux, Benoit; Pevzner, Samuel J.; Zhong, Quan; Sahni, Nidhi; Yi, Song; Lemmens, Irma; Fontanillo, Celia; Mosca, Roberto; Kamburov, Atanas; Ghiassian, Susan D.; Yang, Xinping; Ghamsari, Lila; Balcha, Dawit; Begg, Bridget E.; Braun, Pascal; Brehme, Marc; Broly, Martin P.; Carvunis, Anne-Ruxandra; Convery-Zupan, Dan; Corominas, Roser; Coulombe-Huntington, Jasmin; Dann, Elizabeth; Dreze, Matija; Dricot, Amélie; Fan, Changyu; Franzosa, Eric; Gebreab, Fana; Gutierrez, Bryan J.; Hardy, Madeleine F.; Jin, Mike; Kang, Shuli; Kiros, Ruth; Lin, Guan Ning; Luck, Katja; MacWilliams, Andrew; Menche, Jörg; Murray, Ryan R.; Palagi, Alexandre; Poulin, Matthew M.; Rambout, Xavier; Rasla, John; Reichert, Patrick; Romero, Viviana; Ruyssinck, Elien; Sahalie, Julie M.; Scholz, Annemarie; Shah, Akash A.; Sharma, Amitabh; Shen, Yun; Spirohn, Kerstin; Tam, Stanley; Tejeda, Alexander O.; Trigg, Shelly A.; Twizere, Jean-Claude; Vega, Kerwin; Walsh, Jennifer; Cusick, Michael E.; Xia, Yu; Barabási, Albert-László; Iakoucheva, Lilia M.; Aloy, Patrick; De Las Rivas, Javier; Tavernier, Jan; Calderwood, Michael A.; Hill, David E.; Hao, Tong; Roth, Frederick P.; Vidal, Marc
2014-01-01
SUMMARY Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ~14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ~30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a “broader” human interactome network than currently appreciated. The map also uncovers significant inter-connectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high quality interactome models will help “connect the dots” of the genomic revolution. PMID:25416956
NASA Astrophysics Data System (ADS)
Lehmkuhl, F.; Kels, H.; Hambach, U.; Protze, J.; Eckmeier, E.; Hilgers, A.; Klasen, N.
2013-12-01
New investigations from loess and loess-like sediments in the Western Plain of Romania provide evidences for a deeper insight and connection between long loess sections of the lowlands (Semlac) and short sections from the Carpathian foothills (Romanesti and Cosava). While the long loess sections provide evidence concerning climatic and environmental change since the middle Pleistocene the short sequences from the foothills include Paleolithic sites give information especially for the interstadial of the last glacial cycle when the first modern humans arrived in Europe. The section at Semlac is regarded as a key section for Western Romania, which offers possibilities to a) improve the understanding of the type and composition of the lowland loess sequences, b) to reconstruct the local loess-palaeosol succession and c) to connect the loesses of the region for the first time to loess-sequences in adjacent areas. The Paleolithic sites Romanesti and Cosava are situated at the foothills of the Banat Mountains in Romania and provide an important testament of life of the first European modern humans (Homo sapiens sapiens) during Middle Pleniglacial. Even though these sites have been extensively excavated, little is known about the site formation of related loess-like sediments and soils. First luminescence data for the region of all these investigated sections confirm sediments from the penultimate glacial period up to the Holocene. For Semlac, a first relative dating is given by rock magnetic methods in comparison to Serbian loess sections.
The Histone Database: an integrated resource for histones and histone fold-containing proteins
Mariño-Ramírez, Leonardo; Levine, Kevin M.; Morales, Mario; Zhang, Suiyuan; Moreland, R. Travis; Baxevanis, Andreas D.; Landsman, David
2011-01-01
Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins. Database URL: The Histone Sequence Database is freely available and can be accessed at http://research.nhgri.nih.gov/histones/. PMID:22025671
Closing the uplink/downlink loop on the new Horizons Mission to Pluto
NASA Astrophysics Data System (ADS)
Peterson, Joseph G.; Birath, Emma; Carcich, Brian; Harch, Ann
Commanding the payload on a spacecraft (“ uplink” sequencing and command generation) and processing the instrument data returned (“ downlink” data processing) are two primary functions of Science Operations on a mission. While vitally important, it is sometimes surprisingly difficult to connect data returned from a spacecraft to the corresponding commanding and sequencing information that created the data, especially when data processing is done via an automated science data pipeline and not via a manual process with humans in the loop. For a variety of reasons it is necessary to make such a connection and close this loop. Perhaps the most important reason is to ensure that all data asked for has arrived safely on the ground. This is especially critical when the mission must erase parts of the spacecraft memory to make room for new data; mistakes here can result in permanent loss of data. Additionally, there are often key pieces of information (such as intended observation target or certain instrument modes that are not included in housekeeping, etc.) that are known only at the time of commanding and never makes it down in the telemetry. Because missions like New Horizons strive to be frugal with how much telemetry is sent back to Earth, and the telemetry may not include unambiguous identifiers (like observation ids, etc.), connecting downlinked data with uplink command information in an automated way can require creative approaches and heuristics. In this paper, we describe how these challenges were overcome on the New Horizons Mission to Pluto. The system developed involves ingesting uplink information into a database and automatically correlating it with downlinked data products. This allows for more useful data searches and the ability to attach the original intent of each observation to the processed science data. Also a new data tracking tool is now being developed to help in planning data playback from the spacecraft and to ensu- e data is verified on the ground before being erased from spacecraft memory. The development of these tools and techniques have also uncovered powerful lessons-learned for future missions. At the early stages of the design of a mission's dataflow, the allocation of a few more bytes of telemetry can go a long way toward making the uplink to downlink loop even easier to close on the ground, simplifying ground systems for future missions.
Amores, Angel; Catchen, Julian; Ferrara, Allyse; Fontenot, Quenton; Postlethwait, John H.
2011-01-01
Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F1 offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F1 dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing. PMID:21828280
Fujimoto, Kayo; Coghill, Lyndon M; Weier, Christopher A; Hwang, Lu-Yu; Kim, Ju Yeong; Schneider, John A; Metzker, Michael L; Brown, Jeremy M
2017-09-01
We explore the phylogenetic relationships among HIV sequences sampled from young adult black men who have sex with men (YAB-MSM), who are connected through peer referral/social ties and who attend common venues. Using 196 viral sequences sampled from the peripheral blood mononuclear cells of 10 individuals, our preliminary phylogenetic results indicate that these socially connected YAB-MSM are infected with distantly related viruses and provide no evidence for viral transmission between network members. Our results suggest that HIV-prevention strategies that target young adult MSM should extend beyond their network members and local community.
Democratization of genetic data: connecting government approval of clinical tests with data sharing
Ross, Theodora S.
2015-01-01
Abstract When a doctor orders a genetic test, patients assume that the test will yield a useful result to guide how their physicians take care of them. That assumption is frequently correct, but not always. Until recently, a genetic test only interrogated the sequence of one or two genes. Now, DNA-sequencing technologies are so fast and cheap that they have enabled clinicians to sequence panels of genes that may or may not be relevant to the patient's condition. The technology has outpaced our ability to interpret the results. Connecting approval of clinical tests to data sharing could help close this gap. PMID:27148568
Democratization of genetic data: connecting government approval of clinical tests with data sharing.
Ross, Theodora S
2015-10-01
When a doctor orders a genetic test, patients assume that the test will yield a useful result to guide how their physicians take care of them. That assumption is frequently correct, but not always. Until recently, a genetic test only interrogated the sequence of one or two genes. Now, DNA-sequencing technologies are so fast and cheap that they have enabled clinicians to sequence panels of genes that may or may not be relevant to the patient's condition. The technology has outpaced our ability to interpret the results. Connecting approval of clinical tests to data sharing could help close this gap.
Squires, R. Burke; Noronha, Jyothi; Hunt, Victoria; García‐Sastre, Adolfo; Macken, Catherine; Baumgarth, Nicole; Suarez, David; Pickett, Brett E.; Zhang, Yun; Larsen, Christopher N.; Ramsey, Alvin; Zhou, Liwei; Zaremba, Sam; Kumar, Sanjeev; Deitrich, Jon; Klem, Edward; Scheuermann, Richard H.
2012-01-01
Please cite this paper as: Squires et al. (2012) Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and Other Respiratory Viruses 6(6), 404–416. Background The recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics. Design The Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly‐accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user‐friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in‐protected ‘workbench’ spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature. Results To demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross‐protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks. Conclusions The IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics. PMID:22260278
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants.
Li, Shu-Fen; Su, Ting; Cheng, Guang-Qian; Wang, Bing-Xiao; Li, Xu; Deng, Chuan-Liang; Gao, Wu-Jun
2017-10-24
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation.
Evaluating and Redesigning Teaching Learning Sequences at the Introductory Physics Level
ERIC Educational Resources Information Center
Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José
2017-01-01
In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed…
Seismicity of the Adriatic microplate
Console, R.; Di, Giovambattista R.; Favali, P.; Presgrave, B.W.; Smriglio, G.
1993-01-01
The Adriatic microplate was previously considered to be a unique block, tectonically active only along its margins. The seismic sequences that took place in the basin from 1986 to 1990 give new information about the geodynamics of this area. Three subsets of well recorded events were relocated by the joint hypocentre determination technique. On the whole, this seismic activity was concentrated in a belt crossing the southern Adriatic sea around latitude 42??, in connection with regional E-W fault systems. Some features of this seismicity, similar to those observed in other well known active margins of the Adriatic plate, support a model of a southern Adriatic lithospheric block, detached from the Northern one. Other geophysical information provides evidence of a transitional zone at the same latitude. ?? 1993.
Sampled-data consensus in switching networks of integrators based on edge events
NASA Astrophysics Data System (ADS)
Xiao, Feng; Meng, Xiangyu; Chen, Tongwen
2015-02-01
This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V
2016-08-01
Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.
Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors.
Benz, Robin A; Boyce, Mark S; Thurfjell, Henrik; Paton, Dale G; Musiani, Marco; Dormann, Carsten F; Ciuti, Simone
Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas' colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers' groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways' segments impeding elk connectivity.
Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors
Benz, Robin A.; Boyce, Mark S.; Thurfjell, Henrik; Paton, Dale G.; Musiani, Marco; Dormann, Carsten F.; Ciuti, Simone
2016-01-01
Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas’ colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers’ groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways’ segments impeding elk connectivity. PMID:27657496
Insights in connecting phenotypes in bacteria to coevolutionary information
NASA Astrophysics Data System (ADS)
Cheng, Ryan; Morcos, Faruck; Hayes, Ryan; Helm, Rodney; Levine, Herbert; Onuchic, Jose
It has long been known that protein sequences are far from random. These sequences have been evolutionarily selected to maintain their ability to fold into stable, three-dimensional folded structures as well as their ability to form macromolecular assemblies, perform catalytic functions, etc. For these reasons, there exist quantifiable mutational patterns in the collection of sequence data for a protein family arising from the need to maintain favorable residue-residue interactions to facilitate folding as well as cellular function. Here, we focus on studying the correlated mutational patterns that give rise to interaction specificity in bacterial two-component signaling (TCS) systems. TCS proteins have evolved to be able to preferentially bind and transfer a phosphate group to their signaling partner while avoiding phosphotransfer with non-partners. We infer a Potts model Hamiltonian governing the correlated mutational patterns that are observed in the sequence data of TCS partners and apply this model to recently published in vivo mutational data. Our findings further support the notion that statistical models built from sequence data can be used to predict bacterial phenotypes as well as engineer interaction specificity between non-partner TCS proteins. This research has been supported by the NSF INSPIRE Award (MCB-1241332) and by the CTBP sponsored by the NSF (Grant PHY- 1427654).
Orthogonal Polynomials Associated with Complementary Chain Sequences
NASA Astrophysics Data System (ADS)
Behera, Kiran Kumar; Sri Ranga, A.; Swaminathan, A.
2016-07-01
Using the minimal parameter sequence of a given chain sequence, we introduce the concept of complementary chain sequences, which we view as perturbations of chain sequences. Using the relation between these complementary chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal polynomials and the associated Szegő polynomials are analyzed. Two illustrations, one involving Gaussian hypergeometric functions and the other involving Carathéodory functions are also provided. A connection between these two illustrations by means of complementary chain sequences is also observed.
Optimal Quantum Spatial Search on Random Temporal Networks
NASA Astrophysics Data System (ADS)
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Phylogeography and connectivity of molluscan parasites: Perkinsus spp. in Panama and beyond.
Pagenkopp Lohan, Katrina M; Hill-Spanik, Kristina M; Torchin, Mark E; Fleischer, Robert C; Carnegie, Ryan B; Reece, Kimberly S; Ruiz, Gregory M
2018-02-01
Panama is a major hub for commercial shipping between two oceans, making it an ideal location to examine parasite biogeography, potential invasions, and the spread of infectious agents. Our goals were to (i) characterise the diversity and genetic connectivity of Perkinsus spp. haplotypes across the Panamanian Isthmus and (ii) combine these data with sequences from around the world to evaluate the current phylogeography and genetic connectivity of these widespread molluscan parasites. We collected 752 bivalves from 12 locations along the coast of Panama including locations around the Bocas del Toro archipelago and the Caribbean and Pacific entrances to the Panama Canal, from December 2012 to February 2013. We used molecular genetic methods to screen for Perkinsus spp. and obtained internal transcribed spacer region (ITS) ribosomal DNA (rDNA) sequences for all positive samples. Our sequence data were used to evaluate regional haplotype diversity and distribution across both coasts of Panama, and were then combined with publicly available sequences to create global haplotype networks. We found 26 ITS haplotypes from four Perkinsus spp. (1-12 haplotypes per species) in Panama. Perkinsus beihaiensis haplotypes had the highest genetic diversity, were the most regionally widespread, and were associated with the greatest number of hosts. On a global scale, network analyses demonstrated that some haplotypes found in Panama were cosmopolitan (Perkinsus chesapeaki, Perkinsus marinus), while others were more geographically restricted (Perkinsus olseni, P. beihaiensis), indicating different levels of genetic connectivity and dispersal. We found some Perkinsus haplotypes were shared across the Isthmus of Panama and several regions around the world, including across ocean basins. We also found that haplotype diversity is currently underestimated and directly related to the number of sequences. Nevertheless, our results demonstrate long-range dispersal and global connectivity for many haplotypes, suggesting that dispersal through shipping probably contributes to these biogeographical patterns. Published by Elsevier Ltd.
2013-01-01
Background Throughout the long history of industrial and academic research, many microbes have been isolated, characterized and preserved (whenever possible) in culture collections. With the steady accumulation in observational data of biodiversity as well as microbial sequencing data, bio-resource centers have to function as data and information repositories to serve academia, industry, and regulators on behalf of and for the general public. Hence, the World Data Centre for Microorganisms (WDCM) started to take its responsibility for constructing an effective information environment that would promote and sustain microbial research data activities, and bridge the gaps currently present within and outside the microbiology communities. Description Strain catalogue information was collected from collections by online submission. We developed tools for automatic extraction of strain numbers and species names from various sources, including Genbank, Pubmed, and SwissProt. These new tools connect strain catalogue information with the corresponding nucleotide and protein sequences, as well as to genome sequence and references citing a particular strain. All information has been processed and compiled in order to create a comprehensive database of microbial resources, and was named Global Catalogue of Microorganisms (GCM). The current version of GCM contains information of over 273,933 strains, which includes 43,436bacterial, fungal and archaea species from 52 collections in 25 countries and regions. A number of online analysis and statistical tools have been integrated, together with advanced search functions, which should greatly facilitate the exploration of the content of GCM. Conclusion A comprehensive dynamic database of microbial resources has been created, which unveils the resources preserved in culture collections especially for those whose informatics infrastructures are still under development, which should foster cumulative research, facilitating the activities of microbiologists world-wide, who work in both public and industrial research centres. This database is available from http://gcm.wfcc.info. PMID:24377417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valley, Cary T.; Porter, Douglas F.; Qiu, Chen
2012-06-28
mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less
Lapunzina, Pablo; López, Rocío Ortiz; Rodríguez-Laguna, Lara; García-Miguel, Purificación; Martínez, Augusto Rojas; Martínez-Glez, Víctor
2014-01-01
The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes. PMID:24764758
Um, Keehong; Yoo, Sooyeup
2013-10-01
Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.
Sequences for Student Investigation
ERIC Educational Resources Information Center
Barton, Jeffrey; Feil, David; Lartigue, David; Mullins, Bernadette
2004-01-01
We describe two classes of sequences that give rise to accessible problems for undergraduate research. These problems may be understood with virtually no prerequisites and are well suited for computer-aided investigation. The first sequence is a variation of one introduced by Stephen Wolfram in connection with his study of cellular automata. The…
Quick, Josh; Grubaugh, Nathan D; Pullan, Steven T; Claro, Ingra M; Smith, Andrew D; Gangavarapu, Karthik; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rogers, Thomas F; Beutler, Nathan A; Burton, Dennis R; Lewis-Ximenez, Lia Laura; de Jesus, Jaqueline Goes; Giovanetti, Marta; Hill, Sarah; Black, Allison; Bedford, Trevor; Carroll, Miles W; Nunes, Marcio; Alcantara, Luiz Carlos; Sabino, Ester C; Baylis, Sally A; Faria, Nuno; Loose, Matthew; Simpson, Jared T; Pybus, Oliver G; Andersen, Kristian G; Loman, Nicholas J
2018-01-01
Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples without isolation remains challenging for viruses such as Zika, where metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence complete genomes comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimised library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved starting with clinical samples in 1-2 days following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. PMID:28538739
Flores, Amanda; Cobos, Pedro L; López, Francisco J; Godoy, Antonio; González-Martín, Estrella
2014-09-01
An experiment conducted with students and experienced clinicians demonstrated very fast and online causal reasoning in the diagnosis of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) mental disorders. The experiment also demonstrated that clinicians' causal reasoning is triggered by information that is directly related to the causal structure that explains the symptoms, such as their temporal sequence. The use of causal theories was measured through explicit, verbal diagnostic judgments and through the online registration of participants' reading times of clinical reports. To detect both online and offline causal reasoning, the consistency of clinical reports was manipulated. This manipulation was made by varying the temporal order in which different symptoms developed in hypothetical clients, and by providing explicit information about causal connections between symptoms. The temporal order of symptoms affected the clinicians' but not the students' reading times. However, offline diagnostic judgments in both groups were influenced by the consistency manipulation. Overall, our results suggest that clinicians engage in fast and online causal reasoning processes when dealing with diagnostic information concerning mental disorders, and that both clinicians and students engage in causal reasoning in diagnostic judgment tasks. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Cooperative interactions between hippocampal and striatal systems support flexible navigation
Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E
2012-01-01
Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411
Fourteenth-Sixteenth Microbial Genomics Conference-2006-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Jeffrey H
2011-04-18
The concept of an annual meeting on the E. coli genome was formulated at the Banbury Center Conference on the Genome of E. coli in October, 1991. The first meeting was held on September 10-14, 1992 at the University of Wisconsin, and this was followed by a yearly series of meetings, and by an expansion to include The fourteenth meeting took place September 24-28, 2006 at Lake Arrowhead, CA, the fifteenth September 16-20, 2007 at the University of Maryland, College Park, MD, and the sixteenth September 14-18, 2008 at Lake Arrowhead. The full program for the 16th meeting is attached.more » There have been rapid and exciting advances in microbial genomics that now make possible comparing large data sets of sequences from a wide variety of microbial genomes, and from whole microbial communities. Examining the “microbiomes”, the living microbial communities in different host organisms opens up many possibilities for understanding the landscape presented to pathogenic microorganisms. For quite some time there has been a shifting emphasis from pure sequence data to trying to understand how to use that information to solve biological problems. Towards this end new technologies are being developed and improved. Using genetics, functional genomics, and proteomics has been the recent focus of many different laboratories. A key element is the integration of different aspects of microbiology, sequencing technology, analysis techniques, and bioinformatics. The goal of these conference is to provide a regular forum for these interactions to occur. While there have been a number of genome conferences, what distinguishes the Microbial Genomics Conference is its emphasis on bringing together biology and genetics with sequencing and bioinformatics. Also, this conference is the longest continuing meeting, now established as a major regular annual meeting. In addition to its coverage of microbial genomes and biodiversity, the meetings also highlight microbial communities and the use of genomic information to aid in the understanding of pathogens and biothreats. An additional focus cover s“bioenergetics. The meetings have a mix of invited and participant-initiated presentations and poster sessions during which investigators from different disciplines become familiar with available data bases and new tools facilitating coordination of information. The fields are moving very fast both in the acquisition of new knowledge of genome contents and also in the management and analysis of the information. The key is connecting bodies of knowledge on sequences, genetic organization and regulation to be able to relate the significance of this information to understanding cellular processes. To our knowledge, no other meeting synthesizes the biology of organisms, sequence information and database analysis, as well as the comparison with other completed genome sequences.« less
Nepusz, Tamás; Sasidharan, Rajkumar; Paccanaro, Alberto
2010-03-09
An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive and effective tool for practical research in computational biology. Source code and precompiled executables for Windows, Linux and Mac OS X are freely available at http://www.paccanarolab.org/software/scps.
Two Related Parametric Integrals
ERIC Educational Resources Information Center
Dana-Picard, T.
2007-01-01
Two related sequences of definite integrals are considered. By mixing hand-work, computer algebra system assistance and websurfing, fine connections can be studied between integrals and a couple of interesting sequences of integers. (Contains 4 tables.)
Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.
Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís
2015-11-01
Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Hirst, Marissa B.; Kita, Kelley N.; Dawson, Scott C.
2011-01-01
Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA “phylotypes” from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages, identified in diverse environments. PMID:22174774
Attachment process in rocket-triggered lightning strokes
NASA Astrophysics Data System (ADS)
Wang, D.; Rakov, V. A.; Uman, M. A.; Takagi, N.; Watanabe, T.; Crawford, D. E.; Rambo, K. J.; Schnetzer, G. H.; Fisher, R. J.; Kawasaki, Z.-I.
1999-01-01
In order to study the lightning attachment process, we have obtained highly resolved (about 100 ns time resolution and about 3.6 m spatial resolution) optical images, electric field measurements, and channel-base current recordings for two dart leader/return-stroke sequences in two lightning flashes triggered using the rocket-and-wire technique at Camp Blanding, Florida. One of these two sequences exhibited an optically discernible upward-propagating discharge that occurred in response to the approaching downward-moving dart leader and connected to this descending leader. This observation provides the first direct evidence of the occurrence of upward connecting discharges in triggered lightning strokes, these strokes being similar to subsequent strokes in natural lightning. The observed upward connecting discharge had a light intensity one order of magnitude lower than its associated downward dart leader, a length of 7-11 m, and a duration of several hundred nanoseconds. The speed of the upward connecting discharge was estimated to be about 2 × 107 m/s, which is comparable to that of the downward dart leader. In both dart leader/return-stroke sequences studied, the return stroke was inferred to start at the point of junction between the downward dart leader and the upward connecting discharge and to propagate in both upward and downward directions. This latter inference provides indirect evidence of the occurrence of upward connecting discharges in both dart leader/return-stroke sequences even though one of these sequences did not have a discernible optical image of such a discharge. The length of the upward connecting discharges (observed in one case and inferred from the height of the return-stroke starting point in the other case) is greater for the event that is characterized by the larger leader electric field change and the higher return-stroke peak current. For the two dart leader/return-stroke sequences studied, the upward connecting discharge lengths are estimated to be 7-11 m and 4-7 m, with the corresponding return-stroke peak currents being 21 kA and 12 kA, and the corresponding leader electric field changes 30 m from the rocket launcher being 56 kV/m and 43 kV/m. Additionally, we note that the downward dart leader light pulse generally exhibits little variation in its 10-90% risetime and peak value over some tens of meters above the return-stroke starting point, while the following return-stroke light pulse shows an appreciable increase in risetime and a decrease in peak value while traversing the same section of the lightning channel. Our findings regarding (1) the initially bidirectional development of return-stroke process and (2) the relatively strong attenuation of the upward moving return-stroke light (and by inference current) pulse over the first some tens of meters of the channel may have important implications for return-stroke modeling.
Smits-Bandstra, Sarah; De Nil, Luc F
2007-01-01
The basal ganglia and cortico-striato-thalamo-cortical connections are known to play a critical role in sequence skill learning and increasing automaticity over practice. The current paper reviews four studies comparing the sequence skill learning and the transition to automaticity of persons who stutter (PWS) and fluent speakers (PNS) over practice. Studies One and Two found PWS to have poor finger tap sequencing skill and nonsense syllable sequencing skill after practice, and on retention and transfer tests relative to PNS. Studies Three and Four found PWS to be significantly less accurate and/or significantly slower after practice on dual tasks requiring concurrent sequencing and colour recognition over practice relative to PNS. Evidence of PWS' deficits in sequence skill learning and automaticity development support the hypothesis that dysfunction in cortico-striato-thalamo-cortical connections may be one etiological component in the development and maintenance of stuttering. As a result of this activity, the reader will: (1) be able to articulate the research regarding the basal ganglia system relating to sequence skill learning; (2) be able to summarize the research on stuttering with indications of sequence skill learning deficits; and (3) be able to discuss basal ganglia mechanisms with relevance for theory of stuttering.
Emerging Concepts of Data Integration in Pathogen Phylodynamics.
Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Emerging Concepts of Data Integration in Pathogen Phylodynamics
Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-19
...: 900). If you have never attended a Connect Pro meeting before, test your connection at: https://collaboration.fda.gov/common/help/en/support/meeting_test.htm . To get a quick overview of the Connect Pro... technologies are currently extensively used in research and are entering clinical diagnostic use; they are...
Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J
2018-06-01
Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants
Li, Shu-Fen; Su, Ting; Cheng, Guang-Qian; Wang, Bing-Xiao; Li, Xu; Deng, Chuan-Liang; Gao, Wu-Jun
2017-01-01
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation. PMID:29064432
Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.
Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey
2015-11-01
Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.
Stillman, Chelsea M.; You, Xiaozhen; Seaman, Kendra L.; Vaidya, Chandan J.; Howard, James H.; Howard, Darlene V.
2016-01-01
Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60–90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning. PMID:27121302
Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, D.N.; Seltzer, B.
1982-01-10
By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2)more » and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer.« less
Ruff, Kiersten M; Roberts, Stefan; Chilkoti, Ashutosh; Pappu, Rohit V
2018-06-24
Proteins and synthetic polymers can undergo phase transitions in response to changes to intensive solution parameters such as temperature, proton chemical potentials (pH), and hydrostatic pressure. For proteins and protein-based polymers, the information required for stimulus responsive phase transitions is encoded in their amino acid sequence. Here, we review some of the key physical principles that govern the phase transitions of archetypal intrinsically disordered protein polymers (IDPPs). These are disordered proteins with highly repetitive amino acid sequences. Advances in recombinant technologies have enabled the design and synthesis of protein sequences of a variety of sequence complexities and lengths. We summarize insights that have been gleaned from the design and characterization of IDPPs that undergo thermo-responsive phase transitions and build on these insights to present a general framework for IDPPs with pH and pressure responsive phase behavior. In doing so, we connect the stimulus responsive phase behavior of IDPPs with repetitive sequences to the coil-to-globule transitions that these sequences undergo at the single chain level in response to changes in stimuli. The proposed framework and ongoing studies of stimulus responsive phase behavior of designed IDPPs have direct implications in bioengineering, where designing sequences with bespoke material properties broadens the spectrum of applications, and in biology and medicine for understanding the sequence-specific driving forces for the formation of protein-based membraneless organelles as well as biological matrices that act as scaffolds for cells and mediators of cell-to-cell communication. Copyright © 2018. Published by Elsevier Ltd.
Connecting the Human Variome Project to nutrigenomics.
Kaput, Jim; Evelo, Chris T; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard
2010-12-01
Nutrigenomics is the science of analyzing and understanding gene-nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene-nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.
Connecting the Human Variome Project to nutrigenomics
Evelo, Chris T.; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard
2010-01-01
Nutrigenomics is the science of analyzing and understanding gene–nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene–nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts. PMID:28300226
NASA Astrophysics Data System (ADS)
Bonanno, A.; Bozzo, G.; Sapia, P.
2017-11-01
In this work, we present a coherent sequence of experiments on electromagnetic (EM) induction and eddy currents, appropriate for university undergraduate students, based on a magnet falling through a drilled aluminum disk. The sequence, leveraging on the didactical interplay between the EM and mechanical aspects of the experiments, allows us to exploit the students’ awareness of mechanics to elicit their comprehension of EM phenomena. The proposed experiments feature two kinds of measurements: (i) kinematic measurements (performed by means of high-speed video analysis) give information on the system’s kinematics and, via appropriate numerical data processing, allow us to get dynamic information, in particular on energy dissipation; (ii) induced electromagnetic field (EMF) measurements (by using a homemade multi-coil sensor connected to a cheap data acquisition system) allow us to quantitatively determine the inductive effects of the moving magnet on its neighborhood. The comparison between experimental results and the predictions from an appropriate theoretical model (of the dissipative coupling between the moving magnet and the conducting disk) offers many educational hints on relevant topics related to EM induction, such as Maxwell’s displacement current, magnetic field flux variation, and the conceptual link between induced EMF and induced currents. Moreover, the didactical activity gives students the opportunity to be trained in video analysis, data acquisition and numerical data processing.
NASA Astrophysics Data System (ADS)
Montoya, Patricia
The focus of this research is to understand the stratigraphic and structural evolution of lower-slope minibasins in the Gulf of Mexico by examining the influence of salt tectonics on sediment transport systems and deep-water facies architecture. Results showed that gravitational subsidence and shortening can cause variations in the relief of salt massifs on opposing sides of a minibasin. These bathymetric variations, combined with changes in sedimentation rates through time, affected not only the distribution of deep-water facies inside the minibasins, but also influenced the evolution of sediment transport systems between minibasins. In order to understand the evolution of salt massifs, this dissertation presents a new approach to evaluate qualitatively the rate of relative massif uplift based on depoaxis shifts and channel geometries identified in minibasins surrounded by mobile salt. From these results it was established that compression was long-lived, and that extension only dominated during late intervals. Stratigraphic analyses showed that there is a strong cyclicity in deep-water facies stacking patterns within lower-slope minibasins, related primarily to cyclical changes in sedimentation rates. A typical sequence starts with a period of slow sedimentation associated with drape facies above each sequence boundary. Then, towards the middle and final stages of the sequence, sedimentation rates increase and turbidity flows fill the minibasin. Previous studies describe processes of fill-and-spill for two adjacent minibasins in the upper and middle slope. However, these models fail to adequately explain fill-and-spill processes in lower slope minibasins surrounded by mobile salt. In particular, they do not consider the effect of variations in bathymetric relief of the intervening massif, nor do they examine multidirectional connections between proximal and distal minibasins. A new dynamic-salt fill-and-spill model is proposed in this dissertation in order to understand the origin and distribution of sediment pathways and variations in connection styles. In this model, connection styles are controlled by changes in salt massifs relief and sedimentation rates through time. Four connection styles exist between minibasins: no connection, wide connection, narrow connection and bypass connection. Low sedimentation rates tend to shut down connection between minibasins, whereas high sedimentation rates favor development of pathways that connect minibasins. In summary, the most important contribution from this research is that variations in salt-massif relief, combined with changes in sedimentation rates through time, can yield different filling histories and connection styles for nearby minibasins. So by understanding the influence of these factors, the complicated task of identifying sediment pathways in salt-controlled environments can be attempted in a more effective way.
Rumisha, Cyrus; Huyghe, Filip; Rapanoel, Diary; Mascaux, Nemo; Kochzius, Marc
2017-01-01
The giant mud crab Scylla serrata provides an important source of income and food to coastal communities in East Africa. However, increasing demand and exploitation due to the growing coastal population, export trade, and tourism industry are threatening the sustainability of the wild stock of this species. Because effective management requires a clear understanding of the connectivity among populations, this study was conducted to assess the genetic diversity and connectivity in the East African mangrove crab S. serrata. A section of 535 base pairs of the cytochrome oxidase subunit I (COI) gene and eight microsatellite loci were analysed from 230 tissue samples of giant mud crabs collected from Kenya, Tanzania, Mozambique, Madagascar, and South Africa. Microsatellite genetic diversity (He) ranged between 0.56 and 0.6. The COI sequences showed 57 different haplotypes associated with low nucleotide diversity (current nucleotide diversity = 0.29%). In addition, the current nucleotide diversity was lower than the historical nucleotide diversity, indicating overexploitation or historical bottlenecks in the recent history of the studied population. Considering that the coastal population is growing rapidly, East African countries should promote sustainable fishing practices and sustainable use of mangrove resources to protect mud crabs and other marine fauna from the increasing pressure of exploitation. While microsatellite loci did not show significant genetic differentiation (p > 0.05), COI sequences revealed significant genetic divergence between sites on the East coast of Madagascar (ECM) and sites on the West coast of Madagascar, mainland East Africa, as well as the Seychelles. Since East African countries agreed to achieve the Convention on Biological Diversity (CBD) target to protect over 10% of their marine areas by 2020, the observed pattern of connectivity and the measured genetic diversity can serve to provide useful information for designing networks of marine protected areas.
McArt, Darragh G.; Dunne, Philip D.; Blayney, Jaine K.; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra; Hamilton, Peter W.; Zhang, Shu-Dong
2013-01-01
The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. PMID:23840550
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
Ye, Zhan; Kadolph, Christopher; Strenn, Robert; Wall, Daniel; McPherson, Elizabeth; Lin, Simon
2015-01-01
Background Identification and evaluation of incidental findings in patients following whole exome (WGS) or whole genome sequencing (WGS) is challenging for both practicing physicians and researchers. The American College of Medical Genetics and Genomics (ACMG) recently recommended a list of reportable incidental genetic findings. However, no informatics tools are currently available to support evaluation of incidental findings in next-generation sequencing data. Methods The Wisconsin Hierarchical Analysis Tool for Incidental Findings (WHATIF), was developed as a stand-alone Windows-based desktop executable, to support the interactive analysis of incidental findings in the context of the ACMG recommendations. WHATIF integrates the European Bioinformatics Institute Variant Effect Predictor (VEP) tool for biological interpretation and the National Center for Biotechnology Information ClinVar tool for clinical interpretation. Results An open-source desktop program was created to annotate incidental findings and present the results with a user-friendly interface. Further, a meaningful index (WHATIF Index) was devised for each gene to facilitate ranking of the relative importance of the variants and estimate the potential workload associated with further evaluation of the variants. Our WHATIF application is available at: http://tinyurl.com/WHATIF-SOFTWARE Conclusions The WHATIF application offers a user-friendly interface and allows users to investigate the extracted variant information efficiently and intuitively while always accessing the up to date information on variants via application programming interfaces (API) connections. WHATIF’s highly flexible design and straightforward implementation aids users in customizing the source code to meet their own special needs. PMID:25890833
Stalder, Hanspeter; Hug, Corinne; Zanoni, Reto; Vogt, Hans-Rudolf; Peterhans, Ernst; Schweizer, Matthias; Bachofen, Claudia
2016-06-15
Pestiviruses infect a wide variety of animals of the order Artiodactyla, with bovine viral diarrhea virus (BVDV) being an economically important pathogen of livestock globally. BVDV is maintained in the cattle population by infecting fetuses early in gestation and, thus, by generating persistently infected (PI) animals that efficiently transmit the virus throughout their lifetime. In 2008, Switzerland started a national control campaign with the aim to eradicate BVDV from all bovines in the country by searching for and eliminating every PI cattle. Different from previous eradication programs, all animals of the entire population were tested for virus within one year, followed by testing each newborn calf in the subsequent four years. Overall, 3,855,814 animals were tested from 2008 through 2011, 20,553 of which returned an initial BVDV-positive result. We were able to obtain samples from at least 36% of all initially positive tested animals. We sequenced the 5' untranslated region (UTR) of more than 7400 pestiviral strains and compiled the sequence data in a database together with an array of information on the PI animals, among others, the location of the farm in which they were born, their dams, and the locations where the animals had lived. To our knowledge, this is the largest database combining viral sequences with animal data of an endemic viral disease. Using unique identification tags, the different datasets within the database were connected to run diverse molecular epidemiological analyses. The large sets of animal and sequence data made it possible to run analyses in both directions, i.e., starting from a likely epidemiological link, or starting from related sequences. We present the results of three epidemiological investigations in detail and a compilation of 122 individual investigations that show the usefulness of such a database in a country-wide BVD eradication program. Copyright © 2015 Elsevier B.V. All rights reserved.
Fetal functional imaging portrays heterogeneous development of emerging human brain networks
Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg
2014-01-01
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531
Fetal functional imaging portrays heterogeneous development of emerging human brain networks.
Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg
2014-01-01
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.
Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.
Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S
2007-05-01
Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.
Behavioral plasticity through the modulation of switch neurons.
Vassiliades, Vassilis; Christodoulou, Chris
2016-02-01
A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron". A switch neuron regulates the flow of information in NNs by selectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some information about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate "switch modules" in order to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arnold, Roland; Goldenberg, Florian; Mewes, Hans-Werner; Rattei, Thomas
2014-01-01
The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith–Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads. PMID:24165881
Lindberg, D A; Humphreys, B L
1995-01-01
The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116
A standard-enabled workflow for synthetic biology.
Myers, Chris J; Beal, Jacob; Gorochowski, Thomas E; Kuwahara, Hiroyuki; Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Nguyen, Tramy; Oberortner, Ernst; Samineni, Meher; Wipat, Anil; Zhang, Michael; Zundel, Zach
2017-06-15
A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Representing and computing regular languages on massively parallel networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.I.; O'Sullivan, J.A.; Boysam, B.
1991-01-01
This paper proposes a general method for incorporating rule-based constraints corresponding to regular languages into stochastic inference problems, thereby allowing for a unified representation of stochastic and syntactic pattern constraints. The authors' approach first established the formal connection of rules to Chomsky grammars, and generalizes the original work of Shannon on the encoding of rule-based channel sequences to Markov chains of maximum entropy. This maximum entropy probabilistic view leads to Gibb's representations with potentials which have their number of minima growing at precisely the exponential rate that the language of deterministically constrained sequences grow. These representations are coupled to stochasticmore » diffusion algorithms, which sample the language-constrained sequences by visiting the energy minima according to the underlying Gibbs' probability law. The coupling to stochastic search methods yields the all-important practical result that fully parallel stochastic cellular automata may be derived to generate samples from the rule-based constraint sets. The production rules and neighborhood state structure of the language of sequences directly determines the necessary connection structures of the required parallel computing surface. Representations of this type have been mapped to the DAP-510 massively-parallel processor consisting of 1024 mesh-connected bit-serial processing elements for performing automated segmentation of electron-micrograph images.« less
Ordered fast fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1989-01-01
Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.
Norris, Vic
2015-01-01
The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself. PMID:25932025
Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons.
Panzeri, S; Rolls, E T; Battaglia, F; Lavis, R
2001-11-01
The speed of processing in the visual cortical areas can be fast, with for example the latency of neuronal responses increasing by only approximately 10 ms per area in the ventral visual system sequence V1 to V2 to V4 to inferior temporal visual cortex. This has led to the suggestion that rapid visual processing can only be based on the feedforward connections between cortical areas. To test this idea, we investigated the dynamics of information retrieval in multiple layer networks using a four-stage feedforward network modelled with continuous dynamics with integrate-and-fire neurons, and associative synaptic connections between stages with a synaptic time constant of 10 ms. Through the implementation of continuous dynamics, we found latency differences in information retrieval of only 5 ms per layer when local excitation was absent and processing was purely feedforward. However, information latency differences increased significantly when non-associative local excitation was included. We also found that local recurrent excitation through associatively modified synapses can contribute significantly to processing in as little as 15 ms per layer, including the feedforward and local feedback processing. Moreover, and in contrast to purely feed-forward processing, the contribution of local recurrent feedback was useful and approximately this rapid even when retrieval was made difficult by noise. These findings suggest that cortical information processing can benefit from recurrent circuits when the allowed processing time per cortical area is at least 15 ms long.
Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.
Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong
2016-05-01
This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.
Long period pseudo random number sequence generator
NASA Technical Reports Server (NTRS)
Wang, Charles C. (Inventor)
1989-01-01
A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).
Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang
2017-01-01
A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.
Berwald-type and Yano-type connections on Lie algebroids
NASA Astrophysics Data System (ADS)
Peyghan, E.
2015-09-01
In a new approach, by using the exact sequences, semisprays on the prolongation of a Lie algebroids are introduced and many important results on the semisprays and sprays are obtained. Also, the horizontal endomorphisms, almost complex structures, vertical, horizontal and complete lifts on the prolongation of a Lie algebroid are considered. Then the distinguished connections on the prolongation of a Lie algebroid are introduced and the torsion and curvature tensors of these connections are considered. In particular, the Berwald-type and Yano-type connections are studied.
A novel probabilistic framework for event-based speech recognition
NASA Astrophysics Data System (ADS)
Juneja, Amit; Espy-Wilson, Carol
2003-10-01
One of the reasons for unsatisfactory performance of the state-of-the-art automatic speech recognition (ASR) systems is the inferior acoustic modeling of low-level acoustic-phonetic information in the speech signal. An acoustic-phonetic approach to ASR, on the other hand, explicitly targets linguistic information in the speech signal, but such a system for continuous speech recognition (CSR) is not known to exist. A probabilistic and statistical framework for CSR based on the idea of the representation of speech sounds by bundles of binary valued articulatory phonetic features is proposed. Multiple probabilistic sequences of linguistically motivated landmarks are obtained using binary classifiers of manner phonetic features-syllabic, sonorant and continuant-and the knowledge-based acoustic parameters (APs) that are acoustic correlates of those features. The landmarks are then used for the extraction of knowledge-based APs for source and place phonetic features and their binary classification. Probabilistic landmark sequences are constrained using manner class language models for isolated or connected word recognition. The proposed method could overcome the disadvantages encountered by the early acoustic-phonetic knowledge-based systems that led the ASR community to switch to systems highly dependent on statistical pattern analysis methods and probabilistic language or grammar models.
PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes.
Vielva, Luis; de Toro, María; Lanza, Val F; de la Cruz, Fernando
2017-12-01
PLACNET is a graph-based tool for reconstruction of plasmids from next generation sequence pair-end datasets. PLACNET graphs contain two types of nodes (assembled contigs and reference genomes) and two types of edges (scaffold links and homology to references). Manual pruning of the graphs is a necessary requirement in PLACNET, but this is difficult for users without solid bioinformatic background. PLACNETw, a webtool based on PLACNET, provides an interactive graphic interface, automates BLAST searches, and extracts the relevant information for decision making. It allows a user with domain expertise to visualize the scaffold graphs and related information of contigs as well as reference sequences, so that the pruning operations can be done interactively from a personal computer without the need for additional tools. After successful pruning, each plasmid becomes a separate connected component subgraph. The resulting data are automatically downloaded by the user. PLACNETw is freely available at https://castillo.dicom.unican.es/upload/. delacruz@unican.es. A tutorial video and several solved examples are available at https://castillo.dicom.unican.es/placnetw_video/ and https://castillo.dicom.unican.es/examples/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Single-phase frequency converter
NASA Astrophysics Data System (ADS)
Baciu, I.; Cunţan, C. D.
2017-01-01
The paper presents a continuous voltage inverter - AC (12V / 230V) made with IGBT and two-stage voltage transformer. The sequence control transistors is achieved using a ring counter whose clock signal is obtained with a monostable circuit LM 555. The frequency of the clock signal can be adjustment with a potentiometer that modifies the charging current of the capacitor which causes constant monostable circuit time. Command sequence consists of 8 intervals of which 6 are assigned to command four transistors and two for the period break at the beginning and end of the sequence control. To obtain an alternation consisting of two different voltage level, two transistors will be comanded, connected to different windings of the transformer and the one connected to the winding providing lower voltage must be comanded twice. The output of the numerator goes through an inverter type MOS and a current amplifier with bipolar transistor.To achieve galvanic separation, an optocoupler will be used for each IGBT transistor, while protection is achieved with resistance and diode circuit. At the end there is connected an LC filter for smoothing voltage variations.
Bernardes, Sérgio Rocha; da Gloria Chiarello de Mattos, Maria; Hobkirk, John; Ribeiro, Ricardo Faria
2014-01-01
The purpose of this study was to determine whether abutment screw tightening and untightening influenced loss of preload in three different implant/abutment interfaces, or on the implant body. Five custom-fabricated machined titanium implants were used, each with its respective abutment, with different connection types, retention screws, and torque values (external hexagon with titanium screw/32 Ncm, external hexagon with coated screw/32 Ncm, internal hexagon/20 Ncm and internal conical/20 and 32 Ncm). Each implant tested had two strain gauges attached and was submitted to five tightening/untightening sequences. External hexagons resulted in the lowest preload values generated in the implant cervical third (mean of 27.75 N), while the internal hexagon had the highest values (mean of 219.61 N). There was no immediate significant loss of preload after screw tightening. Tightening/untightening sequences, regardless of the implant/abutment interface design or type of screw used in the study, did not result in any significant loss of initial preload. Conical implant connections demonstrated greater structural reinforcement within the internal connections.
Walcott, Brian P; Winkler, Ethan A; Zhou, Sirui; Birk, Harjus; Guo, Diana; Koch, Matthew J; Stapleton, Christopher J; Spiegelman, Dan; Dionne-Laporte, Alexandre; Dion, Patrick A; Kahle, Kristopher T; Rouleau, Guy A; Lawton, Michael T
2018-01-01
Brain arteriovenous malformations (AVMs) are abnormal connections between arteries and veins that can result in hemorrhagic stroke. A genetic basis for AVMs is suspected, and we investigated potential mutations in a 14-year-old girl who developed a recurrent brain AVM. Whole-exome sequencing (WES) of AVM lesion tissue and blood was performed accompanied by in silico modeling, protein expression observation in lesion tissue and zebrafish modeling. A stop-gain mutation (c.C739T:p.R247X) in the gene SMAD family member 9 ( SMAD9 ) was discovered. In the human brain tissue, immunofluorescent staining demonstrated a vascular predominance of SMAD9 at the protein level. Vascular SMAD9 was markedly reduced in AVM peri-nidal blood vessels, which was accompanied by a decrease in phosphorylated SMAD4, a downstream effector protein of the bone morphogenic protein signaling pathway. Zebrafish modeling ( Tg kdrl:eGFP ) of the morpholino splice site and translation-blocking knockdown of SMAD9 resulted in abnormal cerebral artery-to-vein connections with morphologic similarities to human AVMs. Orthogonal trajectories of evidence established a relationship between the candidate mutation discovered in SMAD9 via WES and the clinical phenotype. Replication in similar rare cases of recurrent AVM, or even more broadly sporadic AVM, may be informative in building a more comprehensive understanding of AVM pathogenesis.
SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
Dayarian, Adel; Michael, Todd P; Sengupta, Anirvan M
2010-06-24
High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the genome. We have developed SOPRA, a tool designed to exploit the mate pair/paired-end information for assembly of short reads. The main focus of the algorithm is selecting a sufficiently large subset of simultaneously satisfiable mate pair constraints to achieve a balance between the size and the quality of the output scaffolds. Scaffold assembly is presented as an optimization problem for variables associated with vertices and with edges of the contig connectivity graph. Vertices of this graph are individual contigs with edges drawn between contigs connected by mate pairs. Similar graph problems have been invoked in the context of shotgun sequencing and scaffold building for previous generation of sequencing projects. However, given the error-prone nature of HTS data and the fundamental limitations from the shortness of the reads, the ad hoc greedy algorithms used in the earlier studies are likely to lead to poor quality results in the current context. SOPRA circumvents this problem by treating all the constraints on equal footing for solving the optimization problem, the solution itself indicating the problematic constraints (chimeric/repetitive contigs, etc.) to be removed. The process of solving and removing of constraints is iterated till one reaches a core set of consistent constraints. For SOLiD sequencer data, SOPRA uses a dynamic programming approach to robustly translate the color-space assembly to base-space. For assessing the quality of an assembly, we report the no-match/mismatch error rate as well as the rates of various rearrangement errors. Applying SOPRA to real data from bacterial genomes, we were able to assemble contigs into scaffolds of significant length (N50 up to 200 Kb) with very few errors introduced in the process. In general, the methodology presented here will allow better scaffold assemblies of any type of mate pair sequencing data.
Quick, Joshua; Grubaugh, Nathan D; Pullan, Steven T; Claro, Ingra M; Smith, Andrew D; Gangavarapu, Karthik; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rogers, Thomas F; Beutler, Nathan A; Burton, Dennis R; Lewis-Ximenez, Lia Laura; de Jesus, Jaqueline Goes; Giovanetti, Marta; Hill, Sarah C; Black, Allison; Bedford, Trevor; Carroll, Miles W; Nunes, Marcio; Alcantara, Luiz Carlos; Sabino, Ester C; Baylis, Sally A; Faria, Nuno R; Loose, Matthew; Simpson, Jared T; Pybus, Oliver G; Andersen, Kristian G; Loman, Nicholas J
2017-06-01
Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.
Process connectivity in a naturally prograding river delta
NASA Astrophysics Data System (ADS)
Sendrowski, Alicia; Passalacqua, Paola
2017-03-01
River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.
Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang
2007-01-01
The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.
Connecting Earth observation to high-throughput biodiversity data.
Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W
2017-06-22
Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.
CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data.
Hallin, Peter F; Ussery, David W
2004-12-12
Currently, new bacterial genomes are being published on a monthly basis. With the growing amount of genome sequence data, there is a demand for a flexible and easy-to-maintain structure for storing sequence data and results from bioinformatic analysis. More than 150 sequenced bacterial genomes are now available, and comparisons of properties for taxonomically similar organisms are not readily available to many biologists. In addition to the most basic information, such as AT content, chromosome length, tRNA count and rRNA count, a large number of more complex calculations are needed to perform detailed comparative genomics. DNA structural calculations like curvature and stacking energy, DNA compositions like base skews, oligo skews and repeats at the local and global level are just a few of the analysis that are presented on the CBS Genome Atlas Web page. Complex analysis, changing methods and frequent addition of new models are factors that require a dynamic database layout. Using basic tools like the GNU Make system, csh, Perl and MySQL, we have created a flexible database environment for storing and maintaining such results for a collection of complete microbial genomes. Currently, these results counts to more than 220 pieces of information. The backbone of this solution consists of a program package written in Perl, which enables administrators to synchronize and update the database content. The MySQL database has been connected to the CBS web-server via PHP4, to present a dynamic web content for users outside the center. This solution is tightly fitted to existing server infrastructure and the solutions proposed here can perhaps serve as a template for other research groups to solve database issues. A web based user interface which is dynamically linked to the Genome Atlas Database can be accessed via www.cbs.dtu.dk/services/GenomeAtlas/. This paper has a supplemental information page which links to the examples presented: www.cbs.dtu.dk/services/GenomeAtlas/suppl/bioinfdatabase.
The neural dynamics of song syntax in songbirds
NASA Astrophysics Data System (ADS)
Jin, Dezhe
2010-03-01
Songbird is ``the hydrogen atom'' of the neuroscience of complex, learned vocalizations such as human speech. Songs of Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic syntactic rules, which are rudimentarily similar to grammars in human language. Songbird brain is accessible to experimental probes, and is understood well enough to construct biologically constrained, predictive computational models. In this talk, I will discuss the structure and dynamics of neural networks underlying the stereotypy of the birdsong syllables and the flexibility of syllable sequences. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. Through a computational model, I show that that variable syllable sequences can be generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The model predicts that the syllable sequences statistically follow partially observable Markov models. Experimental results supporting this and other predictions of the model will be presented. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.
The importance of endophenotypes in schizophrenia research.
Braff, David L
2015-04-01
Endophenotypes provide a powerful neurobiological platform from which we can understand the genomic and neural substrates of schizophrenia and other common complex neuropsychiatric disorders. The Consortium on the Genetics of Schizophrenia (COGS) has conducted multisite studies on carefully selected key neurocognitive and neurophysiological endophenotypes in 300 families (COGS-1) and then in a follow up multisite case-control study of 2471 subjects (COGS-2). Endophenotypes are neurobiologically informed quantitative measures that show deficits in probands and their first degree relatives. They are more amenable to statistical analysis than are "fuzzy" qualitative clinical traits or confoundingly heterogeneous diagnostic categories. Endophenotypes are also viewed as uniquely informative in traditional diagnosis-based as well as emerging NIMH Research Domain (RDoC) contexts, offering a bridge between the two approaches to psychopathology classification and research. Endo- or intermediate phenotypes are heritable, and in the COGS-1 cohort their level of heritability is in the same range as is the heritability of schizophrenia itself, using the same statistical methods and subjects to assess both. Because we can demonstrate endophenotypes link to both gene networks and neural circuits on the one hand and also to real-life function, endophenotypes provide a critically important bridge for "connecting the dots" between genes, cells, circuits, information processing, neurocognition and functional impairment and personalized treatment selection in schizophrenia patients. By connecting schizophrenia risk genes with neurobiologically informed endophenotypes, and via the use of association, linkage, sequencing, stem cell and other strategies, we can provide our field with new neurobiologically informed information in our efforts to understand and treat schizophrenia. Evolving views, data and new analytic strategies about schizophrenia risk, pathology and treatment are described in this Viewpoint and in the accompanying Special Issue reports. Published by Elsevier B.V.
Chunking dynamics: heteroclinics in mind
Rabinovich, Mikhail I.; Varona, Pablo; Tristan, Irma; Afraimovich, Valentin S.
2014-01-01
Recent results of imaging technologies and non-linear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are non-linear dynamical descriptions of the interaction of the core components—brain modes—participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain of saddles—metastable states—connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences, and finally words). Chunking is important in many processes of perception, learning, and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we propose a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics. PMID:24672469
Chunking dynamics: heteroclinics in mind.
Rabinovich, Mikhail I; Varona, Pablo; Tristan, Irma; Afraimovich, Valentin S
2014-01-01
Recent results of imaging technologies and non-linear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are non-linear dynamical descriptions of the interaction of the core components-brain modes-participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain of saddles-metastable states-connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences, and finally words). Chunking is important in many processes of perception, learning, and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we propose a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... (Request to Employer for Employment Information in Connection With Claim for Disability Benefits) Activity...: Request to Employer for Employment Information in Connection With Claim for Disability Benefits, VA Form... solicits comments for information needed to determine a claimant's eligibility for disability insurance...
Network-wide reorganization of procedural memory during NREM sleep revealed by fMRI
Vahdat, Shahabeddin; Fogel, Stuart; Benali, Habib; Doyon, Julien
2017-01-01
Sleep is necessary for the optimal consolidation of newly acquired procedural memories. However, the mechanisms by which motor memory traces develop during sleep remain controversial in humans, as this process has been mainly investigated indirectly by comparing pre- and post-sleep conditions. Here, we used functional magnetic resonance imaging and electroencephalography during sleep following motor sequence learning to investigate how newly-formed memory traces evolve dynamically over time. We provide direct evidence for transient reactivation followed by downscaling of functional connectivity in a cortically-dominant pattern formed during learning, as well as gradual reorganization of this representation toward a subcortically-dominant consolidated trace during non-rapid eye movement (NREM) sleep. Importantly, the putamen functional connectivity within the consolidated network during NREM sleep was related to overnight behavioral gains. Our results demonstrate that NREM sleep is necessary for two complementary processes: the restoration and reorganization of newly-learned information during sleep, which underlie human motor memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.24987.001 PMID:28892464
NASA Technical Reports Server (NTRS)
Panontin, Tina; Carvalho, Robert; Keller, Richard
2004-01-01
Contents include the folloving:Overview of the Application; Input Data; Analytical Process; Tool's Output; and Application of the Results of the Analysis.The tool enables the first element through a Web-based application that can be accessed by distributed teams to store and retrieve any type of digital investigation material in a secure environment. The second is accomplished by making the relationships between information explicit through the use of a semantic network-a structure that literally allows an investigator or team to "connect -the-dots." The third element, the significance of the correlated information, is established through causality and consistency tests using a number of different methods embedded within the tool, including fault trees, event sequences, and other accident models. And finally, the evidence gathered and structured within the tool can be directly, electronically archived to preserve the evidence and investigative reasoning.
Toward an integrated knowledge environment to support modern oncology.
Blake, Patrick M; Decker, David A; Glennon, Timothy M; Liang, Yong Michael; Losko, Sascha; Navin, Nicholas; Suh, K Stephen
2011-01-01
Around the world, teams of researchers continue to develop a wide range of systems to capture, store, and analyze data including treatment, patient outcomes, tumor registries, next-generation sequencing, single-nucleotide polymorphism, copy number, gene expression, drug chemistry, drug safety, and toxicity. Scientists mine, curate, and manually annotate growing mountains of data to produce high-quality databases, while clinical information is aggregated in distant systems. Databases are currently scattered, and relationships between variables coded in disparate datasets are frequently invisible. The challenge is to evolve oncology informatics from a "systems" orientation of standalone platforms and silos into an "integrated knowledge environments" that will connect "knowable" research data with patient clinical information. The aim of this article is to review progress toward an integrated knowledge environment to support modern oncology with a focus on supporting scientific discovery and improving cancer care.
Capuano, Alessandra; Bucciotti, Francesco; Farwell, Kelly D; Tippin Davis, Brigette; Mroske, Cameron; Hulick, Peter J; Weissman, Scott M; Gao, Qingshen; Spessotto, Paola; Colombatti, Alfonso; Doliana, Roberto
2016-01-01
Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio-exome sequencing of a 55-year-old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN-1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN-1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal-dominant connective tissue disorder. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Pan, Gaofeng; Jiang, Limin; Tang, Jijun; Guo, Fei
2018-02-08
DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods-especially machine learning methods-have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k -gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria-area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), accuracy (ACC), sensitivity (SN), and specificity-are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.
2015-01-01
Abstract Trees contribute to enormous plant oil reserves because many trees contain 50%–80% of oil (triacylglycerols, TAGs) in the fruits and kernels. TAGs accumulate in subcellular structures called oil bodies/droplets, in which TAGs are covered by low-molecular-mass hydrophobic proteins called oleosins (OLEs). The OLEs/TAGs ratio determines the size and shape of intracellular oil bodies. There is a lack of comprehensive sequence analysis and structural information of OLEs among diverse trees. The objectives of this study were to identify OLEs from 22 tree species (e.g., tung tree, tea-oil tree, castor bean), perform genome-wide analysis of OLEs, classify OLEs, identify conserved sequence motifs and amino acid residues, and predict secondary and three-dimensional structures in tree OLEs and OLE subfamilies. Data mining identified 65 OLEs with perfect conservation of the “proline knot” motif (PX5SPX3P) from 19 trees. These OLEs contained >40% hydrophobic amino acid residues. They displayed similar properties and amino acid composition. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that these proteins could be classified into five OLE subfamilies. There were distinct patterns of sequence conservation among the OLE subfamilies and within individual tree species. Computational modeling indicated that OLEs were composed of at least three α-helixes connected with short coils without any β-strand and that they exhibited distinct 3D structures and ligand binding sites. These analyses provide fundamental information in the similarity and specificity of diverse OLE isoforms within the same subfamily and among the different species, which should facilitate studying the structure-function relationship and identify critical amino acid residues in OLEs for metabolic engineering of tree TAGs. PMID:26258573
Cao, Heping
2015-09-01
Trees contribute to enormous plant oil reserves because many trees contain 50%-80% of oil (triacylglycerols, TAGs) in the fruits and kernels. TAGs accumulate in subcellular structures called oil bodies/droplets, in which TAGs are covered by low-molecular-mass hydrophobic proteins called oleosins (OLEs). The OLEs/TAGs ratio determines the size and shape of intracellular oil bodies. There is a lack of comprehensive sequence analysis and structural information of OLEs among diverse trees. The objectives of this study were to identify OLEs from 22 tree species (e.g., tung tree, tea-oil tree, castor bean), perform genome-wide analysis of OLEs, classify OLEs, identify conserved sequence motifs and amino acid residues, and predict secondary and three-dimensional structures in tree OLEs and OLE subfamilies. Data mining identified 65 OLEs with perfect conservation of the "proline knot" motif (PX5SPX3P) from 19 trees. These OLEs contained >40% hydrophobic amino acid residues. They displayed similar properties and amino acid composition. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that these proteins could be classified into five OLE subfamilies. There were distinct patterns of sequence conservation among the OLE subfamilies and within individual tree species. Computational modeling indicated that OLEs were composed of at least three α-helixes connected with short coils without any β-strand and that they exhibited distinct 3D structures and ligand binding sites. These analyses provide fundamental information in the similarity and specificity of diverse OLE isoforms within the same subfamily and among the different species, which should facilitate studying the structure-function relationship and identify critical amino acid residues in OLEs for metabolic engineering of tree TAGs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... for Employment Information in Connection With Claim for Disability Benefits) Activity Under OMB Review....Regulations.gov or to VA's OMB Desk Officer, OMB Human Resources and Housing Branch, New Executive Office... INFORMATION: Title: Request for Employment Information in Connection with Claim for Disability Benefits, VA...
Bonzano, Laura; Palmaro, Eleonora; Teodorescu, Roxana; Fleysher, Lazar; Inglese, Matilde; Bove, Marco
2014-01-01
Neuroimaging studies support the involvement of the cerebello-cortical and striato-cortical motor loops in motor sequence learning. Here, we investigated whether the gain of motor sequence learning could depend on a priori resting-state functional connectivity (rsFC) between motor areas and structures belonging to these circuits. Fourteen healthy subjects underwent a resting-state fMRI session. Afterward, they were asked to reproduce a verbally-learned sequence of finger opposition movements as fast and accurate as possible. All subjects increased their movement rate with practice, by reducing touch duration and/or inter tapping interval. The rsFC analysis showed that at rest left and right M1 and left and right supplementary motor cortex (SMA) were mainly connected with other motor areas. The covariate analysis taking into account the different kinematic parameters indicated that the subjects achieving greater movement rate increase were those showing stronger rsFC of the left M1 and SMA with the right lobule VIII of the cerebellum. Notably, the subjects with greater inter tapping interval reduction showed stronger rsFC of the left M1 and SMA with the association nuclei of the thalamus. Conversely, the regression analysis with the right M1 and SMA seeds showed only few significant clusters for the different covariates not located in the cerebellum and thalamus. No common clusters were found between right M1 and SMA. All these findings indicate important functional connections at rest of those neural circuits responsible of motor learning improvement, involving the motor areas related to the hemisphere directly controlling the finger movements, the thalamus and the cerebellum. PMID:25328043
Ludowise, Michael J.
1986-01-01
A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.
Tan, Lianjiang; Liu, Yazhi; Li, Xiaowei; Wu, Xin-Yan; Gong, Bing; Shen, Yu-Mei; Shao, Zhifeng
2016-02-11
An acid-cleavable linker based on a dimethylketal moiety was synthesized and used to connect a nucleotide with a fluorophore to produce a 3'-OH unblocked nucleotide analogue as an excellent reversible terminator for DNA sequencing by synthesis.
de Manzano, Örjan; Ullén, Fredrik
2012-10-15
Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands. Copyright © 2012 Elsevier Inc. All rights reserved.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu
2017-09-01
In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi
2017-01-01
ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. PMID:28630199
Code of Federal Regulations, 2010 CFR
2010-10-01
... information or making a false statement in connection with the registration process? 385.306 Section 385.306... information or making a false statement in connection with the registration process? A carrier that furnishes false or misleading information, or conceals material information in connection with the registration...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... for Nursing Home Information in Connection With Claim for Aid and Attendance) Activity Under OMB... INFORMATION: Title: Request for Nursing Home Information in Connection with Claim for Aid and Attendance, VA... collection. Abstract: The data collected on VA Form 21-0779 is used to determine veterans residing in nursing...
Genetic circuit design automation.
Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A
2016-04-01
Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. Copyright © 2016, American Association for the Advancement of Science.
Hara, Yuichiro; Tatsumi, Kaori; Yoshida, Michio; Kajikawa, Eriko; Kiyonari, Hiroshi; Kuraku, Shigehiro
2015-11-18
RNA-seq enables gene expression profiling in selected spatiotemporal windows and yields massive sequence information with relatively low cost and time investment, even for non-model species. However, there remains a large room for optimizing its workflow, in order to take full advantage of continuously developing sequencing capacity. Transcriptome sequencing for three embryonic stages of Madagascar ground gecko (Paroedura picta) was performed with the Illumina platform. The output reads were assembled de novo for reconstructing transcript sequences. In order to evaluate the completeness of transcriptome assemblies, we prepared a reference gene set consisting of vertebrate one-to-one orthologs. To take advantage of increased read length of >150 nt, we demonstrated shortened RNA fragmentation time, which resulted in a dramatic shift of insert size distribution. To evaluate products of multiple de novo assembly runs incorporating reads with different RNA sources, read lengths, and insert sizes, we introduce a new reference gene set, core vertebrate genes (CVG), consisting of 233 genes that are shared as one-to-one orthologs by all vertebrate genomes examined (29 species)., The completeness assessment performed by the computational pipelines CEGMA and BUSCO referring to CVG, demonstrated higher accuracy and resolution than with the gene set previously established for this purpose. As a result of the assessment with CVG, we have derived the most comprehensive transcript sequence set of the Madagascar ground gecko by means of assembling individual libraries followed by clustering the assembled sequences based on their overall similarities. Our results provide several insights into optimizing de novo RNA-seq workflow, including the coordination between library insert size and read length, which manifested in improved connectivity of assemblies. The approach and assembly assessment with CVG demonstrated here would be applicable to transcriptome analysis of other species as well as whole genome analyses.
Structural Heterogeneity of Doubly-Charged Peptide b-Ions
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Huang, Yiqun; O'Connor, Peter B.; Lin, Cheng
2011-02-01
Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ɛ-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing.
Structural Heterogeneity of Doubly-Charged Peptide b-Ions
Li, Xiaojuan; Huang, Yiqun; O’Connor, Peter B.; Lin, Cheng
2011-01-01
Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ε-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing. PMID:21472584
Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne
2015-01-01
Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.
Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans
Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd
2018-01-01
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.
Integer sequence discovery from small graphs
Hoppe, Travis; Petrone, Anna
2015-01-01
We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work. PMID:27034526
Connection anonymity analysis in coded-WDM PONs
NASA Astrophysics Data System (ADS)
Sue, Chuan-Ching
2008-04-01
A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.
Learning the Gestalt rule of collinearity from object motion.
Prodöhl, Carsten; Würtz, Rolf P; von der Malsburg, Christoph
2003-08-01
The Gestalt principle of collinearity (and curvilinearity) is widely regarded as being mediated by the long-range connection structure in primary visual cortex. We review the neurophysiological and psychophysical literature to argue that these connections are developed from visual experience after birth, relying on coherent object motion. We then present a neural network model that learns these connections in an unsupervised Hebbian fashion with input from real camera sequences. The model uses spatiotemporal retinal filtering, which is very sensitive to changes in the visual input. We show that it is crucial for successful learning to use the correlation of the transient responses instead of the sustained ones. As a consequence, learning works best with video sequences of moving objects. The model addresses a special case of the fundamental question of what represents the necessary a priori knowledge the brain is equipped with at birth so that the self-organized process of structuring by experience can be successful.
Avatar DNA Nanohybrid System in Chip-on-a-Phone
NASA Astrophysics Data System (ADS)
Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho
2014-05-01
Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.
Avatar DNA Nanohybrid System in Chip-on-a-Phone
Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho
2014-01-01
Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording. PMID:24824876
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing
2016-03-01
To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.
2016-01-01
On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.
Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier
2017-01-01
In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939
Simple method for experimentally testing any form of quantum contextuality
NASA Astrophysics Data System (ADS)
Cabello, Adán
2016-03-01
Contextuality provides a unifying paradigm for nonclassical aspects of quantum probabilities and resources of quantum information. Unfortunately, most forms of quantum contextuality remain experimentally unexplored due to the difficulty of performing sequences of projective measurements on individual quantum systems. Here we show that two-point correlations between binary compatible observables are sufficient to reveal any form of contextuality. This allows us to design simple experiments that are more robust against imperfections and easier to analyze, thus opening the door for observing interesting forms of contextuality, including those requiring quantum systems of high dimensions. In addition, it allows us to connect contextuality to communication complexity scenarios and reformulate a recent result relating contextuality and quantum computation.
Multidimensional optical spectroscopy of a single molecule in a current-carrying state
NASA Astrophysics Data System (ADS)
Rahav, S.; Mukamel, S.
2010-12-01
The nonlinear optical signals from an open system consisting of a molecule connected to metallic leads, in response to a sequence of impulsive pulses, are calculated using a superoperator formalism. Two detection schemes are considered: coherent stimulated emission and incoherent fluorescence. The two provide similar but not identical information. The necessary superoperator correlation functions are evaluated either by converting them to ordinary (Hilbert space) operators which are then expanded in many-body states, or by using Wick's theorem for superoperators to factorize them into nonequilibrium two point Green's functions. As an example we discuss a stimulated Raman process that shows resonances involving two different charge states of the molecule in the same signal.
Ngo, Kathy T.; Andrade, Ingrid; Hartenstein, Volker
2018-01-01
Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates. PMID:28533086
Neutral Theory is the Foundation of Conservation Genetics.
Yoder, Anne D; Poelstra, Jelmer; Tiley, George P; Williams, Rachel
2018-04-16
Kimura's neutral theory of molecular evolution has been essential to virtually every advance in evolutionary genetics, and by extension, is foundational to the field of conservation genetics. Conservation genetics utilizes the key concepts of neutral theory to identify species and populations at risk of losing evolutionary potential by detecting patterns of inbreeding depression and low effective population size. In turn, this information can inform the management of organisms and their habitat providing hope for the long-term preservation of both. We expand upon Avise's "inventorial" and "functional" categories of conservation genetics by proposing a third category that is linked to the coalescent and that we refer to as "process-driven." It is here that connections between Kimura's theory and conservation genetics are strongest. Process-driven conservation genetics can be especially applied to large genomic datasets to identify patterns of historical risk, such as population bottlenecks, and accordingly, yield informed intuitions for future outcomes. By examining inventorial, functional, and process-driven conservation genetics in sequence, we assess the progression from theory, to data collection and analysis, and ultimately, to the production of hypotheses that can inform conservation policies.
Functional brain networks for learning predictive statistics.
Giorgio, Joseph; Karlaftis, Vasilis M; Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew; Kourtzi, Zoe
2017-08-18
Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
D{sub {infinity}}-differential A{sub {infinity}}-algebras and spectral sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapin, S V
2002-02-28
In the present paper the construction of a D{sub {infinity}}-differential A{sub {infinity}}-(co)algebra is introduced and basic homotopy properties of this construction are studied. The connection between D{sub {infinity}}-differential A{sub {infinity}}-(co)algebras and spectral sequences is established, which enables us to construct the structure of an A{sub {infinity}} -coalgebra on the Milnor coalgebra directly from the differentials of the Adams spectral sequence.
Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A
2017-11-01
Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Kashiwagi, Kazuko; Ito, Yukiko
2017-01-01
Even young EFL learners who have not yet learned L2 grammar will notice language patterns if, when retrieving exemplars ("item-based patterns"), they succeed in making form-meaning connections (FMCs). Item-based patterns, termed formulaic sequences (FS), serve as a basis for creative constructions. Although learners are implicitly…
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
In-silico studies of neutral drift for functional protein interaction networks
NASA Astrophysics Data System (ADS)
Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.
Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter
2016-01-01
Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.
ERIC Educational Resources Information Center
Nutchey, David; Grant, Edlyn; English, Lyn
2016-01-01
This paper reports on the use of the RAMR framework within a curriculum project. Description of the RAMR framework's theoretical bases is followed by two descriptions of students' learning in the classroom. Implications include the need for the teacher to connect student activities in a structured sequence, although this may be predicated on the…
50 CFR 260.15 - Information required in connection with application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Information required in connection with... Certification of Establishments and Fishery Products for Human Consumption Inspection Service § 260.15 Information required in connection with application. Application for inspection service shall be made in the...
50 CFR 260.15 - Information required in connection with application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Information required in connection with... Certification of Establishments and Fishery Products for Human Consumption Inspection Service § 260.15 Information required in connection with application. Application for inspection service shall be made in the...
A New Model Army: Emerging fish models to study the genomics of vertebrate Evo-Devo
Braasch, Ingo; Peterson, Samuel M.; Desvignes, Thomas; McCluskey, Braedan M.; Batzel, Peter; Postlethwait, John H.
2014-01-01
Many fields of biology – including vertebrate Evo-Devo research – are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this ‘genomic tsunami’. Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies - for which we introduce the term ‘chromonome’ – should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era. PMID:25111899
Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M
2015-01-01
The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.
Brain activity and cognition: a connection from thermodynamics and information theory.
Collell, Guillem; Fauquet, Jordi
2015-01-01
The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.
Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer
Johnson, Sarah S.; Zaikova, Elena; Goerlitz, David S.; Bai, Yu; Tighe, Scott W.
2017-01-01
The ability to sequence DNA outside of the laboratory setting has enabled novel research questions to be addressed in the field in diverse areas, ranging from environmental microbiology to viral epidemics. Here, we demonstrate the application of offline DNA sequencing of environmental samples using a hand-held nanopore sequencer in a remote field location: the McMurdo Dry Valleys, Antarctica. Sequencing was performed using a MK1B MinION sequencer from Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) that was equipped with software to operate without internet connectivity. One-direction (1D) genomic libraries were prepared using portable field techniques on DNA isolated from desiccated microbial mats. By adequately insulating the sequencer and laptop, it was possible to run the sequencing protocol for up to 2½ h under arduous conditions. PMID:28337073
LenVarDB: database of length-variant protein domains.
Mutt, Eshita; Mathew, Oommen K; Sowdhamini, Ramanathan
2014-01-01
Protein domains are functionally and structurally independent modules, which add to the functional variety of proteins. This array of functional diversity has been enabled by evolutionary changes, such as amino acid substitutions or insertions or deletions, occurring in these protein domains. Length variations (indels) can introduce changes at structural, functional and interaction levels. LenVarDB (freely available at http://caps.ncbs.res.in/lenvardb/) traces these length variations, starting from structure-based sequence alignments in our Protein Alignments organized as Structural Superfamilies (PASS2) database, across 731 structural classification of proteins (SCOP)-based protein domain superfamilies connected to 2 730 625 sequence homologues. Alignment of sequence homologues corresponding to a structural domain is available, starting from a structure-based sequence alignment of the superfamily. Orientation of the length-variant (indel) regions in protein domains can be visualized by mapping them on the structure and on the alignment. Knowledge about location of length variations within protein domains and their visual representation will be useful in predicting changes within structurally or functionally relevant sites, which may ultimately regulate protein function. Non-technical summary: Evolutionary changes bring about natural changes to proteins that may be found in many organisms. Such changes could be reflected as amino acid substitutions or insertions-deletions (indels) in protein sequences. LenVarDB is a database that provides an early overview of observed length variations that were set among 731 protein families and after examining >2 million sequences. Indels are followed up to observe if they are close to the active site such that they can affect the activity of proteins. Inclusion of such information can aid the design of bioengineering experiments.
Schönberger, Anna R; Hagelweide, Klara; Pelzer, Esther A; Fink, Gereon R; Schubotz, Ricarda I
2015-10-01
Cognitive impairment in Parkinson's disease (PD) is often attributed to dopamine deficiency in the prefrontal-basal ganglia-thalamo-cortical loops. Although recent studies point to a close interplay between motor and cognitive abilities in PD, the so-called "motor loop" connecting supplementary motor area (SMA) and putamen has been considered solely with regard to the patients' motor impairment. Our study challenges this view by testing patients with the serial prediction task (SPT), a cognitive task that requires participants to predict stimulus sequences and particularly engages premotor sites of the motor loop. We hypothesised that affection of the motor loop causes impaired SPT performance, especially when the internal sequence representation is challenged by suspension of external stimuli. As shown for motor tasks, we further expected this impairment to be compensated by hyperactivity of the lateral premotor cortex (PM). We tested 16 male PD patients ON and OFF dopaminergic medication and 16 male age-matched healthy controls in an functional Magnetic Resonance Imaging study. All subjects performed two versions of the SPT: one with on-going sequences (SPT0), and one with sequences containing non-informative wildcards (SPT+) increasing the demands on mnemonic sequence representation. Patients ON (compared to controls) revealed an impaired performance coming along with hypoactivity of SMA and putamen. Patients OFF compared to ON medication, while showing poorer performance, exhibited a significantly increased PM activity for SPT+ vs. SPT0. Furthermore, patients' performance positively co-varied with PM activity, corroborating a compensatory account. Our data reveal a contribution of the motor loop to cognitive impairment in PD, and suggest a close interplay of SMA and PM beyond motor control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tenggardjaja, Kimberly A; Bowen, Brian W; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30-150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (< 30 m) and mesophotic (30-150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P < 0.001; control region: ΦST = 0.116, P < 0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes.
Tenggardjaja, Kimberly A.; Bowen, Brian W.; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30–150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (<30 m) and mesophotic (30–150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P<0.001; control region: ΦST = 0.116, P<0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes. PMID:25517964
Matsuura, Kazuo; Shi, Yun-Bo
2012-01-01
Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development. PMID:23071801
Information-geometric measures as robust estimators of connection strengths and external inputs.
Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi
2009-08-01
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.
MedlinePlus Connect: Technical Information
... Service Technical Information Page MedlinePlus Connect Implementation Options Web Application How does it work? Responds to requests ... examples of MedlinePlus Connect Web Application response pages. Web Service How does it work? Responds to requests ...
ERIC Educational Resources Information Center
Toms, Elaine G., Ed.
The theme of the 2002 ASIST (American Society for Information Science and Technology) annual conference was "Knowledge, Connections and Community," which covers the role of information in a complex global society and the way in which information connects and impacts our environment. The program included 43 SIG (Special Interest Group) programs, 49…
Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard
2009-05-01
The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.
Functional connectivity of parietal cortex during temporal selective attention.
Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D
2015-04-01
Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E
2015-02-14
The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... to Employer for Employment Information in Connection With Claim for Disability Benefits) Activities... through http://www.Regulations.gov or to VA's OMB Desk Officer, OMB Human Resources and Housing Branch... Connection with Claim for Disability Benefits, VA Form Letter 29-459. OMB Control Number: 2900-0066. Type of...
The genome sequence of a widespread apex Predator, the golden eagle (Aquila chrysaetos)
Jacqueline M. Doyle; Todd E. Katzner; Peter H. Bloom; Yanzhu Ji; Bhagya K. Wijayawardena; J. Andrew DeWoody; Ludovic Orlando
2014-01-01
Biologists routinely use molecular markers to identify conservation units, to quantify genetic connectivity, to estimate population sizes, and to identify targets of selection. Many imperiled eagle populations require such efforts and would benefit from enhanced genomic resources. We sequenced, assembled, and annotated the first eagle genome using DNA from a male...
ERIC Educational Resources Information Center
Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey
2009-01-01
To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…
Delviks-Frankenberry, Krista A.; Lengruber, Renan B.; Santos, Andre F.; Silveira, Jussara M.; Soares, Marcelo A.; Kearney, Mary F.; Maldarelli, Frank; Pathak, Vinay K.
2012-01-01
Mutations in the connection subdomain (CN) and RNase H domain (RH) of HIV-1 reverse transcriptase (RT) from subtype B-infected patients enhance nucleoside and nonnucleoside RT inhibitor (NRTI and NNRTI) resistance by affecting the balance between polymerization and RNase H activity. To determine whether CN mutations in subtype C influence drug sensitivity, single genome sequencing was performed on Brazilian subtype C-infected patients failing RTI therapy. CN mutations identified were similar to subtype B, including A376S, A400T, Q334D, G335D, N348I, and A371V, and increased AZT resistance in the presence of thymidine analog mutations. CN mutations also enhanced NNRTI resistance in the presence of classical NNRTI mutations: etravirine resistance was enhanced 6- to 11-fold in the presence of L100I/K103N/Y181C. These results indicate that selection of CN mutations in treatment-experienced patients also occurs in subtype-C-infected patients and are likely to provide valuable information in predicting clinical RTI resistance. PMID:23068886
Sammond, Deanne W.; Payne, Christina M.; Brunecky, Roman; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.
2012-01-01
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions. PMID:23139804
Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning
Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.
2011-01-01
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511
Birds and viruses at a crossroad--surveillance of influenza A virus in Portuguese waterfowl.
Tolf, Conny; Bengtsson, Daniel; Rodrigues, David; Latorre-Margalef, Neus; Wille, Michelle; Figueiredo, Maria Ester; Jankowska-Hjortaas, Monika; Germundsson, Anna; Duby, Pierre-Yves; Lebarbenchon, Camille; Gauthier-Clerc, Michel; Olsen, Björn; Waldenström, Jonas
2012-01-01
During recent years, extensive amounts of data have become available regarding influenza A virus (IAV) in wild birds in northern Europe, while information from southern Europe is more limited. Here, we present an IAV surveillance study conducted in western Portugal 2008-2009, analyzing 1653 samples from six different species of waterfowl, with the majority of samples taken from Mallards (Anas platyrhynchos). Overall 4.4% of sampled birds were infected. The sampling results revealed a significant temporal variation in the IAV prevalence, including a pronounced peak among predominantly young birds in June, indicating that IAV circulate within breeding populations in the wetlands of western Portugal. The H10N7 and H9N2 subtypes were predominant among isolated viruses. Phylogenetic analyses of the hemagglutinin and neuraminidase sequences of H10N7, H9N2 and H11N3 virus showed that sequences from Portugal were closely related to viral sequences from Central Europe as well as to IAVs isolated in the southern parts of Africa, reflecting Portugal's position on the European-African bird migratory flyway. This study highlights the importance of Portugal as a migratory crossroad for IAV, connecting breeding stationary waterfowl with birds migrating between continents which enable transmission and spread of IAV.
Han, R; Rai, A; Nakamura, M; Suzuki, H; Takahashi, H; Yamazaki, M; Saito, K
2016-01-01
Study on transcriptome, the entire pool of transcripts in an organism or single cells at certain physiological or pathological stage, is indispensable in unraveling the connection and regulation between DNA and protein. Before the advent of deep sequencing, microarray was the main approach to handle transcripts. Despite obvious shortcomings, including limited dynamic range and difficulties to compare the results from distinct experiments, microarray was widely applied. During the past decade, next-generation sequencing (NGS) has revolutionized our understanding of genomics in a fast, high-throughput, cost-effective, and tractable manner. By adopting NGS, efficiency and fruitful outcomes concerning the efforts to elucidate genes responsible for producing active compounds in medicinal plants were profoundly enhanced. The whole process involves steps, from the plant material sampling, to cDNA library preparation, to deep sequencing, and then bioinformatics takes over to assemble enormous-yet fragmentary-data from which to comb and extract information. The unprecedentedly rapid development of such technologies provides so many choices to facilitate the task, which can cause confusion when choosing the suitable methodology for specific purposes. Here, we review the general approaches for deep transcriptome analysis and then focus on their application in discovering biosynthetic pathways of medicinal plants that produce important secondary metabolites. © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Atterbury, Rob
2014-01-01
This guide provides an overview of a more robust online guide and toolkit available through ConnectEd Studios. It supplies a glimpse of the sequence of steps involved in creating a new Linked Learning pathway. This publication can help coaches, district leadership, and pathway teams gain an understanding of the overall process of designing and…
Facilitating NCAR Data Discovery by Connecting Related Resources
NASA Astrophysics Data System (ADS)
Rosati, A.
2012-12-01
Linking datasets, creators, and users by employing the proper standards helps to increase the impact of funded research. In order for users to find a dataset, it must first be named. Data citations play the important role of giving datasets a persistent presence by assigning a formal "name" and location. This project focuses on the next step of the "name-find-use" sequence: enhancing discoverability of NCAR data by connecting related resources on the web. By examining metadata schemas that document datasets, I examined how Semantic Web approaches can help to ensure the widest possible range of data users. The focus was to move from search engine optimization (SEO) to information connectivity. Two main markup types are very visible in the Semantic Web and applicable to scientific dataset discovery: The Open Archives Initiative-Object Reuse and Exchange (OAI-ORE - www.openarchives.org) and Microdata (HTML5 and www.schema.org). My project creates pilot aggregations of related resources using both markup types for three case studies: The North American Regional Climate Change Assessment Program (NARCCAP) dataset and related publications, the Palmer Drought Severity Index (PSDI) animation and image files from NCAR's Visualization Lab (VisLab), and the multidisciplinary data types and formats from the Advanced Cooperative Arctic Data and Information Service (ACADIS). This project documents the differences between these markups and how each creates connectedness on the web. My recommendations point toward the most efficient and effective markup schema for aggregating resources within the three case studies based on the following assessment criteria: ease of use, current state of support and adoption of technology, integration with typical web tools, available vocabularies and geoinformatic standards, interoperability with current repositories and access portals (e.g. ESG, Java), and relation to data citation tools and methods.
How Analysts Cognitively “Connect the Dots”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradel, Lauren; Self, Jessica S.; Endert, Alexander
2013-06-04
As analysts attempt to make sense of a collection of documents, such as intelligence analysis reports, they may wish to “connect the dots” between pieces of information that may initially seem unrelated. This process of synthesizing information between information requires users to make connections between pairs of documents, creating a conceptual story. We conducted a user study to analyze the process by which users connect pairs of documents and how they spatially arrange information. Users created conceptual stories that connected the dots using organizational strategies that ranged in complexity. We propose taxonomies for cognitive connections and physical structures used whenmore » trying to “connect the dots” between two documents. We compared the user-created stories with a data-mining algorithm that constructs chains of documents using co-occurrence metrics. Using the insight gained into the storytelling process, we offer design considerations for the existing data mining algorithm and corresponding tools to combine the power of data mining and the complex cognitive processing of analysts.« less
Law, Andrew J.; Sharma, Gaurav; Schieber, Marc H.
2014-01-01
We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible connectivity structure than transfer entropy. PMID:21096617
Cornish, Joseph P; Diaz, Larissa; Ricklefs, Stacy M; Kanakabandi, Kishore; Sword, Jennifer; Jahrling, Peter B; Kuhn, Jens H; Porcella, Stephen F; Johnson, Reed F
2017-01-12
Reston virus (RESTV) was discovered in 1989-1990 during three connected epizootics of highly lethal viral hemorrhagic fever among captive macaques in primate housing facilities in the United States and Philippines. Currently, only one RESTV isolate from that outbreak (named Pennsylvania) has been sequenced. Here, we report the sequence of a second isolate, Reston virus/M.fascicularis-tc/USA/1990/Philippines89-AZ1435. Copyright © 2017 Cornish et al.
Code of Federal Regulations, 2012 CFR
2012-10-01
... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...
Code of Federal Regulations, 2013 CFR
2013-10-01
... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...
Code of Federal Regulations, 2011 CFR
2011-10-01
... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...
Code of Federal Regulations, 2010 CFR
2010-10-01
... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...
Code of Federal Regulations, 2014 CFR
2014-10-01
... collision, the court could determine that a post-accident drug test result of an employee is relevant to... test information in connection with legal proceedings? 40.323 Section 40.323 Transportation Office of... alcohol test information in connection with legal proceedings? (a) As an employer, you may release...
Six Degrees of Information Seeking: Stanley Milgram and the Small World of the Library
ERIC Educational Resources Information Center
James, Kathryn
2006-01-01
Stanley Milgram's 1967 "small world" social connectivity study is used to analyze information connectivity, or patron information-seeking behavior. The "small world" study, upon examination, offers a clear example of the failure of social connectivity. This failure is used to highlight the importance of the subjectivities of patron experience of…
Genetic diversity and connectivity of the megamouth shark (Megachasma pelagios)
Joung, Shoou Jeng; Yu, Chi-Ju; Hsu, Hua-Hsun; Tsai, Wen-Pei; Liu, Kwang Ming
2018-01-01
The megamouth shark (Megachasma pelagios) was described as a new species in 1983. Since then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples from megamouths caught in Baja California, Mexico, and sequences obtained from GenBank, we were able to perform the first population genetic analyses of the megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed. Our results showed that there is no genetic structure in the megamouth shark, suggesting a possible panmictic population. Based on occurrence data, we also suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for megamouth sharks to reach their feeding grounds from April to August. Our results provide insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on collecting more samples and conducting satellite tagging to better understand the global migration and connectivity pattern of the megamouth shark. PMID:29527411
Google Voice: Connecting Your Telephone to the 21st Century
ERIC Educational Resources Information Center
Johnson, Benjamin E.
2010-01-01
The foundation of the mighty Google Empire rests upon an algorithm that connects people to information--things such as websites, maps, and restaurant reviews. Lately it seems that people are less interested in connecting with information than they are with connecting to one another, which begs the question, "Is Facebook the new Google?" Given this…
Forest Connectivity Regions of Canada Using Circuit Theory and Image Analysis
Pelletier, David; Lapointe, Marc-Élie; Wulder, Michael A.; White, Joanne C.; Cardille, Jeffrey A.
2017-01-01
Ecological processes are increasingly well understood over smaller areas, yet information regarding interconnections and the hierarchical nature of ecosystems remains less studied and understood. Information on connectivity over large areas with high resolution source information provides for both local detail and regional context. The emerging capacity to apply circuit theory to create maps of omnidirectional connectivity provides an opportunity for improved and quantitative depictions of forest connectivity, supporting the formation and testing of hypotheses about the density of animal movement, ecosystem structure, and related links to natural and anthropogenic forces. In this research, our goal was to delineate regions where connectivity regimes are similar across the boreal region of Canada using new quantitative analyses for characterizing connectivity over large areas (e.g., millions of hectares). Utilizing the Earth Observation for Sustainable Development of forests (EOSD) circa 2000 Landsat-derived land-cover map, we created and analyzed a national-scale map of omnidirectional forest connectivity at 25m resolution over 10000 tiles of 625 km2 each, spanning the forested regions of Canada. Using image recognition software to detect corridors, pinch points, and barriers to movements at multiple spatial scales in each tile, we developed a simple measure of the structural complexity of connectivity patterns in omnidirectional connectivity maps. We then mapped the Circuitscape resistance distance measure and used it in conjunction with the complexity data to study connectivity characteristics in each forested ecozone. Ecozone boundaries masked substantial systematic patterns in connectivity characteristics that are uncovered using a new classification of connectivity patterns that revealed six clear groups of forest connectivity patterns found in Canada. The resulting maps allow exploration of omnidirectional forest connectivity patterns at full resolution while permitting quantitative analyses of connectivity over broad areas, informing modeling, planning and monitoring efforts. PMID:28146573
Topological properties of a curved spacetime
NASA Astrophysics Data System (ADS)
Agrawal, Gunjan; Shrivastava, Sampada; Godani, Nisha; Sinha, Soami Pyari
2017-12-01
The present paper aims at the study of a topology on Lorentzian manifolds, defined by Göbel [4] using the ideas of Zeeman [16]. Observing that on the Minkowski space it is the same as Zeeman's time topology, it has been found that a Lorentzian manifold with this topology is path connected, nonfirst countable and nonsimply connected while the Minkowski space with time topology is, in addition nonregular and separable. Furthermore, using the notion of Zeno sequences it is obtained that a compact set does not contain a nonempty open set and that a set is compact if and only if each of its infinite subsets has a limit point if and only if each of its sequences has a convergent subsequence.
Analysis of correlated mutations in HIV-1 protease using spectral clustering.
Liu, Ying; Eyal, Eran; Bahar, Ivet
2008-05-15
The ability of human immunodeficiency virus-1 (HIV-1) protease to develop mutations that confer multi-drug resistance (MDR) has been a major obstacle in designing rational therapies against HIV. Resistance is usually imparted by a cooperative mechanism that can be elucidated by a covariance analysis of sequence data. Identification of such correlated substitutions of amino acids may be obscured by evolutionary noise. HIV-1 protease sequences from patients subjected to different specific treatments (set 1), and from untreated patients (set 2) were subjected to sequence covariance analysis by evaluating the mutual information (MI) between all residue pairs. Spectral clustering of the resulting covariance matrices disclosed two distinctive clusters of correlated residues: the first, observed in set 1 but absent in set 2, contained residues involved in MDR acquisition; and the second, included those residues differentiated in the various HIV-1 protease subtypes, shortly referred to as the phylogenetic cluster. The MDR cluster occupies sites close to the central symmetry axis of the enzyme, which overlap with the global hinge region identified from coarse-grained normal-mode analysis of the enzyme structure. The phylogenetic cluster, on the other hand, occupies solvent-exposed and highly mobile regions. This study demonstrates (i) the possibility of distinguishing between the correlated substitutions resulting from neutral mutations and those induced by MDR upon appropriate clustering analysis of sequence covariance data and (ii) a connection between global dynamics and functional substitution of amino acids.
Brain activity and cognition: a connection from thermodynamics and information theory
Collell, Guillem; Fauquet, Jordi
2015-01-01
The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709
Heekes, Alexa; Tiffin, Nicki; Dane, Pierre; Mutemaringa, Themba; Smith, Mariette; Zinyakatira, Nesbert; Barron, Peter; Seebregts, Chris; Boulle, Andrew
2018-01-01
Information systems designed to support health promotion in pregnancy, such as the MomConnect programme, are potential sources of clinical information which can be used to identify pregnancies prospectively and early on. In this paper we demonstrate the feasibility and value of linking records collected through the MomConnect programme, to an emergent province-wide health information exchange in the Western Cape Province of South Africa, which already enumerates pregnancies from a range of other clinical data sources. MomConnect registrations were linked to pregnant women known to the public health services using the limited identifiers collected by MomConnect. Three-quarters of MomConnect registrations could be linked to existing pregnant women, decreasing over time as recording of the national identifier decreased. The MomConnect records were usually the first evidence of pregnancy in pregnancies which were subsequently confirmed by other sources. Those at lower risk of adverse pregnancy outcomes were more likely to register. In some cases, MomConnect was the only evidence of pregnancy for a patient. In addition, the MomConnect records provided gestational age information and new and more recently updated contact numbers to the existing contact registry. The pilot integration of the data in the Western Cape Province of South Africa demonstrates how a client-facing system can augment clinical information systems, especially in contexts where electronic medical records are not widely available. PMID:29713507
Heekes, Alexa; Tiffin, Nicki; Dane, Pierre; Mutemaringa, Themba; Smith, Mariette; Zinyakatira, Nesbert; Barron, Peter; Seebregts, Chris; Boulle, Andrew
2018-01-01
Information systems designed to support health promotion in pregnancy, such as the MomConnect programme, are potential sources of clinical information which can be used to identify pregnancies prospectively and early on. In this paper we demonstrate the feasibility and value of linking records collected through the MomConnect programme, to an emergent province-wide health information exchange in the Western Cape Province of South Africa, which already enumerates pregnancies from a range of other clinical data sources. MomConnect registrations were linked to pregnant women known to the public health services using the limited identifiers collected by MomConnect. Three-quarters of MomConnect registrations could be linked to existing pregnant women, decreasing over time as recording of the national identifier decreased. The MomConnect records were usually the first evidence of pregnancy in pregnancies which were subsequently confirmed by other sources. Those at lower risk of adverse pregnancy outcomes were more likely to register. In some cases, MomConnect was the only evidence of pregnancy for a patient. In addition, the MomConnect records provided gestational age information and new and more recently updated contact numbers to the existing contact registry. The pilot integration of the data in the Western Cape Province of South Africa demonstrates how a client-facing system can augment clinical information systems, especially in contexts where electronic medical records are not widely available.
A Dynamic Applet for the Exploration of the Concept of the Limit of a Sequence
ERIC Educational Resources Information Center
Cheng, Kell; Leung, Allen
2015-01-01
This paper reports findings of an explorative study that examine the effectiveness of a GeoGebra-based dynamic applet in supporting students' construction of the formal definition of the limit of a sequence or convergence. More specifically, it is about how the use of the applet enables students to make connections between the graphical…
Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts
Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun
2012-01-01
Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272
Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system
Sunkin, Susan M.; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L.; Thompson, Carol L.; Hawrylycz, Michael; Dang, Chinh
2013-01-01
The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal. PMID:23193282
Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B
2018-01-01
Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.
Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.
Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E
2017-05-01
Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (<0.05°C) for electrode contacts closest to the isocenter and connecting cables lying along the isocenter, and varied with configurations of the connecting cable assembly. Simultaneous intracranial electrode stimulation during fMRI using an externalized stimulation system may be safe with strict adherence to settings tested prior to the fMRI. Localizer, FLASH, and GE-EPI fMRI may be safely performed in patients with a single SEEG electrode following the configurations tested in this study, but high SAR TSE scans should not be performed in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guan, Fuyu; Uboh, Cornelius E.; Soma, Lawrence R.; Rudy, Jeffrey
2011-04-01
Identification of an unknown substance without any information remains a daunting challenge despite advances in chemistry and mass spectrometry. However, an unknown cyclic peptide in a sample with very limited volume seized at a Pennsylvania racetrack has been successfully identified. The unknown sample was determined by accurate mass measurements to contain a small unknown peptide as the major component. Collision-induced dissociation (CID) of the unknown peptide revealed the presence of Lys (not Gln, by accurate mass), Phe, and Arg residues, and absence of any y-type product ion. The latter, together with the tryptic digestion results of the unusual deamidation and absence of any tryptic cleavage, suggests a cyclic structure for the peptide. Electron-transfer dissociation (ETD) of the unknown peptide indicated the presence of Gln (not Lys, by the unusual deamidation), Phe, and Arg residues and their connectivity. After all the results were pieced together, a cyclic tetrapeptide, cyclo[Arg-Lys-N(C6H9)Gln-Phe], is proposed for the unknown peptide. Observations of different amino acid residues from CID and ETD experiments for the peptide were interpreted by a fragmentation pathway proposed, as was preferential CID loss of a Lys residue from the peptide. ETD was used for the first time in sequencing of a cyclic peptide; product ions resulting from ETD of the peptide identified were categorized into two types and named pseudo-b and pseudo-z ions that are important for sequencing of cyclic peptides. The ETD product ions were interpreted by fragmentation pathways proposed. Additionally, multi-stage CID mass spectrometry cannot provide complete sequence information for cyclic peptides containing adjacent Arg and Lys residues. The identified cyclic peptide has not been documented in the literature, its pharmacological effects are unknown, but it might be a "designer" drug with athletic performance-enhancing effects.
Ott, Alina; Trautschold, Brian; Sandhu, Devinder
2011-01-01
Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R(2)) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R(2) = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes.
Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole
2015-10-01
According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying coarse-to-fine processing of scenes. Copyright © 2015 Elsevier Inc. All rights reserved.
Rogers, K.G.; Robinson, S.J.; Samuel, M.D.; Grear, D.A.
2011-01-01
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting North American cervids. Because it is uniformly fatal, the disease is a major concern in the management of white-tailed deer populations. Management programs to control CWD require improved knowledge of deer interaction, movement, and population connectivity that could influence disease transmission and spread. Genetic methods were employed to evaluate connectivity among populations in the CWD management zone of southern Wisconsin. A 576-base-pair region of the mitochondrial DNA of 359 white-tailed deer from 12 sample populations was analyzed. Fifty-eight variable sites were detected within the sequence, defining 43 haplotypes. While most sample populations displayed similar levels of haplotype diversity, individual haplotypes were clustered on the landscape. Spatial clusters of different haplotypes were apparent in distinct ecoregions surrounding CWD outbreak areas. The spatial distribution of mtDNA haplotypes suggests that clustering of the deer matrilineal groups and population connectivity are associated with broad-scale geographic landscape features. These landscape characteristics may also influence the contact rates between groups and therefore the potential spread of CWD; this may be especially true of local disease spread between female social groups. Our results suggest that optimal CWD management needs to be tailored to fit gender-specific dispersal behaviors and regional differences in deer population connectivity. This information will help wildlife managers design surveillance and monitoring efforts based on population interactions and potential deer movement among CWD-affected and unaffected areas. Copyright ?? Taylor & Francis Group, LLC.
Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-01-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159
NASA Astrophysics Data System (ADS)
He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.
2017-03-01
Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.
PubMed Phrases, an open set of coherent phrases for searching biomedical literature
Kim, Sun; Yeganova, Lana; Comeau, Donald C.; Wilbur, W. John; Lu, Zhiyong
2018-01-01
In biomedicine, key concepts are often expressed by multiple words (e.g., ‘zinc finger protein’). Previous work has shown treating a sequence of words as a meaningful unit, where applicable, is not only important for human understanding but also beneficial for automatic information seeking. Here we present a collection of PubMed® Phrases that are beneficial for information retrieval and human comprehension. We define these phrases as coherent chunks that are logically connected. To collect the phrase set, we apply the hypergeometric test to detect segments of consecutive terms that are likely to appear together in PubMed. These text segments are then filtered using the BM25 ranking function to ensure that they are beneficial from an information retrieval perspective. Thus, we obtain a set of 705,915 PubMed Phrases. We evaluate the quality of the set by investigating PubMed user click data and manually annotating a sample of 500 randomly selected noun phrases. We also analyze and discuss the usage of these PubMed Phrases in literature search. PMID:29893755
Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.
Huang, Yan; Wang, Wei; Wang, Liang
2018-04-01
Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.
Effects of informed consent for individual genome sequencing on relevant knowledge.
Kaphingst, K A; Facio, F M; Cheng, M-R; Brooks, S; Eidem, H; Linn, A; Biesecker, B B; Biesecker, L G
2012-11-01
Increasing availability of individual genomic information suggests that patients will need knowledge about genome sequencing to make informed decisions, but prior research is limited. In this study, we examined genome sequencing knowledge before and after informed consent among 311 participants enrolled in the ClinSeq™ sequencing study. An exploratory factor analysis of knowledge items yielded two factors (sequencing limitations knowledge; sequencing benefits knowledge). In multivariable analysis, high pre-consent sequencing limitations knowledge scores were significantly related to education [odds ratio (OR): 8.7, 95% confidence interval (CI): 2.45-31.10 for post-graduate education, and OR: 3.9; 95% CI: 1.05, 14.61 for college degree compared with less than college degree] and race/ethnicity (OR: 2.4, 95% CI: 1.09, 5.38 for non-Hispanic Whites compared with other racial/ethnic groups). Mean values increased significantly between pre- and post-consent for the sequencing limitations knowledge subscale (6.9-7.7, p < 0.0001) and sequencing benefits knowledge subscale (7.0-7.5, p < 0.0001); increase in knowledge did not differ by sociodemographic characteristics. This study highlights gaps in genome sequencing knowledge and underscores the need to target educational efforts toward participants with less education or from minority racial/ethnic groups. The informed consent process improved genome sequencing knowledge. Future studies could examine how genome sequencing knowledge influences informed decision making. © 2012 John Wiley & Sons A/S.
An information theory framework for dynamic functional domain connectivity.
Vergara, Victor M; Miller, Robyn; Calhoun, Vince
2017-06-01
Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Safe trajectory estimation at a pedestrian crossing to assist visually impaired people.
Alghamdi, Saleh; van Schyndel, Ron; Khalil, Ibrahim
2012-01-01
The aim of this paper is to present a service for blind and people with low vision to assist them to cross the street independently. The presented approach provides the user with significant information such as detection of pedestrian crossing signal from any point of view, when the pedestrian crossing signal light is green, the detection of dynamic and fixed obstacles, predictions of the movement of fellow pedestrians and information on objects which may intersect his path. Our approach is based on capturing multiple frames using a depth camera which is attached to a user's headgear. Currently a testbed system is built on a helmet and is connected to a laptop in the user's backpack. In this paper, we discussed efficiency of using Speeded-Up Robust Features (SURF) algorithm for object recognition for purposes of blind people assistance. The system predicts the movement of objects of interest to provide the user with information on the safest path to navigate and information on the surrounding area. Evaluation of this approach on real sequence video frames provides 90% of human detection and more than 80% for recognition of other related objects.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... (Request for Employment Information in Connection With Claim for Disability Benefits) Activity: Comment... needed to determine a claimant's eligibility for increased disability benefits. DATES: Written comments... techniques or the use of other forms of information technology. Title: Request for Employment Information in...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... (Request for Employment Information in Connection With Claim for Disability Benefits) Activity: Comment... needed to determine a claimant's eligibility for increased disability benefits. DATES: Written comments... techniques or the use of other forms of information technology. Title: Request for Employment Information in...
Library preparation and data analysis packages for rapid genome sequencing.
Pomraning, Kyle R; Smith, Kristina M; Bredeweg, Erin L; Connolly, Lanelle R; Phatale, Pallavi A; Freitag, Michael
2012-01-01
High-throughput sequencing (HTS) has quickly become a valuable tool for comparative genetics and genomics and is now regularly carried out in laboratories that are not connected to large sequencing centers. Here we describe an updated version of our protocol for constructing single- and paired-end Illumina sequencing libraries, beginning with purified genomic DNA. The present protocol can also be used for "multiplexing," i.e. the analysis of several samples in a single flowcell lane by generating "barcoded" or "indexed" Illumina sequencing libraries in a way that is independent from Illumina-supported methods. To analyze sequencing results, we suggest several independent approaches but end users should be aware that this is a quickly evolving field and that currently many alignment (or "mapping") and counting algorithms are being developed and tested.
Sequence invariant state machines
NASA Technical Reports Server (NTRS)
Whitaker, S.; Manjunath, S.
1990-01-01
A synthesis method and new VLSI architecture are introduced to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. A design method is proposed that utilizes BTS logic to implement regular and dense circuits. A given state sequence can be programmed with power supply connections or dynamically reallocated if stored in a register. Arbitrary flow table sequences can be modified or programmed to dynamically alter the function of the machine. This allows VLSI controllers to be designed with the programmability of a general purpose processor but with the compact size and performance of dedicated logic.
Sequence-invariant state machines
NASA Technical Reports Server (NTRS)
Whitaker, Sterling R.; Manjunath, Shamanna K.; Maki, Gary K.
1991-01-01
A synthesis method and an MOS VLSI architecture are presented to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. The design method utilizes binary tree structured (BTS) logic to implement regular and dense circuits. The desired state sequence can be hardwired with power supply connections or can be dynamically reallocated if stored in a register. This allows programmable VLSI controllers to be designed with a compact size and performance approaching that of dedicated logic. Results of ICV implementations are reported and an example sequence-invariant state machine is contrasted with implementations based on traditional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Soo-Ik; Hammes, G.G.
1989-11-01
Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chickenmore » and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.« less
Cabral, A R; Cole, L A; Walz, D A; Castor, C W
1987-12-01
Connective tissue activating peptide-V (CTAP-V) is a single-chain, mesenchymal cell-derived anionic protein with large and small molecular forms (Mr of 28,000 and 16,000, respectively), as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins have similar specific activities with respect to stimulation of hyaluronic acid and DNA formation in human synovial fibroblast cultures. S-carboxymethylation or removal of sialic acid residues did not modify CTAP-V biologic activity. Rabbit antibodies raised separately against each of the purified CTAP-V proteins reacted, on immunodiffusion and on Western blot, with each antigen and neutralized mitogenic activity. The amino-terminal amino acid sequence of the CTAP-V proteins, determined by 2 laboratories, confirmed their structural similarities. The amino-terminal sequence through 37 residues was demonstrated for the smaller protein. The first 10 residues of CTAP-V (28 kd) were identical to the N-terminal decapeptide of CTAP-V (16 kd). The C-terminal sequence, determined by carboxypeptidase Y digestion, was the same for both CTAP-V molecular species. The 2 CTAP-V peptides had similar amino acid compositions, whether residues were expressed as a percent of the total or were normalized to mannose. Reduction of native CTAP-V protein released sulfhydryl groups in a protein:disulfide ratio of 1:2; this suggests that CTAP-V contains 2 intramolecular disulfide bonds. Clearly, CTAP-V is a glycoprotein. The carbohydrate content of CTAP-V (16 kd) and CTAP-V (28 kd) is 27% and 25%, respectively. CTAP-V may have significance in relation to autocrine mechanisms for growth regulation of connective tissue cells and other cell types.
Processing Stages Underlying Word Recognition in the Anteroventral Temporal Lobe
Halgren, Eric; Wang, Chunmao; Schomer, Donald L.; Knake, Susanne; Marinkovic, Ksenija; Wu, Julian; Ulbert, Istvan
2006-01-01
The anteroventral temporal lobe integrates visual, lexical, semantic and mnestic aspects of word-processing, through its reciprocal connections with the ventral visual stream, language areas, and the hippocampal formation. We used linear microelectrode arrays to probe population synaptic currents and neuronal firing in different cortical layers of the anteroventral temporal lobe, during semantic judgments with implicit priming, and overt word recognition. Since different extrinsic and associative inputs preferentially target different cortical layers, this method can help reveal the sequence and nature of local processing stages at a higher resolution than was previously possible. The initial response in inferotemporal and perirhinal cortices is a brief current sink beginning at ~120ms, and peaking at ~170ms. Localization of this initial sink to middle layers suggests that it represents feedforward input from lower visual areas, and simultaneously increased firing implies that it represents excitatory synaptic currents. Until ~800ms, the main focus of transmembrane current sinks alternates between middle and superficial layers, with the superficial focus becoming increasingly dominant after ~550ms. Since superficial layers are the target of local and feedback associative inputs, this suggests an alternation in predominant synaptic input between feedforward and feedback modes. Word repetition does not affect the initial perirhinal and inferotemporal middle layer sink, but does decrease later activity. Entorhinal activity begins later (~200ms), with greater apparent excitatory postsynaptic currents and multiunit activity in neocortically-projecting than hippocampal-projecting layers. In contrast to perirhinal and entorhinal responses, entorhinal responses are larger to repeated words during memory retrieval. These results identify a sequence of physiological activation, beginning with a sharp activation from lower level visual areas carrying specific information to middle layers. This is followed by feedback and associative interactions involving upper cortical layers, which are abbreviated to repeated words. Following bottom-up and associative stages, top-down recollective processes may be driven by entorhinal cortex. Word processing involves a systematic sequence of fast feedforward information transfer from visual areas to anteroventral temporal cortex, followed by prolonged interactions of this feedforward information with local associations, and feedback mnestic information from the medial temporal lobe. PMID:16488158
Fenstermacher, Katherine J; Achuthan, Vasudevan; Schneider, Thomas D; DeStefano, Jeffrey J
2018-01-16
DNA polymerases (DNAPs) recognize 3' recessed termini on duplex DNA and carry out nucleotide catalysis. Unlike promoter-specific RNA polymerases (RNAPs), no sequence specificity is required for binding or initiation of catalysis. Despite this, previous results indicate that viral reverse transcriptases bind much more tightly to DNA primers that mimic the polypurine tract. In the current report, primer sequences that bind with high affinity to Taq and Klenow polymerases were identified using a modified Selective Evolution of Ligands by Exponential Enrichment (SELEX) approach. Two Taq -specific primers that bound ∼10 (Taq1) and over 100 (Taq2) times more stably than controls to Taq were identified. Taq1 contained 8 nucleotides (5' -CACTAAAG-3') that matched the phage T3 RNAP "core" promoter. Both primers dramatically outcompeted primers with similar binding thermodynamics in PCR reactions. Similarly, exonuclease minus Klenow polymerase also selected a high affinity primer that contained a related core promoter sequence from phage T7 RNAP (5' -ACTATAG-3'). For both Taq and Klenow, even small modifications to the sequence resulted in large losses in binding affinity suggesting that binding was highly sequence-specific. The results are discussed in the context of possible effects on multi-primer (multiplex) PCR assays, molecular information theory, and the evolution of RNAPs and DNAPs. Importance This work further demonstrates that primer-dependent DNA polymerases can have strong sequence biases leading to dramatically tighter binding to specific sequences. These may be related to biological function, or be a consequences of the structural architecture of the enzyme. New sequence specificity for Taq and Klenow polymerases were uncovered and among them were sequences that contained the core promoter elements from T3 and T7 phage RNA polymerase promoters. This suggests the intriguing possibility that phage RNA polymerases exploited intrinsic binding affinities of ancestral DNA polymerases to develop their promotors. Conversely, DNA polymerases could have evolved from related RNA polymerases and retained the intrinsic binding preference despite there being no clear function for such a preference in DNA biology. Copyright © 2018 American Society for Microbiology.
D{sub {infinity}}-differential E{sub {infinity}}-algebras and spectral sequences of fibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapin, Sergei V
2007-10-31
The notion of an E{sub {infinity}}-algebra with a filtration is introduced. The connections are established between E{sub {infinity}}-algebras with filtrations and the theory of D{sub {infinity}}-differential E{sub {infinity}}-algebras over fields. Based on the technique of D{sub {infinity}}-differential E{sub {infinity}}-algebras, the apparatus of spectral sequences is developed for E{sub {infinity}}-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.
Prado, Blanca R.; Pozo, Carmen; Valdez-Moreno, Martha; Hebert, Paul D. N.
2011-01-01
Background Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use. Methodology/Principal Findings We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown. Conclusions/Significance This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages. PMID:22132140
Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora.
Göker, Markus; García-Blázquez, Gema; Voglmayr, Hermann; Tellería, M Teresa; Martín, María P
2009-07-29
Inappropriate taxon definitions may have severe consequences in many areas. For instance, biologically sensible species delimitation of plant pathogens is crucial for measures such as plant protection or biological control and for comparative studies involving model organisms. However, delimiting species is challenging in the case of organisms for which often only molecular data are available, such as prokaryotes, fungi, and many unicellular eukaryotes. Even in the case of organisms with well-established morphological characteristics, molecular taxonomy is often necessary to emend current taxonomic concepts and to analyze DNA sequences directly sampled from the environment. Typically, for this purpose clustering approaches to delineate molecular operational taxonomic units have been applied using arbitrary choices regarding the distance threshold values, and the clustering algorithms. Here, we report on a clustering optimization method to establish a molecular taxonomy of Peronospora based on ITS nrDNA sequences. Peronospora is the largest genus within the downy mildews, which are obligate parasites of higher plants, and includes various economically important pathogens. The method determines the distance function and clustering setting that result in an optimal agreement with selected reference data. Optimization was based on both taxonomy-based and host-based reference information, yielding the same outcome. Resampling and permutation methods indicate that the method is robust regarding taxon sampling and errors in the reference data. Tests with newly obtained ITS sequences demonstrate the use of the re-classified dataset in molecular identification of downy mildews. A corrected taxonomy is provided for all Peronospora ITS sequences contained in public databases. Clustering optimization appears to be broadly applicable in automated, sequence-based taxonomy. The method connects traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both traditional species concepts and genetic divergence.
Molecular Taxonomy of Phytopathogenic Fungi: A Case Study in Peronospora
Göker, Markus; García-Blázquez, Gema; Voglmayr, Hermann; Tellería, M. Teresa; Martín, María P.
2009-01-01
Background Inappropriate taxon definitions may have severe consequences in many areas. For instance, biologically sensible species delimitation of plant pathogens is crucial for measures such as plant protection or biological control and for comparative studies involving model organisms. However, delimiting species is challenging in the case of organisms for which often only molecular data are available, such as prokaryotes, fungi, and many unicellular eukaryotes. Even in the case of organisms with well-established morphological characteristics, molecular taxonomy is often necessary to emend current taxonomic concepts and to analyze DNA sequences directly sampled from the environment. Typically, for this purpose clustering approaches to delineate molecular operational taxonomic units have been applied using arbitrary choices regarding the distance threshold values, and the clustering algorithms. Methodology Here, we report on a clustering optimization method to establish a molecular taxonomy of Peronospora based on ITS nrDNA sequences. Peronospora is the largest genus within the downy mildews, which are obligate parasites of higher plants, and includes various economically important pathogens. The method determines the distance function and clustering setting that result in an optimal agreement with selected reference data. Optimization was based on both taxonomy-based and host-based reference information, yielding the same outcome. Resampling and permutation methods indicate that the method is robust regarding taxon sampling and errors in the reference data. Tests with newly obtained ITS sequences demonstrate the use of the re-classified dataset in molecular identification of downy mildews. Conclusions A corrected taxonomy is provided for all Peronospora ITS sequences contained in public databases. Clustering optimization appears to be broadly applicable in automated, sequence-based taxonomy. The method connects traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both traditional species concepts and genetic divergence. PMID:19641601
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... lack of current and accurate information concerning the securities of Cargo Connection Logistics... Group BDC, Inc., Cargo Connection Logistics Holding, Inc., Diapulse Corporation of America, Globus... current and accurate information concerning the securities of Altus Pharmaceuticals, Inc. because it has...
2010-11-01
connected. On this same disk, a servo motor is connected to a light weight leg. An Arduino 77 Body Weight Markers Leg Disk Servo Motor Front View Top View...this control enables more dynamic and fast walking, the control is based on precise joint-angle control. The main consequence of such a control is that... based climbing strategies. Specifically, the four-limbed free-climbing LEMUR robot goes up climbing walls by choosing a sequence of handholds
2013-01-01
Background Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. Results In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. Conclusion RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid. PMID:23617896
Zhang, Jianxia; Wu, Kunlin; Zeng, Songjun; Teixeira da Silva, Jaime A; Zhao, Xiaolan; Tian, Chang-En; Xia, Haoqiang; Duan, Jun
2013-04-24
Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid.
A microfabricated hybrid device for DNA sequencing.
Liu, Shaorong
2003-11-01
We have created a hybrid device of a microfabricated round-channel twin-T injector incorporated with a separation capillary in order to extend the straight separation distance for high speed and long readlength DNA sequencing. Semicircular grooves on glass wafers are obtained using a photomask with a narrow line-width and a standard isotropic photolithographic etching process. Round channels are made when two etched wafers are face-to-face aligned and bonded. A two-mask fabrication process has been developed to make channels of two different diameters. The twin-T injector is formed by the smaller channels whose diameter matches the bore of the separation capillary, and the "usual" separation channel, now called the connection channel, is formed by the larger ones whose diameter matches the outer diameter of the separation capillary. The separation capillary is inserted through the connection channel all the way to the twin-T injector to allow the capillary bore flush with the twin-T injector channels. The total dead-volume of the connection is estimated to be approximately 5 pL. To demonstrate the efficiency of this hybrid device, we have performed four-color DNA sequencing on it. Using a 200 microm twin-T injector coupled with a separation capillary of 20 cm effective separation distance, we have obtained readlengths of 800 plus bases at an accuracy of 98.5% in 56 min, compared to about 650 bases in 100 min on a conventional 40 cm long capillary sequencing machine under similar conditions. At an increased separation field strength and using a diluted sieving matrix, the separation time has been reduced to 20 min with a readlength of 700 bases at 98.5% base-calling accuracy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
... (Request for Nursing Home Information in Connection with Claim for Aid and Attendance) Activity: Comment... needed to determine eligibility for aid and attendance for claimants who are patients in nursing home... techniques or the use of other forms of information technology. Title: Request for Nursing Home Information...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... for Nursing Home Information in Connection With Claim for Aid and Attendance) Activity Under OMB... ``OMB Control No. 2900-0652''. SUPPLEMENTARY INFORMATION: Title: Request for Nursing Home Information in... determine Veterans residing in nursing homes eligibility for pension and aid and attendance. Parents and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... (Request for Nursing Home Information in Connection With Claim for Aid and Attendance) Activity: Comment... needed to determine eligibility for aid and attendance for claimants who are patients in nursing home... techniques or the use of other forms of information technology. Title: Request for Nursing Home Information...
MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.
Sella, Nadir; Verny, Louis; Uguzzoni, Guido; Affeldt, Séverine; Isambert, Hervé
2018-07-01
We present a web server running the MIIC algorithm, a network learning method combining constraint-based and information-theoretic frameworks to reconstruct causal, non-causal or mixed networks from non-perturbative data, without the need for an a priori choice on the class of reconstructed network. Starting from a fully connected network, the algorithm first removes dispensable edges by iteratively subtracting the most significant information contributions from indirect paths between each pair of variables. The remaining edges are then filtered based on their confidence assessment or oriented based on the signature of causality in observational data. MIIC online server can be used for a broad range of biological data, including possible unobserved (latent) variables, from single-cell gene expression data to protein sequence evolution and outperforms or matches state-of-the-art methods for either causal or non-causal network reconstruction. MIIC online can be freely accessed at https://miic.curie.fr. Supplementary data are available at Bioinformatics online.
An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant
NASA Astrophysics Data System (ADS)
Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter
2017-09-01
One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.
White matter biomarkers from diffusion MRI
NASA Astrophysics Data System (ADS)
Nørhøj Jespersen, Sune
2018-06-01
As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.
NASA Technical Reports Server (NTRS)
Crouthamel, Marvin S. (Inventor); Coyle, Peter J. (Inventor)
1982-01-01
An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.
Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem
NASA Astrophysics Data System (ADS)
Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.
2018-01-01
This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.
Modi, Mehrab N; Dhawale, Ashesh K; Bhalla, Upinder S
2014-01-01
Animals can learn causal relationships between pairs of stimuli separated in time and this ability depends on the hippocampus. Such learning is believed to emerge from alterations in network connectivity, but large-scale connectivity is difficult to measure directly, especially during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial re-organization of correlation clusters reflects global network connectivity changes that are responsible for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior. DOI: http://dx.doi.org/10.7554/eLife.01982.001 PMID:24668171
Coarse-grained sequences for protein folding and design.
Brown, Scott; Fawzi, Nicolas J; Head-Gordon, Teresa
2003-09-16
We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the alpha/beta ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design.
Coarse-grained sequences for protein folding and design
Brown, Scott; Fawzi, Nicolas J.; Head-Gordon, Teresa
2003-01-01
We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the α/β ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design. PMID:12963815
40 CFR 166.34 - EPA review of information obtained in connection with emergency exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false EPA review of information obtained in... PESTICIDES UNDER EMERGENCY CONDITIONS Specific, Quarantine, and Public Health Exemptions § 166.34 EPA review of information obtained in connection with emergency exemptions. EPA shall review information...
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
Robertson, Edwin M.; Manoach, Dara S.; Stickgold, Robert
2016-01-01
Abstract We investigated whether functional neuroimaging of quiet “rest” can reveal the neural correlates of conscious thought. Using resting-state functional MRI, we measured functional connectivity during a resting scan that immediately followed performance of a finger tapping motor sequence task. Self-reports of the amount of time spent thinking about the task during the resting scan correlated with connectivity between regions of the motor network activated during task performance. Thus, thinking about a task is associated with coordinated activity in brain regions responsible for that task's performance. More generally, this study demonstrates the feasibility of using the combination of functional connectivity MRI and self-reports to examine the neural correlates of thought. PMID:26650337
Kimura, M; Tani, S; Watanabe, H; Naito, Y; Sakusabe, T; Watanabe, H; Nakaya, J; Sasaki, F; Numano, T; Furuta, T; Furuta, T
2008-01-01
This paper illustrates a high speed clinical data retrieving system, from 10 years of data of operating hospital information system for the purposes of research, evidence creation, patient safety, etc., even incorporating time sequence of causal relations. Total of 73,709,298 records of 10 years at Hamamatsu University Hospital (as of June 2008) are sent from HIS to retrieval system in HL7 v2.5 format. Hierarchical variable length database is used to install them. A search for "listing patients who were prescribed Pravastatin (Mevalotin and generic drugs, any titer)" took 1.92 seconds. "Pravastatin (any) prescribed and recorded AST >150 within two weeks" took 112.22 seconds. Searching conditions can be set to be more complex, connected by Boolean operator and/or. This system called D*D is in operation at Hamamatsu University Hospital since August 2002. It is used for 48,518 times (monthly average of 703 searches). Neither searching, nor background export of data from HIS caused delay of routine operating CPOE. Search database outside of routine operating CPOE, with daily export of order data in HL7 v2.5 format, is proved to provide excellent search environment without causing trouble. Hierarchical representation gives high-speed search response, especially with time sequence of events.
A primer on thermodynamic-based models for deciphering transcriptional regulatory logic.
Dresch, Jacqueline M; Richards, Megan; Ay, Ahmet
2013-09-01
A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; ...
2017-08-08
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Pruning a minimum spanning tree
NASA Astrophysics Data System (ADS)
Sandoval, Leonidas
2012-04-01
This work employs various techniques in order to filter random noise from the information provided by minimum spanning trees obtained from the correlation matrices of international stock market indices prior to and during times of crisis. The first technique establishes a threshold above which connections are considered affected by noise, based on the study of random networks with the same probability density distribution of the original data. The second technique is to judge the strength of a connection by its survival rate, which is the amount of time a connection between two stock market indices endures. The idea is that true connections will survive for longer periods of time, and that random connections will not. That information is then combined with the information obtained from the first technique in order to create a smaller network, in which most of the connections are either strong or enduring in time.
Performance Characterization of a Three-Axis Hall Effect Thruster
2010-12-01
mounted to the vacuum tank overhead and were individually connected to CVI CBST 6.0 scroll compressor units via flexible tubing. The pumps were capable...and Support Equipment . . . . . . . . . 23 3.2.1 Vacuum Chamber . . . . . . . . . . . . . . . . . 23 3.2.2 Pumps and Pump -down Sequence...Sequence. Chamber pressure monitoring and control of vacuum pumps was accomplished using a combination of two gauge systems. The first was used when tank
ERIC Educational Resources Information Center
Hale-Hanes, Cara
2015-01-01
In this study, two groups of 11th grade chemistry students (n = 210) performed a sequence of hands-on and virtual laboratories that were progressively more inquiry-based. One-half of the students did the laboratory sequence with the addition of a teacher-led discussion connecting student data to student-generated visual representations of…
Code of Federal Regulations, 2013 CFR
2013-04-01
... submitted in connection with classification and reclassification. 860.5 Section 860.5 Food and Drugs FOOD... DEVICE CLASSIFICATION PROCEDURES General § 860.5 Confidentiality and use of data and information submitted in connection with classification and reclassification. (a) This section governs the availability...
Code of Federal Regulations, 2012 CFR
2012-04-01
... submitted in connection with classification and reclassification. 860.5 Section 860.5 Food and Drugs FOOD... DEVICE CLASSIFICATION PROCEDURES General § 860.5 Confidentiality and use of data and information submitted in connection with classification and reclassification. (a) This section governs the availability...
Code of Federal Regulations, 2014 CFR
2014-04-01
... submitted in connection with classification and reclassification. 860.5 Section 860.5 Food and Drugs FOOD... DEVICE CLASSIFICATION PROCEDURES General § 860.5 Confidentiality and use of data and information submitted in connection with classification and reclassification. (a) This section governs the availability...
Code of Federal Regulations, 2011 CFR
2011-04-01
... submitted in connection with classification and reclassification. 860.5 Section 860.5 Food and Drugs FOOD... DEVICE CLASSIFICATION PROCEDURES General § 860.5 Confidentiality and use of data and information submitted in connection with classification and reclassification. (a) This section governs the availability...
Code of Federal Regulations, 2010 CFR
2010-04-01
... submitted in connection with classification and reclassification. 860.5 Section 860.5 Food and Drugs FOOD... DEVICE CLASSIFICATION PROCEDURES General § 860.5 Confidentiality and use of data and information submitted in connection with classification and reclassification. (a) This section governs the availability...
Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information
NASA Astrophysics Data System (ADS)
Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam
2016-10-01
In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.
Internally connected graphs and the Kashiwara-Vergne Lie algebra
NASA Astrophysics Data System (ADS)
Felder, Matteo
2018-06-01
It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1, thus giving a way to interpolate between these two Lie algebras.
Possenti, Andrea; Vendruscolo, Michele; Camilloni, Carlo; Tiana, Guido
2018-05-23
Proteins employ the information stored in the genetic code and translated into their sequences to carry out well-defined functions in the cellular environment. The possibility to encode for such functions is controlled by the balance between the amount of information supplied by the sequence and that left after that the protein has folded into its structure. We study the amount of information necessary to specify the protein structure, providing an estimate that keeps into account the thermodynamic properties of protein folding. We thus show that the information remaining in the protein sequence after encoding for its structure (the 'information gap') is very close to what needed to encode for its function and interactions. Then, by predicting the information gap directly from the protein sequence, we show that it may be possible to use these insights from information theory to discriminate between ordered and disordered proteins, to identify unknown functions, and to optimize artificially-designed protein sequences. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Temporal identity in axonal target layer recognition.
Petrovic, Milan; Hummel, Thomas
2008-12-11
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.
Hornok, S; Flaisz, B; Takács, N; Kontschán, J; Csörgő, T; Csipak, Á; Jaksa, B R; Kováts, D
2016-02-24
Birds play an important role in short- and long-distance transportation of ticks and tick-borne pathogens. The aim of the present study was to provide comprehensive information on the species and genetic diversity of ixodid ticks transported by migratory and non-migratory bird species in Central Europe, and to evaluate relevant data in a geographical, as well as in an ecological context. During a three year period (2012-2014), altogether 3339 ixodid ticks were collected from 1167 passerine birds (representatives of 47 species) at ringing stations in Hungary. These ticks were identified, and the tick-infestations of bird species were compared according to various traits. In addition, PCR and sequencing of part of the cytochrome oxidase subunit-I (COI) and 16S rDNA genes were performed from representatives of five tick species. The most abundant tick species found were Ixodes ricinus and Haemaphysalis concinna (with 2296 and 989 immature stages, respectively). In addition, 48 I. frontalis (all stages), three Hyalomma rufipes nymphs, one I. lividus and two I. festai females were collected. The majority of I. ricinus and I. frontalis specimens occurred on ground-feeding bird species, as contrasted to Ha. concinna. Hy. rufipes showed the highest degree of sequence identity to an Ethiopian hybrid of the same tick species. Based on both COI and 16S rDNA gene analyses, two genetic lineages of I. frontalis were recognized (with only 91.4 % identity in their partial COI gene). These were highly similar to South-Western European isolates of the same tick species. Phylogenetic analysis of Ha. concinna specimens collected from birds in Hungary also revealed two genetic lineages, one of which showed high (≥99 %) degree of 16S rDNA sequence identity to conspecific East Asian isolates. Two genetic lineages of I. frontalis and Ha. concinna are transported by birds in Central Europe, which reflect a high degree of sequence identity to South-Western European and East Asian isolates of the same tick species, respectively. In addition, I. festai was collected for the first time in Hungary. These findings highlight the importance of western and eastern migratory connections by birds (in addition to the southern direction), which are also relevant to the epidemiology of tick-borne diseases.
Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano
2018-02-01
Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.
Genetic structure of Culex erraticus populations across the Americas.
Mendenhall, Ian H; Bahl, Justin; Blum, Michael J; Wesson, Dawn M
2012-05-01
Culex erraticus (Dyar & Knab) is a potential competent vector for several arboviruses such as Eastern and Venezuelan equine encephalitis viruses and West Nile virus. It therefore may play a role in the maintenance and spread of viral populations in areas of concern, including the United States where it occurs in >33 states. However, little information is available on potential barriers to movement across the species' distribution. Here, we analyze genetic variation among Cx. erraticus collected from Colombia, Guatemala, and nine locations in the United States to better understand population structure and connectivity. Comparative sequence analysis of the second internal transcribed spacer and mitochondrial NADH dehydrogenase genes identified two major lineages of sampled populations. One lineage represented the central and eastern United States, whereas the other corresponded to Central America, South America, and the western United States. Hierarchical analysis of genetic variation provided further evidence of regional population structure, although the majority of genetic variation was found to reside within populations, suggestive of large population sizes. Although significant physical barriers such as the Chihuahuan Desert probably constrain the spread of Cx. erraticus, large population sizes and connectivity within regions remain important risk factors that probably contribute to the movement of arboviruses within and between these regions.
[Study on ITS sequences of Aconitum vilmorinianum and its medicinal adulterant].
Zhang, Xiao-nan; Du, Chun-hua; Fu, De-huan; Gao, Li; Zhou, Pei-jun; Wang, Li
2012-09-01
To analyze and compare the ITS sequences of Aconitum vilmorinianum and its medicinal adulterant Aconitum austroyunnanense. Total genomic DNA were extracted from sample materials by improved CTAB method, ITS sequences of samples were amplified using PCR systems, directly sequenced and analyzed using software DNAStar, ClustalX1.81 and MEGA 4.0. 299 consistent sites, 19 variable sites and 13 informative sites were found in ITS1 sequences, 162 consistent sites, 2 variable sites and 1 informative sites were found in 5.8S sequences, 217 consistent sites, 3 variable sites and 1 informative site were found in ITS2 sequences. Base transition and transversion was not found only in 5.8S sequences, 2 sites transition and 1 site transversion were found in ITS1 sequences, only 1 site transversion was found in ITS2 sequences comparting the ITS sequences data matrix. By analyzing the ITS sequences data matrix from 2 population of Aconitum vilmorinianum and 3 population of Aconitum austroyunnanense, we found a stable informative site at the 596th base in ITS2 sequences, in all the samples of Aconitum vilmorinianum the base was C, and in all the samples of Aconitum austroyunnanense the base was A. Aconitum vilmorinianum and Aconitum austroyunnanense can be identified by their characters of ITS sequences, and the variable sites in ITS1 sequences are more than in ITS2 sequences.
NASA Astrophysics Data System (ADS)
Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.
2007-05-01
Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).
26 CFR 301.6039-1 - Information returns and statements required in connection with certain options.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Information returns and statements required in..., DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Information and Returns Returns and Records § 301.6039-1 Information returns and statements required in connection...
7 CFR 91.10 - Information required in connection with an application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requested, and the size of the sample. In addition, information regarding analysis of the lot by any federal... 7 Agriculture 3 2013-01-01 2013-01-01 false Information required in connection with an application...) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Application for Services § 91.10...
Code of Federal Regulations, 2014 CFR
2014-10-01
... request information directly from the Federal PLS in connection with a parental kidnapping or child... locate an individual in connection with a parental kidnapping or child custody case. (2) Any information...
Code of Federal Regulations, 2011 CFR
2011-10-01
... request information directly from the Federal PLS in connection with a parental kidnapping or child... locate an individual in connection with a parental kidnapping or child custody case. (2) Any information...
Code of Federal Regulations, 2012 CFR
2012-10-01
... request information directly from the Federal PLS in connection with a parental kidnapping or child... locate an individual in connection with a parental kidnapping or child custody case. (2) Any information...
Code of Federal Regulations, 2013 CFR
2013-10-01
... request information directly from the Federal PLS in connection with a parental kidnapping or child... locate an individual in connection with a parental kidnapping or child custody case. (2) Any information...
Kemppainen, Petri; Knight, Christopher G; Sarma, Devojit K; Hlaing, Thaung; Prakash, Anil; Maung Maung, Yan Naung; Somboon, Pradya; Mahanta, Jagadish; Walton, Catherine
2015-09-01
Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Time-recovering PCI-AER interface for bio-inspired spiking systems
NASA Astrophysics Data System (ADS)
Paz-Vicente, R.; Linares-Barranco, A.; Cascado, D.; Vicente, S.; Jimenez, G.; Civit, A.
2005-06-01
Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) inject a sequence of events at some point of the AER structure. This is necessary for testing and debugging complex AER systems. This paper presents a PCI to AER interface, that dispatches a sequence of events received from the PCI bus with embedded timing information to establish when each event will be delivered. A set of specialized states machines has been introduced to recovery the possible time delays introduced by the asynchronous AER bus. On the input channel, the interface capture events assigning a timestamp and delivers them through the PCI bus to MATLAB applications. It has been implemented in real time hardware using VHDL and it has been tested in a PCI-AER board, developed by authors, that includes a Spartan II 200 FPGA. The demonstration hardware is currently capable to send and receive events at a peak rate of 8,3 Mev/sec, and a typical rate of 1 Mev/sec.
Integration and visualization of systems biology data in context of the genome
2010-01-01
Background High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment. PMID:20642854
Kwarciak, Kamil; Radom, Marcin; Formanowicz, Piotr
2016-04-01
The classical sequencing by hybridization takes into account a binary information about sequence composition. A given element from an oligonucleotide library is or is not a part of the target sequence. However, the DNA chip technology has been developed and it enables to receive a partial information about multiplicity of each oligonucleotide the analyzed sequence consist of. Currently, it is not possible to assess the exact data of such type but even partial information should be very useful. Two realistic multiplicity information models are taken into consideration in this paper. The first one, called "one and many" assumes that it is possible to obtain information if a given oligonucleotide occurs in a reconstructed sequence once or more than once. According to the second model, called "one, two and many", one is able to receive from biochemical experiment information if a given oligonucleotide is present in an analyzed sequence once, twice or at least three times. An ant colony optimization algorithm has been implemented to verify the above models and to compare with existing algorithms for sequencing by hybridization which utilize the additional information. The proposed algorithm solves the problem with any kind of hybridization errors. Computational experiment results confirm that using even the partial information about multiplicity leads to increased quality of reconstructed sequences. Moreover, they also show that the more precise model enables to obtain better solutions and the ant colony optimization algorithm outperforms the existing ones. Test data sets and the proposed ant colony optimization algorithm are available on: http://bioserver.cs.put.poznan.pl/download/ACO4mSBH.zip. Copyright © 2016 Elsevier Ltd. All rights reserved.
Asexual-sexual morph connection in the type species of Berkleasmium.
Tanney, Joey; Miller, Andrew N
2017-06-01
Berkleasmium is a polyphyletic genus comprising 37 dematiaceous hyphomycetous species. In this study, independent collections of the type species, B. concinnum , were made from Eastern North America. Nuclear internal transcribed spacer rDNA (ITS) and partial nuc 28S large subunit rDNA (LSU) sequences obtained from collections and subsequent cultures showed that Berkleasmium concinnum is the asexual morph of Neoacanthostigma septoconstrictum ( Tubeufiaceae , Tubeufiales ). Phylogenies inferred from Bayesian inference and maximum likelihood analyses of ITS-LSU sequence data confirmed this asexual-sexual morph connection and a re-examination of fungarium reference specimens also revealed the co-occurrence of N. septoconstrictum ascomata and B. concinnum sporodochia. Neoacanthostigma septoconstrictum is therefore synonymized under B. concinnum on the basis of priority. A specimen identified as N. septoconstrictum from Thailand is described as N. thailandicum sp. nov., based on morphological and genetic distinctiveness.
Synchronization and coordination of sequences in two neural ensembles
NASA Astrophysics Data System (ADS)
Venaille, Antoine; Varona, Pablo; Rabinovich, Mikhail I.
2005-06-01
There are many types of neural networks involved in the sequential motor behavior of animals. For high species, the control and coordination of the network dynamics is a function of the higher levels of the central nervous system, in particular the cerebellum. However, in many cases, especially for invertebrates, such coordination is the result of direct synaptic connections between small circuits. We show here that even the chaotic sequential activity of small model networks can be coordinated by electrotonic synapses connecting one or several pairs of neurons that belong to two different networks. As an example, we analyzed the coordination and synchronization of the sequential activity of two statocyst model networks of the marine mollusk Clione. The statocysts are gravity sensory organs that play a key role in postural control of the animal and the generation of a complex hunting motor program. Each statocyst network was modeled by a small ensemble of neurons with Lotka-Volterra type dynamics and nonsymmetric inhibitory interactions. We studied how two such networks were synchronized by electrical coupling in the presence of an external signal which lead to winnerless competition among the neurons. We found that as a function of the number and the strength of connections between the two networks, it is possible to coordinate and synchronize the sequences that each network generates with its own chaotic dynamics. In spite of the chaoticity, the coordination of the signals is established through an activation sequence lock for those neurons that are active at a particular instant of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, J.W.; Elzinga, M.; Tu, A.T.
The primary structure of myotoxin a, a myotoxin protein from the venom of the North American rattlesnake Crotalus viridis viridis, was determined and the position of the disulfide bonds assigned. The toxin was isolated, carboxymethylated, and cleaved by cyanogen bromide, and the resultant peptides were isolated. The cyanogen bromide peptides were subjected to amino acid sequence analysis. In order to assign the positions of the three disulfide bonds, the native toxin was cleaved sequentially with cyanogen bromide and trypsin. A two peptide unit connected by one disulfide bond was isolated and characterized, and a three-peptide unit connected by two disulfidemore » bonds was isolated. One peptide in the three-peptide unit was identified as Cys-Cys-Lys. In order to establish the linkages between the peptides and Cys-Cys-Lys, one cycle of Edman degradation was carried out such that the Cys-Cys bond was cleaved. Upon isolation and analysis of the cleavage products, the disulfide bonds connecting the three peptides were determined. The positions of the disulfide bridges of myotoxin a were determined to be totally different from those of neurotoxins isolated from snake venoms. The sequence of myotoxin a was compared with the sequences of other snake venom toxins using the computer program RELATE to determine whether myotoxin a is similar to any other types of toxins. From the computer analysis, myotoxin a did not show any close relationship to other toxins except crotamine from the South American rattlesnake Crotalus durissus terrificus.« less
Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes
2010-01-01
Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.
Social networks predict selective observation and information spread in ravens
Rubenstein, Daniel I.; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine
2016-01-01
Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780
Context-Aware Writing Support for SNS: Connecting Formal and Informal Learning
ERIC Educational Resources Information Center
Waragai, Ikumi; Kurabayashi, Shuichi; Ohta, Tatsuya; Raindl, Marco; Kiyoki, Yasushi; Tokuda, Hideyuki
2014-01-01
This paper presents another stage in a series of research efforts by the authors to develop an experience-connected mobile language learning environment, bridging formal and informal learning. Building on a study in which the authors tried to connect classroom learning (of German in Japan) with learners' real life experiences abroad by having…
ERIC Educational Resources Information Center
Gonzalez, Emilio
Connecting every classroom, library, hospital, and clinic in the United States to the National Information Infrastructure (NII) is a priority for the Clinton Administration. This document provides a status report on this initiative by drawing from current data regarding Internet connectivity, a benchmark for NII access. Chapter 1 of the report…
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
2015-09-01
An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.
A Preliminary Study on a Specifically Expressed Arabidopsis Promotor in Vascular Bundle
NASA Astrophysics Data System (ADS)
Yun-hong, Gu; Chuan-xiao, Xie; Li-fang, Wu; Zeng-liang, Yu; Guang-yong, Qin; Yu-ping, Huo
2003-04-01
From a population of about 3500 single plants in Arabidopsis promoter trapping bank, one plant whose GUS-gene had been specifically expressed in vascular bundle, was screened by the method of gus tissue staining. The T-DNA flanking sequence was amplified using TAIL-PCR. This band will be purified and connected to TA cloning vector. After sequencing and searching in the genebank, its function will be demonatrated through transformation.
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves
2002-11-01
Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).
Yilmaz, Pelin; Kottmann, Renzo; Field, Dawn; Knight, Rob; Cole, James R; Amaral-Zettler, Linda; Gilbert, Jack A; Karsch-Mizrachi, Ilene; Johnston, Anjanette; Cochrane, Guy; Vaughan, Robert; Hunter, Christopher; Park, Joonhong; Morrison, Norman; Rocca-Serra, Philippe; Sterk, Peter; Arumugam, Manimozhiyan; Bailey, Mark; Baumgartner, Laura; Birren, Bruce W; Blaser, Martin J; Bonazzi, Vivien; Booth, Tim; Bork, Peer; Bushman, Frederic D; Buttigieg, Pier Luigi; Chain, Patrick S G; Charlson, Emily; Costello, Elizabeth K; Huot-Creasy, Heather; Dawyndt, Peter; DeSantis, Todd; Fierer, Noah; Fuhrman, Jed A; Gallery, Rachel E; Gevers, Dirk; Gibbs, Richard A; Gil, Inigo San; Gonzalez, Antonio; Gordon, Jeffrey I; Guralnick, Robert; Hankeln, Wolfgang; Highlander, Sarah; Hugenholtz, Philip; Jansson, Janet; Kau, Andrew L; Kelley, Scott T; Kennedy, Jerry; Knights, Dan; Koren, Omry; Kuczynski, Justin; Kyrpides, Nikos; Larsen, Robert; Lauber, Christian L; Legg, Teresa; Ley, Ruth E; Lozupone, Catherine A; Ludwig, Wolfgang; Lyons, Donna; Maguire, Eamonn; Methé, Barbara A; Meyer, Folker; Muegge, Brian; Nakielny, Sara; Nelson, Karen E; Nemergut, Diana; Neufeld, Josh D; Newbold, Lindsay K; Oliver, Anna E; Pace, Norman R; Palanisamy, Giriprakash; Peplies, Jörg; Petrosino, Joseph; Proctor, Lita; Pruesse, Elmar; Quast, Christian; Raes, Jeroen; Ratnasingham, Sujeevan; Ravel, Jacques; Relman, David A; Assunta-Sansone, Susanna; Schloss, Patrick D; Schriml, Lynn; Sinha, Rohini; Smith, Michelle I; Sodergren, Erica; Spor, Aymé; Stombaugh, Jesse; Tiedje, James M; Ward, Doyle V; Weinstock, George M; Wendel, Doug; White, Owen; Whiteley, Andrew; Wilke, Andreas; Wortman, Jennifer R; Yatsunenko, Tanya; Glöckner, Frank Oliver
2012-01-01
Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere. PMID:21552244
20 CFR 295.6 - Disclosure of information.
Code of Federal Regulations, 2013 CFR
2013-04-01
... divorce, dissolution, annulment or legal separation, or otherwise subjected to the jurisdiction of any... like state process issued in connection with a suit for divorce, dissolution, annulment or legal... information. A response to a request for information to be used in connection with a suit for divorce...
20 CFR 295.6 - Disclosure of information.
Code of Federal Regulations, 2014 CFR
2014-04-01
... divorce, dissolution, annulment or legal separation, or otherwise subjected to the jurisdiction of any... like state process issued in connection with a suit for divorce, dissolution, annulment or legal... information. A response to a request for information to be used in connection with a suit for divorce...
Population coding in sparsely connected networks of noisy neurons.
Tripp, Bryan P; Orchard, Jeff
2012-01-01
This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.
Clark, Anna E; Kashima, Yoshihisa
2007-12-01
Communicators tend to share more stereotype-consistent than stereotype-inconsistent information. The authors propose and test a situated functional model of this stereotype consistency bias: stereotype-consistent and inconsistent information differentially serve 2 central functions of communication--sharing information and regulating relationships; depending on the communication context, information seen to serve these different functions better is more likely communicated. Results showed that stereotype-consistent information is perceived as more socially connective but less informative than inconsistent information, and when the stereotype is perceived to be highly shared in the community, more stereotype-consistent than inconsistent information is communicated due to its greater social connectivity function. These results highlight the need to examine communication as a dynamic and situated social activity. (c) 2007 APA, all rights reserved.
Augmented brain function by coordinated reset stimulation with slowly varying sequences.
Zeitler, Magteld; Tass, Peter A
2015-01-01
Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.
Augmented brain function by coordinated reset stimulation with slowly varying sequences
Zeitler, Magteld; Tass, Peter A.
2015-01-01
Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS. PMID:25873867
Common Breastfeeding Challenges
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Zhou, Yu; Pearson, John E; Auerbach, Anthony
2005-12-01
We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.
A neural-network-based approach to the double traveling salesman problem.
Plebe, Alessio; Anile, Angelo Marcello
2002-02-01
The double traveling salesman problem is a variation of the basic traveling salesman problem where targets can be reached by two salespersons operating in parallel. The real problem addressed by this work concerns the optimization of the harvest sequence for the two independent arms of a fruit-harvesting robot. This application poses further constraints, like a collision-avoidance function. The proposed solution is based on a self-organizing map structure, initialized with as many artificial neurons as the number of targets to be reached. One of the key components of the process is the combination of competitive relaxation with a mechanism for deleting and creating artificial neurons. Moreover, in the competitive relaxation process, information about the trajectory connecting the neurons is combined with the distance of neurons from the target. This strategy prevents tangles in the trajectory and collisions between the two tours. Results of tests indicate that the proposed approach is efficient and reliable for harvest sequence planning. Moreover, the enhancements added to the pure self-organizing map concept are of wider importance, as proved by a traveling salesman problem version of the program, simplified from the double version for comparison.
Information capacity of nucleotide sequences and its applications.
Sadovsky, M G
2006-05-01
The information capacity of nucleotide sequences is defined through the specific entropy of frequency dictionary of a sequence determined with respect to another one containing the most probable continuations of shorter strings. This measure distinguishes a sequence both from a random one, and from ordered entity. A comparison of sequences based on their information capacity is studied. An order within the genetic entities is found at the length scale ranged from 3 to 8. Some other applications of the developed methodology to genetics, bioinformatics, and molecular biology are discussed.
Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin
2016-06-15
Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth
2015-04-01
Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.
Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin
2017-01-01
Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
ERIC Educational Resources Information Center
Rastorfer, Darl
2011-01-01
From February 2008 through April 2011, School Health Connection, a program of the Louisiana Public Health Institute, developed an electronic health information management system for newly established school-based health centers in Greater New Orleans. School Health Connection was established as part of a broader effort to restore community health…
cFinder: definition and quantification of multiple haplotypes in a mixed sample.
Niklas, Norbert; Hafenscher, Julia; Barna, Agnes; Wiesinger, Karin; Pröll, Johannes; Dreiseitl, Stephan; Preuner-Stix, Sandra; Valent, Peter; Lion, Thomas; Gabriel, Christian
2015-09-07
Next-generation sequencing allows for determining the genetic composition of a mixed sample. For instance, when performing resistance testing for BCR-ABL1 it is necessary to identify clones and define compound mutations; together with an exact quantification this may complement diagnosis and therapy decisions with additional information. Moreover, that applies not only to oncological issues but also determination of viral, bacterial or fungal infection. The efforts to retrieve multiple haplotypes (more than two) and proportion information from data with conventional software are difficult, cumbersome and demand multiple manual steps. Therefore, we developed a tool called cFinder that is capable of automatic detection of haplotypes and their accurate quantification within one sample. BCR-ABL1 samples containing multiple clones were used for testing and our cFinder could identify all previously found clones together with their abundance and even refine some results. Additionally, reads were simulated using GemSIM with multiple haplotypes, the detection was very close to linear (R(2) = 0.96). Our aim is not to deduce haploblocks over statistics, but to characterize one sample's composition precisely. As a result the cFinder reports the connections of variants (haplotypes) with their readcount and relative occurrence (percentage). Download is available at http://sourceforge.net/projects/cfinder/. Our cFinder is implemented in an efficient algorithm that can be run on a low-performance desktop computer. Furthermore, it considers paired-end information (if available) and is generally open for any current next-generation sequencing technology and alignment strategy. To our knowledge, this is the first software that enables researchers without extensive bioinformatic support to designate multiple haplotypes and how they constitute to a sample.
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Women Veterans and Mental Health
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Gifford, Lida K; Carter, Lester G; Gabanyi, Margaret J; Berman, Helen M; Adams, Paul D
2012-06-01
The Technology Portal of the Protein Structure Initiative Structural Biology Knowledgebase (PSI SBKB; http://technology.sbkb.org/portal/ ) is a web resource providing information about methods and tools that can be used to relieve bottlenecks in many areas of protein production and structural biology research. Several useful features are available on the web site, including multiple ways to search the database of over 250 technological advances, a link to videos of methods on YouTube, and access to a technology forum where scientists can connect, ask questions, get news, and develop collaborations. The Technology Portal is a component of the PSI SBKB ( http://sbkb.org ), which presents integrated genomic, structural, and functional information for all protein sequence targets selected by the Protein Structure Initiative. Created in collaboration with the Nature Publishing Group, the SBKB offers an array of resources for structural biologists, such as a research library, editorials about new research advances, a featured biological system each month, and a functional sleuth for searching protein structures of unknown function. An overview of the various features and examples of user searches highlight the information, tools, and avenues for scientific interaction available through the Technology Portal.
Zeil, Catharina; Widmann, Michael; Fademrecht, Silvia; Vogel, Constantin; Pleiss, Jürgen
2016-05-01
The Lactamase Engineering Database (www.LacED.uni-stuttgart.de) was developed to facilitate the classification and analysis of TEM β-lactamases. The current version contains 474 TEM variants. Two hundred fifty-nine variants form a large scale-free network of highly connected point mutants. The network was divided into three subnetworks which were enriched by single phenotypes: one network with predominantly 2be and two networks with 2br phenotypes. Fifteen positions were found to be highly variable, contributing to the majority of the observed variants. Since it is expected that a considerable fraction of the theoretical sequence space is functional, the currently sequenced 474 variants represent only the tip of the iceberg of functional TEM β-lactamase variants which form a huge natural reservoir of highly interconnected variants. Almost 50% of the variants are part of a quartet. Thus, two single mutations that result in functional enzymes can be combined into a functional protein. Most of these quartets consist of the same phenotype, or the mutations are additive with respect to the phenotype. By predicting quartets from triplets, 3,916 unknown variants were constructed. Eighty-seven variants complement multiple quartets and therefore have a high probability of being functional. The construction of a TEM β-lactamase network and subsequent analyses by clustering and quartet prediction are valuable tools to gain new insights into the viable sequence space of TEM β-lactamases and to predict their phenotype. The highly connected sequence space of TEM β-lactamases is ideally suited to network analysis and demonstrates the strengths of network analysis over tree reconstruction methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Connecting K-12 Schools to the Information Superhighway.
ERIC Educational Resources Information Center
McKinsey & Co., Inc., Washington, DC.
This report summarizes an analysis of options for connecting the nation's public K-12 schools to the national information infrastructure (NII)--or information superhighway. It incorporates insights drawn from visits to schools and interviews with educators, policymakers, and technology experts around the country, as well as from a review of the…
Bennett, Claudine T; Buchan, Judy L; Letourneau, Nicole; Shanker, Stuart G; Fenwick, Anne; Smith-Chant, Brenda; Gilmer, Cyndi
2017-04-01
Social connections are important during the transition to parenthood. A wide body of literature suggests that these connections enhance health and contribute to wellbeing. In the case of parents and families, social connections can influence child development. Nurses and public health agencies are in a unique position to advocate for resources and approaches to enhance social connectivity for parents during this important life transition. The aim of this review was to identify the universal social connectivity interventions that work, and the conditions that foster social connections for parents and enhance child development. The review was undertaken as part of a larger research project to inform the question: What are the population-level interventions that public health can implement to promote social, emotional and cognitive development from the prenatal period to the end of the first year of life? Social connectivity is one of three domains that were explored in the full study. Realist synthesis. Medline, CINAHL, ERIC, SocAbs, PsychINFO, grey literature. A literature search was conducted using relevant key words and MeSH headings. Nearly 2000 papers were reviewed by title and sorted based on inclusion and exclusion criteria. Data extraction aided quality appraisal and analysis and informed the development of an explanatory mechanism. Twenty-seven papers were included in the synthesis, with findings described in four theme areas: (a) connections in the community, (b) internet connections, (c) prenatal connections, and (d) connections for fathers. The literature available to answer the research question is scant and of varying quality. Community development, family-systems intervention practices, principles of father inclusive practice and group prenatal care models have been demonstrated to foster social connectivity for parents. Online social networking provides valuable informational support. Changing social structures and technology have influenced the way in which new parents access support. Social connections fostered in the parenting environment have the potential to enhance wellbeing for parents and thus contribute to children's positive development. Nurses are in a position to advocate for the use of evidence-informed approaches when planning programs and services for parents. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Architecture of the human regulatory network derived from ENCODE data.
Gerstein, Mark B; Kundaje, Anshul; Hariharan, Manoj; Landt, Stephen G; Yan, Koon-Kiu; Cheng, Chao; Mu, Xinmeng Jasmine; Khurana, Ekta; Rozowsky, Joel; Alexander, Roger; Min, Renqiang; Alves, Pedro; Abyzov, Alexej; Addleman, Nick; Bhardwaj, Nitin; Boyle, Alan P; Cayting, Philip; Charos, Alexandra; Chen, David Z; Cheng, Yong; Clarke, Declan; Eastman, Catharine; Euskirchen, Ghia; Frietze, Seth; Fu, Yao; Gertz, Jason; Grubert, Fabian; Harmanci, Arif; Jain, Preti; Kasowski, Maya; Lacroute, Phil; Leng, Jing Jane; Lian, Jin; Monahan, Hannah; O'Geen, Henriette; Ouyang, Zhengqing; Partridge, E Christopher; Patacsil, Dorrelyn; Pauli, Florencia; Raha, Debasish; Ramirez, Lucia; Reddy, Timothy E; Reed, Brian; Shi, Minyi; Slifer, Teri; Wang, Jing; Wu, Linfeng; Yang, Xinqiong; Yip, Kevin Y; Zilberman-Schapira, Gili; Batzoglou, Serafim; Sidow, Arend; Farnham, Peggy J; Myers, Richard M; Weissman, Sherman M; Snyder, Michael
2012-09-06
Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemmer, D.E.; Kumar, N.V.; Metrione, R.M.
Toxin II from Radianthus paumotensis (Rp/sub II/) has been investigated by high-resolution NMR and chemical sequencing methods. Resonance assignments have been obtained for this protein by the sequential approach. NMR assignments could not be made consistent with the previously reported primary sequence for this protein, and chemical methods have been used to determine a sequence with which the NMR data are consistent. Analysis of the 2D NOE spectra shows that the protein secondary structure is comprised of two sequences of ..beta..-sheet, probably joined into a distorted continuous sheet, connected by turns and extended loops, without any regular ..cap alpha..-helical segments.more » The residues previously implicated in activity in this class of proteins, D8 and R13, occur in a loop region.« less
Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara
2013-05-01
Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.
Detection of a new bat gammaherpesvirus in the Philippines.
Watanabe, Shumpei; Ueda, Naoya; Iha, Koichiro; Masangkay, Joseph S; Fujii, Hikaru; Alviola, Phillip; Mizutani, Tetsuya; Maeda, Ken; Yamane, Daisuke; Walid, Azab; Kato, Kentaro; Kyuwa, Shigeru; Tohya, Yukinobu; Yoshikawa, Yasuhiro; Akashi, Hiroomi
2009-08-01
A new bat herpesvirus was detected in the spleen of an insectivorous bat (Hipposideros diadema, family Hipposideridae) collected on Panay Island, the Philippines. PCR analyses were performed using COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) targeting the herpesvirus DNA polymerase (DPOL) gene. Although we obtained PCR products with CODEHOPs, direct sequencing using the primers was not possible because of high degree of degeneracy. Direct sequencing technology developed in our rapid determination system of viral RNA sequences (RDV) was applied in this study, and a partial DPOL nucleotide sequence was determined. In addition, a partial gB gene nucleotide sequence was also determined using the same strategy. We connected the partial gB and DPOL sequences with long-distance PCR, and a 3741-bp nucleotide fragment, including the 3' part of the gB gene and the 5' part of the DPOL gene, was finally determined. Phylogenetic analysis showed that the sequence was novel and most similar to those of the subfamily Gammaherpesvirinae.
Sequencing to Station in 12 Months (Targeting Orbital 5 Launch, March 30th)
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron Steven
2015-01-01
The Biomolecule Sequencer is a Commercial Off-The-Shelf device developed by Oxford Nanopore Technologies and implements a method of DNA sequencing unlike any other current sequencers. The device measures changes in electrical current through a nanopore depending on the sequence of the DNA strand that is passing through it. Since the technology is built on nanometer-scale ion pores, the hardware itself is exceptionally small (3 x 1 x 58 inches), lightweight (less than 120 grams with USB cable), and powered only by a USB connection. The sequencing device is permanent, while the flow cells, to which the samples are added, are periodically replaced. The goal of our upcoming technology demonstration on ISS is to provide evidence that DNA sequencing in space is possible, which holds the exciting potential to enable the identification of microorganisms, monitor changes in microbes and humans in response to spaceflight, and possibly aid in the detection of DNA-based life elsewhere in the universe.
Nikolić, Miloš; Papantonis, Argyris
2017-01-01
Abstract Genome-wide association studies (GWAS) have emerged as a powerful tool to uncover the genetic basis of human common diseases, which often show a complex, polygenic and multi-factorial aetiology. These studies have revealed that 70–90% of all single nucleotide polymorphisms (SNPs) associated with common complex diseases do not occur within genes (i.e. they are non-coding), making the discovery of disease-causative genetic variants and the elucidation of the underlying pathological mechanisms far from straightforward. Based on emerging evidences suggesting that disease-associated SNPs are frequently found within cell type-specific regulatory sequences, here we present GARLIC (GWAS-based Prediction Toolkit for Connecting Diseases and Cell Types), a user-friendly, multi-purpose software with an associated database and online viewer that, using global maps of cis-regulatory elements, can aetiologically connect human diseases with relevant cell types. Additionally, GARLIC can be used to retrieve potential disease-causative genetic variants overlapping regulatory sequences of interest. Overall, GARLIC can satisfy several important needs within the field of medical genetics, thus potentially assisting in the ultimate goal of uncovering the elusive and complex genetic basis of common human disorders. PMID:28007912
Multiple-hopping trajectories near a rotating asteroid
NASA Astrophysics Data System (ADS)
Shen, Hong-Xin; Zhang, Tian-Jiao; Li, Zhao; Li, Heng-Nian
2017-03-01
We present a study of the transfer orbits connecting landing points of irregular-shaped asteroids. The landing points do not touch the surface of the asteroids and are chosen several meters above the surface. The ant colony optimization technique is used to calculate the multiple-hopping trajectories near an arbitrary irregular asteroid. This new method has three steps which are as follows: (1) the search of the maximal clique of candidate target landing points; (2) leg optimization connecting all landing point pairs; and (3) the hopping sequence optimization. In particular this method is applied to asteroids 433 Eros and 216 Kleopatra. We impose a critical constraint on the target landing points to allow for extensive exploration of the asteroid: the relative distance between all the arrived target positions should be larger than a minimum allowed value. Ant colony optimization is applied to find the set and sequence of targets, and the differential evolution algorithm is used to solve for the hopping orbits. The minimum-velocity increment tours of hopping trajectories connecting all the landing positions are obtained by ant colony optimization. The results from different size asteroids indicate that the cost of the minimum velocity-increment tour depends on the size of the asteroids.
Veterans Crisis Line: Videos About Reaching out for Help
MedlinePlus Videos and Cool Tools
... Resources Spread the Word Videos Homeless Resources Additional Information Make the Connection Get Help When To Call ... Suicide Spread the Word Videos Homeless Resources Additional Information Make the Connection Resource Locator If you or ...
It's Only Natural: Mother's Love, Mother's Milk
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Multichannel optical sensing device
Selkowitz, S.E.
1985-08-16
A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Multichannel optical sensing device
Selkowitz, Stephen E.
1990-01-01
A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Robot Task Commander with Extensible Programming Environment
NASA Technical Reports Server (NTRS)
Hart, Stephen W (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Yamokoski, John D. (Inventor); Gooding, Dustin R (Inventor)
2014-01-01
A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.
Koopman, Frank; Wierckx, Nick; de Winde, Johannes H.; Ruijssenaars, Harald J.
2010-01-01
The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF and furfural-metabolizing Pseudomonas putida. The genetic information obtained furthermore enabled us to predict the HMF and furfural degrading capabilities of sequenced bacterial species that had not previously been connected to furanic aldehyde metabolism. These results pave the way for in situ detoxification of lignocellulosic hydrolysates, which is a major step toward improved efficiency of utilization of lignocellulosic feedstock. PMID:20194784
Gärling, T
1996-09-01
How people choose between sequences of actions was investigated in an everyday errand-planning task. In this task subjects chose the preferred sequence of performing a number of errands in a fictitious environment. Two experiments were conducted with undergraduate students serving as subjects. One group searched information about each alternative. The same information was directly available to another group. In Experiment 1 the results showed that for two errands subjects took into account all attributes describing the errands, thus suggesting a tradeoff between priority, wait time, and travel distance with priority being the most important. Consistent with this finding predominantly intraalternative information search was observed. These results were replicated in Experiment 2 for three errands. In addition choice outcomes, information search, and sequence of responding suggested that for more than two actions sequence choices are made in stages.
Kawaguchi, Risa; Kiryu, Hisanori
2016-05-06
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .
Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M
2011-07-15
Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter-hemispheric integrity is specifically relevant for explicit sequence learning. Copyright © 2011 Elsevier Inc. All rights reserved.
Eaton, Deren A R; Spriggs, Elizabeth L; Park, Brian; Donoghue, Michael J
2017-05-01
Restriction-site associated DNA (RAD) sequencing and related methods rely on the conservation of enzyme recognition sites to isolate homologous DNA fragments for sequencing, with the consequence that mutations disrupting these sites lead to missing information. There is thus a clear expectation for how missing data should be distributed, with fewer loci recovered between more distantly related samples. This observation has led to a related expectation: that RAD-seq data are insufficiently informative for resolving deeper scale phylogenetic relationships. Here we investigate the relationship between missing information among samples at the tips of a tree and information at edges within it. We re-analyze and review the distribution of missing data across ten RAD-seq data sets and carry out simulations to determine expected patterns of missing information. We also present new empirical results for the angiosperm clade Viburnum (Adoxaceae, with a crown age >50 Ma) for which we examine phylogenetic information at different depths in the tree and with varied sequencing effort. The total number of loci, the proportion that are shared, and phylogenetic informativeness varied dramatically across the examined RAD-seq data sets. Insufficient or uneven sequencing coverage accounted for similar proportions of missing data as dropout from mutation-disruption. Simulations reveal that mutation-disruption, which results in phylogenetically distributed missing data, can be distinguished from the more stochastic patterns of missing data caused by low sequencing coverage. In Viburnum, doubling sequencing coverage nearly doubled the number of parsimony informative sites, and increased by >10X the number of loci with data shared across >40 taxa. Our analysis leads to a set of practical recommendations for maximizing phylogenetic information in RAD-seq studies. [hierarchical redundancy; phylogenetic informativeness; quartet informativeness; Restriction-site associated DNA (RAD) sequencing; sequencing coverage; Viburnum.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Practical lessons in remote connectivity.
Kouroubali, A.; Starren, J.; Barrows, R. C.; Clayton, P. D.
1997-01-01
Community Health Information Networks (CHINs) require the ability to provide computer network connections to many remote sites. During the implementation of the Washington Heights and Inwood Community Health Management Information System (WHICHIS) at the Columbia-Presbyterian Medical Center (CPMC), a number of remote connectivity issues have been encountered. Both technical and non-technical issues were significant during the installation. We developed a work-flow model for this process which may be helpful to any health care institution attempting to provide seamless remote connectivity. This model is presented and implementation lessons are discussed. PMID:9357643
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... request information directly from the Federal PLS in connection with a parental kidnapping or child... locate an individual in connection with a parental kidnapping or child custody case. (2) Any information...
Constructing network scheme of connecting with Internet
NASA Astrophysics Data System (ADS)
Lin, Ganghua
2001-06-01
Nowadays people are more and more imminent for information's gain; time of gaining information is stressed; demand for information quantity is larger and larger. These make us have to scan again our communication pattern. Purpose of this article is comparing a few ways to connect with Internet to find a way that is proper to us.
12 CFR 232.2 - Rule of construction for obtaining and using unsolicited medical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... connection with a consumer's application for an extension of credit, the creditor requests a consumer report from a consumer reporting agency and receives medical information in the consumer report furnished by... it receives medical information pertaining to a consumer in connection with any determination of the...
Inference of topology and the nature of synapses, and the flow of information in neuronal networks
NASA Astrophysics Data System (ADS)
Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.
2018-02-01
The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.
Elman RNN based classification of proteins sequences on account of their mutual information.
Mishra, Pooja; Nath Pandey, Paras
2012-10-21
In the present work we have employed the method of estimating residue correlation within the protein sequences, by using the mutual information (MI) of adjacent residues, based on structural and solvent accessibility properties of amino acids. The long range correlation between nonadjacent residues is improved by constructing a mutual information vector (MIV) for a single protein sequence, like this each protein sequence is associated with its corresponding MIVs. These MIVs are given to Elman RNN to obtain the classification of protein sequences. The modeling power of MIV was shown to be significantly better, giving a new approach towards alignment free classification of protein sequences. We also conclude that sequence structural and solvent accessible property based MIVs are better predictor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Image encryption using random sequence generated from generalized information domain
NASA Astrophysics Data System (ADS)
Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu
2016-05-01
A novel image encryption method based on the random sequence generated from the generalized information domain and permutation-diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.
Tewarie, Prejaas; Steenwijk, Martijn D; Brookes, Matthew J; Uitdehaag, Bernard M J; Geurts, Jeroen J G; Stam, Cornelis J; Schoonheim, Menno M
2018-06-01
To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Modulation of frustration in folding by sequence permutation.
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V; Graceffa, Rita; Barrea, Raul A; Guo, Liang; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C; Brooks, Charles L; Matthews, C Robert
2014-07-22
Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY.
Yousefi-Nooraie, Reza; Dobbins, Maureen; Brouwers, Melissa; Wakefield, Patricia
2012-05-16
Social network analysis is an approach to study the interactions and exchange of resources among people. It can help understanding the underlying structural and behavioral complexities that influence the process of capacity building towards evidence-informed decision making. A social network analysis was conducted to understand if and how the staff of a public health department in Ontario turn to peers to get help incorporating research evidence into practice. The staff were invited to respond to an online questionnaire inquiring about information seeking behavior, identification of colleague expertise, and friendship status. Three networks were developed based on the 170 participants. Overall shape, key indices, the most central people and brokers, and their characteristics were identified. The network analysis showed a low density and localized information-seeking network. Inter-personal connections were mainly clustered by organizational divisions; and people tended to limit information-seeking connections to a handful of peers in their division. However, recognition of expertise and friendship networks showed more cross-divisional connections. Members of the office of the Medical Officer of Health were located at the heart of the department, bridging across divisions. A small group of professional consultants and middle managers were the most-central staff in the network, also connecting their divisions to the center of the information-seeking network. In each division, there were some locally central staff, mainly practitioners, who connected their neighboring peers; but they were not necessarily connected to other experts or managers. The methods of social network analysis were useful in providing a systems approach to understand how knowledge might flow in an organization. The findings of this study can be used to identify early adopters of knowledge translation interventions, forming Communities of Practice, and potential internal knowledge brokers.
Estimating migratory connectivity of birds when re-encounter probabilities are heterogeneous
Cohen, Emily B; Hostetler, Jeffrey A; Royle, J Andrew; Marra, Peter P
2014-01-01
Understanding the biology and conducting effective conservation of migratory species requires an understanding of migratory connectivity – the geographic linkages of populations between stages of the annual cycle. Unfortunately, for most species, we are lacking such information. The North American Bird Banding Laboratory (BBL) houses an extensive database of marking, recaptures and recoveries, and such data could provide migratory connectivity information for many species. To date, however, few species have been analyzed for migratory connectivity largely because heterogeneous re-encounter probabilities make interpretation problematic. We accounted for regional variation in re-encounter probabilities by borrowing information across species and by using effort covariates on recapture and recovery probabilities in a multistate capture–recapture and recovery model. The effort covariates were derived from recaptures and recoveries of species within the same regions. We estimated the migratory connectivity for three tern species breeding in North America and over-wintering in the tropics, common (Sterna hirundo), roseate (Sterna dougallii), and Caspian terns (Hydroprogne caspia). For western breeding terns, model-derived estimates of migratory connectivity differed considerably from those derived directly from the proportions of re-encounters. Conversely, for eastern breeding terns, estimates were merely refined by the inclusion of re-encounter probabilities. In general, eastern breeding terns were strongly connected to eastern South America, and western breeding terns were strongly linked to the more western parts of the nonbreeding range under both models. Through simulation, we found this approach is likely useful for many species in the BBL database, although precision improved with higher re-encounter probabilities and stronger migratory connectivity. We describe an approach to deal with the inherent biases in BBL banding and re-encounter data to demonstrate that this large dataset is a valuable source of information about the migratory connectivity of the birds of North America. PMID:24967083
Estimating migratory connectivity of birds when re-encounter probabilities are heterogeneous
Cohen, Emily B.; Hostelter, Jeffrey A.; Royle, J. Andrew; Marra, Peter P.
2014-01-01
Understanding the biology and conducting effective conservation of migratory species requires an understanding of migratory connectivity – the geographic linkages of populations between stages of the annual cycle. Unfortunately, for most species, we are lacking such information. The North American Bird Banding Laboratory (BBL) houses an extensive database of marking, recaptures and recoveries, and such data could provide migratory connectivity information for many species. To date, however, few species have been analyzed for migratory connectivity largely because heterogeneous re-encounter probabilities make interpretation problematic. We accounted for regional variation in re-encounter probabilities by borrowing information across species and by using effort covariates on recapture and recovery probabilities in a multistate capture–recapture and recovery model. The effort covariates were derived from recaptures and recoveries of species within the same regions. We estimated the migratory connectivity for three tern species breeding in North America and over-wintering in the tropics, common (Sterna hirundo), roseate (Sterna dougallii), and Caspian terns (Hydroprogne caspia). For western breeding terns, model-derived estimates of migratory connectivity differed considerably from those derived directly from the proportions of re-encounters. Conversely, for eastern breeding terns, estimates were merely refined by the inclusion of re-encounter probabilities. In general, eastern breeding terns were strongly connected to eastern South America, and western breeding terns were strongly linked to the more western parts of the nonbreeding range under both models. Through simulation, we found this approach is likely useful for many species in the BBL database, although precision improved with higher re-encounter probabilities and stronger migratory connectivity. We describe an approach to deal with the inherent biases in BBL banding and re-encounter data to demonstrate that this large dataset is a valuable source of information about the migratory connectivity of the birds of North America.
McCarthy, Kye L; Mergenthaler, Erhard; Grenyer, Brin F S
2014-01-01
Therapist-patient verbalizations reveal complex cognitive-emotional linguistic data. How these variables contribute to change requires further research. Emotional-cognitive text analysis using the Ulm cycles model software was applied to transcripts of the third session of psychotherapy for 20 patients with depression and personality disorder. Results showed that connecting cycle sequences of problem-solving in the third hour predicted 12-month clinical outcomes. Therapist-patient dyads most improved spent significantly more time early in session in connecting cycles, whilst the least improved moved into connecting cycles late in session. For this particular sample, it was clear that positive emotional problem-solving in therapy was beneficial.
Homology groups for particles on one-connected graphs
NASA Astrophysics Data System (ADS)
MaciÄ Żek, Tomasz; Sawicki, Adam
2017-06-01
We present a mathematical framework for describing the topology of configuration spaces for particles on one-connected graphs. In particular, we compute the homology groups over integers for different classes of one-connected graphs. Our approach is based on some fundamental combinatorial properties of the configuration spaces, Mayer-Vietoris sequences for different parts of configuration spaces, and some limited use of discrete Morse theory. As one of the results, we derive the closed-form formulae for ranks of the homology groups for indistinguishable particles on tree graphs. We also give a detailed discussion of the second homology group of the configuration space of both distinguishable and indistinguishable particles. Our motivation is the search for new kinds of quantum statistics.
System and method for magnetic current density imaging at ultra low magnetic fields
Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich
2016-02-09
Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.
Population connectivity of the plating coral Agaricia lamarcki from southwest Puerto Rico
NASA Astrophysics Data System (ADS)
Hammerman, Nicholas M.; Rivera-Vicens, Ramon E.; Galaska, Matthew P.; Weil, Ernesto; Appledoorn, Richard S.; Alfaro, Monica; Schizas, Nikolaos V.
2018-03-01
Identifying genetic connectivity and discrete population boundaries is an important objective for management of declining Caribbean reef-building corals. A double digest restriction-associated DNA sequencing protocol was utilized to generate 321 single nucleotide polymorphisms to estimate patterns of horizontal and vertical gene flow in the brooding Caribbean plate coral, Agaricia lamarcki. Individual colonies ( n = 59) were sampled from eight locations throughout southwestern Puerto Rico from six shallow ( 10-20 m) and two mesophotic habitats ( 30-40 m). Descriptive summary statistics (fixation index, F ST), analysis of molecular variance, and analysis through landscape and ecological associations and discriminant analysis of principal components estimated high population connectivity with subtle subpopulation structure among all sampling localities.
Advances in Sequencing Technologies for Understanding Hereditary Ataxias A Review
Didonna, Alessandro; Opal, Puneet
2017-01-01
IMPORTANCE The hereditary progressive ataxias comprise genetic disorders that affect the cerebellum and its connections. Even though these diseases historically have been among the first familial disorders of the nervous system to have been recognized, progress in the field has been challenging because of the large number of ataxic genetic syndromes, many of which overlap in their clinical features. OBSERVATIONS We have taken a historical approach to demonstrate how our knowledge of the genetic basis of ataxic disorders has come about by novel techniques in gene sequencing and bioinformatics. Furthermore, we show that the genes implicated in ataxia, although seemingly unrelated, appear to encode for proteins that interact with each other in connected functional modules. CONCLUSIONS AND RELEVANCE It has taken approximately 150 years for neurologists to comprehensively unravel the genetic diversity of ataxias. There has been an explosion in our understanding of their molecular basis with the arrival of next-generation sequencing and computer-driven bioinformatics; this in turn has made hereditary ataxias an especially well-developed model group of diseases for gaining insights at a systems level into genes and cellular pathways that result in neurodegeneration. PMID:27749953
Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J
2016-03-22
The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.
Navigating Microbiological Food Safety in the Era of Whole-Genome Sequencing
Nasheri, Neda; Petronella, Nicholas; Pagotto, Franco
2016-01-01
SUMMARY The epidemiological investigation of a foodborne outbreak, including identification of related cases, source attribution, and development of intervention strategies, relies heavily on the ability to subtype the etiological agent at a high enough resolution to differentiate related from nonrelated cases. Historically, several different molecular subtyping methods have been used for this purpose; however, emerging techniques, such as single nucleotide polymorphism (SNP)-based techniques, that use whole-genome sequencing (WGS) offer a resolution that was previously not possible. With WGS, unlike traditional subtyping methods that lack complete information, data can be used to elucidate phylogenetic relationships and disease-causing lineages can be tracked and monitored over time. The subtyping resolution and evolutionary context provided by WGS data allow investigators to connect related illnesses that would be missed by traditional techniques. The added advantage of data generated by WGS is that these data can also be used for secondary analyses, such as virulence gene detection, antibiotic resistance gene profiling, synteny comparisons, mobile genetic element identification, and geographic attribution. In addition, several software packages are now available to generate in silico results for traditional molecular subtyping methods from the whole-genome sequence, allowing for efficient comparison with historical databases. Metagenomic approaches using next-generation sequencing have also been successful in the detection of nonculturable foodborne pathogens. This review addresses state-of-the-art techniques in microbial WGS and analysis and then discusses how this technology can be used to help support food safety investigations. Retrospective outbreak investigations using WGS are presented to provide organism-specific examples of the benefits, and challenges, associated with WGS in comparison to traditional molecular subtyping techniques. PMID:27559074
Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Lewis, Katie L; Harris, Peter R; Shepperd, James A; Biesecker, Leslie G
2015-08-01
Information avoidance is a defensive strategy that undermines receipt of potentially beneficial but threatening health information and may especially occur when threat management resources are unavailable. We examined whether individual differences in information avoidance predicted intentions to receive genetic sequencing results for preventable and unpreventable (i.e., more threatening) disease and, secondarily, whether threat management resources of self-affirmation or optimism mitigated any effects. Participants (N = 493) in an NIH study (ClinSeq®) piloting the use of genome sequencing reported intentions to receive (optional) sequencing results and completed individual difference measures of information avoidance, self-affirmation, and optimism. Information avoidance tendencies corresponded with lower intentions to learn results, particularly for unpreventable diseases. The association was weaker among individuals higher in self-affirmation or optimism, but only for results regarding preventable diseases. Information avoidance tendencies may influence decisions to receive threatening health information; threat management resources hold promise for mitigating this association.
A High-Density Linkage Map for Astyanax mexicanus Using Genotyping-by-Sequencing Technology
Carlson, Brian M.; Onusko, Samuel W.; Gross, Joshua B.
2014-01-01
The Mexican tetra, Astyanax mexicanus, is a unique model system consisting of cave-adapted and surface-dwelling morphotypes that diverged >1 million years (My) ago. This remarkable natural experiment has enabled powerful genetic analyses of cave adaptation. Here, we describe the application of next-generation sequencing technology to the creation of a high-density linkage map. Our map comprises more than 2200 markers populating 25 linkage groups constructed from genotypic data generated from a single genotyping-by-sequencing project. We leveraged emergent genomic and transcriptomic resources to anchor hundreds of anonymous Astyanax markers to the genome of the zebrafish (Danio rerio), the most closely related model organism to our study species. This facilitated the identification of 784 distinct connections between our linkage map and the Danio rerio genome, highlighting several regions of conserved genomic architecture between the two species despite ∼150 My of divergence. Using a Mendelian cave-associated trait as a proof-of-principle, we successfully recovered the genomic position of the albinism locus near the gene Oca2. Further, our map successfully informed the positions of unplaced Astyanax genomic scaffolds within particular linkage groups. This ability to identify the relative location, orientation, and linear order of unaligned genomic scaffolds will facilitate ongoing efforts to improve on the current early draft and assemble future versions of the Astyanax physical genome. Moreover, this improved linkage map will enable higher-resolution genetic analyses and catalyze the discovery of the genetic basis for cave-associated phenotypes. PMID:25520037
2014-01-01
Exposure to environmental mutagens is an important cause of human cancer, and measures to reduce mutagenic and carcinogenic exposures have been highly successful at controlling cancer. Until recently, it has been possible to connect the chemical characteristics of mutagens to actual mutations observed in human tumors only indirectly. Now, next-generation sequencing technology enables us to observe in detail the DNA-sequence-level effects of well-known mutagens, such as ultraviolet radiation and tobacco smoke, as well as endogenous mutagenic processes, such as those involving activated DNA cytidine deaminases (APOBECs). We can also observe the effects of less well-known but potent mutagens, including those recently found to be present in some herbal remedies. Crucially, we can now tease apart the superimposed effects of several mutational exposures and processes and determine which ones occurred during the development of individual tumors. Here, we review advances in detecting these mutation signatures and discuss the implications for surveillance and prevention of cancer. The number of sequenced tumors from diverse cancer types and multiple geographic regions is growing explosively, and the genomes of these tumors will bear the signatures of even more diverse mutagenic exposures. Thus, we envision development of wide-ranging compendia of mutation signatures from tumors and a concerted effort to experimentally elucidate the signatures of a large number of mutagens. This information will be used to link signatures observed in tumors to the exposures responsible for them, which will offer unprecedented opportunities for prevention. PMID:25031618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequencemore » (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Effects of Sequences of Cognitions on Group Performance Over Time
Molenaar, Inge; Chiu, Ming Ming
2017-01-01
Extending past research showing that sequences of low cognitions (low-level processing of information) and high cognitions (high-level processing of information through questions and elaborations) influence the likelihoods of subsequent high and low cognitions, this study examines whether sequences of cognitions are related to group performance over time; 54 primary school students (18 triads) discussed and wrote an essay about living in another country (32,375 turns of talk). Content analysis and statistical discourse analysis showed that within each lesson, groups with more low cognitions or more sequences of low cognition followed by high cognition added more essay words. Groups with more high cognitions, sequences of low cognition followed by low cognition, or sequences of high cognition followed by an action followed by low cognition, showed different words and sequences, suggestive of new ideas. The links between cognition sequences and group performance over time can inform facilitation and assessment of student discussions. PMID:28490854
Effects of Sequences of Cognitions on Group Performance Over Time.
Molenaar, Inge; Chiu, Ming Ming
2017-04-01
Extending past research showing that sequences of low cognitions (low-level processing of information) and high cognitions (high-level processing of information through questions and elaborations) influence the likelihoods of subsequent high and low cognitions, this study examines whether sequences of cognitions are related to group performance over time; 54 primary school students (18 triads) discussed and wrote an essay about living in another country (32,375 turns of talk). Content analysis and statistical discourse analysis showed that within each lesson, groups with more low cognitions or more sequences of low cognition followed by high cognition added more essay words. Groups with more high cognitions, sequences of low cognition followed by low cognition, or sequences of high cognition followed by an action followed by low cognition, showed different words and sequences, suggestive of new ideas. The links between cognition sequences and group performance over time can inform facilitation and assessment of student discussions.
Clifford, Jacob; Adami, Christoph
2015-09-02
Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.
Rosell, Allyn McConkie; Pena, Loren D M; Schoch, Kelly; Spillmann, Rebecca; Sullivan, Jennifer; Hooper, Stephen R; Jiang, Yong-Hui; Mathey-Andrews, Nicolas; Goldstein, David B; Shashi, Vandana
2016-10-01
Due to the lack of empirical information on parental perceptions of primary results of whole exome sequencing (WES), we conducted a retrospective semi-structured interview with 19 parents of children who had undergone WES. Perceptions explored during the interview included factors that would contribute to parental empowerment such as: parental expectations, understanding of the WES and results, utilization of the WES information, and communication of findings to health/educational professionals and family members. Results of the WES had previously been communicated to families within a novel framework of clinical diagnostic categories: 5/19 had Definite diagnoses, 6/19 had Likely diagnoses, 3/19 had Possible diagnosis and 5/19 had No diagnosis. All parents interviewed expressed a sense of duty to pursue the WES in search of a diagnosis; however, their expectations were tempered by previous experiences with negative genetic testing results. Approximately half the parents worried that a primary diagnosis that would be lethal might be identified; however, the hope of a diagnosis outweighed this concern. Parents were accurately able to summarize their child's WES findings, understood the implications for recurrence risks, and were able to communicate these findings to family and medical/educational providers. The majority of those with a Definite/Likely diagnosis felt that their child's medical care was more focused, or there was a reduction in worry, despite the lack of a specific treatment. Irrespective of diagnostic outcome, parents recommended that follow-up visits be built into the process. Several parents expressed a desire to have all variants of unknown significance (VUS) reported to them so that they could investigate these themselves. Finally, for some families whose children had a Definite/Likely diagnosis, there was remaining frustration and a sense of isolation, due to the limited information that was available about the diagnosed rare disorders and the inability to connect to other families, suggesting that for families with rare genetic disorders, the diagnostic odyssey does not necessarily end with a diagnosis. Qualitative interviewing served a meaningful role in eliciting new information about parental motivations, expectations, and knowledge of WES. Our findings highlight a need for continued communication with families as we navigate the new landscape of genomic sequencing.
Automatic Hidden-Web Table Interpretation by Sibling Page Comparison
NASA Astrophysics Data System (ADS)
Tao, Cui; Embley, David W.
The longstanding problem of automatic table interpretation still illudes us. Its solution would not only be an aid to table processing applications such as large volume table conversion, but would also be an aid in solving related problems such as information extraction and semi-structured data management. In this paper, we offer a conceptual modeling solution for the common special case in which so-called sibling pages are available. The sibling pages we consider are pages on the hidden web, commonly generated from underlying databases. We compare them to identify and connect nonvarying components (category labels) and varying components (data values). We tested our solution using more than 2,000 tables in source pages from three different domains—car advertisements, molecular biology, and geopolitical information. Experimental results show that the system can successfully identify sibling tables, generate structure patterns, interpret tables using the generated patterns, and automatically adjust the structure patterns, if necessary, as it processes a sequence of hidden-web pages. For these activities, the system was able to achieve an overall F-measure of 94.5%.
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor)
1998-01-01
The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.
NASA Astrophysics Data System (ADS)
Braun, Dieter; Möller, Friederike M.; Krammer, Hubert
2013-03-01
Central to the understanding of living systems is the interplay between DNA/RNA and proteins. Known as Eigen paradox, proteins require genetic information while proteins are needed for the replication of genes. RNA world scenarios focus on a base by base replication disconnected from translation. Here we used strategies from DNA machines to demonstrate a tight connection between a basic replication mechanism and translation. A pool of hairpin molecules replicate a two-letter code. The replication is thermally driven: the energy and negative entropy to drive replication is initially stored in metastable hairpins by kinetic cooling. Both are released by a highly specific and exponential replication reaction that is solely implemented by base hybridization. The duplication time is 30s. The reaction is monitored by fluorescence and described by a detailed kinetic model. The RNA hairpins usetransfer RNA sequences and the replication is driven by the simple disequilibrium setting of a thermal gradient The experiments propose a physical rather than a chemical scenario for the autonomous replication of protein encoding information. Supported by the NanoSystems Initiative Munich and ERC.
The Dancing Brain: Structural and Functional Signatures of Expert Dance Training.
Burzynska, Agnieszka Z; Finc, Karolina; Taylor, Brittany K; Knecht, Anya M; Kramer, Arthur F
2017-01-01
Dance - as a ritual, therapy, and leisure activity - has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson's disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.
The Dancing Brain: Structural and Functional Signatures of Expert Dance Training
Burzynska, Agnieszka Z.; Finc, Karolina; Taylor, Brittany K.; Knecht, Anya M.; Kramer, Arthur F.
2017-01-01
Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations. PMID:29230170
Lieberman, Jennifer S; Kyle, Colin T; Schedlbauer, Amber; Stokes, Jared; Ekstrom, Arne D
2017-04-01
Numerous studies indicate the importance of the hippocampus to temporal order retrieval. However, behavioral studies suggest that there are different ways to retrieve temporal order information from encoded sequences, one involving an associative strategy (retrieving associations using neighboring items in a list) and another involving a recency strategy (determining which of two items came first). It remains unresolved, however, whether both strategies recruit the hippocampus or only associative strategies, consistent with the hippocampus's role in relational processing. To address this, we developed a paradigm in which we dissociated associative versus recency-based retrieval, involving the same stimulus presentation during retrieval. Associative retrieval involved an increase in RT (and decrease in performance) with greater distances between intervals, consistent with the need to retrieve intervening associations. Recency-based retrieval involved an increase in RT (and decrease in performance) with shorter distances between intervals, suggesting the use of a strength-based coding mechanism to retrieve information. We employed fMRI to determine the neural basis of the different strategies. Both strategies showed significant levels of hippocampal activation and connectivity that did not differ between tasks. In contrast, both univariate and connectivity pattern analyses revealed differences in extrahippocampal areas such as parietal and frontal cortices. A covariate analysis suggested that differences could not be explained by task difficulty alone. Together, these findings suggest that the hippocampus plays a role in both forms of temporal order retrieval, with neocortical networks mediating the different cognitive demands for associative versus recency-based temporal order retrieval.
Using technology to develop connections between individuals, natural resources, and recreation
Wen-Huei Chang; Carolyn H. Fisher; Mark P. Gleason
2001-01-01
Information technology is here. How we as natural resource providers, researchers and users decide to use it responsibly is up to us. This study presents the facts of information technology and how to use this technology to develop connections between individuals, natural resources, and recreation. Three categories that were explored are (a) an overview of information...
Scaling Property of Period-n-Tupling Sequences in One-Dimensional Mappings
NASA Astrophysics Data System (ADS)
Zeng, Wan-Zhen; Hao, Bai-Lin; Wang, Guang-Rui; Chen, Shi-Gang
1984-05-01
We calculated the universal scaling function g(x) and the scaling factor α as well as the convergence rate δ for periodtripling, -quadrapling and-quintupling sequences of RL, RL^2, RLR^2, RL2 R and RL^3 types. The superstable periods are closely connected to a set of polynomial P_n defined recursively by the original mapping. Some notable properties of these polynomials are studied. Several approaches to solving the renormalization group equation and estimating the scaling factors are suggested.
Facilitated sequence counting and assembly by template mutagenesis
Levy, Dan; Wigler, Michael
2014-01-01
Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly. PMID:25313059
LookSeq: a browser-based viewer for deep sequencing data.
Manske, Heinrich Magnus; Kwiatkowski, Dominic P
2009-11-01
Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.
High value of ecological information for river connectivity restoration
Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine
2017-01-01
ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.
DOT National Transportation Integrated Search
2014-05-01
This document is a summary of all responses the USDOT received from the Connected Vehicle Pilot Deployment Programs Request for Information (RFI) Notice put out by the Federal Highway Administration on 03/12/2014.
Rosskopf, Johannes; Gorges, Martin; Müller, Hans-Peter; Pinkhardt, Elmar H; Ludolph, Albert C; Kassubek, Jan
2018-04-01
In multiple system atrophy (MSA), the organization of the functional brain connectivity within cortical and subcortical networks and its clinical correlates remains to be investigated. Whole-brain based 'resting-state' fMRI data were obtained from 22 MSA patients (11 MSA-C, 11 MSA-P) and 22 matched healthy controls, together with standardized clinical assessment and video-oculographic recordings (EyeLink ® ). MSA patients vs. controls showed significantly higher ponto-cerebellar functional connectivity and lower default mode network connectivity (p < .05, corrected). No differences were observed in the motor network and in the control network. The higher the ponto-cerebellar network functional connectivity was, the more pronounced was smooth pursuit impairment. This functional connectivity analysis supports a network-dependent combination of hyper- and hypoconnectivity states in MSA, in agreement with adaptive compensatory responses (hyperconnectivity) and a function disconnection syndrome (hypoconnectivity) that may occur in a consecutive sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Decreased triple network connectivity in patients with post-traumatic stress disorder
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Liang; Li, Baojuan; Zhang, Xi; Lu, Hongbing
2017-03-01
The triple network model provides a common framework for understanding affective and neurocognitive dysfunctions across multiple disorders, including central executive network (CEN), default mode network (DMN), and salience network (SN). Considering the effect of traumatic experience on post-traumatic stress disorder (PTSD), this study aims to explore the alteration of triple network connectivity in a specific PTSD induced by a single prolonged trauma exposure. With arterial spin labeling sequence, three networks were identified using independent component analysis in 10 PTSD patients and 10 healthy survivors, who experienced the same coal mining flood disaster. In PTSD patients, decreased connectivity was identified in left middle frontal gyrus of CEN, left precuneus and bilateral superior frontal gyrus of DMN, and right anterior insula of SN. The decreased connectivity in left middle frontal gyrus was identified to associate with clinical severity. These results indicated the decreased triple network connectivity, which not only supported the proposal of the triple network model, but also prompted possible neurobiology mechanism of cognitive dysfunction for this kind of PTSD.
Connected Vehicle Applications : Road Weather Management
DOT National Transportation Integrated Search
2016-08-16
Connected vehicle applications related to road weather management and enabling systems are being designed to collect and take advantage of connected vehicle data and information transmissions to increase situational awareness, improve roadway levels ...
Kim, Bongju; Kim, Kyunghee; Yang, Tae-Jin; Kim, Sunggil
2016-11-01
Cytoplasmic male-sterility (CMS) conferred by the CMS-S cytoplasm has been most commonly used for onion (Allium cepa L.) F 1 hybrid seed production. We first report the complete mitochondrial genome sequence containing CMS-S cytoplasm in this study. Initially, seven contigs were de novo assembled from 150-bp paired-end raw reads produced from the total genomic DNA using the Illumina NextSeq500 platform. These contigs were connected into a single circular genome consisting of 316,363 bp (GenBank accession: KU318712) by PCR amplification. Although all 24 core protein-coding genes were present, no ribosomal protein-coding genes, except rps12, were identified in the onion mitochondrial genome. Unusual trans-splicing of the cox2 gene was verified, and the cox1 gene was identified as part of the chimeric orf725 gene, which is a candidate gene responsible for inducing CMS. In addition to orf725, two small chimeric genes were identified, but no transcripts were detected for these two open reading frames. Thirteen chloroplast-derived sequences, with sizes of 126-13,986 bp, were identified in the intergenic regions. Almost 10 % of the onion mitochondrial genome was composed of repeat sequences. The vast majority of repeats were short repeats of <100 base pairs. Interestingly, the gene encoding ccmF N was split into two genes. The ccmF N gene split is first identified outside the Brassicaceae family. The breakpoint in the onion ccmF N gene was different from that of other Brassicaceae species. This split of the ccmF N gene was also present in 30 other Allium species. The complete onion mitochondrial genome sequence reported in this study would be fundamental information for elucidation of onion CMS evolution.
Novel Δ J =1 Sequence in 78Ge: Possible Evidence for Triaxiality
NASA Astrophysics Data System (ADS)
Forney, A. M.; Walters, W. B.; Chiara, C. J.; Janssens, R. V. F.; Ayangeakaa, A. D.; Sethi, J.; Harker, J.; Alcorta, M.; Carpenter, M. P.; Gürdal, G.; Hoffman, C. R.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Rogers, A. M.; Seweryniak, D.; Stefanescu, I.; Zhu, S.
2018-05-01
A sequence of low-energy levels in Ge783246 has been identified with spins and parity of 2+, 3+, 4+, 5+, and 6+. Decays within this band proceed strictly through Δ J =1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2+ level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ -rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the Δ J =2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ =3 0 ° , there are sequences of higher-spin levels connected by strong Δ J =1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.
Sequence-based classification and identification of fungi
USDA-ARS?s Scientific Manuscript database
Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomi...
JPRS Report, Science & Technology, Japan, Key Tech Center Advanced Communications Research
1990-02-26
networks. 27 b. Fuzzy access Even when correct information regarding the connection destination is not available, this makes it possible to establish...a connection based on the stored fuzzy information. c. Logical accessing Makes it possible to effect a connection based on the logical name (indivi...understand fuzzy indications from the user. (b) Normality check tests The following tests should be conducted to check the normality of user- defined services
Craveiro, Sandra C; Calado, António J; Daugbjerg, Niels; Hansen, Gert; Moestrup, Øjvind
2011-10-01
Several populations of Peridinium lomnickii were examined by SEM and serial section TEM. Comparison with typical Peridinium, Peridiniopsis, Palatinus and Scrippsiella species revealed significant structural differences, congruent with phylogenetic hypotheses derived from partial LSU rDNA sequences. Chimonodinium gen. nov. is described as a new genus of peridinioids, characterized by the Kofoidian plate formula Po, cp, x, 4', 3a, 7'', 6c, 5s, 5''', 2'''', the absence of pyrenoids, the presence of a microtubular basket with four or five overlapping rows of microtubules associated with a small peduncle, a pusular system with well-defined pusular tubes connected to the flagellar canals, and the production of non-calcareous cysts. Serial section examination of Scrippsiella trochoidea, here taken to represent typical Scrippsiella characters, revealed no peduncle and no associated microtubular strands. The molecular phylogeny placed C. lomnickii comb. nov. as a sister group to a clade composed of Thoracosphaera and the pfiesteriaceans. Whereas the lack of information on fine structure of the swimming stage of Thoracosphaera leaves its affinities unexplained, C. lomnickii shares with the pfiesteriaceans the presence of a microtubular basket and the unusual connection between two plates on the left side of the sulcus, involving extra-cytoplasmic fibres. Copyright © 2011 Elsevier GmbH. All rights reserved.
Spiekman, Stephan N. F.; Werneburg, Ingmar
2017-01-01
Development in marsupials is specialized towards an extremely short gestation and highly altricial newborns. As a result, marsupial neonates display morphological adaptations at birth related to functional constraints. However, little is known about the variability of marsupial skull development and its relation to morphological diversity. We studied bony skull development in five marsupial species. The relative timing of the onset of ossification was compared to literature data and the ossification sequence of the marsupial ancestor was reconstructed using squared-change parsimony. The high range of variation in the onset of ossification meant that no patterns could be observed that differentiate species. This finding challenges traditional studies concentrating on the onset of ossification as a marker for phylogeny or as a functional proxy. Our study presents observations on the developmental timing of cranial bone-to-bone contacts and their evolutionary implications. Although certain bone contacts display high levels of variation, connections of early and late development are quite conserved and informative. Bones that surround the oral cavity are generally the first to connect and the bones of the occipital region are among the last. We conclude that bone contact is preferable over onset of ossification for studying cranial bone development. PMID:28233826
Haplotype estimation using sequencing reads.
Delaneau, Olivier; Howie, Bryan; Cox, Anthony J; Zagury, Jean-François; Marchini, Jonathan
2013-10-03
High-throughput sequencing technologies produce short sequence reads that can contain phase information if they span two or more heterozygote genotypes. This information is not routinely used by current methods that infer haplotypes from genotype data. We have extended the SHAPEIT2 method to use phase-informative sequencing reads to improve phasing accuracy. Our model incorporates the read information in a probabilistic model through base quality scores within each read. The method is primarily designed for high-coverage sequence data or data sets that already have genotypes called. One important application is phasing of single samples sequenced at high coverage for use in medical sequencing and studies of rare diseases. Our method can also use existing panels of reference haplotypes. We tested the method by using a mother-father-child trio sequenced at high-coverage by Illumina together with the low-coverage sequence data from the 1000 Genomes Project (1000GP). We found that use of phase-informative reads increases the mean distance between switch errors by 22% from 274.4 kb to 328.6 kb. We also used male chromosome X haplotypes from the 1000GP samples to simulate sequencing reads with varying insert size, read length, and base error rate. When using short 100 bp paired-end reads, we found that using mixtures of insert sizes produced the best results. When using longer reads with high error rates (5-20 kb read with 4%-15% error per base), phasing performance was substantially improved. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
A public HTLV-1 molecular epidemiology database for sequence management and data mining.
Araujo, Thessika Hialla Almeida; Souza-Brito, Leandro Inacio; Libin, Pieter; Deforche, Koen; Edwards, Dustin; de Albuquerque-Junior, Antonio Eduardo; Vandamme, Anne-Mieke; Galvao-Castro, Bernardo; Alcantara, Luiz Carlos Junior
2012-01-01
It is estimated that 15 to 20 million people are infected with the human T-cell lymphotropic virus type 1 (HTLV-1). At present, there are more than 2,000 unique HTLV-1 isolate sequences published. A central database to aggregate sequence information from a range of epidemiological aspects including HTLV-1 infections, pathogenesis, origins, and evolutionary dynamics would be useful to scientists and physicians worldwide. Described here, we have developed a database that collects and annotates sequence data and can be accessed through a user-friendly search interface. The HTLV-1 Molecular Epidemiology Database website is available at http://htlv1db.bahia.fiocruz.br/. All data was obtained from publications available at GenBank or through contact with the authors. The database was developed using Apache Webserver 2.1.6 and SGBD MySQL. The webpage interfaces were developed in HTML and sever-side scripting written in PHP. The HTLV-1 Molecular Epidemiology Database is hosted on the Gonçalo Moniz/FIOCRUZ Research Center server. There are currently 2,457 registered sequences with 2,024 (82.37%) of those sequences representing unique isolates. Of these sequences, 803 (39.67%) contain information about clinical status (TSP/HAM, 17.19%; ATL, 7.41%; asymptomatic, 12.89%; other diseases, 2.17%; and no information, 60.32%). Further, 7.26% of sequences contain information on patient gender while 5.23% of sequences provide the age of the patient. The HTLV-1 Molecular Epidemiology Database retrieves and stores annotated HTLV-1 proviral sequences from clinical, epidemiological, and geographical studies. The collected sequences and related information are now accessible on a publically available and user-friendly website. This open-access database will support clinical research and vaccine development related to viral genotype.
2010-01-01
Background Primer and probe sequences are the main components of nucleic acid-based detection systems. Biologists use primers and probes for different tasks, some related to the diagnosis and prescription of infectious diseases. The biological literature is the main information source for empirically validated primer and probe sequences. Therefore, it is becoming increasingly important for researchers to navigate this important information. In this paper, we present a four-phase method for extracting and annotating primer/probe sequences from the literature. These phases are: (1) convert each document into a tree of paper sections, (2) detect the candidate sequences using a set of finite state machine-based recognizers, (3) refine problem sequences using a rule-based expert system, and (4) annotate the extracted sequences with their related organism/gene information. Results We tested our approach using a test set composed of 297 manuscripts. The extracted sequences and their organism/gene annotations were manually evaluated by a panel of molecular biologists. The results of the evaluation show that our approach is suitable for automatically extracting DNA sequences, achieving precision/recall rates of 97.98% and 95.77%, respectively. In addition, 76.66% of the detected sequences were correctly annotated with their organism name. The system also provided correct gene-related information for 46.18% of the sequences assigned a correct organism name. Conclusions We believe that the proposed method can facilitate routine tasks for biomedical researchers using molecular methods to diagnose and prescribe different infectious diseases. In addition, the proposed method can be expanded to detect and extract other biological sequences from the literature. The extracted information can also be used to readily update available primer/probe databases or to create new databases from scratch. PMID:20682041
Bastien, Olivier; Maréchal, Eric
2008-08-07
Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure). Homologous sequences were considered as systems 1) having a high redundancy of information reflected by the magnitude of their alignment scores, 2) which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a constant rate, corresponding to the information hazard rate, and that pairwise sequence alignment scores should follow a Gumbel distribution, which parameters could find some theoretical rationale. In particular, one parameter corresponds to the information hazard rate. Extreme value distribution of alignment scores, assessed from high scoring segments pairs following the Karlin-Altschul model, can also be deduced from the Reliability Theory applied to molecular sequences. It reflects the redundancy of information between homologous sequences, under functional conservative pressure. This model also provides a link between concepts of biological sequence analysis and of systems biology.
On the equivalence of some spectral sequences for Serre fibrations
NASA Astrophysics Data System (ADS)
Onishchenko, Aleksandr Yu; Popelenskii, Fedor Yu
2011-04-01
Several different constructions of a spectral sequence for a Serre fibration \\pi\\colon E \\to B over a compact simply connected manifold B are considered in this paper. Namely, we consider the spectral sequence for the minimal model (\\Lambda V\\otimes \\Lambda W,d) of the fibration, along with the spectral sequences arising from the Čech filtration in the complexes \\check{C}^*(\\mathscr{U}, A_{PL}^*(\\pi^{-1}(U))) and \\check{C}^*(\\mathscr{U}, S^*(\\pi^{-1}(U))), where \\mathscr{U}=\\{U\\} is a covering of the base B. It is known that all these spectral sequences have the same terms E_2^{*,*}=H^*(X)\\otimes H^*(F) and converge to the cohomology of the total space E. A new natural isomorphism of these spectral sequences is constructed in every term E_r with r\\ge2. It is also proved that in the case of a smooth locally trivial fibration these spectral sequences are isomorphic to the spectral sequences of the complex of smooth forms \\Omega^*(E) and of the Čech-de Rham complex. It is therefore established that all these constructions give the same spectral sequence, starting from the E_2 term. Bibliography: 9 titles.
Itskov, Vladimir; Curto, Carina; Pastalkova, Eva; Buzsáki, György
2011-01-01
Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 sec) during wheel running with a precision of 0.5sec. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts. PMID:21414904
Cömert, Numan; Carlı, Oya; Dinçtürk, H Benan
2018-03-08
The populations of Eurasian lynx in Anatolia are as fragmented as the European populations. Although the origins of and the connections between the European lynx populations have been elucidated, there have been no genetic studies on the lynx populations in Turkey. The lack of genetic and evolutionary information about lynx in Anatolia, which is considered to be a biodiversity hotspot, makes it difficult to track the migration routes during the Quaternary. In this study, we present the genetic characteristics of two isolated lynx populations in Southwest Taurus Mountains and the Turkish Caucasus as well as two individuals from Erzincan area. DNA purified from the ecological scat samples collected from Çığlıkara Nature Reserve in Elmalı-Antalya and Allahuekber Mountains in Sarıkamış-Kars, as well as two roadkill samples from Erzincan, has been analysed for phylogenetic markers such as the mitochondrial DNA control region and cytochrome b. The DNA sequences were compared with haplotypes previously detected in populations from Europe and the Caucasus in order to determine the evolutionary relationships of the populations. This study compares the current genetic structure of some of the Turkish lynx populations to the other lynx genetic data, mostly carried out with museum samples around the world. Three haplotypes were found in three different regions of Anatolia. The Northeast and Southwest populations harbour genetically distinct haplotypes, the latter one, a new haplotype: H13-TR is the only phylogenetic connection to the critically endangered Balkan lynx yet to be described.
Vandergast, A.G.; Bohonak, A.J.; Weissman, D.B.; Fisher, R.N.
2007-01-01
Habitat loss and fragmentation due to urbanization are the most pervasive threats to biodiversity in southern California. Loss of habitat and fragmentation can lower migration rates and genetic connectivity among remaining populations of native species, reducing genetic variability and increasing extinction risk. However, it may be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric fragmentation due to previous natural geological and climatic changes. To address these challenges, we examined the phylogenetic and population genetic structure of a flightless insect endemic to cismontane southern California, Stenopelmatus 'mahogani' (Orthoptera: Stenopelmatidae). Analyses of mitochondrial DNA sequence data suggest that diversification across southern California began during the Pleistocene, with most haplotypes currently restricted to a single population. Patterns of genetic divergence correlate with contemporary urbanization, even after correcting for (geographical information system) GIS-based reconstructions of fragmentation during the Pleistocene. Theoretical simulations confirm that contemporary patterns of genetic structure could be produced by recent urban fragmentation using biologically reasonable assumptions about model parameters. Diversity within populations was positively correlated with current fragment size, but not prehistoric fragment size, suggesting that the effects of increased drift following anthropogenic fragmentation are already being seen. Loss of genetic connectivity and diversity can hinder a population's ability to adapt to ecological perturbations commonly associated with urbanization, such as habitat degradation, climatic changes and introduced species. Consequently, our results underscore the importance of preserving and restoring landscape connectivity for long-term persistence of low vagility native species. Journal compilation ?? 2006 Blackwell Publishing Ltd.
Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses
Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.
2017-01-01
Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512
The Influence of Mexican Hat Recurrent Connectivity on Noise Correlations and Stimulus Encoding
Meyer, Robert; Ladenbauer, Josef; Obermayer, Klaus
2017-01-01
Noise correlations are a common feature of neural responses and have been observed in many cortical areas across different species. These correlations can influence information processing by enhancing or diminishing the quality of the neural code, but the origin of these correlations is still a matter of controversy. In this computational study we explore the hypothesis that noise correlations are the result of local recurrent excitatory and inhibitory connections. We simulated two-dimensional networks of adaptive spiking neurons with local connection patterns following Gaussian kernels. Noise correlations decay with distance between neurons but are only observed if the range of excitatory connections is smaller than the range of inhibitory connections (“Mexican hat” connectivity) and if the connection strengths are sufficiently strong. These correlations arise from a moving blob-like structure of evoked activity, which is absent if inhibitory interactions have a smaller range (“inverse Mexican hat” connectivity). Spatially structured external inputs fixate these blobs to certain locations and thus effectively reduce noise correlations. We further investigated the influence of these network configurations on stimulus encoding. On the one hand, the observed correlations diminish information about a stimulus encoded by a network. On the other hand, correlated activity allows for more precise encoding of stimulus information if the decoder has only access to a limited amount of neurons. PMID:28539881
Crash sequence based risk matrix for motorcycle crashes.
Wu, Kun-Feng; Sasidharan, Lekshmi; Thor, Craig P; Chen, Sheng-Yin
2018-04-05
Considerable research has been conducted related to motorcycle and other powered-two-wheeler (PTW) crashes; however, it always has been controversial among practitioners concerning with types of crashes should be first targeted and how to prioritize resources for the implementation of mitigating actions. Therefore, there is a need to identify types of motorcycle crashes that constitute the greatest safety risk to riders - most frequent and most severe crashes. This pilot study seeks exhibit the efficacy of a new approach for prioritizing PTW crash causation sequences as they relate to injury severity to better inform the application of mitigating countermeasures. To accomplish this, the present study constructed a crash sequence-based risk matrix to identify most frequent and most severe motorcycle crashes in an attempt to better connect causes and countermeasures of PTW crashes. Although the frequency of each crash sequence can be computed from crash data, a crash severity model is needed to compare the levels of crash severity among different crash sequences, while controlling for other factors that also have effects on crash severity such drivers' age, use of helmet, etc. The construction of risk matrix based on crash sequences involve two tasks: formulation of crash sequence and the estimation of a mixed-effects (ME) model to adjust the levels of severities for each crash sequence to account for other crash contributing factors that would have an effect on the maximum level of crash severity in a crash. Three data elements from the National Automotive Sampling System - General Estimating System (NASS-GES) data were utilized to form a crash sequence: critical event, crash types, and sequence of events. A mixed-effects model was constructed to model the severity levels for each crash sequence while accounting for the effects of those crash contributing factors on crash severity. A total of 8039 crashes involving 8208 motorcycles occurred during 2011 and 2013 were included in this study, weighted to represent 338,655 motorcyclists involved in traffic crashes in three years (2011-2013)(NHTSA, 2013). The top five most frequent and severe types of crash sequences were identified, accounting for 23 percent of all the motorcycle crashes included in the study, and they are (1) run-off-road crashes on the right, and hitting roadside objects, (2) cross-median crashes, and rollover, (3) left-turn oncoming crashes, and head-on, (4) crossing over (passing through) or turning into opposite direction at intersections, and (5) side-impacted. In addition to crash sequences, several other factors were also identified to have effects on crash severity: use of helmet, presence of horizontal curves, alcohol consumption, road surface condition, roadway functional class, and nighttime condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bonhomme, Vincent; Boveroux, Pierre; Hans, Pol; Brichant, Jean François; Vanhaudenhuyse, Audrey; Boly, Melanie; Laureys, Steven
2011-10-01
To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity.
ERIC Educational Resources Information Center
Greenhow, Christine
2008-01-01
The recent editorial in this journal by Bull et al. ("Connecting Informal and Formal Learning Experiences in the Age of Participatory Media" Vol 8, Iss 2) discussed the challenges of bridging formal learning practices and informal learning opportunities within the context of today's Web-enhanced world. In this commentary, Christine…
Dispersal capacity and genetic relatedness in Acropora cervicornis on the Florida Reef Tract
NASA Astrophysics Data System (ADS)
Drury, Crawford; Paris, Claire B.; Kourafalou, Vassiliki H.; Lirman, Diego
2018-06-01
Sexual reproduction in scleractinian corals is a critical component of species recovery, fostering population connectivity and enhancing genetic diveristy. The relative contribution of sexual reproduction to both connectivity and diversity in Acropora cervicornis may be variable due to this species' capacity to reproduce effectively by fragmentation. Using a biophysical model and genomic data in this threatened species, we construct potential connectivity pathways on the Florida Reef Tract (FRT) and compare them to inferred migration rates derived from next-generation sequencing, using a link and node-based approach. Larval connectivity on the FRT can be divided into two zones: the northern region, where most transport is unidirectional to the north with the Florida Current, and the southern region that is more dynamic and exhibits complex spatial patterns. These biophysical linkages are poorly correlated with genetic connectivity patterns, which resolve many reciprocal connections and suggest a less sparse network. These results are difficult to reconcile with genetic data which indicate that individual reefs are diverse, suggesting important contributions of sexual reproduction and recruitment. Larval connectivity models highlight potential resources for recovery, such as areas with high larval export like the Lower Keys, or areas that are well connected to most other regions on the FRT, such as the Dry Tortugas.
Mobility and Cloud: Operating in Intermittent, Austere Network Conditions
2014-09-01
consume information, and are connected to cloud-based servers over wired or wireless network connections. For mobile clients, this connection, by...near future. In addition to intermittent connectivity issues, many wireless networks introduce additional delay due to excessive buffering. This can...requirements, commercial cloud applications have grown at a fast rate. Similar to other mobile systems, navy ships connected over wireless networks
Modeling genome coverage in single-cell sequencing
Daley, Timothy; Smith, Andrew D.
2014-01-01
Motivation: Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. Results: We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. Availability and implementation: The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. Contact: andrewds@usc.edu Supplementary information: Supplementary material is available at Bioinformatics online. PMID:25107873
Distributed coupling and multi-frequency microwave accelerators
Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp
2016-07-05
A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.
The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi
2016-08-01
The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. © The Author 2016. Published by Oxford University Press.
PubDNA Finder: a web database linking full-text articles to sequences of nucleic acids.
García-Remesal, Miguel; Cuevas, Alejandro; Pérez-Rey, David; Martín, Luis; Anguita, Alberto; de la Iglesia, Diana; de la Calle, Guillermo; Crespo, José; Maojo, Víctor
2010-11-01
PubDNA Finder is an online repository that we have created to link PubMed Central manuscripts to the sequences of nucleic acids appearing in them. It extends the search capabilities provided by PubMed Central by enabling researchers to perform advanced searches involving sequences of nucleic acids. This includes, among other features (i) searching for papers mentioning one or more specific sequences of nucleic acids and (ii) retrieving the genetic sequences appearing in different articles. These additional query capabilities are provided by a searchable index that we created by using the full text of the 176 672 papers available at PubMed Central at the time of writing and the sequences of nucleic acids appearing in them. To automatically extract the genetic sequences occurring in each paper, we used an original method we have developed. The database is updated monthly by automatically connecting to the PubMed Central FTP site to retrieve and index new manuscripts. Users can query the database via the web interface provided. PubDNA Finder can be freely accessed at http://servet.dia.fi.upm.es:8080/pubdnafinder
Leveraging contact network structure in the design of cluster randomized trials.
Harling, Guy; Wang, Rui; Onnela, Jukka-Pekka; De Gruttola, Victor
2017-02-01
In settings like the Ebola epidemic, where proof-of-principle trials have provided evidence of efficacy but questions remain about the effectiveness of different possible modes of implementation, it may be useful to conduct trials that not only generate information about intervention effects but also themselves provide public health benefit. Cluster randomized trials are of particular value for infectious disease prevention research by virtue of their ability to capture both direct and indirect effects of intervention, the latter of which depends heavily on the nature of contact networks within and across clusters. By leveraging information about these networks-in particular the degree of connection across randomized units, which can be obtained at study baseline-we propose a novel class of connectivity-informed cluster trial designs that aim both to improve public health impact (speed of epidemic control) and to preserve the ability to detect intervention effects. We several designs for cluster randomized trials with staggered enrollment, in each of which the order of enrollment is based on the total number of ties (contacts) from individuals within a cluster to individuals in other clusters. Our designs can accommodate connectivity based either on the total number of external connections at baseline or on connections only to areas yet to receive the intervention. We further consider a "holdback" version of the designs in which control clusters are held back from re-randomization for some time interval. We investigate the performance of these designs in terms of epidemic control outcomes (time to end of epidemic and cumulative incidence) and power to detect intervention effect, by simulating vaccination trials during an SEIR-type epidemic outbreak using a network-structured agent-based model. We compare results to those of a traditional Stepped Wedge trial. In our simulation studies, connectivity-informed designs lead to a 20% reduction in cumulative incidence compared to comparable traditional study designs, but have little impact on epidemic length. Power to detect intervention effect is reduced in all connectivity-informed designs, but "holdback" versions provide power that is very close to that of a traditional Stepped Wedge approach. Incorporating information about cluster connectivity in the design of cluster randomized trials can increase their public health impact, especially in acute outbreak settings. Using this information helps control outbreaks-by minimizing the number of cross-cluster infections-with very modest cost in terms of power to detect effectiveness.
Route Sanitizer: Connected Vehicle Trajectory De-Identification Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Jason M; Ferber, Aaron E
Route Sanitizer is ORNL's connected vehicle moving object database de-identification tool and a graphical user interface to ORNL's connected vehicle de-identification algorithm. It uses the Google Chrome (soon to be Electron) platform so it will run on different computing platforms. The basic de-identification strategy is record redaction: portions of a vehicle trajectory (e.g. sequences of precise temporal spatial records) are removed. It does not alter retained records. The algorithm uses custom techniques to find areas within trajectories that may be considered private, then it suppresses those in addition to enough of the trajectory surrounding those locations to protect against "inferencemore » attacks" in a mathematically sound way. Map data is integrated into the process to make this possible.« less
Reconfigurable pipelined processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccardi, R.J.
1989-09-19
This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less
Martínez Barrio, Álvaro; Lagercrantz, Erik; Sperber, Göran O; Blomberg, Jonas; Bongcam-Rudloff, Erik
2009-01-01
Background The Distributed Annotation System (DAS) is a widely used network protocol for sharing biological information. The distributed aspects of the protocol enable the use of various reference and annotation servers for connecting biological sequence data to pertinent annotations in order to depict an integrated view of the data for the final user. Results An annotation server has been devised to provide information about the endogenous retroviruses detected and annotated by a specialized in silico tool called RetroTector. We describe the procedure to implement the DAS 1.5 protocol commands necessary for constructing the DAS annotation server. We use our server to exemplify those steps. Data distribution is kept separated from visualization which is carried out by eBioX, an easy to use open source program incorporating multiple bioinformatics utilities. Some well characterized endogenous retroviruses are shown in two different DAS clients. A rapid analysis of areas free from retroviral insertions could be facilitated by our annotations. Conclusion The DAS protocol has shown to be advantageous in the distribution of endogenous retrovirus data. The distributed nature of the protocol is also found to aid in combining annotation and visualization along a genome in order to enhance the understanding of ERV contribution to its evolution. Reference and annotation servers are conjointly used by eBioX to provide visualization of ERV annotations as well as other data sources. Our DAS data source can be found in the central public DAS service repository, , or at . PMID:19534743
Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information
Kravitz, Dwight J.; Baker, Chris I.
2013-01-01
Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity. PMID:22473894
DOT National Transportation Integrated Search
2018-01-25
This document summarizes positioning and timing related information from the three Connected Vehicle Pilot Deployment Sites (NYCDOT, Tampa/THEA, and WYDOT) as discussed during technical roundtables. Information is largely based on progress to date du...
Kosakovsky Pond, Sergei L; Weaver, Steven; Leigh Brown, Andrew J; Wertheim, Joel O
2018-01-31
In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoeleather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sequence information gain based motif analysis.
Maynou, Joan; Pairó, Erola; Marco, Santiago; Perera, Alexandre
2015-11-09
The detection of regulatory regions in candidate sequences is essential for the understanding of the regulation of a particular gene and the mechanisms involved. This paper proposes a novel methodology based on information theoretic metrics for finding regulatory sequences in promoter regions. This methodology (SIGMA) has been tested on genomic sequence data for Homo sapiens and Mus musculus. SIGMA has been compared with different publicly available alternatives for motif detection, such as MEME/MAST, Biostrings (Bioconductor package), MotifRegressor, and previous work such Qresiduals projections or information theoretic based detectors. Comparative results, in the form of Receiver Operating Characteristic curves, show how, in 70% of the studied Transcription Factor Binding Sites, the SIGMA detector has a better performance and behaves more robustly than the methods compared, while having a similar computational time. The performance of SIGMA can be explained by its parametric simplicity in the modelling of the non-linear co-variability in the binding motif positions. Sequence Information Gain based Motif Analysis is a generalisation of a non-linear model of the cis-regulatory sequences detection based on Information Theory. This generalisation allows us to detect transcription factor binding sites with maximum performance disregarding the covariability observed in the positions of the training set of sequences. SIGMA is freely available to the public at http://b2slab.upc.edu.
Principles of Gestalt Psychology and Their Application to Teaching Junior High School Science
ERIC Educational Resources Information Center
Blosser, Patricia E.
1973-01-01
Discusses insightful learning, trace system,'' and laws of perception and Pragnanz in connection with problem solving and critical thinking in science teaching. Suggests 19 guidelines for sequencing curriculum and identifying activities for use in science classes. (CC)
Add-On Shielding for Unshielded Wire
NASA Technical Reports Server (NTRS)
Koenig, J. C.; Billitti, J. W.; Tallon, J. M.
1983-01-01
Fabrication sequence used to produce compact shields slipped into place from free ends of wires already soldered into connectors at other ends. Single shields are formed into harnesses by connecting grounding jumpers. Technique is especially useful for small diameter wire attached to microminiature connectors.