Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues
Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire
2017-01-01
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult. PMID:28386539
Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.
Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire
2017-01-01
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Comparative anatomy of the dorsal hump in mature Pacific salmon.
Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki
2017-07-01
Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz
2012-01-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L
2011-12-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.
Jugdaohsingh, Ravin; Watson, Abigail I E; Pedro, Liliana D; Powell, Jonathan J
2015-06-01
Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than previously estimated which could explain why absolute silicon deficiency is difficult to achieve but, when it is achieved in young growing animals, it results in stunted growth and abnormal development of bone and other connective tissues. Copyright © 2015. Published by Elsevier Inc.
Jugdaohsingh, Ravin; Watson, Abigail I.E.; Pedro, Liliana D.; Powell, Jonathan J.
2015-01-01
Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague–Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n = 8–10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2–6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague–Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than previously estimated which could explain why absolute silicon deficiency is difficult to achieve but, when it is achieved in young growing animals, it results in stunted growth and abnormal development of bone and other connective tissues. PMID:25687224
Stafeev, А А
2015-01-01
False formation of connective tissues have a great influence on structure and function of organs and tissues of the human body. In prosthodontics, the changes in connective tissues greatly occur during clinical stages of preparing metal ceramic dentures. The algorithm of treatment patients with connective tissue dysplasia during metal ceramic dentures was developed and introduced into practical dentistry based on studying the morphology and functionality of dentition and clinical experience.
Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar
2018-03-29
Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.
Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.
Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M
2016-01-01
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.
Connective tissue fibroblasts and Tcf4 regulate myogenesis
Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle
2011-01-01
Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349
Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat
Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.
2011-01-01
Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968
Maquart, François-Xavier; Borel, Jacques-Paul
2012-01-01
The history of connective tissue research began in the late 18th century. However, it is only 50 years later that the concept of connective tissue was shaped. It took another fifty years before biochemical knowledge of extracellular matrix macromolecules began to emerge in the first half of the 20th century. In 1962, thanks to Ladislas and Barbara Robert, back from the US, the first society called "French Connective Tissue Club" was created in Paris. The first board was constituted of Albert Delaunay, Suzanne Bazin and Ladislas Robert. Very quickly, under the influence of these pioneers, national and international meetings were organized and, in 1967, a "Federation of the European Connective Tissue Clubs" was created at the initiative of Ladislas Robert (Paris) and John Scott (Manchester). It spread rapidly to the major European nations. In 1982 the transformation of "Clubs" in "Societies" occurred, a name more in line with the requirements of the time. In 2008, the "French Connective Tissue Society" became the "French Society of Extracellular Matrix Biology" ("Société Française de Biologie de la Matrice Extracellulaire", SFBMEc), to better highlight the importance of the extracellular matrix in the biology of living organisms. The SFBMEc's mission today is to promote and develop scientific exchanges between academic, industrial, and hospital laboratories involved in research on the extracellular matrix. SFBMEc organizes or subsidizes scientific meetings and awards scholarships to Ph.D. students or post-docs to participate in international conferences. It includes 200 to 250 members from different disciplines, developing strong interactions between scientists, clinicians and pathologists. It is present all around the French territory in many research laboratories. During these last 50 years, the extraordinary advances made possible by the development of new investigation techniques, in particular molecular biology, cell and tissue imaging, molecular modeling, etc., have permitted a considerable increase of the knowledge in the field of connective tissue. © Société de Biologie, 2012.
Sorokina, Iryna V; Myroshnychenko, Mykhailo S; Kapustnyk, Nataliia V; Khramova, Tetyana O; Dehtiarova, Oksana V; Danylchenko, Svitlana I
2018-01-01
Introduction: The kidneys connective tissue condition in the antenatal period affects the formation of tissues and it changes with the development of various general pathological processes in this organ. The aim of the study was to identify the morphological features of kidneys connective tissue of fetuses and newborns from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity. Materials and methods: The material of the study was the tissue of kidneys of mature fetuses and newborns from mothers with physiological pregnancy (28 cases), as well as from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity (78 cases). Immunohistochemical study was performed by an indirect Coons method according to M. Brosman's technique using monoclonal antibodies to collagen type I, III and IV. Results: The kidneys connective tissue of fetuses and newborns developing under the maternal preeclampsia conditions is characterized by the qualitative and quantitative changes that indicate the development of sclerotic processes in this organ, the severity of which increase with the age and with the increase of the maternal preeclampsia severity. Qualitative changes are characterized by an increase of the fibrous component, thickening of the bundles of connective tissue fibers, and a decrease in the distance between them. Quantitative changes are characterized by a pronounced predominance of collagen fibers over elastic fibers, almost total absence in some field of view elastic fibers and the violation of the content of collagen type I, III and IV. Conclusion: Maternal preeclampsia underlies the development of qualitative and quantitative changes in kidneys connective tissue of fetuses and newborns, which as a result will lead to disruption of the functions of these organs in such children.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R
2014-07-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.
Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.
2014-01-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816
Shimoda, Shinji; Mishima, Kenji; Higashiyama, Hiroyuki; Idaira, Yayoi; Asada, Yoshinobu; Kitamura, Hiroshi; Yamasaki, Satoru; Hojyo, Shintaro; Nakayama, Manabu; Ohara, Osamu; Koseki, Haruhiko; dos Santos, Heloisa G.; Bonafe, Luisa; Ha-Vinh, Russia; Zankl, Andreas; Unger, Sheila; Kraenzlin, Marius E.; Beckmann, Jacques S.; Saito, Ichiro; Rivolta, Carlo; Ikegawa, Shiro; Superti-Furga, Andrea; Hirano, Toshio
2008-01-01
Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction. PMID:18985159
Tyumentseva, N V; Yushkov, B G; Medvedeva, S Y; Kovalenko, R Y; Uzbekov, O K; Zhuravlev, V N
2016-12-01
Experiments on laboratory rats have shown the feasibility of autoplastic repair of urinary bladder wall defects using a connective-tissue capsule formed as the result of an inflammatory response to the presence of a foreign body. The formation of connective tissue prosthesis is characterized by developing fibrous connective tissue, ordering of collagen fibers, reducing the number of cells per unit area with a predominance of more mature cells - fibroblasts. With increasing time of observation, connective tissue prostheses were found to acquire a morphological structure similar to that of the urinary bladder wall. By month 12, the mucosa, the longitudinal and circular muscle layers were formed. The proposed method of partial autoplastic repair of urinary bladder wall is promising, has good long-term results, but requires further experimental studies.
The application of quantitative cytochemistry to the study of diseases of the connective tissues.
Henderson, B
1983-01-01
The connective tissues are a complex organisation of tissues, cells and intercellular materials spread throughout the body and are subject to a large number of diseases. Such complexity makes the study of the metabolism of the connective tissues in health and more particularly in disease states difficult if one uses conventional biochemical methodology. Fortunately the techniques of quantitative cytochemistry, as developed in recent years, have made it possible to study the metabolism of even such complex and refractory connective tissues as bone. Using properly validated assays of enzyme activity in unfixed sections from various tissues a number of the diseases of the connective tissues have been studied. For example the synovia from patients with rheumatoid arthritis and related conditions have been studied using these techniques and marked alterations in the metabolism of the synovial lining cell population of this tissue have been demonstrated. These alterations in metabolism are believed to be related to the destruction of cartilage and bone found in such diseases. Investigations of the metabolism of the chondrocytes of articular cartilage in a strain of mice which spontaneously develops osteoarthritis has revealed a lack of certain key enzymes of carbohydrate metabolism in precisely those areas where degradation of the matrix of articular cartilage begins suggesting a causal relationship between these events. These same techniques have been used to study the cellular kinetics and metabolism of the dermis and epidermis in the disfiguring disease, psoriasis. The metabolism of healing bone fractures, the diagnosis and treatment of the mucopolysaccharidoses and the metabolic effects of currently used anti-inflammatory and anti-rheumatic drugs have also been examined. Perhaps the most exciting aspect of these studies has been the development and use of the technique of the cytochemical bioassay (CBA) to study hormonally mediated diseases of the connective tissues. Such studies have recently shed new light on the molecular lesion in pseudohypoparathyroidism. Though still in their relative infancy the studies described in this review show the potential inherent in the use of quantitative cytochemistry for the study of diseases of the connective tissues.
Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.
2015-01-01
Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024
Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José
2013-01-01
In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p < 0.001). It has been suggested that the biological response to large pressure amplitude low frequency noise exposure is associated with the need to maintain structural integrity. The structural reinforcement would be achieved by increased perivasculo-ductal connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.
Optical Histology: High-Resolution Visualization of Tissue Microvasculature
NASA Astrophysics Data System (ADS)
Moy, Austin Jing-Ming
Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.
Agarwal, Ashish; Gupta, Narinder Dev
2015-01-01
Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.
Identifying the architecture of a supracellular actomyosin network that induces tissue folding
NASA Astrophysics Data System (ADS)
Yevick, Hannah; Stoop, Norbert; Dunkel, Jorn; Martin, Adam
During embryonic development, the establishment of correct tissue form ensures proper tissue function. Yet, how the thousands of cells within a tissue coordinate force production to sculpt tissue shape is poorly understood. One important tissue shape change is tissue folding where a cell sheet bends to form a closed tube. Drosophila (fruit fly) embryos undergo such a folding event, called ventral furrow formation. The ventral furrow is associated with a supracellular network of actin and myosin, where actin-myosin fibers assemble and connect between cells. It is not known how this tissue-wide network grows and connects over time, how reproducible it is between embryos, and what determines its architecture. Here, we used topological feature analysis to quantitatively and dynamically map the connections and architecture of this supracellular network across hundreds of cells in the folding tissue. We identified the importance of the cell unit in setting up the tissue-scale architecture of the network. Our mathematical framework allows us to explore stereotypic properties of the myosin network such that we can investigate the reproducibility of mechanical connections for a morphogenetic process. NIH F32.
Madiyeva, M; Rymbayeva, T
2017-11-01
The frequency of the combination of congenital heart defects (CHD) and connective tissue dysplasia remains poorly understood. And connective tissue dysplasia enhance severity the clinical of CHD. The aim of the study was to conduct a clinical and laboratory analysis of combinations of congenital heart defects and connective tissue dysplasia in children of Semey and to determine the risk for the development of these pathologies. The object of the study is the children of Semey (East Kazakhstan) aged 1-14 with congenital heart defects (CHD), with connective tissue dysplasia, healthy children and their mothers. Definition complex clinical and laboratory studies in children with CHD and connective tissue dysplasia, and their mothers. In children with CHD, the frequency of external and visceral signs of dysplasia was high. In 88.1% of cases in children with CHD was diagnosed 2-3 degrees of dysplasia. Was found difference in the microelement composition of blood serum and of hemostasis in children with CHD were expressed by hypofibrinogenemia, hypocalcemia, hypomagnesemia. Excess of the frequency of signs of dysplasia in mothers over the control group to consider dysplasia as a factor that influences the clinical of CHD.
[The gastrointestinal tract microbiom in connective tissue diseases].
Krajewska-Włodarczyk, Magdalena
Factors such as genetics, the environment, infections, and the human body microbiota, mainly gastrointestinal tract microbiota may play a role in the pathogenesis of autoimmune disorders. There is an increasing evidence that suggest an association between gastrointestinal tract dysbiosis, and in particular gut dysbiosis, and connective tissue diseases but it still remains unclear whether alterations in the microbiome are a pathogenic cause or an effect of autoimmune disease. Given the strong variability and abundance of microbes living in close relation with human host, it becomes a difficult task to define what should be considered the normal or the favorable microbiome. Further studies are needed to establish how the human microbiome contributes to disease susceptibility, and to characterize the role of microbial diversity in the pathogenesis of connective tissue diseases and their clinical manifestations. The identification of dysbiosis specific for certain connective tissue diseases may help in the development of an individualized management for each patient. This review aims to summarize current data on the role of the gastrointestinal tract microbiome in connective tissue diseases.
Lepetit, J
2007-05-01
This work concerns the relationship between meat tenderness and the rubber-like properties, i.e. pressure and elastic modulus, that endomysium and perimysium connective tissues develop when meat has been heated to a temperature above which collagen contracts. For rest length meats with similar intramuscular connective tissue morphology, and which are at the same ageing state and pH, the elastic modulus of the collagenous fraction of connective tissues is approximately proportional to the total number of collagen cross-links present per volume of meat. Calculations from various published experiments concerned with the effect on tenderness of muscle type, animal age, type, and sex from different species show that this modulus follows most of the variations of meat toughness. Moreover, the proportionality between the increase in this elastic modulus and the increase in meat toughness approaches unity in situations where toughness mainly depends on connective tissues. This work demonstrates the decisive role of rubber-like properties of connective tissues in meat tenderness variations.
NASA Astrophysics Data System (ADS)
Monici, Monica; Basile, Venere; Cialdai, Francesca; Romano, Giovanni; Fusi, Franco; Conti, Antonio
2008-04-01
Many studies demonstrated that mechanical stress is a key factor for tissue homeostasis, while unloading induce loss of mass and impairment of function. Because of their physiological function, muscle, connective tissue, bone and cartilage dynamically interact with mechanical and gravitational stress, modifying their properties through the continuous modification of their composition. Indeed, it is known that mechanical stress increases the production of extracellular matrix (ECM) components by cells, but the mechanotransduction mechanisms and the optimal loading conditions required for an optimal tissue homeostasis are still unknown. Considering the importance of cell activation and ECM production in tissue regeneration, a proper use of mechanical stimulation could be a powerful tool in tissue repair and tissue engineering. Studies exploring advanced modalities for supplying mechanical stimuli are needed to increase our knowledge on mechanobiology and to develop effective clinical applications. Here we describe the effect of photomechanical stress, supplied by a pulsed Nd:YAG laser on ECM production by cells of connective tissues. Cell morphology, production of ECM molecules (collagens, fibronectin, mucopolysaccharides), cell adhesion and cell energy metabolism have been studied by using immunofluorescence and autofluorescence microscopy. The results show that photomechanical stress induces cytoskeleton remodelling, redistribution of membrane integrins, increase in production of ECM molecules. These results could be of consequence for developing clinical protocols for the treatment of connective tissue dideases by pulsed Nd:YAG laser.
Agarwal, Ashish; Gupta, Narinder Dev
2015-01-01
Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch. PMID:26759591
[Mathematic analysis of risk factors influence on occupational respiratory diseases development].
Budkar', L N; Bugaeva, I V; Obukhova, T Iu; Tereshina, L G; Karpova, E A; Shmonina, O G
2010-01-01
Analysis covered 1348 case histories of workers exposed to industrial dust in Urals region. The analysis applied mathematical processing of survival theory and correlation analysis. The authors studied influence of various factors: dust concentration, connective tissue dysplasia, smoking habits--on duration for diseases caused by dust to appear. Findings are that occupational diseases develop reliably faster with higher ambient dust concentrations and with connective tissue dysplasia syndrome. Smoking habits do not alter duration of pneumoconiosis development, but reliably increases development of occupational dust bronchitis.
Kasten, Robert; Pfirrmann, Gudrun; Voigtländer, Volker
2005-08-01
A 43-year-old male with eunuchoid body proportions and a history of deep venous thromboses in the right leg presented with recurrent ulcers in the right perimalleolar region for 6 years. Karyotyping revealed a 47 XXY Klinefelter's syndrome, while serologic testing showed protein S deficiency, hyperhomocysteinemia and positive lupus anticoagulant. He also had mixed connective tissue disease (Sharp's syndrome) with acrosclerosis, proximal finger edema, Raynaud's phenomenon, and high titers of ANA and U1-RNP-antibodies, as well as osteoporosis. There is evidence that patients with Klinefelter's syndrome are prone to develop connective tissue diseases and thrombophilia as a result of low androgen levels. Substitution of testosterone in Klinefelter's syndrome can have a favorable therapeutic effect on the associated connective tissue disease, thrombophilia and osteoporosis.
Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni
2014-01-01
Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discrete pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. © 2013.
Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni
2013-01-01
Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discreet pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. PMID:23891698
Effect of MELT method on thoracolumbar connective tissue: The full study.
Sanjana, Faria; Chaudhry, Hans; Findley, Thomas
2017-01-01
Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Evaluation of Cepan Cream after 15 years of treatment of burn scars].
Stozkowska, Wiesława
2002-01-01
Cepan Cream is used for the topical treatment of scars and keloids resulting from burns, post-operative scars, and contractures. Cepan Cream makes scars more elastic, softer and paler. Plant extracts, heparin and allantoin in Cepan act on the biochemical processes in the developing connective tissue, preventing the formation of hyperplastic scars. These active ingredients enhance swelling, softening and loosening of connective tissue. It exerts softening and smoothing action on indurated and hyperplastic scar tissue, improving collagen structure. It promotes tissue regeneration and reduces exuberant granulation. Cepan is well tolerated.
Hematopoietic stem cell origin of connective tissues.
Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K
2010-07-01
Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.
Gurski, Lisa A; Xu, Xian; Labrada, Lyana N; Nguyen, Ngoc T; Xiao, Longxi; van Golen, Kenneth L; Jia, Xinqiao; Farach-Carson, Mary C
2012-01-01
To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, "invadopodia", consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of biological processes associated with cancer cell motility through HA-rich connective tissues.
Durmus, Nedim; Park, Sung-Hyun; Reibman, Joan; Grunig, Gabriele
2016-11-01
Scleroderma and other autoimmune-induced connective tissue diseases are characterized by dysfunctions in the immune system, connective tissue and the vasculature. We are focusing on systemic sclerosis (SSc)-associated pulmonary hypertension, which remains a leading cause of death with only a 50-60% of 2-year survival rate. Much research and translational efforts have been directed at understanding the immune response that causes SSc and the networked interactions with the connective tissue and the vasculature. One of the unexpected findings was that in some cases the pathogenic immune response in SSc resembles the immune response to helminth parasites. During coevolution, means of communication were developed which protect the host from over-colonization with parasites and which protect the parasite from excessive host responses. One explanation for the geographically clustered occurrence of SSc is that environmental exposures combined with genetic predisposition turn on triggers of molecular and cellular modules that were once initiated by parasites. Future research is needed to further understand the parasite-derived signals that dampen the host response. Therapeutic helminth infection or treatment with parasite-derived response modifiers could be promising new management tools for autoimmune connective tissue diseases.
Fetal programming of fat and collagen in porcine skeletal muscles
Karunaratne, JF; Ashton, CJ; Stickland, NC
2005-01-01
Connective tissue plays a key role in the scaffolding and development of skeletal muscle. Pilot studies carried out in our laboratory have shown that the smallest porcine littermate has a higher content of connective tissue within skeletal muscle compared with its largest littermate. The present study investigated the prenatal development of intralitter variation in terms of collagen content within connective tissue and intramuscular fat of the M. semitendinosus. Twenty-three pairs of porcine fetuses from a Large White–Landrace origin were used aged from 36 to 86 days of gestation. The largest and smallest littermates were chosen by weight and the M. semitendinosus was removed from each. Complete transverse muscle sections were stained with Oil Red O (detection of lipids) and immunocytochemistry was performed using an antibody to collagen I. Slides were analysed and paired t-Tests revealed the smallest littermate contained a significantly higher proportion of fat deposits and collagen I content compared with the largest littermate. Recent postnatal studies showing elevated levels of intramuscular lipids and low scores for meat tenderness in the smallest littermate corroborate our investigations. It can be concluded that the differences seen in connective tissue elements have a fetal origin that may continue postnatally. PMID:16367803
Abbott, Rosalyn D; Koptiuch, Cathryn; Iatridis, James C; Howe, Alan K; Badger, Gary J; Langevin, Helene M
2012-01-01
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross-sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in and dissociated from areolar and dense connective tissue in response to 2 hours of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet-like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch-induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells’ tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. PMID:22552950
Mixed Connective Tissue Disease
Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...
Acoustic properties of healthy and reconstructed cleft lip
NASA Astrophysics Data System (ADS)
Thijssen, Johan M.; van Hees, Nancy J.; Weijers, Gert G.; Huyskens, Rinske W.; Nillesen, Maartje; Katsaros, Christos; de Korte, Chris L.
2006-03-01
The feasibility of echographic imaging of the tissues in healthy lip and in reconstructed cleft lip and estimating the dimensions and the normalized echo level of these tissues is investigated. Echographic images of the upper lip were made with commercial medical ultrasound equipment, using a linear array transducer (7-11 MHz bandwidth) and a non-contact gel coupling. Tissue dimensions were measured by means of software calipers. Echo levels were calibrated and corrected for beam characteristics, gel path and tissue attenuation by using a tissue-mimicking phantom. At central position of philtrum, mean thickness (and standard deviation) of lip loose connective tissue layer, orbicularis oris muscle and dense connective layer was 4.0 (sd 0.1) mm, 2.3 (sd 0.7) mm, 2.2 (sd 0.7) mm, respectively, in healthy lip at rest. Mean (sd) echo level of muscle and dense connective tissue layer with respect to echo level of lip loose connective tissue layer was in relaxed condition: - 19.3 (sd 0.6) dB and - 10.7 (sd 4.0) dB, respectively. Echo level of loose connective tissue layer was +25.6 (sd 4.2) dB relative to phantom echo level obtained in the focus of the transducer. Color mode echo images were calculated, after adaptive filtering of the images, which show the tissues in separate colors and highlight the details of healthy lip and reconstructed cleft lip. Quantitative assessment of thickness and echo level of various lip tissues is feasible after proper calibration of the echographic equipment. Diagnostic potentials of the developed quantitative echographic techniques for non-invasive evaluation of the outcome of cleft lip reconstruction are promising.
Roesch-Ely, Mariana; Schnölzer, Martina; Nees, Matthias; Plinkert, Peter K; Bosch, Franz X
2010-01-01
We reasoned that micro-dissection of tumour cells for protein expression studies should be omitted since tumour-stroma interactions are an important part of the biology of solid tumours. To study such interactions in head and neck squamous cell carcinoma (HNSCC) development, we generated reference protein spectra for normal squamous epithelium and connective tissue by SELDI-TOF-MS. Calgranulins A and B, Annexin1 and Histone H4 were found to be strongly enriched in the epithelium. The alpha-defensins 1-3 and the haemoglobin subunits were identified in the connective tissue. Tumour-distant epithelia, representing early pre-malignant lesions, showed up-regulated expression of the stromal alpha-defensins, whereas the epithelial Annexin 1 was down-regulated. Thus, tumour microenvironment interactions occur very early in the carcinogenic process. These data demonstrate that omitting micro-dissection is actually beneficial for studying changes in protein expression during development and progression of solid tumours.
Ishikawa, Kazuo; Nakao, Shota; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco; Matsuoka, Tetsuya; Nakamuro, Makoto; Shimazu, Takeshi
2014-12-01
Recently, the radiological concept of retroperitoneal interfascial planes has been widely accepted to explain the extension of retroperitoneal pathologies. This study aimed to explore embryologically based corroborative evidence, which remains to be elucidated, for this concept. Using serial or semi-serial transverse sections from 29 human fetuses at the 5th-25th week of fetal age, we microscopically observed the development of the retroperitoneal fasciae and other structures in the retroperitoneal connective tissue. A hypothesis for the formation of the interfascial planes was generated from the developmental study and analysis of retroperitoneal fasciae in computed tomography images from 224 patients. Whereas the loose connective tissue was uniformly distributed in the retroperitoneum by the 9th week, the primitive renal and transversalis fasciae appeared at the 10th-12th week, as previous research has noted. By the 23rd week, the renal fascia, transversalis fascia, and primitive adipose tissue of the flank pad emerged. In addition, the primitive lateroconal fascia, which runs parallel to and close to the posterior renal fascia, emerged between the renal fascia and the adipose tissue of the flank pad. Conversely, pre-existing loose connective tissue was sandwiched between the opposing fasciae and was compressed and narrowed by the developing organs and fatty tissues. Through this developmental study, we provided the hypothesis that the compressed loose connective tissue and both opposed fasciae compose the interfascial planes. Analysis of the thickened retroperitoneal fasciae in computed tomography images supported this hypothesis. Further developmental or histological studies are required to verify our hypothesis.
Undifferentiated Connective Tissue Disease
... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...
Morphogenetic events in the perinodal connective tissue in a metastatic cancer model.
Conti, G; Minicozzi, A; Merigo, F; Marzola, P; Osculati, F; Cordiano, C; Sbarbati, A
2013-02-01
The modifications of connective tissue surrounding metastatic lymph nodes in a murine model of rectal cancer are described. Athymic nude mice (n=36) were inoculated with 10×10(5) ht-29 cancer cells into the submucosal layer of the rectum. Control mice (n=5) were treated with a sterile buffer. Tumor and the involved lymph nodes were visualized in vivo by magnetic resonance imaging at 1 to 4 weeks after cell injection. After the sacrifice, the excised samples were processed for histology. After one week from cell injection all treated animals developed rectal cancer. Since the first week, neoplastic cells were visible in the nodes. In the surrounding connective tissue, the diameter of the adipocytes was reduced and a mesenchymal-like pattern with stellate cells embedded in an oedematous environment was visible. Since the second week, in the perinodal connective an enlargement of the stroma was present. The tissue was organized in cords and areas with extracellular accumulation of lipids were found. At the fourth week, we observed an enlargement of multilocular areas and lobules of elongated elements almost devoid of lipid droplets. In control animals, in absence of neoplastic masses, pelvic nodes were surrounded by a typical connective tissue characterized by unilocular adipocytes with groups of multilocular adipocytes. We have developed a model of rectal cancer with nodal metastases. Using this model, the work demonstrates that around secondary lesions, the morphogenetic events follow a standard evolution characterized by an early phase with lipolysis and mesenchymalization and later phases with a brown-like phenotype acquisition. Copyright © 2012. Published by Elsevier SAS.
Radiotherapy in patients with connective tissue diseases.
Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo
2016-03-01
The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Muscles and connective tissue: histology].
Delage, J-P
2012-10-01
Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism. Copyright © 2012. Published by Elsevier SAS.
Ahn, Jae-Jin; Shin, Hong-In
2008-01-01
To investigate postextraction bone formation over time in both diseased and healthy sockets. Core specimens of healing tissues following tooth extraction were obtained at the time of implant placement in patients treated between October 2005 and December 2007. A disease group and a control group were classified according to socket examination at the time of extraction. The biopsy specimens were analyzed histomorphometrically to measure the dimensional changes among 3 tissue types: epithelial layer, connective tissue area, and new bone tissue area. Fifty-five specimens from sites of previously advanced periodontal disease from 45 patients were included in the disease group. Another 12 specimens of previously healthy extraction sockets were collected from 12 different patients as a control. The postextraction period of the disease group varied from 2 to 42 weeks. In the disease group, connective tissue occupied most of the socket during the first 4 weeks. New bone area progressively replaced the connective tissue area after the first 4 weeks. The area proportion of new bone tissue exceeded that of connective tissue by 14 weeks. After 20 weeks, most extraction sockets in the disease group demonstrated continuous new bone formation. The control group exhibited almost complete socket healing after 10 weeks, with no more new bone formation after 20 weeks. Osseous regeneration in the diseased sockets developed more slowly than in the disease-free sockets. After 16 weeks, new bone area exceeded 50% of the total newly regenerated tissue in the sockets with severe periodontal destruction. In the control group, after 8 weeks, new bone area exceeded 50% of the total tissue.
[Systemic lupus erythematosus and pregnancy].
Basheva, S; Nikolov, A; Stoilov, R; Stoilov, N
2012-01-01
Connective-tissue disorders, also referred to as collagen-vascular disorders, are characterized by autoantibody-mediated connective-tissue abnormalities. These are also called immune-complex diseases because many involve deposition of immune complexes in specific organ or tissue sites. Some of these disorders are characterized by sterile inflammation, especially of the skin, joints, blood vessels, and kidneys, and are referred to as rheumatic diseases. For inexplicable reasons, many rheumatic diseases primarily affect women. Another major category of connective-tissue diseases includes inherited disorders of bone, skin, cartilage, blood vessels. Examples include Marfan syndrome, osteogenesis imperfecta, and Ehlers-Danlos syndrome. Lupus erythematosus (LE) is the main and most important disease in the group of systemic connective tissue diseases. It is heterogeneous, multiple organs autoimmune inflammatory disease with complex pathogenesis, which is the result of interaction between the susceptible genes and environmental factors that lead to abnormal immune response. In this review will consider: its incidence, pathogenesis, clinical forms and clinical features and diagnosis set based on generally accepted clinical criteria developed by the American College of Rheumatology (ACR), the course of pregnancy in patients suffering from LE, the most common complications of LE during pregnancy and antiphospholipid syndrome as part of LE.
Castejón, Diego; Rotllant, Guiomar; Ribes, Enric; Durfort, Mercè; Guerao, Guillermo
2018-06-01
The esophagus of the eucrustaceans is known as a short tube that connects the mouth with the stomach but has generally received little attention by the carcinologists, especially during the larval stages. By this reason, the present study is focused on the morphology and ultrastructure of the esophagus in the brachyuran Maja brachydactyla during the larval development and adult stage. The esophagus shows internally four longitudinal folds. The simple columnar epithelium is covered by a thick cuticle. The epithelial cells of the adults are intensively interdigitated and show abundant apical mitochondria and bundles of filamentous structures. The cuticle surface has microspines and mutually exclusive pores. Three muscle layers surrounded by the connective tissue are reported: circular muscles forming a broad continuous band, longitudinal muscle bundles adjacent to the circular muscles, and dilator muscles crossing the connective tissue vertically toward the epithelium. The connective tissue has rosette glands. The esophagus of the larvae have epithelial cells with big vesicles but poorly developed interdigitations and filamentous structures, the cuticle is formed by a procuticle without differentiated exocuticle and endocuticle, the connective layer is thin and the rosette glands are absent. The observed features can be explained by his role in the swallowing of the food. © 2018 Wiley Periodicals, Inc.
Yang, Hongli; Reynaud, Juan; Lockwood, Howard; Williams, Galen; Hardin, Christy; Reyes, Luke; Stowell, Cheri; Gardiner, Stuart K; Burgoyne, Claude F
2017-07-01
In a series of previous publications we have proposed a framework for conceptualizing the optic nerve head (ONH) as a biomechanical structure. That framework proposes important roles for intraocular pressure (IOP), IOP-related stress and strain, cerebrospinal fluid pressure (CSFp), systemic and ocular determinants of blood flow, inflammation, auto-immunity, genetics, and other non-IOP related risk factors in the physiology of ONH aging and the pathophysiology of glaucomatous damage to the ONH. The present report summarizes 20 years of technique development and study results pertinent to the characterization of ONH connective tissue deformation and remodeling in the unilateral monkey experimental glaucoma (EG) model. In it we propose that the defining pathophysiology of a glaucomatous optic neuropathy involves deformation, remodeling, and mechanical failure of the ONH connective tissues. We view this as an active process, driven by astrocyte, microglial, fibroblast and oligodendrocyte mechanobiology. These cells, and the connective tissue phenomena they propagate, have primary and secondary effects on retinal ganglion cell (RGC) axon, laminar beam and retrolaminar capillary homeostasis that may initially be "protective" but eventually lead to RGC axonal injury, repair and/or cell death. The primary goal of this report is to summarize our 3D histomorphometric and optical coherence tomography (OCT)-based evidence for the early onset and progression of ONH connective tissue deformation and remodeling in monkey EG. A second goal is to explain the importance of including ONH connective tissue processes in characterizing the phenotype of a glaucomatous optic neuropathy in all species. A third goal is to summarize our current efforts to move from ONH morphology to the cell biology of connective tissue remodeling and axonal insult early in the disease. A final goal is to facilitate the translation of our findings and ideas into neuroprotective interventions that target these ONH phenomena for therapeutic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mineralization/Anti-Mineralization Networks in the Skin and Vascular Connective Tissues
Li, Qiaoli; Uitto, Jouni
2014-01-01
Ectopic mineralization has been linked to several common clinical conditions with considerable morbidity and mortality. The mineralization processes, both metastatic and dystrophic, affect the skin and vascular connective tissues. There are several contributing metabolic and environmental factors that make uncovering of the precise pathomechanisms of these acquired disorders exceedingly difficult. Several relatively rare heritable disorders share phenotypic manifestations similar to those in common conditions, and, consequently, they serve as genetically controlled model systems to study the details of the mineralization process in peripheral tissues. This overview will highlight diseases with mineral deposition in the skin and vascular connective tissues, as exemplified by familial tumoral calcinosis, pseudoxanthoma elasticum, generalized arterial calcification of infancy, and arterial calcification due to CD73 deficiency. These diseases, and their corresponding mouse models, provide insight into the pathomechanisms of soft tissue mineralization and point to the existence of intricate mineralization/anti-mineralization networks in these tissues. This information is critical for understanding the pathomechanistic details of different mineralization disorders, and it has provided the perspective to develop pharmacological approaches to counteract the consequences of ectopic mineralization. PMID:23665350
Van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M.C.; Van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J.F.
2014-01-01
Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR. PMID:24217924
New perspectives on rare connective tissue calcifying diseases.
Rashdan, Nabil A; Rutsch, Frank; Kempf, Hervé; Váradi, András; Lefthériotis, Georges; MacRae, Vicky E
2016-06-01
Connective tissue calcifying diseases (CTCs) are characterized by abnormal calcium deposition in connective tissues. CTCs are caused by multiple factors including chronic diseases (Type II diabetes mellitus, chronic kidney disease), the use of pharmaceuticals (e.g. warfarin, glucocorticoids) and inherited rare genetic diseases such as pseudoxanthoma elasticum (PXE), generalized arterial calcification in infancy (GACI) and Keutel syndrome (KTLS). This review explores our current knowledge of these rare inherited CTCs, and highlights the most promising avenues for pharmaceutical intervention. Advancing our understanding of rare inherited forms of CTC is not only essential for the development of therapeutic strategies for patients suffering from these diseases, but also fundamental to delineating the mechanisms underpinning acquired chronic forms of CTC. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Teng, F; Chen, H; Xu, Y; Liu, Y; Ou, G
2018-04-01
Nowadays, most designs for the transmucosal surface of implants are machined-smooth. However, connective tissue adhered to the smooth surface of an implant has poor mechanical resistance, which can render separation of tissue from the implant interface and induce epithelial downgrowth. Modification of the transmucosal surface of implants, which can help form a good seal of connective tissue, is therefore desired. We hypothesized that anodic oxidation (AO) and polydopamine (PD) deposition could be used to enhance the attachment between an implant and peri-implant connective tissue. We tested this hypothesis in the mandibles of Beagle dogs. AO and PD were used to modify the transmucosal region of transmucosal implants (implant neck). The surface microstructure, surface roughness and elemental composition were investigated in vitro. L929 mouse fibroblasts were cultured to test the effect of PD on cell adhesion. Six Beagle dogs were used for the in vivo experiment (n = 6 dogs per group). Three months after building the edentulous animal model, four groups of implants (control, AO, PD and AO + PD) were inserted. After 4 months of healing, samples were harvested for histometric analyses. The surfaces of anodized implant necks were overlaid with densely distributed pores, 2-7 μm in size. On the PD-modified surfaces, N1s, the chemical bond of nitrogen in PD, was detected using X-ray photoelectron spectroscopy. L929 developed pseudopods more quickly on the PD-modified surfaces than on the surfaces of the control group. The in vivo experiment showed a longer connective tissue seal and a more coronally located peri-implant soft-tissue attachment in the AO + PD group than in the control group (P < .05). The modification of AO + PD on the implant neck yielded better attachment between the implant and peri-implant connective tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...
Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula
2010-12-15
Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P < 0.05-0.001) when compared to static cultures. An increased expression of tenascin-c, indicating tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound. © 2010 Wiley Periodicals, Inc.
Broccolo, Francesco; Drago, Francesco; Cassina, Giulia; Fava, Andrea; Fusetti, Lisa; Matteoli, Barbara; Ceccherini-Nelli, Luca; Sabbadini, Maria Grazia; Lusso, Paolo; Parodi, Aurora; Malnati, Mauro S
2013-11-01
Viral infections have been associated with autoimmune connective tissue diseases. To evaluate whether active infection by Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus (HHV)-6, -7, -8, as well as parvovirus B19 (B19V) occur in patients with autoimmune connective tissue diseases, viral DNA loads were assessed in paired samples of serum and peripheral blood mononuclear cells (PBMCs) of 115 patients affected by different disorders, including systemic sclerosis, systemic, and discoid lupus erythematosus, rheumatoid arthritis, and dermatomyositis. Two additional groups, patients affected by inflammatory diseases (n=51) and healthy subjects (n=58) were studied as controls. The titers of anti-HHV-6 and anti-EBV antibodies were also evaluated. Cell-free HHV-6 serum viremia was detected in a significantly higher proportion of connective tissue diseases patients compared to controls (P<0.0002); a significant association between HHV-6 reactivation and the active disease state was found only for lupus erythematosus (P=0.021). By contrast, the rate of cell-free EBV viremia was similar in patients and controls groups. Cell-free CMV, HHV-8, and B19V viremia was not detected in any subject. Anti-HHV-6 and anti-EBV early antigen IgG titers were both significantly higher in autoimmune diseases patients as compared to healthy controls, although they were not associated with the presence of viremia. EBV, HHV-6, -7 prevalence and viral load in PBMCs of patients with connective tissue diseases and controls were similar. These data suggest that HHV-6 may act as a pathogenic factor predisposing patients to the development of autoimmune connective tissue diseases or, conversely, that these disorders may predispose patients to HHV-6 reactivation. © 2013 Wiley Periodicals, Inc.
Novel Therapeutic Development of NF1-Associated Malignant Peripheral Nerve Sheath Tumor (MPNST)
2016-08-01
peripheral nerve sheath tumor (MPSNT)”, 11/5/2015, SARC-CTOS (Connective Tissue Oncology Society) Symposium, Salt Lake City, Utah b) “PRC2 loss in...of malignant peripheral nerve sheath tumor (MPSNT)”, 11/5/2015, SARC-CTOS (Connective Tissue Oncology Society) Symposium, Salt Lake City, Utah 2...Medical Oncology Service FROM: Roger S Wilson, MD Chairman, Institutional Review Board/Privacy Board-A DATE: 02/11/2016 RE: Protocol # 16-052 Your
Schjerling, Peter; Bornø, Andreas; Holm, Lars
2017-01-01
In vivo turnover rates of proteins covering the processes of protein synthesis and breakdown rates have been measured in many tissues and protein pools using various techniques. Connective tissue and collagen protein turnover is of specific interest since existing results are rather diverging. The aim of this study is to investigate whether we can verify the presence of protein pools within the same tissue with very distinct turnover rates over the life-span of rats with special focus on connective tissue. Male and female Lewis rats (n = 35) were injected with five different isotopically labeled amino acids tracers. The tracers were injected during fetal development (Day -10 to -2), after birth (Day 5–9), at weaning (Day 25–32) at puberty (Day 54–58) and at adulthood (Day 447–445). Subgroups of rats were euthanized three days after every injection period, at different time point between injection periods and lastly at day 472. Tissue (liver, muscle, eye lens and patellar tendon) and blood samples were collected after euthanization. The enrichment of the labeled amino acids in the tissue or blood samples was measured using GC-MS-MS. In muscle and liver we demonstrated a rapid decrease of tracer enrichments throughout the rat’s life, indicating that myofibrillar and cytoskeleton proteins have a high turnover. In contrast, the connective tissue protein in the eye lens and patellar tendon of the mature rat showed detainment of tracer enrichment injected during fetal development and first living days, indicating very slow turnover. The data support the hypothesis that some proteins synthesized during the early development and growth still exist much later in life of animals and hence has a very slow turnover rate. PMID:28957442
Connective tissue growth factor (CTGF) from basics to clinics.
Ramazani, Yasaman; Knops, Noël; Elmonem, Mohamed A; Nguyen, Tri Q; Arcolino, Fanny Oliveira; van den Heuvel, Lambert; Levtchenko, Elena; Kuypers, Dirk; Goldschmeding, Roel
2018-03-21
Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vailas, Arthur C.; Martinez, Daniel A.
1999-01-01
Patients exhibiting changes in connective tissue and bone metabolism also show changes in urinary by-products of tissue metabolism. Furthermore, the changes in urinary connective tissue and bone metabolites precede alterations at the tissue macromolecular level. Astronauts and Cosmonauts have also shown suggestive increases in urinary by-products of mineralized and non-mineralized tissue degradation. Thus, the idea of assessing connective tissue and bone response in spaceflight monkeys by measurement of biomarkers in urine has merit. Other investigations of bone and connective histology, cytology and chemistry in the Bion 11 monkeys will allow for further validation of the relationship of urinary biomarkers and tissue response. In future flights the non-invasive procedure of urinary analysis may be useful in early detection of changes in these tissues. The purpose of this grant investigation was to evaluate mineralized and non-mineralized connective tissue responses of non-human primates to microgravity by the non-invasive analysis of urinary biomarkers. Secondly, we also wanted to assess muscle connective tissue adaptive changes in three weight-bearing skeletal muscles: the soleus, media] gastrocnemius and tibialis anterior by obtaining pre-flight and post-flight small biopsy specimens in collaboration with Dr. V. Reggie Edgerton's laboratory at the University of California at Los Angeles.
Bader, Hannah L; Keene, Douglas R; Charvet, Benjamin; Veit, Guido; Driever, Wolfgang; Koch, Manuel; Ruggiero, Florence
2009-01-01
Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.
Parthasarathy, Harinath; Kumar, Praveenkrishna; Gajendran, Priyalochana; Appukuttan, Devapriya
2014-01-01
The aim of the present case report is to evaluate the adjunctive use of a connective tissue graft to overcome soft tissue defects following excision of a gingival fibrolipoma in the aesthetic region. Connective tissue graft has been well documented for treating defects of esthetic concern. However, the literature does not contain many reports on the esthetic clinical outcome following the use of connective tissue graft secondary to excision of soft tissue tumours. A 28-year-old male patient reported with a complaint of a recurrent growth in relation to his lower front tooth region. The lesion which was provisionally diagnosed as fibroma was treated with a complete surgical excision, following which a modified coronally advanced flap and connective tissue graft was adopted to overcome the soft tissue defect. The excised growth was diagnosed histologically as fibrolipoma. One year follow up showed no recurrence of the lesion and good esthetics.The adjunctive use of the connective tissue graft and modified coronally advanced flap predictably yields optimal soft tissue fill and excellent esthetics. Hence, routine use of this procedure may be recommended for surgical excision of soft tissue growths in esthetically sensitive areas. PMID:25584336
Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin
2017-01-01
The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.
Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.
2015-01-01
Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237
Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics
2003-01-01
Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair. PMID:12975533
Rossi, Roberto; Pilloni, Andrea; Morales, Regina Santos
2009-01-01
Connective tissue grafts have been used successfully in the treatment of gingival recession. In the mid 80s and late 90s, the periodontal literature presented various techniques such as free gingival grafts, pedicle flaps, subepithelial connective tissue grafts, acellular dermal matrix grafts, and guided tissue regeneration to cover denuded root surfaces. Currently, connective tissue grafting is a reliable treatment for esthetic root coverage. This paper presents a qualitative assessment of a surgical technique that uses a connective tissue graft, including a portion of epithelium in the shape of the defect. This procedure enhances the healing of the covered root surface, increases the thickness of the soft tissue and improves esthetics. The criteria used for evaluation were: color, volume, texture, and blending. This evaluation demonstrated encouraging results from an esthetic viewpoint.
... of diseases that cause abnormal growth of connective tissue. Connective tissue is the material inside your body that gives ... joints. Symptoms of scleroderma include Calcium deposits in connective tissues Raynaud's phenomenon, a narrowing of blood vessels in ...
Epithelial-mesenchymal transition: An emerging target in tissue fibrosis
Li, Meirong; Luan, Fuxin; Zhao, Yali; Hao, Haojie; Zhou, Yong; Han, Weidong
2016-01-01
Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis. PMID:26361988
Motomiya, Makoto; Funakoshi, Tadanao; Ishizaka, Kinya; Nishida, Mutsumi; Matsui, Yuichiro; Iwasaki, Norimasa
2017-11-24
Although qualitative alteration of the subsynovial connective tissue in the carpal tunnel is considered to be one of the most important factors in the pathophysiologic mechanisms of carpal tunnel syndrome (CTS), little information is available about the microcirculation in the subsynovial connective tissue in patients with CTS. The aims of this study were to use contrast-enhanced ultrasonography (US) to evaluate blood flow in the subsynovial connective tissue proximal to the carpal tunnel in patients with CTS before and after carpal tunnel release. The study included 15 volunteers and 12 patients with CTS. The blood flow in the subsynovial connective tissue and the median nerve was evaluated preoperatively and at 1, 2, and 3 months postoperatively using contrast-enhanced US. The blood flow in the subsynovial connective tissue was higher in the patients with CTS than in the volunteers. In the patients with CTS, there was a significant correlation between the blood flow in the subsynovial connective tissue and the median nerve (P = .01). The blood flow in both the subsynovial connective tissue and the median nerve increased markedly after carpal tunnel release. Our results suggest that increased blood flow in the subsynovial connective tissue may play a role in the alteration of the microcirculation within the median nerve related to the pathophysiologic mechanisms of CTS. The increase in the blood flow in the subsynovial connective tissue during the early postoperative period may contribute to the changes in intraneural circulation, and these changes may lead to neural recovery. © 2017 by the American Institute of Ultrasound in Medicine.
Pectus Excavatum and Heritable Disorders of the Connective Tissue
Tocchioni, Francesca; Ghionzoli, Marco; Messineo, Antonio; Romagnoli, Paolo
2013-01-01
Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations) phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence. PMID:24198927
NASA Technical Reports Server (NTRS)
Vailas, Arthur C.; Martinez, Daniel A.
1999-01-01
Patients exhibiting changes in connective tissue and bone metabolism also show changes in urinary by-products of tissue metabolism. Furthermore, the changes in urinary connective tissue and bone metabolites precede alterations at the tissue macromolecular level. Astronauts and Cosmonauts have also shown suggestive increases in urinary by-products of mineralized and non-mineralized tissue degradation. Thus, the idea of assessing connective tissue and bone response in spaceflight monkeys by measurement of biomarkers in urine has merit. Other investigations of bone and connective histology, cytology and chemistry in the Bion 11 monkeys will allow for further validation of the relationship of urinary biomarkers and tissue response. In future flights the non-invasive procedure of urinary analysis may be useful in early detection of changes in these tissues. Purpose: The purpose of this grant investigation was to evaluate mineralized and non-mineralized connective tissue responses of non-human primates to microgravity by the non-invasive analysis of urinary biomarkers. Secondly, we also wanted to assess muscle connective tissue adaptive changes in three weight-bearing skeletal muscles: the soleus, medial gastrocnemius and tibialis anterior by obtaining pre-flight and post-flight small biopsy specimens in collaboration with Dr. V. Reggie Edgerton's laboratory at the University of California at Los Angeles.
Genetics Home Reference: arterial tortuosity syndrome
... tortuosity syndrome is a disorder that affects connective tissue. Connective tissue provides strength and flexibility to structures throughout the ... outside the circulatory system are caused by abnormal connective tissue in other parts of the body. These features ...
Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I
2013-04-01
We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.
Petruţiu, S A; Buiga, Petronela; Roman, Alexandra; Danciu, Theodora; Mihu, Carmen Mihaela; Mihu, D
2012-01-01
Premature exfoliation of primary or permanent teeth in children or adolescents is extremely rare and it can be a manifestation of an underlying systemic disease. This study aims to present the histological aspects associated with early tooth loss in a case of periodontal disease developed without local inflammation and with minimal periodontal pockets and attachment loss. The maxillary left second premolar was extracted together with a gingival collar attached to the root surface. The histological analysis recorded the resorption of the cementum in multiple areas of the entire root surface with the connective tissue of the desmodontium invading the lacunae defects. The connective tissue rich in cells occupied the periodontal ligamentar space and the resorptive areas. No inflammation was obvious in the periodontal ligament connective tissue. This report may warn clinicians about the possibility of the association of cemental abnormalities with early tooth loss.
Zeno, Helios A; Buitrago, Renan L; Sternberger, Sidney S; Patt, Marisa E; Tovar, Nick; Coelho, Paulo; Kurtz, Kenneth S; Tuminelli, Frank J
2016-04-01
To compare the removal of torque values of machined implant abutment connections (internal and external) with and without soft tissue entrapment using an in vitro model. Thirty external- and 30 internal-connection implants were embedded in urethane dimethacrylate. Porcine tissue was prepared and measured to thicknesses of 0.5 and 1.0 mm. Six groups (n = 10) were studied: External- and internal-connection implants with no tissue (control), 0.5, and 1.0 mm of tissue were entrapped at the implant/abutment interface. Abutments were inserted to 20 Ncm for all six groups. Insertion torque values were recorded using a digital torque gauge. All groups were then immersed in 1 M NaOH for 48 hours to dissolve tissue. Subsequent reverse torque measurements were recorded. Mean and standard deviation were determined for each group, and one-way ANOVA and Bonferroni test were used for statistical analysis. All 60 specimens achieved a 20-Ncm insertion torque, despite tissue entrapment. Reverse torque measurements for external connection displayed a statistically significant difference (p < 0.05) between all groups with mean reverse torque values for the control (13.71 ± 1.4 Ncm), 0.5 mm (7.83 ± 2.4 Ncm), and 1.0 mm tissue entrapment (2.29 ± 1.4 Ncm) groups. Some statistically significant differences (p < 0.05) were found between internal-connection groups. In all specimens, tissue did not completely dissolve after 48 hours. External-connection implants were significantly affected by tissue entrapment; the thicker the tissue, the lower the reverse torque values noted. Internal-connection implants were less affected by tissue entrapment. © 2015 by the American College of Prosthodontists.
Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi
2014-01-01
Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435
A molecular ensemble in the rER for procollagen maturation.
Ishikawa, Yoshihiro; Bächinger, Hans Peter
2013-11-01
Extracellular matrix (ECM) proteins create structural frameworks in tissues such as bone, skin, tendon and cartilage etc. These connective tissues play important roles in the development and homeostasis of organs. Collagen is the most abundant ECM protein and represents one third of all proteins in humans. The biosynthesis of ECM proteins occurs in the rough endoplasmic reticulum (rER). This review describes the current understanding of the biosynthesis and folding of procollagens, which are the precursor molecules of collagens, in the rER. Multiple folding enzymes and molecular chaperones are required for procollagen to establish specific posttranslational modifications, and facilitate folding and transport to the cell surface. Thus, this molecular ensemble in the rER contributes to ECM maturation and to the development and homeostasis of tissues. Mutations in this ensemble are likely candidates for connective tissue disorders. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.
Exercise and Regulation of Bone and Collagen Tissue Biology.
Kjaer, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja; Magnusson, S Peter
2015-01-01
The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle, ensuring force transmission, storing energy, protecting joint surface and stability, and ensuring the transfer of muscular forces into resulting limb movement. The musculoskeletal connective tissue structure is relatively stable, but mechanical loading and subsequent mechanotransduction and molecular anabolic signaling can result in some adaptation of the connective tissue, its size, its strength, and its mechanical properties, whereby it can improve its capacity by 5-20% with regular physical activity. For several of the mechanically loaded connective tissues, only limited information regarding molecular and cellular signaling pathways and their adaptation to exercise is available. In contrast to tissue responses with exercise, lack of mechanical tissue loading through inactivity or immobilization of the human body will result in a dramatic loss of connective tissue content, structure, and tolerable load within weeks, to a degree (30-40%) that mimics that of contractile skeletal musculature. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal system in both daily activity and exercise. © 2015 Elsevier Inc. All rights reserved.
Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C
2013-02-01
Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P < .05. Survival analysis was assessed by the Kaplan-Meier method and the log-rank test. Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.
Nanomechanical signatures of oral submucous fibrosis in sub-epithelial connective tissue.
Anura, Anji; Das, Debanjan; Pal, Mousumi; Paul, Ranjan Rashmi; Das, Soumen; Chatterjee, Jyotirmoy
2017-01-01
Oral sub-mucous fibrosis (OSF), a potentially malignant disorder, exhibits extensive remodeling of extra-cellular matrix in the form of sub-epithelial fibrosis which is a possible sequel of assaults from different oral habit related irritants. It has been assumed that micro/nanobio-mechanical imbalance experienced in the oral mucosa due to fibrosis may be deterministic for malignant potential (7-13%) of this pathosis. Present study explores changes in mechanobiological attributes of sub-epithelial connective tissue of OSF and the normal counterpart. The atomic force microscopy was employed to investigate tissue topography at micro/nano levels. It documented the presence of closely packed parallel arrangement of dense collagen fibers with wide variation in bandwidth and loss of D-space in OSF as compared to normal. The AFM based indentation revealed that sub-epithelium of OSF tissue has lost its flexibility with increased Young's modulus, stiffness, adhesiveness and reduced deformation of the juxta-epithealial connective tissue towards the deeper layer. These significant variations in nano-mechanical properties of the connective tissue indicated plausible impacts on patho-physiological microenvironment. Excessive deposition of collagen I and diminished expression of collagen III, fibronectin along with presence of α-SMA positive myofibroblast in OSF depicted its pathological basis and indicated the influence of altered ECM on this pathosis. The mechanobiological changes in OSF were corroborative with change in collagen composition recorded through immunohistochemistry and RT-PCR. The revelation of comparative nanomechanical profiles of normal oral mucosa and OSF in the backdrop of their structural and cardinal molecular attributes thus became pivotal for developing holistic pathobiological insight about possible connects for malignant transformation of this pre-cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Bates, Brent D.; Tselepidakis, Niki N.; DSouza, Alisha V.; Gunn, Jason R.; Ramkumar, Dipak B.; Paulsen, Keith D.; Pogue, Brian W.; Henderson, Eric R.
2017-12-01
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ˜1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ˜1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE.
Enhancement of Sexual Behavior in Female Rats by Neonatal Transplantation of Brain Tissue from Males
NASA Astrophysics Data System (ADS)
Arendash, Gary W.; Gorski, Roger A.
1982-09-01
Transplantation of preoptic tissue from male rat neonates into the preoptic area of female littermates increased masculine and feminine sexual behavior in the recipients during adulthood. This suggests that functional connections develop between the transplanted neural tissue and the host brain. A new intraparenchymal brain transplantation technique was used to achieve these results.
Wang, Hai-Ying; Bao, Jun-Lu
2012-03-01
To determine the effect of Houttuynia cordata Aetherolea on connective tissue growth factor and adiponectin in a rat model of diabetes mellitus (DM). DM was induced in rats using streptozotocin (STZ) and high glucose-lipid animal feed. Animals were then treated with Houttuynia cordata Aetherolea for 8 weeks. Changes in connective tissue growth factor and adiponectin levels in rats were observed. Connective tissue growth factor and adiponectin levels in rats with DM improved after Houttuynia cordata Aetherolea treatment. Houttuynia cordata Aetherolea had a positive effect on rats with DM by reducing levels of connective tissue growth factor and increasing adiponectin levels.
Giebel, G
1995-09-01
Fibroblast networks that form collagen and connect the two ends of bone develop in the haematoma after corticotomy. This regenerative tissue is vascularized and distracted. Even during the lengthening, mineralization starts. This starts at the ends created by the osteotomy, in the form of conical bony columns 200 microns thick, which grows towards each other in a manner reminiscent of stalagmites and stalactites, until the central, fibrous inner zone (growth zone) formed during distraction is completely mineralized. Connective tissue and bony bars are arranged lengthwise. As a rule, intramembranous callus formation takes place during distraction osteogenesis with no intermediate cartilaginous step.
NASA Technical Reports Server (NTRS)
Vailas, A.; Zernicke, R.; Grindeland, R.; Kaplanski, A.
1990-01-01
Findings on the connective tissue response to short-term space flight (12 days) are discussed. Specifically, data regarding the biochemical, biomechanical and morphological characteristics of selected connective tissues (humerus, vertebral body, tendon and skeletal muscle) of growing rats is given. Results are given concerning the humerus cortical bone, the vertebral bone, nutritional effects on bone biomechanical properties, and soft tense fiber connective tissue response.
Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek
2018-01-24
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment.
Connective tissue diseases, multimorbidity and the ageing lung.
Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent
2016-05-01
Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.
A Framework for Modelling Connective Tissue Changes in VIIP Syndrome
NASA Technical Reports Server (NTRS)
Ethier, C. R.; Best, L.; Gleason, R.; Mulugeta, L.; Myers, J. G.; Nelson, E. S.; Samuels, B. C.
2014-01-01
Insertion of astronauts into microgravity induces a cascade of physiological adaptations, notably including a cephalad fluid shift. Longer-duration flights carry an increased risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. The slow onset of changes in VIIP, their chronic nature, and the similarity of certain clinical features of VIIP to ophthalmic findings in patients with raised intracranial pressure strongly suggest that: (i) biomechanical factors play a role in VIIP, and (ii) connective tissue remodeling must be accounted for if we wish to understand the pathology of VIIP. Our goal is to elucidate the pathophysiology of VIIP and suggest countermeasures based on biomechanical modeling of ocular tissues, suitably informed by experimental data, and followed by validation and verification. We specifically seek to understand the quasi-homeostatic state that evolves over weeks to months in space, during which ocular tissue remodeling occurs. This effort is informed by three bodies of work: (i) modeling of cephalad fluid shifts; (ii) modeling of ophthalmic tissue biomechanics in glaucoma; and (iii) modeling of connective tissue changes in response to biomechanical loading.
The CONNECT project: Combining macro- and micro-structure.
Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei
2013-10-15
In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.
Changes of the peri-implant soft tissue thickness after grafting with a collagen matrix.
Zafiropoulos, Gregory-George; Deli, Giorgio; Hoffmann, Oliver; John, Gordon
2016-01-01
The aim of this study was to determine the treatment outcome of the use of a porcine monolayer collagen matrix (mCM) to increase soft-tissue volume as a part of implant site development. Implants were placed in single sites in 27 patients. In the test group, mCM was used for soft-tissue augmentation. No graft was placed in the control group. Soft-tissue thickness (STTh) was measured at the time of surgery (T0) and 6 months postoperatively (T1) at two sites (STTh 1, 1 mm below the gingival margin; STTh 2, 3 mm below the mucogingival margin). Significant increases ( P < 0.001) in STTh (STTh 1 = 1.06 mm, 117%; STTh 2 = 0.89 mm, 81%) were observed in the test group. Biopsy results showed angiogenesis and mature connective tissue covered by keratinized epithelium. Within the limitations of this study, it could be concluded that mCM leads to a significant increase of peri-implant soft-tissue thickness, with good histological integration and replacement by soft tissue and may serve as an alternative to connective tissue grafting.
ten Berge, Derk; Brugmann, Samantha A; Helms, Jill A; Nusse, Roel
2008-10-01
A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.
Expression and clinical significance of connective tissue growth factor in thyroid carcinomas.
Wang, Guimin; Zhang, Wei; Meng, Wei; Liu, Jia; Wang, Peisong; Lin, Shan; Xu, Liyan; Li, Enmin; Chen, Guang
2013-08-01
To examine expression of the connective tissue growth factor (CTGF) gene in human thyroid cancer and establish whether a correlation exists between the presence of CTGF protein and clinicopathological parameters of the disease. CTGF protein expression was investigated retrospectively by immunohistochemical analysis of CTGF protein levels in thyroid tumour tissue. Associations between immunohistochemical score and several clinicopathological parameters were examined. In total, 131 thyroid tissue specimens were included. High levels of CTGF protein were observed in papillary thyroid carcinoma tissue; benign thyroid tumour tissue scored negatively for CTGF protein. In papillary thyroid carcinoma, there was a significant relationship between high CTGF protein levels and Union for International Cancer Control disease stage III-IV, and presence of lymph node metastasis. In papillary thyroid carcinomas, CTGF protein levels were not significantly associated with sex or age. These findings suggest that the CTGF protein level is increased in papillary thyroid carcinoma cells compared with benign thyroid tumours. CTGF expression might play a role in the development of malignant tumours in the thyroid.
PANCREATIC TRANSPLANTATIONS IN THE SPLEEN
Pratt, Joseph H.; Murphy, Fred T.
1913-01-01
Pancreatic tissue implanted in the spleen and separated from its original vascular and nervous connections can live and functionate for months. A small nodule of pancreatic tissue composed of acini without demonstrable islands of Langerhans prevented the development of diabetes. Death occurred 187 days after the extirpation of the pancreas. PMID:19867642
Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya
2016-09-01
Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.
NASA Astrophysics Data System (ADS)
Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin
2016-10-01
Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.
Cells of the connective tissue differentiate and migrate into pollen sacs
NASA Astrophysics Data System (ADS)
Iqbal, M. C. M.; Wijesekara, Kolitha B.
2002-01-01
In angiosperms, archesporial cells in the anther primordium undergo meiosis to form haploid pollen, the sole occupants of anther sacs. Anther sacs are held together by a matrix of parenchyma cells, the connective tissue. Cells of the connective tissue are not known to differentiate. We report the differentiation of parenchyma cells in the connective tissue of two Gordonia species into pollen-like structures (described as pseudopollen), which migrate into the anther sacs before dehiscence. Pollen and pseudopollen were distinguishable by morphology and staining. Pollen were tricolpate to spherical while pseudopollen were less rigid and transparent with a ribbed surface. Both types were different in size, shape, staining and surface architecture. The ratio of the number of pseudopollen to pollen was 1:3. During ontogeny in the connective tissue, neither cell division nor tetrad formation was observed and hence pseudopollen were presumed to be diploid. Only normal pollen germinated on a germination medium. Fixed preparations in time seemed to indicate that pseudopollen migrate from the connective tissue into the anther sac.
The Rationale for Joint Mobilization.
ERIC Educational Resources Information Center
Burkhardt, Sandy
This paper presents an overview of the functions of connective tissue and the mechanisms of joint injury and contracture formation in relation to therapeutic exercise. The components of connective tissue operation are explained, including fibroblasts, macrophages, plasma cells, and collagen. An examination of the histology of connective tissue as…
CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†
Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan
2013-01-01
The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198
Lorda-Diez, C I; Montero, J A; Sanchez-Fernandez, C; Garcia-Porrero, J A; Chimal-Monroy, J; Hurle, J M
2018-04-01
Four and a half LIM domain 2 (FHL2) is a multifunctional scaffolding protein of well-known function regulating cell signalling cascades and gene transcription in cancer tissues. However, its function in embryonic systems is poorly characterized. Here, we show that Fhl2 is involved in the differentiation of connective tissues of developing limb autopod. We show that Fhl2 exhibits spatially restricted and temporally dynamic expression around the tendons of developing digits, interphalangeal joint capsules, and fibrous peridigital tissue. Immunolabelling analysis of the skeletal progenitors identified a predominant, but not exclusive, cytoplasmic distribution of FHL2 being associated with focal adhesions and actin cytoskeleton. In the course of chondrogenic differentiation of cultures of limb skeletal progenitors, the expression of Fhl2 is down-regulated. Furthermore, cultures of skeletal progenitors overexpressing Fhl2 take on a predominant fibrogenic appearance. Both gain-of-function and loss-of-function experiments in the micromass culture assays revealed a positive transcriptional influence of Fhl2 in the expression of fibrogenic markers including Scleraxis, Tenomodulin, Tenascin C, βig-h3, and Tgif1. We further show that the expression of Fhl2 is positively regulated by profibrogenic signals including Tgfβ2, all-trans-retinoic acid, and canonical Wnt signalling molecules and negatively regulated by prochondrogenic factors of the bone morphogenetic protein family. Expression of Fhl2 is also regulated negatively in immobilized limbs, but this influence appears to be mediated by other connective tissue markers, such as Tgfβs and Scleraxis. Copyright © 2018 John Wiley & Sons, Ltd.
Imaging of connective tissue diseases of the head and neck
2016-01-01
We review the imaging appearance of connective tissue diseases of the head and neck. Bilateral sialadenitis and dacryoadenitis are seen in Sjögren’s syndrome; ankylosis of the temporo-mandibular joint with sclerosis of the crico-arytenoid joint are reported in rheumatoid arthritis and lupus panniculitis with atypical infection are reported in patients with systemic lupus erythematosus. Relapsing polychondritis shows subglottic stenosis, prominent ear and saddle nose; progressive systemic sclerosis shows osteolysis of the mandible, fibrosis of the masseter muscle with calcinosis of the subcutaneous tissue and dermatomyositis/polymyositis shows condylar erosions and autoimmune thyroiditis. Vascular thrombosis is reported in antiphospholipid antibodies syndrome; cervical lymphadenopathy is seen in adult-onset Still’s disease, and neuropathy with thyroiditis reported in mixed connective tissue disorder. Imaging is important to detect associated malignancy with connective tissue disorders. Correlation of the imaging findings with demographic data and clinical findings are important for the diagnosis of connective tissue disorders. PMID:26988082
Cerebriform connective tissue nevus of lumbar.
Chen, Jinbo; Chen, Liuqing; Duan, Yiqun; Li, Dongsheng; Dong, Bilin
2015-02-01
Connective tissue nevi represents a kind of hamartoma, and coalescence of the lesions in a cerebriform mode in the lumbar region without Proteus syndrome is rarely seen. Here, we report a 26-year-old woman presenting with nodules and plaques in her left lumbar region of 26 years in duration. Histopathological examination and Masson-trichrome stain showed increased dermal collagen bundles in a haphazard array. The diagnosis of connective tissue nevi was made. This is the first case report on cerebriform connective tissue nevi without Proteus syndrome in the lumbar region. © 2014 Japanese Dermatological Association.
Weijs, T J; Goense, L; van Rossum, P S N; Meijer, G J; van Lier, A L H M W; Wessels, F J; Braat, M N G; Lips, I M; Ruurda, J P; Cuesta, M A; van Hillegersberg, R; Bleys, R L A W
2017-02-01
An organized layer of connective tissue coursing from aorta to esophagus was recently discovered in the mediastinum. The relations with other peri-esophageal fascias have not been described and it is unclear whether this layer can be visualized by non-invasive imaging. This study aimed to provide a comprehensive description of the peri-esophageal fascias and determine whether the connective tissue layer between aorta and esophagus can be visualized by magnetic resonance imaging (MRI). First, T2-weighted MRI scanning of the thoracic region of a human cadaver was performed, followed by histological examination of transverse sections of the peri-esophageal tissue between the thyroid gland and the diaphragm. Secondly, pretreatment motion-triggered MRI scans were prospectively obtained from 34 patients with esophageal cancer and independently assessed by two radiologists for the presence and location of the connective tissue layer coursing from aorta to esophagus. A layer of connective tissue coursing from the anterior aspect of the descending aorta to the left lateral aspect of the esophagus, with a thin extension coursing to the right pleural reflection, was visualized ex vivo in the cadaver on MR images, macroscopic tissue sections, and after histologic staining, as well as on in vivo MR images. The layer connecting esophagus and aorta was named 'aorto-esophageal ligament' and the layer connecting aorta to the right pleural reflection 'aorto-pleural ligament'. These connective tissue layers divides the posterior mediastinum in an anterior compartment containing the esophagus, (carinal) lymph nodes and vagus nerve, and a posterior compartment, containing the azygos vein, thoracic duct and occasionally lymph nodes. The anterior compartment was named 'peri-esophageal compartment' and the posterior compartment 'para-aortic compartment'. The connective tissue layers superior to the aortic arch and at the diaphragm corresponded with the currently available anatomic descriptions. This study confirms the existence of the previously described connective tissue layer coursing from aorta to esophagus, challenging the long-standing paradigm that no such structure exists. A comprehensive, detailed description of the peri-esophageal fascias is provided and, furthermore, it is shown that the connective tissue layer coursing from aorta to esophagus can be visualized in vivo by MRI. © 2016 Anatomical Society.
Menor Almagro, Raúl; Rodríguez Gutiérrez, Juan Francisco; Martín-Martínez, María Auxiliadora; Rodríguez Valls, María José; Aranda Valera, Concepción; de la Iglesia Salgado, José Luís
To determine the dilution titles at antinuclear antibodies (ANA) by indirect immunofluorescence observed in cell substrate HEp-2 and its association with the diagnosis of systemic connective tissue disease in ANA test requested by a Rheumatology Unit. Samples of patients attended for the first time in the rheumatology unit, without prior ANA test, between January 2010 and December 2012 were selected. The dilution titers, immunofluorescence patterns and antigen specificity were recorded. In January 2015 the diagnosis of the patients were evaluated and classified in systemic disease connective tissue (systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, undifferentiated connective, antiphospholipid syndrome, mixed connective tissue and inflammatory myophaty) or not systemic disease connective tissue. A total of 1282 ANA tests requested by the Rheumatology Unit in subjects without previous study, 293 were positive, predominance of women (81.9%). Patients with systemic connective tissue disease were recorded 105, and 188 without systemic connective tissue disease. For 1/640 dilutions the positive predictive value in the connective was 73.3% compared to 26.6% of non-connective, and for values ≥1/1,280 85% versus 15% respectively. When performing the multivariate analysis we observed a positive association between 1/320 dilution OR 3.069 (95% CI: 1.237-7.614; P=.016), 1/640 OR 12.570 (95% CI: 3.659-43.187; P=.000) and ≥1/1,280 OR 42.136 (95% CI: 8.604-206.345; P=.000). These results show association titles dilution ≥1/320 in ANA's first test requested by a Rheumatology Unit with patients with systemic connective tissue disease. The VPP in these patients was higher than previous studies requested by other medical specialties. This may indicate the importance of application of the test in a targeted way. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Advances in bionanomaterials for bone tissue engineering.
Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit
2013-01-01
Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.
Akers, R M
2017-12-01
Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.
Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph
2010-10-01
The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.
Samkoe, Kimberley S; Bates, Brent D; Tselepidakis, Niki N; DSouza, Alisha V; Gunn, Jason R; Ramkumar, Dipak B; Paulsen, Keith D; Pogue, Brian W; Henderson, Eric R
2017-12-01
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ∼1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ∼1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Macchi, Veronica; Porzionato, Andrea; Bardini, Romeo; Picardi, Edgardo Enrico Edoardo; De Caro, Raffaele
2013-10-01
During right hepatectomies, dissection of the bare area is performed to obtain mobilisation of the liver. Fifty computed tomography scans of the upper abdomen of patients were examined. Specimens of supramesocolic compartment were sampled from 10 un-embalmed cadavers. Macrosections were cut for histotopographic study. In four cadavers, in situ dissection of the posterior liver surface was performed. The hepatophrenic tissue showed a stratigraphic organisation resulting from the juxtaposition of thin layer of dense connective tissue corresponding to the inferior diaphragmatic fascia (mean thickness is 30 ± 4 μm); variable amount of fibroadipose tissue corresponding to retroperitoneal fibroadipose tissue (mean thickness is 34 ± 8 μm); two connective layers with nets of flat cells forming a fusion fascia, the retrohepatic lamina (mean thickness 24 ± 6 μm); and layer of connective tissue corresponding to the hepatic capsule. The juxta-caval portion of the retrohepatic lamina, connecting the right and left sides of the caval groove, forms the inferior vena cava ligament. During dissection, fluid injection developed a preferential plane between the two layers of the retrohepatic lamina, close to the hepatic surface, and no major or minor vessels were ever found along this plane. During right hepatectomy, to reduce the risk of dissemination of tumour cells, the dissection plane should be performed between the two layers of the retrohepatic lamina.
Yang, Hongli; Thompson, Hilary; Roberts, Michael D.; Sigal, Ian A.; Downs, J. Crawford
2011-01-01
Purpose. To retest the hypothesis that monkey ONH connective tissues become hypercompliant in early experimental glaucoma (EEG), by using 3-D histomorphometric reconstructions, and to expand the characterization of EEG connective tissue deformation to nine EEG eyes. Methods. Trephinated ONH and peripapillary sclera from both eyes of nine monkeys that were perfusion fixed, with one normal eye at IOP 10 mm Hg and the other EEG eye at 10 (n = 3), 30 (n = 3), or 45 (n = 3) mm Hg were serial sectioned, 3-D reconstructed, 3-D delineated, and quantified with 3-D reconstruction techniques developed in prior studies by the authors. Overall, and for each monkey, intereye differences (EEG eye minus normal eye) for each parameter were calculated and compared by ANOVA. Hypercompliance in the EEG 30 and 45 eyes was assessed by ANOVA, and deformations in all nine EEG eyes were separately compared by region without regard for fixation IOP. Results. Hypercompliant deformation was not significant in the overall ANOVA, but was suggested in a subset of EEG 30/45 eyes. EEG eye deformations included posterior laminar deformation, neural canal expansion, lamina cribrosa thickening, and posterior (outward) bowing of the peripapillary sclera. Maximum posterior laminar deformation and scleral canal expansion co-localized to either the inferior nasal or superior temporal quadrants in the eyes with the least deformation and involved both quadrants in the eyes achieving the greatest deformation. Conclusions. The data suggest that, in monkey EEG, ONH connective tissue hypercompliance may occur only in a subset of eyes and that early ONH connective tissue deformation is maximized in the superior temporal and/or inferior nasal quadrants. PMID:20702834
Cellular control of connective tissue matrix tension.
Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K
2013-08-01
The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.
Connective tissue disease-associated pulmonary arterial hypertension
Howard, Luke S.
2015-01-01
Although rare in its idiopathic form, pulmonary arterial hypertension (PAH) is not uncommon in association with various associated medical conditions, most notably connective tissue disease (CTD). In particular, it develops in approximately 10% of patients with systemic sclerosis and so these patients are increasingly screened to enable early detection. The response of patients with systemic sclerosis to PAH-specific therapy appears to be worse than in other forms of PAH. Survival in systemic sclerosis-associated PAH is inferior to that observed in idiopathic PAH. Potential reasons for this include differences in age, the nature of the underlying pulmonary vasculopathy and the ability of the right ventricle to cope with increased afterload between patients with systemic sclerosis-associated PAH and idiopathic PAH, while coexisting cardiac and pulmonary disease is common in systemic sclerosis-associated PAH. Other forms of connective tissue-associated PAH have been less well studied, however PAH associated with systemic lupus erythematosus (SLE) has a better prognosis than systemic sclerosis-associated PAH and likely responds to immunosuppression. PMID:25705389
Periodontal considerations for esthetics: edentulous ridge augmentation.
Rosenberg, E S; Cutler, S A
1993-01-01
Edentulous ridge augmentation is a plastic surgical technique that is performed to improve patient esthetics when unsightly, deformed ridges exist. This article describes the etiology of ridge deformities and the many procedures that can be executed to achieve an esthetic, functional result. Historically, soft-tissue mucogingival techniques were described to augment collapsed ridges. Pedicle grafts, free soft-tissue grafts, and subepithelial connective tissue grafts are predictable forms of therapy. More recently, ridge augmentation techniques were developed that regenerate the lost periodontium. These include allografts, bioglasses, guided tissue regenerative procedures, and tissue expansion.
Cortes, Sara; Clemente-Coelho, Paulo
2008-01-01
Microvascular abnormalities involved in the pathogenic mechanism of several connective tissue disorders can be detected by nailfold capillaroscopy. Evaluation of the interest of nailfold capillaroscopy results in patients with Raynaud s phenomenon or undifferentiated connective tissue disease and their correlation with diagnostic and therapeutical evolution. Selection of capillaroscopic and laboratory results of patients with the diagnosis of Raynaud s phenomenon (without defined connective tissue disease) or undifferentiated connective tissue disease. Evaluation of the present diagnosis and treatment comparing with the ones existed at the time of capillaroscopy performance. 80 patients were enrolled with an age of 51.4+/-14.3 years (mean+/-SD) 78 females (97.5%) with Raynaud s phenomenon and undifferentiated connective tissue disease 27 patients (33.8%); Raynaud s Phenomenon 46 patients (57.5%); undifferentiated connective tissue disease 7 patients (8.7%). The capillaroscopic results were normal 30 patients (37.5%); minor changes tortuosity enlargement 16 patients (20.0%) major changes 34 patients (42.5%) hemorrhages 25 patients (31.3%) megacapillaries 26 patients (32.5%) avascular areas 3 patients (3.8%). The introduction of new treatments after the capillaroscopy occurred in 32 patients (40.0%) and a new diagnosis was done in 39 patients (48.8%). Major changes in capillaroscopy correlated with the change of diagnosis and the introduction of a new treatment (p<0.0001). Nailfold capillaroscopy performed in patients with isolated Raynaud s phenomenon or undifferentiated connective tissue disease has a role in the prognostic evaluation related to the possibility of an evolution of the diagnosis or to the need of the introduction of new treatments.
Neurovascular manifestations of connective-tissue diseases: A review
Kim, Sarasa T; Lanzino, Giuseppe; Kallmes, David F
2016-01-01
Patients with connective tissue diseases are thought to be at a higher risk for a number of cerebrovascular diseases such as intracranial aneurysms, dissections, and acute ischemic strokes. In this report, we aim to understand the prevalence and occurrences of such neurovascular manifestations in four heritable connective tissue disorders: Marfan syndrome, Ehlers-Danlos syndrome, Neurofibromatosis Type 1, and Loeys-Dietz syndrome. We discuss the fact that although there are various case studies reporting neurovascular findings in these connective tissue diseases, there is a general lack of case-control and prospective studies investigating the true prevalence of these findings in these patient populations. Furthermore, the differences observed in the manifestations and histology of such disease pathologies encourages future multi-center registries and studies in better characterizing the pathophysiology, prevalence, and ideal treatment options of neurovascular lesions in patents with connective tissue diseases. PMID:27511817
Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies
NASA Astrophysics Data System (ADS)
Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali
2011-12-01
Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.
Qu, Feini; Pintauro, Michael P.; Haughan, Joanne; Henning, Elizabeth A.; Esterhai, John L.; Schaer, Thomas P.; Mauck, Robert L.; Fisher, Matthew B.
2014-01-01
Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:25477175
Purslow, P P; Archile-Contreras, A C; Cha, M C
2012-03-01
Controlled reduction of the connective tissue contribution to cooked meat toughness is an objective that would have considerable financial impact in terms of added product value. The amount of intramuscular connective tissue in a muscle appears connected to its in vivo function, so reduction of the overall connective tissue content is not thought to be a viable target. However, manipulation of the state of maturity of the collagenous component is a biologically viable target; by increasing connective tissue turnover, less mature structures can be produced that are functional in vivo but more easily broken down on cooking at temperatures above 60°C, thus improving cooked meat tenderness. Recent work using cell culture models of fibroblasts derived from muscle and myoblasts has identified a range of factors that alter the activity of the principal enzymes responsible for connective tissue turnover, the matrix metalloproteinases (MMP). Fibroblasts cultured from 3 different skeletal muscles from the same animal show different cell proliferation and MMP activity, which may relate to the different connective tissue content and architecture in functionally different muscles. Expression of MMP by fibroblasts is increased by vitamins that can counter the negative effects of oxidative stress on new collagen synthesis. Preliminary work using in situ zymography of myotubes in culture also indicates increased MMP activity in the presence of epinephrine and reactive oxidative species. Comparison of the relative changes in MMP expression from muscle cells vs. fibroblasts shows that myoblasts are more responsive to a range of stimuli. Muscle cells are likely to produce more of the total MMP in muscle tissue as a whole, and the expression of latent forms of the enzymes (i.e., pro-MMP) may vary between oxidative and glycolytic muscle fibers within the same muscle. The implication is that the different muscle fiber composition of different muscles eaten as meat may influence the potential for manipulation of their connective tissue turnover.
Kaminaka, Akihiro; Nakano, Tamaki; Ono, Shinji; Kato, Tokinori; Yatani, Hirofumi
2015-10-01
This study evaluated changes in the horizontal and vertical dimensions of the buccal alveolar bone and soft tissue over a 1-year period following implant prosthesis. Thirty-three participants with no history of guided bone regeneration or soft tissue augmentation underwent dental implant placement with different types of connections. The dimensions of the buccal alveolar bone and soft tissue were evaluated immediately and at 1 year after prosthesis from reconstructions of cross-sectional cone-beam computed tomography images. The vertical and horizontal loss of buccal bone and soft tissue around implants with conical connections were lower than around those with external or internal connections. Statistically significant negative correlations were observed between initial horizontal bone thickness and changes in vertical bone and soft tissue height (p < .05), and between initial horizontal soft tissue thickness and the change in vertical soft tissue height (p < .05). Implants with a conical connection preserve peri-implant alveolar bone and soft tissue more effectively than other connection types. Furthermore, the initial buccal alveolar bone and soft tissue thickness around the implant platform may influence their vertical dimensional changes at 1 year after implant prosthesis. © 2014 Wiley Periodicals, Inc.
Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress
NASA Technical Reports Server (NTRS)
Seidel, Charles L.
1998-01-01
The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.
Changes of the peri-implant soft tissue thickness after grafting with a collagen matrix
Zafiropoulos, Gregory-George; Deli, Giorgio; Hoffmann, Oliver; John, Gordon
2016-01-01
Background: The aim of this study was to determine the treatment outcome of the use of a porcine monolayer collagen matrix (mCM) to increase soft-tissue volume as a part of implant site development. Materials and Methods: Implants were placed in single sites in 27 patients. In the test group, mCM was used for soft-tissue augmentation. No graft was placed in the control group. Soft-tissue thickness (STTh) was measured at the time of surgery (T0) and 6 months postoperatively (T1) at two sites (STTh 1, 1 mm below the gingival margin; STTh 2, 3 mm below the mucogingival margin). Results: Significant increases (P < 0.001) in STTh (STTh 1 = 1.06 mm, 117%; STTh 2 = 0.89 mm, 81%) were observed in the test group. Biopsy results showed angiogenesis and mature connective tissue covered by keratinized epithelium. Conclusions: Within the limitations of this study, it could be concluded that mCM leads to a significant increase of peri-implant soft-tissue thickness, with good histological integration and replacement by soft tissue and may serve as an alternative to connective tissue grafting. PMID:28298828
Love, Ryan J; Jones, Kim S
2013-12-01
Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Waki, Tomonori; Kan, Joseph Y K
2016-01-01
Immediate implant placement and provisionalization in the esthetic zone have been documented with success. The benefit of immediate implant placement and provisionalization is the preservation of papillary mucosa. However, in cases with osseous defects presenting on the facial bony plate, immediate implant placement procedures have resulted in facial gingival recession. Subepithelial connective tissue grafts for immediate implant placement and provisionalization procedures have been reported with a good esthetic outcome. Biotype conversion around implants with subepithelial connective tissue grafts have been advocated, and the resulting tissues appear to be more resistant to recession. The dimensions of peri-implant mucosa in a thick biotype were significantly greater than in a thin biotype. Connective tissue graft with coronally positioned flap procedures on natural teeth has also been documented with success. This article describes a technique combining immediate implant placement, provisionalization, guided bone regeneration (GBR), connective tissue graft, and a coronally positioned flap in order to achieve more stable peri-implant tissue in facial osseous defect situations.
Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek
2017-10-09
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment. © 2017 IOP Publishing Ltd.
... heavy lifting Being overweight or obese Pregnancy and childbirth The muscles, ligaments and connective tissue that support ... naturally more likely to develop posterior vaginal prolapse. Childbirth. If you have vaginally delivered multiple children, you ...
Multiple myeloma associated with acquired cutis laxa.
Cho, S Y; Maguire, R F
1980-08-01
Acquired cutis laxa is a rare disorder characterized by diffuse laxity of the skin and loss of connective tissue support with involvement of the lungs, gastrointestinal tract, pelvic organs, and aorta. The case report presented herein describes a forty-six year old woman with multiple myeloma and cutis laxa. Her history included several severe allergic reactions and the gradual development of lax skin, loss of connective tissue support throughout the body, and emphysema. At autopsy, multiple myeloma, diffuse laxity of the skin, and panacinar emphysema were found. The amount of elastic fiber in the skin, lungs, and aorta was decreased and showed abnormal fragmentation. Results of direct immunofluorescence study demonstrated IgG bound to dermal elastic fibers. Speculation regarding an immunologic etiology of the elastic tissue abnormality is presented herein.
Cengiz, Murat Inanç; Kirtiloğlu, Tuğrul; Acikgoz, Gökhan; Trisi, Paolo; Wang, Hom-Lay
2012-04-01
Peri-implant mucosa is composed of 2 compartments: a marginal junctional epithelium and a zone of connective tissue attachment. Both structures consist mainly of collagen. Lathyrism is characterized by defective collagen synthesis due to inhibition of lysyl oxidase, an enzyme that is essential for interfibrillar collagen cross-linking. The lathyritic agent beta-aminoproprionitrile (β-APN) is considered a suitable agent to disrupt the connective tissue metabolism. Therefore, the purpose of this study was to assess the effect of defective connective tissue metabolism on epithelial implant interface by using β-APN created chronic lathyrism in the canine model. Two 1-year-old male dogs were included in this study. A β-APN dosage of 5 mg/0.4 mL/volume 100 g/body weight was given to the test dog for 10 months, until lathyritic symptoms developed. After this, the mandibular premolar teeth (p2, p3, p4) of both dogs were atraumatically extracted, and the investigators waited 3 months before implants were placed. In the test dog, 3 implants were placed in the left mandible, and 2 implants were placed in the right mandible. In the control dog, 2 implants were placed in the left mandibular premolar site. The dogs were sacrificed 10 months after healing. Peri-implant tissues obtained from the dogs were examined histomorphologically and histopathologically. Bone to implant contact (BIC) values and bone volumes (BV) were lower in the lathyritic group compared to the control group; however, no statistical significance was found. Significant histologic and histomorphometric changes were observed in peri-implant bone, connective tissue, and peri-implant mucosal width between test and control implants. Defective collagen metabolism such as lathyrism may negatively influence the interface between implant and surrounding soft tissue attachment.
Evaluation of In Vivo Wound Healing Activity of Bacopa monniera on Different Wound Model in Rats
Murthy, S.; Gautam, M. K.; Goel, Shalini; Purohit, V.; Sharma, H.; Goel, R. K.
2013-01-01
Wound healing effects of 50% ethanol extract of dried whole plant of Bacopa monniera (BME) was studied on wound models in rats. BME (25 mg/kg) was administered orally, once daily for 10 days (incision and dead space wound models) or for 21 days or more (excision wound model) in rats. BME was studied for its in vitro antimicrobial and in vivo wound breaking strength, WBS (incision model), rate of contraction, period of epithelization, histology of skin (excision model), granulation tissue free radicals (nitric oxide and lipid peroxidation), antioxidants (catalase, superoxide dismutase, and reduced glutathione), acute inflammatory marker (myeloperoxidase), connective tissue markers (hydroxyproline, hexosamine, and hexuronic acid), and deep connective tissue histology (dead space wound). BME showed antimicrobial activity against skin pathogens, enhanced WBS, rate of contraction, skin collagen tissue formation, and early epithelization period with low scar area indicating enhanced healing. Healing effect was further substantiated by decreased free radicals and myeloperoxidase and enhanced antioxidants and connective tissue markers with histological evidence of more collagen formation in skin and deeper connective tissues. BME decreased myeloperoxidase and free radical generated tissue damage, promoting antioxidant status, faster collagen deposition, other connective tissue constituent formation, and antibacterial activity. PMID:23984424
Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats.
Murthy, S; Gautam, M K; Goel, Shalini; Purohit, V; Sharma, H; Goel, R K
2013-01-01
Wound healing effects of 50% ethanol extract of dried whole plant of Bacopa monniera (BME) was studied on wound models in rats. BME (25 mg/kg) was administered orally, once daily for 10 days (incision and dead space wound models) or for 21 days or more (excision wound model) in rats. BME was studied for its in vitro antimicrobial and in vivo wound breaking strength, WBS (incision model), rate of contraction, period of epithelization, histology of skin (excision model), granulation tissue free radicals (nitric oxide and lipid peroxidation), antioxidants (catalase, superoxide dismutase, and reduced glutathione), acute inflammatory marker (myeloperoxidase), connective tissue markers (hydroxyproline, hexosamine, and hexuronic acid), and deep connective tissue histology (dead space wound). BME showed antimicrobial activity against skin pathogens, enhanced WBS, rate of contraction, skin collagen tissue formation, and early epithelization period with low scar area indicating enhanced healing. Healing effect was further substantiated by decreased free radicals and myeloperoxidase and enhanced antioxidants and connective tissue markers with histological evidence of more collagen formation in skin and deeper connective tissues. BME decreased myeloperoxidase and free radical generated tissue damage, promoting antioxidant status, faster collagen deposition, other connective tissue constituent formation, and antibacterial activity.
Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects
Esfahanian, Vahid; Golestaneh, Hedayatollah; Moghaddas, Omid; Ghafari, Mohammad Reza
2014-01-01
Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effectiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 patients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group) or non-periosteal connective tissue graft + ABBM (control group). Probing pocket depth, clinical attachment level, free gingival margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student’s t-test and paired t-tests (α=0.05). Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduction: 3.1±0.6 (P<0.0001); 2.5±1.0 mm (P<0.0001), CAL gain: 2.3±0.9 (P<0.0001); 2.2±1.0 mm (P<0.0001), bone fill: 2.2±0.7 mm (P<0.0001); 2.2±0.7 mm (P<0.0001), respectively. No significant differences in the position of free gingival margin were observed during 6 months compared to baseline in both groups. Conclusion. Combinations of periosteal connective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects. PMID:25587379
Elfving, P; Marjoniemi, O; Niinisalo, H; Kononoff, A; Arstila, L; Savolainen, E; Rutanen, J; Kaipiainen-Seppänen, O
2016-07-01
Objective of the study was to evaluate the annual incidence and distribution of autoimmune connective tissue diseases and vasculitides during 2010. All units practicing rheumatology in the Northern Savo area, Finland, participated in the study by collecting data on newly diagnosed adult patients with autoimmune connective tissue disease or vasculitis over 1-year period. Seventy-two cases with autoimmune connective tissue disease were identified. The annual incidence rates were as follows: systemic lupus erythematosus 3.4/100,000 (95 % CI 1.4-7.0), idiopathic inflammatory myopathies 1.9 (0.5-5.0), systemic sclerosis 4.4 (2.0-8.3), mixed connective tissue disease 1.0 (0.1-3.5), Sjögren's syndrome 10.7 (6.7-16.1) and undifferentiated connective tissue disease 13.6 (9.0-19.6). The annual incidence rates among vasculitis category were as follows: antineutrophil cytoplasmic antibody-associated vasculitis 1.5/100,000 (95 % CI 0.3-4.3), central nervous system vasculitis 0.5 (0-2.7) and Henoch-Schönlein purpura 1.5 (0.3-4.3). The annual incidence of giant cell arteritis in the age group of 50 years or older was 7.5/100,000 (95 % CI 3.2-14.8). The longest delay from symptom onset to diagnosis occurred in systemic sclerosis. The incidences of autoimmune connective tissue diseases and vasculitides were comparable with those in published literature. The present study showed female predominance in all connective tissue diseases, excluding idiopathic inflammatory muscle diseases and mean age at onset of disease around 50 years of age. Despite improved diagnostic tools, diagnostic delay is long especially among patients with systemic sclerosis.
Brito, Lívia Natália Sales; de Lemos Almeida, Maria Manuela Rodrigues; de Souza, Lélia Batista; Alves, Pollianna Muniz; Nonaka, Cassiano Francisco Weege; Godoy, Gustavo Pina
2018-05-01
Galectins play important roles in immunoinflammatory responses, but their participation in the development of periapical lesions remains unclear. This study aimed to evaluate the expressions of galectins-1, -3, and -7 in periapical lesions, correlating them with the intensity of the inflammatory infiltrate and the pattern of the cystic epithelium. Twenty periapical granulomas (PGs), 20 radicular cysts (RCs), and 20 residual radicular cysts (RRCs) were submitted to immunohistochemistry using anti-galectin-1, -3, and -7 antibodies. The percentage of immunopositive cells in epithelial and connective tissues was determined. In connective tissue, PGs exhibited higher cytoplasmic/membrane expression of galectins-1 and -7 than RCs and RRCs (P < .05). There was higher nuclear expression of galectin-1 in PGs compared with RCs and RRCs (P < .05). The expression of galectins-1 and -7 in connective tissue was higher in lesions with grade III inflammation (P < .05). No significant differences in galectin-3 immunoexpression were observed for any of the parameters evaluated (P > .05). In the epithelial component, a higher nuclear expression of galectin-7 was detected in RRCs (P < .05), and a higher cytoplasmic/membrane expression of this protein was found in cysts with hyperplastic epithelium (P < .05). Positive correlations were observed between the nuclear and cytoplasmic/membrane expression of galectin-1 in connective tissue (P < .05) as well as between the nuclear and cytoplasmic/membrane expression of galectin-7 in epithelial tissue of cysts (P < .05). Galectins-1 and -7 may play important roles in the pathogenesis of PGs, RCs, and RRCs. On the other hand, the present results suggest only a minor involvement of galectin-3 in the development of these lesions. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Morphology of the lingual papillae in the fishing cat.
Emura, Shoichi; Okumura, Toshihiko; Chen, Huayue
2014-01-01
We examined the dorsal lingual surface of an adult fishing cat (Prionailurus viverrinus) by scanning electron microscopy. The filiform papillae on the lingual apex had several pointed processes. The connective tissue core of the filiform papillae resembleda a well in shape. The filiform papillae on the anterior part of the lingual body were large and cylindrical in shape. The connective tissue core of the filiform papillae consisted of a large conical papilla. The filiform papillae on the central part of the lingual body were large and conical. The connective tissue core of the filiform papillae consisted of a large main process and some secondary processes. The connective tissue core of the fungiform papillae did not have processes. The vallate papillae were surrounded by a groove and a pad. The top of the connective tissue core of the vallate papillae had a rough surface with no spines.
Development and Tissue Origins of the Mammalian Cranial Base
Iseki, S.; Bamforth, S. D.; Olsen, B. R.; Morriss-Kay, G. M.
2008-01-01
The vertebrate cranial base is a complex structure composed of bone, cartilage and other connective tissues underlying the brain; it is intimately connected with development of the face and cranial vault. Despite its central importance in craniofacial development, morphogenesis and tissue origins of the cranial base have not been studied in detail in the mouse, an important model organism. We describe here the location and time of appearance of the cartilages of the chondrocranium. We also examine the tissue origins of the mouse cranial base using a neural crest cell lineage cell marker, Wnt1-Cre/R26R, and a mesoderm lineage cell marker, Mesp1-Cre/R26R. The chondrocranium develops between E11 and E16 in the mouse, beginning with development of the caudal (occipital) chondrocranium, followed by chondrogenesis rostrally to form the nasal capsule, and finally fusion of these two parts via the midline central stem and the lateral struts of the vault cartilages. X-Gal staining of transgenic mice from E8.0 to 10 days post-natal showed that neural crest cells contribute to all of the cartilages that form the ethmoid, presphenoid, and basisphenoid bones with the exception of the hypochiasmatic cartilages. The basioccipital bone and non-squamous parts of the temporal bones are mesoderm derived. Therefore the prechordal head is mostly composed of neural crest-derived tissues, as predicted by the New Head Hypothesis. However, the anterior location of the mesoderm-derived hypochiasmatic cartilages, which are closely linked with the extra-ocular muscles, suggests that some tissues associated with the visual apparatus may have evolved independently of the rest of the “New Head”. PMID:18680740
Borel, J P; Maquart, F X; Robert, A M; Labat-Robert, J; Robert, L
2012-02-01
The science of connective tissues has (at least) a double origin. Collagen, their major constituent was first studied in conjunction with the leather industry. Acid mucopolysaccharides (now glycosaminoglycans) were characterised by (bio)-chemists interested in glycoconjugates. They joined mainly hospital-based rheumatology departments. Later started the study of elastin with the discovery of elastases and of connective tissue-born (structural) glycoproteins. Besides rhumatologists and leather-chemists mainly pathologists became involved in this type of research, followed closely by ophthalmology research. The first important meetings of these diverse specialists were organised under the auspices of NATO, first in Saint-Andrew's in GB in 1964 and a few years later (1969) in Santa Margareta, Italy. With the discovery of fibronectin, a "structural glycoprotein", started the study of cell-matrix interactions, reinforced by the identification of cell-receptors mediating them and the "cross-talk" between cells and matrix constituents. The first initiative to organise societies for this rapidly growing discipline was that of Ward Pigman in New York in 1961, restricted however to glycol-conjugates. Next year, in 1962 was founded the first European Connective Tissue Society in Paris: the "Club français du tissu conjonctif", which played a crucial role in the establishment of schools, laboratories, national and international meetings in the major cities of France: Paris, Lyon, Reims, Caen,Toulouse. A second European society was born in Great Britain, and at a joint meeting with the French society at the Paris Pasteur Institute, was founded in 1967 by these societies the Federation of European Connective Tissue Societies (FECTS). Their meetings, organised every second year, drained a wide attendance from all over the world. An increasing number of young scientists joined since then this branch of biomedical discipline with several international journals devoted to connective tissue research, to matrix biology. The increasing number and quality of the young generation of scientists engaged in research related to the extracellular matrix or better Biomatrix and cell-matrix interactions is a further guarantee for the continued interest in this crucial field of science at the interface of basic and medically oriented research. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Roberts, Michael D.; Grau, Vicente; Grimm, Jonathan; Reynaud, Juan; Bellezza, Anthony J.; Burgoyne, Claude F.; Downs, J. Crawford
2009-01-01
Purpose To characterize the trabeculated connective tissue microarchitecture of the lamina cribrosa (LC) in terms of total connective tissue volume (CTV), connective tissue volume fraction (CTVF), predominant beam orientation, and material anisotropy in monkeys with early experimental glaucoma (EG). Methods The optic nerve heads from three monkeys with unilateral EG and four bilaterally normal monkeys were three dimensionally reconstructed from tissues perfusion fixed at an intraocular pressure of 10 mm Hg. A three-dimensional segmentation algorithm was used to extract a binary, voxel-based representation of the porous LC connective tissue microstructure that was regionalized into 45 subvolumes, and the following quantities were calculated: total CTV within the LC, mean and regional CTVF, regional predominant beam orientation, and mean and regional material anisotropy. Results Regional variation within the laminar microstructure was considerable within the normal eyes of all monkeys. The laminar connective tissue was generally most dense in the central and superior regions for the paired normal eyes, and laminar beams were radially oriented at the periphery for all eyes considered. CTV increased substantially in EG eyes compared with contralateral normal eyes (82%, 44%, 45% increases; P < 0.05), but average CTVF changed little (−7%, 1%, and −2% in the EG eyes). There were more laminar beams through the thickness of the LC in the EG eyes than in the normal controls (46%, 18%, 17% increases). Conclusions The substantial increase in laminar CTV with little change in CTVF suggests that significant alterations in connective and nonconnective tissue components in the laminar region occur in the early stages of glaucomatous damage. PMID:18806292
Void space inside the developing seed of Brassica napus and the modelling of its function
Verboven, Pieter; Herremans, Els; Borisjuk, Ljudmilla; Helfen, Lukas; Ho, Quang Tri; Tschiersch, Henning; Fuchs, Johannes; Nicolaï, Bart M; Rolletschek, Hardy
2013-01-01
The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed. PMID:23692271
Hennighausen, U; Schmidt-Martens, F W; Reim, M
1978-05-01
A 5-months-old female baby with Down's Syndrome developed an intermittent spastic ectropion of the upper eyelids. The reasons for this are thought to be the flaccidity of the connective tissue, which is typical in Down's Syndrome, and a little anomaly of the eyelids, the tarsus was too short horizontally and very weak and the upper eyelids were somewhat larger than normal and elongated. Suturing Bangerter's lid-sheets on the upper eyelids for 15 days resulted in a scarring of the tarsus with the lax connective tissue of the upper eyelids. The ectropion disappeared and did not recur.
Phenytoin sensitivity of fibroblasts as the basis for susceptibility to gingival enlargement.
Hassell, T. M.; Gilbert, G. H.
1983-01-01
A side effect of long-term administration of the anti-epileptic drug phenytoin is overgrowth of the connective tissues surrounding the teeth. In this in vitro study of protein and collagen synthesis by diploid fibroblasts from 17 nonepileptic young persons with healthy gingivae, only seven strains of cells responded to phenytoin in culture medium. Because not all phenytoin-treated individuals develop gingival overgrowth, we suggest that susceptibility is predicated upon the presence of a (genetically determined) phenytoin-sensitive subpopulation of gingival fibroblasts. The concept of the participation of sensitive cell subpopulations in other connective tissue disorders is supported by these findings. Images Figure 1 PMID:6881288
Bongiorno, Michelle A; Nathan, Neera; Oyerinde, Oyetewa; Wang, Ji-An; Lee, Chyi-Chia Richard; Brown, G Thomas; Moss, Joel; Darling, Thomas N
2017-07-01
Patients with tuberous sclerosis complex (TSC) frequently develop collagenous connective tissue nevi. The prototypical lesion is a large shagreen patch located on the lower back, but some patients only manifest small collagenomas or have lesions elsewhere on the body. The ability to recognize these variable presentations can be important for the diagnosis of TSC. To describe the clinical characteristics of connective tissue nevi on the trunk and extremities of patients with tuberous sclerosis complex. A retrospective analysis of patient medical records and skin photography was performed; 104 adult patients with TSC were enrolled in an observational cohort study that was enriched for those with pulmonary lymphangioleiomyomatosis, and was therefore composed mostly of women (99 women, 5 men). All patients included were examined at the National Institutes of Health (NIH) in Bethesda, Maryland, from 1998 to 2013. Connective tissue nevi were categorized per anatomic location and size. Lesions less than 1 cm in diameter were termed collagenomas. Shagreen patches were characterized as small (1 to <4 cm), medium (4 to <8 cm), and large (≥8 cm). Frequency, anatomic location, size, and histological appearance of connective tissue nevi in patients with TSC. Overall, 58 of 104 patients (median [range] age, 42 [19-70] years) with TSC (56%) had at least 1 connective tissue nevus on the trunk or thighs; of these, 28 of 58 patients (48%) had a solitary lesion, and 30 of 58 patients (52%) had 2 or more lesions. Overall, 120 lesions from 55 patients were classified by size; 46 lesions (38%) were collagenomas; 39 lesions (32%) were small shagreen patches; 21 lesions (18%), medium shagreen patches; and 14 lesions (12%), large shagreen patches. The distribution of lesions was 9% (n = 11), upper back; 29% (n = 35), middle back; 51% (n = 61), lower back; and 11% (n = 13), other locations. All 26 shagreen patches that were analyzed histopathologically had coarse collagen fibers and 24 of 26 stained with Miller elastic stain had decreased elastic fibers. On immunoblot analysis, fibroblasts grown from shagreen patches expressed higher levels of phosphorylated ribosomal protein S6 than paired fibroblasts from normal-appearing skin. Tuberous sclerosis complex-related connective tissue nevi are not limited to the lower back, and occasionally present on the central or upper back, buttocks, or thighs. Elastic fibers are typically decreased. Recognition of these variable presentations can be important for TSC diagnosis.
Mechanical regulation of musculoskeletal system development.
Felsenthal, Neta; Zelzer, Elazar
2017-12-01
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit. © 2017. Published by The Company of Biologists Ltd.
Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Negri, Bruno; Gomez-Moreno, Gerardo; Markovic, Aleksa
2015-08-01
To describe contact, thickness, density, and orientation of connective tissue fibers around healing abutments of different geometries by means of a new method using coordinates. Following the bilateral extraction of mandibular premolars (P2, P3, and P4) from six fox hound dogs and a 2-month healing period, 36 titanium implants were inserted, onto which two groups of healing abutments of different geometry were screwed: Group A (concave abutments) and Group B (wider healing abutment). After 3 months the animals were sacrificed and samples extracted containing each implant and surrounding soft and hard tissues. Histological analysis was performed without decalcifying the samples by means of circularly polarized light under optical microscope and a system of vertical and horizontal coordinates across all the connective tissue in an area delimited by the implant/abutment, epithelium, and bone tissue. In no case had the connective tissue formed a connection to the healing abutment/implant in the internal zone; a space of 35 ± 10 μm separated the connective tissue fibers from the healing abutment surface. The total thickness of connective tissue in the horizontal direction was significantly greater in the medial zone in Group B than in Group A (p < .05). The orientation of the fibers varied according to the coordinate area so that internal coordinates showed a higher percentage of parallel fibers in Group A (p < .05) and a higher percentage of oblique fibers in Group B (p < .05); medial coordinates showed more oblique fibers (p < .05); and the area of external coordinates showed the highest percentage of perpendicular fibers (p < .05). The fiber density was higher in the basal and medial areas (p < .05). Abutment geometry influences the orientation of collagen fibers; therefore, an abutment with a profile wider than the implant platform favors oblique and perpendicular orientation of collagen fibers and greater connective tissue thickness. © 2013 Wiley Periodicals, Inc.
Takahashi, Toshiaki; Friedmacher, Florian; Takahashi, Hiromizu; Daniel Hofmann, Alejandro; Puri, Prem
2015-02-01
Malformation of the nonmuscular tissue components in congenital diaphragmatic hernia (CDH) is thought to underlie the diaphragmatic defect, causing intrathoracic herniation of abdominal viscera and thus disturbing normal lung development. It has been shown that diaphragmatic and pulmonary morphogeneses require the structural integrity of connective tissue, and developmental mutations that inhibit the formation of extracellular matrix (ECM) result in CDH with hypoplastic lungs. Lysyl oxidase (lox), an extracellular enzyme that catalyzes the cross-linking of ECM proteins, plays an essential role during diaphragmatic and pulmonary development by controlling the formation of connective tissue. Furthermore, lox (-/-) knockouts exhibit abnormal connective tissue with diaphragmatic defects and impaired airway morphogenesis. We designed this study to investigate the hypothesis that diaphragmatic and pulmonary lox expression is decreased in the nitrofen-induced CDH model. Timed-pregnant Sprague-Dawley rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on selected time points D15 and D18. The micro-dissected fetal diaphragms (n=48) and lungs (n=48) were divided into two groups: control and nitrofen-exposed samples (n=12 per specimen and time point, respectively). Diaphragmatic and pulmonary gene expression levels of lox were analyzed by quantitative real-time polymerase chain reaction. Immunohistochemical staining was performed to evaluate lox protein expression in diaphragms and lungs. Relative mRNA expression of lox was significantly reduced in diaphragms and lungs of nitrofen-exposed fetuses on D15 (0.29 ± 0.08 vs. 0.12 ± 0.05; p<0.05 and 0.52 ± 0.44 vs. 0.20 ± 0.04; p<0.05) and D18 (0.90 ± 0.25 vs. 0.57 ± 0.23; p<0.05 and 0.59 ± 0.26 vs. 0.35 ± 0.09; p<0.05) compared with controls. Diaphragmatic and pulmonary immunoreactivity of lox was markedly decreased in nitrofen-exposed fetuses on D15 and D18 compared with controls. Decreased lox expression during diaphragmatic development and lung branching morphogenesis may interfere with normal cross-linking of ECM proteins, disrupting the integrity of connective tissue, and contributing to the diaphragmatic defect and impaired airway formation in the nitrofen-induced CDH model. Georg Thieme Verlag KG Stuttgart · New York.
Naujokat, H; Açil, Y; Gülses, A; Birkenfeld, F; Wiltfang, J
2018-05-26
In 2016, we reported the world's first reconstruction of a mandibular discontinuity defect using a custom-made bone transplant that had been prefabricated in the gastrocolic omentum using tissue engineering strategies. However, the tissue of an engineered human neomandible has not been evaluated histologically until now. The current study assessed the long-term histological characteristics of biopsies of the neomandible 9months after transplantation. Histological analysis showed an increased amount of vital mineralized bone tissue after 10months, in comparison to biopsies obtained earlier. The engineered bone covered the surface of the bone substitute material but also grew out typical structures of cancellous bone tissue without a core of BioOss. The amount of induced bone tissue was 32% in the biopsy. In addition, the soft tissue showed an alignment of the connective tissue fibres parallel to the trabecular bone. Increasing time and mechanical forces at the mandible led to an increased amount of mineralized tissue and remodelling of the connective tissue fibres after transplantation. Further research should focus on developing advanced scaffold materials, as the outer titanium mesh cage leads to complications. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Periodontal regeneration in gingival recession defects.
Trombelli, L
1999-02-01
Surgical treatment of gingival recession defects aims at obtaining soft tissue coverage of exposed root surfaces and/or augmentation of gingival tissue dimensions. A variety of protocols have been developed to manage these clinical problems. Since one goal of periodontal therapy is the regeneration of the lost attachment apparatus of the tooth, full restoration of defect should be accomplished following mucogingival procedures. This implies regeneration of all periodontal structures, including formation of new cementum with inserting connective tissue fibers, alveolar bone regeneration and recreation of a functional and aesthetic morphology of the mucogingival complex. Animal and human histological studies have shown that healing at gingiva-root interface following pedicle flaps or free soft tissue grafts generally includes a long junctional epithelium with varying amounts of a new connective tissue attachment in the most apical aspect of the covered root surface. Limited bone regeneration has been observed. Adjunctive use of root conditioning agents and cell excluding, wound-stabilizing devices may amplify regenerative outcomes. Changes in the amount of keratinized tissue, which can significantly affect the aesthetic outcome of treatment, have been shown to depend on the interactions among various tissues involved in the healing process and the selected surgical procedure.
STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE
Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.
2016-01-01
Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184
Kawajiri, Hidetake; Mizuno, Takeshi; Moriwaki, Takeshi; Ishibashi-Ueda, Hatsue; Yamanami, Masashi; Kanda, Keiichi; Yaku, Hitoshi; Nakayama, Yasuhide
2015-02-01
In this study, we aimed to describe the development of tissue-engineered self-expandable aortic stent grafts (Bio stent graft) using in-body tissue architecture technology in beagles and to determine its mechanical and histological properties. The preparation mold was assembled by insertion of an acryl rod (outer diameter, 8.6 mm; length, 40 mm) into a self-expanding nitinol stent (internal diameter, 9.0 mm; length, 35 mm). The molds (n = 6) were embedded into the subcutaneous pouches of three beagles for 4 weeks. After harvesting and removing each rod, the excessive fragile tissue connected around the molds was trimmed, and thus tubular autologous connective tissues with the stent were obtained for use as Bio stent grafts (outer diameter, approximately 9.3 mm in all molds). The stent strut was completely surrounded by the dense collagenous membrane (thickness, ∼150 µm). The Bio stent graft luminal surface was extremely flat and smooth. The graft wall of the Bio stent graft possessed an elastic modulus that was almost two times higher than that of the native beagle abdominal aorta. This Bio stent graft is expected to exhibit excellent biocompatibility after being implanted in the aorta, which may reduce the risk of type 1 endoleaks or migration. © 2014 Wiley Periodicals, Inc.
Quantitative morphology in canine cutaneous soft tissue sarcomas.
Simeonov, R; Ananiev, J; Gulubova, M
2015-12-01
Stained cytological specimens from 24 dogs with spontaneous soft tissue sarcomas [fibrosarcoma (n = 8), liposarcoma (n = 8) and haemangiopericytoma (n = 8)], and 24 dogs with reactive connective tissue lesions [granulation tissue (n = 12) and dermal fibrosis (n = 12)] were analysed by computer-assisted nuclear morphometry. The studied morphometric parameters were: mean nuclear area (MNA; µm(2)), mean nuclear perimeter (MNP; µm), mean nuclear diameter (MND mean; µm), minimum nuclear diameter (Dmin; µm) and maximum nuclear diameter (Dmax; µm). The study aimed to evaluate (1) possibility for quantitative differentiation of soft tissue sarcomas from reactive connective tissue lesions and (2) by using cytomorphometry, to differentiate the various histopathological soft tissue sarcomas subtypes in dogs. The mean values of all nuclear cytomorphometric parameters (except for Dmax) were statistically significantly higher in reactive connective tissue processes than in soft tissue sarcomas. At the same time, however, there were no considerable differences among the different sarcoma subtypes. The results demonstrated that the quantitative differentiation of reactive connective tissue processes from soft tissue sarcomas in dogs is possible, but the same was not true for the different canine soft tissue sarcoma subtypes. Further investigations on this topic are necessary for thorough explication of the role of quantitative morphology in the diagnostics of mesenchymal neoplasms and tumour-like fibrous lesions in dogs. © 2014 John Wiley & Sons Ltd.
Hanser, Thomas; Khoury, Fouad
2016-01-01
This study evaluated volume stability after alveolar ridge contouring with free connective tissue grafts at implant placement in single-tooth gaps. A total of 52 single-tooth gaps with labial volume deficiencies in the maxilla (incisors, canines, and premolars) were consecutively treated with implants and concomitant free palatal connective tissue grafts in 46 patients between 2006 and 2009. Implants had to be covered with at least 2 mm peri-implant local bone after insertion. At implant placement, a free connective tissue graft from the palate was fixed inside a labial split-thickness flap to form an existing concave buccal alveolar ridge contour due to tissue volume deficiency into a convex shape. Standardized volumetric measurements of the labial alveolar contour using a template were evaluated before connective tissue grafting and at 2 weeks, 1 year, and 5 years after implantprosthetic incorporation. Tissue volume had increased significantly (P < .05) in all six reference points representing the outer alveolar soft tissue contour of the implant before connective tissue grafting to baseline (2 weeks after implant-prosthetic incorporation). Statistically, 50% of the reference points (P > .05) kept their volume from baseline to 1 year after prosthetic incorporation and from baseline to 5 years after prosthetic incorporation, respectively, whereas reference points located within the area of the implant sulcus showed a significant (P < .05) decrease in volume. Clinically, 5 years after prosthetic incorporation the originally concave buccal alveolar contour was still convex in all implants, leading to a continuous favorable anatomical shape and improved esthetic situation. Intraoral radiographs confirmed osseointegration and stable peri-implant parameters with a survival rate of 100% after a follow-up of approximately 5 years. Implant placement with concomitant free connective tissue grafting appears to be an appropriate long-term means to contour preexisting buccal alveolar volume deficiencies in single implants.
[Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering].
Auxenfans, C; Builles, N; Andre, V; Lequeux, C; Fievet, A; Rose, S; Braye, F-M; Fradette, J; Janin-Manificat, H; Nataf, S; Burillon, C; Damour, O
2009-06-01
Skin and cornea both feature an epithelium firmly anchored to its underlying connective compartment: dermis for skin and stroma for cornea. A breakthrough in tissue engineering occurred in 1975 when skin stem cells were successfully amplified in culture by Rheinwald and Green. Since 1981, they are used in the clinical arena as cultured epidermal autografts for the treatment of patients with extensive burns. A similar technique has been later adapted to the amplification of limbal-epithelial cells. The basal layer of the limbal epithelium is located in a transitional zone between the cornea and the conjunctiva and contains the stem cell population of the corneal epithelium called limbal-stem cells (LSC). These cells maintain the proper renewal of the corneal epithelium by generating transit-amplifying cells that migrate from the basal layer of the limbus towards the basal layer of the cornea. Tissue-engineering protocols enable the reconstruction of three-dimensional (3D) complex tissues comprising both an epithelium and its underlying connective tissue. Our in vitro reconstruction model is based on the combined use of cells and of a natural collagen-based biodegradable polymer to produce the connective-tissue compartment. This porous substrate acts as a scaffold for fibroblasts, thereby, producing a living dermal/stromal equivalent, which once epithelialized results into a reconstructed skin/hemicornea. This paper presents the reconstruction of surface epithelia for the treatment of pathological conditions of skin and cornea and the development of 3D tissue-engineered substitutes based on a collagen-GAG-chitosan matrix for the regeneration of skin and cornea.
Gardini, A; Corti, B; Fiorentino, M; Altimari, A; Ercolani, G; Grazi, G L; Pinna, A D; Grigioni, W F; D'Errico Grigioni, A
2005-04-01
Connective tissue growth factor is a member of the 'CCN' protein family. Consistent with its profibrotic properties, it is over-expressed in several human epithelial malignancies. We have retrospectively evaluated by immunohistochemistry the presence of connective tissue growth factor in archival tissues from 55 resected intrahepatic cholangiocarcinomas and compared its expression to the main pathological parameters, disease free and overall survival. Tumours were scored as high and low/absent expressers (> or =50%, 0-50% cells, respectively). Thirty-three of 55 cholangiocarcinomas (60%) were high and 22 (40%) low expressers. No significant correlation was found between connective tissue growth factor and tumour grade, tumour location, vascular and perineural invasion. Eighteen of 22 (82%) low/absent expressers and 12/33 (36%) high expressers had recurrence of disease (P=0.001). Low/absent expressers showed a poor disease free and overall survival compared with the higher expressers (P<0.001). Vascular invasion was related to tumour recurrence (P=0.025) and to decreased disease free survival (P<0.05). During proportional hazard regression analysis, only connective tissue growth factor was found to influence disease free survival (P=0.01). Expression of connective tissue growth factor is an independent prognostic indicator of both tumour recurrence and overall survival for intrahepatic cholangiocarcinoma patients regardless of tumour location, tumour grade, vascular and perineural invasion.
Huang, Alice H
2017-09-15
Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments. Copyright © 2017 Elsevier Inc. All rights reserved.
Qu, Feini; Pintauro, Michael P; Haughan, Joanne E; Henning, Elizabeth A; Esterhai, John L; Schaer, Thomas P; Mauck, Robert L; Fisher, Matthew B
2015-01-01
Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mason, Roger M
2013-01-01
Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747
Kloss, Frank R; Steinmüller-Nethl, Doris; Stigler, Robert G; Ennemoser, Thomas; Rasse, Michael; Hächl, Oliver
2011-07-01
Connective tissue in contact to transgingival/-dermal implants presents itself as tight scar formation. Although rough surfaces support the attachment they increase bacterial colonisation as well. In contrast to surface roughness, little is known about the influence of surface wettability on soft-tissue healing in vivo. We therefore investigated the influence of different surface wettabilities on connective tissue healing at polished implant surfaces in vivo. Three polished experimental groups (titanium, titanium coated with hydrophobic nano-crystalline diamond (H-NCD) and titanium coated with hydrophilic nano-crystalline diamond (O-NCD) were inserted into the subcutaneous connective tissue of the abdominal wall of 24 rats. Animals were sacrificed after 1 and 4 weeks resulting in eight specimen per group per time point. Specimen were subjected to histological evaluation (van Giesson's staining) and immunohistochemistry staining for proliferating cell nuclear antigen (PCNA), fibronectin and tumour necrosis factor-alpha (TNF-α). Histological evaluation revealed dense scar formation at the titanium and H-NCD surfaces. In contrast, the connective tissue was loose at the O-NCD surface with a significantly higher number of cells after 4 weeks. O-NCD demonstrated a strong expression of PCNA and fibronectin but a weak expression of TNF-α. In contrast, the PCNA and fibronectin expression was low at the titanium and H-NCD, with a strong signal of TNF-α at the H-NCD surface. Hydrophilicity influences the connective tissue healing at polished implant surfaces in vivo positively. The attachment of connective tissue and the number of cells in contact to the surface were increased. Moreover, the inflammatory response is decreased at the hydrophilic surface. © 2010 John Wiley & Sons A/S.
Mixed Connective Tissue Disease and Papillary Thyroid Cancer: A Case Report.
Thongpooswan, Supat; Tushabe, Rachel; Song, Jeffrey; Kim, Paul; Abrudescu, Adriana
2015-08-06
Mixed connective tissue disease (MCTD) is a connective tissue disorder characterized by high titers of distinct antibodies: U1 ribonucleoprotein with clinical features seen in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), dermatomyositis (DM), polymyositis, and scleroderma. The association of SLE and DM with various cancers of the thyroid has been reported in the literature. However, there have been no reports associating MCTD with thyroid cancer. We present a 58-year-old woman diagnosed with MCTD with co-morbid interstitial lung disease that has remained stable for 10 years, who developed papillary thyroid carcinoma (PTC) 10 years after initial diagnosis. We theorize that: 1) MCTD may have been a primary diagnosis complicated by PTC, or 2) MCTD may have been an initial presentation of paraneoplastic syndrome of silent PTC, because her symptoms of MCTD significantly improved after total thyroidectomy. To the best of our knowledge, this is the first case report to associate MCTD with PTC. It highlights the importance of maintaining a high index of suspicion for thyroid malignancy in MCTD patients.
[Kikuchi-Fujimoto's disease and connective tissue disease: a report of three cases].
Frikha, F; Marzouk, S; Frigui, M; Jallouli, M; Kechaou, M; Kaddour, N; Boudawara, T; Jlidi, R; Bahloul, Z
2008-02-01
Kikuchi-Fujimoto's disease or histiocytic necrotizing lymphadenitis, clinicopathological entity of unknown aetiology, is a rare and benign cause of cervical lymphadenopathies. It can be associated with various auto-immune diseases especially systemic lupus erythematous (SLE) or with some infectious agents. This report describes a survey of three patients who developed Kikuchi's lymphadenitis occurring concomitantly with connective tissue disease: LES in two cases and non determined connective tissue disease in the other case. Comparing the clinical, histopathological and evolutionary findings to the literature allows to identify the main features of this self-limiting disorder: occurrence in young women; clinical presentation with cervical lymphadenopathy in a context of fever and asthenia. The definite diagnosis is usually made through histopathological examination of a lymph node biopsy. Disease course is generally favourable with spontaneous resolution within few weeks. It may be improved with corticosteroid treatment in patients with systemic involvement. Prognosis is related to the associated disease. Kikuchi-Fujimoto's disease is a rare and benign cause of cervical lymphadenopathy that could resemble lymphoma, tuberculosis and may be associated with a characterized systemic disease.
Paradowska-Gorycka, A; Stypińska, B; Olesińska, M; Felis-Giemza, A; Mańczak, M; Czuszynska, Z; Zdrojewski, Z; Wojciechowicz, J; Jurkowska, M
2016-01-01
Mixed connective tissue disease (MCTD) is a systemic autoimmune disease, originally defined as a connective tissue inflammatory syndrome with overlapping features of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), polymyositis/dermatomyositis (PM/DM) and systemic sclerosis (SSc), characterized by the presence of antibodies against components of the U1 small nuclear ribonucleoprotein (U1snRNP). The aim of the study was to assess the frequency of (high-resolution-typed) DRB1 alleles in a cohort of Polish patients with MCTD (n = 103). Identification of the variants potentially associated with risk and protection was carried out by comparison with the DKMS Polish Bone Marrow Donor Registry (41306 alleles). DRB1*15:01 (odds ratio (OR): 6.06; 95% confidence interval (CI) 4.55-8.06), DRB1*04 (OR: 3.69; 95% CI 2.69-5.01) and *09:01 (OR: 8.12; 95% CI 2.15-21.75) were identified as risk alleles for MCTD, while HLA-DRB1*07:01 allele was found to be protective (OR: 0.50; 95% CI 0.28-0.83). The carrier frequency of the DRB1*01 was higher in MCTD patients compared with controls, although the differences were not statistically significant. Our results confirm the modulating influence of HLA-DRB1 genotypes on development of connective tissue diseases such as MCTD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
van der Wal, Jaap
2009-01-01
The architecture of the connective tissue, including structures such as fasciae, sheaths, and membranes, is more important for understanding functional meaning than is more traditional anatomy, whose anatomical dissection method neglects and denies the continuity of the connective tissue as integrating matrix of the body. The connective tissue anatomy and architecture exhibits two functional tendencies that are present in all areas of the body in different ways and relationships. In body cavities, the “disconnecting” quality of shaping space enables mobility; between organs and body parts, the “connecting” dimension enables functional mechanical interactions. In the musculoskeletal system, those two features of the connective tissue are also present. They cannot be found by the usual analytic dissection procedures. An architectural description is necessary. This article uses such a methodologic approach and gives such a description for the lateral elbow region. The result is an alternative architectural view of the anatomic substrate involved in the transmission and conveyance of forces over synovial joints. An architectural description of the muscular and connective tissue organized in series with each other to enable the transmission of forces over these dynamic entities is more appropriate than is the classical concept of “passive” force-guiding structures such as ligaments organized in parallel to actively force-transmitting structures such as muscles with tendons. The discrimination between so-called joint receptors and muscle receptors is an artificial distinction when function is considered. Mechanoreceptors, also the so-called muscle receptors, are arranged in the context of force circumstances—that is, of the architecture of muscle and connective tissue rather than of the classical anatomic structures such as muscle, capsules, and ligaments. In the lateral cubital region of the rat, a spectrum of mechanosensitive substrate occurs at the transitional areas between regular dense connective tissue layers and the muscle fascicles organized in series with them. This substrate exhibits features of type and location of the mechanosensitive nerve terminals that usually are considered characteristic for “joint receptors” as well as for “muscle receptors.” The receptors for proprioception are concentrated in those areas where tensile stresses are conveyed over the elbow joint. Structures cannot be divided into either joint receptors or muscle receptors when muscular and collagenous connective tissue structures function in series to maintain joint integrity and stability. In vivo, those connective tissue structures are strained during movements of the skeletal parts, those movements in turn being induced and led by tension in muscular tissue. In principle, because of the architecture, receptors can also be stimulated by changes in muscle tension without skeletal movement, or by skeletal movement without change in muscle tension. A mutual relationship exists between structure (and function) of the mechanoreceptors and the architecture of the muscular and regular dense connective tissue. Both are instrumental in the coding of proprioceptive information to the central nervous system. PMID:21589740
Designing the stem cell microenvironment for guided connective tissue regeneration.
Bogdanowicz, Danielle R; Lu, Helen H
2017-12-01
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.
Alahakoon, A U; Oey, I; Silcock, P; Bremer, P
2017-10-01
Brisket is a low value/tough meat cut that contains a large amount of connective tissue. Conversion of collagen into gelatin during heating reduces the toughness of the connective tissue however this conversion is slow at low cooking temperatures (around 60°C). The objective of this project was to determine the ability of pulsed electric field (PEF) processing to reduce the thermal stability of connective tissue. To achieve this, a novel model system was designed in which connective tissue obtained from beef deep pectotalis muscle (brisket) was exposed to PEF at combinations of electric field strength (1.0 and 1.5kV/cm) and specific energy (50 and 100kJ/kg) within an agar matrix at electrical conductivities representing the electrical conductivity found in brisket. Differential scanning calorimetry showed that PEF treatment significantly (p<0.05) decreased the denaturation temperature of connective tissue compared to untreated samples. Increasing electric field strength and the specific energy increased the Ringer soluble collagen fraction. PEF treated samples showed higher solubilization compared to the untreated samples at both 60°C and 70°C in heat solubility test. SEM examination of PEF treated (at 1.5kV/cm and 100kJ/kg) and untreated samples revealed that PEF appeared to increase the porosity of the connective tissue structure. These finding suggest that PEF processing is a technology that could be used to improve the tenderness and decrease the cooking time of collagen rich, meat cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetics Home Reference: acrocallosal syndrome
... callosum occurs when the tissue that connects the left and right halves of the brain (the corpus callosum ) fails to form normally during the early stages of development before birth. Other brain abnormalities, including the growth ...
Osteoimmunology: the study of the relationship between the immune system and bone tissue.
Arboleya, Luis; Castañeda, Santos
2013-01-01
Bone tissue is a highly regulated structure, which plays an essential role in various physiological functions. Through autocrine and paracrine mechanisms, bone tissue is involved in hematopoiesis, influencing the fate of hematopoietic stem cells. There are a number of molecules shared by bone cells and immune system cells indicating that there are multiple connections between the immune system and bone tissue. In order to pool all the knowledge concerning both systems, a new discipline known under the term «osteoimmunology» has been developed. Their progress in recent years has been exponential and allowed us to connect and increase our knowledge in areas not seemingly related such as rheumatoid erosion, postmenopausal osteoporosis, bone metastases or periodontal disease. In this review, we have tried to summarize the most important advances that have occurred in the last decade, especially in those areas of interest related to rheumatology. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Effects of Weightlessness on Vestibular Development of Quail
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd; Bruce, Laura L.
1997-01-01
The lack of gravity is known to alter vestibular responses in developing and adult vertebrates. One cause of these altered responses may be changes in the connections between the vestibular receptor and the brain. Therefore we propose to investigate the effects of gravity on the formations of connections between the gravity receptors of the ear and the brain in developing quail incubated in space beginning at an age before these connections are established (incubation day three) until near the time of hatching, when they are to some extent functional. This investigation will make use of a novel technique, the diffusion of a lipophilic dye, DiI, in fixed tissue. This technique can thus be used to analyze the connections in specimens fixed in orbit, thus eliminating changes due to the earth's gravity. The evaluation of the data will enable us to detect gross deviations from normal patterns as well as detailed quantitative deviations.
Wang, F-M; Yu, F; Tan, Y; Liu, G; Zhao, M-H
2014-06-01
The expression of connective tissue growth factor mRNA in human kidneys may serve as an early marker for lupus nephritis progression. Therefore, we speculated that connective tissue growth factor may be involved in the pathogenesis of systemic lupus erythematosus and lupus nephritis. In this study, we set out to investigate the associations between serum connective tissue growth factor levels and clinicopathological features of patients with systemic lupus erythematosus and lupus nephritis. Serum samples from patients with non-renal systemic lupus erythematosus, renal biopsy-proven lupus nephritis and healthy control subjects were detected by enzyme-linked immunosorbent assay for serum connective tissue growth factor levels. The associations between connective tissue growth factor levels and clinicopathological features of the patients were further analysed. The levels of serum connective tissue growth factor in patients with non-renal systemic lupus erythematosus and lupus nephritis were both significantly higher than those in the normal control group (34.14 ± 12.17 ng/ml vs. 22.8 ± 3.0 ng/ml, p<0.001; 44.1 ± 46.8 ng/ml vs. 22.8 ± 3.0 ng/ml, p = 0.035, respectively). There was no significant difference of the serum connective tissue growth factor levels between non-renal systemic lupus erythematosus and lupus nephritis group (34.14 ± 12.17 ng/ml vs. 44.1 ± 46.8 ng/ml, p = 0.183). Serum connective tissue growth factor levels were significantly higher in lupus nephritis patients with the following clinical manifestations, including anaemia (51.3 ± 51.4 ng/ml vs. 23.4 ± 9.7 ng/ml, p<0.001) and acute renal failure (85.5 ± 75.0 ng/ml vs. 31.2 ± 21.8 ng/ml, p = 0.002). Serum connective tissue growth factor levels in class IV were significantly higher than that in class II, III and V (57.6 ± 57.5 ng/ml vs. 18.7 ± 6.4 ng/ml, p = 0.019; 57.6 ± 57.5 ng/ml vs. 25.2 ± 14.9 ng/ml, p = 0.006; 57.6 ± 57.5 ng/ml vs. 30.5 ± 21.3 ng/ml, p = 0.017, respectively). Serum connective tissue growth factor levels were significantly higher in those with both active/chronic lesions than those in those with active lesions only in either class IV (84.9 ± 69.6 ng/ml vs. 40.0 ± 40.2 ng/ml, p = 0.001) or in combination of class III and IV lupus nephritis (63.3 ± 63.4 ng/ml vs. 38.3 ± 37.9 ng/ml, p = 0.035, respectively). Serum connective tissue growth factor levels were negatively associated with estimated glomerular filtration rate (r = -0.46, p<0.001) and positively associated with interstitial inflammation (r = 0.309, p = 0.002) and interstitial fibrosis (r = 0.287, p = 0.004). Serum connective tissue growth factor level was a risk factor for doubling of serum creatinine in lupus nephritis (p<0.001, hazard ratio = 1.015, 95% confidence intervals 1.008-1.022) in univariate analysis. Serum connective tissue growth factor levels were significantly higher in lupus and correlated with chronic renal interstitial injury and doubling of serum creatinine in patients with lupus nephritis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof
2016-01-01
The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.
Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof
2016-01-01
The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes. PMID:26869938
1989-05-05
gingiva and periodontal ligament emphasizes similarities between the connective tissues of gingiva and periodontal ligament. Possible regeneration of...Clinicians and researchers gradually realized the importance of periodontal ligament granulation tissue in periodontal regeneration (Melcher, 1976...isolated osseous defects. The guided tissue regeneration technique uses membrane filters to isolate healing periodontal defects from gingival connective
Periodontal Wound Healing Responses to Varying Oxygen Concentrations and Atmospheric Pressures.
1986-05-01
Presumably, epithelial and gingival connective tissue exclusion allowed periodontal ligament cells to repopulate the wound and to regenerate a new...However, it seems clear that the periodontal ligament cells provide a major source of connective tissue attachment and regeneration (Nyman et al., 1982a...Connective Tissue Regeneration to Periodontally Diseased Teeth. J. Perio. Res. 15:1. Davis, J. C., Dunn, J. M., Gates, G. A. and Heimbach, R. D. 1979
Bougea, Anastasia; Anagnostou, Evangelos; Spandideas, Nikolaos; Triantafyllou, Nikolaos; Kararizou, Evangelia
2015-01-01
Vasculitides comprise a heterogeneous group of autoimmune disorders, occurring as primary or secondary to a broad variety of systemic infectious, malignant or connective tissue diseases. The latter occur more often but their pathogenic mechanisms have not been fully established. Frequent and varied central and peripheral nervous system complications occur in vasculitides and connective tissue diseases. In many cases, the neurological disorders have an atypical clinical course or even an early onset, and the healthcare professionals should be aware of them. The purpose of this brief review was to give an update of the main neurological disorders of common vasculitis and connective tissue diseases, aiming at accurate diagnosis and management, with an emphasis on pathophysiologic mechanisms. PMID:26313435
[Connective tissue and inflammation].
Jakab, Lajos
2014-03-23
The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.
Li, Hongyi; Yang, Chongqing; Lu, Kuiyuan; Zhang, Liyang; Yang, Jiefu; Wang, Fang; Liu, Dongge; Cui, Di; Sun, Mingjun; Pang, Jianxin; Dai, Luru; Han, Dong; Liao, Fulong
2016-10-05
Although the microcirculatory dysfunctions of edema formation are well documented, the draining pattern of dermal edema lacks information. This study was to assess the potential drainage pathways of the interstitial fluid in patients with ankle edema using the anatomical and histological methods. Four amputees of lower leg participated in this study. Fluorescent imaging agent was injected into lateral ankle dermis in one volunteered patient before the amputation and three lower legs after the amputation. Physiologically in the volunteer or enhanced by cyclical compression on three amputated limbs, several fluorescent longitudinal pathways from ankle dermis to the broken end of the amputated legs were subsequently visualized and studied using histological methods, laser confocal microscopy and electron microscopy methods respectively. Interestingly, the fluorescent pathways confirmed to be fibrous connective tissues and the presence of two types: those of the cutaneous pathway (located in dermis or the interlobular septum among adipose tissues within the hypodermis) and those of the perivascular pathway (located in connective tissues surrounding the veins and the arteries). The intrinsic three-dimensional architecture of each fluorescent pathway was the longitudinally running and interconnected fibril bundles, upon which, an interfacial transport pathway within connective tissues was visualized by fluorescein. The current anatomical data suggested that a unique long-distance transport pathway composed of oriented fibrous connective tissues might play a pathophysiological role in draining dermal edema besides vascular circulations and provide novel understandings of general fibrous connective tissues in life science.
Salvi, M; Velluti, C; Misasi, M; Bartolozzi, P; Quacci, D; Dell'Orbo, C
1991-04-01
Light- and electron-microscopic investigations were performed on two failed Dacron ligaments that had been removed from 2 patients shortly after failure of the implant 2-3 years after reconstruction of the anterior cruciate ligament. Two different cell populations and matrices were correlated with closeness to the Dacron threads. Fibroblasts surrounded by connective tissue with collagen fibrils were located far from the Dacron threads. Roundish cells, appearing to be myofibroblasts surrounded by a more lax connective tissue and elastic fibers, were found close to the Dacron threads. The presence of myofibroblasts and the matrix differentiation could be attributed to the different mechanical forces acting on the Dacron and on the connective tissue because of their different coefficients of elasticity. The sparse occurrence of inflammatory cells in the synovial membrane and in the connective tissue surrounding the Dacron supports the biologic inertness of this artificial material. However, the repair tissue was not structured to resist tension stresses.
Micromechanical modeling of rate-dependent behavior of Connective tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2017-03-07
In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prevention of Phenytoin-Induced Gingival Overgrowth by Lovastatin in Mice
Assaggaf, Mohammad A.; Kantarci, Alpdogan; Sume, Siddika S.; Trackman, Philip C.
2016-01-01
Drug-induced gingival overgrowth is caused by the antiseizure medication phenytoin, calcium channel blockers, and ciclosporin. Characteristics of these drug-induced gingival overgrowth lesions differ. We evaluate the ability of a mouse model to mimic human phenytoin-induced gingival overgrowth and assess the ability of a drug to prevent its development. Lovastatin was chosen based on previous analyses of tissue-specific regulation of CCN2 production in human gingival fibroblasts and the known roles of CCN2 in promoting fibrosis and epithelial to mesenchymal transition. Data indicate that anterior gingival tissue overgrowth occurred in phenytoin-treated mice based on gross tissue observations and histomorphometry of tissue sections. Molecular markers of epithelial plasticity and fibrosis were regulated by phenytoin in gingival epithelial tissues and in connective tissues similar to that seen in humans. Lovastatin attenuated epithelial gingival tissue growth in phenytoin-treated mice and altered the expressions of markers for epithelial to mesenchymal transition. Data indicate that phenytoin-induced gingival overgrowth in mice mimics molecular aspects of human gingival overgrowth and that lovastatin normalizes the tissue morphology and the expression of the molecular markers studied. Data are consistent with characterization of phenytoin-induced human gingival overgrowth in vivo and in vitro characteristics of cultured human gingival epithelial and connective tissue cells. Findings suggest that statins may serve to prevent or attenuate phenytoin-induced human gingival overgrowth, although specific human studies are required. PMID:25843680
Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.
Asahina, Masashi; Satoh, Shinobu
2015-05-01
Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants.
Hypericin-mediated selective photomodification of connective tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovhannisyan, V., E-mail: hovv@phys.ntu.edu.tw; Guo, H. W.; Chen, Y. F., E-mail: yfchen@phys.ntu.edu.tw
2014-12-29
Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.
Agminated Fibroblastic Conective Tissue Nevus: A New Clinical Presentation.
Downey, Camila; Requena, Luis; Bagué, Silvia; Sánchez Martínez, Miquel Ángel; Lloreta, Josep; Baselga, Eulalia
2016-07-01
Connective tissue nevi are benign hamartomatous lesions in which one or several of the components of the dermis (collagen, elastin, glicosaminoglycans) show predominance or depletion. Recently, de Feraudy et al broadened the spectrum of connective tissue nevus, describing fibroblastic connective tissue nevus (FCTN), which is characterized by proliferation of CD34(+) cells of fibroblastic and myofibroblastic lineage. Only solitary papules and nodules have been described. We present the first case of FCTN with multiple agminated lesions on the leg of an infant and the difficulties encountered in the differential diagnosis with dermatofibrosarcoma protuberans. © 2016 Wiley Periodicals, Inc.
Tat, Jimmy; Kociolek, Aaron M; Keir, Peter J
2015-04-01
A common pathologic finding in carpal tunnel syndrome is fibrosis and thickening of the subsynovial connective tissue. This finding suggests an etiology of excessive shear forces, with relative longitudinal displacement between the flexor tendon and adjacent subsynovial connective tissue. The purpose of this study was to validate color Doppler sonography for measurement of tendon displacement over time. Eight unmatched fresh frozen cadaver arms were used to evaluate color Doppler sonography for measurement of tendon displacement. The middle flexor digitorum superficialis tendon was moved through a physiologic excursion of 20 mm at 3 different tendon velocities (50, 100, and 150 mm/s). We found that color Doppler sonography provided accurate measurement of tendon displacement, with absolute errors of -0.05 mm (50 mm/s), -1.24 mm (100 mm/s), and -2.36 mm (150 mm/s) on average throughout the tendon excursion range. Evaluating relative displacement between the tendon and subsynovial connective tissue during finger flexion-extension movements also offered insight into the gliding mechanism of the subsynovial connective tissue. During flexion, we observed a curvilinear increase in relative displacement, with greater differential motion at the end range of displacement, likely due to the sequential stretch of the fibrils between successive layers of the subsynovial connective tissue. In extension, there was a linear return in relative displacement, suggesting a different unloading mechanism characterized by uniform relaxation of fibrils. We demonstrated the validity of color Doppler displacement for use in the evaluation of relative motion. Color Doppler sonography is useful in our understanding of the behavior of the subsynovial connective tissue during tendon excursion, which may elucidate the role of finger motion in the etiology of shear injury. © 2015 by the American Institute of Ultrasound in Medicine.
Secular trends of pregnancies in women with inflammatory connective tissue disease.
Wallenius, Marianne; Salvesen, Kjell Å; Daltveit, Anne K; Skomsvoll, Johan F
2015-11-01
This study examined secular trends in reproductive outcome in women with inflammatory connective tissue disease compared with reference deliveries from the general population. Historical cohort study based on data registered in the Medical Birth Register of Norway from 1967 to 2009. The study included singleton births in women recorded with connective tissue disease (n = 851) and reference deliveries from the general population (n = 2 437 110). Births were stratified in four periods, 1967-1979, 1980-1989, 1990-1999 and 2000-2009. Associations between connective tissue disease and maternal and perinatal outcomes by decade were assessed in logistic regression analyses and adjusted for maternal age at delivery and parity. In the 1970s, around 2.7 deliveries/year were registered for women with connective tissue disease (0.004% of all deliveries). This increased to 42 deliveries/year (0.07% of all deliveries) after 2000. Adjusted odds ratios (aOR) for cesarean section were 5.0 (95% CI 2.1-11.9) in the first and 1.8 (95% CI 1.4-2.3) in the last period. For preterm delivery the aOR decreased from 4.9 (95% CI 2.1-11.4) to 3.1 (95% CI 2.3-4.2) and the aOR for birthweight <2500 g changed from 7.3 (95% CI 3.3-16.3) to 4.1 (95% CI 3.0-5.6). An increasing number of births were observed over time among women with connective tissue disease. Adverse pregnancy outcomes were more common among women with connective tissue disease but risks have decreased over time. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Missounga, Landry; Ba, Josaphat Iba; Nseng Nseng Ondo, Ingrid Rosalie; Nziengui Madjinou, Maria Ines Carine; Malekou, Doris; Mouendou Mouloungui, Emeline Gracia; Nzengue, Emmanuel Ecke; Boguikouma, Jean Bruno; Kombila, Moussavou
2017-01-01
The literature reports that mixed connective tissue disease seems more frequent in the black population and among Asians. This study aims to determine the prevalence of mixed connective tissue disease (MCTD) among connective tissue disorders and all rheumatologic pathologies in a hospital population in Gabon as well as to describe the clinical features of this disease. We conducted a retrospective study by reviewing the medical records of patients treated for mixed connective tissue disease (Kasukawa criteria) and other entities of connective tissue disorders (ACR criteria) in the Division of Rheumatology at the University Hospital in Libreville between January 2010 and December 2015. For each case of MCTD the parameters studied were articular and extra-articular manifestations, anti-U1RNP antibodies levels, patient's evolution. Over a period of 6 years, data were collected by medical records of 7 patients out of 6050 patients and 67 cases of connective tissue disorders, reflecting a prevalence of 0.11% and 10.44% respectively. the 7 patients were women (100%), with an average age of 39.5 years. Articular manifestations included: polyarthritis, myalgias, chubby fingers and Raynaud's phenomenon in 87.5%, 87.5%, 28.6% and 14% respectively. The 7 patients had high anti-U1RNP antibodies levels, ranging between 5 and 35N (N≤ 7 IU). A case of death due to pulmonary arterial hypertension (PAH) was certified. This is the largest case series of MCTD reported in Black Africa. The disease seems to be rare among the black Africans; the reason could be genetic. The demographic and clinical aspects appear similar to those in Caucasians, Asians and Blacks except for a low frequency of Raynaud?s phenomenon among Blacks.
[Chronic mild inflammation links obesity, metabolic syndrome, atherosclerosis and diabetes].
Andel, M; Polák, J; Kraml, P; Dlouhý, P; Stich, V
2009-01-01
Chronic low grade inflammation is relatively new concept in metabolic medicine. This concept describes the relations between the inflammation and adipose tissue, insulin resistence, atherosclerosis and type 2 diabetes mellitus. Macrophages and lymphocytes deposed in adipose tissue produce proinflammatory cytokines which directly or through the CRP liver secretion are targeting endothelial cells, hepatocytes and beta cells of Langerhans islets of pancreas. The dysfunction of these cells follows often further disturbances and in case of beta cells - the cell death. The connection between the adipose tissue insulin resistence, atherosclerosis and type 2 diabetes was earlier described with endocrine and metabolic descriptors. The concept of chronic low grade inflammation creates also another description of multilateral connections in metabolic syndome. The salicylates and the drugs related to them seem to have some glucose lowering properties. The recent development in the field ofchronic low grade inflammation represents also certain therapeutic hope for antiinflammatory intervention in type 2 diabetes.
[The relationship between the sympathetic nerves and immunocytes in the spleen].
Saito, H
1991-02-01
Ever since Galen, the ancient Greek physician, said "Melancholic women develop disease more than sanguine women," it has been said that the mental condition affects the physical condition. However, there is hardly any scientific verification. About half a century ago, Selye (1936) proposed a relationship between stress and immune function, and it is becoming increasingly clear that the nervous system and immune system interact with each other. Also researchers have strongly hoped to demonstrate the existence of specific pathways by which immunocytes can be directly regulated by the nervous elements instead of by the humoral influence of immunomodulators. In this study, the author showed by electron microscopic observation how the immunocytes in the guinea pig spleen are directly innervated. The sustentacular supporting element of the guinea pig spleen is the connective tissue system which includes the capsulo-trabecular, peri-vascular and reticular systems. The latter system is composed of the outer sheath of the reticular cell or its cellular processes which have abundant microfilaments and the inner minute connective tissue space in which lamina densa-like material, collagenous fibrils, elastic fibers and nervous elements are present. The sympathetic adrenergic nerves for the spleen enter the organ, and scatter around the arterial walls. All components of the connective tissue system are continuous with each other, and the nervous elements appearing in the reticular system are the elongated ones from other connective tissue systems, especially peri-vascular connective tissue. Thus, the adrenergic nerves are more abundant in the white pulp, into which the central artery penetrates, than in the red pulp which arterioles or capillaries pass through. The minute connective tissue space of the reticular system may be called the noradrenalin (NA) canal because catecholamine released from the naked adrenergic nerve terminals in this tissue diffuses and is stored in this enclosed space. The reticular system in the spleen divides the parenchyma into small non-endothelial vascular spaces owing to its meshwork, and free mobile immunocytes, such as T-cells, B-cells and macrophages, stagnate in these spaces. This stagnation of the mobile immunocytes and the presence of the adrenergic nerves in the NA canals provide the chance for the immunocytes and nerves to meet each other in the following fashion; the reticular cell sheaths show the exposed phenomena owing to the contraction of the microfilament-rich reticular cell processes, caused by noradrenalin in the NA canal, and the nervous elements in the NA canals can face the nonendothelial vascular spaces where mobile immunocytes pass freely.(ABSTRACT TRUNCATED AT 400 WORDS)
Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L
2018-02-19
Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.
Histology-specific therapy for advanced soft tissue sarcoma and benign connective tissue tumors.
Silk, Ann W; Schuetze, Scott M
2012-09-01
Molecularly targeted agents have shown activity in soft tissue sarcoma (STS) and benign connective tissue tumors over the past ten years, but response rates differ by histologic subtype. The field of molecularly targeted agents in sarcoma is increasingly complex. Often, clinicians must rely on phase II data or even case series due to the rarity of these diseases. In subtypes with a clear role of specific factors in the pathophysiology of disease, such as giant cell tumor of the bone and diffuse-type tenosynovial giant cell tumor, it is reasonable to treat with newer targeted therapies, when available, in place of chemotherapy when systemic treatment is needed to control disease. In diseases without documented implication of a pathway in disease pathogenesis (e.g. soft tissue sarcoma and vascular endothelial growth factor), clear benefit from drug treatment should be established in randomized phase III trials before implementation into routine clinical practice. Histologic subtype will continue to emerge as a critical factor in treatment selection as we learn more about the molecular drivers of tumor growth and survival in different subtypes. Many of the drugs that have been recently developed affect tumor growth more than survival, therefore progression-free survival may be a more clinically relevant intermediate endpoint than objective response rate using Response Evaluation Criteria In Solid Tumors (RECIST) in early phase sarcoma trials. Because of the rarity of disease and increasing need for multidisciplinary management, patients with connective tissue tumors should be evaluated at a center with expertise in these diseases. Participation in clinical trials, when available, is highly encouraged.
[Pulmonary involvement in connective tissue disease].
Bartosiewicz, Małgorzata
2016-01-01
The connective tissue diseases are a variable group of autoimmune mediated disorders characterized by multiorgan damage. Pulmonary complications are common, usually occur after the onset of joint symptoms, but can also be initially presenting complaint. The respiratory system may be involved in all its component: airways, vessels, parenchyma, pleura and respiratory muscles. Lung involvement is an increasing cause of morbidity and mortality in the connective tissue diseases. Clinical course is highly variable - can range from mild to rapidly progressive, some processes are reversible, while others are irreversible. Thus, the identification of reversible disease , and separately progressive disease, are important clinical issues. The frequency, clinical presentation, prognosis and responce to therapy are different, depending on the pattern of involvement as well as on specyfic diagnostic method used to identify it. High- resolution computed tompography plays an important role in identifying patients with respiratory involvement. Pulmonary function tests are a sensitive tool detecting interstitial lung disease. In this article, pulmonary lung involvement accompanying most frequently apperaing connective tissue diseases - rheumatoid arthritis, systemic sclerosis, lupus erythematosus, polymyositis/dermatomyositis, Sjögrens syndrome and mixed connective tissue disaese are reviewed.
Polarization spectrometry diagnostic of cervical pathological states of endometriosis
NASA Astrophysics Data System (ADS)
Yermolenko, S. B.; Peresunko, O. P.; Burkovets, D. N.
2018-01-01
The purpose of the study was to determine the histochemical and laser criteria for diagnosis of background, precancerous and endometrial cancer by the state of the cervical canal wall. The given data on the state of connective tissue in the endocervix can distinguish three differential prognostic possibilities: - prediction of the condition of the connective tissue of the endocervix of the normal endometrium without the possibility of differentiating the phases of the ovarian cycle; - prediction of the endocervix endotracheal connective tissue state of the endometrium as a separate process; - prediction for the condition of the connective tissue of the endocervix of the processes of expressed proliferation of the typical (glandular hyperplasia and glandular polyps) or atypical (adenocarcinoma) glandular first endometrial epithelial differentiation without the possibility of these processes among them. The stroke-scrape of the epithelium of the cervical canal (endocervix) allows the condition of the connective tissue to diagnose the processes of pronounced proliferation of the typical (hyperplasia, polyp) and atypical (adenocarcinoma) epithelium of the endometrium without the possibility of differentiating these processes among themselves.
Connective tissue integrity is lost in vitamin B-6-deficient chicks
NASA Technical Reports Server (NTRS)
Masse, P. G.; Yamauchi, M.; Mahuren, J. D.; Coburn, S. P.; Muniz, O. E.; Howell, D. S.
1995-01-01
The objective of the present investigation was to characterize further the connective tissue disorder produced by pyridoxine (vitamin B-6) deficiency, as previously evidenced by electron microscopy. Following the second post-natal week, fast growing male chicks were deprived of pyridoxine for a 1-mo period. Six weeks post-natally, blood concentrations in the experimental deficiency group had declined to deficiency levels as registered by low concentrations of pyridoxal phosphate (coenzyme form) in erythrocytes, but did not reach levels associated with neurological symptoms. Light microscopic study showed abnormalities in the extracellular matrix of the connective tissues. Collagen cross-links and the aldehyde contents were not significantly lower in cartilage and tendon collagens of vitamin B-6-deficient animals than in age-matched controls; also, their proteoglycan degrading protease and collagenase activities measured in articular cartilages were not greater. Thus, proteolysis was an unlikely alternative mechanism to account for the loss of connective tissue integrity. These results point to the need for further investigation into adhesive properties of collagen associated proteoglycans or other proteins in vitamin B-6-deficient connective tissue.
Central nervous system tissue heterotopia of the nose: case report and review of the literature
Altissimi, G; Ascani, S; Falcetti, S; Cazzato, C; Bravi, I
2009-01-01
Summary The Authors present a case of heterotopic central nervous system tissue observed in an 81-year-old male in the form of an ethmoidal polyp. A review of the literature indicates that this is a rare condition characterised by a connective tissue lesion with astrocytic and oligodendrocytic glial cells, which may be located outside the nasal pyramid in some cases and inside the nasal cavity in others. The most important diagnostic aspect involves differentiating these from meningoencephalocele, which maintains an anatomical connection with central nervous system tissue. Contrast-enhanced imaging is essential for diagnosis, as in cases of heterotopic central nervous system tissue, it will demonstrate that there are no connections with intra-cranial tissue. Endoscopic excision is the treatment of choice. PMID:20161881
Oguz, Ekin Oktay; Kucuksahin, Orhan; Turgay, Murat; Yildizgoren, Mustafa Turgut; Ates, Askin; Demir, Nalan; Kumbasar, Ozlem Ozdemir; Kinikli, Gulay; Duzgun, Nursen
2016-03-01
It was aimed to evaluate KL-6 glycoprotein levels to determine if it may be a diagnostic marker for the connective tissue diseases (CTDs) predicting CTD-related interstitial lung diseases (ILDs) (CTD-ILD) development and to examine if there was a difference between patients and healthy controls. The study included 113 patients with CTD (45 CTD without lung involvement, 68 CTD-ILD) and 45 healthy control subjects. KL-6 glycoprotein levels were analyzed with ELISA in patients and the control group. The relationship between KL-6 glycoprotein levels and CTD-ILD was assessed. In the comparison of all the groups in the study, significantly higher levels of KL-6 were determined in the CTD-ILD group than in either the CTD without pulmonary involvement group or the healthy control group (p < 0.008 and p < 0.001, respectively). There was no statistically significant difference between the KL-6 levels in the healthy control group and the CTD without pulmonary involvement group (p = 0.289). The KL-6 levels did not differ significantly according to the connective tissue diseases in the diagnostic groups (systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, mixed connective tissue disease, scleroderma, polymyositis/ dermatomyositis). In the healthy control group, there was a statistically significant difference between KL-6 levels in smokers and non-smokers. Smokers had significantly higher serum KL-6 levels compared with non-smokers (p < 0.05). There was no statistically significant difference between smoking status (pack-year) and serum KL-6 levels. There was no statistically significant correlation between serum KL-6 levels and time since diagnosis of CTD and CTD-ILD. The level of KL-6 as a predictive factor could be used to identify the clinical development of ILD before it is detected on imaging modality. Further prospective clinical studies are needed to define whether levels of KL-6 might have prognostic value or might predict progressive ILD.
Evaluation of the tissue reaction to fast endodontic cement (CER) and Angelus MTA.
Gomes-Filho, João Eduardo; Rodrigues, Guilherme; Watanabe, Simone; Estrada Bernabé, Pedro Felício; Lodi, Carolina Simonett; Gomes, Alessandra Cristina; Faria, Max Doulgas; Domingos Dos Santos, Alailson; Silos Moraes, João Carlos
2009-10-01
A new cement (CER; Cimento Endodôntico Rápido or fast endodontic cement) has been developed to improve handling properties. It is a formulation that has Portland cement in gel. However, there had not yet been any study evaluating its biologic properties. The purpose of this study was to evaluate the rat subcutaneous tissue response to CER and Angelus MTA. The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for 7, 30, and 60 days. The specimens were prepared to be stained with hematoxylin-eosin or von Kossa or not stained for polarized light. The presence of inflammation, predominant cell type, calcification, and thickness of fibrous connective tissue were recorded. Scores were defined as follows: 0, none or few inflammatory cells, no reaction; 1, <25 cells, mild reaction; 2, 25-125 cells, moderate reaction; 3, >125 cells, severe reaction. Fibrous capsule was categorized as thin when thickness was <150 mum and thick at >150 mum. Necrosis and formation of calcification were both recorded. Both materials Angelus MTA and CER caused moderate reactions at 7 days, which decreased with time. The response was similar to the control at 30 and 60 days with Angelus MTA and CER, characterized by organized connective tissue and presence of some chronic inflammatory cells. Mineralization and granulations birefringent to polarized light were observed with both materials. It was possible to conclude that CER was biocompatible and stimulated mineralization.
Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio
2015-06-01
The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P < 0.05). No statistically significant differences were verified for E (test 3.1 ± 2.0; control 2.8 ± 2.1; P > 0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.
Keloids and Hypertrophic Scars
... to the skin both skin cells and connective tissue cells (fibroblasts) begin multiplying to repair the damage. A scar is made up of 'connective tissue', gristle-like fibers deposited in the skin by ...
Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M
2017-03-01
The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Wavelet analysis in two-dimensional tomography
NASA Astrophysics Data System (ADS)
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Bhavsar, Neeta-V.; Dulani, Kirti; Trivedi, Rahul
2014-01-01
Objectives: The present study aims to clinically compare and evaluate subepithelial connective tissue graft and the GTR based root coverage in treatment of Miller’s Class I gingival recession. Study Design: 30 patients with at least one pair of Miller’s Class I gingival recession were treated either with Subepithelial connective tissue graft (Group A) or Guided tissue regeneration (Group B). Clinical parameters monitored included recession RD, width of keratinized gingiva (KG), probing depth (PD), clinical attachment level (CAL), attached gingiva (AG), residual probing depth (RPD) and % of Root coverage(%RC). Measurements were taken at baseline, three months and six months. A standard surgical procedure was used for both Group A and Group B. Data were recorded and statistical analysis was done for both intergroup and intragroup. Results: At end of six months % RC obtained were 84.47% (Group A) and 81.67% (Group B). Both treatments resulted in statistically significant improvement in clinical parameters. When compared, no statistically significant difference was found between both groups except in RPD, where it was significantly greater in Group A. Conclusions: GTR technique has advantages over subepithelial connective tissue graft for shallow Miller’s Class I defects and this procedure can be used to avoid patient discomfort and reduce treatment time. Key words:Collagen membrane, comparative split mouth study, gingival recession, subepithelial connective tissue graft, guided tissue regeneration (GTR). PMID:25136420
Connective tissue responses to some heavy metals. II. Lead: histology and ultrastructure.
Ellender, G.; Ham, K. N.
1987-01-01
Lead loaded ion exchange resin beads implanted into the loose connective tissue of the rat pinna induced local lesions which differed widely from those of the control (sodium loaded) beads (Ellender & Ham 1987). These lesions were characterized by changes in the granulation tissue and the approximating connective tissue. Granulation tissue contained mononuclear phagocytes in various guises, and some cells with intranuclear inclusion bodies. The matrix of the granulation tissue contained collagen fibrils having a wide range of diameters suggestive of altered collagen biosynthesis. Foci of collagen mineralization occurred in zones of combined trauma and lead impregnation. Once mineralized they became enveloped by giant cells and epithelioid cells. Lead in damaged tissues is thought to modify the protective mechanism of calcification inhibition and the biosynthesis of the matrix. Images Fig. 6 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:3040063
A left cerebellar pathway mediates language in prematurely-born young adults
Constable, R. Todd; Vohr, Betty R.; Scheinost, Dustin; Benjamin, Jennifer R.; Fulbright, Robert K.; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Zhang, Heping; Papademetris, Xenophon; Ment, Laura R.
2012-01-01
Preterm (PT) subjects are at risk for developmental delay, and task-based studies suggest that developmental disorders may be due to alterations in neural connectivity. Since emerging data imply the importance of right cerebellar function for language acquisition in typical development, we hypothesized that PT subjects would have alternate areas of cerebellar connectivity, and that these areas would be responsible for differences in cognitive outcomes between PT subjects and term controls at age 20 years. Nineteen PT and 19 term control young adults were prospectively studied using resting-state functional MRI (fMRI) to create voxel-based contrast maps reflecting the functional connectivity of each tissue element in the grey matter through analysis of the intrinsic connectivity contrast degree (ICC-d). Left cerebellar ICC-d differences between subjects identified a region of interest that was used for subsequent seed-based connectivity analyses. Subjects underwent standardized language testing, and correlations with cognitive outcomes were assessed. There were no differences in gender, hand preference, maternal education, age at study, or Peabody Picture Vocabulary Test (PPVT) scores. Functional connectivity (FcMRI) demonstrated increased tissue connectivity in the biventer, simple and quadrangular lobules of the L cerebellum (p<0.05) in PTs compared to term controls; seed-based analyses from these regions demonstrated alterations in connectivity from L cerebellum to both R and L inferior frontal gyri (IFG) in PTs compared to term controls. For PTs but not term controls, there were significant positive correlations between these connections and PPVT scores (R IFG: r=0.555, p=0.01; L IFG: r=0.454, p=0.05), as well as Verbal Comprehension Index (VCI) scores (R IFG: r=0.472, p=0.04). These data suggest the presence of a left cerebellar language circuit in PT subjects at young adulthood. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. PMID:22982585
Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, blood vessels, ... A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, and ...
... during bowel movements Family history of weakness in connective tissue Being Hispanic or white Complications Uterine prolapse is ... You might experience: Anterior prolapse (cystocele). Weakness of connective tissue separating the bladder and vagina may cause the ...
A new technique for Gram staining paraffin-embedded tissue.
Engbaek, K; Johansen, K S; Jensen, M E
1979-01-01
Five techniques for Gram staining bacteria in paraffin sections were compared on serial sections of pulmonary tissues from eight bacteriological necropsies. Brown and Hopp's method was the most satisfactory for distinguishing Gram-positive and Gram-negative bacteria. However, this method cannot be recommended as the preparations were frequently overstained, and the Gram-negative bacteria were stained indistinctly. A modification of Brown and Hopps' method was developed which stains larger numbers of Gram-negative bacteria and differentiates well between different cell types and connective tissue, and there is no risk of overstaining. PMID:86548
Connective tissue growth factor (CTGF) and cancer progression.
Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang
2008-11-01
Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.
Pulmonary nocardiosis in patients with connective tissue disease: A report of two cases
Hagiwara, Shinya; Tsuboi, Hiroto; Hagiya, Chihiro; Yokosawa, Masahiro; Hirota, Tomoya; Ebe, Hiroshi; Takahashi, Hiroyuki; Ogishima, Hiroshi; Asashima, Hiromitsu; Kondo, Yuya; Umeda, Naoto; Suzuki, Takeshi; Hitomi, Shigemi; Matsumoto, Isao; Sumida, Takayuki
2014-01-01
Summary Reported here are 2 patients with connective tissue disease who developed pulmonary nocardiosis. Case 1 involved a 73-year-old man with malignant rheumatoid arthritis treated with prednisolone 25 mg/day. Chest X-rays revealed a pulmonary cavity and bronchoscopy detected Nocardia species. The patient was successfully treated with trimethoprim/sulfamethoxazole. Case 2 involved a 41-year-old woman with systemic lupus erythematosus. The patient received remission induction therapy with 50 mg/day of prednisolone and tacrolimus. Six weeks later, a chest CT scan revealed a pulmonary cavity; bronchoscopy resulted in a diagnosis of pulmonary nocardiosis. The patient had difficulty tolerating trimethoprim/sulfamethoxazole, so she was switched to and successfully treated with imipenem/cilastatin and amikacin. PMID:25343123
Isolation, separation, and characterization of epithelial and connective cells from rat palate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, Victor Paul
1979-01-01
Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less
Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.
Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji
2017-08-01
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heritable Disorders of Connective Tissue
... skin. Epidermolysis bullosa affects the skin, causing blisters. Marfan syndrome can affect the heart, blood vessels, lungs, eyes, ... Disorders of Connective Tissue, Questions and Answers about Marfan Syndrome, Questions and Answers about Marfan Syndrome, Easy-to- ...
Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.
Mackey, Abigail L; Kjaer, Michael
2017-03-01
Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury. Copyright © 2017 the American Physiological Society.
Soft tissue wound healing around teeth and dental implants.
Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D
2014-04-01
To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Paunović, Milorad
2013-01-01
Dehiscence after laparotomy is one of the major complications of laparotomy. This is a partial or complete wound with disruption and evisceratio abdominal organs and require urgent reintervention. The aim of this study was to determine the impact of neoplastic disease and systemic disease of connective tissue on the occurrence of dehiscence laparotomy. A prospective study were included 612 patients operated at the Clinic for General Surgery in Nis in the period from January 2009 to December 2010. The effect of neoplastic disease and the presence of systemic disease of connective tissue on the occurrence of dehiscence laparotomy. Results are displayed numerically and in percentages. Of the total 24 patients with dehiscence laparotomy, 15 patients were male or 62.5% and 9 female patients, or 37.5%. There was a statistically significant association between dehiscence laparotomy and neoplastic diseases (c2 = 42,196; p < 0.01). There was no statistically significant association between dehiscence laparo-tomy and systemic disease of connective tissue (c2 = 0,028; p > 0.05). In patients with neoplastic diseases dehis-cence laparotomy is common, and in patients suffering from systemic disease of connective tissue dehiscence laparotomy occurs less frequently.
The First Korean Case of Cutaneous Lung Tissue Heterotopia
Jeon, Ga Won; Han, Seong Woo; Jung, Ji Mi; Kang, Mi Seon
2010-01-01
Cutaneous lung tissue heterotopia is a very rare disorder where mature lung tissues develop in the skin. This is only the second known report of cutaneous lung tissue heterotopia, with the first by Singer et al. in 1998. A newborn infant had a hemangioma-like, freely movable mass connected to the anterior aspect of the sternal manubrium. Pathologic findings showed mature lung tissues with bronchi, bronchioles, and alveoli through the dermis and subcutis, and it was diagnosed as cutaneous lung tissue heterotopia. Cutaneous lung tissue heterotopia is hypervascular, so grossly it looks like a hemangioma. It can be differentiated from pulmonary sequestration, teratoma, bronchogenic cyst, and branchial cleft cyst by histology and the location of the mass. We describe the clinical, radiologic, and pathologic findings of a cutaneous lung tissue heterotopia, the first reported in Korea. PMID:20808688
The versatile subepithelial connective tissue graft: a literature update.
Karthikeyan, B V; Khanna, Divya; Chowdhary, Kamedh Yashawant; Prabhuji, M Lv
2016-01-01
Harmony between hard and soft tissue morphologies is essential for form, function, and a good esthetic outlook. Replacement grafts for correction of soft tissue defects around the teeth have become important to periodontal plastic and implant surgical procedures. Among a multitude of surgical techniques and graft materials reported in literature, the subepithelial connective tissue graft (SCTG) has gained wide popularity and acceptance. The purpose of this article is to acquaint clinicians with the current understanding of the versatile SCTG. Key factors associated with graft harvesting as well as applications, limitations, and complications of SCTGs are discussed. This connective tissue has shown excellent short- and long-term stability, is easily available, and is economical to use. The SCTG should be considered as an alternative in all periodontal reconstruction surgeries.
Cell density signal protein suitable for treatment of connective tissue injuries and defects
Schwarz, Richard I.
2002-08-13
Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.
Tkachenko, E; Oreshko, L S; Soloveva, E A; Shabanova, A A; Zhuravleva, M S
2015-01-01
Clinically significant dysplasia of connective tissue in patients with celiac disease is often responsible for various visceral disorders. Different disturbances of motor and evacuation functions are often determined in this patients (gastroesophageal reflux, duodenogastral reflux, spastic and hyperkinetic dyskinesia). The clinical course of the celiac disease, associated with connective tissue dysplasia, is characterized by asthenovegetative syndrome, reduced tolerance to physical activity, general weakness, fatigue and emotional instability. These data should be considered in choosing a treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Jun; Tsunemura, Mami; Amano, Shigeko
1997-05-15
Two brothers with multiple visceral artery aneurysms or dilatations and diffuse connective tissue fragility who did not have clinical features of Marfan syndrome are reported. One presented with retroperitoneal hemorrhage during angiography, and idiopathic medionecrosis was proved by resection of the aneurysms. These cases belong to the heterogeneous group of Marfan syndrome. The angiographical features (multiple dilation of visceral arteries) suggests fragility of connective tissue and is predictive of hazards during and after a catheterization and operation.
Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.
Vinatier, C; Guicheux, J
2016-06-01
Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Treatment of gingival recession defects with xenogenic collagen matrix: a histologic report.
Camelo, Marcelo; Nevins, Myron; Nevins, Marc L; Schupbach, Peter; Kim, David M
2012-04-01
The connective tissue graft (CTG) in conjunction with a coronally advanced flap is still regarded as the gold standard treatment for gingival recession defects. Increased surgical morbidity as well as limited tissue availability continues to spur interest in alternatives to the CTG. The current case report examines a porcine-derived, double-layer collagen matrix as an alternative to the CTG in managing Miller Class I and II recession defects. A long junctional epithelial attachment as well as connective tissue adhesion were noted when collagen matrix was used in conjunction with a coronally advanced flap in recession treatment protocols. The results suggest that it is possible to obtain root coverage without harvesting connective tissue.
Burton, Rebecca A.B.; Lee, Peter; Casero, Ramón; Garny, Alan; Siedlecka, Urszula; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente
2014-01-01
Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing. PMID:25362175
Phosphaturic mesenchymal tumour-mixed connective tissue variant without oncogenic osteomalacia.
Winters, R; Bihlmeyer, S; McCahill, L; Cooper, K
2009-08-01
Phosphaturic mesenchymal tumour-mixed connective tissue variant is a rare tumour classically associated with oncogenic osteomalacia. This report describes two patients with this distinct tumour type but with no evidence of the paraneoplastic syndrome.
Liles, J E; Shalin, S C; White, B A; Trigg, L B; Kaley, J R
2017-06-15
Parvovirus B19 infections in adults are usually associated with nonspecific and mild symptoms. However, cases presenting with a lupus-like syndrome have been described, leading to the hypothesis that parvovirus infection can induce connective tissue disease. Various histopathologic features of cutaneous manifestations of parvovirus have been reported, including features which overlap with those of connective tissue disease. Herein, we discuss an unusual case of Parvovirus B19 infection in a middle-aged woman. The biopsy results showed granulomatous vasculitis and were consistent with the previously described superantigen id reaction. This case demonstrates that infectious causes should be considered in the differential diagnosis for granulomatous vasculitis and clinicopathologic correlation is required for accurate diagnosis. We also provide a review of the literature highlighting the possible role of parvovirus in induction of a connective tissue disease-like presentation.
An overview of inverted colloidal crystal systems for tissue engineering.
João, Carlos Filipe C; Vasconcelos, Joana Marta; Silva, Jorge Carvalho; Borges, João Paulo
2014-10-01
Scaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.
Goh, Kheng Lim; Holmes, David F
2017-04-25
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Goh, Kheng Lim; Holmes, David F.
2017-01-01
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue. PMID:28441344
NASA Astrophysics Data System (ADS)
Eckert, R.; Neyhart, J. T.; Burd, L.; Polikar, R.; Mandayam, S. A.; Tseng, M.
2003-03-01
Mammography is the best method available as a non-invasive technique for the early detection of breast cancer. The radiographic appearance of the female breast consists of radiolucent (dark) regions due to fat and radiodense (light) regions due to connective and epithelial tissue. The amount of radiodense tissue can be used as a marker for predicting breast cancer risk. Previously, we have shown that the use of statistical models is a reliable technique for segmenting radiodense tissue. This paper presents improvements in the model that allow for further development of an automated system for segmentation of radiodense tissue. The segmentation algorithm employs a two-step process. In the first step, segmentation of tissue and non-tissue regions of a digitized X-ray mammogram image are identified using a radial basis function neural network. The second step uses a constrained Neyman-Pearson algorithm, developed especially for this research work, to determine the amount of radiodense tissue. Results obtained using the algorithm have been validated by comparing with estimates provided by a radiologist employing previously established methods.
Gitlin, David; Landing, Benjamin H.; Whipple, Ann
1953-01-01
Employing fluorescent antibodies for the detection of homologous plasma proteins in tissue sections, the distribution of plasma albumin, γ-globulin, β-lipoprotein, β1-metal-combining globulin, and fibrinogen has been studied in the tissues of infants and children. Plasma albumin, γ-globulin, and β1-metal-combining globulin were found in many cells and particularly cell nuclei, connective tissues and interstitial spaces, lymphatics, and blood vessels. β-Lipoprotein was found mostly in the nuclei of all cell types while fibrinogen was restricted largely to the lymphatic and vascular channels, connective tissues and the interstitial spaces. The widespread distribution of these plasma proteins in cells and connective tissues indicates the magnitude of the extravascular plasma protein pool which is in equilibrium with circulating plasma. Unfortunately, these results do not permit accurate localization of the sites of production of these plasma proteins, but do give some idea of their intimate relationship to the tissues. PMID:13022871
Experimental hypothyroidism increases content of collagen and glycosaminoglycans in the heart.
Drobnik, J; Ciosek, J; Slotwinska, D; Stempniak, B; Zukowska, D; Marczynski, A; Tosik, D; Bartel, H; Dabrowski, R; Szczepanowska, A
2009-09-01
The connective tissue matrix of the heart remains under regulatory influence of the thyroid hormones. Some conflicting data describe the connective tissue changes in subjects with thyroid gland disorders. The aim of the study was to assess the changes of the connective tissue accumulation in the heart of rats in the state of hypothyroidism and to answer the question whether TSH is involved in mechanism of the observed phenomena. Hypothyroidism in rats was induced by methylotiouracil treatment or by thyreoidectomy. The thyroid hormones [freeT3 (fT3), freeT4 (fT4)] and pituitary TSH were measured in plasma with radioimmunological method. The glycosaminoglycans (GAG) and total collagen were measured in heart muscle of both left and right ventricles. Cells from the rat's heart were isolated and cultured. The cells were identified as myofibroblasts by electron microscopy method. The effects of TSH in concentrations ranging from 0.002 to 20 mIU/ml, on connective tissue accumulation in heart myofibroblasts cultures were tested. The primary hypothyroidism was developed both in groups with thyroidectomy and with methylthiouracil. The levels of fT3 and fT4 both in rats with thyreoidectomy and animals treated with methylthiouracil were decreased and TSH level in these two experimental groups was elevated. In the heart of the rats with experimental hypothyroidism increased content of both GAG and collagen was found. Myofibroblast number in culture was increased by TSH. Regardless of the method of its induction, hypothyroidism increased collagen and GAG contents in the heart. TSH is not involved in regulation of collagen and glycosaminoglycans accumulation in the heart of rats affected with primary hypothyroidism.
Henkin, Stanislav; Negrotto, Sara M; Tweet, Marysia S; Kirmani, Salman; Deyle, David R; Gulati, Rajiv; Olson, Timothy M; Hayes, Sharonne N
2016-06-01
Spontaneous coronary artery dissection (SCAD) is an under-recognised but important cause of myocardial infarction and sudden cardiac death. We sought to determine the role of medical and molecular genetic screening for connective tissue disorders in patients with SCAD. We performed a single-centre retrospective descriptive analysis of patients with spontaneous coronary artery disease who had undergone medical genetics evaluation 1984-2014 (n=116). The presence or absence of traits suggestive of heritable connective tissue disease was extracted. Genetic testing for connective tissue disorders and/or aortopathies, if performed, is also reported. Of the 116 patients (mean age 44.2 years, 94.8% women and 41.4% with non-coronary fibromuscular dysplasia (FMD)), 59 patients underwent genetic testing, of whom 3 (5.1%) received a diagnosis of connective tissue disorder: a 50-year-old man with Marfan syndrome; a 43-year-old woman with vascular Ehlers-Danlos syndrome and FMD; and a 45-year-old woman with vascular Ehlers-Danlos syndrome. An additional 12 patients (20.3%) had variants of unknown significance, none of which was thought to be a definite disease-causing mutation based on in silico analyses. Only a minority of patients with SCAD who undergo genetic evaluation have a likely pathogenic mutation identified on gene panel testing. Even fewer exhibit clinical features of connective tissue disorder. These findings underscore the need for further studies to elucidate the molecular mechanisms of SCAD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Romanos, G E; Strub, J R
1998-03-05
Fibrin sealants are very useful in different surgical fields. Fixation of free gingival grafts, root coverage procedures, and other techniques increasing connective tissue attachment may be associated with the application of Tissucol in periodontology. The aim of this study was to evaluate the influence of the fibrin sealant in the extracellular matrix, as well as alterations of the connective tissue matrix during wound-healing processes. In the back dermis of 15 Net male rats, Tissucol was implanted after intraperitoneal anesthesia. The implant material was placed in subcutaneous pockets (2 cm in length) which were sutured with interproximal sutures (test and control pockets). At 4, 7, 14, 21, and 28 days after surgery, biopsies of the healed and surrounding tissues were taken, frozen in liquid nitrogen, and examined histologically and immunohistochemically with antibodies against collagen types I, III, IV, V, VI, and VII. The findings showed thick and thin collagen type I and III fibers, respectively, with different orientations localized around the implant material. An increased amount of blood vessels and capillaries (their basement membranes containing collagen type IV) was observed during wound healing which may be associated with the implantation of the sealant. Collagen type V fibers were localized from the first days to the 4th postoperative week and, without any inflammatory reaction (according to histologic staining), formed a fibrillar extracellular matrix with high collagenase resistance. Collagen type VI showed a microfibrillar pattern of distribution, and collagen type VII was localized in the dermo epidermo junction and very deep in the connective tissue in the form of anchoring fibers (only in the test group) during the 4 postoperative weeks of healing. The data showed that Tissucol is a biocompatible component which cannot produce any extensive inflammatory reaction in the matrix. New blood vessel formation, an epithelial-connective tissue interface with high stability, as well as matrix alterations with high resistance in the proteolytic enzymes (i.e., collagenases) can be induced in the connective tissue after use of a fibrin sealant. All of these characteristics may be of great importance in connective tissue healing in periodontal surgical procedures.
Microgravity Stress: Bone and Connective Tissue.
Bloomfield, Susan A; Martinez, Daniel A; Boudreaux, Ramon D; Mantri, Anita V
2016-03-15
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions. Copyright © 2016 John Wiley & Sons, Inc.
Ferrantino, Luca; Bosshardt, Dieter; Nevins, Myron; Santoro, Giacomo; Simion, Massimo; Kim, David
Reducing the need for a connective tissue graft by using an efficacious biomaterial is an important task for dental professionals and patients. This experimental study aimed to test the soft tissue response to a volume-stable new collagen matrix. The device demonstrated good stability during six different time points ranging from 0 to 90 days of healing with no alteration of the wound-healing processes. The 90-day histologic specimen demonstrates eventual replacement of most of the matrix with new connective tissue fibers.
Exostosis following a subepithelial connective tissue graft.
Corsair, A J; Iacono, V J; Moss, S S
2001-04-01
This case report describes the formation of an unusual unaesthetic gingival enlargement during a five year post operative period subsequent to a subepithelial connective tissue graft placed facial to teeth #4 and #6. Histological assessment of the enlarged tissue indicated that it consisted of viable bone and marrow. The exostosis was reduced with rotary instruments and acceptable soft tissue aesthetics were created using a carbon dioxide laser for gingivoplasty. Possible causes for this unusual enlargement are discussed.
Azaripour, Adriano; Lagerweij, Tonny; Scharfbillig, Christina; Jadczak, Anna Elisabeth; Willershausen, Brita; Van Noorden, Cornelis J F
2016-08-01
For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo
2015-04-01
The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.
Mechanical tension as a driver of connective tissue growth in vitro.
Wilson, Cameron J; Pearcy, Mark J; Epari, Devakara R
2014-07-01
We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous "scaffold" that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells' innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a "scaffold" of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quigley, Harry A.; Cone, Frances E.
2013-01-01
There is considerable evidence that the state of ocular connective tissues and their response in glaucomatous disease affects the degree of glaucoma damage. Both experimental and clinical data suggest that improved diagnostic and prognostic information could be derived from assessment of the mechanical responsiveness of the sclera and lamina cribrosa to intraocular pressure (IOP). Controlled mutagenesis of the sclera has produced a mouse strain that is relatively resistant to increased IOP. Alteration of the baseline scleral state could be accomplished through either increased cross-linking of fibrillar components or their reduction. The sclera is a dynamic structure, altering its structure and behavior in response to IOP change. The biochemical pathways that control these responses are fertile areas for new glaucoma treatments. PMID:23535950
2012-01-01
Functional tissues generated under in vitro conditions are urgently needed in biomedical research. However, the engineering of tissues is rather difficult, since their development is influenced by numerous parameters. In consequence, a versatile culture system was developed to respond the unmet needs. Optimal adhesion for cells in this system is reached by the selection of individual biomaterials. To protect cells during handling and culture, the biomaterial is mounted onto a MINUSHEET® tissue carrier. While adherence of cells takes place in the static environment of a 24 well culture plate, generation of tissues is accomplished in one of several available perfusion culture containers. In the basic version a continuous flow of always fresh culture medium is provided to the developing tissue. In a gradient perfusion culture container epithelia are exposed to different fluids at the luminal and basal sides. Another special container with a transparent lid and base enables microscopic visualization of ongoing tissue development. A further container exhibits a flexible silicone lid to apply force onto the developing tissue thereby mimicking mechanical load that is required for developing connective and muscular tissue. Finally, stem/progenitor cells are kept at the interface of an artificial polyester interstitium within a perfusion culture container offering for example an optimal environment for the spatial development of renal tubules. The system presented here was evaluated by various research groups. As a result a variety of publications including most interesting applications were published. In the present paper these data were reviewed and analyzed. All of the results point out that the cell biological profile of engineered tissues can be strongly improved, when the introduced perfusion culture technique is applied in combination with specific biomaterials supporting primary adhesion of cells. PMID:23369669
Tendon and Ligament Regeneration and Repair: Clinical Relevance and Developmental Paradigm
Tuan, Rocky S.
2014-01-01
Tendon and ligament (T/L) are dense connective tissues connecting bone to muscle and bone to bone, respectively. Similar to other musculoskeletal tissues, T/L arise from the somitic mesoderm, but they are derived from a recently discovered somitic compartment, the syndetome. The adjacent sclerotome and myotome provide inductive signals to the interposing syndetome, thereby upregulating the expression of the transcription factor Scleraxis, which in turn leads to further tenogenic and ligamentogenic differentiation. These advances in the understanding of T/L development have been sought to provide a knowledge base for improving the healing of T/L injuries, a common clinical challenge due to the intrinsically poor natural healing response. Specifically, the three most common tendon injuries involve tearing of the rotator cuff of the shoulder, the flexor tendon of the hand, and the Achilles tendon. At present, injuries to these tissues are treated by surgical repair and/or conservative approaches, including biophysical modalities such as physical rehabilitation and cryotherapy. Unfortunately, the healing tissue forms fibrovascular scar and possesses inferior mechanical and biochemical properties as compared to native T/L. Therefore, tissue engineers have sought to improve upon the natural healing response by augmenting the injured tissue with cells, scaffolds, bioactive agents, and mechanical stimulation. These strategies show promise, both in vitro and in vivo, for improving T/L healing. However, several challenges remain in restoring full T/L function following injury, including uncertainties over the optimal combination of these biological agents as well how to best deliver tissue engineered elements to the injury site. A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple growth factors with high spatiotemporal resolution and specificity, will allow tissue engineers to more closely recapitulate T/L morphogenesis, thereby offering future patients the prospect of T/L regeneration, as opposed to simple tissue repair. PMID:24078497
Morphogenesis and growth of the soft tissue and cartilage of the vomeronasal organ in pigs
Salazar, Ignacio; Lombardero, Matilde; Cifuentes, José M; Quinteiro, Pablo Sánchez; Alemañ, Nuria
2003-01-01
The morphology of the soft tissue and supporting cartilage of the vomeronasal organ of the fetal pig was studied from early stages to term. Specimens obtained from an abattoir were aged by crown-to-rump distance. Series of transverse sections show that some time before birth all structures – cartilage, connective tissue, blood vessels, nerves, glands and epithelia – are well developed and very similar in appearance to those of the adult. Furthermore, in transmission electron microscopy photomicrographs obtained at this stage the vomeronasal glands exhibit secretory activity. PMID:12846472
Dabiri, Ganary; Falanga, Vincent
2013-11-01
Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren's syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. Copyright © 2013 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Outcomes of sympathectomy and vascular bypass for digital ischaemia in connective tissue disorders.
Shammas, R L; Hwang, B H; Levin, L S; Richard, M J; Ruch, D S; Mithani, S K
2017-10-01
All patients (36 hands) with connective tissue disorders who underwent periarterial sympathectomy of the hand alone or in conjunction with vascular bypass at our institution between 1995-2013 were reviewed. The durable resolution of ulcers was significantly higher in patients treated by periarterial sympathectomy and bypass than in patients treated by periarterial sympathectomy alone. Although there were more digital amputations in patients treated by periarterial sympathectomy alone, the difference was not statistically significant. Vascular bypass in conjunction with sympathectomy may be better than sympathectomy alone in patients with digital ischaemia related to connective tissue disorders. IV.
Kono, Miyuki; Miura, Naoto; Fujii, Takao; Ohmura, Koichiro; Yoshifuji, Hajime; Yukawa, Naoichiro; Imura, Yoshitaka; Nakashima, Ran; Ikeda, Takaharu; Umemura, Shin-ichiro; Miyatake, Takafumi; Mimori, Tsuneyo
2015-01-01
Objective To examine how connective tissue diseases affect finger-vein pattern authentication. Methods The finger-vein patterns of 68 patients with connective tissue diseases and 24 healthy volunteers were acquired. Captured as CCD (charge-coupled device) images by transmitting near-infrared light through fingers, they were followed up in once in each season for one year. The similarity of the follow-up patterns and the initial one was evaluated in terms of their normalized cross-correlation C. Results The mean C values calculated for patients tended to be lower than those calculated for healthy volunteers. In midwinter (February in Japan) they showed statistically significant reduction both as compared with patients in other seasons and as compared with season-matched healthy controls, whereas the values calculated for healthy controls showed no significant seasonal changes. Values calculated for patients with systemic sclerosis (SSc) or mixed connective tissue disease (MCTD) showed major reductions in November and, especially, February. Patients with rheumatoid arthritis (RA) and patients with dermatomyositis or polymyositis (DM/PM) did not show statistically significant seasonal changes in C values. Conclusions Finger-vein patterns can be used throughout the year to identify patients with connective tissue diseases, but some attention is needed for patients with advanced disease such as SSc. PMID:26701644
Zou, Yaqun; Zwolanek, Daniela; Izu, Yayoi; Gandhy, Shreya; Schreiber, Gudrun; Brockmann, Knut; Devoto, Marcella; Tian, Zuozhen; Hu, Ying; Veit, Guido; Meier, Markus; Stetefeld, Jörg; Hicks, Debbie; Straub, Volker; Voermans, Nicol C.; Birk, David E.; Barton, Elisabeth R.; Koch, Manuel; Bönnemann, Carsten G.
2014-01-01
Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease. PMID:24334604
Esophageal involvement and interstitial lung disease in mixed connective tissue disease.
Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R
2009-06-01
Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; p<0.01) and among patients with severe motor dysfunction (90% vs. 35%; p<0.001). Although we were not able to prove a causal relationship between esophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.
PDGFRα plays a crucial role in connective tissue remodeling.
Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo
2015-12-07
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.
PDGFRα plays a crucial role in connective tissue remodeling
Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo
2015-01-01
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling. PMID:26639755
2015-04-01
Patients with Neurofibromatosis type 1 (NF1) are at increased risk for developing malignant tumors of the connective tissue called soft-tissue sarcomas...mouse model, MPNST, Neurofibromatosis , NF1 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...9 9. Appendices……………………………………………………………9 4 1. INTRODUCTION: Patients with Neurofibromatosis type 1 (NF1) are at increased risk for
Severe periodontitis in Marfan's syndrome: a case report.
Straub, Antje M; Grahame, Rodney; Scully, Crispian; Tonetti, Maurizio S
2002-07-01
Connective tissue disorders, such as some forms of Ehlers-Danlos syndrome, have been associated with severe periodontitis. This report describes a case of Marfan's syndrome, an inherited disorder of connective tissue caused by mutations in the fibrillin-1 gene, in which the patient presented with severe periodontitis. At examination, an average full-mouth clinical attachment level loss of 5.6+/-2.1 mm, furcation involvement, and severe alveolar bone loss were observed in a 41-year-old Caucasian male. Tooth hypermobility was also present. This case appears to be the first documentation of severe periodontitis in a patient with Marfan's syndrome. It supports the hypothesis that a variety of connective tissue disorders may confer increased susceptibility to periodontal tissue breakdown.
Engineering complex orthopaedic tissues via strategic biomimicry.
Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H
2015-03-01
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.
Engineering Complex Orthopaedic Tissues via Strategic Biomimicry
Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.
2014-01-01
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration. PMID:25465616
de Souza, Sérgio Luís Scombatti; Novaes, Arthur Belém; Grisi, Daniela Corrêa; Taba, Mário; Grisi, Márcio Fernando de Moraes; de Andrade, Patrícia Freitas
2008-07-01
Different techniques have been proposed for the treatment of gingival recession. This study compared the clinical results of gingival recession treatment using a subepithelial connective tissue graft and an acellular dermal matrix allograft. Seven patients with bilateral Miller class I or II gingival recession were selected. Twenty-six recessions were treated and randomly assigned to the test group. In each case the contralateral recession was assigned to the control group. In the control group, a connective tissue graft in combination with a coronally positioned flap was used; in the test group, an acellular dermal matrix allograft was used as a substitute for palatal donor tissue. Probing depth, clinical attachment level, gingival recession, and width of keratinized tissue were measured two weeks prior to surgery and at six and 12 months post-surgery. There were no statistically significant differences between the groups in terms of recession reduction, clinical attachment gain, probing pocket depth, and increase in the width of the keratinized tissue after six or 12 months. There was no statistically significant increase in the width of keratinized tissue between six and 12 months for either group. Within the limitations of this study, it can be suggested that the acellular dermal matrix allograft may be a substitute for palatal donor tissue in root coverage procedures and that the time required for additional gain in the amount of keratinized tissue may be greater for the acellular dermal matrix than for the connective tissue procedures.
Viscoelastic Properties of Human Tracheal Tissues.
Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B
2017-01-01
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.
Optical Coherence Tomography and Autofluorescence Imaging of Human Tonsil
Pahlevaninezhad, Hamid; Lee, Anthony M. D.; Rosin, Miriam; Sun, Ivan; Zhang, Lewei; Hakimi, Mehrnoush; MacAulay, Calum; Lane, Pierre M.
2014-01-01
For the first time, we present co-registered autofluorescence imaging and optical coherence tomography (AF/OCT) of excised human palatine tonsils to evaluate the capabilities of OCT to visualize tonsil tissue components. Despite limited penetration depth, OCT can provide detailed structural information about tonsil tissue with much higher resolution than that of computed tomography, magnetic resonance imaging, and Ultrasound. Different tonsil tissue components such as epithelium, dense connective tissue, lymphoid nodules, and crypts can be visualized by OCT. The co-registered AF imaging can provide matching biochemical information. AF/OCT scans may provide a non-invasive tool for detecting tonsillar cancers and for studying the natural history of their development. PMID:25542010
Nishimura, Shotaro; Sagara, Ayano; Oshima, Ichiro; Ono, Yoshitaka; Iwamoto, Hisao; Okano, Kaoru; Miyachi, Hideyuki; Tabata, Shoji
2009-08-01
The distribution and three-dimensional architecture of collagen fibers were compared between pig, goat and chicken livers. Immunohistochemical staining revealed that collagen type I was identified in the interlobular connective tissue region and intralobular areas in pigs and goats. Type III collagen was also identified in the interlobular connective tissue region and intralobular sinusoidal walls. In the chicken liver, only the circumference region of the vessels was immunostained with collagen type I and III antibodies and the interlobular connective tissue wall could not be distinguished clearly. In the intralobular region, collagen type I antibody immunoreacted around the hepatic cells but collagen type III antibody immunoreacted weakly. In the NaOH macerated specimen, well-developed collagen bundles formed the prominent interlobular walls in pigs. In contrast, the wall in the goat liver comprised a thin layer of the bundles. In the chicken liver, there were no notable collagen septa between lobules. The intralobular collagen construction was quite different between the animals, indicating a fragile collagen fibril networks in pigs, a robust framework in goats and dense fabric-like septa in chickens. These results indicate that the distinct collagen frameworks may contribute to the histological strength of the livers in each of the animal species.
Chin, K Y; Chalmers, C R; Bryson, A V; Weiler-Mithoff, E M
2013-01-01
The presence of severe underlying connective tissue disease may restrict the reconstructive options offered to a woman in the event of mastectomy. Putative concerns about reconstructive surgery include the effects of connective tissue disease and immunosuppression on wound healing and donor site morbidity, and increased risks of deranged clotting and thrombophilia after free tissue transfer. There is also the possibility of an unpredictable tissue reaction after oncological resection surgery and adjuvant radiotherapy. Here we present a review of the current sparse evidence regarding reconstructive breast surgery in this challenging group of patients. In addition we present a series of six consecutive patients with a spectrum of connective tissue disorders including combinations of longstanding Systemic Lupus Erythematosis (SLE), Rheumatoid arthritis and Raynaud's Disease who underwent successful post-mastectomy reconstruction with an extended autologous latissimus dorsi flap, along with subsequent successful correction of asymmetry and/or nipple reconstruction. There is a paucity of literature on this subject perhaps suggesting that surgeons are reluctant to offer reconstruction or that uptake is poor in this group. Complications related to radiotherapy and free tissue transfer in patients with severe CTD is less than may be expected. The most common complications experienced by our patients with CTD after extended ALD breast reconstruction were persistent donor site seroma, wound dehiscence and delayed haematoma formation, reflecting the abnormal inflammatory response and deranged haemostatic cascade common to connective tissue disease. However, all six patients made a full recovery from surgery without residual donor site morbidity and with an acceptable aesthetic breast reconstruction. Careful peri-operative management is crucial in this group of patients, but good outcomes are possible using a variety of reconstructive techniques. This is the first reported series of patients with severe connective tissue disease who have been managed with extended ALD breast reconstruction. The majority of complications relate to the donor site but the favourable outcomes demonstrate that the extended ALD flap remains a reliable reconstructive option for this group. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C
2014-01-01
Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF-β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF-β1 (p < 0.01), CTGF (p < 0.01), and Col3 (p < 0.01) were increased in SSCT of CTS patients compared with control tissue. In addition, a strong positive correlation was found between TGF-β1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF-β1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.
2017-01-01
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929
Santosh, Arvind Babu Rajendra; Jones, Thaon Jon
2014-03-17
In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.
Liu, Chia-Feng; Aschbacher-Smith, Lindsey; Barthelery, Nicolas J.; Dyment, Nathaniel; Butler, David
2011-01-01
Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries. PMID:21314435
Contribution of Adipose Tissue to Development of Cancer
Cozzo, Alyssa J.; Fuller, Ashley M.; Makowski, Liza
2018-01-01
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose “organ,” and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. PMID:29357128
2011-01-01
Background Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P < 0.05). Patients with positive CTGF expression had significantly lower cumulative postoperative 5 year survival rate than those with negative CTGF expression (22.9% versus 48.1%, P < 0.001). We demonstrated that knockdown of CTGF expression significantly inhibited cell growth of gastric cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer. PMID:21955589
Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Liu, Fu-Nan; Li, Yan-Shu; Wang, Chun-Yu; Zhang, Hong-Yan; Sun, Zhe; Xu, Hui-Mian
2011-09-28
Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P < 0.05). Patients with positive CTGF expression had significantly lower cumulative postoperative 5 year survival rate than those with negative CTGF expression (22.9% versus 48.1%, P < 0.001). We demonstrated that knockdown of CTGF expression significantly inhibited cell growth of gastric cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.
Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent.
Lombardi, Bernadette; Casale, Costantino; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo Antonio
2017-07-01
Several skin equivalent models have been developed to investigate in vitro the re-epithelialization process occurring during wound healing. Although these models recapitulate closure dynamics of epithelial cells, they fail to capture how a wounded connective tissue rebuilds its 3D architecture until the evolution in a scar. Here, the in vitro tissue repair dynamics of a connective tissue is replicated by using a 3D human dermis equivalent (3D-HDE) model composed of fibroblasts embedded in their own extracellular matrix (ECM). After inducing a physical damage, 3D-HDE undergoes a series of cellular and extracellular events quite similar to those occurring in the native dermis. In particular, fibroblasts differentiation toward myofibroblasts phenotype and neosynthesis of hyaluronic acid, fibronectin, and collagen during the repair process are assessed. Moreover, tissue reorganization after physical damage is investigated by measuring the diameter of bundles and the orientation of fibers of the newly formed ECM network. Finally, the ultimate formation of a scar-like tissue as physiological consequence of the repair and closure process is demonstrated. Taking together, the results highlight that the presence of cell-assembled and responsive stromal components enables quantitative and qualitative in vitro evaluation of the processes involved in scarring during wound healing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ichikawa, Kazunobu; Konta, Tsuneo; Sato, Hiroshi; Ueda, Yoshihiko; Yokoyama, Hitoshi
2017-12-01
In connective tissue diseases, a wide variety of glomerular, tubulointerstitial, and vascular lesions of the kidney are observed. Nonetheless, recent information is limited regarding renal lesions in connective tissue diseases, except in systemic lupus erythematosus (SLE). In this study, we used a nationwide database of biopsy-confirmed renal diseases in Japan (J-RBR) (UMIN000000618). In total, 20,523 registered patients underwent biopsy between 2007 and 2013; from 110 patients with connective tissue diseases except SLE, we extracted data regarding the clinico-pathological characteristics of the renal biopsy. Our analysis included patients with rheumatoid arthritis (RA) (n = 52), Sjögren's syndrome (SjS) (n = 35), scleroderma (n = 10), mixed connective tissue disease (MCTD; n = 5), anti-phospholipid syndrome (APS; n = 3), polymyositis/dermatomyositis (PM/DM; n = 1), Behçet's disease (n = 1) and others (n = 3). The clinico-pathological features differed greatly depending on the underlying disease. The major clinical diagnosis was nephrotic syndrome in RA; chronic nephritic syndrome with mild proteinuria and reduced renal function in SjS; rapidly progressive nephritic syndrome in scleroderma. The major pathological diagnosis was membranous nephropathy (MN) and amyloidosis in RA; tubulointerstitial nephritis in SjS; proliferative obliterative vasculopathy in scleroderma; MN in MCTD. In RA, most patients with nephrosis were treated using bucillamine, and showed membranous nephropathy. Using the J-RBR database, our study revealed that biopsy-confirmed cases of connective tissue diseases such as RA, SjS, scleroderma, and MCTD show various clinical and pathological characteristics, depending on the underlying diseases and the medication used.
An extended OpenSim knee model for analysis of strains of connective tissues.
Marieswaran, M; Sikidar, Arnab; Goel, Anu; Joshi, Deepak; Kalyanasundaram, Dinesh
2018-04-17
OpenSim musculoskeletal models provide an accurate simulation environment that eases limitations of in vivo and in vitro studies. In this work, a biomechanical knee model was formulated with femoral articular cartilages and menisci along with 25 connective tissue bundles representing ligaments and capsules. The strain patterns of the connective tissues in the presence of femoral articular cartilage and menisci in the OpenSim knee model was probed in a first of its kind study. The effect of knee flexion (0°-120°), knee rotation (- 40° to 30°) and knee adduction (- 15° to 15°) on the anterior cruciate, posterior cruciate, medial collateral, lateral collateral ligaments and other connective tissues were studied by passive simulation. Further, a new parameter for assessment of strain namely, the differential inter-bundle strain of the connective tissues were analyzed to provide new insights for injury kinematics. ACL, PCL, LCL and PL was observed to follow a parabolic strain pattern during flexion while MCL represented linear strain patterns. All connective tissues showed non-symmetric parabolic strain variation during rotation. During adduction, the strain variation was linear for the knee bundles except for FL, PFL and TL. Strains higher than 0.1 were observed in most of the bundles during lateral rotation followed by abduction, medial rotation and adduction. In the case of flexion, highest strains were observed in aACL and aPCL. A combination of strains at a flexion of 0° with medial rotation of 30° or a flexion of 80° with rotation of 30° are evaluated as rupture-prone kinematics.
McGuire, Michael K; Scheyer, Todd; Nevins, Myron; Schupbach, Peter
2009-02-01
The current study examined the histologic and microcomputed tomographic (micro CT) outcomes of the treatment of gingival recession defects with either a subepithelial connective tissue graft (CTG) or 0.3 mg/mL recombinant human platelet-derived growth factor (rhPDGF-BB) on a beta tricalcium phosphate (beta-TCP) matrix. Gingival recession defects were surgically created in six premolar teeth with no more than 3 mm of keratinized marginal tissue, an osseous crest 2 to 3 mm apical to the newly created gingival margin, and recession depth of at least 3 mm. The defects were left untouched for 2 months; then, four defects were grafted with rhPDGF-BB + beta-TCP + a wound healing dressing, and two defects received CTGs. A coronally advanced flap covered each grafted site. Nine months later, sections were obtained for examination. All four sites treated with rhPDGF-BB + beta-TCP showed connective tissue fibers (Sharpey fibers) perpendicularly inserting into newly formed cementum and alveolar bone. In the two sites treated with CTGs, a long junctional epithelium was seen coronal to the osseous crest and connective tissue fibers ran parallel to the adjacent root surfaces, with no evidence of insertion into cementum or bone. There was no evidence of regeneration of cementum, inserting connective tissue fibers, or supporting alveolar bone. Regeneration of the periodontium in gingival recession defects is possible through growth factor-mediated therapy.
Mechanical model for a collagen fibril pair in extracellular matrix.
Chan, Yue; Cox, Grant M; Haverkamp, Richard G; Hill, James M
2009-04-01
In this paper, we model the mechanics of a collagen pair in the connective tissue extracellular matrix that exists in abundance throughout animals, including the human body. This connective tissue comprises repeated units of two main structures, namely collagens as well as axial, parallel and regular anionic glycosaminoglycan between collagens. The collagen fibril can be modeled by Hooke's law whereas anionic glycosaminoglycan behaves more like a rubber-band rod and as such can be better modeled by the worm-like chain model. While both computer simulations and continuum mechanics models have been investigated for the behavior of this connective tissue typically, authors either assume a simple form of the molecular potential energy or entirely ignore the microscopic structure of the connective tissue. Here, we apply basic physical methodologies and simple applied mathematical modeling techniques to describe the collagen pair quantitatively. We found that the growth of fibrils was intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils, which in return was closely related to the effectiveness of anionic glycosaminoglycan in transmitting forces between fibrils. These reveal the importance of the anionic glycosaminoglycan in maintaining the structural shape of the connective tissue extracellular matrix and eventually the shape modulus of human tissues. We also found that some macroscopic properties, like the maximum molecular energy and the breaking fraction of the collagen, were also related to the microscopic characteristics of the anionic glycosaminoglycan.
Khetarpal, Shaleen; Chouksey, Ajay; Bele, Anand; Vishnoi, Rahul
2018-01-01
Favorable esthetics is one of the most important treatment outcomes in dentistry, and to achieve this, interdisciplinary approaches are often required. Ridge deficiencies can be corrected for both, soft- and hard-tissue discrepancies. To overcome such defects, not only a variety of prosthetic options are at our disposal but also several periodontal plastic surgical techniques are available as well. Various techniques have been described and revised, over the year to correct ridge defects. For enhancing soft-tissue contours in the anterior region, the subepithelial connective tissue graft is the treatment of choice. A combination of alloplastic bone graft in adjunct to connective tissue graft optimizes ridge augmentation and minimizes defects. The present case report describes the use of vascular interpositional connective tissue graft in combination with alloplastic bone graft for correction of Seibert's Class III ridge deficiency followed by a fixed partial prosthesis to achieve a better esthetic outcome.
Khetarpal, Shaleen; Chouksey, Ajay; Bele, Anand; Vishnoi, Rahul
2018-01-01
Favorable esthetics is one of the most important treatment outcomes in dentistry, and to achieve this, interdisciplinary approaches are often required. Ridge deficiencies can be corrected for both, soft- and hard-tissue discrepancies. To overcome such defects, not only a variety of prosthetic options are at our disposal but also several periodontal plastic surgical techniques are available as well. Various techniques have been described and revised, over the year to correct ridge defects. For enhancing soft-tissue contours in the anterior region, the subepithelial connective tissue graft is the treatment of choice. A combination of alloplastic bone graft in adjunct to connective tissue graft optimizes ridge augmentation and minimizes defects. The present case report describes the use of vascular interpositional connective tissue graft in combination with alloplastic bone graft for correction of Seibert's Class III ridge deficiency followed by a fixed partial prosthesis to achieve a better esthetic outcome. PMID:29568176
El Chaar, Edgard; Oshman, Sarah; Cicero, Giuseppe; Castano, Alejandro; Dinoi, Cinzia; Soltani, Leila; Lee, Yoonjung Nicole
Localized ridge resorption, the consequence of socket collapse, following tooth extraction in the anterior maxilla can adversely affect esthetics, function, and future implant placement. Immediate grafting of extraction sockets may help preserve natural ridge contours, but a lack of available soft tissue can compromise the final esthetic outcome. The presented modified rotated palatal pedicle connective tissue flap is a useful technique for simultaneous soft tissue coverage and augmentation of grafted sockets to improve esthetic outcome. This article delineates its advantages through the presentation of a four-case series using this new technique.
Terekhov, G V; Furmanov, Iu A; Gvozdetskiĭ, V S; Savitskaia, I M
2008-06-01
A new method of the live biological tissues connection, using thermal energy of a high-temperature argon plasma, constituting perspective trend of application of a new nonsuture methods of the tissues connection, original for the world practice, was elaborated in the Department of Experimental Surgery together with the Institute of welding named after Academician E. O. Paton NAS of Ukraine. The argon-plasma welding application secure safe adhesion of the connecting surfaces formation due to the protein complexes temperature denaturation occurrence. The absence of foreign bodies in the connection zone as well as the presence of the plasma flow bacterocidal properties secure, while application of this new method, a significant lowering of a bacterial soiling of the formatted anastomoses, not interfering with the tissue natural regeneration process course.
FOXO1 expression in keratinocytes promotes connective tissue healing
Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.
2017-01-01
Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813
NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.
Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus
2014-12-01
We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.
In Vitro Engineering of Vascularized Tissue Surrogates
Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835
Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas
2017-11-01
The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.
Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics
2014-01-01
The deformation between C4 and C6 measured by the US probe was affected by bulging of the IVD and soft tissues during compressive loading as...endplates of the vertebrae and cartilaginous endplate of the discs were added to all segments. Figure 28 Coronal views of the updated C4-T1 FEM (a...the ligaments and soft tissue connections that provide stability to the cervical spine FSUs were added (Figures 30 and 31). For the anterior
Zerbinati, Nicola; D'Este, Edoardo; Parodi, Pier Camillo; Calligaro, Alberto
2017-07-01
This study uses light and electron microscopes to gain a better knowledge of the interactions of calcium hydroxylapatite filler with the connective tissue of the skin and the modifications of the human deep dermis, after 2 months of treatment. Some morphological evidences of this observational study of filler treated tissue support-specific mechanism involved in the structural modifications of both filler microspherules and cells of the connective tissue. They demonstrate the absence of any immunological reaction and show that the used filler is modified very slowly over time by the action of cells of the connective tissue closely related to the filler without any activity of phagocytosis. Furthermore, associated with the modifications of the filler, evidences of stimulatory effects on dermal fibroblasts are reported.
[Imaging of alloplastic ligament implant. An in vivo and in vitro study exemplified by Kevlar].
Wening, J V; Katzer, A; Nicolas, V; Hahn, M; Jungbluth, K H; Kratzer A [corrected to Katzer, A
1994-04-01
Neither native X-ray nor CT or NMR allow to evaluate intraarticular implantation results of Kevlar -49 directly. In animal trials, the course of an artificial ligament may only be presumed from connective tissue ingrowth. Although soft tissue structure appears much better in NMR than in CT, direct proof of ligament continuity is still impossible. As soon as the connective tissue becomes continuous, it appears clearly and allows indirect evaluation of the prosthesis, as integrity can be judged by its shape like in natural cruciate ligament. Anatomic preparations show that connective tissue fills up the small space between the two cords of a Kevlar -49 two bundle prosthesis eight weeks after implantation, so that imaging systems show only one intraarticular bundle.
A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement
NASA Astrophysics Data System (ADS)
Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An
2012-03-01
Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.
Histopathology of lung disease in the connective tissue diseases.
Vivero, Marina; Padera, Robert F
2015-05-01
The pathologic correlates of interstitial lung disease (ILD) secondary to connective tissue disease (CTD) comprise a diverse group of histologic patterns. Lung biopsies in patients with CTD-associated ILD tend to demonstrate simultaneous involvement of multiple anatomic compartments of the lung. Certain histologic patterns tend to predominate in each defined CTD, and it is possible in many cases to confirm connective tissue-associated lung disease and guide patient management using surgical lung biopsy. This article will cover the pulmonary pathologies seen in rheumatoid arthritis, systemic sclerosis, myositis, systemic lupus erythematosus, Sjögren syndrome, and mixed CTD. Copyright © 2015 Elsevier Inc. All rights reserved.
FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.
Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N
2009-04-01
Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.
Huijing, P
1999-10-01
Structures contributing to force transmission in muscle are reviewed combining some historical and relatively recently published experimental data. Also, effects of aponeurotomy and tenotomy are reviewed shortly as well as some new experimental results regarding these interventions that reinforce the concept of myofascial force transmission. The review is also illustrated by some new images of single muscle fibres from Xenopus Laevis indicative of such transmission and some data about locations of insertion of human gluteus maximus muscle. From this review and the new material, emerges a line of thought indicating that mechanical connections between muscle fibres and intramuscular connective tissue play an important role in force transmission. New experimental observations are presented for non-spanning muscle (i.c., rat biceps femoris muscle), regarding the great variety of types of intramuscular connections that exist i n addition to myo-tendinous junctions at the perimuscular ends of muscle fibres. Such connections are classified as (1) tapered end connections, (2) Myo-myonal junctions, (3) myo-epimysial junctions and (3) Myo-endomysial junctions. This line of thought is followed up by consideration of a possible role of connections of intra- and extramuscular connective tissue in force transmission out of the muscle. Experimental results of an explorative nature, regarding the interactions of extensor digitorum longus (EDL), tibialis anterior (TA) and hallucis longus (HAL) muscles within a relatively intact dorsal flexor compartment of the rat hind leg, indicate that: (1) length force properties of EDL are influenced by TA activity in a length dependent fashion. Depending on TA length, force exerted by EDL, kept at constant origin insertion distance, is variable and the effect is influenced by EDL length itself as well; (2) Force is transmitted from muscle to extramuscular connective tissue and vice versa. As a consequence force exerted at proximal and distal tendons of a muscle are not always equal. The difference being transmitted by extramuscular connective tissue and may appear at the tendons of other muscles or may be transmitted via connective tissue directly to bone. It is concluded that the system of force transmission from skeletal muscle should be considered as a multiple system.
Wiesner, Günter; Esposito, Marco; Worthington, Helen; Schlee, Markus
2010-01-01
Nothing to declare. To evaluate whether connective tissue grafts performed at implant placement could be effective in augmenting peri-implant soft tissues. Ten partially edentulous patients requiring at least one single implant in the premolar or molar areas of both sides of the mandible were randomised to have one side augmented at implant placement with a connective soft tissue graft harvested from the palate or no augmentation. After 3 months of submerged healing, abutments were placed and within 1 month definitive crowns were permanently cemented. Outcome measures were implant success, any complications, peri-implant marginal bone level changes, patient satisfaction and preference, thickness of the soft tissues and aesthetics (pink aesthetic score) evaluated by an independent and blinded assessor 1 year after loading. One year after loading, no patients dropped out, no implants failed and no complications occurred. Both groups lost statistically significant amounts of peri-implant bone 1 year after loading (0.8 mm in the grafted group and 0.6 mm in the non-grafted group), but there was no statistically significant difference between groups. Soft tissues at augmented sites were 1.3 mm thicker (P < 0.001) and had a significantly better pink aesthetic score (P < 0.001). Patients were highly satisfied (no statistically significant differences between treatments) though they preferred the aesthetics of the augmented sites (P = 0.031). However, five patients would not undergo the grafting procedure again and two were uncertain. Connective tissue grafts are effective in increasing soft tissue thickness, thus improving aesthetics. Longer follow-ups are needed to evaluate the stability of peri-implant tissues over time.
USDA-ARS?s Scientific Manuscript database
Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). C...
... fatty tissue. On a mammogram, fatty tissue appears dark (radio-lucent) and the glandular and connective tissues ... white on mammography) and non-dense fatty tissue (dark on mammography) using a visual scale and assign ...
Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.
Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J
2015-11-01
The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.
Romero, A; Cáceres, M; Arancibia, R; Silva, D; Couve, E; Martínez, C; Martínez, J; Smith, P C
2015-06-01
Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clinical Evaluation of Papilla Reconstruction Using Subepithelial Connective Tissue Graft
Kaushik, Alka; PK, Pal; Chopra, Deepak; Chaurasia, Vishwajit Rampratap; Masamatti, Vinaykumar S; DK, Suresh; Babaji, Prashant
2014-01-01
Objective: The aesthetics of the patient can be improved by surgical reconstruction of interdental papilla by using an advanced papillary flap interposed with subepithelial connective tissue graft. Materials and Methods: A total of fifteen sites from ten patients having black triangles/papilla recession in the maxillary anterior region were selected and subjected to presurgical evaluation. The sites were treated with interposed subepithelial connective tissue graft placed under a coronally advance flap. The integrity of the papilla was maintained by moving the whole of gingivopapillary unit coronally. The various parameters were analysed at different intervals. Results: There was a mean decrease in the papilla presence index score and distance from contact point to gingival margin, but it was statistically not significant. Also, there is increase in the width of the keratinized gingiva which was statistically highly significant. Conclusion: Advanced papillary flap with interposed sub–epithelial connective tissue graft can offer predictable results for the reconstruction of interdental papilla. If papilla loss occurs solely due to soft-tissue damage, reconstructive techniques can completely restore it; but if due to periodontal disease involving bone loss, reconstruction is generally incomplete and multiple surgical procedures may be required. PMID:25386529
Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension
NASA Astrophysics Data System (ADS)
Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.
1987-07-01
Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.
McLoon, Linda K.; Vicente, André; Fitzpatrick, Krysta R.; Lindström, Mona
2018-01-01
Purpose We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle. PMID:29346490
Rodríguez-Vázquez, José Francisco; Sakiyama, Koji; Abe, Hiroshi; Amano, Osamu; Murakami, Gen
2016-04-01
Some researchers contend that in adults the tensor tympani muscle (TT) connects with the tensor veli palatini muscle (TVP) by an intermediate tendon, in disagreement with the other researchers. To resolve this controversy, we examined serial sections of 50 human embryos and fetuses at 6-17 weeks of development. At 6 weeks, in the first pharyngeal arch, a mesenchymal connection was found first to divide a single anlage into the TT and TVP. At and after 7 weeks, the TT was connected continuously with the TVP by a definite tendinous tissue mediolaterally crossing the pharyngotympanic tube. At 11 weeks another fascia was visible covering the cranial and lateral sides of the tube. This "gonial fascia" had two thickened borders: the superior one corresponded to a part of the connecting tendon between the TT and TVP; the inferior one was a fibrous band ending at the os goniale near the lateral end of the TVP. In association with the gonial fascia, the fetal TT and TVP seemed to provide a functional complex. The TT-TVP complex might first help elevate the palatal shelves in association with the developing tongue. Next, the tubal passage, maintained by contraction of the muscle complex, seems to facilitate the removal of loose mesenchymal tissues from the tympanic cavity. Third, the muscle complex most likely determined the final morphology of the pterygoid process. Consequently, despite the controversial morphologies in adults, the TT and TVP seemed to make a single digastric muscle acting for the morphogenesis of the cranial base. © 2016 Wiley Periodicals, Inc.
Vitamins E and C - effects on matrix components in the vascular system
USDA-ARS?s Scientific Manuscript database
The connective tissue in the vascular system, consisting mainly of vascular smooth muscle cells (VSMC) and the interstitial extracellular matrix (ECM), plays important roles in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development. ...
ERIC Educational Resources Information Center
Le Bovit, Judith
The culminating remarks in this paper call for the building of a new Atlantis, a"...home where the unquiet heart of modern man can find peace." The author reviews the historical importance of Latin as a "connecting tissue" among European languages and its significance in the development of a common linguistic heritage. From this frame of…
The Possible Potential Therapeutic Targets for Drug Induced Gingival Overgrowth
Alitheen, Noorjahan Banu
2013-01-01
Gingival overgrowth is a side effect of certain medications. The most fibrotic drug-induced lesions develop in response to therapy with phenytoin, the least fibrotic lesions are caused by cyclosporin A, and the intermediate fibrosis occurs in nifedipine-induced gingival overgrowth. Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, activated gingival fibroblasts synthesize and remodel newly created extracellular matrix. Proteins such as transforming growth factor (TGF), endothelin-1 (ET-1), angiotensin II (Ang II), connective tissue growth factor (CCN2/CTGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF) appear to act in a network that contributes to the development of gingival fibrosis. Since inflammation is the prerequisite for gingival overgrowth, mast cells and its protease enzymes also play a vital role in the pathogenesis of gingival fibrosis. Drugs targeting these proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the contribution of TGF-β, CTGF, IGF, PDGF, ET-1, Ang II, and mast cell chymase and tryptase enzymes to fibroblast activation in gingival fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of drug-induced gingival overgrowth. PMID:23690667
Moghaddas, Hamid; Amjadi, Mohammad Reza; Naghsh, Narges
2012-11-01
Alveolar ridge preservation following tooth extraction has the ability to maintain the ridge dimensions and allow the implant placement in an ideal position fulfilling both functional and aesthetic results. The aim of this study was to evaluate the efficacy of the palatal connective tissue as a biological membrane for socket preservation with demineralized freeze-dried bone allograft (DFDBA). Twelve extraction sites were treated with DFDBA with (case group) and without (control group) using autogenous palatal connective tissue membrane before placement of implants. Alveolar width and height, amount of keratinized tissue, and gingival level were measured at pre-determined points using a surgical stent at two times, the time of socket preservation surgery. In both groups a decrease in all socket dimensions was found. The average decrease in socket width, height, keratinized tissue, and gingival level in case group was 1.16, 0.72, 3.58, and 1.27 mm, and in control group was 2.08, 0.86, 4.52, and 1.58 mm respectively. Statistical analysis showed that decrease in socket width (P = 0.012), keratinized tissue (P ≤ 0.001), and gingival level (P = 0.031) in case group was significantly lower than that of the control group. Results showed no meaningful difference in socket height changes when compared with case and control groups (P = 0.148). Under the limits of this study, connective tissue membrane could preserve socket width, amount of keratinized tissue, and the gingival level more effectively than DFDBA alone.
A Digital Staining Algorithm for Optical Coherence Tomography Images of the Optic Nerve Head
Mari, Jean-Martial; Aung, Tin; Cheng, Ching-Yu; Strouthidis, Nicholas G.; Girard, Michaël J. A.
2017-01-01
Purpose To digitally stain spectral-domain optical coherence tomography (OCT) images of the optic nerve head (ONH), and highlight either connective or neural tissues. Methods OCT volumes of the ONH were acquired from one eye of 10 healthy subjects. We processed all volumes with adaptive compensation to remove shadows and enhance deep tissue visibility. For each ONH, we identified the four most dissimilar pixel-intensity histograms, each of which was assumed to represent a tissue group. These four histograms formed a vector basis on which we ‘projected' each OCT volume in order to generate four digitally stained volumes P1 to P4. Digital staining was also verified using a digital phantom, and compared with k-means clustering for three and four clusters. Results Digital staining was able to isolate three regions of interest from the proposed phantom. For the ONH, the digitally stained images P1 highlighted mostly connective tissues, as demonstrated through an excellent contrast increase across the anterior lamina cribrosa boundary (3.6 ± 0.6 times). P2 highlighted the nerve fiber layer and the prelamina, P3 the remaining layers of the retina, and P4 the image background. Further, digital staining was able to separate ONH tissue layers that were not well separated by k-means clustering. Conclusion We have described an algorithm that can digitally stain connective and neural tissues in OCT images of the ONH. Translational Relevance Because connective and neural tissues are considerably altered in glaucoma, digital staining of the ONH tissues may be of interest in the clinical management of this pathology. PMID:28174676
Does rat granulation tissue maturation involve gap junction communications?
Au, Katherine; Ehrlich, H Paul
2007-07-01
Wound healing, a coordinated process, proceeds by sequential changes in cell differentiation and terminates with the deposition of a new connective tissue matrix, a scar. Initially, there is the migratory fibroblast, followed by the proliferative fibroblast, then the synthetic fibroblast, which transforms into the myofibroblast, and finally the apoptotic fibroblast. Gap junction intercellular communications are proposed to coordinate the stringent control of fibroblast phenotypic changes. Does added oleamide, a natural fatty acid that blocks gap junction intercellular communications, alter the phenotypic progression of wound fibroblasts? Pairs of polyvinyl alcohol sponges attached to Alzet pumps, which constantly pumped either oleamide or vehicle solvent, were implanted subcutaneously into three rats. On day 8, implants were harvested and evaluated histologically and biochemically. The capsule of oleamide-treated sponge contained closely packed fibroblasts with little connective tissue between them. The birefringence intensity of that connective tissue was reduced, indicating a reduced density of collagen fiber bundles. Myofibroblasts, identified immunohistologically by alpha-smooth muscle actin-stained stress fibers, were reduced in oleamide-treated implants. Western blot analysis showing less alpha-smooth muscle actin confirmed the reduced density of myofibroblasts. It appears that oleamide retards the progression of wound repair, where less connective tissue is deposited, the collagen is less organized, and the appearance of myofibroblasts is impaired. These findings support the hypothesis that gap junction intercellular communications between wound fibroblasts in granulation tissue play a role in the progression of repair and the maturation of granulation tissue into scar.
Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering
Lu, Helen H.; Thomopoulos, Stavros
2014-01-01
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244
Chevalier, Grégoire; Cherkaoui, Selma; Kruk, Hanna; Bensaïd, Xavier; Danan, Marc
A xenogeneic collagen matrix recently has been suggested as an alternative to connective tissue graft for the treatment of gingival recession. The matrix avoids the second surgical site, and as a consequence could decrease surgical morbidity. This new matrix was used in various clinical situations and compared to connective tissue graft (CTG) in a split-mouth design case series. A total of 17 recessions were treated with a coronally advanced flap, 9 with CTG, and 8 with the matrix. Mean recession reduction was 2.00 mm with the CTG and 2.00 mm with the matrix. No significant statistical differences between the techniques were observed in this case report.
Chevalier, Grégoire; Cherkaoui, Selma; Kruk, Hanna; Bensaïd, Xavier; Danan, Marc
2016-08-24
A xenogeneic collagen matrix recently has been suggested as an alternative to connective tissue graft for the treatment of gingival recession. The matrix avoids the second surgical site, and as a consequence could decrease surgical morbidity. This new matrix was used in various clinical situations and compared to connective tissue graft (CTG) in a split-mouth design case series. A total of 17 recessions were treated with a coronally advanced flap, 9 with CTG, and 8 with the matrix. Mean recession reduction was 2.00 mm with the CTG and 2.00 mm with the matrix. No significant statistical differences between the techniques were observed in this case report.
Systemic sclerosis-scleroderma.
Haustein, U-F
2002-06-01
Systemic sclerosis is a clinically heterogeneous, systemic disorder which affects the connective tissue of the skin, internal organs and the walls of blood vessels. It is characterized by alterations of the microvasculature, disturbances of the immune system and by massive deposition of collagen and other matrix substances in the connective tissue. This review discusses epidemiology and survival, clinical features including subsets and internal organ involvement, pathophysiology and genetics, microvasculature, immunobiology, fibroblasts and connective tissue metabolism and environmental factors. Early diagnosis and individually tailored therapy help to manage this disorder, which is treatable, but not curable. Therapy involves immunomodulation as well as the targeting of blood vessel mechanics and fibrosis. Physical therapy and psychotherapy are also important adjunctive therapies in this multifactorial disease.
Krieg, Thomas; Abraham, David; Lafyatis, Robert
2007-01-01
Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742
Jia, Peilin; Chen, Xiangning; Fanous, Ayman H; Zhao, Zhongming
2018-05-24
Genetic components susceptible to complex disease such as schizophrenia include a wide spectrum of variants, including common variants (CVs) and de novo mutations (DNMs). Although CVs and DNMs differ by origin, it remains elusive whether and how they interact at the gene, pathway, and network levels that leads to the disease. In this work, we characterized the genes harboring schizophrenia-associated CVs (CVgenes) and the genes harboring DNMs (DNMgenes) using measures from network, tissue-specific expression profile, and spatiotemporal brain expression profile. We developed an algorithm to link the DNMgenes and CVgenes in spatiotemporal brain co-expression networks. DNMgenes tended to have central roles in the human protein-protein interaction (PPI) network, evidenced in their high degree and high betweenness values. DNMgenes and CVgenes connected with each other significantly more often than with other genes in the networks. However, only CVgenes remained significantly connected after adjusting for their degree. In our gene co-expression PPI network, we found DNMgenes and CVgenes connected in a tissue-specific fashion, and such a pattern was similar to that in GTEx brain but not in other GTEx tissues. Importantly, DNMgene-CVgene subnetworks were enriched with pathways of chromatin remodeling, MHC protein complex binding, and neurotransmitter activities. In summary, our results unveiled that both DNMgenes and CVgenes contributed to a core set of biologically important pathways and networks, and their interactions may attribute to the risk for schizophrenia. Our results also suggested a stronger biological effect of DNMgenes than CVgenes in schizophrenia.
Mast cell heterogeneity underlies different manifestations of food allergy in mice
Benedé, Sara
2018-01-01
Food can trigger a diverse array of symptoms in food allergic individuals from isolated local symptoms affecting skin or gut to multi-system severe reactions (systemic anaphylaxis). Although we know that gastrointestinal and systemic manifestations of food allergy are mediated by tissue mast cells (MCs), it is not clear why allergen exposure by the oral route can result in such distinct clinical manifestations. Our aim was to assess the contribution of mast cell subsets to different manifestations of food allergy. We used two common models of IgE-mediated food allergy, one resulting in systemic anaphylaxis and the other resulting in acute gastrointestinal symptoms, to study the immune basis of allergic reactions. We used responders and non-responders in each model system, as well as naïve controls to identify the association of mast cell activation with clinical reactivity rather than sensitization. Systemic anaphylaxis was uniquely associated with activation of connective tissue mast cells (identified by release of mouse mast cell protease (MMCP) -7 into the serum) and release of histamine, while activation of mucosal mast cells (identified by release of MMCP-1 in the serum) did not correlate with symptoms. Gastrointestinal manifestations of food allergy were associated with an increase of MMCP-1-expressing mast cells in the intestine, and evidence of both mucosal and connective tissue mast cell activation. The data presented in this paper demonstrates that mast cell heterogeneity is an important contributor to manifestations of food allergy, and identifies the connective tissue mast cell subset as key in the development of severe systemic anaphylaxis. PMID:29370173
In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels
Sekine, Hidekazu; Shimizu, Tatsuya; Sakaguchi, Katsuhisa; Dobashi, Izumi; Wada, Masanori; Yamato, Masayuki; Kobayashi, Eiji; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications. PMID:23360990
Zeng, Huijun; Yang, Zhao; Xu, Ningbo; Liu, Boyang; Fu, Zhao; Lian, Changlin; Guo, Hongbo
2017-06-15
Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly upregulated in TMZ-treated GB cells. CTGF knockdown promoted TMZ-induced cell apoptosis and enhanced chemosensitivity, whereas its overexpression markedly conferred TMZ resistance in vitro and in vivo. Moreover, CTGF promoted TMZ resistance through stem-like properties acquisition and CD44 interference reversed the CTGF-induced TMZ resistance. Mechanistically, further investigation revealed that the TMZ-induced CTGF upregulation was tissue growth factor (TGF-β) dependent, and regulated by TGF-β1 activation through Smad and ERK1/2 signaling. Together, our results suggest a pivotal role of CTGF-mediated TMZ resistance through TGF-β1-dependent activation of Smad/ERK signaling pathways. These data provide us insights for identifying potential targets that are beneficial for overcoming TMZ resistance in GB.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
Luczyszyn, Sonia M; Grisi, Márcio F M; Novaes, Arthur B; Palioto, Daniela B; Souza, Sérgio L S; Taba, Mario
2007-08-01
Clinical results with acellular dermal matrix graft (ADMG) in periodontal surgeries suggest that the material is incorporated by the host tissues. However, histologic studies of the ADMG incorporation process are limited. The objective of this study was to evaluate the incorporation of ADMG into gingival tissues in a dog model. Gingival recession-type defects were created at the canines of six dogs. After 6 weeks, periodontal surgeries to repair the defects were performed using ADMG. Two animals each were sacrificed after 4, 8, and 12 weeks. At 4 weeks, thick collagen fibers from the ADMG were clearly seen in the connective tissue, and some blood vessels were penetrating into the ADMG. At 8 weeks, blood vessel penetration was enhanced, and collagen fiber bundles from the ADMG were seen sending branches into the connective tissue in all directions. After 12 weeks, the ADMG and the connective tissue seemed to be well integrated into a single highly vascularized structure, indicating almost complete incorporation of the ADMG.
Currie, Joshua D; Kawaguchi, Akane; Traspas, Ricardo Moreno; Schuez, Maritta; Chara, Osvaldo; Tanaka, Elly M
2016-11-21
Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Mounir, Maha M.F.; Matar, Moustafa A.; Lei, Yaping; Snead, Malcolm L.
2015-01-01
Introduction Recombinant DNA produced amelogenin protein was compared to calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. Methods Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). Results After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histological assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3 and 6 month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group and soft connective tissue within the pulp chamber was not observed. Conclusions The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in non-vital immature teeth and promote soft connective tissue regeneration. PMID:26709200
Biomechanical aspects of axonal damage in glaucoma: a brief review1
Stowell, Cheri; Burgoyne, Claude; Tamm, Ernst R.; Ethier, C. Ross
2017-01-01
The biomechanical environment within the optic nerve head (ONH) is complex and is likely directly involved in the loss of retinal ganglion cells (RGCs) in glaucoma. Unfortunately, our understanding of this process is poor. Here we describe factors that influence ONH biomechanics, including ONH connective tissue microarchitecture and anatomy; intraocular pressure (IOP); and cerebrospinal fluid pressure (CSFp). We note that connective tissue factors can vary significantly from one individual to the next, as well as regionally within an eye, and that the understanding of ONH biomechanics is hindered by anatomical differences between small-animal models of glaucoma (rats and mice) and humans. Other challenges of using animal models of glaucoma to study the role of biomechanics include the complexity of assessing the degree of glaucomatous progression; and inadequate tools for monitoring and consistently elevating IOP in animal models. We conclude with a consideration of important open research questions/challenges in this area, including: (i) Creating a systems biology description of the ONH; (ii) addressing the role of astrocyte connective tissue remodeling and reactivity in glaucoma; (iii) providing a better characterization of ONH astrocytes and non-astrocytic constituent cells; (iv) better understanding the role of ONH astrocyte phagocytosis, proliferation and death; (v) collecting gene expression and phenotype data on a larger, more coordinated scale; and (vi) developing an implantable IOP sensor. PMID:28223180
Reduction of lymph tissue false positives in pulmonary embolism detection
NASA Astrophysics Data System (ADS)
Ghanem, Bernard; Liang, Jianming; Bi, Jinbo; Salganicoff, Marcos; Krishnan, Arun
2008-03-01
Pulmonary embolism (PE) is a serious medical condition, characterized by the partial/complete blockage of an artery within the lungs. We have previously developed a fast yet effective approach for computer aided detection of PE in computed topographic pulmonary angiography (CTPA),1 which is capable of detecting both acute and chronic PEs, achieving a benchmark performance of 78% sensitivity at 4 false positives (FPs) per volume. By reviewing the FPs generated by this system, we found the most dominant type of FP, roughly one third of all FPs, to be lymph/connective tissue. In this paper, we propose a novel approach that specifically aims at reducing this FP type. Our idea is to explicitly exploit the anatomical context configuration of PE and lymph tissue in the lungs: a lymph FP connects to the airway and is located outside the artery, while a true PE should not connect to the airway and must be inside the artery. To realize this idea, given a detected candidate (i.e. a cluster of suspicious voxels), we compute a set of contextual features, including its distance to the airway based on local distance transform and its relative position to the artery based on fast tensor voting and Hessian "vesselness" scores. Our tests on unseen cases show that these features can reduce the lymph FPs by 59%, while improving the overall sensitivity by 3.4%.
Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).
Correia, Sandra M; Canhoto, Jorge M
2010-06-01
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.
Network recruitment to coherent oscillations in a hippocampal computer model
Krieger, Abba; Litt, Brian
2011-01-01
Coherent neural oscillations represent transient synchronization of local neuronal populations in both normal and pathological brain activity. These oscillations occur at or above gamma frequencies (>30 Hz) and often are propagated to neighboring tissue under circumstances that are both normal and abnormal, such as gamma binding or seizures. The mechanisms that generate and propagate these oscillations are poorly understood. In the present study we demonstrate, via a detailed computational model, a mechanism whereby physiological noise and coupling initiate oscillations and then recruit neighboring tissue, in a manner well described by a combination of stochastic resonance and coherence resonance. We develop a novel statistical method to quantify recruitment using several measures of network synchrony. This measurement demonstrates that oscillations spread via preexisting network connections such as interneuronal connections, recurrent synapses, and gap junctions, provided that neighboring cells also receive sufficient inputs in the form of random synaptic noise. “Epileptic” high-frequency oscillations (HFOs), produced by pathologies such as increased synaptic activity and recurrent connections, were superior at recruiting neighboring tissue. “Normal” HFOs, associated with fast firing of inhibitory cells and sparse pyramidal cell firing, tended to suppress surrounding cells and showed very limited ability to recruit. These findings point to synaptic noise and physiological coupling as important targets for understanding the generation and propagation of both normal and pathological HFOs, suggesting potential new diagnostic and therapeutic approaches to human disorders such as epilepsy. PMID:21273309
Tissue engineering therapies for the vocal fold lamina propria.
Kutty, Jaishankar K; Webb, Ken
2009-09-01
The vocal folds are laryngeal connective tissues with complex matrix composition/organization that provide the viscoelastic mechanical properties required for voice production. Vocal fold injury results in alterations in tissue structure and corresponding changes in tissue biomechanics that reduce vocal quality. Recent work has begun to elucidate the biochemical changes underlying injury-induced pathology and to apply tissue engineering principles to the prevention and reversal of vocal fold scarring. Based on the extensive history of injectable biomaterials in laryngeal surgery, a major focus of regenerative therapies has been the development of novel scaffolds with controlled in vivo residence time and viscoelastic properties approximating the native tissue. Additional strategies have included cell transplantation and delivery of the antifibrotic cytokine hepatocyte growth factor, as well as investigation of the effects of the unique vocal fold vibratory microenvironment using in vitro dynamic culture systems. Recent achievements of significant reductions in fibrosis and improved recovery of native tissue viscoelasticity and vibratory/functional performance in animal models are rapidly moving vocal fold tissue engineering toward clinical application.
Mandibular phosphaturic mesenchymal tumor-mixed connective tissue variant in a young girl.
Luo, Lisa; Low, Nelson; Vandervord, John
2013-11-01
Phosphaturic mesenchymal tumor-mixed connective tissue variant (PMTMCT) is an extremely rare tumor associated with tumor-induced osteomalacia. The majority occur in middle age and arise from the extremities. This report describes a young girl with PMTMCT arising in the mandible and with no evidence of paraneoplastic syndrome.
Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct
NASA Astrophysics Data System (ADS)
Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza
2014-06-01
Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.
The myofibroblast, multiple origins for major roles in normal and pathological tissue repair
2012-01-01
Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases. PMID:23259712
Soft tissue volume augmentation by the use of collagen-based matrices: a volumetric analysis.
Thoma, Daniel S; Jung, Ronald E; Schneider, David; Cochran, David L; Ender, Andreas; Jones, Archie A; Görlach, Christoph; Uebersax, Lorenz; Graf-Hausner, Ursula; Hämmerle, Christoph H F
2010-07-01
The aim was to test whether or not soft tissue augmentation with a newly developed collagen matrix (CM) leads to volume gain in chronic ridge defects similar to those obtained by an autogenous subepithelial connective tissue graft (SCTG). In six dogs, soft tissue volume augmentation was performed by randomly allocating three treatment modalities to chronic ridge defects (CM, SCTG, sham-operated control). Impressions were taken before augmentation (baseline), at 28, and 84 days. The obtained casts were optically scanned and the images were digitally analysed. A defined region of interest was measured in all sites and the volume differences between the time points were calculated. The mean volume differences per area between baseline and 28 days amounted to a gain of 1.6 mm (CM; SD+/-0.9), 1.5 mm (SCTG; +/-0.1), and a loss of 0.003 mm (control; +/-0.3). At 84 days, the mean volume differences per area to baseline measured a gain of 1.4 mm (CM; +/-1.1), 1.4 mm (SCTG; +/-0.4), and a loss of 0.3 mm (control; +/-0.3). The differences between CM and SCTG were statistically significant compared with control at 28 and 84 days (p<0.001). Within the limits of this animal study, the CM may serve as a replacement for autogenous connective tissue.
Enlarged Dural Sac in Idiopathic Bronchiectasis Implicates Heritable Connective Tissue Gene Variants
Birchard, Katherine R.; Lowe, Jared R.; Patrone, Michael V.
2016-01-01
Rationale: Patients with idiopathic bronchiectasis are predominantly female and have an asthenic body morphotype and frequent nontuberculous mycobacterial respiratory infections. They also demonstrate phenotypic features (scoliosis, pectus deformity, mitral valve prolapse) that are commonly seen in individuals with heritable connective tissue disorders. Objectives: To determine whether lumbar dural sac size is increased in patients with idiopathic bronchiectasis as compared with control subjects, and to assess whether dural sac size is correlated with phenotypic characteristics seen in individuals with heritable connective tissue disorders. Methods: Two readers blinded to diagnosis measured anterior–posterior and transverse dural sac diameter using L1–L5 magnetic resonance images of 71 patients with idiopathic bronchiectasis, 72 control subjects without lung disease, 29 patients with cystic fibrosis, and 24 patients with Marfan syndrome. We compared groups by pairwise analysis of means, using Tukey’s method to adjust for multiple comparisons. Dural sac diameter association with phenotypic and clinical features was also tested. Measurements and Main Results: The L1–L5 (average) anterior–posterior dural sac diameter of the idiopathic bronchiectasis group was larger than those of the control group (P < 0.001) and the cystic fibrosis group (P = 0.002). There was a strong correlation between increased dural sac size and the presence of pulmonary nontuberculous mycobacterial infection (P = 0.007) and long fingers (P = 0.003). A trend toward larger dural sac diameter was seen in those with scoliosis (P = 0.130) and those with a family history of idiopathic bronchiectasis (P = 0.149). Conclusions: Individuals with idiopathic bronchiectasis have an enlarged dural sac diameter, which is associated with pulmonary nontuberculous mycobacterial infection, long fingers, and family history of idiopathic bronchiectasis. These findings support our hypothesis that “idiopathic” bronchiectasis development reflects complex genetic variation in heritable connective tissue and associated transforming growth factor-β–related pathway genes. PMID:27409985
Weigand, Annika; Beier, Justus P; Arkudas, Andreas; Al-Abboodi, Majida; Polykandriotis, Elias; Horch, Raymund E; Boos, Anja M
2016-11-02
A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.
Systemic connective tissue features in women with fibromuscular dysplasia.
O'Connor, Sarah; Kim, Esther Sh; Brinza, Ellen; Moran, Rocio; Fendrikova-Mahlay, Natalia; Wolski, Kathy; Gornik, Heather L
2015-10-01
Fibromuscular dysplasia (FMD) is a non-atherosclerotic disease associated with hypertension, headache, dissection, stroke, and aneurysm. The etiology is unknown but hypothesized to involve genetic and environmental components. Previous studies suggest a possible overlap of FMD with other connective tissue diseases that present with dissections and aneurysms. The aim of this study was to investigate the prevalence of connective tissue physical features in FMD. A total of 142 FMD patients were consecutively enrolled at a single referral center (97.9% female, 92.1% of whom had multifocal FMD). Data are reported for 139 female patients. Moderately severe myopia (29.1%), high palate (33.1%), dental crowding (29.7%), and early-onset arthritis (15.6%) were prevalent features. Classic connective features such as hypertelorism, cleft palate, and hypermobility were uncommon. The frequency of systemic connective tissue features was compared between FMD patients with a high vascular risk profile (having had ⩾1 dissection and/or ⩾2 aneurysms) and those with a standard vascular risk profile. A history of spontaneous pneumothorax (5.9% high risk vs 0% standard risk) and atrophic scarring (17.6% high risk vs 6.8% standard risk) were significantly more prevalent in the high risk group, p<0.05. High palate was observed in 43.1% of the high risk group versus 27.3% in the standard risk group, p=0.055. In conclusion, in a cohort of women with FMD, there was a prevalence of moderately severe myopia, high palate, dental crowding, and early-onset osteoarthritis. However, a characteristic phenotype was not discovered. Several connective tissue features such as high palate and pneumothorax were more prominent among FMD patients with a high vascular risk profile. © The Author(s) 2015.
Systemic Connective Tissue Features in Women with Fibromuscular Dysplasia
O’Connor, Sarah; Kim, Esther S. H.; Brinza, Ellen; Moran, Rocio; Fendrikova-Mahlay, Natalia; Wolski, Kathy; Gornik, Heather L.
2016-01-01
Background Fibromuscular Dysplasia (FMD) is an non-atherosclerotic disease associated with hypertension, headache, dissection, stroke, and aneurysm. The etiology is unknown but hypothesized to involve genetic and environmental components. Previous studies suggest a possible overlap of FMD with other connective tissue diseases that present with dissections and aneurysms. The aim of this study was to investigate the prevalence of connective tissue physical features in FMD. Methods and Results 142 FMD patients were consecutively enrolled at a single referral center (97.9% female, 92.3% had multifocal FMD). Data are reported for 139 female patients. Moderately severe myopia (29.1%), high palate (33.1%), dental crowding (29.7%), and early onset arthritis (15.6%) were prevalent features. Classic connective features such as hypertelorism, cleft palate, and hypermobility were uncommon. Frequency of systemic connective tissue features was compared between FMD patients with a high vascular risk profile (having had ≥1 dissection and/or ≥2 aneurysms) and those with a standard vascular risk profile. History of spontaneous pneumothorax (5.9% high risk vs. 0% standard risk) and atrophic scarring (17.3% high risk vs. 6.8% standard risk) were significantly more prevalent in the high risk group, p<0.05. High palate was observed in 43.1% of the high risk group vs. 27.3% in the standard risk group, p=0.055. Conclusions In a cohort of women with FMD, there was a prevalence of moderately severe myopia, high palate, dental crowding, and early onset osteoarthritis. However, a characteristic phenotype was not discovered. Several connective tissue features such as high palate and pneumothorax were more prominent among FMD patients with a high vascular risk profile. PMID:26156071
Alanazi, Khalid; Alahmadi, Bassam A.; Alhimaidi, Ahmed; Abou-Tarboush, Faisal M.; Farah, Mohammad Abul; Mahmoud, Ahmed; Alfaifi, Mohamed
2015-01-01
A spermatic granuloma is a chronic inflammatory reaction produced in response to extravasated sperm within the intertubular connective tissue. The present study investigates the possible toxic effects of water extract of Heliotropium bacciferum on the reproductive system of male albino rats and the associated potential for the development of spermatic granulomas. H. bacciferum is a herbal plant used in traditional medicine and reported to have cytotoxic effects due to pyrrolizidine alkaloids. Histological examinations revealed no changes in the tissues of the testes, although, some changes were detected in the cauda epididymis, the most important of which was the development of small lesions of spermatic granulomas. Clear gaps were observed between the epithelial linings of the epididymal tubules. PMID:26858543
Alanazi, Khalid; Alahmadi, Bassam A; Alhimaidi, Ahmed; Abou-Tarboush, Faisal M; Farah, Mohammad Abul; Mahmoud, Ahmed; Alfaifi, Mohamed
2016-01-01
A spermatic granuloma is a chronic inflammatory reaction produced in response to extravasated sperm within the intertubular connective tissue. The present study investigates the possible toxic effects of water extract of Heliotropium bacciferum on the reproductive system of male albino rats and the associated potential for the development of spermatic granulomas. H. bacciferum is a herbal plant used in traditional medicine and reported to have cytotoxic effects due to pyrrolizidine alkaloids. Histological examinations revealed no changes in the tissues of the testes, although, some changes were detected in the cauda epididymis, the most important of which was the development of small lesions of spermatic granulomas. Clear gaps were observed between the epithelial linings of the epididymal tubules.
Acellular dermal matrix in soft tissue reconstruction prior to bone grafting. A case report.
Ruiz-Magaz, Vanessa; Hernández-Alfaro, Federico; Díaz-Carandell, Artur; Biosca-Gómez-de-Tejada, María-José
2010-01-01
When hard tissue augmentation is scheduled as a part of an oral rehabilitation, prior to the treatment, it is important to assess if the quality of the underlying gingiva at the recipient site can support the bone grafting procedure. The most frequent complication during autologous onlay grafts are wound dehiscences in the recipient site, so the integrity of soft tissues is a basic aspect of successful reconstructive and plastic surgical procedure. Connective tissue grafts can improve the quality and quantity of soft tissue in oral sites where a hard tissue reconstruction is going to take place. However, particularly when large grafts are harvested, the autogenous donor site can present significant postoperative morbidity, such as necrosis of the palate fibromucosa and bone exposition, pain and bleeding. Another important limitation with the use of autogenous grafts is the limited supply of donor connective tissue. If a large site needs to be grafted, more than one surgical procedure may be required. An Acellular Dermal Matrix (ADM) graft has become increasingly popular as a substitute for donor connective tissue, eliminating the disadvantages described for the autogenous donor graft. The amount of tissue harvested is unlimited, so it gives an option for treating patients that have inadequate harvestable tissue or that present a large defect to be treated. The outcome of using ADM as a matrix for soft tissue reconstruction 12 weeks before bone grafting can reduce the risk of exposure and failure of the bone graft.
THE COMPARATIVE RESISTANCE OF BACTERIA AND HUMAN TISSUE CELLS TO CERTAIN COMMON ANTISEPTICS
Lambert, Robert A.
1916-01-01
The comparative resistance of bacteria and human tissue cells to antiseptics and other chemicals may be easily tested by tissue cultures under conditions which approximate those found in the living body. A comparative study shows that while human cells (connective tissue and wandering cells) are highly resistant to many antiseptics, they are in general more easily killed than bacteria (Staphylococcus aureus). Of the antiseptics tested, which include mercuric chloride, iodine, potassium mercuric iodide, phenol, tricresol, hydrogen peroxide, hypochlorites (Dakin's solution), argyrol, and alcohol, the one which approaches most closely the ideal disinfectant is iodine, which kills bacteria in strengths that do not seriously injure connective tissue cells or wandering cells. PMID:19868066
Glycosaminoglycans and fibrillar collagen in Priapulida: a histo- and cytochemical study.
Welsch, U; Erlinger, R; Storch, V
1992-12-01
The distribution of glycosaminoglycans and fibrillar collagen was studied in various tissues of priapulids, which represent an ancient group of marine metazoa. Sulphated glycosaminoglycans, as demonstrated at the electron microscopical level by Cupromeronic blue, were predominantly found in the cuticle, in basement membranes and also in the narrow connective tissue space below epidermis and anterior intestine. On the basis of their morphology the Cupromeronic blue precipitates could be divided into several groups. Fibrillar collagen occurred in the connective tissue under the epidermis and the epithelium of the anterior intestine. The spatial interrelationship between fibrillar collagen and glycosaminoglycans lacked with some exceptions, the high regularity found in connective tissues of other invertebrates and of vertebrates. This might be related to the special skeletal system of priapulids, consisting mainly of a strong extracellular cuticle and the turgor of the fluid-filled body cavity. In such a system the usual supportive structures seem to be of less functional significance.
How Muscle Structure and Composition Influence Meat and Flesh Quality
Listrat, Anne; Lebret, Bénédicte; Louveau, Isabelle; Astruc, Thierry; Bonnet, Muriel; Lefaucheur, Louis; Picard, Brigitte; Bugeon, Jérôme
2016-01-01
Skeletal muscle consists of several tissues, such as muscle fibers and connective and adipose tissues. This review aims to describe the features of these various muscle components and their relationships with the technological, nutritional, and sensory properties of meat/flesh from different livestock and fish species. Thus, the contractile and metabolic types, size and number of muscle fibers, the content, composition and distribution of the connective tissue, and the content and lipid composition of intramuscular fat play a role in the determination of meat/flesh appearance, color, tenderness, juiciness, flavor, and technological value. Interestingly, the biochemical and structural characteristics of muscle fibers, intramuscular connective tissue, and intramuscular fat appear to play independent role, which suggests that the properties of these various muscle components can be independently modulated by genetics or environmental factors to achieve production efficiency and improve meat/flesh quality. PMID:27022618
Drzewiecka, Hanna; Gałęcki, Bartłomiej; Jarmołowska-Jurczyszyn, Donata; Kluk, Andrzej; Dyszkiewicz, Wojciech; Jagodziński, Paweł P
2016-09-01
Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2'-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. We found significantly decreased levels of CTGF mRNA and protein (both p < 0.0000001) in cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development.
The morphological difference between glaucoma and other optic neuropathies
Burgoyne, Claude
2016-01-01
The clinical phenomenon of cupping has two principal pathophysiologic components in all optic neuropathies: prelaminar thinning and laminar deformation. We define prelaminar thinning to be the portion of cup enlargement that results from thinning of the prelaminar tissues due to physical compression and/or loss of Retinal Ganglion Cell axons. We define laminar deformation or laminar cupping to be the portion of cup enlargement that results from permanent, intraocular pressure-(IOP) induced deformation of the lamina cribrosa and peripapillary scleral connective tissues following damage and/or remodeling. We propose that the defining phenomenon of glaucomatous cupping is deformation and/or remodeling of the neural and connective tissues of the optic nerve head (ONH), which is governed by the distribution of IOP-related connective tissue stress and strain, regardless of the mechanism of insult or the level of IOP at which that deformation and/or remodeling occurs. Said in another way, “glaucomatous cupping” is the term clinicians use to describe the clinical appearance and behavior the ONH assumes as its neural and connective tissues deform, remodel or mechanically fail: 1) in a pattern and 2) by the several pathophysiologic processes governed by IOP-related connective tissue stress and strain. ONH Biomechanics explains why a given optic nerve head will demonstrate a certain form of “cupping” and at what level of IOP that might happen. Animal models are allowing us to tease apart the important components of cupping in IOP-related and non-IOP-related forms of optic neuropathy. A paradigm change in spectral domain optical coherence tomography ONH, retinal nerve fiber layer and Macular imaging should improve our ability to phenotype all forms of damage to the visual system including glaucoma. PMID:26274837
Three-dimensional micro-scale strain mapping in living biological soft tissues.
Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter
2018-04-01
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2005-05-01
matrix derivative or connective tissue . Part 1: comparison of clinical parameters. J Periodontol 2003;74:1110-1125. Minabe M.: A critical review of the... connective tissue , both bone and PDL can serve as sources of progenitor cells for regeneration. Surgical techniques started to evolve with the knowledge...regeneration was Prichard in 1977. This technique involved removal of overlying gingival tissue leaving interdental bone denuded (Prichard 1977). In 1983
Dermatomyositis-like syndrome induced by nonsteroidal anti-inflammatory agents.
Grob, J J; Collet, A M; Bonerandi, J J
1989-01-01
A dermatomyositis-like syndrome developed in a patient treated with a nonsteroidal anti-inflammatory agent (NSAI), niflumic acid, and regressed after the cessation of treatment. Previously an eruption had occurred under treatment with another NSAI, diclofenac. Our report shows that NSAI can induce not only lupus-like syndromes but also other connective tissue disorders.
Clinical anatomy of the pelvic floor.
Fritsch, H; Lienemann, A; Brenner, E; Ludwikowski, B
2004-01-01
The study presented here comparing cross-sectional anatomy of the fetal and the adult pelvic connective tissue with the results of modern imaging techniques and actual surgical techniques shows that the classical concepts concerning the subdivision of the pelvic connective tissue and muscles need to be revised. According to clinical requirements, the subdivision of the pelvic cavity into anterior, posterior, and middle compartments is feasible. Predominating connecting tissue structures within the different compartments are: Paravisceral fat pad within the anterior compartment (Fig. 17, I), rectal adventitia or perirectal tissue within the posterior compartment (Fig. 17, II), and uterosacral ligaments within the middle compartment. The nerve-vessel guiding plate can be found in all of these compartments; it starts within the posterior compartment and it ends within the anterior one. It constitutes the morphological border between the anterior and posterior compartments in the male. This border is supplied by the uterosacral ligaments in the female. Whereas in gross anatomy no further border is discernable between anterior and posterior or middle compartment, the rectal fascia (hardly visible in embalmed cadavers) demarcates the rectal adventitia and is one of the most important pelvic structures for the surgeon. In principle, the outlined subdivision of the pelvic connective tissue is identical in the male and in the female; facts that become clear from early human life and that are already established during this period (Fig. 18). The uterus is interposed between the bladder and rectum and subdivides the pelvic peritoneum into two pouches thus establishing the only real difference between male and female pelvic cavity. The preferential direction of the pelvic connective tissue fibers is not changed by the interposition of the uterovaginal complex. The pelvic floor muscles are composed of the portions of the levator ani muscle, the muscles of the cavernous organs and the deep transverse perineal muscle in the male. The latter does not exist in the female. We have clearly shown that the different muscles can already be found in early human life and that they are never intermingled with the muscular walls of the pelvic organs. The levator ani muscle of the female, however, is intermingled with connective tissue long before the female sexual hormones exert influence. We have also shown that the distinct sexual differences within the pelvic floor muscles as well as within the sphincter muscles can already be found in early human life. Both the external urethral and the external anal sphincter muscles are not completely circular. The external anal sphincter is intimately connected with the internal sphincter as well as with the longitudinal muscle. Whereas the innervation and function of the urethral sphincter muscles are mostly clear, cloacal development, innervation, and function of all parts of anal sphincter complex are not completely clarified. As to the support of the pelvic viscera, we believe that intact pelvic floor muscles, an undisturbed topography of the pelvic organs, and an undisturbed perineum are of more importance than the so-called pelvic ligaments. Our hypothesis points to the fact that the support of pelvic viscera is multistructural. Thus in pelvic surgery, a lot of techniques have to be revised with the aim to preserve or to reconstruct all the structures mentioned. This is a multidisciplinary task that can only be solved by cooperation of morphologists, urologists, gynecologists, and coloproctologic surgeons or by creating a multidisciplinary pelvic floor specialist.
Promise of periodontal ligament stem cells in regeneration of periodontium.
Maeda, Hidefumi; Tomokiyo, Atsushi; Fujii, Shinsuke; Wada, Naohisa; Akamine, Akifumi
2011-07-28
A great number of patients around the world experience tooth loss that is attributed to irretrievable damage of the periodontium caused by deep caries, severe periodontal diseases or irreversible trauma. The periodontium is a complex tissue composed mainly of two soft tissues and two hard tissues; the former includes the periodontal ligament (PDL) tissue and gingival tissue, and the latter includes alveolar bone and cementum covering the tooth root. Tissue engineering techniques are therefore required for regeneration of these tissues. In particular, PDL is a dynamic connective tissue that is subjected to continual adaptation to maintain tissue size and width, as well as structural integrity, including ligament fibers and bone modeling. PDL tissue is central in the periodontium to retain the tooth in the bone socket, and is currently recognized to include somatic mesenchymal stem cells that could reconstruct the periodontium. However, successful treatment using these stem cells to regenerate the periodontium efficiently has not yet been developed. In the present article, we discuss the contemporary standpoints and approaches for these stem cells in the field of regenerative medicine in dentistry.
Bertl, Kristina; Pifl, Markus; Hirtler, Lena; Rendl, Barbara; Nürnberger, Sylvia; Stavropoulos, Andreas; Ulm, Christian
2015-12-01
Whether the composition of palatal connective tissue grafts (CTGs) varies depending on donor site or harvesting technique in terms of relative amounts of fibrous connective tissue (CT) and fatty/glandular tissue (FGT) is currently unknown and is histologically assessed in the present study. In 10 fresh human cadavers, tissue samples were harvested in the anterior and posterior palate and in areas close to (marginal) and distant from (apical) the mucosal margin. Mucosal thickness, lamina propria thickness (defined as the extent of subepithelial portion of the biopsy containing ≤25% or ≤50% FGT), and proportions of CT and FGT were semi-automatically estimated for the entire mucosa and for CTGs virtually harvested by split-flap (SF) preparation minimum 1 mm deep or after deepithelialization (DE). Palatal mucosal thickness, ranging from 2.35 to 6.89 mm, and histologic composition showed high interindividual variability. Lamina propria thickness (P >0.21) and proportions of CT (P = 0.48) and FGT (P = 0.15) did not differ significantly among the donor sites (anterior, posterior, marginal, apical). However, thicker palatal tissue was associated with higher FGT content (P <0.01) and thinner lamina propria (P ≤0.03). Independent of the donor site, DE-harvested CTG contained a significantly higher proportion of CT and a lower proportion of FGT than an SF-harvested CTG (P <0.04). Despite high interindividual variability in terms of relative tissue composition in the hard palate, DE-harvested CTG contains much larger amounts of CT and much lower amounts of FGT than SF-harvested CTG, irrespective of the harvesting site.
Pregnancy and autoimmune connective tissue diseases
Marder, Wendy; Littlejohn, Emily A
2016-01-01
The autoimmune connective tissue diseases predominantly affect women and often occur during the reproductive years. Thus, specialized issues in pregnancy planning and management are commonly encountered in this patient population. This chapter provides a current overview of pregnancy as a risk factor for onset of autoimmune disease, considerations related to the course of pregnancy in several autoimmune connective tissue diseases, and disease management and medication issues before and during pregnancy and the postpartum period. A major theme that has emerged across these inflammatory diseases is that active maternal disease during pregnancy is associated with adverse pregnancy outcomes, and that maternal and fetal health can be optimized when conception is planned during times of inactive disease and through maintaining treatment regimens compatible with pregnancy. PMID:27421217
Scleroderma renal crisis in a case of mixed connective tissue disease.
Vij, Mukul; Agrawal, Vinita; Jain, Manoj
2014-07-01
Mixed connective tissue disease (MCTD) is an overlap syndrome first defined in 1972 by Sharp et al. In this original study, the portrait emerged of a connective tissue disorder sharing features of systemic lupus erythematosus, systemic sclerosis (scleroderma) and polymyositis. Scleroderma renal crisis (SRC) is an extremely infrequent but serious complication that can occur in MCTD. The histologic picture of SRC is that of a thrombotic micro-angiopathic process. Renal biopsy plays an important role in confirming the clinical diagnosis, excluding overlapping/superimposed diseases that might lead to acute renal failure in MCTD patients, helping to predict the clinical outcome and optimizing patient management. We herewith report a rare case of SRC in a patient with MCTD and review the relevant literature.
[Lipodystrophy and metabolic disturbances as complications of antiretroviral therapy].
Bociaga-Jasik, Monika; Kieć-Wilk, Beata; Kalinowska-Nowak, Anna; Mach, Tomasz; Garlicki, Aleksander
2010-01-01
Effective treatment of HIV infection with antiretroviral drugs significantly improve prognosis. Reduction of mortality and life prolongations in patients receiving such therapy have been also connected with the risk of side effects development. Among these complications metabolic disturbances such as lipodystrophy, dyslipidaemia, and insulin resistance which are present according some authors in up to 50% of patients receiving HAART play an important role. In spite of different investigations molecular basis of lipodystrophy development during HAART have not be fully understood, and the latest research revealed a lot of new aspects connected w adipocyte tissue pathophysiology, which were not taken up to know into consideration. In the presented publication the most important information about pathogenesis of lipodystrophy development in HIV infected patients treated with ARV drugs have been presented.
[Ultrasound dissection in laparoscopic cholecystectomy].
Horstmann, R; Kern, M; Joosten, U; Hohlbach, G
1993-01-01
An ultrasound dissector especially developed for laparoscopic surgery was used during laparoscopic cholecystectomy on 34 patients. The ultrasound power, the volume of suction and irrigation could be determined individually at the generator and activated during the operation with a foot pedal. With the dissector it was possible to fragmentate, emulgate and aspirate simultaneously fat tissue as well as infected edematous structures. The cystic artery and cystic duct, small vessels, lymphatic and connective tissue were not damaged. Therefore this system seems to be excellent for the preparation of Calot's trigonum and blunt dissection of the gallbladder out of its bed, particularly in fatty, acute or chronic infected tissue. No complications were observed within the peri- and postoperative period.
Godwin, Alan R F; Starborg, Tobias; Sherratt, Michael J; Roseman, Alan M; Baldock, Clair
2017-04-01
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wang, Qi Lin; Yang, Pan Pan; Ge, Li Hong; Liu, He
2016-03-01
To evaluate the use of platelet-rich fibrin (PRF) in the regenerative therapy of immature canine permanent teeth. Eight immature premolars of beagle dogs were pulp extracted and cleaned with irrigation, then divided into two groups of empty root canals and those filled with a PRF clot. All of the eight premolars were sealed with mineral trioxide aggregate and glass ionomer cement. Two premolars were left naturally grown as a positive control. The root development was assessed radiographically and histologically after 12 weeks. The radiological findings showed greater increases in the thickness of lateral dentinal wall in the PRF group than in the vacant group. Histologically, dental-associated mineral tissue, connective tissue, and bone-like mineral tissue grew into the root canals independent of PRF clot use. The PRF was able to increase the thickness of dental-associated mineral tissue. However, the vital tissue differed from the pulp dentin complex. Our study demonstrated the feasibility of using PRF-mediated regenerative therapy in pulpless immature teeth for improving tissue repair.
Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.
Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira
2016-01-01
The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.
Baeza-Velasco, Carolina; Sinibaldi, Lorenzo; Castori, Marco
2018-02-14
Attention-deficit/hyperactivity disorder (ADHD) and generalized joint hypermobility (JH) are two separated conditions, assessed, and managed by different specialists without overlapping interests. Recently, some researchers highlighted an unexpected association between these two clinical entities. This happens in a scenario of increasing awareness on the protean detrimental effects that congenital anomalies of the connective tissue may have on human health and development. To review pertinent literature to identify possible connections between ADHD and GJH, special emphasis was put on musculoskeletal pain and syndromic presentations of GJH, particularly the hypermobile Ehlers-Danlos syndrome. A comprehensive search of scientific databases and references lists was conducted, encompassing publications based on qualitative and quantitative research. Impaired coordination and proprioception, fatigue, chronic pain, and dysautonomia are identified as potential bridges between ADHD and JH. Based on these findings, a map of the pathophysiological and psychopathological pathways connecting both conditions is proposed. Although ADHD and JH are traditionally separated human attributes, their association may testify for the dyadic nature of mind-body connections during critical periods of post-natal development. Such a mixed picture has potentially important consequences in terms of disability and deserves more clinical and research attention.
Mesenchymal stem cells in tumor development
Cuiffo, Benjamin G.; Karnoub, Antoine E.
2012-01-01
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma. PMID:22863739
Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model.
Osterfield, Miriam; Berg, Celeste A; Shvartsman, Stanislav Y
2017-05-22
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Hong, Guosong; Fu, Tian-Ming; Zhou, Tao; Schuhmann, Thomas G; Huang, Jinlin; Lieber, Charles M
2015-10-14
Syringe-injectable mesh electronics with tissue-like mechanical properties and open macroporous structures is an emerging powerful paradigm for mapping and modulating brain activity. Indeed, the ultraflexible macroporous structure has exhibited unprecedented minimal/noninvasiveness and the promotion of attractive interactions with neurons in chronic studies. These same structural features also pose new challenges and opportunities for precise targeted delivery in specific brain regions and quantitative input/output (I/O) connectivity needed for reliable electrical measurements. Here, we describe new results that address in a flexible manner both of these points. First, we have developed a controlled injection approach that maintains the extended mesh structure during the "blind" injection process, while also achieving targeted delivery with ca. 20 μm spatial precision. Optical and microcomputed tomography results from injections into tissue-like hydrogel, ex vivo brain tissue, and in vivo brains validate our basic approach and demonstrate its generality. Second, we present a general strategy to achieve up to 100% multichannel I/O connectivity using an automated conductive ink printing methodology to connect the mesh electronics and a flexible flat cable, which serves as the standard "plug-in" interface to measurement electronics. Studies of resistance versus printed line width were used to identify optimal conditions, and moreover, frequency-dependent noise measurements show that the flexible printing process yields values comparable to commercial flip-chip bonding technology. Our results address two key challenges faced by syringe-injectable electronics and thereby pave the way for facile in vivo applications of injectable mesh electronics as a general and powerful tool for long-term mapping and modulation of brain activity in fundamental neuroscience through therapeutic biomedical studies.
Dielectric properties of biological tissues in which cells are connected by communicating junctions
NASA Astrophysics Data System (ADS)
Asami, Koji
2007-06-01
The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.
SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Zhou, Z; Wang, J
Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directlymore » connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.« less
Qadan, Maha A; Piuzzi, Nicolas S; Boehm, Cynthia; Bova, Wesley; Moos, Malcolm; Midura, Ronald J; Hascall, Vincent C; Malcuit, Christopher; Muschler, George F
2018-03-01
Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (P CTP ) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. Mean [Cell], [CTP] and P CTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm 2 ; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences between cell populations in biological performance. Understanding the underlying reasons for variation in the concentration, prevalence, marker expression and biological potential of CTPs between patients and source tissues and determining the means of managing this variation will contribute to the rational development of cell-based clinical diagnostics and targeted cell-based therapies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus
2008-09-01
Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.
Mounir, Maha M F; Matar, Moustafa A; Lei, Yaping; Snead, Malcolm L
2016-03-01
Recombinant DNA-produced amelogenin protein was compared with calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated, and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histologic assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3- and 6-month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group, and soft connective tissue within the pulp chamber was not observed. The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in nonvital immature teeth and promote soft connective tissue regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ken, Yukawa; Noriko, Tachikawa; Furuichi, Akiko; Shohei, Kasugai
2016-12-01
This study investigated the biological reaction to porous poly-DL-lactic acid (PDLLA) scaffolds with holes for soft tissue augmentation. The control group was porous PDLLA with a diameter of 5.0 mm and a height of 2.0 mm. For the 2 test groups, 7 holes were drilled from the upper to the lower base of the scaffolds; the holes had diameters of 0.5 and 1.0 mm. A scaffold was placed in the periosteum of the cranium. The height and molecular weight (Mw) of the scaffolds were measured at 4 and 8 weeks. Hematoxylin and eosin staining was used to measure the connective tissue and blood vessel areas. All groups had similar scaffold heights, but the Mw decreased significantly over time. There were significant differences in the connective tissue and blood vessel areas among the control, 0.5-mm, and 1.0-mm groups at the same time point. The soft tissue was increased by drilling holes in the scaffolds. Porous poly-DL-lactic acid (PDLLA) contributed favorable prognosis for soft tissue. A wider hole was associated with increased connective tissue and blood vessel areas. The scaffold height and Mw were not impacted by size of the holes.
Genetic engineering for skeletal regenerative medicine.
Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J
2007-01-01
The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.
Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping
2017-01-01
Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Hämmerle, Christoph H F; Giannobile, William V
2014-04-01
The scope of this consensus was to review the biological processes of soft tissue wound healing in the oral cavity and to histologically evaluate soft tissue healing in clinical and pre-clinical models. To review the current knowledge regarding the biological processes of soft tissue wound healing at teeth, implants and on the edentulous ridge. Furthermore, to review soft tissue wound healing at these sites, when using barrier membranes, growth and differentiation factors and soft tissue substitutes. Searches of the literature with respect to recessions at teeth and soft tissue deficiencies at implants, augmentation of the area of keratinized tissue and soft tissue volume were conducted. The available evidence was collected, categorized and summarized. Oral mucosal and skin wound healing follow a similar pattern of the four phases of haemostasis, inflammation, proliferation and maturation/matrix remodelling. The soft connective tissue determines the characteristics of the overlaying oral epithelium. Within 7-14 days, epithelial healing of surgical wounds at teeth is completed. Soft tissue healing following surgery at implants requires 6-8 weeks for maturation. The resulting tissue resembles scar tissue. Well-designed pre-clinical studies providing histological data have been reported describing soft tissue wound healing, when using barrier membranes, growth and differentiation factors and soft tissue substitutes. Few controlled clinical studies with low numbers of patients are available for some of the treatments reviewed at teeth. Whereas, histological new attachment has been demonstrated in pre-clinical studies resulting from some of the treatments reviewed, human histological data commonly report a lack of new attachment but rather long junctional epithelial attachment and connective tissue adhesion. Regarding soft tissue healing at implants human data are very scarce. Oral soft tissue healing at teeth, implants and the edentulous ridge follows the same phases as skin wound healing. Histological studies in humans have not reported new attachment formation at teeth for the indications studied. Human histological data of soft tissue wound healing at implants are limited. The use of barriers membranes, growth and differentiation factors and soft tissue substitutes for the treatment of localized gingival/mucosal recessions, insufficient amount of keratinized tissue and insufficient soft tissue volume is at a developing stage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Okuda, Kazuhiro; Momose, Manabu; Murata, Masashi; Saito, Yoshinori; lnoie, Masukazu; Shinohara, Chikara; Wolff, Larry F; Yoshie, Hiromasa
2004-04-01
Human cultured gingival epithelial sheets were used as an autologous grafting material for regenerating gingival tissue in the maxillary left and mandibular right quadrants of a patient with chronic desquamative gingivitis. Six months post-surgery in both treated areas, there were gains in keratinized gingiva and no signs of gingival inflammation compared to presurgery. In the maxillary left quadrant, preoperative histopathologic findings revealed the epithelium was separated from the connective tissue and inflammatory cells were extensive. After grafting with the gingival epithelial sheets, inflammatory cells were decreased and separation between epithelium and connective tissue was not observed. The human cultured gingival epithelial sheets fabricated using tissue engineering technology showed significant promise for gingival augmentation in periodontal therapy.
Colombi, Marina; Dordoni, Chiara; Chiarelli, Nicola; Ritelli, Marco
2015-03-01
Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT) is an evolving and protean disorder mostly recognized by generalized joint hypermobility and without a defined molecular basis. JHS/EDS-HT also presents with other connective tissue features affecting a variety of structures and organs, such as skin, eye, bone, and internal organs. However, most of these signs are present in variable combinations and severity in many other heritable connective tissue disorders. Accordingly, JHS/EDS-HT is an "exclusion" diagnosis which needs the absence of any consistent feature indicative of other partially overlapping connective tissue disorders. While both Villefranche and Brighton criteria include such an exclusion as a mandatory item, a systematic approach for reaching a stringent clinical diagnosis of JHS/EDS-HT is still lacking. The absence of a consensus on the diagnostic approach to JHS/EDS-HT concerning its clinical boundaries with similar conditions contribute to limit our actual understanding of the pathologic and molecular bases of this disorder. In this review, we revise the differential diagnosis of JHS/EDS-HT with those heritable connective tissue disorders which show a significant overlap with the former and mostly include EDS classic, vascular and kyphoscoliotic types, osteogenesis imperfecta, Marfan syndrome, Loeys-Dietz syndrome, arterial tortuosity syndrome, and lateral meningocele syndrome. A diagnostic flow chart is also offered with the attempt to support the less experienced clinician in stringently recognizing JHS/EDS-HT and stimulate the debate in the scientific community for both management and research purposes. © 2015 Wiley Periodicals, Inc.
Nebendahl, Constance; Görs, Solvig; Albrecht, Elke; Krüger, Ricarda; Martens, Karen; Giller, Katrin; Hammon, Harald M; Rimbach, Gerald; Metges, Cornelia C
2016-03-01
Intrauterine growth retardation is associated with metabolic consequences in adulthood. Since our previous data indicate birth weight-dependent effects of feed restriction (R) on protein degradation processes in the liver, it should be investigated whether effects on connective tissue turnover are obvious and could be explained by global changes of histone H3K9me3 and H3K9ac states in regulated genes. For this purpose, female littermate pigs with low (U) or normal (N) birth weight were subjected to 3-week R (60% of ad libitum fed controls) with subsequent refeeding (REF) for further 5 weeks. The 3-week R-period induced a significant reduction of connective tissue area by 43% in the liver of U animals at 98 d of age, which was not found in age-matched N animals. Of note, after REF at 131 d of age, in previously feed-restricted U animals (UR), the percentage of mean connective tissue was only 53% of ad libitum fed controls (UK), indicating a persistent effect. In U animals, R induced H3K9 acetylation of regulated genes (e.g. XBP1, ERLEC1, GALNT2, PTRH2), which were inter alia associated with protein metabolism. In contrast, REF was mostly accompanied by deacetylation in U and N animals. Thus, our epigenetic data may give a first explanation for the observed birth weight-dependent differences in this connective tissue phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.
2011-01-01
Background Most dental implant systems are presently made of two pieces: the implant itself and the abutment. The connection tightness between those two pieces is a key point to prevent bacterial proliferation, tissue inflammation and bone loss. The leak has been previously estimated by microbial, color tracer and endotoxin percolation. Methods A new nitrogen flow technique was developed for implant-abutment connection leakage measurement, adapted from a recent, sensitive, reproducible and quantitative method used to assess endodontic sealing. Results The results show very significant differences between various sealing and screwing conditions. The remaining flow was lower after key screwing compared to hand screwing (p = 0.03) and remained different from the negative test (p = 0.0004). The method reproducibility was very good, with a coefficient of variation of 1.29%. Conclusions Therefore, the presented new gas flow method appears to be a simple and robust method to compare different implant systems. It allows successive measures without disconnecting the abutment from the implant and should in particular be used to assess the behavior of the connection before and after mechanical stress. PMID:21492459
Zhao, Haibin; Zhao, Lingna; Zhou, Zhihua; Wu, Yaoyi
2015-08-12
The aim of this study was to investigate the roles of connective tissue growth factor (CTGF) in the development of anastomotic strictures after surgical repair of the esophagus. Tissues collected from the patients were divided into three groups based on the results of endoscopy and clinical grading. Patients without dysphagia after esophagectomy were used as the control population. The protein levels of CTGF, TGF-β1, Smad2, and Smad4 were determined by immunohistochemistry (IHC) and western blot analyses, while the mRNA levels of the two growth factors were evaluated by real-time polymerase chain reaction. Compared with the control group, significantly increased (p < 0.01) levels of CTGF and TGF-β1 protein were observed in the anastomotic stenosis (AS) group, and levels of the two proteins detected by the IHC and western blot analyses were also significantly increased with the increasing severity of stenosis (p < 0.05). The mRNA levels of CTGF and TGF-β1 in the tissues collected from the patients with stenosis were significantly up-regulated (p < 0.05) as compared with those from the control group. In addition, the levels of Smad2 and Smad4 protein were also significantly increased (p < 0.05) with the increasing severity of stenosis, and the protein levels were positively correlated with the levels of CTGF (r = 0.59, p < 0.05) and TGF-β1 (r = 0.63, p < 0.05). Inhibition of CTGF protein or mRNA expression may be a distinctive and effective therapy for the treatment of postoperative anastomotic strictures.
Reddy, Pathakota Krishnajaneya; Bolla, Vijayalakshmi; Koppolu, Pradeep; Srujan, Peruka
2015-01-01
Replacement of missing maxillary anterior tooth with localized residual alveolar ridge defect is challenging, considering the high esthetic demand. Various soft and hard tissue procedures were proposed to correct alveolar ridge deformities. Novel techniques have evolved in treating these ridge defects to improve function and esthetics. In the present case reports, a novel technique using long palatal connective tissue rolled pedicle graft with demineralized freeze-dried bone allografts (DFDBAs) plus Platelet-rich fibrin (PRF) combination was proposed to correct the Class III localized anterior maxillary anterior alveolar ridge defect. The present technique resulted in predictable ridge augmentation, which can be attributed to the soft and hard tissue augmentation with a connective tissue pedicle and DFDBA plus PRF combination. This technique suggests a variation in roll technique with DFDBA plus PRF and appears to promise in gaining predictable volume in the residual ridge defect and can be considered for the treatment of moderate to severe maxillary anterior ridge defects. PMID:26015679
Modeling of the interaction between grip force and vibration transmissibility of a finger.
Wu, John Z; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Dong, Ren G
2017-07-01
It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. Published by Elsevier Ltd.
Foreign Body in the Oral Cavity Mimicking a Benign Connective Tissue Tumor
Ram, Saravanan; Sedghizadeh, Parish P.
2013-01-01
Foreign bodies may be embedded in the oral cavity either by traumatic injury or iatrogenically. The commonly encountered iatrogenic foreign bodies are restorative materials like amalgam, obturation materials, broken instruments, needles, and impression materials. This paper describes an asymptomatic presentation of a foreign body in the oral mucosa which clinically appeared like a benign connective tissue tumor. PMID:23634307
Foreign body in the oral cavity mimicking a benign connective tissue tumor.
Puliyel, Divya; Balouch, Amir; Ram, Saravanan; Sedghizadeh, Parish P
2013-01-01
Foreign bodies may be embedded in the oral cavity either by traumatic injury or iatrogenically. The commonly encountered iatrogenic foreign bodies are restorative materials like amalgam, obturation materials, broken instruments, needles, and impression materials. This paper describes an asymptomatic presentation of a foreign body in the oral mucosa which clinically appeared like a benign connective tissue tumor.
Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Converse, Mark C.; Chang, John T.; Duoss, Eric B.
A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.
A cytogenetic analysis of 2 cases of phosphaturic mesenchymal tumor of mixed connective tissue type.
Graham, Rondell P; Hodge, Jennelle C; Folpe, Andrew L; Oliveira, Andre M; Meyer, Kevin J; Jenkins, Robert B; Sim, Franklin H; Sukov, William R
2012-08-01
Phosphaturic mesenchymal tumor of mixed connective tissue type is a rare, histologically distinctive mesenchymal neoplasm associated with tumor-induced osteomalacia resulting from production of the phosphaturic hormone fibroblast growth factor 23. Because of its rarity, specific genetic alterations that contribute to the pathogenesis of these tumors have yet to be elucidated. Herein, we report the abnormal karyotypes from 2 cases of confirmed phosphaturic mesenchymal tumor of mixed connective tissue type. G-banded analysis demonstrated the first tumor to have a karyotype of 46,Y,t(X;3;14)(q13;p25;q21)[15]/46XY[5], and the second tumor to have a karyotype of 46, XY,add(2)(q31),add(4)(q31.1)[2]/92,slx2[3]/46,sl,der(2)t(2;4)(q14.2;p14),der(4)t(2;4)(q14.2;p14),add(4)(q31.1)[10]/46,sdl,add(13)(q34)[4]/92,sdl2x2[1]. These represent what is, to our knowledge, the first examples of abnormal karyotypes obtained from phosphaturic mesenchymal tumor of mixed connective tissue type. Copyright © 2012 Elsevier Inc. All rights reserved.
Breuckmann, Frank; Gambichler, Thilo; Altmeyer, Peter; Kreuter, Alexander
2004-01-01
Background Broad-band UVA, long-wave UVA1 and PUVA treatment have been described as an alternative/adjunct therapeutic option in a number of inflammatory and malignant skin diseases. Nevertheless, controlled studies investigating the efficacy of UVA irradiation in connective tissue diseases and related disorders are rare. Methods Searching the PubMed database the current article systematically reviews established and innovative therapeutic approaches of broad-band UVA irradiation, UVA1 phototherapy and PUVA photochemotherapy in a variety of different connective tissue disorders. Results Potential pathways include immunomodulation of inflammation, induction of collagenases and initiation of apoptosis. Even though holding the risk of carcinogenesis, photoaging or UV-induced exacerbation, UVA phototherapy seems to exhibit a tolerable risk/benefit ratio at least in systemic sclerosis, localized scleroderma, extragenital lichen sclerosus et atrophicus, sclerodermoid graft-versus-host disease, lupus erythematosus and a number of sclerotic rarities. Conclusions Based on the data retrieved from the literature, therapeutic UVA exposure seems to be effective in connective tissue diseases and related disorders. However, more controlled investigations are needed in order to establish a clear-cut catalogue of indications. PMID:15380024
Tat, Jimmy; Wilson, Katherine E; Keir, Peter J
2015-05-01
Fibrosis and thickening of the subysnovial connective tissue are the most common pathological findings in carpal tunnel syndrome. The relationship between subsynovial connective tissue characteristics and self-reported carpal tunnel syndrome symptoms was assessed. Symptoms were characterized using the Boston Carpal Tunnel Questionnaire and Katz hand diagram in twenty-two participants (11 with symptoms, 11 with no symptoms). Using ultrasound, the thickness of the subsynovial connective tissue was measured using a thickness ratio (subsynovial thickness/tendon thickness) and gliding function was assessed using a shear strain index ((Displacement(tendon)-Displacement(subsynovial))/Displacement(tendon)x 100). For gliding function, participants performed 10 repeated flexion-extension cycles of the middle finger at a rate of one cycle per second. Participants with symptoms had a 38.5% greater thickness ratio and 39.2% greater shear strain index compared to participants without symptoms (p<0.05). Ultrasound detected differences the SSCT in symptomatic group that was characterized by low self-reported symptom severity scores. This study found ultrasound useful for measuring structural and functional changes in the SSCT that could provide insight in the early pathophysiology associated with carpal tunnel syndrome symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heufelder, A E; Bahn, R S
1993-01-01
Activation of certain adhesion molecules within vascular endothelium and the surrounding extravascular space is a critical event in the recruitment and targeting of an inflammatory response or autoimmune attack to a particular tissue site. We have recently demonstrated that the adhesion of lymphocytes to cultured retroocular fibroblasts obtained from patients with Graves' ophthalmopathy (GO) is mediated predominantly by the interaction of lymphocyte function-associated antigen-1 (LFA-1), expressed on lymphocytes, with intercellular adhesion molecule-1 (ICAM-1), expressed by these cells following exposure to interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha or purified thyroid-stimulating immunoglobulins. We now report the expression and localization in situ of several adhesion molecules, ICAM-1, endothelial leucocyte adhesion molecule-1 (ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and LFA-3 in retroocular tissues derived from patients with severe GO (n = 4) and normal individuals (n = 3). Serial cryostat sections of tissue specimens were processed for immunoperoxidase staining using various MoAbs against ICAM-1, ELAM-1, VCAM-1 and LFA-3. In addition, consecutive sections were stained with MoAbs against LFA-1, CD45RO (UCHL-1)DR-human leucocyte antigen (HLA-DR), CD11b/CD18 (Mac-1), and CD11c/CD18 (p150,95). In GO-retroocular tissues, strong immunoreactivity for ICAM-1 and LFA-3 was detected in blood vessels (> 90%), in perimysial fibroblasts surrounding extraocular muscle fibres, and in connective tissue distinct from extraocular muscle. No ICAM-1 or LFA-3 immunoreactivity was present in extraocular muscle cells themselves. ICAM-1 and LFA-3 immunoreactivity in normal tissues was minimal or absent both in connective and muscle tissues. Vascular endothelium was strongly positive for ELAM-1 and VCAM-1 in GO-retroocular tissues, while VCAM-1 immunoreactivity was minimal (< 5% of blood vessels) and ELAM-1 immunoreactivity was generally absent in normal retroocular tissue. LFA-1-expressing, activated mononuclear cells and memory T lymphocytes (CD3+/CD45RO+) were only detected in GO-retrocular tissues, and were mainly localized around blood vessels and in areas of ICAM-1-expressing connective and perimysial tissue. HLA-DR expression was restricted to GO-tissue specimens, with strong immunoreactivity detected in blood vessels, macrophages and connective tissue and perimysial fibroblasts. No HLA-DR was detectable in extraocular muscle cells. In conclusion, infiltration of the orbit in GO by mononuclear cells, and their targeting within the orbit, may depend upon the coordinate expression of certain adhesion and MHC molecules.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7680294
Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James
2015-07-15
Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in parallel with the expression of the genes that provide putative mechanisms for multifidus structural remodeling. This provides novel targets for pharmacological and physical interventions. N/A.
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption
Wimer, H.F.; Yamada, S.S.; Yang, T.; Holmbeck, K.; Foster, B.L.
2016-01-01
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP−/−) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region. PMID:26780723
Yong, Luok Wen; Yu, Jr-Kai
2016-08-01
Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spectroscopic Biomarkers for Monitoring Wound Healing and Infection in Wounds
2015-06-01
thrombotic, and fat embolism , and compartment syndrome. In the treatment of such complex traumatic injuries, improved assessment of global and...injuries include traumatic amputations, open fractures , crush injuries, burns, acute vascular disruption, blastwave-associated pressure injuries, air...specimens, lesion development begins adjacent to injured muscle or fat and is surrounded by fibrous connective tissue heavily besieged with
A New Variant of Connective Tissue Nevus with Elastorrhexis and Predilection for the Upper Chest.
Chu, Derek H; Goldbach, Hayley; Wanat, Karolyn A; Rubin, Adam I; Yan, Albert C; Treat, James R
2015-01-01
Localized changes in cutaneous elastic tissue often manifest with flesh-colored, hypopigmented, or yellow papules, plaques, and nodules. We present five children with clinically similar cobblestone plaques composed of multiple hypopigmented, nonfollicular, pinpoint papules located unilaterally over the upper chest. All lesions first appeared at birth or during early infancy. No associated extracutaneous abnormalities have been identified. Histopathology was remarkable for many, thick elastic fibers with elastorrhexis. We believe that these cases represent a distinct and unique variant of connective tissue nevi. © 2014 Wiley Periodicals, Inc.
Szumera-Ciećkiewicz, Anna; Ptaszyński, Konrad; Pawełas, Andrzej; Rutkowski, Piotr
2009-01-01
One of the most unusual and uncommon types of osteomalacia is the oncogenic osteomalacia that is predominantly caused by a soft tissue or bone tumour, mostly by a phosphaturic mesenchymal tumour, mixed connective tissue type (PMTMCT). We report a case of a 27-year-old male presented with complaints of progressive and generalized muscle weakness, bone pains and multiple fractures. Intra-articular PMTMCT of the knee was diagnosed and surgically removed. We describe histopathological features of PMTMCT and review the most recent studies concerning this diagnostic problem.
Long-range ordered vorticity patterns in living tissue induced by cell division
NASA Astrophysics Data System (ADS)
Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.
2014-12-01
In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.
Effects of long-duration bed rest on structural compartments of m. soleus in man
NASA Technical Reports Server (NTRS)
Belozerova, I.; Shenkman, B.; Mazin, M.; Leblanc, A.; LeBlanc, A. D. (Principal Investigator)
2001-01-01
Magnetic resonance imaging (MRI), histomorphometry and electron microscopy of muscle demonstrate that long-term exposure to actual or simulated weightlessness (including head down bed rest) leads to decreased volume of antigravity muscles in mammals. In muscles interbundle space is occupied by the connective tissue. Rat studies show that hindlimb unloading induces muscle fiber atrophy along with increase in muscle non-fiber connective tissue compartment. Beside that, usually 20% of the muscle fiber volume is comprised by non-contractile (non-myofibrillar) compartment. The aim of the present study was to compare changes in muscle volume, and in muscle fiber size with alterations in myofibrillar apparatus, and in connective tissue compartment in human m. soleus under conditions of 120 day long head down bed rest (HDBR).
Surgical anatomy of the retroperitoneal spaces--part I: embryogenesis and anatomy.
Mirilas, Petros; Skandalakis, John E
2009-11-01
Embryologically, the retroperitoneal (extraperitoneal) connective tissue includes three strata, which respectively form the internal fascia lining of the body wall, the renal fascia, and the covering of the gastrointestinal viscera. All organs, vessels, and nerves, that lie on the posterior abdominal wall, along with their tissues and surrounding connective and fascial planes, are collectively referred to as the retroperitoneum. The retroperitoneal space is the area of the posterior abdominal wall that is located between the parietal peritoneum and the fascia. Within the greater retroperitoneal space, there are also several small spaces, or subcompartments. Loose connective tissue and fat surround the anatomic entities, and, to a variable degree, occupy the subcompartments. The multilaminar thoracolumbar (lumbodorsal) fascia begins at the occipital area and terminates at the sacrum.
Van Esch, Hilde; Rosser, Elisabeth M; Janssens, Sandra; Van Ingelghem, Ingrid; Loeys, Bart; Menten, Bjorn
2010-10-01
Interstitial deletions of the long arm of chromosome 6 are rare, and most reported cases represent large, cytogenetically detectable deletions. The implementation of array comparative genome hybridisation in the diagnostic work-up of patients presenting with congenital disorders, including developmental delay, has enabled identification of many patients with smaller chromosomal imbalances. In this report, the cases are presented of four patients with a de novo interstitial deletion of chromosome 6q13-14, resulting in a common microdeletion of 3.7 Mb. All presented with developmental delay, mild dysmorphism and signs of lax connective tissue. Interestingly, the common deleted region harbours 16 genes, of which COL12A1 is a good candidate for the connective tissue pathology.
Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.
Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide
2018-02-01
Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal scaffold. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of Weightlessness on Vestibular Development: Summary of Research on NIH.R1
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd; Bruce, L. L.
1998-01-01
In our original application we proposed to investigate the effects of gravity on the formation of connections between the gravity receptors of the ear and the brain in rat pups raised in space beginning at an age before these connections are made until near the time of birth, when they are to some extent functional. We used the neuronal tracer, Dil, which could be applied to tissue obtained immediately after landing of the space shuttle, thus minimizing changes due to the earth's gravity. We hoped to determine whether the vestibular system develops in two phases, as do other sensory systems (such as the visual system). In these other systems the first phase of development is controlled genetically and the second phase is controlled by environmental stimulation. Our data collected strongly supports the idea that the vestibular system has these same two phases of development. The tissue obtained from the NIH.R1 experiment was of exceptionally high quality for our analysis. Therefore, we expanded our investigation into the ultrastructural effects of microgravity on vestibular development. For the sake of clarity we will subdivide our summary into two categories: (1) analysis of the branching pattern of axons between the vestibular nerve and the gravistatic receptors of the ear in flight and control animals, and (2) analysis of the branching pattern of axons between the vestibular nerve and the brain in flight and control animals.
Biocompatibility evaluation of alendronate paste in rat's subcutaneous tissue.
Mori, Graziela Garrido; de Moraes, Ivaldo Gomes; Nunes, Daniele Clapes; Castilho, Lithiene Ribeiro; Poi, Wilson Roberto; Capaldi, Maria Luciana P Manzoli
2009-04-01
Alendronate is a known inhibitor of root resorption and the development of alendronate paste would enhance its utilization as intracanal medication. Therefore, this study aimed to investigate the biocompatibility of experimental alendronate paste in subcutaneous tissue of rats, for utilization in teeth susceptible to root resorption. The study was conducted on 15 male rats, weighing approximately 180-200 grams. The rats' dorsal regions were submitted to one incision on the median region and, laterally to the incision, the subcutaneous tissue was raised and gently dissected for introduction of two tubes, in each rat. The tubes were sealed at one end with gutta-percha and taken as control. The tubes were filled with experimental alendronate paste. The animals were killed at 7, 15 and 45 days after surgery and the specimens were processed in laboratory. The histological sections were stained with hematoxylin-eosin and analyzed by light microscopy. Scores were assigned to the inflammatory process and statistically compared by the Tukey test (P < 0.05). Alendronate paste promoted severe inflammation process at 7 days, with statistically significant difference compared to the control (P < 0.05%). However, at 15 days, there was a regression of inflammation and the presence of connective tissue with collagen fibers, fibroblasts and blood vessels was observed. After 45 days, it was observed the presence of well-organized connective tissue, with collagen fibers and fibroblasts, and few inflammatory cells. No statistical difference was observed between the control and experimental paste at 15 and 45 days. The experimental alendronate paste was considered biocompatible with subcutaneous tissue of rat.
McCall, A. Scott; Cummings, Christopher F.; Bhave, Gautam; Vanacore, Roberto; Page-McCaw, Andrea; Hudson, Billy G.
2014-01-01
Summary Bromine is ubiquitously present in animals as ionic bromide (Br−) yet has no known essential function. Herein, we demonstrate that Br− is a required cofactor for peroxidasin-catalyzed formation of sulfilimine crosslinks, a post-translational modification essential for tissue development and architecture found within the collagen IV scaffold of basement membranes (BMs). Bromide, converted to hypobromous acid, forms a bromosulfonium-ion intermediate that energetically selects for sulfilimine formation. Dietary Br-deficiency is lethal in Drosophila while Br-replenishment restores viability, demonstrating its physiologic requirement. Importantly, Br-deficient flies phenocopy the developmental and BM defects observed in peroxidasin mutants and indicate a functional connection between Br−, collagen IV, and peroxidasin. We establish that Br− is required for sulfilimine formation within collagen IV, an event critical for BM assembly and tissue development. Thus, bromine is an essential trace element for all animals and its deficiency may be relevant to BM alterations observed in nutritional and smoking related disease. PMID:24906154
Saketkoo, Lesley Ann; Mittoo, Shikha; Huscher, Dörte; Khanna, Dinesh; Dellaripa, Paul F; Distler, Oliver; Flaherty, Kevin R; Frankel, Sid; Oddis, Chester V; Denton, Christopher P; Fischer, Aryeh; Kowal-Bielecka, Otylia M; LeSage, Daphne; Merkel, Peter A; Phillips, Kristine; Pittrow, David; Swigris, Jeffrey; Antoniou, Katerina; Baughman, Robert P; Castelino, Flavia V; Christmann, Romy B; Christopher-Stine, Lisa; Collard, Harold R; Cottin, Vincent; Danoff, Sonye; Highland, Kristin B; Hummers, Laura; Shah, Ami A; Kim, Dong Soon; Lynch, David A; Miller, Frederick W; Proudman, Susanna M; Richeldi, Luca; Ryu, Jay H; Sandorfi, Nora; Sarver, Catherine; Wells, Athol U; Strand, Vibeke; Matteson, Eric L; Brown, Kevin K; Seibold, James R
2014-05-01
Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology-a non-profit international organisation dedicated to consensus methodology in identification of outcome measures-conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field.
Saketkoo, Lesley Ann; Mittoo, Shikha; Huscher, Dörte; Khanna, Dinesh; Dellaripa, Paul F; Distler, Oliver; Flaherty, Kevin R; Frankel, Sid; Oddis, Chester V; Denton, Christopher P; Fischer, Aryeh; Kowal-Bielecka, Otylia M; LeSage, Daphne; Merkel, Peter A; Phillips, Kristine; Pittrow, David; Swigris, Jeffrey; Antoniou, Katerina; Baughman, Robert P; Castelino, Flavia V; Christmann, Romy B; Christopher-Stine, Lisa; Collard, Harold R; Cottin, Vincent; Danoff, Sonye; Highland, Kristin B; Hummers, Laura; Shah, Ami A; Kim, Dong Soon; Lynch, David A; Miller, Frederick W; Proudman, Susanna M; Richeldi, Luca; Ryu, Jay H; Sandorfi, Nora; Sarver, Catherine; Wells, Athol U; Strand, Vibeke; Matteson, Eric L; Brown, Kevin K; Seibold, James R
2014-01-01
Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field. PMID:24368713
Zhang, Pei; Cui, Wanchang; Hankey, Kim G.; Gibbs, Allison M.; Smith, Cassandra P.; Taylor-Howell, Cheryl; Kearney, Sean R.; MacVittie, Thomas J.
2015-01-01
Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP, and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition respectively, suggesting possible crosstalk between spleen and other organs. Our data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs. PMID:26425899
Biver, A; De Rijcke, S; Toppet, V; Ledoux-Corbusier, M; Van Maldergem, L
1994-06-01
We present a female infant exhibiting congenital cutis laxa with retardation of growth and motor development, ligamentous laxity and congenital dislocation of the hips. This connective tissue disorder was associated with Dandy-Walker malformation, atrial and ventricular defect and minor bone abnormalities including multiple wormian bones, abnormal tubulation of long bones and absent twelfth pair of ribs. This association is believed to be unique.
Automatic recognition of fundamental tissues on histology images of the human cardiovascular system.
Mazo, Claudia; Trujillo, Maria; Alegre, Enrique; Salazar, Liliana
2016-10-01
Cardiovascular disease is the leading cause of death worldwide. Therefore, techniques for improving diagnosis and treatment in this field have become key areas for research. In particular, approaches for tissue image processing may support education system and medical practice. In this paper, an approach to automatic recognition and classification of fundamental tissues, using morphological information is presented. Taking a 40× or 10× histological image as input, three clusters are created with the k-means algorithm using a structural tensor and the red and the green channels. Loose connective tissue, light regions and cell nuclei are recognised on 40× images. Then, the cell nuclei's features - shape and spatial projection - and light regions are used to recognise and classify epithelial cells and tissue into flat, cubic and cylindrical. In a similar way, light regions, loose connective and muscle tissues are recognised on 10× images. Finally, the tissue's function and composition are used to refine muscle tissue recognition. Experimental validation is then carried out by histologist following expert criteria, along with manually annotated images that are used as a ground-truth. The results revealed that the proposed approach classified the fundamental tissues in a similar way to the conventional method employed by histologists. The proposed automatic recognition approach provides for epithelial tissues a sensitivity of 0.79 for cubic, 0.85 for cylindrical and 0.91 for flat. Furthermore, the experts gave our method an average score of 4.85 out of 5 in the recognition of loose connective tissue and 4.82 out of 5 for muscle tissue recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Automatic Occlusion Device for Remote Control of Tumor Tissue Ischemia
El-Dahdah, Hamid; Wang, Bei; He, Guanglong; Xu, Ronald X.
2015-01-01
We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multi-modal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics. PMID:20082532
Soft Tissue Sarcoma, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology.
von Mehren, Margaret; Randall, R Lor; Benjamin, Robert S; Boles, Sarah; Bui, Marilyn M; Conrad, Ernest U; Ganjoo, Kristen N; George, Suzanne; Gonzalez, Ricardo J; Heslin, Martin J; Kane, John M; Koon, Henry; Mayerson, Joel; McCarter, Martin; McGarry, Sean V; Meyer, Christian; O'Donnell, Richard J; Pappo, Alberto S; Paz, I Benjamin; Petersen, Ivy A; Pfeifer, John D; Riedel, Richard F; Schuetze, Scott; Schupak, Karen D; Schwartz, Herbert S; Tap, William D; Wayne, Jeffrey D; Bergman, Mary Anne; Scavone, Jillian
2016-06-01
Soft tissue sarcomas (STS) are rare solid tumors of mesenchymal cell origin that display a heterogenous mix of clinical and pathologic characteristics. STS can develop from fat, muscle, nerves, blood vessels, and other connective tissues. The evaluation and treatment of patients with STS requires a multidisciplinary team with demonstrated expertise in the management of these tumors. The complete NCCN Guidelines for Soft Tissue Sarcoma (available at NCCN.org) provide recommendations for the diagnosis, evaluation, and treatment of extremity/superficial trunk/head and neck STS, as well as intra-abdominal/retroperitoneal STS, gastrointestinal stromal tumor, desmoid tumors, and rhabdomyosarcoma. This manuscript discusses guiding principles for the diagnosis and staging of STS and evidence for treatment modalities that include surgery, radiation, chemoradiation, chemotherapy, and targeted therapy. Copyright © 2016 by the National Comprehensive Cancer Network.
A biomechanical model of agonist-initiated contraction in the asthmatic airway.
Brook, B S; Peel, S E; Hall, I P; Politi, A Z; Sneyd, J; Bai, Y; Sanderson, M J; Jensen, O E
2010-01-31
This paper presents a modelling framework in which the local stress environment of airway smooth muscle (ASM) cells may be predicted and cellular responses to local stress may be investigated. We consider an elastic axisymmetric model of a layer of connective tissue and circumferential ASM fibres embedded in parenchymal tissue and model the active contractile force generated by ASM via a stress acting along the fibres. A constitutive law is proposed that accounts for active and passive material properties as well as the proportion of muscle to connective tissue. The model predicts significantly different contractile responses depending on the proportion of muscle to connective tissue in the remodelled airway. We find that radial and hoop-stress distributions in remodelled muscle layers are highly heterogenous with distinct regions of compression and tension. Such patterns of stress are likely to have important implications, from a mechano-transduction perspective, on contractility, short-term cytoskeletal adaptation and long-term airway remodelling in asthma. Copyright 2009 Elsevier B.V. All rights reserved.
Mavrogeni, Sophie; Markousis-Mavrogenis, George; Koutsogeorgopoulou, Loukia; Kolovou, Genovefa
2017-01-01
Cardiovascular magnetic resonance imaging is a recently developed noninvasive, nonradiating, operator-independent technique that has been successfully used for the evaluation of congenital heart disease, valvular and pericardial diseases, iron overload, cardiomyopathies, great and coronary vessel diseases, cardiac inflammation, stress–rest myocardial perfusion, and fibrosis. Rheumatoid arthritis and other spondyloarthropathies, systemic lupus erythematosus, inflammatory myopathies, mixed connective tissue diseases (CTDs), systemic sclerosis, vasculitis, and sarcoidosis are among CTDs with serious cardiovascular involvement; this is due to multiple causative factors such as myopericarditis, micro/macrovascular disease, coronary artery disease, myocardial fibrosis, pulmonary hypertension, and finally heart failure. The complicated pathophysiology and the high cardiovascular morbidity and mortality of CTDs demand a versatile, noninvasive, nonradiative diagnostic tool for early cardiovascular diagnosis, risk stratification, and treatment follow-up. Cardiovascular magnetic resonance imaging can detect early silent cardiovascular lesions, assess disease acuteness, and reliably evaluate the effect of both cardiac and rheumatic medication in the cardiovascular system, due to its capability to perform tissue characterization and its high spatial resolution. However, until now, high cost; lack of interaction between cardiologists, radiologists, and rheumatologists; lack of availability; and lack of experts in the field have limited its wider adoption in the clinical practice. PMID:28546762
Mateescu, R G; Garrick, D J; Garmyn, A J; VanOverbeke, D L; Mafi, G G; Reecy, J M
2015-01-01
The objective of this study was to estimate heritabilities for sensory traits and genetic correlations among sensory traits and with marbling score (MS), Warner-Bratzler shear force (WBSF), and intramuscular fat content (IMFC). Samples of LM from 2,285 Angus cattle were obtained and fabricated into steaks for laboratory analysis and 1,720 steaks were analyzed by a trained sensory panel. Restricted maximum likelihood procedures were used to obtain estimates of variance and covariance components under a multitrait animal model. Estimates of heritability for MS, IMFC, WBSF, tenderness, juiciness, and connective tissue traits were 0.67, 0.38, 0.19, 0.18, 0.06, and 0.25, respectively. The genetic correlations of MS with tenderness, juiciness, and connective tissue were estimated to be 0.57 ± 0.14, 1.00 ± 0.17, and 0.49 ± 0.13, all positive and strong. Estimated genetic correlations of IMFC with tenderness, juiciness, and connective tissue were 0.56 ± 0.16, 1.00 ± 0.21, and 0.50 ± 0.15, respectively. The genetic correlations of WBSF with tenderness, juiciness, and connective tissue were all favorable and estimated to be -0.99 ± 0.08, -0.33 ± 0.30 and -0.99 ± 0.07, respectively. Strong and positive genetic correlations were estimated between tenderness and juiciness (0.54 ± 0.28) and between connective tissue and juiciness (0.58 ± 0.26). In general, genetic correlations were large and favorable, which indicated that strong relationships exist and similar gene and gene networks may control MS, IMFC, and juiciness or WBSF, panel tenderness, and connective tissue. The results from this study confirm that MS currently used in selection breeding programs has positive genetic correlations with tenderness and juiciness and, therefore, is an effective indicator trait for the improvement of tenderness and juiciness in beef. This study also indicated that a more objective measure, particularly WBSF, a trait not easy to improve through phenotypic selection, is an excellent candidate trait for genomic selection aimed at improving eating satisfaction.
Wells, Julia E; Howlett, Meegan; Cole, Catherine H; Kees, Ursula R
2015-08-01
Connective tissue growth factor (CTGF/CCN2) has long been associated with human cancers. The role it plays in these neoplasms is diverse and tumour specific. Recurring patterns in clinical outcome, histological desmoplasia and mechanisms of action have been found. When CTGF is overexpressed compared to low-expressing normal tissue or is underexpressed compared to high-expressing normal tissue, the functional outcome favours tumour survival and disease progression. CTGF acts by altering proliferation, drug resistance, angiogenesis, adhesion and migration contributing to metastasis. The pattern of CTGF expression and tumour response helps to clarify the role of this matricellular protein across a multitude of human cancers. © 2014 UICC.
Halper, Jaroslava; Kjaer, Michael
2014-01-01
Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya
2013-02-01
Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.
Plakins: a family of versatile cytolinker proteins.
Leung, Conrad L; Green, Kathleen J; Liem, Ronald K H
2002-01-01
By connecting cytoskeletal elements to each other and to junctional complexes, the plakin family of cytolinkers plays a crucial role in orchestrating cellular development and maintaining tissue integrity. Plakins are built from combinations of interacting domains that bind to microfilaments, microtubules, intermediate filaments, cell-adhesion molecules and members of the armadillo family. Plakins are involved in both inherited and autoimmune diseases that affect the skin, neuronal tissue, and cardiac and skeletal muscle. Here, we describe the members of the plakin family and their interaction partners, and give examples of the cellular defects that result from their dysfunction.
Mikashinovich, Z I; Nagornaia, G Iu; Kovalenko, T D; Zvereva, E A
2011-02-01
Age individuality is characterized by an imbalance of the molecular mechanisms of antioxidant defense in adolescents with arterial hypertension and biliary dyskinesia, as documented by an enzyme imbalance of the first line of antioxidant defense and H2O, accumulation, by a substantial increase in glutathione peroxidase activity, and by inhibition of the activity of glutathione-dependent enzymes. The considerable rise of 2,3-diphosphoglycerate suggests tissue hypoxia. With this, enhanced neutrophil elastase activity causes damage to the structural components of vascular wall connective tissue, resulting in the development of endothelial dysfunction.
[Silicone in autoimmune diseases and cancer].
Elejabeitia, J
1999-01-01
In 1992 the Food and Drug Administration (FDA) announced the restriction of silicone gel-filled breast implants until research protocol studies evaluate the relationship of silicone to connective tissue diseases, and the association of the silicone implants with breast carcinoma. Since them comprehensive epidemiologic studies have concluded that there is no connection between breast implants and the known connective tissue diseases or between the implants and breast carcinoma. During the same year, The American College of Rheumatology said that it have not been demonstrated the relationship between silicone gel breast implants and any systemic disease. Although this, the FDA restriction continues.
Saketkoo, Lesley Ann; Mittoo, Shikha; Frankel, Sid; LeSage, Daphne; Sarver, Catherine; Phillips, Kristine; Strand, Vibeke; Matteson, Eric L
2014-04-01
Interstitial lung diseases (ILD), including those related to connective tissue disease (CTD), and idiopathic pulmonary fibrosis (IPF) carry high morbidity and mortality. Great efforts are under way to develop and investigate meaningful treatments in the context of clinical trials. However, efforts have been challenged by a lack of validated outcome measures and by inconsistent use of measures in clinical trials. Lack of consensus has fragmented effective use of strategies in CTD-ILD and IPF, with a history of resultant difficulties in obtaining agency approval of treatment interventions. Until recently, the patient perspective to determine domains and outcome measures in CTD-ILD and IPF had never been applied. Efforts described here demonstrate unequivocally the value and influence of patient involvement on core set development. Regarding CTD-ILD, this is the first OMERACT working group to directly address a manifestation/comorbidity of a rheumatic disease (ILD) as well as a disease not considered rheumatic (IPF). The OMERACT 11 proceedings of the CTD-ILD Working Group describe the forward and lateral process to include both the medical and patient perspectives in the urgently needed identification of a core set of preliminary domains and outcome measures in CTD-ILD and IPF.
Huscher, Dörte; Saketkoo, Lesley Ann; Pittrow, David; Khanna, Dinesh
2010-05-01
This review article discusses the proposed methodology that will be utilized to develop core set items for connective tissue disease-associated interstitial lung disease (CTD-ILD). CTD-ILD remain an important enigma in clinical medicine. No consensus exists on measurement of disease activity or what constitutes a significant response to therapeutic interventions. Lack of appropriate measures inhibit effective drug development and hamper regulatory evaluation of candidate therapies.An interdisciplinary and international Steering Committee (SC) will oversee the execution of a 3-tier Delphi exercise involving experts in CTD and ILD. In parallel to the Delphi, qualitative information will be gathered from patients with ILD using focus groups. These data will subsequently be used to construct surveys to collect quantitative response from patients with ILD. The final Delphi and Patient Perspective results are to be scrutinized by SC and specialty sub-groups (including patient advocates) for truth, discrimination and feasibility - the OMERACT filters. Through application of Nominal Group technique, a core set of outcome measures will be proposed. Subsequent exercises will evaluate the applicability of a proposed core set to the unique issues posed by individual CTDs in addition to guidelines on screening, prognostication and damage scoring.
Nelson, S W
2001-10-01
Recent histological evidence has documented that grafted palatal connective tissue is capable of forming a new attachment to previously exposed roots in the treatment of gingival recession. No clinical studies have tested the ability of connective tissue that has been implanted beneath the periosteum into periodontal osseous defects to reduce probing depth and increase clinical attachment levels. This study reports the long-term clinical effect of subperiosteal and intraosseous connective tissue grafts on deep periodontal pockets. Connective tissue (CT) grafts were placed in 32 periodontal pockets on 27 patients. Grafts were classified into 3 groups. Type I grafts had 50% or more vascular surface contact and were < or = 2.5 mm thick. Type II grafts had 50% or more contact but were > 2.5 mm thick, and Type III grafts had less than 50% vascular contact regardless of thickness. Twelve of 14 Type I sites, 9 of 15 Type II sites, and 3 of 3 Type III sites were analyzed 9 to 13 years following treatment. Clinical attachment level change differed significantly between the graft types on survivor teeth (P < 0.05): Type III had 2 mm loss (95% confidence interval [CI]: 0.4 to 3.6), while Type II and Type I grafts had a 2.7 mm gain (95% CI: 2.0 to 3.4) and 4.3 mm gain (95% CI: 3.3 to 5.2), respectively. Similar substantial differences were presented for changes in probing depth and recession. This long-term (9 to 13 years) retrospective case-series analysis suggests substantial improvements in periodontal clinical measures for Type I CT grafts in deep periodontal pockets. Randomized trials are required to evaluate this promising procedure.
Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014).
Chen, Chaomei; Dubin, Rachael; Kim, Meen Chul
2014-09-01
Our previous scientometric review of regenerative medicine provides a snapshot of the fast-growing field up to the end of 2011. The new review identifies emerging trends and new developments appearing in the literature of regenerative medicine based on relevant articles and reviews published between 2000 and the first month of 2014. Multiple datasets of publications relevant to regenerative medicine are constructed through topic search and citation expansion to ensure adequate coverage of the field. Networks of co-cited references representing the literature of regenerative medicine are constructed and visualized based on a combined dataset of 71,393 articles published between 2000 and 2014. Structural and temporal dynamics are identified in terms of most active topical areas and cited references. New developments are identified in terms of newly emerged clusters and research areas. Disciplinary-level patterns are visualized in dual-map overlays. While research in induced pluripotent stem cells remains the most prominent area in the field of regenerative medicine, research related to clinical and therapeutic applications in regenerative medicine has experienced a considerable growth. In addition, clinical and therapeutic developments in regenerative medicine have demonstrated profound connections with the induced pluripotent stem cell research and stem cell research in general. A rapid adaptation of graphene-based nanomaterials in regenerative medicine is evident. Both basic research represented by stem cell research and application-oriented research typically found in tissue engineering are now increasingly integrated in the scientometric landscape of regenerative medicine. Tissue engineering is an interdisciplinary field in its own right. Advances in multiple disciplines such as stem cell research and graphene research have strengthened the connections between tissue engineering and regenerative medicine.
Upregulation of angiogenesis in oral lichen planus.
Al-Hassiny, A; Friedlander, L T; Parachuru, V P B; Seo, B; Hussaini, H M; Rich, A M
2018-02-01
As angiogenesis is fundamental to the pathogenesis of many chronic inflammatory disorders, this study investigated the expression of various vascular markers in oral lichen planus and non-specific oral mucosal inflammatory tissues. Archival specimens of oral lichen planus (n = 15) and inflamed tissues (n = 13) were stained using immunohistochemistry with antibodies to CD34, vascular endothelial growth factor, vascular endothelial growth factor receptor and vasohibin. Nine representative sites at the epithelial-connective tissue junction and through the fibrous connective tissue were selected, and automated analysis techniques were used to determine the extent of positivity expressed as the percentage of positive cells. Significance was denoted when P < .05. The expression of pro-angiogenic factors was higher in lichen planus samples compared with inflamed controls. A higher level of CD34 was observed in the deeper parts of the connective tissue of Oral lichen planus (OLP) (P = .04), whereas VEGF and VEGFR2 expressions were higher all through the tissues (respectively, P < .02 and P < .01). The expression of the anti-angiogenic VASH1 was higher in inflamed tissue compared with lichen planus in all sites evaluated (P < .01). The findings indicate that angiogenic factors are differentially expressed in oral lichen planus compared with inflamed controls, with increased expression of pro-angiogenic factors and decreased anti-angiogenic expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Role of PTPα in the Destruction of Periodontal Connective Tissues
Rajshankar, Dhaarmini; Sima, Corneliu; Wang, Qin; Goldberg, Stephanie R.; Kazembe, Mwayi; Wang, Yongqiang; Glogauer, Michael; Downey, Gregory P.; McCulloch, Christopher A.
2013-01-01
IL-1β contributes to connective tissue destruction in part by up-regulating stromelysin-1 (MMP-3), which in fibroblasts is a focal adhesion-dependent process. Protein tyrosine phosphatase-α (PTPα) is enriched in and regulates the formation of focal adhesions, but the role of PTPα in connective tissue destruction is not defined. We first examined destruction of periodontal connective tissues in adult PTPα+/+ and PTPα−/− mice subjected to ligature-induced periodontitis, which increases the levels of multiple cytokines, including IL-1β. Three weeks after ligation, maxillae were processed for morphometry, micro-computed tomography and histomorphometry. Compared with unligated controls, there was ∼1.5–3 times greater bone loss as well as 3-fold reduction of the thickness of the gingival lamina propria and 20-fold reduction of the amount of collagen fibers in WT than PTPα−/− mice. Immunohistochemical staining of periodontal tissue showed elevated expression of MMP-3 at ligated sites. Second, to examine mechanisms by which PTPα may regulate matrix degradation, human MMP arrays were used to screen conditioned media from human gingival fibroblasts treated with vehicle, IL-1β or TNFα. Although MMP-3 was upregulated by both cytokines, only IL-1β stimulated ERK activation in human gingival fibroblasts plated on fibronectin. TIRF microscopy and immunoblotting analyses of cells depleted of PTPα activity with the use of various mutated constructs or with siRNA or PTPαKO and matched wild type fibroblasts were plated on fibronectin to enable focal adhesion formation and stimulated with IL-1β. These data showed that the catalytic and adaptor functions of PTPα were required for IL-1β-induced focal adhesion formation, ERK activation and MMP-3 release. We conclude that inflammation-induced connective tissue degradation involving fibroblasts requires functionally active PTPα and in part is mediated by IL-1β signaling through focal adhesions. PMID:23940616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, J.; Amiel, D.; Harper, E.
The authors examined the patellar tendon (PT), anterior cruciate ligament (ACL) and medial collateral ligament (MCL) from normal rabbits for collagenase activity. All three connective tissues contain large amounts of collagen and the catabolism of this structural protein is important to their integrity. The authors cultured each tissue in serum free medium for 14 days. Collagenase was produced by all three connective tissues after a lag period of up to 7 days, as detected by the /sup 14/C-glycine peptide-release assay. Culture media that did not express enzyme the authors found to contain inhibitory activity. The collagenases and inhibitors from eachmore » tissue have been quantitated and characterized. After 9 days the collagenase activity for the rabbit periarticular tissues was 6.1 (PT), 4.4 (MCL) and 8.6 (ACL) units per milligram of secreted protein. The cleavage site of all three collagenases was found to be similar to that observed for rabbit skin collagenase, and generation of reaction products TC/sup A/ and TC/sup B/ was demonstrated by collagenases from PT, MCL and ACL. These results suggest that the metabolism of ligaments and tendon is regulated by the production of zymogen, active collagenase and inhibitor, similar to other connective tissues. The role of these components in joint injury and joint diseases is currently being investigated.« less
Modeling the Epithelial Morphogenesis of Germ Band Retraction in Three Dimensions
NASA Astrophysics Data System (ADS)
McCleery, W. Tyler; Veldhuis, Jim; Brodland, G. Wayne; Crews, Sarah M.; Hutson, M. Shane
2015-03-01
Embryogenesis of higher-order organisms is driven by an intricate coordination of cellular mechanics. Mechanical analysis of certain developmental events, e.g., dorsal closure in the fruit fly D. melanogaster, has been sufficiently described using two-dimensional models. Here, we present a three-dimensional modeling technique to investigate germ band retraction (GBR) - a whole-embryo, irreducibly 3D morphogenetic event. At the start of GBR, the epithelial tissue known as the germ band is initially wrapped around the posterior end of an ellipsoidal fly embryo. This tissue then retracts as an adjacent epithelial tissue, the amnioserosa, simultaneously contracts. We hypothesize that proper GBR requires maintenance of cell-cell connectivity in the amnioserosa, as well as both cell and tissue topology on the embryo's ellipsoidal surface. The exact interfacial tensions are less important. We test the dynamic interactions between these two tissues on a 3D ellipsoidal last. To speed simulation run times and focus on the relevant tissues, epithelial cells are defined as polygons constrained to lie on the surface of the ellipsoidal last. These cells have adjustable parameters such as edge tensions and cell pressures. Tissue movements are simulated by balancing these dynamic cell-level forces with viscous resistance and allowing cells to exchange neighbors. This modeling approach helps elucidate the multicellular stress fields in normal and aberrant development, providing deeper insight into the mechanical interdependence of developing tissues.
Histological findings after transmyocardial laser revascularization.
Krabatsch, T; Schäper, F; Leder, C; Tülsner, J; Thalmann, U; Hetzer, R
1996-01-01
In recent time, it has become more and more probable that patients with severe diffuse coronary artery disease, who are not candidates for aortocoronary bypass surgery or percutaneous transluminal coronary angioplasty procedures, can benefit from transmyocardial laser revascularization (TMR). But the underlying principle of TMR still remains unclear. This study reports on a histological analysis of eight patients, in whom a total of 250 channels had been created, who died after TMR. The TMR channels were created by a CO2 laser surrounded by a zone of necrosis with an extent of about 500 microns. In the hearts of patients who died in the early postoperative period (1 to 7 days postoperative), almost all channels were closed by fibrin clots, erythrocytes, and macrophages. There were no obvious connections between the channels and the ventricular cavity. In specimens from patients, who died 2 or more weeks after the procedure, a granular tissue with high macrophage and monocyte activity was observable. Within this tissue, we observed a developing network of capillaries. Otherwise, the tissue filling the channels did not substantially differ from scar tissue. We failed to observe connections between the ventricular cavity and the new capillaries. Whether these vessels within the closed channels have any impact on myocardial perfusion remains unclear, but it seems unlikely that the clinical effects of TMR are based on the principle of the amphibian heart.
Li, Qiaoli; LaRusso, Jennifer; Grand‐Pierre, Alix E.; Uitto, Jouni
2009-01-01
Abstract Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6 −/−). This “knock‐out” (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate‐enriched diet (magnesium concentration being 5‐fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate‐enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10‐fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long‐term (>4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate‐enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6 −/− mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues. PMID:20443931
Li, Qiaoli; Larusso, Jennifer; Grand-Pierre, Alix E; Uitto, Jouni
2009-12-01
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6(-/-)). This "knock-out" (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate-enriched diet (magnesium concentration being 5-fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate-enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10-fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long-term (> 4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate-enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6(-/-) mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues.
The role of the cilium in hereditary tumor predisposition syndromes
Klasson, Timothy D.; Giles, Rachel H.
2014-01-01
The primary cilium is a highly conserved cell organelle that is closely connected to processes involved in cell patterning and replication. Amongst their many functions, cilia act as “signal towers” through which cell-cell signaling cascades pass. Dysfunction of cilia or the myriad processes that are connected with cilium function can lead to disease. Due to the sheer number of cellular processes that at some point involve the primary cilium, the effects of misregulation are highly heterogeneous between different cell populations. However, because of the importance of primary cilia in the development, growth, patterning and orientation of cells and tissues, a common thread has emerged in which defective cilia can lead to disorganization, which can contribute to the growth of neoplasms, including cancer and pre-cancerous phenotypes. Because cilia are so vital for signaling during cell replication and the cell fate decisions that are important in childhood growth, symptoms often arise early in life. Here we review recent work connecting misregulation of the primary cilium with tumor formation in a variety of tissues in the developing body, with a particular focus on the syndromes in which classic tumor genes are mutated, including von Hippel-Lindau disease (OMIM 193300), adenomatous polyposis coli (OMIM 175100), tuberous sclerosis (OMIM 191100) and Birt-Hogg-Dubé syndrome (OMIM 135150). Timely diagnosis of these syndromes is essential for entry into appropriate screening protocols, which have been shown to effectively prolong life expectancy in these cohorts of patients. PMID:27625869
Gene expression profile of the fibrotic response in the peritoneal cavity.
Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E
2010-01-01
The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic responses.
Pathogenesis of Germline and Somatic NF1 Rearrangements
1998-10-01
skin and skeletal features consistent with a connective tissue disorder and neoplasms at a young age (7, 8, 9, 10) To test this hypothesis, patients need... myeloproliferative phenotype, these data suggest a putative role of modifying gene(s) on chromosome 17 that may contribute to the development of acute...risk for certain types of neoplasms , NF1 subjects also have an increased risk of developing a second malignancy. The risk for NF l patients is 8-20
Pruritus in Autoimmune Connective Tissue Diseases.
Smith, Gideon P; Argobi, Yahya
2018-07-01
Pruritus in autoimmune connective tissue diseases is a common symptom that can be severe and affect the quality of life of patients. It can be related to disease activity and severity or occur independent of the disease. Appropriate therapy to control the itch depends on the etiology, and it is therefore essential to first work-up these patients for the underlying trigger. Copyright © 2018 Elsevier Inc. All rights reserved.
Arend, A; Zilmer, M; Vihalemm, T; Selstam, G; Sepp, E
2000-01-01
As previously shown, dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) suppress connective tissue proliferation in the rat liver wound concurrent with an elevated level of lipid peroxidation. The present study was undertaken to investigate the influence of alpha-lipoic acid (LA), a natural anti-oxidant, on these effects of n-3 PUFAs. Rats were fed with a commercial pellet diet (control group) or with diets enriched with 10% of sunflower oil (n-6 group) or 10% of fish oil (n-3 group) for 8 weeks followed by addition of LA to the same diets for 10 days. Then a liver thermic wound was induced and the administration of LA was continued for 6 days. The proliferation of the connective tissue, the level of lipid peroxidation and their peroxidizability and the content of prostaglandins E2 and F2alpha were measured in the liver wounds. LA prevented the suppression of connective tissue proliferation in the healing wound induced by n-3 PUFAs, avoided the increase in peroxidation of lipids, reduced peroxidizability of lipids and modulated the decrease in PGE2 and PGF2alpha. The results indicate that dietary LA may prevent the suppression of liver wound healing induced by n-3 PUFAs.
LaRusso, Jennifer; Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni
2010-01-01
Pseudoxanthoma elasticum (PXE) is an autosomal recessive multi-system disorder characterized by ectopic connective tissue mineralization, with clinical manifestations primarily in the skin, eyes and the cardiovascular system. There is considerable, both intra-and inter-familial variability in the spectrum of phenotypic presentation. Previous studies have suggested that mineral content of the diet may modify the severity of the clinical phenotype in PXE. In this study, we utilized a targeted mutant mouse (Abcc6−/−) as a model system for PXE. We examined the effects of changes in dietary phosphate and magnesium on the mineralization process using calcification of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Mice placed on custom-designed diets either high or low in phosphate did not show changes in mineralization, which was similar to that noted in Abcc6−/− mice on control diet. However, mice placed on diet enriched in magnesium (5-fold) showed no evidence of connective tissue mineralization in this mouse model of PXE. The inhibitory capacity of magnesium was confirmed in a cell-based mineralization assay system in vitro. Collectively, our observations suggest that assessment of dietary magnesium in patients with PXE may be warranted. PMID:19122649
Chloroquine cardiotoxicity mimicking connective tissue disease heart involvement.
Vereckei, András; Fazakas, Adám; Baló, Timea; Fekete, Béla; Molnár, Mária Judit; Karádi, István
2013-04-01
The authors report a case of rare chloroquine cardiotoxicity mimicking connective tissue disease heart involvement in a 56-year-old woman with mixed connective tissue disease (MCTD) manifested suddenly as third degree A-V block with QT(c) interval prolongation and short torsade de pointes runs ultimately degenerating into ventricular fibrillation. Immunological tests suggested an MCTD flare, implying that cardiac arrest had resulted from myocardial involvement by MCTD. However, QT(c) prolongation is not a characteristic of cardiomyopathy caused by connective tissue disease, unless anti-Ro/SSA positivity is present, but that was not the case. Therefore, looking for another cause of QT(c) prolongation the possibility of chloroquine cardiotoxicity emerged, which the patient had been receiving for almost two years in supramaximal doses. Biopsy of the deltoid muscle was performed, because in chloroquine toxicity, specific lesions are present both in the skeletal muscle and in the myocardium, and electron microscopy revealed the accumulation of cytoplasmic curvilinear bodies, which are specific to antimalarial-induced myocyte damage and are absent in all other muscle diseases, except neuronal ceroid lipofuscinosis. Thus, the diagnosis of chloroquine cardiotoxicity was established. It might be advisable to supplement the periodic ophthalmological examination, which is currently the only recommendation for patients on long-term chloroquine therapy, with ECG screening.
Patients with Ehlers Danlos syndrome and CRPS: a possible association?
Stoler, Joan M; Oaklander, Anne Louise
2006-07-01
Rare patients are left with chronic pain, vasodysregulation, and other symptoms that define complex regional pain syndrome (CRPS), after limb traumas. The predisposing factors are unknown. Genetic factors undoubtedly contribute, but have not yet been identified. We report four CRPS patients also diagnosed with the classical or hypermobility forms of Ehlers Danlos syndrome (EDS), inherited disorders of connective tissue. These patients had been diagnosed using standard diagnostic criteria for CRPS and for EDS. All had sustained joint injury; in three this had been surgically treated. The association of these two diagnoses leads us to hypothesize that EDS might contribute to the development of CRPS in one or more of the following ways: via stretch injury to nerves traversing hypermobile joints, increased fragility of nerve connective tissue, or nerve trauma from more frequent surgery. We review the clinical presentation of the different Ehlers Danlos syndromes and provide clinical criteria that can be used to screen CRPS patients for EDS for clinical or research purposes.
Pattern Genes Suggest Functional Connectivity of Organs
NASA Astrophysics Data System (ADS)
Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang
2016-05-01
Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.
Streeter, K A; Sunshine, M D; Patel, S R; Liddell, S S; Denholtz, L E; Reier, P J; Fuller, D D; Baekey, D M
2017-03-01
Midcervical spinal interneurons form a complex and diffuse network and may be involved in modulating phrenic motor output. The intent of the current work was to enable a better understanding of midcervical "network-level" connectivity by pairing the neurophysiological multielectrode array (MEA) data with histological verification of the recording locations. We first developed a method to deliver 100-nA currents to electroplate silver onto and subsequently deposit silver from electrode tips after obtaining midcervical (C3-C5) recordings using an MEA in anesthetized and ventilated adult rats. Spinal tissue was then fixed, harvested, and histologically processed to "develop" the deposited silver. Histological studies verified that the silver deposition method discretely labeled (50-μm resolution) spinal recording locations between laminae IV and X in cervical segments C3-C5. Using correlative techniques, we next tested the hypothesis that midcervical neuronal discharge patterns are temporally linked. Cross-correlation histograms produced few positive peaks (5.3%) in the range of 0-0.4 ms, but 21.4% of neuronal pairs had correlogram peaks with a lag of ≥0.6 ms. These results are consistent with synchronous discharge involving mono- and polysynaptic connections among midcervical neurons. We conclude that there is a high degree of synaptic connectivity in the midcervical spinal cord and that the silver-labeling method can reliably mark metal electrode recording sites and "map" interneuron populations, thereby providing a low-cost and effective tool for use in MEA experiments. We suggest that this method will be useful for further exploration of midcervical network connectivity. NEW & NOTEWORTHY We describe a method that reliably identifies the locations of multielectrode array (MEA) recording sites while preserving the surrounding tissue for immunohistochemistry. To our knowledge, this is the first cost-effective method to identify the anatomic locations of neuronal ensembles recorded with a MEA during acute preparations without the requirement of specialized array electrodes. In addition, evaluation of activity recorded from silver-labeled sites revealed a previously unappreciated degree of connectivity between midcervical interneurons. Copyright © 2017 the American Physiological Society.
An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.
West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C
2017-08-07
In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.
Tandon, Nina; Taubman, Alanna; Cimetta, Elisa; Saccenti, Laetitia; Vunjak-Novakovic, Gordana
2013-01-01
Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Although bioreactors have facilitated the engineering of cardiac patches of clinically relevant size in vitro, a major drawback remains the transportation of the engineered tissues from a production facility to a medical operation facility while maintaining tissue viability and preventing contamination. Furthermore, after implantation, most of the cells are endangered by hypoxic conditions that exist before vascular flow is established. We developed a portable device that provides the perfusion and electrical stimulation necessary to engineer cardiac tissue in vitro, and to transport it to the site where it will be implantated. The micropump-powered perfusion apparatus may additionally function as an extracorporeal active pumping system providing nutrients and oxygen supply to the graft post-implantation. Such a system, through perfusion of oxygenated media and bioactive molecules (e.g. growth factors), could transiently support the tissue construct until it connects to the host vasculature and heart muscle, after which it could be taken away or let biodegrade.
Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway
NASA Astrophysics Data System (ADS)
Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas
2003-11-01
Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.
[Histomorphometric evaluation of ridge preservation after molar tooth extraction].
Zhan, Y L; Hu, W J; Xu, T; Zhen, M; Lu, R F
2017-02-18
To evaluate bone formation in human extraction sockets with absorbed surrounding walls augmented with Bio-Oss and Bio-Gide after a 6-month healing period by histologic and histomorphometric analyses. Six fresh molar tooth extraction sockets in 6 patients who required periodontally compromised moral tooth extraction were included in this study. The six fresh extraction sockets were grafted with Bio-Oss particle covered with Bio-Gide. The 2.8 mm×6.0 mm cylindric bone specimens were taken from the graft sites with aid of stent 6 months after the surgery. Histologic and histomorphometric analyses were performed. The histological results showed Bio-Oss particles were easily distinguished from the newly formed bone, small amounts of new bone were formed among the Bio-Oss particles, large amounts of connective tissue were found. Intimate contact between the newly formed bone and the small part of Bio-Oss particles was present. All the biopsy cylinders measurement demonstrated a high inter-individual variability in the percentage of the bone, connective tissues and Bio-Oss particles. The new bone occupied 11.54% (0-28.40%) of the total area; the connective tissues were 53.42% (34.08%-74.59%) and the Bio-Oss particles were 35.04% (13.92%-50.87%). The percentage of the particles, which were in contact with bone tissues, amounted to 20.13% (0-48.50%). Sites grafted with Bio-Oss particles covered with Bio-Gide were comprised of connective tissues and small amounts of newly formed bone surrounding the graft particles.
Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke
Armitage, Glenn A; Todd, Kathryn G; Shuaib, Ashfaq; Winship, Ian R
2010-01-01
Collateral vasculature may provide an alternative route for blood flow to reach the ischemic tissue and partially maintain oxygen and nutrient support during ischemic stroke. However, much about the dynamics of stroke-induced collateralization remains unknown. In this study, we used laser speckle contrast imaging to map dynamic changes in collateral blood flow after middle cerebral artery occlusion in rats. We identified extensive anastomatic connections between the anterior and middle cerebral arteries that develop after vessel occlusion and persist for 24 hours. Augmenting blood flow through these persistent yet dynamic anastomatic connections may be an important but relatively unexplored avenue in stroke therapy. PMID:20517321
Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro
2013-02-22
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.
Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro
2013-01-01
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194
Effects of Age, Sex, and Body Position on Orofacial Muscle Tone in Healthy Adults.
Dietsch, Angela M; Clark, Heather M; Steiner, Jessica N; Solomon, Nancy Pearl
2015-08-01
Quantification of tissue stiffness may facilitate identification of abnormalities in orofacial muscle tone and thus contribute to differential diagnosis of dysarthria. Tissue stiffness is affected by muscle tone as well as age-related changes in muscle and connective tissue. The Myoton-3 measured tissue stiffness in 40 healthy adults, including equal numbers of men and women in each of two age groups: 18-40 years and 60+ years. Data were collected from relaxed muscles at the masseter, cheek, and lateral tongue surfaces in two positions: reclined on the side and seated with head tilted. Tissue stiffness differed across age, sex, and measurement site with multiple interaction effects. Overall, older subjects exhibited higher stiffness coefficients and oscillation frequency measures than younger subjects whereas sex differences varied by tissue site. Effects of body position were inconsistent across tissue site and measurement. Although older subjects were expected to have lower muscle tone, age-related nonmuscular tissue changes may have contributed to yield a net effect of higher stiffness. These data raise several considerations for the development of accurate normative data and for future diagnostic applications of tissue stiffness assessment.
Huber, Samuel; Zeltner, Marco; Hämmerle, Christoph H F; Jung, Ronald E; Thoma, Daniel S
2018-04-01
To assess peri-implant soft tissue dimensions at implant sites, previously augmented with a collagen matrix (VCMX) or an autogenous subepithelial connective tissue graft (SCTG), between crown insertion and 1 year. Twenty patients with single-tooth implants received soft tissue augmentation prior to abutment connection randomly using VCMX or SCTG. Following abutment connection 3 months later, final reconstructions were fabricated and inserted (baseline). Patients were recalled at 6 months (6M) and at 1 year (FU-1). Measurements included clinical data, soft tissue thickness, volumetric outcomes and patient-reported outcome measures (PROMs). The buccal soft tissue thickness showed a median decrease of -0.5 mm (-1.0;0.3) (VCMX) and 0.0 mm (-0.5;1.0) (SCTG) (p = .243) up to FU-1. The soft tissue volume demonstrated a median decrease between BL and FU-1 of -0.1 mm (-0.2;0.0) (p = .301) for VCMX and a significant decrease of -0.2 mm (-0.4; -0.1) (p = .002) for SCTG, respectively. Intergroup comparisons did not reveal any significant differences between the groups for peri-implant soft tissue dimensions and changes up to FU-1 (p > .05). PROMs did not show any significant changes over time nor differences between the groups. Between crown insertion and 1 year, the buccal peri-implant soft tissue dimensions remained stable without relevant differences between sites that had previously been grafted with VCMX or SCTG. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schmitt, Christian M; Matta, Ragai E; Moest, Tobias; Humann, Julia; Gammel, Lisa; Neukam, Friedrich W; Schlegel, Karl A
2016-07-01
This study evaluates a porcine collagen matrix (CM) for soft tissue thickening in comparison to the subepithelial connective tissue graft (SCTG). In eight beagle dogs, soft tissue thickening was performed at the buccal aspects of the upper canines (SCTG and CM). Impressions were taken before augmentation (i1), after surgery (i2), after one (i3), three (i4) and ten month (i5). Casts were optically scanned with a 3D scanner and each augmented region (unit of analysis) evaluated (primary outcome variable: volume increase in mm(3) ; secondary outcome variables: volume increase in percent, mean and maximum thickness increases in mm). 3D tissue measurements after surgery revealed a significant higher volume increase in the CM (86.37 mm(3) ± 35.16 mm(3) ) than in the SCTG group (47.65 mm(3) ± 17.90 mm(3) ). After 10 months, volume increase was non-significant between groups (SCTG:11.36 mm(3) ± 9.26 mm(3) ; CM: 8.67 mm(3) ± 13.67 mm(3) ). Maximum soft tissue thickness increase (i1-i5) was 0.66 mm ± 0.29 mm (SCTG) and 0.79 mm ± 0.37 mm (CM) with no significant difference. Ten months after soft tissue thickening, the CM is statistically non-inferior to the SCTG in terms of soft tissue volume and thickness increase. Further 3D studies are needed to confirm the data. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue.
Gautieri, Alfonso; Passini, Fabian S; Silván, Unai; Guizar-Sicairos, Manuel; Carimati, Giulia; Volpi, Piero; Moretti, Matteo; Schoenhuber, Herbert; Redaelli, Alberto; Berli, Martin; Snedeker, Jess G
2017-05-01
Concurrent with a progressive loss of regenerative capacity, connective tissue aging is characterized by a progressive accumulation of Advanced Glycation End-products (AGEs). Besides being part of the typical aging process, type II diabetics are particularly affected by AGE accumulation due to abnormally high levels of systemic glucose that increases the glycation rate of long-lived proteins such as collagen. Although AGEs are associated with a wide range of clinical disorders, the mechanisms by which AGEs contribute to connective tissue disease in aging and diabetes are still poorly understood. The present study harnesses advanced multiscale imaging techniques to characterize a widely employed in vitro model of ribose induced collagen aging and further benchmarks these data against experiments on native human tissues from donors of different age. These efforts yield unprecedented insight into the mechanical changes in collagen tissues across hierarchical scales from molecular, to fiber, to tissue-levels. We observed a linear increase in molecular spacing (from 1.45nm to 1.5nm) and a decrease in the D-period length (from 67.5nm to 67.1nm) in aged tissues, both using the ribose model of in vitro glycation and in native human probes. Multiscale mechanical analysis of in vitro glycated tendons strongly suggests that AGEs reduce tissue viscoelasticity by severely limiting fiber-fiber and fibril-fibril sliding. This study lays an important foundation for interpreting the functional and biological effects of AGEs in collagen connective tissues, by exploiting experimental models of AGEs crosslinking and benchmarking them for the first time against endogenous AGEs in native tissue. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Maiborodin, I V; Morozov, V V; Anikeev, A A; Figurenko, N F; Maslov, R V; Matveeva, V A; Chastikina, G A; Maiborodina, V I
2017-08-01
The peculiarities of tissue sclerosis after injection of autologous bone marrow multipotent mesenchymal stromal cells transfected with GFP gene and stained with Vybrant CM-Dil cell membrane dye were studied by light microscopy with luminescence. The surgical intervention consisting in ligation of the great vein was followed by tissue sclerotic transformation caused by direct damage and chronic inflammation caused by the presence of slowly resorbed ligature. Injection of stromal cells after this intervention led to formation of more extensive scar. This can attest to the possibility of stromal cells differentiation into connective tissue cells, fibroblasts, and stimulation of proliferation and collagen synthesis by host fibroblasts. A decrease in the volume of dense fibrous connective tissue due to scar reorganization at latter terms cannot not excluded.
Simons, Johannes WIM
2009-01-01
Background We have previously shown that deviations from the average transcription profile of a group of functionally related genes are not only heritable, but also demonstrate specific patterns associated with age, gender and differentiation, thereby implicating genome-wide nuclear programming as the cause. To determine whether these results could be reproduced, a different micro-array database (obtained from two types of muscle tissue, derived from 81 human donors aged between 16 to 89 years) was studied. Results This new database also revealed the existence of age, gender and tissue-specific features in a small group of functionally related genes. In order to further analyze this phenomenon, a method was developed for quantifying the contribution of different factors to the variability in gene expression, and for generating a database limited to residual values reflecting constitutional differences between individuals. These constitutional differences, presumably epigenetic in origin, contribute to about 50% of the observed residual variance which is connected with a network of interrelated changes in gene expression with some genes displaying a decrease or increase in residual variation with age. Conclusion Epigenetic variation in gene expression without a clear concomitant relation to gene function appears to be a widespread phenomenon. This variation is connected with interactions between genes, is gender and tissue specific and is related to cellular aging. This finding, together with the method developed for analysis, might contribute to the elucidation of the role of nuclear programming in differentiation, aging and carcinogenesis Reviewers This article was reviewed by Thiago M. Venancio (nominated by Aravind Iyer), Hua Li (nominated by Arcady Mushegian) and Arcady Mushegian and J.P.de Magelhaes (nominated by G. Church). PMID:19796384
Rønning, Sissel B; Østbye, Tone-Kari; Krasnov, Aleksei; Vuong, Tram T; Veiseth-Kent, Eva; Kolset, Svein O; Pedersen, Mona E
2017-04-01
Pin bones represent a major problem for processing and quality of fish products. Development of methods of removal requires better knowledge of the pin bones' attachment to the muscle and structures involved in the breakdown during loosening. In this study, pin bones from cod and salmon were dissected from fish fillets after slaughter or storage on ice for 5 days, and thereafter analysed with molecular methods, which revealed major differences between these species before and after storage. The connective tissue (CT) attaches the pin bone to the muscle in cod, while the pin bones in salmon are embedded in adipose tissue. Collagens, elastin, lectin-binding proteins and glycosaminoglycans (GAGs) are all components of the attachment site, and this differ between salmon and cod, resulting in a CT in cod that is more resistant to enzymatic degradation compared to the CT in salmon. Structural differences are reflected in the composition of transcriptome. Microarray analysis comparing the attachment sites of the pin bones with a reference muscle sample showed limited differences in salmon. In cod, on the other hand, the variances were substantial, and the gene expression profiles suggested difference in myofibre structure, metabolism and cell processes between the pin bone attachment site and the reference muscle. Degradation of the connective tissue occurs closest to the pin bones and not in the neighbouring tissue, which was shown using light microscopy. This study shows that the attachment of the pin bones in cod and salmon is different; therefore, the development of methods for removal should be tailored to each individual species.
Mahn, Douglas H
2010-12-01
The proper management of gingival recession is critical to the establishment of a natural-appearing soft tissue architecture. Subepithelial connective tissue grafts have been considered the "gold standard" but are limited by the availability of palatal donor tissue. Tunnel techniques have improved the esthetic results of connective tissue grafting. Acellular dermal matrices have been successful in the treatment of gingival recession and are not limited by the palatal anatomy. The aim of this report is to describe the application of the tunnel technique, with use of an acellular dermal matrix, in the correction of gingival recession affecting multiple adjacent teeth in the esthetic zone.
Toedebusch, Ryan G; Roberts, Michael D; Wells, Kevin D; Company, Joseph M; Kanosky, Kayla M; Padilla, Jaume; Jenkins, Nathan T; Perfield, James W; Ibdah, Jamal A; Booth, Frank W; Rector, R Scott
2014-05-15
To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity.
Toedebusch, Ryan G.; Roberts, Michael D.; Wells, Kevin D.; Company, Joseph M.; Kanosky, Kayla M.; Padilla, Jaume; Jenkins, Nathan T.; Perfield, James W.; Ibdah, Jamal A.; Booth, Frank W.
2014-01-01
To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity. PMID:24642759
Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing
2009-03-11
Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.
NASA Astrophysics Data System (ADS)
Wang, Chun-Chin; Li, Feng-Chieh; Lin, Sung-Jan; Lo, Wen; Dong, Chen-Yuan
2007-07-01
In this investigation, we used in vivo nonlinear optical microscopy to image normal and carcinogen DMBA treated skin tissues of nude mice. We acquired two-photon autofluroescence and second harmonic generation (SHG) images of the skin tissue, and applied the ASI (Autofluorescence versus SHG Index) to the resulting image. This allows us to visualize and quantify the interaction between mouse skin cells and the surrounding connective tissue. We found that as the imaging depth increases, ASI has a different distribution in the normal and the treated skin tissues. Since the DMBA treated skin eventually became squamous cell carcinoma (SCC), our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by multiphoton microscopy. We envision this approach to be effective in studying tumor biology and tumor treatment procedures.
Advances in Porous Biomaterials for Dental and Orthopaedic Applications
Mour, Meenakshi; Das, Debarun; Winkler, Thomas; Hoenig, Elisa; Mielke, Gabriela; Morlock, Michael M.; Schilling, Arndt F.
2010-01-01
The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.
Rheology of heterotypic collagen networks.
Piechocka, Izabela K; van Oosten, Anne S G; Breuls, Roel G M; Koenderink, Gijsje H
2011-07-11
Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.
Gorgels, Theo G M F; Waarsing, Jan H; Herfs, Marjolein; Versteeg, Daniëlle; Schoensiegel, Frank; Sato, Toshiro; Schlingemann, Reinier O; Ivandic, Boris; Vermeer, Cees; Schurgers, Leon J; Bergen, Arthur A B
2011-11-01
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.
In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate.
Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Fıratlı, Erhan
2013-07-01
We have developed a new, titanium-prepared, platelet-rich fibrin (T-PRF) together with the protocol for forming it, which is based on the hypothesis that titanium tubes may be more effective at activating platelets than the glass tubes used by Chouckroun in his platelet-rich fibrin (PRF) method. The aim of this study was to find a suitable animal model in which to evaluate the method and to investigate the efficacy of T-PRF for wound healing. Blood samples from 6 rabbits were used to confirm the protocol for formation of T-PRF. We evaluated T-PRF or T-PRF-like clots morphologically using scanning electron microscopy (EM). Blood samples from 5 rabbits were used to develop an experiment in which to evaluate the effects of T-PRF on wound healing. The mucoperiosteal flaps were filled with autologous T-PRF membranes from the vestibule in the anterior mandibular regions. Samples collected from the surgical sites were stained with haematoxylin and eosin. We found a mature fibrin network in T-PRF clots that had been centrifuged for 15 min at 3500 rpm and, 15 days after placement of the membrane, we found newly-forming connective tissue and islets of bony tissue in the T-PRF membrane. These results show that T-PRF could induce the formation of new bone with new connective tissue in a rabbit model of wound healing within 30 days of treatment. Published by Elsevier Ltd.
Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing
Campos-Barros, Angel; Amma, Lori L.; Faris, Jonathan S.; Shailam, Ranu; Kelley, Matthew W.; Forrest, Douglas
2000-01-01
Thyroid hormone signaling during a postnatal period in the mouse is essential for cochlear development and the subsequent onset of hearing. To study the control of this temporal dependency, we investigated the role of iodothyronine deiodinases, which in target tissues convert the prohormone thyroxine into triiodothyronine (T3), the active ligand for the thyroid hormone receptor (TR). Type 2 5′-deiodinase (D2) activity rose dramatically in the mouse cochlea to peak around postnatal day 7 (P7), after which activity declined by P10. This activity peak a few days before the onset of hearing suggests a role for D2 in amplifying local T3 levels at a critical stage of cochlear development. A mouse cochlear D2 cDNA was isolated and demonstrated near identity to rat D2. In situ hybridization localized D2 mRNA in periosteal connective tissue in the modiolus, the cochlear outer capsule and the septal divisions between the turns of the cochlea. Surprisingly, D2 expression in these regions that give rise to the bony labyrinth was complementary to TR expression in the sensory epithelium. Thus, the connective tissue may control deiodination of thyroxine and release of T3 to confer a paracrine-like control of TR activation. These results suggest that temporal and spatial control of ligand availability conferred by D2 provides an unexpectedly important level of regulation of the TR pathways required for cochlear maturation. PMID:10655523
Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna
2010-08-01
Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.
Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.
Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi
2014-07-01
Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01). The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.
Biomimetic heterogenous elastic tissue development.
Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala
2017-01-01
There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.
Microscopic anatomy of the visceral fasciae.
Stecco, Carla; Sfriso, Maria Martina; Porzionato, Andrea; Rambaldo, Anna; Albertin, Giovanna; Macchi, Veronica; De Caro, Raffaele
2017-07-01
The term 'visceral fascia' is a general term used to describe the fascia lying immediately beneath the mesothelium of the serosa, together with that immediately surrounding the viscera, but there are many types of visceral fasciae. The aim of this paper was to identify the features they have in common and their specialisations. The visceral fascia of the abdomen (corresponding to the connective tissue lying immediately beneath the mesothelium of the parietal peritoneum), thorax (corresponding to the connective tissue lying immediately beneath the mesothelium of the parietal pleura), lung (corresponding to the connective tissue under the mesothelium of the visceral pleura), liver (corresponding to the connective tissue under the mesothelium of the visceral peritoneum), kidney (corresponding to the Gerota fascia), the oesophagus (corresponding to its adventitia) and heart (corresponding to the fibrous layer of the pericardial sac) from eight fresh cadavers were sampled and analysed with histological and immunohistochemical stains to evaluate collagen and elastic components and innervation. Although the visceral fasciae make up a well-defined layer of connective tissue, the thickness, percentage of elastic fibres and innervation vary among the different viscera. In particular, the fascia of the lung has a mean thickness of 134 μm (± 21), that of heart 792 μm (± 132), oesophagus 105 μm (± 10), liver 131 μm (± 18), Gerota fascia 1009 μm (± 105) and the visceral fascia of the abdomen 987 μm (± 90). The greatest number of elastic fibres (9.79%) was found in the adventitia of the oesophagus. The connective layers lying immediately outside the mesothelium of the pleura and peritoneum also have many elastic fibres (4.98% and 4.52%, respectively), whereas the pericardium and Gerota fascia have few (0.27% and 1.38%). In the pleura, peritoneum and adventitia of the oesophagus, elastic fibres form a well-defined layer, corresponding to the elastic lamina, while in the other cases they are thinner and scattered in the connective tissue. Collagen fibres also show precise spatial organisation, being arranged in several layers. In each layer, all the fibrous bundles are parallel with each other, but change direction among layers. Loose connective tissue rich in elastic fibres is found between contiguous fibrous layers. Unmyelinated nerve fibres were found in all samples, but myelinated fibres were only found in some fasciae, such as those of the liver and heart, and the visceral fascia of the abdomen. According to these findings, we propose distinguishing the visceral fasciae into two large groups. The first group includes all the fasciae closely related to the individual organ and giving shape to it, supporting the parenchyma; these are thin, elastic and very well innervated. The second group comprises all the fibrous sheets forming the compartments for the organs and also connecting the internal organs to the musculoskeletal system. These fasciae are thick, less elastic and less innervated, but they contain larger and myelinated nerves. We propose to call the first type of fasciae 'investing fasciae', and the second type 'insertional fasciae'. © 2017 Anatomical Society.
Ranjbari, Ardeshir; Gholami, Gholam Ali; Amid, Reza; Kadkhodazadeh, Mahdi; Youssefi, Navid; Mehdizadeh, Amir Reza; Aghaloo, Maryam
2016-01-01
Statement of the Problem Gingival recession has been considered as the most challenging issue in the field of periodontal plastic surgery. Purpose The purpose of this study was to evaluate the clinical efficacy of root coverage procedures by using partial thickness double pedicle graft and compare it with full thickness double pedicle graft. Materials and Method Eight patients, aged 15 to 58 years including 6 females and 2 males with 20 paired (mirror image) defects with class I and II gingival recession were randomly assigned into two groups. Clinical parameters such as recession depth, recession width, clinical attachment level, probing depth, and width of keratinized tissue were measured at the baseline and 6 months post-surgery. A mucosal double papillary flap was elevated and the respective root was thoroughly planed. The connective tissue graft was harvested from the palate, and then adapted over the root. The pedicle flap was secured over the connective tissue graft and sutured. The surgical technique was similar in the control group except for the prepared double pedicle graft which was full thickness. Results The mean root coverage was 88.14% (2.83 mm) in the test group and 85.7% (2.75 mm) in the control group. No statistical differences were found in the mean reduction of vertical recession, width of recession, or probing depth between the test and control groups. In both procedures, the width of keratinized tissue increased after three months and the difference between the two groups was not statistically significant in this respect. Conclusion Connective tissue with partial and full thickness double pedicle grafts can be successfully used for treatment of marginal gingival recession. PMID:27602394
Christ, Christophe; Brenke, Rainer; Sattler, Gerhard; Siems, Werner; Novak, Pavel; Daser, A
2008-01-01
Extracorporeal pulse activation therapy (EPAT), also called extracorporeal acoustic wave therapy, seeks to achieve effective and long-lasting improvement of age-related connective tissue weakness in the extremities, especially in the treatment of unsightly cosmetic skin defects referred to as cellulite. The objective of this study was to stimulate metabolic activity in subcutaneous fat tissue by means of EPAT in order evaluate its effectiveness in enhancing connective tissue firmness and improving skin texture and structure. Fifty-nine women with advanced cellulite were divided into 2 groups; one group of 15 patients received planar acoustic wave treatment for 6 therapy sessions within 3 weeks; a second group of 44 patients received 8 therapy sessions within 4 weeks. Changes in connective tissue were evaluated using the DermaScan C ultrasound system (Cortex Technology, Hadsund, Denmark). Skin elasticity measurements were performed using the DermaLab system (Cortex Technology). Photographs of treated areas were taken at each therapy session and at follow-up sessions. Skin elasticity values gradually improved over the course of EPAT therapy and revealed a 73% increase at the end of therapy. At 3- and 6-month follow-ups, skin elasticity had even improved by 95% and 105%, respectively. Side effects included minor pain for 3 patients during therapy and slight skin reddening. This study confirmed the effects of acoustic wave therapy on biologic tissue, including stimulation of microcirculation and improvement of cell permeability. Ultrasound evaluation demonstrated increased density and firmness in the network of collagen/elastic fibers in the dermis and subcutis. Treatment was most effective in older patients with a long history of cellulite.
Fügl, Alexander; Zechner, Werner; Pozzi, Alessandro; Heydecke, Guido; Mirzakhanian, Christine; Behneke, Nikolaus; Behneke, Alexandra; Baer, Russell A; Nölken, Robert; Gottesman, Edward; Colic, Snjezana
2017-07-01
The aim of this multicenter prospective clinical study was to evaluate anodized tapered implants with a conical connection and integrated platform shifting placed in the anterior and premolar maxilla. The study enrolled patients requiring single-tooth restorations in healed sites of maxillary anterior and premolar teeth. All implants were immediately temporized. Clinical and radiographic evaluations were conducted at implant insertion, 6 months, and 1 year. Outcome measures included bone remodeling, cumulative survival rate (CSR), success rate, soft-tissue health and esthetics, and patient satisfaction. Bone remodeling and pink esthetic score were analyzed using Wilcoxon signed-rank tests. CSR was calculated using life table analysis. Other soft-tissue outcomes were analyzed using sign tests. Out of 97 enrolled patients (102 implants), 87 patients (91 implants) completed the 1-year visit. Marginal bone remodeling was -0.85 ± 1.36 mm. After the expected initial bone loss, a mean bone gain of 0.11 ± 1.05 mm was observed between 6 months and 1 year. The CSR was 99.0%, and the cumulative success rate was 97.0%. Partial or full papilla was observed at 30.8% of sites at baseline, 87.2% at 6 months, and 90.5% at 1 year. Soft-tissue response, esthetics, and patient satisfaction all improved during the study period. Bone gain was observed following the expected initial bone loss, and soft-tissue outcomes improved suggesting favorable tissue response using anodized tapered conical connection implants. Rapid stabilization of bone remodeling and robust papilla regeneration indicate favorable tissue healing promoted by the conical connection, platform-shift design. clinicaltrials.gov NCT02175550.
2012-01-01
Background The enigmatic wormlike parasite Buddenbrockia plumatellae has recently been shown to belong to the Myxozoa, which are now supported as a clade within Cnidaria. Most myxozoans are morphologically extremely simplified, lacking major metazoan features such as epithelial tissue layers, gut, nervous system, body axes and gonads. This hinders comparisons to free-living cnidarians and thus an understanding of myxozoan evolution and identification of their cnidarian sister group. However, B. plumatellae is less simplified than other myxozoans and therefore is of specific significance for such evolutionary considerations. Methods We analyse and describe the development of major body plan features in Buddenbrockia worms using a combination of histology, electron microscopy and confocal microscopy. Results Early developmental stages develop a primary body axis that shows a polarity, which is manifested as a gradient of tissue development, enabling distinction between the two worm tips. This polarity is maintained in adult worms, which, in addition, often develop a pore at the distal tip. The musculature comprises tetraradially arranged longitudinal muscle blocks consisting of independent myocytes embedded in the extracellular matrix between inner and outer epithelial tissue layers. The muscle fibres are obliquely oriented and in fully grown worms consistently form an angle of 12° with respect to the longitudinal axis of the worm in each muscle block and hence confer chirality. Connecting cells form a link between each muscle block and constitute four rows of cells that run in single file along the length of the worm. These connecting cells are remnants of the inner epithelial tissue layer and are anchored to the extracellular matrix. They are likely to have a biomechanical function. Conclusions The polarised primary body axis represents an ancient feature present in the last common ancestor of Cnidaria and Bilateria. The tetraradial arrangement of musculature is consistent with a medusozoan affinity for Myxozoa. However, the chiral pattern of muscle fibre orientation is apparently novel within Cnidaria and could thus be a specific adaptation. The presence of independent myocytes instead of Cnidaria-like epitheliomuscular cells can be interpreted as further support for the presence of mesoderm in cnidarians, or it may represent convergent evolution to a bilaterian condition. PMID:22594622
Advanced glycation products' levels and mechanical properties of vaginal tissue in pregnancy.
Weli, Homayemem K; Akhtar, Riaz; Chang, Zhuo; Li, Wen-Wu; Cooper, Jason; Yang, Ying
2017-07-01
Non-enzymatic glycation is closely associated with altered mechanical properties of connective tissue. Pregnancy, marked with high levels of female hormones, confers unique alteration to the mechanical properties of pelvic connective tissues in order to meet their physiological demands. However, there are few studies on glycation content and its influence on the mechanical properties of pelvic connective tissues during pregnancy. We hypothesise that the glycation content in pelvic tissues will change with a corresponding alteration in their mechanical properties, and that these changes are influenced by hormone levels. This study aims to investigate the correlation of vaginal tissue glycation content and mechanical property changes during pregnancy in association with the expression of a key pregnancy hormone (oestrogen) receptor, and an antioxidant enzyme, glyoxalase I. A rat vaginal tissue model (tissues from non-pregnant and E15-E18 (last trimester) pregnant rats) was used in this study. Mechanical characteristics of vaginal tissues were analysed by a ball-indentation technique while modulus and morphology of the collagen fibrils within the tissues were measured with atomic force microscopy. A glycation marker, pentosidine, was quantified by a high performance liquid chromatography. The expression of oestrogen receptor and glyoxalase I in the tissue was qualified by immunochemical staining. The glycosaminoglycan (GAG) concentration difference in the tissues were quantified by a biochemical assay. Pregnant rat vaginal tissue was characterised by significantly lower amounts of pentosidine, higher oestrogen receptor and glyoxalase I expression with larger creep, lower elastic modulus, larger fibril diameter and higher GAG content than their non-pregnant counterpart. There was a negative correlation between pentosidine and vaginal tissue creep. There was a reduction in vaginal tissue pentosidine in pregnancy with an associated increase in oestrogen receptor and glyoxalase I immunoexpression. Reduced glycation was associated with increased creeping of vaginal tissue. Oestrogen may therefore play a role in the increase of the vaginal wall's capacity to stretch through glyoxalase I up-regulation and subsequent glycation reduction. The new insight of the correlation of women's oestrogen level, glycation reaction and pelvic tissue mechanical property from this study may enhance our understanding of some pelvic organ diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
[MCTD--mixed connective tissue disease].
Haustein, Uwe-Frithjof
2005-02-01
Mixed connective tissue disease is a disease entity characterized by overlapping symptoms of lupus erythematosus (LE), systemic sclerosis (SSc), polymyositis/dermatomyositis (PM/DM) and rheumatoid arthritis (RA). Diagnostic criteria include high titers of antibodies against U1RNP as well as the presence of at least 3 of 5 of the following clinical features: edema of hands, synovitis, myositis, Raynaud phenomenon and acroscierosis. In terms of the pathogenesis, genetic as well as infectious (viral) factors appear to play a role. The acceptance of MCTD as a distinct disease entity is controversial. Terms such as "undifferentiated connective tissue disease" or "overlapping syndromes" are not helpful. One-quarter of MCTD patients transform into LE, while one-third progress to SSc. Therapeutic recommendations are glucocorticoids in combination with immunosuppressive agents and endothelin receptor antagonists. Double blind studies are not available. The prognosis is relatively good. Causes of death include pulmonary hypertension, infections and both pulmonary and cardiac failure.
Adam, Margaret P; Hennekam, Raoul C M; Keppen, Laura Davis; Bull, Marilyn J; Clericuzio, Carol L; Burke, Leah W; Ormond, Kelly E; Hoyme, Eugene H
2005-08-30
The Marshall-Smith syndrome (MSS) is a distinct malformation syndrome characterized by accelerated skeletal maturation, relative failure to thrive, respiratory difficulties, mental retardation, and unusual facies, including prominent forehead, shallow orbits, blue sclerae, depressed nasal bridge, and micrognathia. At least 33 cases have been reported in the literature, mostly as single case reports or small series. The purpose of the present study is to report on the clinical findings and natural history of MSS in five children and to review the features of three others previously reported, with particular attention to the skeletal and connective tissue findings. Our study demonstrates an increased rate of nontraumatic fractures and other bony and connective tissue abnormalities that support the hypothesis that MSS should be considered an osteochondrodysplasia. In addition, long-term survival beyond infancy is possible if respiratory problems are expectantly and aggressively managed. (c) 2005 Wiley-Liss, Inc.
Kotyla, Przemysław; Kucharz, Eugeniusz J
2012-01-01
Systemic lupus erythematosus (SLE) is a systemic inflammatory disease of connective tissue with an unknown etiology and a rich clinical picture with involvement of multiple organs. Given the rich symptomatology, application of the current classification criteria is associated with a significant risk of attributing symptoms of other pathologies to lupus and/or other connective tissue disease. Inherited and acquired immune deficiencies may sometimes demonstrate a lupus-like clinical symptomatology. In this work we reviewed 4 of cases referred to the Department of Internal Diseases and Rheumatology of the Silesian Medical University in Katowice with suspected or confirmed systemic lupus erythematosus. A positive anti-HIV antibody test led to the diagnosis of the acquired immunodeficiency syndrome (AIDS). Due to the close similarity of the clinical picture and the presence of antinuclear antibodies in both diseases, the authors postulate that the anti-HIV antibody test should be done routinely in patients with connective tissue diseases.
Bórquez, Pablo; Garrido, Luis; Manterola, Carlos; Peña, Patricio; Schlageter, Carol; Orellana, Juan José; Ulloa, Hugo; Peña, Juan Luis
2003-11-01
There are few studies looking for collagen matrix defects in patients with inguinal bernia. To study the skin connective tissue in patients with and without inguinal bernia. Skin from the surgical wound was obtained from 23 patients with and 23 patients without inguinal bernia. The samples were processed for conventional light microscopy. Collagen fibers were stained with Van Giesson and elastic fibers with Weigert stain. Patients without hernia had compact collagen tracts homogeneously distributed towards the deep dermis. In contrast, patients with hernia had zones in the dermis with thinner and disaggregated collagen tracts. Connective tissue had a lax aspect in these patients. Collagen fiber density was 52% lower in patients with hernia, compared to subjects without hernia. No differences in elastic fiber density or distribution was observed between groups. Patients with inguinal bernia have alterations in skin collagen fiber quality and density.
Tissue Engineering Strategies for the Tendon/ligament-to-bone insertion
Smith, Lester; Xia, Younan; Galatz, Leesa M.; Genin, Guy M.; Thomopoulos, Stavros
2012-01-01
Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require re-attachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of re-injury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations. PMID:22185608
Tissue-engineering strategies for the tendon/ligament-to-bone insertion.
Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros
2012-01-01
Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.
Exploring the "brain-skin connection": Leads and lessons from the hair follicle.
Paus, R
Research into how the central nervous system (CNS) and the skin of mammals are physiologically connected and how this "brain-skin connection" may be therapeutically targeted in clinical medicine has witnessed a renaissance. A key element in this development has been the discovery that mammalian skin and its appendages, namely human scalp hair follicles (HFs), not only are important, long-underestimated target tissues for classical neurohormones, neurotrophins and neuropeptides, but also are eminent peripheral tissue sources for the production and/or release of these neuromediators. This essay summarizes the many different levels of biology at which human scalp HFs respond to and generate a striking variety of neurohormones, and portrays HFs as prototypic, cyclically remodelled miniorgans that utilize these neurohormones to autoregulate their growth, hair shaft production, rhythmic organ transformation, pigmentation, mitochondrial energy metabolism, and immune status. The essay also explores how preclinical research on human scalp HFs can be exploited to unveil and explore "novel" and clinically as yet untapped, but most likely ancestral functions of neurohormones within mammalian epithelial biology that still impact substantially on human skin physiology. Arguably, systematic investigation of the "brain-skin connection" is one of the most intriguing current research frontiers in investigative dermatology, not the least since it has reversed the traditional CNS focus in studying the interactions between two key organ systems by placing the skin epithelium on center stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.
Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A
1996-01-01
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542
Zhernov, O A; Osadcha, O I; Zhernov, A O; Nazarenko, V M; Staskevych, S V
2011-07-01
Peculiarities of the burn wound course and the cicatricial tissue formation are shown. Clinical efficacy of application of cream Karipaine and gel Karipaine Ultra was proved, witnessed by improvement of the cell to tissue interaction as well as the connective tissue metabolism and the cicatricial tissue reconstruction.
Spatiotemporally Controlled Microchannels of Periodontal Mimic Scaffolds
Park, C.H.; Kim, K.H.; Rios, H.F.; Lee, Y.M.; Giannobile, W.V.; Seol, Y.J.
2014-01-01
Physiologic bioengineering of the oral, dental, and craniofacial complex requires optimized geometric organizations of fibrous connective tissues. A computer-designed, fiber-guiding scaffold has been developed to promote tooth-supporting periodontal tissue regeneration and functional restoration despite limited printing resolution for the manufacture of submicron-scaled features. Here, we demonstrate the use of directional freeze-casting techniques to control pore directional angulations and create mimicked topographies to alveolar crest, horizontal, oblique, and apical fibers of natural periodontal ligaments. For the differing anatomic positions, the gelatin displayed varying patterns of ice growth, determined via internal pore architectures. Regardless of the freezing coordinates, the longitudinal pore arrangements resulted in submicron-scaled diameters (~50 µm), along with corresponding high biomaterial porosity (~90%). Furthermore, the horizontal + coronal ((x→−y→) freezing orientation facilitated the creation of similar structures to major fibers in the periodontal ligament interface. This periodontal tissue-mimicking microenvironment is a potential tissue platform for the generation of naturally oriented ligamentous tissues consistent with periodontal ligament neogenesis. PMID:25216511
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas
2014-06-30
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
NASA Astrophysics Data System (ADS)
Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang
2016-03-01
The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.
Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre
2018-03-05
During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.
Dose control for noncontact laser coagulation of tissue
NASA Astrophysics Data System (ADS)
Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.
1995-01-01
Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.
Shimizu, Emi; Ricucci, Domenico; Albert, Jeffrey; Alobaid, Adel S; Gibbs, Jennifer L; Huang, George T-J; Lin, Louis M
2013-08-01
Revitalization procedures have been widely used for the treatment of immature permanent teeth with apical periodontitis. The treatment procedures appear to be capable of encouraging continued root development and thickening of the canal walls. The nature of tissues formed in the canal space and at the root apex after revitalization has been shown histologically in several animal studies; similar studies in humans were recently reported. A 9-year-old boy had a traumatic injury to his upper anterior teeth. Tooth #9 suffered a complicated crown fracture with a pulp exposure, which was restored with a composite resin. The tooth developed a chronic apical abscess. Revitalization procedures were performed on tooth #9 because it was an immature permanent tooth with an open apex and thin canal walls. Twenty-six months after revitalization, the tooth had a horizontal crown fracture at the cervical level and could not be restored. The tooth was extracted and processed for routine histological and immunohistochemical examination to identify the nature of tissues formed in the canal space. Clinically and radiographically, the revitalization of the present case was successful because of the absence of signs and symptoms and the resolution of periapical lesion as well as thickening of the canal walls and continued root development. The tissue formed in the canal was well-mineralized cementum- or bone-like tissue identified by routine histology and immunohistochemistry. No pulp-like tissue characterized by the presence of polarized odontoblast-like cells aligning dentin-like hard tissue was observed. The tissues formed in the canal of revitalized human tooth are similar to cementum- or bone-like tissue and fibrous connective tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric
2016-06-23
The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.
Molecular mechanisms of ulcer healing.
Tarnawski, A
2000-04-01
An ulcer in the gastrointestinal tract is a deep necrotic lesion penetrating the entire mucosal thickness and muscularis mucosae. Ulcer healing is an active process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. At the ulcer margin, epithelial cells proliferate and migrate onto the granulation tissue to cover (reepithelialize) the ulcer and also invade granulation tissue to reconstruct glandular structures within the ulcer scar. The reepithelialization and reconstruction of glandular structures is controlled by growth factors: trefoil peptides, EGF, HGF, bFGF and PDGF; and locally produced cytokines by regenerating cells in an orderly fashion and integrated manner to ensure the quality of mucosal restoration. These growth factors, most notably EGF, trigger cell proliferation via signal transduction pathways involving EGF-R, adapter proteins (Grb2, Shc and Sos), Ras, Raf1 and MAP (Erk1/Erk2) kinases, which, after translocation to nuclei, activate transcription factors and cell proliferation. Cell migration requires cytoskeletal rearrangements and is controlled by growth factors via Rho/Rac and signaling pathways involving PLC-gamma, PI-3 K and phosphorylation of focal adhesion proteins. Granulation tissue develops at the ulcer base. It consists of connective tissue cells: fibroblasts, macrophages and proliferating endothelial cells forming microvessels under the control of angiogenic growth factors: bFGF, VEGF and angiopoietins, which all promote angiogenesiscapillary vessel formation, essential for the restoration of microvascular network in the mucosa and thus crucial for oxygen and nutrient supply. The major mechanism of activation of angiogenic growth factors and their receptor expression appears to be hypoxia, which activates hypoxia-inducible factor, which binds to VEGF promoter.
Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue
Liu, Yanxin; Thomopoulos, Stavros; Chen, Changqing; Birman, Victor; Buehler, Markus J.; Genin, Guy M.
2014-01-01
Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general. PMID:24352669
Caballero-Gallardo, Karina; Wirbisky-Hershberger, Sara E; Olivero-Verbel, Jesus; de la Rosa, Jesus; Freeman, Jennifer L
2018-03-01
Coal mining is one of the economic activities with the greatest impact on environmental quality. At all stages contaminants are released as particulates such as coal dust. The first aim of this study was to obtain an aqueous coal dust extract and characterize its composition in terms of trace elements by ICP-MS. In addition, the developmental toxicity of the aqueous coal extract was evaluated using zebrafish (Danio rerio) after exposure to different concentrations (0-1000 ppm; μg mL -1 ) to establish acute toxicity, morphology and transcriptome changes. Trace elements within the aqueous coal dust extract present at the highest concentrations (>10 ppb) included Sr, Zn, Ba, As, Cu and Se. In addition, Cd and Pb were found in lower concentrations. No significant difference in mortality was observed (p > 0.05), but a delay in hatching was found at 0.1 and 1000 ppm (p < 0.05). No significant differences in morphological characteristics were observed in any of the treatment groups (p > 0.05). Transcriptomic results of zebrafish larvae revealed alterations in 77, 61 and 1376 genes in the 1, 10, and 100 ppm groups, respectively. Gene ontology analysis identified gene alterations associated with the development and function of connective tissue and the hematological system, as well as pathways associated with apoptosis, the cell cycle, transcription, and oxidative stress including the MAPK signaling pathway. In addition, altered genes were associated with cancer; connective tissue, muscular, and skeletal disorders; and immunological and inflammatory diseases. Overall, this is the first study to characterize gene expression alterations in response to developmental exposure to aqueous coal dust residue from coal mining with transcriptome results signifying functions and systems to target in future studies.
Soft tissue engineering with micronized-gingival connective tissues.
Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi
2018-01-01
The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.
Functional anatomy of the levator palpebrae superioris muscle and its connective tissue system.
Ettl, A; Priglinger, S; Kramer, J; Koornneef, L
1996-01-01
AIMS/BACKGROUND: The connective tissue system of the levator palpebrae superioris muscle (LPS) consists of the septa surrounding its muscle sheath, the superior transverse ligament (STL) commonly referred to as 'Whitnall's ligament' and the common sheath which is the fascia between the LPS and the superior rectus muscle (SRM). The anterior band-like component of the common sheath is called transverse superior fascial expansion (TSFE) of the SRM and LPS. It mainly extends from the connective tissue of the trochlea to the fascia of the lacrimal gland. A detailed description of the relation between the LPS and its connective tissue is presented. Furthermore, the course of the LPS in the orbit is described. The study was conducted to provide a morphological basis for biomechanical and clinical considerations regarding ptosis surgery. METHODS: Postmortem dissections were performed in 16 orbits from eight cadavers. The microscopical anatomy was demonstrated in six formalin preserved orbits from six cadavers which had been sectioned in the frontal and sagittal plane and stained with haematoxylin and azophloxin. Surface coil magnetic resonance imaging in the sagittal and coronal plane was performed in five orbits from five normal volunteers using a T1 weighted spin echo sequence. RESULTS: The STL and the TSFE surround the LPS to form a fascial sleeve around the muscle which has attachments to the medial and lateral orbital wall. The TSFE, which is thicker than the STL, blends with Tenon's capsule. The STL and the fascial sheath of the LPS muscle are suspended from the orbital roof by a framework of radial connective tissue septa. MR images show that the TSFE is located between the anterior third of the superior rectus muscle and the segment of the LPS muscle where it changes its course from upwards to downwards. In this area, the LPS reaches its highest point in the orbit (culmination point). The culmination point is located a few millimetres posterior to the equator and superior to the globe. CONCLUSION: Whitnall's ligament can be considered to consist of two distinct parts--the TSFE inferior to the LPS and the STL superior to the LPS. Since the medial and lateral main attachments of Whitnall's ligament are situated inferior to the level of the culmination point of the LPS, the ligament itself is unlikely to suspend the levator muscle. However, a suspension of the LPS may be achieved by the radial connective tissue septa of the superior orbit. The TSFE in connection with the globe may have an additional supporting function. The elasticity of Whitnall's ligament and its connections with highly elastic structures including Tenon's capsule, may provide the morphological substrate for the previously proposed passive (that is, without orbicularis action) lowering of the lid during downward saccades. Images PMID:8949713
Muren, C; Strandberg, O
1989-01-01
The case histories of two patients with cavitary pulmonary nodules and the findings at chest radiography are reviewed. The first patient had a connective tissue disease with features common to systematic lupus erythematosus and Wegener's granulomatosis. In the second patient the lung changes developed as part of a drug reaction to carbamezapine and/or phenytoin. The common denominator of the cavitating nodules is probably the presence of granulomas, developing as a sequela of pulmonary vasculitis.
Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P
2014-02-01
Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin
2011-01-01
Objective this article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on CT examinations. Methods we developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. Results the scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing dataset of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. Conclusions The proposed method is able to robustly and accurately disconnect all connections between left and right lungs and the guided dynamic programming algorithm is able to remove redundant processing. PMID:21412104
Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin
2011-01-01
This article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on computed tomography (CT) examinations. We developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. The scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing data set of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. The proposed method is able to robustly and accurately disconnect all connections between left and right lungs, and the guided dynamic programming algorithm is able to remove redundant processing.
Rotundo, Roberto; Pini-Prato, Giovanpaolo
2012-08-01
The aim of this case report study was to demonstrate the use of a new collagen matrix as an alternative to the connective tissue graft for the treatment of multiple gingival recessions. Three women showing 11 maxillary gingival recessions were treated by means of the envelope flap technique associated with a novel collagen matrix as a substitute for the connective tissue graft. At 1 year, complete root coverage was achieved in 9 treated sites, with a mean keratinized tissue width of 3.1 mm, complete resolution of dental hypersensitivity, and a high level of esthetic satisfaction.
Specialized connective tissue: bone, the structural framework of the upper extremity
Weatherholt, Alyssa M.; Fuchs, Robyn K.; Warden, Stuart J.
2011-01-01
Bone is a connective tissue containing cells, fibers and ground substance. There are many functions in the body in which the bone participates, such as storing minerals, providing internal support, protecting vital organs, enabling movement, and providing attachment sites for muscles and tendons. Bone is unique because its collagen framework absorbs energy, while the mineral encased within the matrix allows bone to resist deformation. This article provides an overview of the structure and function of bone tissue from a macroscopic to microscopic level and discusses the physiological processes contributing to upper extremity bone health. It concludes by discussing common conditions influencing upper extremity bone health. PMID:22047807
Collagen-Based Biomaterials for Wound Healing
Chattopadhyay, Sayani; Raines, Ronald T.
2014-01-01
With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807
Focal cemento-osseous dysplasia of mandible
Cankaya, Abdülkadir Burak; Erdem, Mehmet Ali; Olgac, Vakur; Firat, Deniz Refia
2012-01-01
Fibro-osseous lesions are disturbances in bone metabolism in which normal bone is replaced by a connective tissue matrix that then gradually develops into cemento-osseous tissue. Typically, the lesion is asymptomatic and is detected on routine radiographic examination. Radiologically, this lesion has three stages of maturation: pure radiolucent, radiopaque/mixed radiolucent, and radiopaque appearance. During these stages the lesion can be misdiagnosed. In this case report a 69-year- old patient with a a complaint of painless swelling of the left mandibular molar and premolar area is presented along with a review of the differential diagnoses considered in order to reach a final diagnosis of focal cemento-osseous dysplasia. PMID:22948991
Focal cemento-osseous dysplasia of mandible.
Cankaya, Abdülkadir Burak; Erdem, Mehmet Ali; Olgac, Vakur; Firat, Deniz Refia
2012-09-03
Fibro-osseous lesions are disturbances in bone metabolism in which normal bone is replaced by a connective tissue matrix that then gradually develops into cemento-osseous tissue. Typically, the lesion is asymptomatic and is detected on routine radiographic examination. Radiologically, this lesion has three stages of maturation: pure radiolucent, radiopaque/mixed radiolucent, and radiopaque appearance. During these stages the lesion can be misdiagnosed. In this case report a 69-year- old patient with a a complaint of painless swelling of the left mandibular molar and premolar area is presented along with a review of the differential diagnoses considered in order to reach a final diagnosis of focal cemento-osseous dysplasia.
Stones, H H
1934-04-01
(1) The reaction of cementum and its adjoining tissues to induced pathological conditions associated with the gingival sulcus is described.(2) After subjecting the sulcus to interference, its histological appearance is compared with that of definite parodontal disease.(3) Various methods were adopted for these experiments, which were performed on monkeys.(4) Artificial pockets were produced by detaching the subgingival epithelium and underlying connective tissue from the cementum. (a) Cementum is easily removed accidentally, when scraping monkeys' teeth. (b) Reattachment of connective tissues to cementum is effected, but is usually incomplete. (c) Epithelium always firmly reunites with cementum. (d) The artificial sulcus which is usually deeper than normal does not show, microscopically, the same pathological changes as in parodontal disease.(5) In other experiments, in addition to deepening the sulcus, the cementum lining the pockets was also removed, leaving denuded dentine in contact with the connective tissue. A similar condition was achieved by another method in which a dental bur was inserted between two teeth below the gum margin. (a) The gingival epithelium is capable of forming a weak attachment to the dentine, though this does not usually occur. It always proliferates down and unites with the nearest layer of cementum. It seems to have a peculiar affinity for this tissue. (b) Underlying connective tissue does not usually unite with the dentine. When this happens it is effected by the regeneration of cementum, this new tissue being lined by new cementoblasts. (c) The width of the periodontal membrane, which was increased by the experiment, is reduced to a more normal level by deposition of new alveolar bone, and to a lesser extent by regeneration of cementum. (d) In this series of experiments the artificial pocket is permanent and somewhat resembles that of parodontal disease. This is probably due, not so much to the injury, but to its effects creating a space which forms an area of chronic stagnation.
Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease
Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter
2016-01-01
Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799
A modular approach to creating large engineered cartilage surfaces.
Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D
2018-01-23
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nocini, Pier Francesco; Castellani, Roberto; Zanotti, Guglielmo; Gelpi, Federico; Covani, Ugo; Marconcini, Simone; de Santis, Daniele
2014-05-01
The aim of this study was to test a new collagen matrix (Mucoderm) positioned during oral implant abutment connection. A patient previously treated with Le Fort I for bone augmentation and 8 implants showing minimal amount of keratinized tissue was selected for an extensive keratinized tissue augmentation and deepening of the oral vestibule by apically positioning a split palatal flap and palatal grafting with Mucoderm. Clinical data at 9 and 14 days and 1 and 2 months showed resorption of the collagen graft, augmentation of the keratinized tissue around the implants, and deepening of the vestibule, with minimal morbidity and reduced surgical treatment time. However, some vestibular keratinized tissue contraction was evident. The new collagen matrix may be a promising material as a substitute for an autologous gingival/connective tissue graft. Despite the preliminary results of this innovative article, before drawing any general conclusion, the benefit of the procedure should be further evaluated by prospective clinical trials.
Ku, Taeyun; Swaney, Justin; Park, Jeong-Yoon; Albanese, Alexandre; Murray, Evan; Cho, Jae Hun; Park, Young-Gyun; Mangena, Vamsi; Chen, Jiapei; Chung, Kwanghun
2016-09-01
The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.
Esfahanian, Vahid; Farhad, Shirin; Sadighi Shamami, Mehrnaz
2014-01-01
Background and aims. Furcally-involved teeth present unique challenges to the success of periodontal therapy and influence treatment outcomes. This study aimed to assess to compare use of ADM and connective tissue membrane in class II furcation defect regeneration. Materials and methods. 10 patient with 2 bilaterally class II furcation defects in first and/or second maxilla or man-dibular molar without interproximal furcation involvement, were selected. Four weeks after initial phase of treatment, before and thorough the surgery pocket depth (PD), clinical attachment level to stent (CAL-S), free gingival margin to stent(FGM-S) , crestal bone to stent (Crest-S), horizontal defect depth to stent (HDD-S) and vertical defect depth to stent (VDD-S) and crestal bone to defect depth measured from stent margin. Thereafter, one side randomly treated using connective tissue and DFDBA (study group) and opposite side received ADM and DFDBA (control group). After 6 months, soft and hard tissue parameters measured again in re-entry. Results. Both groups presented improvements after therapies (P & 0.05). No inter-group differences were seen in PD re-duction (P = 0.275), CAL gain (P = 0.156), free gingival margin (P = 0.146), crest of the bone (P = 0.248), reduction in horizontal defects depth (P = 0.139) and reduction in vertical defects depth (P = 0.149). Conclusion. Both treatments modalities have potential of regeneration without any adverse effect on healing process. Connective tissue grafts did not have significant higher bone fill compared to that of ADM. PMID:25093054
Clonal population of adult stem cells: life span and differentiation potential.
Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E
2004-01-01
Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.
El Hajjaji, Hafida; Cole, Ada Asbury; Manicourt, Daniel-Henri
2005-01-01
Hyaluronan (HA), an important component of connective tissues, is highly metabolically active, but the mechanisms involved in its catabolism are still largely unknown. We hypothesized that a protein similar to sperm PH-20, the only mammalian hyaluronidase known to be active at neutral pH, could be expressed in connective tissue cells. An mRNA transcript similar to that of PH-20 was found in chondrocytes, synoviocytes, and dermal fibroblasts, and its levels were enhanced upon stimulation with IL-1. In cell layers extracted with Triton X-100 – but not with octylglucoside – and in culture media, a polyclonal antipeptide anti-PH-20 antibody identified protein bands with a molecular weight similar to that of sperm PH-20 (60 to 65 kDa) and exhibiting a hyaluronidase activity at neutral pH. Further, upon stimulation with IL-1, the amounts of the neutral-active hyaluronidase increased in both cell layers and culture media. These findings contribute potential important new insights into the biology of connective tissues. It is likely that PH-20 facilitates cell-receptor-mediated uptake of HA, while overexpression or uncontrolled expression of the enzyme can cause great havoc to connective tissues: not only does HA fragmentation compromise the structural integrity of tissues, but also the HA fragments generated are highly angiogenic and are potent inducers of proinflammatory cytokines. On the other hand, the enzyme activity may account for the progressive depletion of HA seen in osteoarthritis cartilage, a depletion that is believed to play an important role in the apparent irreversibility of this disease process. PMID:15987477
Molnár, K
2005-01-01
Metacestodes of Neogryporhynchus cheilancristrotus (Wedl, 1855) were found in the gut of some gibel carp (Carassius gibelio) specimens from a Hungarian water reservoir. Location of metacestodes in the freshly opened gut was marked with disseminated, red-coloured, pinhead-sized nodules in the anterior part of the intestine. In histological sections, metacestodes were found in a hole inside the propria layer of the intestinal folds. The worms were in direct contact with the host tissue without being encapsulated as a result of host reaction. In some specimens with extruded rostellum the rostellar hooks were bored into the host tissue and suckers grabbed pieces of the surrounding connective tissue. Around the worms, congested capillaries and formation of macrophages were seen in the lysed connective tissue.
A case of mixed connective tissue disease with pseudo-pseudo Meigs' syndrome (PPMS)-like features.
Cheah, C K; Ramanujam, S; Mohd Noor, N; Gandhi, C; D Souza, Beryl A; Gun, S C
2016-02-01
Pseudo-pseudo Meigs' syndrome (PPMS) has been reported to be a rare presentation of patients with systemic lupus erythematosus (SLE). However, such a presentation is not common in other forms of connective tissue disease. We presented a case of gross ascites, pleural effusion, and marked elevation of CA-125 level (PPMS-like features) that led to a diagnosis of MCTD. The patient responded to systemic steroid therapy. © The Author(s) 2015.
de Arriba, Alvaro; Lassaletta, Luis; Pérez-Mora, Rosa María; Gavilán, Javier
2013-01-01
Differential diagnosis of geniculate ganglion tumours includes chiefly schwannomas, haemangiomas and meningiomas. We report the case of a patient whose clinical and imaging findings mimicked the presentation of a facial nerve schwannoma.Pathological studies revealed a lesion with nerve bundles unstructured by intense collagenisation. Consequently, it was called fibrous connective tissue lesion of the facial nerve. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
A nonphosphaturic mesenchymal tumor mixed connective tissue variant of the sacrum.
Mavrogenis, Andreas F; Sakellariou, Vasileios I; Soultanis, Konstantinos; Mahera, Helen; Korres, Demetrios S; Papagelopoulos, Panayiotis J
2010-11-02
Tumor-induced or oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by overproduction of fibroblast growth factor-23 as a phosphaturic agent and renal phosphate wasting. A range of predominantly mesenchymal neoplasms have been associated with tumor-induced osteomalacia and classified as phosphaturic mesenchymal tumor mixed connective tissues. However, phosphaturic mesenchymal tumor mixed connective tissues could be nonphosphaturic in the first stage of the disease, either because the tumors are resected early in the clinical course or because the patient's osteomalacia was attributed to another cause. This article presents a case of a 42-year-old woman with a 2-year history of low back and right leg pain. Laboratory examinations including serum and urine calcium and phosphorous were within normal values. Imaging of the lumbar spine and pelvis showed an osteolytic lesion occupying the right sacral wing. Histology was unclear. Reverse-transcription polymerase chain reaction analysis for fibroblast growth factor-23 was positive and confirmed the diagnosis of phosphaturic mesenchymal tumor mixed connective tissues. Preoperative selective arterial embolization and complete intralesional excision, bone grafting, and instrumented fusion from L4 to L5 to the iliac wings bilaterally was performed. Postoperative recovery was uneventful. Neurological deficits were not observed. A lumbopelvic corset was applied for 3 months. At 12 months, the patient was asymptomatic. Serum and urine values of calcium and phosphorous were normal throughout the follow-up evaluation. Copyright 2010, SLACK Incorporated.