Science.gov

Sample records for connective tissue growth

  1. ARTIFICIAL ACTIVATION OF THE GROWTH IN VITRO OF CONNECTIVE TISSUE

    PubMed Central

    Carrel, Alexis

    1913-01-01

    The experiments have shown that extracts of tissues and tissue juices, under certain conditions, accelerate the growth in intro of the connective tissue from about three to forty times. This activating power was found in many tissues. It was much more marked, however, with the extracts of embryos, of adult spleen, and of the Rous sarcoma. The power diminished directly with the dilution of the extracts, and appeared not to apply to the tissues of a heterologous animal. The power was reduced when heated at 56° C., and removed when heated at 70° C. It was diminished markedly by filtration through a Berkefield filter and was completely suppressed by filtration through a Chamberland filter. Possibly the finding of the activating power of tissue extracts will have no immediate practical application. Nevertheless, it may be indirectly useful by leading to the discovery of some of the factors determining the growth of tissues and of the unknown laws of cell dynamics, and may ultimately throw light on the mechanism of the cicatrization of wounds. PMID:19867620

  2. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    PubMed

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  3. Connective tissue progenitor cell growth characteristics on textured substrates

    PubMed Central

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George F; Roy, Shuvo

    2007-01-01

    Growth characteristics of human connective tissue progenitor (CTP) cells were investigated on smooth and textured substrates, which were produced using MEMS (microelectromechanical systems) fabrication technology. Human bone marrow derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on polydimethylsiloxane (PDMS) substrates comprising smooth (non-patterned) surfaces (SMOOTH), 4 different cylindrical post micro-textures (POSTS) that were 7–10 μm high and 5, 10, 20, and 40 μm diameter, respectively, and channel micro-textures (CHANNELS) with curved cross-sections that were 11 μm high, 45 μm wide, and separated by 5 μm wide ridges. Standard glass-tissue culture surfaces were used as controls. Micro-textures resulted in the modification of CTP morphology, attachment, migration, and proliferation characteristics. Specifically, cells on POSTS exhibited more contoured morphology with closely packed cytoskeletal actin microfilaments compared to the more random orientation in cells grown on SMOOTH. CTP colonies on 10 μm-diameter POSTS exhibited higher cell number than any other POSTS, and a significant increase in cell number (442%) compared to colonies on SMOOTH (71%). On CHANNELS, colonies tended to be denser (229%) than on POSTS (up to 140% on 10 μm POSTS), and significantly more so compared to those on SMOOTH (104%). PMID:18019838

  4. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces.

    PubMed

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George; Roy, Shuvo

    2002-12-15

    Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone-marrow-derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on smooth PDMS surfaces and on PDMS post microtextures that were 6 microm high and 5, 10, 20, and 40 microm in diameter, respectively. Glass tissue-culture dishes were used as controls. The number of viable cells was determined, and an alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces. Cells on the smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions, with cell process lengths of up to 80 microm. In contrast, cells on the PDMS post microtextures grew as sparsely distributed networks of cells, with processes, occasionally up to 300 microm, that appeared to interact with the posts. Cell counts revealed that there were fewer (50%) CTPs on the smooth PDMS surface than were on the glass control surfaces. However, there were consistently more (>144%) CTPs on the PDMS post textures than on the controls. In particular, the 10-microm-in-diameter posts (268%) exhibited a significantly (p < 0.05) greater cell number than did the smooth PDMS.

  5. Connective tissue growth factor is a substrate of ADAM28

    SciTech Connect

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-11-26

    Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.

  6. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  7. Mechanical tension as a driver of connective tissue growth in vitro.

    PubMed

    Wilson, Cameron J; Pearcy, Mark J; Epari, Devakara R

    2014-07-01

    We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous "scaffold" that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in

  8. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    PubMed Central

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  9. CONTRIBUTIONS TO THE STUDY OF THE MECHANISM OF THE GROWTH OF CONNECTIVE TISSUE

    PubMed Central

    Carrel, Alexis

    1913-01-01

    When connective tissue cells have been cultivated for a certain length of time in a medium which has been repeatedly changed, a definite relation arises between the rate of growth of the cells and the composition of the medium. It is possible, by adding to the culture medium a given quantity of certain substances, such as embryonic juices, to foresee the extent to which a fragment of tissue composed of a given strain of cells will increase in a given time. The rate of growth of a strain of cells can be accelerated or retarded by the addition to the medium of activating or retarding substances. The dynamic condition of a strain of connective tissue cells, which have been living in a given medium for some time, is not a definitely acquired characteristic, but a temporary state, and is the product or function of the medium in which the cells are living, and is readily modified merely by altering the composition of the medium. A knowledge of the characteristics of the growth of connective tissue described has led to a new result,—the indefinite proliferation of a strain of connective tissue cells outside of the organism. The strain of connective tissue originally obtained from a fragment of chick embryo heart, which had been pulsating in vitro for 104 days, was still actively alive after sixteen months of independent life and more than 190 passages. The rate of proliferation of the connective tissue sixteen months old equalled and even exceeded that of fresh connective tissue taken from an eight day old embryo. It appears, therefore, that time has no effect on the tissues isolated from the organism and preserved by means of the technique described above. During the sixteenth month of life in vitro the cells increased rapidly in number and were able in a short time to produce a large quantity of new tissue. This fact, therefore, definitely demonstrates that the tissues were not in a state of survival, as was the case in certain earlier experiments, but in a condition

  10. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  11. Connective tissue growth factor immunohistochemical expression is associated with gallbladder cancer progression.

    PubMed

    Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C

    2013-02-01

    Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P < .05. Survival analysis was assessed by the Kaplan-Meier method and the log-rank test. Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.

  12. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  13. Connective Tissue Disorders

    MedlinePlus

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  14. Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction.

    PubMed

    Chuva de Sousa Lopes, Susana M; Feijen, Alie; Korving, Jeroen; Korchynskyi, Olexander; Larsson, Jonas; Karlsson, Stefan; ten Dijke, Peter; Lyons, Karen M; Goldschmeding, Roel; Doevendans, Pieter; Mummery, Christine L

    2004-11-01

    Connective tissue growth factor (CTGF) is reported to be a target gene of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) in vitro. Its physiological role in angiogenesis and skeletogenesis during mouse development has been described recently. Here, we have mapped expression of CTGF mRNA during mouse heart development, postnatal adult life, and after experimental myocardial infarction. Furthermore, we investigated the relationship between CTGF and the BMP/TGFbeta signaling pathway in particular during heart development in mutant mice. Postnatally, CTGF expression in the heart became restricted to the atrium. Strikingly, 1 week after myocardial infarction, when myocytes have disappeared from the infarct zone, CTGF and TGFbeta expression as well as activated forms of TGFbeta but not BMP, Smad effector proteins are colocalized exclusively in the fibroblasts of the scar tissue, suggesting possible cooperation between CTGF and TGFbeta during the pathological fibrotic response.

  15. Uptake and intracellular transport of the connective tissue growth factor: a potential mode of action.

    PubMed Central

    Wahab, N A; Brinkman, H; Mason, R M

    2001-01-01

    Connective tissue growth factor (CTGF) is a secreted cysteine-rich protein now considered as an important effector molecule in both physiological and pathological processes. An increasing amount of evidence indicates that CTGF plays a key role in the pathogenesis of different fibrotic disorders including diabetic nephropathy. However, the molecular mechanisms by which CTGF exerts its effects are not known. Here we provide the first evidence for the existence of an intracellular transport pathway for the growth factor in human mesangial cells. Our results demonstrate that CTGF is internalized from the cell surface in endosomes and accumulates in a juxtanuclear organelle from which the growth factor is then translocated into the cytosol. In the cytosol CTGF is phosphorylated by protein kinase C and PMA treatment can enhance this phosphorylation. Phosphorylated CTGF may have an important role in the cytosol, but it is also translocated into the nucleus where it may directly affect transcription. PMID:11563972

  16. [THE ROLE OF TRANSFORMING GROWTH FACTOR-B IN IMMUNOPATHOGENESIS OF DISEASES OF CONNECTIVE TISSUE].

    PubMed

    Rudoi, A S; Moskalev, A V; Sboitchakov, V B

    2016-02-01

    The recent studies of molecular physiology of fibrillin and pathophysiology of inherent disorders of structure and function of connective tissue such as dissection and aneurysm of aorta, myxomatously altered cusps and prolapses of mitral valve, syndrome of hyper-mobility of joints, demonstrated that important role in development of these malformations play alterations of transfer of signals by growth factors and matrix cellular interaction. These conditions under manifesting Marfan's syndrome can be a consequence of anomalies of fibrillin-1 which deficiency unbrakes process of activation of transforming growth factor-β (TGFβ). The involvement of TGFβ in pathogenesis of Marfan's syndrome permits consider antagonists of angiotensin-transforming enzymes as potential pharmaceuticals in therapy of this disease. The article presents analysis of publications' data related to this problem.

  17. The Role of Connective Tissue Growth Factor (CTGF/CCN2) in Skeletogenesis

    PubMed Central

    Arnott, John A; Lambi, Alex G; Mundy, Christina M; Hendesi, Honey; Pixley, Robin A; Owen, Thomas A; Safadi, Fayez F; Popoff, Steven N

    2012-01-01

    Connective tissue growth factor (CTGF) is a 38kDa, cysteine rich, extracellular matrix protein composed of four domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells which was dramatically increased during skeletal repair or regeneration. The physiological significance of CTGF in skeletogenesis was confirmed in CTGF-null mice, which exhibited multiple skeletal dysmorphisms as a result of impaired growth plate chondrogenesis, angiogenesis, and bone formation/mineralization. Given the emerging importance of CTGF in osteogenesis and chondrogenesis, this review will focus on its expression in skeletal tissues, its effects on osteoblast and chondrocyte differentiation and function, and the skeletal implications of ablation or over-expression of CTGF in knockout or transgenic mouse models, respectively. In addition, this review will examine the role of integrin-mediated signaling and the regulation of CTGF expression as it relates to skeletogenesis. We will emphasize CTGF studies in bone or bone cells, and will identify opportunities for future investigations concerning CTGF and chondrogenesis/osteogenesis. PMID:21967332

  18. The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis

    PubMed Central

    Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.

    2013-01-01

    Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844

  19. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  20. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  1. Connective Tissue Growth Factor Regulates Cardiac Function and Tissue Remodeling in a Mouse Model of Dilated Cardiomyopathy

    PubMed Central

    Koshman, Yevgeniya E.; Sternlicht, Mark D.; Kim, Taehoon; O'Hara, Christopher P.; Koczor, Christopher A.; Lewis, William; Seeley, Todd W.; Lipson, Kenneth E.; Samarel, Allen M.

    2015-01-01

    Cardiac structural changes associated with dilated cardiomyopathy (DCM) include cardiomyocyte hypertrophy and myocardial fibrosis. Connective Tissue Growth Factor (CTGF) has been associated with tissue remodeling and is highly expressed in failing hearts. Our aim was to test if inhibition of CTGF would alter the course of cardiac remodeling and preserve cardiac function in the protein kinase Cε (PKCε) mouse model of DCM. Transgenic mice expressing constitutively active PKCε in cardiomyocytes develop cardiac dysfunction that was evident by 3 months of age, and that progressed to cardiac fibrosis, heart failure, and increased mortality. Beginning at 3 months of age, PKCε mice were treated with a neutralizing monoclonal antibody to CTGF (FG-3149) for an additional 3 months. CTGF inhibition significantly improved left ventricular (LV) systolic and diastolic function in PKCε mice, and slowed the progression of LV dilatation. Using gene arrays and quantitative PCR, the expression of many genes associated with tissue remodeling were elevated in PKCε mice, but significantly decreased by CTGF inhibition. However total collagen deposition was not attenuated. The observation of significantly improved LV function by CTGF inhibition in PKCε mice suggests that CTGF inhibition may benefit patients with DCM. Additional studies to explore this potential are warranted. PMID:26549358

  2. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  3. Connective tissue growth factor (CTGF/CCN2) in haemophilic arthropathy and arthrofibrosis: a histological analysis

    PubMed Central

    Jiang, Jie; Leong, Natalie L.; Khalique, Umara.; Phan, Tien M.; Lyons, Karen M.; Luck, James V.

    2016-01-01

    Introduction Joint haemorrhage is the principal clinical manifestation of haemophilia frequently leading to advanced arthropathy and arthrofibrosis, resulting in severe disability. The degree and prevalence of arthrofibrosis in hemophilic arthropathy is more severe than in other forms of arthropathy. Expression of connective tissue growth factor (CTGF) has been linked to many fibrotic diseases, but has not been studied in the context of haemophilic arthropathy. Aim We aim to compare synovial tissues histologically from haemophilia and osteoarthritis patients with advanced arthropathy in order to compare expression of proteins that are possibly aetiologic in the development of arthrofibrosis. Methods Human synovial tissues were obtained from 10 haemophilia and 10 osteoarthritis patients undergoing joint surgery and processed for histology and immunohistochemistry. Results All samples from haemophilia patients had synovitis with hypertrophy and hyperplasia of synovial villi. Histologically, synovial tissues contained hyperplastic villi with increased cellularity and abundant haemosiderin-and ferritin-pigmented macrophage-like cells (HMCs), with a perivascular localization in the sub-surface layer. CTGF staining was observed in the surface layer and sub-surface layer in all haemophilia patients, exclusively co-localizing with HMCs. Quantification showed that the extent of CTGF-positive areas was correlated with the degree of detection of HMCs. CTGF was not observed in any of the samples from osteoarthritis patients. Conclusion Using histological analysis, we showed that CTGF expression is elevated in haemophilia patients with arthrofibrosis and absent in patients with osteoarthritis. Additionally, we found that CTGF is always associated with haemosiderin-pigmented macrophage-like cells, which suggests that CTGF is produced by synovial A cells following the uptake of blood breakdown products. PMID:27704689

  4. Connective tissue growth factor (CTGF/CCN2) in haemophilic arthropathy and arthrofibrosis: a histological analysis.

    PubMed

    Jiang, J; Leong, N L; Khalique, U; Phan, T M; Lyons, K M; Luck, J V

    2016-11-01

    Joint haemorrhage is the principal clinical manifestation of haemophilia frequently leading to advanced arthropathy and arthrofibrosis, resulting in severe disability. The degree and prevalence of arthrofibrosis in hemophilic arthropathy is more severe than in other forms of arthropathy. Expression of connective tissue growth factor (CTGF) has been linked to many fibrotic diseases, but has not been studied in the context of haemophilic arthropathy. We aim to compare synovial tissues histologically from haemophilia and osteoarthritis patients with advanced arthropathy in order to compare expression of proteins that are possibly aetiologic in the development of arthrofibrosis. Human synovial tissues were obtained from 10 haemophilia and 10 osteoarthritis patients undergoing joint surgery and processed for histology and immunohistochemistry. All samples from haemophilia patients had synovitis with hypertrophy and hyperplasia of synovial villi. Histologically, synovial tissues contained hyperplastic villi with increased cellularity and abundant haemosiderin- and ferritin-pigmented macrophage-like cells (HMCs), with a perivascular localization in the sub-surface layer. CTGF staining was observed in the surface layer and sub-surface layer in all haemophilia patients, exclusively co-localizing with HMCs. Quantification showed that the extent of CTGF-positive areas was correlated with the degree of detection of HMCs. CTGF was not observed in any of the samples from osteoarthritis patients. Using histological analysis, we showed that CTGF expression is elevated in haemophilia patients with arthrofibrosis and absent in patients with osteoarthritis. Additionally, we found that CTGF is always associated with haemosiderin-pigmented macrophage-like cells, which suggests that CTGF is produced by synovial A cells following the uptake of blood breakdown products. © 2016 John Wiley & Sons Ltd.

  5. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  6. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin.

    PubMed

    Deng, Yi-Ting; Chen, Hsin-Ming; Cheng, Shih-Jung; Chiang, Chun-Pin; Kuo, Mark Yen-Ping

    2009-09-01

    Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF). We immunohistochemically examined the expression of CTGF protein in 20 cases of OSF and found positive CTGF staining in fibroblasts and endothelial cells in all cases. Western blot analysis showed that arecoline, a main alkaloid found in AN, stimulated CTGF synthesis in a dose- and time-dependent manner in buccal mucosal fibroblasts. Constitutive overexpression of CTGF during AN chewing may enhance the fibrotic activity in OSF and play a role in the pathogenesis of OSF. Pretreatment with NF-kappaB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant N-acetyl-l-cysteine, but not ERK inhibitor PD98059, significantly reduced arecoline-induced CTGF synthesis. Furthermore, curcumin completely inhibited arecoline-induced CTGF synthesis and the inhibition is dose-dependent. These results indicated that arecoline-induced CTGF synthesis was mediated by ROS, NF-kappaB, JNK, P38 MAPK pathways and curcumin could be a useful agent in controlling OSF.

  7. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells.

    PubMed

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-03-22

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis.

  8. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    PubMed

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  9. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells

    PubMed Central

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K.; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-01-01

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis. PMID:27011166

  10. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    PubMed

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  11. Induction of Ovarian Primordial Follicle Assembly by Connective Tissue Growth Factor CTGF

    PubMed Central

    Schindler, Ryan; Nilsson, Eric; Skinner, Michael K.

    2010-01-01

    Primordial follicle assembly is a process that occurs when oocyte nests break down to form individual primordial follicles. The size of this initial pool of primordial follicles in part determines the reproductive lifespan of the female. Connective tissue growth factor (CTGF) was identified as a potential regulatory candidate for this process in a previous microarray analysis of follicle development. The current study examines the effects of CTGF and associated transforming growth factor beta 1 (TGFβ-1) on follicle assembly. Ovaries were removed from newborn rat pups and placed in an organ culture system. The ovaries treated with CTGF for two days were found to have an increased proportion of assembled follicles. CTGF was found to regulate the ovarian transcriptome during primordial follicle assembly and an integrative network of genes was identified. TGFβ-1 had no effect on primordial follicle assembly and in combination with CTGF decreased oocyte number in the ovary after two days of culture. Over ten days of treatment only the combined treatment of CTGF and TGFβ-1 was found to cause an increase in the proportion of assembled follicles. Interestingly, treatment with TGFβ-1 alone resulted in fewer total oocytes in the ovary and decreased the primordial follicle pool size after ten days of culture. Observations indicate that CTGF alone or in combination with TGFβ-1 stimulates primordial follicle assembly and TGFβ-1 can decrease the primordial follicle pool size. These observations suggest the possibility of manipulating primordial follicle pool size and influencing female reproductive lifespan. PMID:20886044

  12. Development of a novel gene silencer pyrrole-imidazole polyamide targeting human connective tissue growth factor.

    PubMed

    Wan, Jian-Xin; Fukuda, Noboru; Ueno, Takahiro; Watanabe, Takayoshi; Matsuda, Hiroyuki; Saito, Kosuke; Nagase, Hiroki; Matsumoto, Yoshiaki; Matsumoto, Koichi

    2011-01-01

    Pyrrole-imidazole (PI) polyamide can bind to specific sequences in the minor groove of double-helical DNA and inhibit transcription of the genes. We designed and synthesized a PI polyamide to target the human connective tissue growth factor (hCTGF) promoter region adjacent to the Smads binding site. Among coupling activators that yield PI polyamides, 1-[bis(dimethylamino)methylene]-5-chloro-1H-benzotriazolium 3-oxide hexafluorophosphate (HCTU) was most effective in total yields of PI polyamides. A gel shift assay showed that a PI polyamide designed specifically for hCTGF (PI polyamide to hCTGF) bound the appropriate double-stranded oligonucleotide. A fluorescein isothiocyanate (FITC)-conjugated PI polyamide to CTGF permeated cell membranes and accumulated in the nuclei of cultured human mesangial cells (HMCs) and remained there for 48 h. The PI polyamide to hCTGF significantly decreased phorbol 12-myristate acetate (PMA)- or transforming growth factor-β1 (TGF-β1)-stimulated luciferase activity of the hCTGF promoter in cultured HMCs. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated expression of hCTGF mRNA in a dose-dependent manner. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated levels of hCTGF protein in HMCs. These results indicate that the developed synthetic PI polyamide to hCTGF could be a novel gene silencer for fibrotic diseases.

  13. Induction of ovarian primordial follicle assembly by connective tissue growth factor CTGF.

    PubMed

    Schindler, Ryan; Nilsson, Eric; Skinner, Michael K

    2010-09-24

    Primordial follicle assembly is a process that occurs when oocyte nests break down to form individual primordial follicles. The size of this initial pool of primordial follicles in part determines the reproductive lifespan of the female. Connective tissue growth factor (CTGF) was identified as a potential regulatory candidate for this process in a previous microarray analysis of follicle development. The current study examines the effects of CTGF and associated transforming growth factor beta 1 (TGFβ-1) on follicle assembly. Ovaries were removed from newborn rat pups and placed in an organ culture system. The ovaries treated with CTGF for two days were found to have an increased proportion of assembled follicles. CTGF was found to regulate the ovarian transcriptome during primordial follicle assembly and an integrative network of genes was identified. TGFβ-1 had no effect on primordial follicle assembly and in combination with CTGF decreased oocyte number in the ovary after two days of culture. Over ten days of treatment only the combined treatment of CTGF and TGFβ-1 was found to cause an increase in the proportion of assembled follicles. Interestingly, treatment with TGFβ-1 alone resulted in fewer total oocytes in the ovary and decreased the primordial follicle pool size after ten days of culture. Observations indicate that CTGF alone or in combination with TGFβ-1 stimulates primordial follicle assembly and TGFβ-1 can decrease the primordial follicle pool size. These observations suggest the possibility of manipulating primordial follicle pool size and influencing female reproductive lifespan.

  14. Dynamic Vibration Cooperates with Connective Tissue Growth Factor to Modulate Stem Cell Behaviors

    PubMed Central

    Tong, Zhixiang; Zerdoum, Aidan B.; Duncan, Randall L.

    2014-01-01

    Vocal fold disorders affect 3–9% of the U.S. population. Tissue engineering offers an alternative strategy for vocal fold repair. Successful engineering of vocal fold tissues requires a strategic combination of therapeutic cells, biomimetic scaffolds, and physiologically relevant mechanical and biochemical factors. Specifically, we aim to create a vocal fold-like microenvironment to coax stem cells to adopt the phenotype of vocal fold fibroblasts (VFFs). Herein, high frequency vibratory stimulations and soluble connective tissue growth factor (CTGF) were sequentially introduced to mesenchymal stem cells (MSCs) cultured on a poly(ɛ-caprolactone) (PCL)-derived microfibrous scaffold for a total of 6 days. The initial 3-day vibratory culture resulted in an increased production of hyaluronic acids (HA), tenascin-C (TNC), decorin (DCN), and matrix metalloproteinase-1 (MMP1). The subsequent 3-day CTGF treatment further enhanced the cellular production of TNC and DCN, whereas CTGF treatment alone without the vibratory preconditioning significantly promoted the synthesis of collagen I (Col 1) and sulfated glycosaminoglycans (sGAGs). The highest level of MMP1, TNC, Col III, and DCN production was found for cells being exposed to the combined vibration and CTGF treatment. Noteworthy, the vibration and CTGF elicited a differential stimulatory effect on elastin (ELN), HA synthase 1 (HAS1), and fibroblast-specific protein-1 (FSP-1). The mitogenic activity of CTGF was only elicited in naïve cells without the vibratory preconditioning. The combined treatment had profound, but opposite effects on mitogen-activated protein kinase (MAPK) pathways, Erk1/2 and p38, and the Erk1/2 pathway was critical for the observed mechano-biochemical responses. Collectively, vibratory stresses and CTGF signals cooperatively coaxed MSCs toward a VFF-like phenotype and accelerated the synthesis and remodeling of vocal fold matrices. PMID:24456068

  15. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro

    PubMed Central

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-01-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935

  16. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  17. Connective tissue growth factor is not necessary for haze formation in excimer laser wounded mouse corneas

    PubMed Central

    Feng, Xiaodi; Pi, Liya; Sriram, Sriniwas; Schultz, Gregory S.

    2017-01-01

    We sought to determine if connective tissue growth factor (CTGF) is necessary for the formation of corneal haze after corneal injury. Mice with post-natal, tamoxifen-induced, knockout of CTGF were subjected to excimer laser phototherapeutic keratectomy (PTK) and the corneas were allowed to heal. The extent of scaring was observed in non-induced mice, heterozygotes, and full homozygous knockout mice and quantified by macrophotography. The eyes from these mice were collected after euthanization for re-genotyping to control for possible Cre-mosaicism. Primary corneal fibroblasts from CTGF knockout corneas were established in a gel plug assay. The plug was removed, simulating an injury, and the rate of hole closure and the capacity for these cells to form light reflecting cells in response to CTGF and platelet-derived growth factor B (PDGF-B) were tested and compared to wild-type cells. We found that independent of genotype, each group of mice was still capable of forming light reflecting haze in the cornea after laser ablation (p = 0.40). Results from the gel plug closure rate in primary cell cultures of knockout cells were not statistically different from serum starved wild-type cells, independent of treatment. Compared to the serum starved wild-type cells, stimulation with PDGF-BB significantly increased the KO cell culture’s light reflection (p = 0.03). Most interestingly, both reflective cultures were positive for α-SMA, but the cellular morphology and levels of α-SMA were distinct and not in proportion to the light reflection seen. This new work demonstrates that corneas without CTGF can still form sub-epithelial haze, and that the light reflecting phenotype can be reproduced in culture. These data support the possibilities of growth factor redundancy and that multiple pro-haze pathways exist. PMID:28207886

  18. Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling

    PubMed Central

    Accornero, Federica; van Berlo, Jop H.; Correll, Robert N.; Elrod, John W.; Sargent, Michelle A.; York, Allen; Rabinowitz, Joseph E.; Leask, Andrew

    2015-01-01

    The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart. PMID:25870108

  19. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    PubMed

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  20. High expression of connective tissue growth factor accelerates dissemination of leukaemia.

    PubMed

    Wells, J E; Howlett, M; Halse, H M; Heng, J; Ford, J; Cheung, L C; Samuels, A L; Crook, M; Charles, A K; Cole, C H; Kees, U R

    2016-09-01

    To improve treatment of acute lymphoblastic leukaemia (ALL), a better understanding of disease development is needed to tailor new therapies. Connective tissue growth factor (CTGF/CCN2) is highly expressed in leukaemia cells from the majority of paediatric patients with B-lineage ALL (pre-B ALL). CTGF is a matricellular protein and plays a role in aggressive cancers. Here we have genetically engineered leukaemia cells to modulate CTGF expression levels. Elevated CTGF levels accelerated disease dissemination and reduced survival in NOD/SCID mice. In vitro studies showed that CTGF protein induces stromal cell proliferation, promotes adhesion of leukaemia cells to stromal cells and leads to overexpression of genes associated with cell cycle and synthesis of extracellular matrix (ECM). Corresponding data from our leukaemia xenograft models demonstrated that CTGF leads to increased proliferation of non-leukaemia cells and deposition of ECM in the bone marrow. We document for the first time a functional role of CTGF in altering disease progression in a lymphoid malignancy. The findings provide support for targeting the bone marrow microenvironment in aggressive forms of leukaemia.

  1. Connective tissue growth factor production by activated pancreatic stellate cells in mouse alcoholic chronic pancreatitis

    PubMed Central

    Charrier, Alyssa; Brigstock, David R.

    2010-01-01

    Alcoholic chronic pancreatitis (ACP) is characterized by pancreatic necrosis, inflammation, and scarring, the latter of which is due to excessive collagen deposition by activated pancreatic stellate cells (PSC). The aim of this study was to establish a model of ACP in mice, a species that is usually resistant to the toxic effects of alcohol, and to identify the cell type(s) responsible for production of connective tissue growth factor (CTGF), a pro-fibrotic molecule. C57Bl/6 male mice received intraperitoneal ethanol injections for three weeks against a background of cerulein-induced acute pancreatitis. Peak blood alcohol levels remained consistently high in ethanol-treated mice as compared to control mice. In mice receiving ethanol plus cerulein, there was increased collagen deposition as compared to other treatment groups as well as increased frequency of α-smooth muscle actin and desmin-positive PSC which also demonstrated significantly enhanced CTGF protein production. Expression of mRNA for collagen α1(I), α-smooth muscle actin or CTGF were all increased and co-localized exclusively to activated PSC in ACP. Pancreatic expression of mRNA for key profibrotic markers were all increased in ACP. In conclusion, a mouse model of ACP has been developed that mimics key pathophysiological features of the disease in humans and which shows that activated PSC are the principal producers of collagen and CTGF. PSC-derived CTGF is thus a candidate therapeutic target in anti-fibrotic strategies for ACP. PMID:20368699

  2. Connective tissue growth factor is required for normal follicle development and ovulation.

    PubMed

    Nagashima, Takashi; Kim, Jaeyeon; Li, Qinglei; Lydon, John P; DeMayo, Francesco J; Lyons, Karen M; Matzuk, Martin M

    2011-10-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein the synthesis and secretion of which are hypothesized to be selectively regulated by activins and other members of the TGF-β superfamily. To investigate the in vivo roles of CTGF in female reproduction, we generated Ctgf ovarian and uterine conditional knockout (cKO) mice. Ctgf cKO mice exhibit severe subfertility and multiple reproductive defects including disrupted follicle development, decreased ovulation rates, increased numbers of corpus luteum, and smaller but functionally normal uterine horns. Steroidogenesis is disrupted in the Ctgf cKO mice, leading to increased levels of serum progesterone. We show that disrupted follicle development is accompanied by a significant increase in granulosa cell apoptosis. Moreover, despite normal cumulus expansion, Ctgf cKO mice exhibit a significant decrease in oocytes ovulated, likely due to impaired ovulatory process. During analyses of mRNA expression, we discovered that Ctgf cKO granulosa cells show gene expression changes similar to our previously reported granulosa cell-specific knockouts of activin and Smad4, the common TGF-β family intracellular signaling protein. We also discovered a significant down-regulation of Adamts1, a progesterone-regulated gene that is critical for the remodeling of extracellular matrix surrounding granulosa cells of preovulatory follicles. These findings demonstrate that CTGF is a downstream mediator in TGF-β and progesterone signaling cascades and is necessary for normal follicle development and ovulation.

  3. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer

    PubMed Central

    Moran-Jones, Kim; Gloss, Brian S.; Murali, Rajmohan; Chang, David K.; Colvin, Emily K.; Jones, Marc D.; Yuen, Samuel; Howell, Viive M.; Brown, Laura M.; Wong, Carol W.; Spong, Suzanne M.; Scarlett, Christopher J.; Hacker, Neville F.; Ghosh, Sue; Mok, Samuel C.; Birrer, Michael J.; Samimi, Goli

    2015-01-01

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer. PMID:26575166

  4. Paraquat increases connective tissue growth factor expression and impairs lung fibroblast proliferation and viscoelasticity.

    PubMed

    Zhang, N; Xie, Y-P; Pang, L; Zang, X-X; Wang, J; Shi, D; Wu, Y; Liu, X-L; Wang, G-H

    2014-12-01

    This in vitro study was designed to investigate the molecular mechanisms of paraquat-induced damage using cultured human fetal lung fibroblasts (MRC-5 cells), in order to promote the development of improved therapies for paraquat poisoning. Paraquat's effects on proliferation were examined by flow cytometry, on viscoelasticity by the micropipette aspiration technique, and on connective tissue growth factor (CTGF) expression by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Paraquat was found to significantly reduce the proliferation index of MRC-5 cells in a concentration-dependent manner (p < 0.05) and to significantly impair the viscoelastic properties in a time-independent manner (p < 0.05). Exposure to paraquat led to a significant and time-dependent increase in CTGF expression (p < 0.05) and induced changes in the morphology and biomechanical characteristics of the MRC-5 cells. These findings not only provide novel insights into the mechanisms of paraquat-induced lung fibrosis but may represent useful targets of improved molecular-based therapies for paraquat poisoning.

  5. Connective Tissue Growth Factor Is Required for Normal Follicle Development and Ovulation

    PubMed Central

    Nagashima, Takashi; Kim, Jaeyeon; Li, Qinglei; Lydon, John P.; DeMayo, Francesco J.; Lyons, Karen M.

    2011-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein the synthesis and secretion of which are hypothesized to be selectively regulated by activins and other members of the TGF-β superfamily. To investigate the in vivo roles of CTGF in female reproduction, we generated Ctgf ovarian and uterine conditional knockout (cKO) mice. Ctgf cKO mice exhibit severe subfertility and multiple reproductive defects including disrupted follicle development, decreased ovulation rates, increased numbers of corpus luteum, and smaller but functionally normal uterine horns. Steroidogenesis is disrupted in the Ctgf cKO mice, leading to increased levels of serum progesterone. We show that disrupted follicle development is accompanied by a significant increase in granulosa cell apoptosis. Moreover, despite normal cumulus expansion, Ctgf cKO mice exhibit a significant decrease in oocytes ovulated, likely due to impaired ovulatory process. During analyses of mRNA expression, we discovered that Ctgf cKO granulosa cells show gene expression changes similar to our previously reported granulosa cell-specific knockouts of activin and Smad4, the common TGF-β family intracellular signaling protein. We also discovered a significant down-regulation of Adamts1, a progesterone-regulated gene that is critical for the remodeling of extracellular matrix surrounding granulosa cells of preovulatory follicles. These findings demonstrate that CTGF is a downstream mediator in TGF-β and progesterone signaling cascades and is necessary for normal follicle development and ovulation. PMID:21868453

  6. Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients

    PubMed Central

    Stratton, Richard; Shiwen, Xu; Martini, Giorgia; Holmes, Alan; Leask, Andrew; Haberberger, Thomas; Martin, George R.; Black, Carol M.; Abraham, David

    2001-01-01

    Patients with scleroderma receiving Iloprost as a treatment for severe Raynaud’s phenomenon report a reduction in skin tightness, suggesting that this drug inhibits skin fibrosis. Connective tissue growth factor (CTGF), a recently described profibrotic cytokine, acts downstream and in concert with TGF-β to stimulate the fibrotic process and is involved in the fibrosis seen in scleroderma. Here we show that Iloprost, acting by elevation of cAMP, blocks the induction of CTGF and the increase in collagen synthesis in fibroblasts exposed to TGF-β. The potency of Iloprost with respect to suppression of CTGF far exceeds that of other prostanoid receptor agonists, suggesting that its effect is mediated by the prostacyclin receptor IP. By sampling dermal interstitial fluid using a suction blister device, we show that CTGF levels are greatly elevated in the dermis of scleroderma patients compared with healthy controls and that Iloprost infusion causes a marked decrease in dermal CTGF levels. These studies suggest that Iloprost could be reducing the level of a key profibrotic cytokine in scleroderma patients and that endogenous production of eicosanoids may limit the fibrotic response to TGF-β. PMID:11457877

  7. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy.

    PubMed

    Tsai, Chieh-Chih; Wu, Shi-Bei; Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves' ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO.

  8. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro.

    PubMed

    Sonnylal, Sonali; Xu, Shiwen; Jones, Helen; Tam, Angela; Sreeram, Vivek R; Ponticos, Markella; Norman, Jill; Agrawal, Pankaj; Abraham, David; de Crombrugghe, Benoit

    2013-05-15

    Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFβ, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis.

  9. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro

    PubMed Central

    Sonnylal, Sonali; Xu, Shiwen; Jones, Helen; Tam, Angela; Sreeram, Vivek R.; Ponticos, Markella; Norman, Jill; Agrawal, Pankaj; Abraham, David; de Crombrugghe, Benoit

    2013-01-01

    Summary Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFβ, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis. PMID:23525012

  10. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves’ Ophthalmopathy

    PubMed Central

    Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves’ ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO. PMID:26599235

  11. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy.

    PubMed Central

    Wahab, N A; Yevdokimova, N; Weston, B S; Roberts, T; Li, X J; Brinkman, H; Mason, R M

    2001-01-01

    We characterized a rabbit polyclonal antibody raised against human recombinant connective tissue growth factor (CTGF). The antibody recognised a higher molecular mass form (approx. 56 kDa) of CTGF in mesangial cell lysates as well as the monomeric (36-38 kDa) and lower molecular mass forms (<30 kDa) reported previously. Immunohistochemistry detected CTGF protein in glomeruli of kidneys of non-obese diabetic mice 14 days after the onset of diabetes, and this was prominent by 70 days. CTGF protein is also present in glomeruli of human patients with diabetic nephropathy. No CTGF was detected in either normal murine or human glomeruli. Transient transfection of a transformed human mesangial cell line with a CTGF-V5 epitope fusion protein markedly increased fibronectin and plasminogen activator inhibitor-1 synthesis in cultures maintained in normal glucose (4 mM) conditions; a CTGF-antisense construct reduced the elevated synthesis of these proteins in high glucose (30 mM) cultures. Culture of primary human mesangial cells for 14 days in high glucose, or in low glucose supplemented with recombinant CTGF or transforming growth factor beta1, markedly increased CTGF mRNA levels and fibronectin synthesis. However, whilst co-culture with a CTGF-antisense oligonucleotide reduced the CTGF mRNA pool by greater than 90% in high glucose, it only partially reduced fibronectin mRNA levels and synthesis. A chick anti-CTGF neutralizing antibody had a similar effect on fibronectin synthesis. Thus both CTGF and CTGF-independent pathways mediate increased fibronectin synthesis in high glucose. Nevertheless CTGF expression in diabetic kidneys is likely to be a key event in the development of glomerulosclerosis by affecting both matrix synthesis and, potentially through plasminogen activator inhibitor-1, its turnover. PMID:11563971

  12. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  13. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  14. [Connective tissue and inflammation].

    PubMed

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  15. Connective tissue growth factor in tear film of the horse: detection, identification and origin.

    PubMed

    Ollivier, F J; Brooks, D E; Schultz, G S; Blalock, T D; Andrew, S E; Komaromy, A M; Cutler, T J; Lassaline, M E; Kallberg, M E; Van Setten, G B

    2004-02-01

    Healing of corneal ulcers in horses is often associated with profound corneal stromal fibrosis and scar formation resulting in visual impairment. Connective tissue growth factor (CTGF) is a fibrogenic cytokine involved in wound healing and scarring. The purpose of this study was to determine whether CTGF was present in the tear fluid of normal horse eyes and the eyes of horses with corneal ulcers in order to evaluate the role of CTGF in corneal wound healing and corneal scar formation. Tear fluid samples were collected from 65 eyes of 44 horses; 32 samples from normal eyes, 21 samples from eyes with corneal ulceration, and 12 samples from the unaffected contralateral eyes of horses with ulcers. CTGF levels in the tears were determined by enzyme immunoassay using goat IgG against human CTGF. Antigenetic similarity of human and horse CTGF was established in a bio-equivalence assay. The identity of horse CTGF was confirmed by western blot. Lacrimal and nictitating membrane glands were investigated by immunohistochemistry in the attempt to clarify the origin of tear fluid CTGF. CTGF was detected in tear film of 23 normal unaffected eyes (72%) and 8 normal contralateral eyes (67%), with the mean CTGF levels (+/- SEM) being 51.5+/-19.2 and 13.4+/-3.9 ng/ml respectively. CTGF was found in 8 eyes with corneal ulcers (38%) with the mean CTGF concentration of 26.3+/-14.8 ng/ml. Western blot identified the protein detected as CTGF. The identification of CTGF in lacrimal glands suggests a major role of these glands in the presence of CTGF in tears. CTGF is present in horse tear fluid and derives, at least partly, from the lacrimal gland. Equine CTGF has strong antigenic similarity with human CTGF. Corneal disease leads to a decrease of CTGF concentrations in tears. The possible role of CTGF in the healing process of ocular surface requires further investigation.

  16. miR‑132 in atrial fibrillation directly targets connective tissue growth factor.

    PubMed

    Qiao, Gang; Xia, Dongsheng; Cheng, Zhaoyun; Zhang, Guobao

    2017-10-01

    Atrial fibrillation (AF) is the most frequently occurring, persistent cardiac arrhythmia, and the hallmark of AF‑dependent structural remodeling is atrial fibrosis. Connective tissue growth factor (CTGF) is important in the process of fibrosis. The association between miRNA and CTGF in AF‑dependent fibrosis remains to be elucidated. The present study aimed to determine if microRNA (miR)‑132 was able to regulate CTGF with an anti‑fibrotic effect in AF. A total of ten dogs or patients were assigned to control (n=4) and AF groups (n=6). The left atrium of dogs or right atrial appendage of patients was observed. Following this, cardiac fibroblasts of adult rats were treated with or without angiotensin II (Ang II). Furthermore, cardiac fibroblasts were transfected with miR‑132 mimics, inhibitor or negative control. The expression of miR‑132 and CTGF were analyzed by reverse transcription‑quantitative polymerase chain reaction or western blotting. These analyses demonstrated that miR‑132 expression was decreased and CTGF increased in the human and canine models with AF. The expression of miR‑132 and CTGF protein levels were upregulated in Ang II stimulated cardiac fibroblasts of adult rats. Furthermore, when miR‑132 was introduced into cardiac fibroblasts, the expression of miR‑132 increased significantly whereas the expression of CTGF decreased. Inverse results were observed when cardiac fibroblasts were transfected with miR‑132 inhibitor. The luciferase reporter assay was then performed to confirm that miR‑132 may suppress CTGF expression by binding to its 3'‑untranslated region. In conclusion, miR‑132 may target CTGF in regulating fibrosis in Ang II‑treated cardiac fibroblasts. These findings may aid in providing potential therapeutic targets in the treatment of AF.

  17. Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion.

    PubMed

    Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon

    2009-08-15

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.

  18. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    PubMed Central

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  19. Expression and clinical significance of connective tissue growth factor (CTGF) in Graves' ophthalmopathy.

    PubMed

    Huang, Yi-Ming; Chang, Pei-Chen; Wu, Shi-Bei; Kau, Hui-Chuan; Tsai, Chieh-Chih; Liu, Catherine Jui-Ling; Wei, Yau-Huei

    2017-05-01

    To examine the expression of connective tissue growth factor (CTGF) in human cultured orbital fibroblasts from patients with Graves' ophthalmopathy (GO) and investigate whether a correlation exists between the presence of CTGF protein and clinical parameters of the disease. The protein expression levels of CTGF were analysed by western blots in cultured orbital fibroblasts from 10 patients with GO and 7 age-matched normal controls. Associations between the protein expression of CTGF and the clinical factors of GO, including clinical demographics, thyroid function, clinical activity score (CAS) and ophthalmopathy index (OI), was evaluated. The mean protein expression levels of CTGF in the GO orbital fibroblasts were significantly higher than those of normal controls (p<0.001). Based on further analysis, the protein expression levels of CTGF in the GO orbital fibroblasts had significant correlation with gender (p=0.029), serum levels of thyrotropin receptor antibodies (p=0.029), CAS (p=0.048) and OI (p=0.043). Especially, there was a significant correlation between protein expression levels of CTGF and lid oedema (p=0.037), proptosis (p=0.045) and corneal involvement (p=0.001). Our findings revealed that the protein expression levels of CTGF in the GO orbital fibroblasts were significantly highly expressed than those of normal controls, and the elevated CTGF was associated with clinical characteristics and evolution, indicating CTGF may play a role in the pathogenesis and pathophysiology of GO. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Connective tissue growth factor and its regulation: a new element in diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Cortes, P

    2001-01-01

    Connective tissue growth factor (CTGF), a member of the closely related CCN family of cytokines appears to be fibrotic in skin. To determine whether CTGF is implicated in diabetic glomerulosclerosis we studied cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to rhCTGF significantly increased fibronectin and collagen type I secretion. Further, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36-38 kDa). However, exposure to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in glomerulosclerosis, markedly induced the expression of CTGF transcripts. With all but mechanical strain there was a concomitant stimulation of CTGF protein secretion. TGF-beta also induced abundant quantities of a small molecular weight form of CTGF (18 kDa). The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta neutralizing antibody blocked this stimulation. In vivo studies using quantitative RT-PCR demonstrated that while CTGF transcripts were low in the glomeruli of control mice, expression was increased 27-fold after approximately 3.5 months of diabetes. These changes occurred early in diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced elevation of CTGF mRNA (2-fold) observed in whole kidney cortices indicted that the primary alteration of CTGF expression was in the glomerulus. These results suggest that CTGF upregulation is an important factor in the pathogenesis of mesangial matrix accumulation in both diabetic and non-diabetic glomerulosclerosis, acting downstream of TGF-beta.

  1. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis

    PubMed Central

    2009-01-01

    Introduction A protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA. Methods Serum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions. Results The serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor. Conclusions These results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment. PMID:19922639

  2. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes.

    PubMed

    Abou Msallem, J; Chalhoub, H; Al-Hariri, M; Saad, L; Jaffa, M A; Ziyadeh, F N; Jaffa, A A

    2015-12-01

    Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.

  3. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    PubMed

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  4. Ethanol-mediated expression of connective tissue growth factor (CCN2) in mouse pancreatic stellate cells.

    PubMed

    Lawrencia, Carmel; Charrier, Alyssa; Huang, Guangcun; Brigstock, David R

    2009-04-01

    Activated pancreatic stellate cells (PSC) play a central role in the pathogenesis of pancreatic fibrosis, a common feature of chronic pancreatitis which is often caused by excessive alcohol consumption. In view of the central role of connective tissue growth factor (CCN2) in fibrosis, we investigated the mechanisms by which CCN2 is regulated in PSC following their exposure to ethanol or acetaldehyde. Primary cultures of PSC from Balb/c mice were treated with 0-50 mM ethanol or 0-200 microM acetaldehyde in the presence or absence of 4-methylpyrazole (4MP; an inhibitor of alcohol dehydrogenase), diallyl sulfide (DAS; an inhibitor of cytochrome P4502E1) or anti-oxidant catalase or vitamin D. CCN2 production, assessed by reverse-transcriptase polymerase chain reaction to measure CCN2 mRNA levels or by fluorescence activated cell sorting to assess CCN2 protein, was enhanced in a dose-dependent manner by ethanol or acetaldehyde. In the presence of 4MP, DAS, or the anti-oxidants vitamin D or catalase, there was a substantial decrease in the ability of ethanol to stimulate CCN2 mRNA expression and a concomitant decrease in CCN2-positive PSC. Accumulation of reactive oxygen species in PSC after exposure to ethanol was verified by loading the cells with dichlorofluorescin diacetate and showing that there was a stimulation of its oxidized fluorescent product, the latter of which was diminished in the presence of catalase or vitamin D. These results show the production of acetaldehyde and oxidant stress in mouse PSC are the cause of increased CCN2 mRNA and protein production after exposure of the cells to ethanol. The potential therapeutic effects of inhibitors of ethanol metabolism or anti-oxidants in alcoholic pancreatitis may arise in part through their ability to attenuate CCN2 production by PSC.

  5. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  6. Optimum scratch assay condition to evaluate connective tissue growth factor expression for anti-scar therapy.

    PubMed

    Moon, Heekyung; Yong, Hyeyoung; Lee, Ae-Ri Cho

    2012-02-01

    To evaluate a potential anti-scar therapy, we first need to have a reliable in vitro wound model to understand dermal fibroblast response upon cell injury and how cytokine levels are changed upon different wound heal phases. An in vitro wound model with different scratch assay conditions on primary human foreskin fibroblast monolayer cultures was prepared and cytokine levels and growth properties were evaluated with the aim of determining optimum injury conditions and observation time. Morphological characteristics of differently scratched fibroblasts from 0 to 36 h post injury (1 line, 2 lines and 3 lines) were investigated. The expression of connective tissue growth factor, CTGF, which is a key mediator in hyper-tropic scarring, and relative intensity of CTGF as a function of time were determined by western blot and gelatin Zymography. After injury (1 line), CTGF level was increased more than 2-fold within 1 h and continuously increased up to 3-fold at 6 h and was leveled down to reach normal value at 36 h, at which cell migration was complete. In more serious injury (2 lines), higher expression of CTGF was observed. The down regulation of CTGF expression after CTGF siRNA/lipofectamine transfection in control, 1 line and 2 lines scratch conditions were 40%, 75% and 55%, respectively. As a model anti-CTGF based therapy, CTGF siRNA with different ratios of linear polyethyleneimine (PEI) complexes (1:1, 1:5, 1:10, 1:20 and 1:30) were prepared and down-regulation efficacy of CTGF was evaluated with our optimized scratch assay, which is 1 line injury at 6 h post injury observation time. As the cationic linear PEI ratio increased, the down regulation efficacy was increased from 20% (1:20) to 55% (1:30). As CTGF level was increased to the highest at 6 h and leveled down afterwards, CTGF level at 6 h could provide the most sensitive response upon CTGF siRNA transfection. The scratch assay in the present study can be employed as a useful experimental tool to differentiate

  7. The serum levels of connective tissue growth factor in patients with systemic lupus erythematosus and lupus nephritis.

    PubMed

    Wang, F-M; Yu, F; Tan, Y; Liu, G; Zhao, M-H

    2014-06-01

    The expression of connective tissue growth factor mRNA in human kidneys may serve as an early marker for lupus nephritis progression. Therefore, we speculated that connective tissue growth factor may be involved in the pathogenesis of systemic lupus erythematosus and lupus nephritis. In this study, we set out to investigate the associations between serum connective tissue growth factor levels and clinicopathological features of patients with systemic lupus erythematosus and lupus nephritis. Serum samples from patients with non-renal systemic lupus erythematosus, renal biopsy-proven lupus nephritis and healthy control subjects were detected by enzyme-linked immunosorbent assay for serum connective tissue growth factor levels. The associations between connective tissue growth factor levels and clinicopathological features of the patients were further analysed. The levels of serum connective tissue growth factor in patients with non-renal systemic lupus erythematosus and lupus nephritis were both significantly higher than those in the normal control group (34.14 ± 12.17 ng/ml vs. 22.8 ± 3.0 ng/ml, p<0.001; 44.1 ± 46.8 ng/ml vs. 22.8 ± 3.0 ng/ml, p = 0.035, respectively). There was no significant difference of the serum connective tissue growth factor levels between non-renal systemic lupus erythematosus and lupus nephritis group (34.14 ± 12.17 ng/ml vs. 44.1 ± 46.8 ng/ml, p = 0.183). Serum connective tissue growth factor levels were significantly higher in lupus nephritis patients with the following clinical manifestations, including anaemia (51.3 ± 51.4 ng/ml vs. 23.4 ± 9.7 ng/ml, p<0.001) and acute renal failure (85.5 ± 75.0 ng/ml vs. 31.2 ± 21.8 ng/ml, p = 0.002). Serum connective tissue growth factor levels in class IV were significantly higher than that in class II, III and V (57.6 ± 57.5 ng/ml vs. 18.7 ± 6.4 ng/ml, p = 0.019; 57.6 ± 57.5 ng/ml vs. 25.2

  8. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  9. Effect of Brain- and Tumor-Derived Connective Tissue Growth Factor on Glioma Invasion

    PubMed Central

    Edwards, Lincoln A.; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A.; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T.; Zhang, Wei

    2011-01-01

    Background Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Methods Highly infiltrative patient-derived glioma tumor–initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Results Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1–TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF200 ng/mL: 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF200 ng/mL + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most

  10. [Connective tissue growth factors, CTGF and Cyr61 in drug-induced gingival overgrowth--an animal model].

    PubMed

    Ciobanică, Mihaela; Cianga, Corina; Căruntu, Irina-Draga; Grigore, Georgiana; Cianga, P

    2008-01-01

    Human gingival overgrowth may occur as a side effect of chronic administration of some therapeutic agents. The mechanisms responsible for the gingival tissues lesions, fibrosis and inflamation, involve an impaired balance between the production and the degradation of type I collagen. It has been demonstrated that CCN2/CTGF, a connective tissue growth factor, is highly expressed in the gingival tissues and positively correlated with the degree of fibrosis in the drug-induced gingival overgrowth. The aim of this study was to identify the presence and localization of CCN2/CTGF and CCN1/Cyr61, members of the same molecular family, in gingival tissues of cyclosporin A- and nifedipine-treated rats, by immunohistochemistry. Staining was evaluated with light microscope and the results show cellular and extracellular CTGF in nifedipin gingival overgrowth tissues with intensity of labeling higher compared to the CsA gingival overgrowth tissues or the controls. The staining for Cyr61 shows its intracellular localization with no diference of labeling intensity between drug-induced gingival overgrowth and normal tissues. Also, we were interested in the gingival TGF-â expression in those animals. We didn't find any commercial anti-rat TGF antibody and our anti-human antibody shows no cross-reactivity with rat tissues. The data from our study sustain the involvement of CTGF and Cyr61 as growth factors in the gingival tissues and the CTGF association with drug-induced gingival overgrowth.

  11. Connective Tissue Ulcers

    PubMed Central

    Dabiri, Ganary; Falanga, Vincent

    2013-01-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren’s syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. PMID:23756459

  12. [Role of connective tissue growth factor on pulmonary artery remodeling in rats exposed to smoke].

    PubMed

    Tian, Feng; Xu, Yong-Jian; Zhang, Zhen-Xiang; Fan, Xin-Lei; Hu, Jing

    2007-12-01

    To explore the role of connective tissue growth factor (CTGF) on pulmonary artery remodeling induced by smoke exposure in rats. Thirty-five male Wistar rats were randomly assigned into a control group (A group), a smoke exposure one month group (B group), a smoke exposure and high dose CTGF antisense oligonucleotide (ASON) one month group (C group), a smoke exposure and low dose CTGF ASON one month group (D group), a smoke exposure two month group (E group), a smoke exposure and high dose CTGF ASON two month group (F group), and a smoke exposure and low dose CTGF ASON two month group (G group). Pulmonary artery remodeling was observed by hematoxylin-eosin staining, and the CTGF mRNA expressions of pulmonary arteries were evaluated by RT-PCR. Immunohistochemistry methods were performed to determine CTGF protein expression in pulmonary artery smooth muscle. The difference between the groups was analyzed. (1) The pulmonary artery WA% of the seven groups were respectively (28.6 +/- 1.2)%, (42.5 +/- 2.3)%, (33.7 +/- 1.8)%, (42.1 +/- 2.4)%, (49.6 +/- 2.1)%, (34.3 +/- 1.9)% and (38.4 +/- 2.0)%. There was significant difference between B group and C group (q = 5.09, P < 0.01). Compared to E group, there were significant decreases in F group and G group (q = 8.15, 3.75, all P < 0.05). (2) The CTGF protein expressions (A value) of pulmonary artery smooth muscle were respectively 0.098 +/- 0.015, 0.159 +/- 0.023, 0.118 +/- 0.017, 0.153 +/- 0.022, 0.406 +/- 0.036, 0.109 +/- 0.012 and 0.146 +/- 0.024. There was significant difference between B group and C group (q = 3.26, P < 0.05). Compared to E group, there were significant decreases in F group and G group (q = 67.08, 18.09, all P < 0.01). (3) The CTGF mRNA expressions (A(CTGF)/A(beta-actin)) of pulmonary artery were respectively 0.051 +/- 0.010, 0.823 +/- 0.096, 0.216 +/- 0.056, 0.810 +/- 0.085, 2.452 +/- 0.267, 0.207 +/- 0.062 and 0.509 +/- 0.067. There was significant difference between B group and C group (q = 53.50, P

  13. [The role of connective tissue growth factor, transforming growth factor and Smad signaling pathway during corneal wound healing].

    PubMed

    Yang, Yong-mei; Wu, Xin-yi; Du, Li-qun

    2006-10-01

    To study the expression and location of connective tissue growth factor (CTGF) and transforming growth factor-beta(1) (TGF-beta(1)) protein and mRNA in rabbit cornea during the wound healing process. To assess the interaction between CTGF and TGF-beta(1), as well as the Smad signaling pathway involved. Twenty-six Albino white rabbits were used as experimental animals and randomly divided into 4 groups: (1) CONTROL GROUP: two rabbits. (2) Simple corneal injury group: a 3 mm diameter and 0.05 mm depth corneal tissue was excised by a trephine at the anterior central cornea as a corneal wound model in 12 rabbits. Two rabbits were randomly sacrificed at 2 h, 6 h, 1 d, 3 d, 7 d and 21 d after the trauma. (3) TGF-beta(1) antibodies treated group: 6 rabbits were injected with TGF-beta(1) antibodies (15.5 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. (4) Smad4 antibodies treated group: 6 rabbits were injected with Smad4 antibodies (20 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. Protein of CTGF, TGF-beta(1), and FN was assessed with immunohistochemistry. CTGF and type one collagen mRNA were measured in by in situ hybridization. (1) CTGF protein or mRNA did not exist in normal rabbit corneas, but TGF-beta(1) protein was expressed in normal rabbit cornea epithelium. (2) Cornea fibroblasts activated 6 h after the operation. Expression of CTGF, TGF-beta(1), FN protein and mRNA of CTGF and type one collagen were upregulated after cornea injury, and reached the highest level in 3 days. The expression was reduced to the basal level 21 days later. (3) Injection of TGF-beta(1) antibodies reduced the expression of CTGF, TGF-beta(1) and FN in the cornea stroma and down-regulated the expression of CTGF in corneal epithelial cells. (4) Injection of Smad4 antibodies inhibited the expression of TGF in the stroma but did not

  14. Chemically-defined medium for growth and differentiation of mixed epithelial and connective tissues in organ culture.

    PubMed

    Hodges, G M; Melcher, A H

    1976-06-01

    The effect on tissue differentiation and growth in vitro of certain of the factors implicated in collagen synthesis (ascorbic acid, alpha-ketoglutarate and oxygen) and the influence of hydrocortisone was studied using organ cultures of fetal mouse mandible as a mixed epithelial and connective tissue system. Using serum-free Waymouth's MB 752/1 chemically-defined medium, addition of high levels of ascorbic acid (300mug per ml), hydrocortisone (1mug per ml) and oxygen (95%) enhanced differentiation in a number of tissues, in particular skin and appendages, tooth germs and bone, while osteoid and dentine production were noticeable promoted. It is suggested that an essential aspect of media design for organ culture involves the incorporaation of collagen-promoting factors to the in vitro enviornment particularly with regard to the controlling role implicated for collagen in a variety of biological processess.

  15. Hammerhead ribozyme targeting connective tissue growth factor mRNA blocks transforming growth factor-beta mediated cell proliferation.

    PubMed

    Blalock, Timothy D; Yuan, Rong; Lewin, Alfred S; Schultz, Gregory S

    2004-06-01

    Excessive scarring following trauma or surgery of cornea, conjunctiva or retina can greatly impair visual outcome. At present, no agents are clinically available that selectively reduce activity of genes that regulate fibrosis. Connective tissue growth factor (CTGF) has been linked to fibrosis in several tissues, including cornea and conjunctiva. In this study, hammerhead ribozymes targeting CTGF mRNA were synthesized, kinetic parameters were measured, and the effect on TGF-beta-mediated cell proliferation was measured in cultured human fibroblasts. The mRNA sequence of human CTGF was scanned for potential hammerhead ribozyme cleavage sites, and predicted secondary folding structures around the sites were calculated. Synthetic 12mer ribozymes and 33mer oligonucleotide mRNA targets corresponding to two sites were synthesized, and kinetic constants calculated from Hanes-Wolff plots of in vitro cleavage reactions. The ribozyme with higher percentage cleavage and kinetic rate was cloned into an expression plasmid (pTR-UF21) and stably transfected into cultured human fibroblasts. An inactive ribozyme plasmid served as a negative control. The effects of the ribozyme on expression of TGF-beta-induced CTGF mRNA and protein levels were measured using ELISA and real-time TaqMan quantitative RT-PCR. Finally, the effect of the CTGF ribozyme on TGF-beta-mediated proliferation of fibroblasts was measured using a non-radioactive cell proliferation microtiter assay. Of the eight potential hammerhead ribozyme cleavage sites in human CTGF mRNA, two sites (CHR 745, and CHR 859) were identified with optimal secondary folding. CHR 859 cleaved 94% of the target mRNA, compared to 46% cleavage for CHR 745 after 16 hr of reaction. CHR 859 had a K(m) of 1.56 microM and a K(cat) of 2.97 min(-1), while CHR 745 had a K(m) of 7.80 microM and a K(cat) of 5.7 min(-1). The turnover numbers (K(cat)/K(m)) of CHR 859 and CHR 745 were 1.9 x 10(6) M min(-1) and 7.4 x 10(5) M min(-1), respectively

  16. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-02-21

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  17. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes.

    PubMed

    Van Geest, Rob J; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A; Vogels, Ilse M C; Van der Giezen, Dionne M; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J F; Schlingemann, Reinier O

    2014-02-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF⁺/⁻) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF⁺/⁻ mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF⁺/⁻ mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR.

  18. Connective Tissue Growth Factor Is Involved in Structural Retinal Vascular Changes in Long-Term Experimental Diabetes

    PubMed Central

    Van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M.C.; Van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J.F.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR. PMID:24217924

  19. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo.

    PubMed

    Kannampuzha-Francis, Jasmine; Tribulo, Paula; Hansen, Peter J

    2016-05-17

    The reproductive tract secretes bioactive molecules collectively known as embryokines that can regulate embryonic growth and development. In the present study we tested four growth factors expressed in the endometrium for their ability to modify the development of the bovine embryo to the blastocyst stage and alter the expression of genes found to be upregulated (bone morphogenetic protein 15 (BMP15) and keratin 8, type II (KRT8)) or downregulated (NADH dehydrogenase 1 (ND1) and S100 calcium binding protein A10 (S100A10)) in embryos competent to develop to term. Zygotes were treated at Day 5 with 0.01, 0.1 or 1.0 nM growth factor. The highest concentration of activin A increased the percentage of putative zygotes that developed to the blastocyst stage. Connective tissue growth factor (CTGF) increased the number of cells in the inner cell mass (ICM), decreased the trophectoderm : ICM ratio and increased blastocyst expression of KRT8 and ND1. The lowest concentration of hepatocyte growth factor (HGF) reduced the percentage of putative zygotes becoming blastocysts. Teratocarcinoma-derived growth factor 1 increased total cell number at 0.01 nM and expression of S100A10 at 1.0 nM, but otherwise had no effects. Results confirm the prodevelopmental actions of activin A and indicate that CTGF may also function as an embryokine by regulating the number of ICM cells in the blastocyst and altering gene expression. Low concentrations of HGF were inhibitory to development.

  20. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies.

  1. Autoimmune connective tissue diseases.

    PubMed

    Østensen, Monika; Cetin, Irene

    2015-07-01

    Rheumatic diseases (RDs) occur preferentially in women, often during the childbearing age. The interaction of pregnancy and the RD is varied, ranging from spontaneous improvement to aggravation of disease symptoms or life-threatening flares. Risks for the mother with RD and the child differ in regard to the presence of organ manifestations, organ damage, disease activity, presence of specific autoantibodies, and therapy. Pregnancy complications comprise hypertension, preeclampsia, premature delivery, and side effects of therapy. Adverse pregnancy outcomes include recurrent miscarriage, intrauterine growth restriction, and fetal demise, and they are frequently encountered in RD with organ manifestations and harmful autoantibodies. Because of the difference in the prevalence of RDs, knowledge on the gestational course of disease and pregnancy outcome is limited to the fairly common RDs such as rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Pregnancies in RD are connected with increased risks for mother and child and need interdisciplinary care and management.

  2. Increased connective tissue growth factor associated with cardiac fibrosis in the mdx mouse model of dystrophic cardiomyopathy.

    PubMed

    Au, Carol G; Butler, Tanya L; Sherwood, Megan C; Egan, Jonathan R; North, Kathryn N; Winlaw, David S

    2011-02-01

    Cardiomyopathy contributes to morbidity and mortality in Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disorder. A major feature of the hearts of DMD patients and the mdx mouse model of the disease is cardiac fibrosis. Connective tissue growth factor (CTGF) is involved in the fibrotic process in many organs. This study utilized the mdx mouse model to assess the role of CTGF and other extracellular matrix components during the development of fibrosis in the dystrophic heart. Left ventricular function of mdx and control mice at 6, 29 and 43 weeks was measured by echocardiography. Young (6 weeks old) mdx hearts had normal function and histology. At 29 weeks of age, mdx mice developed cardiac fibrosis and increased collagen expression. The onset of fibrosis was associated with increased CTGF transcript and protein expression. Increased intensity of CTGF immunostaining was localized to fibrotic areas in mdx hearts. The upregulation of CTGF was also concurrent with increased expression of tissue inhibitor of matrix metalloproteinases (TIMP-1). These changes persisted in 43 week old mdx hearts and were combined with impaired cardiac function and increased gene expression of transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMP-2, MMP-9). In summary, an association was observed between cardiac fibrosis and increased CTGF expression in the mdx mouse heart. CTGF may be a key mediator of early and persistent fibrosis in dystrophic cardiomyopathy.

  3. Decorin Interacts with Connective Tissue Growth Factor (CTGF)/CCN2 by LRR12 Inhibiting Its Biological Activity*

    PubMed Central

    Vial, Cecilia; Gutiérrez, Jaime; Santander, Cristian; Cabrera, Daniel; Brandan, Enrique

    2011-01-01

    Fibrotic disorders are the end point of many chronic diseases in different tissues, where an accumulation of the extracellular matrix occurs, mainly because of the action of the connective tissue growth factor (CTGF/CCN2). Little is known about how this growth factor activity is regulated. We found that decorin null myoblasts are more sensitive to CTGF than wild type myoblasts, as evaluated by the accumulation of fibronectin or collagen III. Decorin added exogenously negatively regulated CTGF pro-fibrotic activity and the induction of actin stress fibers. Using co-immunoprecipitation and in vitro interaction assays, decorin and CTGF were shown to interact in a saturable manner with a Kd of 4.4 nm. This interaction requires the core protein of decorin. Experiments using the deletion mutant decorin indicated that the leucine-rich repeats (LRR) 10–12 are important for the interaction with CTGF and the negative regulation of the cytokine activity, moreover, a peptide derived from the LRR12 was able to inhibit CTGF-decorin complex formation and CTGF activity. Finally, we showed that CTGF specifically induced the synthesis of decorin, suggesting a mechanism of autoregulation. These results suggest that decorin interacts with CTGF and regulates its biological activity. PMID:21454550

  4. Undiagnosed connective tissue diseases

    PubMed Central

    Cavagna, Lorenzo; Codullo, Veronica; Ghio, Stefano; Scirè, Carlo Alberto; Guzzafame, Eleonora; Scelsi, Laura; Rossi, Silvia; Montecucco, Carlomaurizio; Caporali, Roberto

    2016-01-01

    Abstract Among different subgroups of pulmonary arterial hypertension (PAH), those associated with connective tissue diseases (CTDs) have distinct hemodynamic and prognostic features; a correct etiologic diagnosis is thus mandatory. To estimate frequency and prognosis of previously undiagnosed CTDs in a suspect idiopathic (i) PAH cohort. Consecutive patients with PAH confirmed by right heart catheterization referred at the Cardiology Division of our Hospital without a previous rheumatological assessment or the occurrence of other conditions explaining PAH were checked for CTD by a clinical, laboratory, and instrumental evaluation. Survival in each group has also been analyzed. In our study 17 of 49 patients were classified as CTD-PAH, corresponding to a prevalence (95% CI) of 34.7% (21.7–49.6%). ANA positivity had 94% (71.3–99.9%) sensitivity and 78.1% (60–90.7%) specificity for a diagnosis of CTD-PAH; Raynaud phenomenon (RP) showed 83.3% (51.6–97.9%) sensitivity and 100% (90.5–100%) specificity for the diagnosis of Systemic Sclerosis (SSc)-PAH. At diagnosis, SSc patients were older and had a lower creatinine clearance compared with iPAH and other CTD-PAH. After a median follow-up of 44 (2–132) months, 18 of 49 (36.7%) patients died: 31.2% in the iPAH group, 20% in the CTD-, and 58.3% in the SSc-PAH group. Mortality was significantly higher in SSc-PAH (HR 3.32, 1.11–9.95, P <0.05) versus iPAH. We show a high prevalence of undiagnosed CTDs in patients with iPAH without a previous rheumatological assessment. All patients with RP were diagnosed with SSc. Our data stress the importance of a rheumatological assessment in PAH, especially because of the unfavorable prognostic impact of an associated SSc. PMID:27684814

  5. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice.

    PubMed

    Inoue, Tsutomu; Okada, Hirokazu; Kobayashi, Tatsuya; Watanabe, Yusuke; Kanno, Yoshihiko; Kopp, Jeffrey B; Nishida, Takashi; Takigawa, Masaharu; Ueno, Munehisa; Nakamura, Toshikazu; Suzuki, Hiromichi

    2003-02-01

    We investigated the mechanism of the anti-fibrotic effects of hepatocyte growth factor (HGF) in the kidney, with respect to its effect on connective tissue growth factor (CTGF), a down-stream, profibrotic mediator of transforming growth factor-beta1 (TGF-beta1). In wild-type (WT) mice with 5/6 nephrectomy (Nx), HGF and TGF-beta1 mRNAs increased transiently in the remnant kidney by week 1 after the Nx, returned to baseline levels, and increased again at weeks 4 to 12. In contrast, CTGF and alpha1(I) procollagen (COLI) mRNAs increased in parallel with HGF and TGF-beta1 during the early stage, but did not re-increase during the late stage. In the case of TGF-beta1 transgenic (TG) mice with 5/6 Nx, excess TGF-beta1 derived from the transgene enhanced CTGF expression significantly in the remnant kidney, accordingly accelerating renal fibrogenesis. Administration of dHGF (5.0 mg/kg/day) to TG mice with 5/6 Nx for 4 weeks from weeks 2 to 6 suppressed CTGF expression in the remnant kidney, attenuating renal fibrosis and improving the survival rate. In an experiment in vitro, renal tubulointerstitial fibroblasts (TFB) were co-cultured with proximal tubular epithelial cells (PTEC). Pretreatment with HGF reduced significantly CTGF induction in PTEC by TGF-beta1, consequently suppressing COLI synthesis in TFB. In conclusion, HGF can block, at least partially, renal fibrogenesis promoted by TGF-beta1 in the remnant kidney, via attenuation of CTGF induction.

  6. Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production.

    PubMed Central

    Korn, J H; Halushka, P V; LeRoy, E C

    1980-01-01

    The role of immune cell products in modulating connective tissue metabolism was investigated. Supernates of both unstimulated and phytohemagglutinin-stimulated human mononuclear cell cultures suppressed fibroblast proliferation (up to 90%) and concomintantly stimulated fibroblast prostaglandin E(PGE) synthesis (20- to 70-fold). The growth suppression was, at least in part, a secondary result of the increased fibroblast PGE synthesis; growth suppression (a) paralled the increased fibroblast PGE synthesis, (b) was reversed by addition of inhibitors of prostaglandin synthesis (indomethacin, meclofenamate, and eicostaetraynoic acid), and (c) was reproduced by addition of exogenous PGE2 to fibroblast cultures. The prostaglandin-stimulatory, growth-suppressive activity was a product of non-T-lymphocyte, adherent cells and was present within 6 h of mononuclear cell culture. The activity was heat (56 degrees C) and trypsin sensitive, nondialyzable, and appeared in the 12,000-20,000 mol wt fractions by Sephadex G-100 chromatography. The activity in supernates of mononuclear cell cultures was removed by incubation with fibroblasts but not by similar incubation with peripheral blood mononuclear cells. Mononuclear cells release a factor(s) which modulates fibroblast proliferation by altering prostaglandin metabolism. PMID:7356693

  7. [Human lung connective tissue in postnatal ontogeny].

    PubMed

    Kasimtsev, A A; Nikolaev, V G

    1993-01-01

    Changes of the connective tissue structures, appearing during all postnatal ontogenesis stages were studied in 147 human lung specimens of different age groups (from newborns up to 82-year-olds). Qualitative and quantitative composition of connective tissue structures changes with the age which leads to the lateral aggregation of the fibers and growth of the general mass of the connective tissue. Heterochronia of the age variability manifestations in different regions of the lung framework was demonstrated. The original age transformations of connective tissue structures are characteristic for the basal lung regions. With the exception of perivasal connective tissue, similar changes in the region of the lung apexes appear 3-5 years later. This gives an opportunity to distinguish three anatomic zones in the lungs in an apico-basal direction, characterising the local nature of the age changes manifestations.

  8. [Muscles and connective tissue: histology].

    PubMed

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism.

  9. Activation of PPAR-γ inhibits differentiation of rat osteoblasts by reducing expression of connective tissue growth factor.

    PubMed

    Yu, Wei-Wei; Xia, Qin; Wu, Yan; Bu, Qiao-Yun

    2014-10-01

    Long-term treatment with an agonist of peroxisome proliferator-activated receptor (PPAR)-γ is associated with bone fractures in the clinical practice. However, the mechanisms underlying the fractures are not fully understood. This study was aimed to examine the effect of rosiglitazone (an agonist of PPAR-γ) of different doses on the proliferation, differentiation, and transforming growth factor beta 1 (TGF-β1)-induced expression of connective tissue growth factor (CTGF) in primary rat osteoblasts in vitro. Osteoblasts were isolated from newly born SD rats and treated with different doses of rosiglitazone (0-20 μmol/L). The proliferation and differentiation of osteoblasts were measured by MTT assay and NPP assay, respectively. The expression of CTGF was determined by RT-PCR and Western blotting. The results showed that most isolated osteoblasts displayed strong alkaline phosphatase (ALP) activity and treatment with different doses of rosiglitazone did not affect their proliferation, but significantly inhibited the differentiation of osteoblasts in a dose-dependent manner. Moreover, treatment with different doses of rosiglitazone significantly reduced the TGF-β1-induced CTGF mRNA transcription and protein expression in a dose-dependent manner in rat osteoblasts. It was concluded that the activation of PPAR-γ may inhibit the differentiation of osteoblasts by reducing the TGF-β1-induced CTGF expression in vitro.

  10. CCN2/Connective Tissue Growth Factor Is Essential for Pericyte Adhesion and Endothelial Basement Membrane Formation during Angiogenesis

    PubMed Central

    Huang, Bau-Lin; van Handel, Ben; Hofmann, Jennifer J.; Chen, Tom T.; Choi, Aaron; Ong, Jessica R.; Benya, Paul D.; Mikkola, Hanna; Iruela-Arispe, M. Luisa; Lyons, Karen M.

    2012-01-01

    CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes. PMID:22363445

  11. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor.

    PubMed

    Lamond, Rebecca; Barnett, Susan C

    2013-11-20

    Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.

  12. Assembly of the Prothrombinase Complex on the Surface of Human Foreskin Fibroblasts: Implications for Connective Tissue Growth Factor

    PubMed Central

    Rico, Mario C.; Rough, James J.; Manns, Joanne M.; Carpio-Cano, Fabiola Del; Safadi, Fayez F.; Kunapuli, Satya P.; Cadena, Raul A DeLa

    2011-01-01

    Activated factor X (FXa) and thrombin can up-regulate gene expression of connective tissue growth factor (CTGF/CCN2) on fibroblasts. Since tissue factor (TF) is expressed on these cells, we hypothesized that they may assemble the prothrombinase complex leading to CTGF/CCN2 upregulation. In addition, the effect of thrombospondin-1 (TSP1) on this reaction was evaluated. Human foreskin fibroblasts were incubated with purified factor VII (FVII), factor X (FX), factor V (FV), prothrombin and calcium in the presence and absence of TSP1. Generation of FXa and of thrombin were assessed using chromogenic substrates. SMAD pathway phosphorylation was detected via Western-blot analysis. Pre-incubation of fibroblasts with FVII led to its auto-activation by cell-surface expressed TF, which in turn in the presence of FX, FVa, prothrombin and calcium led to FXa (9.7 ± 0.8 nM) and thrombin (7.9 ± 0.04 U/mL × 10-3) generation. Addition of TSP1 significantly enhanced thrombin (23.3 ± 0.7 U/mL × 10-3) but not FXa (8.5 ± 0.6 nM) generation. FXa and thrombin generation leads to upregulation of CTGF/CCN2. TSP1 alone upregulated CTGF/CCN2, an effect mediated via activation of transforming growth factor beta (TGFβ) as showed by phosphorylation of the SMAD pathway an event blunted by using a TGFβ receptor I inhibitor (TGFβRI). FXa- and thrombin-induced upregulation of CTGF/CCN2 was not blocked by TGFβRI. In summary, assembly of the prothrombinase complex occurs on fibroblast’s surface leading to serine proteases generation, an event enhanced by TSP1 and associated with CTGF/CCN2 upregulation. These mechanisms may play an important role in human diseases associated with fibrosis. PMID:21889790

  13. Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

    PubMed

    Huang, Min; Yang, Huifang; Zhu, Lingqin; Li, Honghui; Zhou, Jian; Zhou, Zhijun

    2016-11-01

    Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

  14. Cartilage–Specific Over-Expression of CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Stimulates Insulin-Like Growth Factor Expression and Bone Growth

    PubMed Central

    Tomita, Nao; Hattori, Takako; Itoh, Shinsuke; Aoyama, Eriko; Yao, Mayumi; Yamashiro, Takashi; Takigawa, Masaharu

    2013-01-01

    Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage–related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in

  15. Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth.

    PubMed

    Tomita, Nao; Hattori, Takako; Itoh, Shinsuke; Aoyama, Eriko; Yao, Mayumi; Yamashiro, Takashi; Takigawa, Masaharu

    2013-01-01

    Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage-related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic

  16. Connective Tissue Growth Factor Reporter Mice Label a Subpopulation of Mesenchymal Progenitor Cells that Reside in the Trabecular Bone Region

    PubMed Central

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2014-01-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously has been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. PMID:25464947

  17. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    PubMed

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region.

  18. Heritable Disorders of Connective Tissue

    MedlinePlus

    ... syndrome. In most cases, the genetic defect involves collagen, the major protein-building material of bone. Epidermolysis ... play a role in how the body makes collagen, the main component of connective tissue. What Is ...

  19. [Connective tissue diseases in adolescents].

    PubMed

    Peitz, J; Tantcheva-Poór, I

    2016-04-01

    In this article we provide a brief review of systemic lupus erythematosus, juvenile dermatomyositis, systemic scleroderma, and mixed connective tissue disease in adolescents. As skin manifestations often belong to the presenting symptoms and may have a significant impact on the quality of life, dermatologists play an important role in the management of patients with connective tissue diseases. Early diagnosis and therapy onset are crucial for the patients' long-term outcome.

  20. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment

    PubMed Central

    Battula, V. Lokesh; Chen, Ye; Cabreira, Maria da Graca; Ruvolo, Vivian; Wang, Zhiqiang; Ma, Wencai; Konoplev, Sergej; Shpall, Elizabeth; Lyons, Karen; Strunk, Dirk; Bueso-Ramos, Carlos; Davis, Richard Eric; Konopleva, Marina

    2013-01-01

    Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rgnull mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia. PMID:23741006

  1. [Preliminary study of the expression of connective tissue growth factor in papillary muscles of the patients with rheumatic heart disease].

    PubMed

    Wang, Y N; Li, T; Gu, J R; Yu, B Y

    2016-04-19

    To investigate the expression and the effect of connective tissue growth factor (CTGF) on rheumatic myocardial fibrosis of rheumatic heart disease (RHD). The papillary muscles samples were obtained from patients with RHD during mitral valve replacement.The expression of TGF-β1, CTGF mRNA and CTGF protein were detected with semiquantitative RT-PCR technique and immunohistochemistry technologyin the papillary muscles cell from 41RHD patients and 20 normal papillary muscles samples.The area of myocardial fibrosis was measured by imaging analysis system. SPSS package was used to analyze the relationship between the expression of CTGF and the area of myocardial fibrosis. Compared with normal controls (PU 2.4±0.9), the mean level of CTGF protein expression in the papillary muscles samples of the RHD patients (PU 44.7±6.0) was significantly increased(P<0.01). The expression of CTGF protein in papillary muscles of RHD was positivelycorrelated with the expression of CTGFmRNA (r=0.862, P<0.01) and the area of myocardial fibrosis (r=0.856, P<0.01). Compared with normal controls, CTGF expression in the papillary muscles of the RHD patients is significantly increased, which suggests CTGF may play animportant role in myocardial fibrosis of RHD.

  2. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II.

    PubMed

    de las Heras, Natalia; Ruiz-Ortega, Marta; Rupérez, Mónica; Sanz-Rosa, David; Miana, María; Aragoncillo, Paloma; Mezzano, Sergio; Lahera, Vicente; Egido, Jesus; Cachofeiro, Victoria

    2006-12-01

    We have evaluated the role of connective tissue growth factor (CTGF) in vascular and renal damage associated with hypertension and possible interactions with angiotensin II (Ang II). Spontaneously hypertensive rats (SHR) were treated with either the Ang II receptor antagonist candesartan (C;2 mg/Kg(-1)/day(-1)) or antihypertensive triple therapy (TT; in mg/Kg(-1)/day(-1);20 hydralazine +7 hydrochlorothiazide +0.15 reserpine) for 10 weeks. Wistar Kyoto rats were used as a normotensive control group. Hypertension was associated with an increase in aortic media area, media-to-lumen ratio and collagen density. Kidneys from SHR showed minimum renal alterations. Aorta and renal gene expression and immunostaining of CTGF were higher in SHR. Candesartan decreased arterial pressure, aortic media area, media-to-lumen ratio and collagen density. However, although arterial pressure decrease was comparable for both treatments, TT partially reduced these parameters. Candesartan-treated rats showed lower levels of vascular CTGF expression, aortic media area, media-to-lumen ratio and collagen density than TT-treated animals. Treatments improve renal damage and reduce renal gene expression and CTGF immunostaining in SHR in a similar manner. The results show that vascular and renal damage is associated with stimulation of CTGF gene and protein content. These results also might suggest that CTGF could be one downstream mediator of Ang II in hypertension-associated organ damage in SHR.

  3. CCN2 (Connective Tissue Growth Factor) is essential for extracellular matrix production and integrin signaling in chondrocytes

    PubMed Central

    Nishida, Takashi; Kawaki, Harumi; Baxter, Ruth M.; DeYoung, R. Andrea; Takigawa, Masaharu

    2007-01-01

    The matricellular protein CCN2 (Connective Tissue Growth Factor; CTGF) is an essential mediator of ECM composition, as revealed through analysis of Ccn2 deficient mice. These die at birth due to complications arising from impaired endochondral ossification. However, the mechanism(s) by which CCN2 mediates its effects in cartilage are unclear. We investigated these mechanisms using Ccn2−/− chondrocytes. Expression of type II collagen and aggrecan were decreased in Ccn2−/− chondrocytes, confirming a defect in ECM production. Ccn2−/− chondrocytes also exhibited impaired DNA synthesis and reduced adhesion to fibronectin. This latter defect is associated with decreased expression of α5 integrin. Moreover, CCN2 can bind to integrin α5β1 in chondrocytes and can stimulate increased expression of integrin α5. Consistent with an essential role for CCN2 as a ligand for integrins, immunofluorescence and Western blot analysis revealed that levels of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK)1/2 phosphorylation were reduced in Ccn2−/− chondrocytes. These findings argue that CCN2 exerts major effects in chondrocytes through its ability to (1) regulate ECM production and integrin α5 expression, (2) engage integrins and (3) activate integrin-mediated signaling pathways. PMID:18481209

  4. Expression and clinical significance of connective tissue growth factor in advanced head and neck squamous cell cancer.

    PubMed

    Kikuchi, Ryoko; Kikuchi, Yoshihiro; Tsuda, Hitoshi; Maekawa, Hitoshi; Kozaki, Ken-Ichi; Imoto, Issei; Tamai, Seiichi; Shiotani, Akihiro; Iwaya, Keiichi; Sakamoto, Masaru; Sekiya, Takao; Matsubara, Osamu

    2014-07-01

    Connective tissue growth factor (CTGF) has been reported to play critical roles in the tumorigenesis of several human malignancies. This study was performed to evaluate CTGF protein expression in head and neck squamous cell carcinoma (HNSCC). Surgical specimens from 76 primary HNSCC were obtained with written informed consents and the expression level of CTGF was immunohistochemically evaluated. The cytoplasmic immunoreactivity of CTGF in cancer cells was semiquantitatively classified into low and high expression. Among all 76 cases with or without neoadjuvant therapy, low CTGF showed significantly longer (P = 0.0282) overall survival (OS), but not disease-free survival (DFS) than high CTGF. Although low CTGF in patients with stage I, II and III did not result in any significant difference of the OS and DFS, stage IV HNSCC patients with low CTGF showed significantly longer OS (P = 0.032) and DFS (P = 0.0107) than those with high CTGF. These differences in stage IV cases were also confirmed using multivariate analyses. These results suggest that low CTGF in stage IV HNSCC is an independent prognostic factor, despite with or without neoadjuvant therapy.

  5. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells.

    PubMed

    Chang, Cheng-Chi; Hsu, Wen-Hao; Wang, Chen-Chien; Chou, Chun-Hung; Kuo, Mark Yen-Ping; Lin, Been-Ren; Chen, Szu-Ta; Tai, Shyh-Kuan; Kuo, Min-Liang; Yang, Muh-Hwa

    2013-07-01

    The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC.

  6. Up-regulation of connective tissue growth factor in endothelial cells by the microtubule-destabilizing agent combretastatin A-4.

    PubMed

    Samarin, Jana; Rehm, Margot; Krueger, Bettina; Waschke, Jens; Goppelt-Struebe, Margarete

    2009-02-01

    Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of other microtubule-targeting agents such as colchicine or nocodazole, up-regulation of CTGF was only detectable in sparse cells, which were not embedded in a cell monolayer. Furthermore, CA-4P induced CTGF expression in endothelial cells, forming tube-like structures on basement membrane gels. Up-regulation of CTGF by CA-4P was dependent on Rho kinase signaling and was increased when p42/44 mitogen-activated protein kinase was inhibited. Additionally, FoxO transcription factors were identified as potent regulators of CTGF expression in endothelial cells. Activation of FoxO transcription factors by inhibition of phosphatidylinositol 3-kinase/AKT signaling resulted in a synergistic increase in CA-4P-mediated CTGF induction. CA-4P-mediated expression of CTGF was thus potentiated by the inhibition of kinase pathways, which are targets of novel antineoplastic drugs. Up-regulation of CTGF by low concentrations of CA-4P may thus occur in newly formed tumor vessels and contribute to the microvessel destabilization and antiangiogenic effects of CA-4P observed in vivo.

  7. Subepithelial connective tissue graft with and without the use of plasma rich in growth factors for treating root exposure

    PubMed Central

    Lafzi, Ardeshir; Shirmohammadi, Adileh; Behrozian, Ahmad; Kashefimehr, Atabak; Khashabi, Ehsan

    2012-01-01

    Purpose The aim of this study was to evaluate the clinical efficiency of the subepithelial connective tissue graft (SCTG) with and without plasma rich in growth factor (PRGF) in the treatment of gingival recessions. Methods Twenty bilateral buccal gingival Miller's Class I and II recessions were selected. Ten of the recessions were treated with SCTG and PRGF (test group). The rest ten of the recessions were treated with SCTG (control group). The clinical parameters including recession depth (RD), percentage of root coverage (RC), mucogingival junction (MGJ) position, clinical attachment level (CAL), and probing depth (PD) were measured at the baseline, and 1 and 3 months later. The data were analyzed using the Wilcoxon signed rank and Mann-Whitney U tests. Results After 3 months, both groups showed a significant improvement in all of the mentioned criteria except PD. Although the amount of improvement was better in the SCTG+PRGF group than the SCTG only group, this difference was not statistically significant. The mean RC was 70.85±12.57 in the test group and 75.83±24.68 in the control group. Conclusions Both SCTG+PRGF and SCTG only result in favorable clinical outcomes, but the added benefit of PRGF is not evident. PMID:23346462

  8. Change in the cells that express connective tissue growth factor in acute Coxsackievirus-induced myocardial fibrosis in mouse.

    PubMed

    Yun, Soo-Hyeon; Shin, Jae-Ok; Lim, Byung-Kwan; Kim, Kyoung-Li; Gil, Chae-Ok; Kim, Duk-Kyung; Jeon, Eun-Seok

    2007-06-01

    Cardiac fibrosis and inflammation are major pathologic conditions that result from viral myocarditis. Connective tissue growth factor (CTGF) stimulates fibroblast proliferation and induces production of extracellular matrix molecules. We studied the correlation between CTGF and cardiac fibrosis in an acute Coxsackievirus B3 (CVB3) myocarditis animal model. Eight-week-old BALB/c mice were infected intraperitoneally with 10(4) plaque forming units (PFU) of CVB3. Myocardial inflammation peaked on day 7 and decreased markedly by day 14 post-infection (pi); cardiac fibrosis was noted from day 7 and peaked on day 14. By contrast, CTGF was weakly expressed by the interstitial cells in uninfected control hearts and also in the hearts of day 3 pi. CTGF expression measured by real-time PCR was elevated on day 3 and peaked on day 7 pi. TGF-beta expression peaked at day 7 pi. The cell type of CTGF expression changed from interstitial cells to myocytes after virus infection. On day 7, CTGF was strongly expressed by myocytes and inflammatory cells surrounding calcified necrotic areas. In addition, cardiac myocytes expressed CTGF on day 14. Our results, based on an acute CVB3 model of myocarditis, provide evidence that CTGF may mediate the development of fibrosis after viral myocarditis, and that the cells expressed CTGF changes during the course of viral myocarditis.

  9. Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2) and TGF- β/Smads Signalings

    PubMed Central

    Kang, Hara; Park, Kye Won; Park, Woo Jin; Yang, Seung Yul; Yang, Dong Kwon

    2015-01-01

    Cucurbitacin I is a naturally occurring triterpenoid derived from Cucurbitaceae family plants that exhibits a number of potentially useful pharmacological and biological activities. However, the therapeutic impact of cucurbitacin I on the heart has not heretofore been reported. To evaluate the functional role of cucurbitacin I in an in vitro model of cardiac hypertrophy, phenylephrine (PE)-stimulated cardiomyocytes were treated with a sub-cytotoxic concentration of the compound, and the effects on cell size and mRNA expression levels of ANF and β-MHC were investigated. Consequently, PE-induced cell enlargement and upregulation of ANF and β-MHC were significantly suppressed by pretreatment of the cardiomyocytes with cucurbitacin I. Notably, cucurbitacin I also impaired connective tissue growth factor (CTGF) and MAPK signaling, pro-hypertrophic factors, as well as TGF-β/Smad signaling, the important contributing factors to fibrosis. The protective impact of cucurbitacin I was significantly blunted in CTGF-silenced or TGF-β1-silenced hypertrophic cardiomyocytes, indicating that the compound exerts its beneficial actions through CTGF. Taken together, these findings signify that cucurbitacin I protects the heart against cardiac hypertrophy via inhibition of CTGF/MAPK, and TGF- β/Smad-facilitated events. Accordingly, the present study provides new insights into the defensive capacity of cucurbitacin I against cardiac hypertrophy, and further suggesting cucurbitacin I’s utility as a novel therapeutic agent for the management of heart diseases. PMID:26296085

  10. Expression of leptin, leptin receptor, and connective tissue growth factor in degenerative disk lesions in the wrist.

    PubMed

    Unglaub, Frank; Wolf, Maya B; Kroeber, Markus W; Dragu, Adrian; Schwarz, Stephan; Mittlmeier, Thomas; Kloeters, Oliver; Horch, Raymund E

    2011-06-01

    The purpose of this study was to identify whether leptin and connective tissue growth factor (CTGF) occur in the degenerative fibrocartilage disk and whether cartilage cells express leptin receptors. The study included 23 patients diagnosed with degenerative articular disk tears of the triangular fibrocartilage (TFC) (Palmer type 2C). Patients were divided into 2 groups based on ulna length: 1 group consisted of patients with an ulna-positive variance (group A), and the other group included patients with ulna-negative or -neutral variance (group B). After arthroscopic debridement of the TFC, histologic sections of biopsy specimens were prepared. The biopsy specimens were immunohistochemically analyzed, and the quantity of leptin-, CTGF-, and leptin receptor-positive cells was assessed. Cells positive for leptin, leptin receptor, and CTGF were found. The number of cells positive for leptin was significantly increased in specimens of patients with an ulna-negative variance (group B). In contrast, no significant difference was found for leptin receptor and CTGF in biopsy specimens of patients with ulna-positive or ulna-negative/neutral variance. The inner, middle, and outer zones of the disk do not express significantly different quantities of marker-positive cells. Degenerative fibrocartilage disk tissue cells exhibit leptin receptors and are exposed to the markers leptin and CTGF, providing evidence of a local paracrine system and regenerative processes. Cells of disks from patients with an ulna-neutral/negative length express significantly higher numbers of leptin-positive cells. Level II, diagnostic study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. FG-3019, a Human Monoclonal Antibody Recognizing Connective Tissue Growth Factor, is Subject to Target-Mediated Drug Disposition.

    PubMed

    Brenner, Mitchell C; Krzyzanski, Wojciech; Chou, James Z; Signore, Pierre E; Fung, Cyra K; Guzman, David; Li, Dongxia; Zhang, Weihua; Olsen, David R; Nguyen, Viet-Tam L; Koo, Carolyn W; Sternlicht, Mark D; Lipson, Kenneth E

    2016-08-01

    To evaluate and model the pharmacokinetic and pharmacodynamic behavior in rats of FG-3019, a human monoclonal antibody targeting connective tissue growth factor (CTGF). FG-3019, human CTGF (rhCTGF), or the N-terminal domain of rhCTGF were administered intravenously to rats and concentrations of these proteins as well as endogenous CTGF were determined by immunoassays. FG-3019, or (125)I-labeled FG-3019, and human CTGF (rhCTGF) were co-administered to assess the impact of CTGF on the elimination rate and tissue localization of FG-3019, which was further characterized by immunohistochemical analysis. A PK/PD model for target-mediated elimination of FG-3019 was developed to fit the kinetic data. FG-3019 exhibited non-linear pharmacokinetics in rats. Circulating concentrations of the N-terminal half of CTGF increased after dosing with FG-3019, reached maximal levels after 1-5 days, and returned toward baseline levels as FG-3019 cleared from the circulation, whereas the concentration of intact CTGF was unaffected by administration of FG-3019. Co-administration of rhCTGF dramatically enhanced the rate of FG-3019 elimination, redistributing the majority of (125)I-labeled FG-3019 from the blood to the liver, kidney, spleen and adrenal gland. FG-3019 co-administered with CTGF was found along the sinusoids of the liver and adrenal glands, the capillaries of the kidney glomeruli and in the spleen. A pharmacokinetic model for target-mediated elimination of FG-3019 was used to fit the time courses of FG-3019 and endogenous CTGF plasma concentrations, as well as time courses of rhCTGF and rhCTGF N-fragment after intravenous administration of these species. FG-3019 is subject to target mediated elimination in rats.

  12. Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury.

    PubMed

    Fuchshofer, Rudolf; Ullmann, Sabrina; Zeilbeck, Ludwig F; Baumann, Matti; Junglas, Benjamin; Tamm, Ernst R

    2011-09-01

    Structural changes of podocytes and retraction of their foot processes are a critical factor in the pathogenesis of minimal change nephritis and glomerulosclerosis. Here we tested, if connective tissue growth factor (CTGF) is involved in podocyte injury during acute and chronic puromycin aminonucleoside nephrosis (PAN) as animal models of minimal change nephritis, and focal segmental glomerulosclerosis, respectively. Rats were treated once (acute PAN) or for 13 weeks (chronic PAN). In both experimental conditions, CTGF and its mRNA were found to be highly upregulated in podocytes. The upregulation correlated with onset and duration of proteinuria in acute PAN, and glomerulosclerosis and high expression of glomerular fibronectin, and collagens I, III, and IV in chronic PAN. In vitro, treatment of podocytes with recombinant CTGF increased amount and density of actin stress fibers, the expression of actin-associated molecules such as podocalyxin, synaptopodin, ezrin, and actinin-4, and activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Moreover, we observed increased podocyte expression of mRNA for transforming growth factor (TGF)-β2, TGF-β receptor II, fibronectin, and collagens I, III, and IV. Treatment of cultured podocytes with puromycin aminonucleoside resulted in loss of actin stress fibers and cell death, effects that were partially prevented when CTGF was added to the culture medium. Depletion of CTGF mRNA in cultured podocytes by RNA interference reduced both the number of actin stress fibers and the expression of actin-associated molecules. We propose that the expression of CTGF is acutely upregulated in podocytes as part of a cellular attempt to repair structural changes of the actin cytoskeleton. When the damaging effects on podocyte structure and function persist chronically, continuous CTGF expression in podocytes is a critical factor that promotes progressive accumulation of glomerular extracellular matrix and

  13. SMAD3 and SP1/SP3 Transcription Factors Collaborate to Regulate Connective Tissue Growth Factor Gene Expression in Myoblasts in Response to Transforming Growth Factor β.

    PubMed

    Córdova, Gonzalo; Rochard, Alice; Riquelme-Guzmán, Camilo; Cofré, Catalina; Scherman, Daniel; Bigey, Pascal; Brandan, Enrique

    2015-09-01

    Fibrotic disorders are characterized by an increase in extracellular matrix protein expression and deposition, Duchene Muscular Dystrophy being one of them. Among the factors that induce fibrosis are Transforming Growth Factor type β (TGF-β) and the matricellular protein Connective Tissue Growth Factor (CTGF/CCN2), the latter being a target of the TGF-β/SMAD signaling pathway and is the responsible for the profibrotic effects of TGF-β. Both CTGF and TGF are increased in tissues affected by fibrosis but little is known about the regulation of the expression of CTGF mediated by TGF-β in muscle cells. By using luciferase reporter assays, site directed mutagenesis and specific inhibitors in C2C12 cells; we described a novel SMAD Binding Element (SBE) located in the 5' UTR region of the CTGF gene important for the TGF-β-mediated expression of CTGF in myoblasts. In addition, our results suggest that additional transcription factor binding sites (TFBS) present in the 5' UTR of the CTGF gene are important for this expression and that SP1/SP3 factors are involved in TGF-β-mediated CTGF expression.

  14. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure.

    PubMed

    Szabó, Zoltán; Magga, Johanna; Alakoski, Tarja; Ulvila, Johanna; Piuhola, Jarkko; Vainio, Laura; Kivirikko, Kari I; Vuolteenaho, Olli; Ruskoaho, Heikki; Lipson, Kenneth E; Signore, Pierre; Kerkelä, Risto

    2014-06-01

    Connective tissue growth factor (CTGF) is involved in the pathogenesis of various fibrotic disorders. However, its role in the heart is not clear. To investigate the role of CTGF in regulating the development of cardiac fibrosis and heart failure, we subjected mice to thoracic aortic constriction (TAC) or angiotensin II infusion, and antagonized the function of CTGF with CTGF monoclonal antibody (mAb). After 8 weeks of TAC, mice treated with CTGF mAb had significantly better preserved left ventricular (LV) systolic function and reduced LV dilatation compared with mice treated with control immunoglobulin G. CTGF mAb-treated mice exhibited significantly smaller cardiomyocyte cross-sectional area and reduced expression of hypertrophic marker genes. CTGF mAb treatment reduced the TAC-induced production of collagen 1 but did not significantly attenuate TAC-induced accumulation of interstitial fibrosis. Analysis of genes regulating extracellular matrix proteolysis showed decreased expression of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 in mice treated with CTGF mAb. In contrast to TAC, antagonizing the function of CTGF had no effect on LV dysfunction or LV hypertrophy in mice subjected to 4-week angiotensin II infusion. Further analysis showed that angiotensin II-induced expression of hypertrophic marker genes or collagens was not affected by treatment with CTGF mAb. In conclusion, CTGF mAb protects from adverse LV remodeling and LV dysfunction in hearts subjected to pressure overload by TAC. Antagonizing the function of CTGF may offer protection from cardiac end-organ damage in patients with hypertension.

  15. Lentiviral Delivery of Small Hairpin RNA Targeting Connective Tissue Growth Factor Blocks Profibrotic Signaling in Tenon's Capsule Fibroblasts.

    PubMed

    Lei, Dawei; Dong, Changgui; Wu, William Ka Kei; Dong, Aimeng; Li, Tingting; Chan, Matthew T V; Zhou, Xinrong; Yuan, Huiping

    2016-10-01

    Trabeculectomy is a surgical procedure for lowering intraocular pressure in glaucoma patients, in which excessive scarring leading to failure of the filtering bleb adversely affects the surgical outcome. Heightened Tenon's capsule fibroblast (TCF) proliferation and extracellular matrix (ECM) deposition are implicated in this process but endogenous factors that regulate TCF functions remain largely elusive. This study sought to elucidate the role of connective tissue growth factor (CTGF) in the regulation of TCF phenotypes and signaling. Expression of CTGF in scarring and nonscarring Tenon's capsules was measured by real-time PCR and immunofluorescence. Knockdown of CTGC was achieved by lentivirus delivery of small-hairpin RNA. Cell proliferation was measured by CCK8, cell cycle progression, and apoptosis by flow cytometry, adhesion, migration, and invasion of TCF by functional assays in vitro. Proteins and cytokines related to fibrosis were measured by Western blot and ELISA, respectively. Expression of CTGF was significantly upregulated in scarring Tenon's capsules and their isolated fibroblasts when compared with the nonfibrotic counterparts. Functionally, targeting CTGF with lentivirus-delivered small-hairpin RNA inhibited the proliferation, adhesion, migration, and invasion of TCFs, accompanied by downregulation of p38 and nuclear factor-κB as well as matrix metalloproteinase-2, cyclin D1, and collagen I. In addition, lentiviral targeting of CTGF reduced the release of fibrosis-related cytokines from TCFs and inhibited TCF-conditioned, medium-induced macrophage chemotaxis. Our study supports a crucial role of CTGF in the regulation of TCF proliferation and ECM deposition. Targeting CTGF using lentiviral vector may be a promising approach for preventing excessive scarring after trabeculectomy.

  16. [Mechanism of Smad 3 signaling pathway and connective tissue growth factor in the inhibition of form deprivation myopia by pirenzepine].

    PubMed

    Ji, Xueying; Zhang, Jinsong; Wang, Yanting; Sun, Hongliang; Jia, Peisheng

    2009-04-01

    To observe the inhibitive effect of pirenzepine on form deprivation myopia in guinea pigs and to explore the mechanism of Smad3 signaling pathway and connective tissue growth factor (CTGF) in the inhibition of myopia by pirenzepine. Forty 1-week-old guinea pigs of either sex were randomly divided into 4 groups: a control group (Group I), a form deprivation group (Group II), a pirenzepine ophthalmic solution group (Group III), and a sodium chloride ophthalmic solution group (Group IV). Translucent blinders were used in the right eyes of Group II, III and IV. The left eyes were not given any treatment as the normal control group. Covered eyes of Group III and IV were given 3% pirenzepine ophthalmic solution and 0.1% azone ophthalmic solution respectively twice every day. Six weeks later, refraction and axial length were measured at the end of the experiment, and immunohistochemistry and Western blot were used to analyze the expression levels of Smad3 and CTGF in the sclera of all 4 groups. There was no significant difference between Group III and I in relative refraction and changes of axial length (P>0.05). The difference of Group II and IV compared with Group I was statistically significant (P<0.05). The number of Smad3 and CTGF positive cells in the sclera between Group III and I was not significantly different (P>0.05), while the difference in Group II, IV and I was significant (P<0.05). Western blot showed that the expression levels of Smad3 and CTGF in Group II and IV were much lower than those in Group I (P<0.05), but not evident in Group III and I (P>0.05). Pirenzepine ophthalmic solution can inhibit the development of form deprivation myopia. Pirenzepine may affect Smad3 signaling pathway in the sclera by inhibiting the development of form deprivation myopia.

  17. Lysophosphatidic acid upregulates connective tissue growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways.

    PubMed

    Yu, Zi-Li; Li, Dian-Qi; Huang, Xiang-Yu; Xing, Xin; Yu, Ru-Qing; Li, Zhi; Li, Zu-Bing

    2016-02-01

    Lysophosphatidic acid (LPA) is an efficient, bioactive phospholipid involved in various biological processes. In this study, LPA-induced connective tissue growth factor (CTGF/CCN2) expression and the underlying mechanisms were investigated using the MC3T3-E1 cell line. The MC3T3-E1 cells were stimulated with an inhibitor of LPA receptors, an activator and inhibitor of protein kinase C (PKC) and protein kinase A (PKA) for indicated periods of time. RT-qPCR and western blot analyses were used to measure the expression levels of CCN2. Immunofluorescence staining was used to observe the translocation of PKC. The mRNA expression level of CCN2 was increased following stimulation of the cells with LPA; LPA transiently induced the mRNA expression of CCN2; maximum expression levels were observed 2 h following stimulation with LPA. This increase was accompanied by CCN2 protein synthesis. LPA receptor1/3 was inhibited by Ki16425, a specific inhibitor of LPA1/3; as a result, the LPA-induced increase in CCN2 expression was abrogated. LPA also induced the membrane translocation of PKC and enhanced PKC activity in the osteoblasts. Pre-treatment of the osteoblasts with staurosporine prevented the increase in CCN2 expression by induced by LPA, and the activation of PKC by phorbol 12-myristate 13-acetate (PMA) enhanced CCN2 expression, indicating that the PKC pathway is involved in the LPA-induced increase in CCN2 expression. The interference of PKA signaling also led to the induction of CCN2 expresion by LPA. These data indicate that LPA increases CCN2 expression through the activation of PKC and PKA. Thus, the regulatory functions of the PKC and PKA pathways are implicated in the LPA-induced increase in CCN2 expression.

  18. MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting Connective Tissue Growth Factor

    PubMed Central

    Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M.; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A.; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors. PMID:23390502

  19. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G

    2000-01-01

    Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced

  20. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts.

    PubMed

    Yang, Min; Huang, Haichang; Li, Jingzi; Huang, Wen; Wang, Haiyan

    2007-01-01

    The involvement of gelatinase (matrix metalloproteinase-2 [MMP-2] and MMP-9) in the matrix remodeling and development of tubulointerstitial fibrosis has been studied recently, but relatively little is known about the regulators and the mechanisms controlling the activation and expression of gelatinase in renal fibroblasts. In these studies, the production and underlying signaling pathway for gelatinase by exogenous connective tissue growth factor (CTGF) treatment were investigated. Here, we show that CTGF acts as a potent promoter of the activation and expression of MMP-2, but not MMP-9 in normal rat kidney fibroblasts cell line (NRK-49F). We found that CTGF significantly increased the activity of MMP-2, as well as MMP-2 protein in conditioned medium and MMP-2 mRNA levels in cells. In studies to address the mechanisms involved in the regulation of MMP-2 activity, we found that the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), the inhibitor of MMP-2, decreased significantly when cells were treated with CTGF. Further studies showed that extracellular signal-regulated kinase (ERK) signaling is responsible for most of the CTGF-induced MMP-2 expression and TIMP-2 suppression. When NRK-49F fibroblasts were incubated with CTGF, activation of ERK1/2 signaling was observed. Suppression of ERK1/2 activation with nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, was associated with a reduction of CTGF-stimulated MMP-2 activity and protein expression. In addition, the CTGF-mediated reduction of TIMP-2 activity and protein expression was prevented when ERK1/2 activation was inhibited by PD98059. These results provide evidence that CTGF augments activation of MMP-2 through an effect on MMP-2 protein expression and TIMP-2 suppression, and that these effects are dependent on the activation of the ERK1/2 pathway.

  1. Adipokines in connective tissue diseases.

    PubMed

    Sawicka, Karolina; Krasowska, Dorota

    2016-01-01

    Adipokines, pleiotropic molecules produced by white adipose tissue (WAT) have attracted the attention of scientists since 1994. The role of adipokines in metabolic syndrome is known and fixed. Adipokines exerting a variety of metabolic activities have contributed to the ethiopathogenesis and the consequences of metabolic syndrome. Furthermore, adipokines are involved in the regulation of inflammatory processes and autoimmunity in the light of pathogenesis of connective tissue diseases. Given some evidence for the influence of adipokines in metabolic syndrome, there may be a link between CVDs and rheumatic diseases. This review provides an overview of the literature focusing on the role of adipokines in rheumatic diseases by putting special emphasis on the potential role of leptin, resistin, adiponectin, chemerin, visfatin and novel adipokines in connective tissue diseases.

  2. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells.

    PubMed

    Pi, Liya; Chung, Pei-Yu; Sriram, Sriniwas; Rahman, Masmudur M; Song, Wen-Yuan; Scott, Edward W; Petersen, Bryon E; Schultz, Gregory S

    2015-11-26

    To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls (P < 0.01). Cells

  3. Pediatric Mixed Connective Tissue Disease.

    PubMed

    Berard, Roberta A; Laxer, Ronald M

    2016-05-01

    Pediatric-onset mixed connective tissue disease is among the rare disease entities in pediatric rheumatology and includes features of arthritis, polymyositis/dermatomyositis, systemic lupus erythematosus, and systemic sclerosis. Accurate recognition and diagnosis of the disease is paramount to prevent long-term morbidity. Advances in the genetic and immunologic understanding of the factors involved in the etiopathogenesis provide an opportunity for improvements in prognostication and targeted therapy. The development of a multinational cohort of patients with mixed connective tissue disease would be invaluable to provide more updated data regarding the clinical presentation, to develop a standardized treatment approach, disease activity and outcome tools, and to provide data on long-term outcomes and comorbidities.

  4. Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-β1-connective tissue growth factor signalling cascade.

    PubMed

    Huang, Jiqian; Matavelli, Luis C; Siragy, Helmy M

    2011-04-01

    1. Transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) are expressed in renal glomeruli, and contribute to the development of diabetic nephropathy. Recently, we showed that (pro)renin receptor (PRR) is upregulated in the kidneys of the streptozocin (STZ)-induced diabetes rat model. We hypothesized that in the presence of hyperglycaemia, increased renal PRR expression contributes to enhanced TGF-β1-CTGF signalling activity, leading to the development of diabetic kidney disease. 2. In vivo and in vitro studies were carried out in Sprague-Dawley rats and rat mesangial cells (RMC). PRR blockade was achieved in vivo by treating STZ induced diabetes rats with the handle region peptide (HRP) of prorenin and in vitro by HRP or PRR siRNA in RMC. Angiotensin AT1 receptor blockade was achieved by valsartan treatment. 3. Results showed that expression of PRR, TGF-β1 and CTGF were upregulated in diabetic kidneys and RMC exposed to high glucose. Glucose exposure also induced PRR phosphorylation, a process that was inhibited by HRP, valsartan or PRR siRNA. HRP and valsartan significantly attenuated renal TGF-β1 and CTGF expression in diabetic animals and high glucose treated RMC. Similar results were observed in high glucose exposed RMC in response to PRR siRNA. TGF-β receptor blockade decreased CTGF expression in RMC. Combined administration of valsartan and PRR siRNA showed further reduction of TGF-β1 and CTGF expression in RMC. 4. In conclusion, PRR contributes to kidney disease in diabetes through an enhanced TGF-β1-CTGF signalling cascade.

  5. [Effect of tetramethylpyrazine and rat CTGF miRNA plasmids on connective tissue growth factor, transforming growth factor-beta in high glucose stimulated hepatic stellate cells].

    PubMed

    Yang, Hong; Li, Jun; Xing, Nini; Xiang, Ying; Shen, Yan; Li, Xiaosheng

    2014-04-01

    The aim of this research is to evaluate the effect of tetramethylpyrazine (TMP) and connective tissue growth factor (CTGF) miRNA plasmids on the expressive levels of CTGF, transforming growth factor-beta (TGFbeta) and type I collagen of rat hepatic stellate cells (HSC) which are stimulated by high glucose. The rat HSCs which were successfully transfected rat CTGF miRNA plasmids and the rat HSCs which were successfully transfected negative plasmids were cultured in vitro. After stimulus of the TMP and the high glucose, the protein levels and gene expressive levels of CTGF, TGF-beta and type I collagen were tested. The results indicated that high glucose increased the expression of CTGF mRNA, CTGF protein, TGF-beta mRNA,TGF-beta protein and type I collagen (P < 0.05). The expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in TMP group were lower than those in high glucose group and showed statistically significant differences (P < 0.05). Compared with high glucose group, the expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in rat CTGF miRNA plasmid interference group were significantly lower (P < 0.05). However, no statistically significant difference was found in CTGF mRNA and CTGF protein levels between TMP group and CTGF miRNA group (P > 0.05), while type I collagen levels showed statistically significant differences (P < 0.05). It is concluded that high glucose could promote the expressions of CTGF, TGF-beta and type I collagen, and TMP and rat CTGF miRNA plasmids could reduce the expressions of CTGF, TGF-beta, type I collagen.

  6. Growth and maturational changes in dense fibrous connective tissue following 14 days of rhGH supplementation in the dwarf rat

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Orth, Michael W.; Vailas, Arthur C.; Martinez, Daniel A.

    2002-01-01

    The purpose of this study was to investigate the impact of recombinant human growth hormone (rhGH) on patella tendon (PT), medial collateral ligament (MCL), and lateral collateral ligament (LCL) on collagen growth and maturational changes in dwarf GH-deficient rats. Twenty male Lewis mutant dwarf rats, 37 days of age, were randomly assigned to Dwarf + rhGH (n = 10) and Dwarf + vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt twice daily for 14 days. rhGH administration stimulated dense fibrous connective tissue growth, as demonstrated by significant increases in hydroxyproline specific activity and significant decreases in the non-reducible hydroxylysylpyridinoline (HP) collagen cross-link contents. The increase in the accumulation of newly accreted collagen was 114, 67, and 117% for PT, MCL, and LCL, respectively, in 72 h. These findings suggest that a short course rhGH treatment can affect the rate of new collagen production. However, the maturation of the tendon and ligament tissues decreased 18-25% during the rapid accumulation of de novo collagen. We conclude that acute rhGH administration in a dwarf rat can up-regulate new collagen accretion in dense fibrous connective tissues, while causing a reduction in collagen maturation. Copyright 2002 Elsevier Science Ltd.

  7. Growth and maturational changes in dense fibrous connective tissue following 14 days of rhGH supplementation in the dwarf rat

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Orth, Michael W.; Vailas, Arthur C.; Martinez, Daniel A.

    2002-01-01

    The purpose of this study was to investigate the impact of recombinant human growth hormone (rhGH) on patella tendon (PT), medial collateral ligament (MCL), and lateral collateral ligament (LCL) on collagen growth and maturational changes in dwarf GH-deficient rats. Twenty male Lewis mutant dwarf rats, 37 days of age, were randomly assigned to Dwarf + rhGH (n = 10) and Dwarf + vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt twice daily for 14 days. rhGH administration stimulated dense fibrous connective tissue growth, as demonstrated by significant increases in hydroxyproline specific activity and significant decreases in the non-reducible hydroxylysylpyridinoline (HP) collagen cross-link contents. The increase in the accumulation of newly accreted collagen was 114, 67, and 117% for PT, MCL, and LCL, respectively, in 72 h. These findings suggest that a short course rhGH treatment can affect the rate of new collagen production. However, the maturation of the tendon and ligament tissues decreased 18-25% during the rapid accumulation of de novo collagen. We conclude that acute rhGH administration in a dwarf rat can up-regulate new collagen accretion in dense fibrous connective tissues, while causing a reduction in collagen maturation. Copyright 2002 Elsevier Science Ltd.

  8. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  9. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome.

    PubMed

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF-β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF-β1 (p < 0.01), CTGF (p < 0.01), and Col3 (p < 0.01) were increased in SSCT of CTS patients compared with control tissue. In addition, a strong positive correlation was found between TGF-β1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF-β1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients.

  10. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties

    PubMed Central

    Carroll, Chad C.

    2015-01-01

    Exercising individuals commonly consume analgesics but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling. PMID:26509485

  11. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties.

    PubMed

    Carroll, Chad C

    2016-01-01

    Exercising individuals commonly consume analgesics, but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling.

  12. [Gastroenterologic aspects of connective tissue diseases].

    PubMed

    Altomonte, L; Zoli, A; Alessi, F; Ghirlanda, G; Greco, A V; Magarò, M

    1985-07-14

    The connective tissue disorders are a protean group of acquired diseases which have in common widespread immunologic and inflammatory alterations of connective tissue. The acquired connective tissue diseases generally include the following clinical entities: rheumatoid arthritis, systemic lupus erythematosus, polymyositis, polyarteritis nodosa, scleroderma, mixed connective tissue disease, Sjögren's and Behcet's sindromes. These entities have certain features in common which include sinovitis, pleuritis, myocarditis, endocarditis, pericarditis, peritonitis, vasculitis, myositis, changes in skin, alteration of connective tissue and nephritis. Gastrointestinal and hepatic involvement in connective tissue disorders are not the most important features, nevertheless appear almost regularly. Anorexia, nausea, vomiting, abdominal pain, malabsorption may affect patients suffering by rheumatoid arthritis, systemic lupus erythematosus and other collagenophaties. In some cases mesenteric vasculitis may cause intestinal ischemia which may result in bowel infarction, mucosal ulceration, hemorrhage, perforation. After an extensive review of the existing literature the Authors make an accurate evaluation of gastrointestinal and hepatic alterations in connective tissue diseases.

  13. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy.

  14. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissue in a rabbit model of carpal tunnel syndrome.

    PubMed

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Vanhees, Matthias; Moriya, Tamami; Reisdorf, Ramona; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Carpal tunnel syndrome (CTS) is an idiopathic disease that results from increased fibrosis of the subsynovial connective tissue (SSCT). A recent study found overexpression of both transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) in the SSCT of CTS patients. This study investigated TGF-β and CTGF expression in a rabbit model of CTS, in which SSCT fibrosis is induced by a surgical injury. Levels of TGF-β1 and CTGF at 6, 12, 24 weeks after injury were determined by immunohistochemistry A significant increase in TGF-β1 and a concomitant significant increase in CTGF were found at 6 weeks, in addition to higher cell density compared to normal (all p<0.05), Interestingly, CTGF expression was reduced at 12 and 24 weeks, suggesting that an initial insult results in a time limited response. We conclude that this rabbit model mimics the fibrosis found in human CTS, and may be useful to study pathogenetic mechanisms of CTS in vivo.

  15. Fell-Muir lecture: Connective tissue growth factor (CCN2) -- a pernicious and pleiotropic player in the development of kidney fibrosis.

    PubMed

    Mason, Roger M

    2013-02-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  16. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    PubMed

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  17. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-01-01

    Background This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. Material/Methods A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3′UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. Results MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3′UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. Conclusions MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression. PMID:27771733

  18. A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice

    PubMed Central

    Li, Shuang; Lv, Yi-Fei; Su, Hou-Qiang; Zhang, Qian-Nan; Wang, Li-Rong; Hao, Zhi-Ming

    2016-01-01

    Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138–159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1–149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis. PMID:27562139

  19. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  20. Connective tissue disorders and the mouth.

    PubMed

    Porter, Stephen; Scully, Crispian

    2008-06-01

    The connective tissue disorders frequently give rise to orofacial manifestations, especially dry mouth because of Sjögren's syndrome. In addition, the systemic complications of such diseases may impact upon the provision of oral health care. The present article reviews the consequences of connective tissue disorders of relevance to oral health care providers. Connective tissue disorders can give rise to oral manifestations and systemic complications that may occasionally compromise primary oral health care.

  1. Cutaneous mucinosis in mixed connective tissue disease.

    PubMed

    Favarato, Maria Helena Sampaio; Miranda, Sofia Silveira de Castro; Caleiro, Maria Teresa Correia; Assad, Ana Paula Luppino; Halpern, Ilana; Fuller, Ricardo

    2013-01-01

    Cutaneous mucinosis is a group of conditions involving an accumulation of mucin or glycosaminoglycan in the skin and its annexes. It is described in some connective tissue diseases but never in association with mixed connective tissue disease. This report concerns two cases of cutaneous mucinosis in patients with mixed connective tissue disease in remission; one patient presented the papular form, and the other reticular erythematous mucinosis. These are the first cases of mucinosis described in mixed connective tissue disease. Both cases had skin lesions with no other clinical or laboratorial manifestations, with clinical response to azathioprine in one, and to an association of chloroquine and prednisone in the other.

  2. Cutaneous mucinosis in mixed connective tissue disease*

    PubMed Central

    Favarato, Maria Helena Sampaio; Assad, Ana Paula Luppino; Miranda, Sofia Silveira de Castro; Halpern, Ilana; Caleiro, Maria Teresa Correia; Fuller, Ricardo

    2013-01-01

    Cutaneous mucinosis is a group of conditions involving an accumulation of mucin or glycosaminoglycan in the skin and its annexes. It is described in some connective tissue diseases but never in association with mixed connective tissue disease. This report concerns two cases of cutaneous mucinosis in patients with mixed connective tissue disease in remission; one patient presented the papular form, and the other reticular erythematous mucinosis. These are the first cases of mucinosis described in mixed connective tissue disease. Both cases had skin lesions with no other clinical or laboratorial manifestations, with clinical response to azathioprine in one, and to an association of chloroquine and prednisone in the other. PMID:24068142

  3. Increased expression of connective tissue growth factor (CTGF) in multiple organs after exposure of non-human primates (NHP) to lethal doses of radiation

    PubMed Central

    Zhang, Pei; Cui, Wanchang; Hankey, Kim G.; Gibbs, Allison M.; Smith, Cassandra P.; Taylor-Howell, Cheryl; Kearney, Sean R.; MacVittie, Thomas J.

    2015-01-01

    Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP, and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition respectively, suggesting possible crosstalk between spleen and other organs. Our data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs. PMID:26425899

  4. Increased Expression of Connective Tissue Growth Factor (CTGF) in Multiple Organs After Exposure of Non-Human Primates (NHP) to Lethal Doses of Radiation.

    PubMed

    Zhang, Pei; Cui, Wanchang; Hankey, Kim G; Gibbs, Allison M; Smith, Cassandra P; Taylor-Howell, Cheryl; Kearney, Sean R; MacVittie, Thomas J

    2015-11-01

    Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus, and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition, respectively, suggesting possible crosstalk between spleen and other organs. These data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs.

  5. Patients with Encapsulating Peritoneal Sclerosis Have Increased Peritoneal Expression of Connective Tissue Growth Factor (CCN2), Transforming Growth Factor-β1, and Vascular Endothelial Growth Factor

    PubMed Central

    Abrahams, Alferso C.; Habib, Sayed M.; Dendooven, Amélie; Riser, Bruce L.; van der Veer, Jan Willem; Toorop, Raechel J.; Betjes, Michiel G. H.; Verhaar, Marianne C.; Watson, Christopher J. E.; Nguyen, Tri Q.; Boer, Walther H.

    2014-01-01

    Introduction Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. Materials and methods Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Results Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased. Conclusions Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a

  6. Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet-derived growth factor-AB/BB to stromal cells.

    PubMed Central

    Sundberg, C.; Branting, M.; Gerdin, B.; Rubin, K.

    1997-01-01

    Mechanisms underlying stimulation of platelet-derived growth factor (PDGF) beta-receptors expressed on connective tissue cells in human colorectal adenocarcinoma were investigated in this study. PDGF-AB/BB, but not PDGF receptors, was expressed by tumor cells in situ, as well as in tumor cell isolates of low passage from human colorectal adenocarcinoma. In an experimental co-culture system, conditioned medium from tumor cells only marginally activated PDGF beta-receptors expressed on fibroblasts. In contrast, co-culturing of the two cell types led to a marked PDGF beta-receptor activation. Functional PDGF-AB/BB was found to be associated with heparinase-I-sensitive components on the tumor cell surface. PDGF-AB/BB, isolated from heparinase-I-sensitive cell surface components, induced a marked activation of PDGF beta-receptors. Furthermore, co-culturing tumor cells together with fibroblasts led to a sustained activation of PDGF beta-receptors expressed on fibroblasts. Double immunofluorescence staining of tissue sections from human colorectal adenocarcinoma, combined with computer-aided image analysis, revealed that nonproliferating tumor cells were the predominant cellular source of PDGF-AB/BB in the tumor stroma. In addition, PDGF-AB/BB-expressing tumor cells were found juxtapositioned to microvascular cells expressing activated PDGF beta-receptors. Confocal microscopy revealed a cytoplasmic and cell-membrane-associated expression of PDGF-AB/BB in tumor cells situated in the stroma. In contrast, epithelial cells situated in normal or tumorous acinar structures revealed only a cell-membrane-associated PDGF-AB/BB expression. The is vitro and in situ results demonstrate that tumor cells not only facilitate but also have the ability to modulate connective tissue cell responsiveness to PDGF-AB/BB in a paracrine fashion, through direct cell-cell interactions in human colorectal adenocarcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9250160

  7. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis

    PubMed Central

    CHIEN, WENWEN; O’KELLY, JAMES; LU, DANING; LEITER, AMANDA; SOHN, JULIA; YIN, DONG; KARLAN, BETH; VADGAMA, JAY; LYONS, KAREN M.; KOEFFLER, H. PHILLIP

    2013-01-01

    Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis. PMID:21455569

  8. Acupuncture, connective tissue, and peripheral sensory modulation.

    PubMed

    Langevin, Helene M

    2014-01-01

    Although considerable controversy surrounds the legitimacy of acupuncture as a treatment, a growing literature on the physiological effects of acupuncture needling in animals and humans is providing new insights into basic cellular mechanisms including connective tissue mechanotransduction and purinergic signaling. This review summarizes these findings and proposes a model combining connective tissue plasticity and peripheral sensory modulation in response to the sustained stretching of tissue that results from acupuncture needle manipulation.

  9. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    PubMed

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  10. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy.

    PubMed

    Tam, Frederick W K; Riser, Bruce L; Meeran, Karim; Rambow, JoAnn; Pusey, Charles D; Frankel, Andrew H

    2009-07-01

    Profibrotic growth factors and inflammatory chemokines have been implicated in the pathogenesis of diabetic nephropathy (DN). However, measurement of urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers has not previously been reported, and neither have two such molecules in urine been examined in a single study of DN. In this prospective observational study, 43 adult diabetic patients were studied, 40 were followed up for 6years. Urinary MCP-1/creatinine ratios were found to be significantly higher in patients with macroalbuminuria (3.3- and 2.1-fold higher (p<0.01) than normoalbuminuric and microalbuminuric patients, respectively). CCN2 exhibited a pattern different from that of urinary MCP-1. Urinary CCN2/creatinine ratios were greatly elevated in both microalbuminuric and macroalbuminuric patients (125- and 74-fold higher than normoalbuminuric patients, respectively, p<0.01 and p<0.05, respectively). Further, urinary CCN2, but not MCP-1, correlated with progression of microalbuminuria (R=0.49, p<0.05). In contrast, MCP-1, but not CCN2, correlated with the rate of eGFR decline for all patients (R=0.61, p<0.0001), reflective of its predictive value in patients with macroalbuminuria, but not for patients with microalbuminuria or normoalbuminuria. In conclusion, increased urinary CCN2 is associated with the early progression of DN, whereas MCP-1 is associated with later stage disease.

  11. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis

    PubMed Central

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P.; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki

    2017-01-01

    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis. PMID:28191821

  12. The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle.

    PubMed

    Morales, María Gabriela; Acuña, María José; Cabrera, Daniel; Goldschmeding, Roel; Brandan, Enrique

    2017-09-08

    Connective tissue growth factor (CTGF/CCN2) has strong inflammatory and profibrotic activities. Its expression is enhanced in skeletal muscular dystrophies such as Duchenne muscular dystrophy (DMD), a myopathy characterized by exacerbated inflammation and fibrosis. In dystrophic tissue, necrotic-regenerative foci, myofibroblasts, newly-regenerated muscle fibers and necrosis all occur simultaneously. To determine if CCN2 is involved in the appearance of the foci, we studied their presence and characteristics in mdx mice (DMD mouse model) compared to mdx mice hemizygous for CCN2 (mdx-Ccn2+/-). We used laser capture microdissection followed by gene expression and immunofluorescence analyses to investigate fibrotic, inflammation and regeneration markers in damaged and non-damaged areas in mdx and mdx-Ccn2+/- skeletal muscle. Mdx mice foci express elevated mRNAs levels of transforming growth factor type beta, collagen, fibronectin, the myofribroblast marker α-SMA, and the myogenic transcription factor myogenin. Mdx foci also show elevated levels of MCP-1 and CD-68 positive cells, indicating that CCN2 could be inducing an inflammatory response. We found a significant reduction in the number of foci in mdx-Ccn2+/- mice muscle. Fibrotic and inflammatory markers were also decreased in these foci. We did not observe any difference in Pax7 mRNA levels, a marker for satellite cells, in mdx mice compared to mdx-Ccn2+/- mice. Thus, CCN2 appears to be involved in the fibrotic response as well as in the inflammatory response in the dystrophic skeletal muscle.

  13. Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology.

    PubMed

    Zhao, Zhong; Ho, Lap; Wang, Jun; Qin, Weiping; Festa, Eugene D; Mobbs, Charles; Hof, Patrick; Rocher, Anne; Masur, Sandra; Haroutunian, Vahram; Pasinetti, Giulio Maria

    2005-12-01

    The goal of this study was to further explore potential mechanisms through which diabetogenic dietary conditions that result in promotion of insulin resistance (IR), a feature of non-insulin dependant diabetes mellitus (type-2 diabetes), may influence Alzheimer's disease (AD). Using genome-wide array technology, we found that connective tissue growth factor (CTGF), a gene product described previously for its involvement in diabetic fibrosis, is elevated in brain tissue in an established mouse model of diet-induced IR. With this evidence we continued to explore the regulation of CTGF in postmortem AD brain tissue and found that CTGF expression correlated with the progression of AD clinical dementia and amyloid neuritic plaque (NP) neuropathology, but not neurofibrillary tangle (NFT) deposition. Consistent with this evidence, we also found that exposure of Tg2576 mice (a model AD-type amyloid neuropathology) to a diabetogenic diet that promotes IR results in a ~2-fold elevation in CTGF steady-state levels in the brain, coincident with a commensurate promotion of AD-type amyloid plaque burden. Finally, using in vitro cellular models of amyloid precursor protein (APP)-processing and Abeta generation/clearance, we confirmed that human recombinant (hr)CTGF may increase Abeta1-40 and Abeta1-42 peptide steady-state levels, possibly through a mechanism that involves gamma-secretase activation and decreased insulin-degrading enzyme (IDE) steady-state levels in a MAP kinase (MAPK)/ phosphatidylinositol 3-kinase (PI-3K)/protein kinase-B (AKT)1-dependent manner. The findings in this study tentatively suggest that increased CTGF expression in the brain might be a novel biological predicative factor of AD clinical progression and neuropathology in response to dietary regimens promoting IR conditions.

  14. Connective tissue alterations in Fkbp10-/- mice.

    PubMed

    Lietman, Caressa D; Rajagopal, Abbhirami; Homan, Erica P; Munivez, Elda; Jiang, Ming-Ming; Bertin, Terry K; Chen, Yuqing; Hicks, John; Weis, MaryAnn; Eyre, David; Lee, Brendan; Krakow, Deborah

    2014-09-15

    Osteogenesis imperfecta (OI) is an inherited brittle bone disorder characterized by bone fragility and low bone mass. Loss of function mutations in FK506-binding protein 10 (FKBP10), encoding the FKBP65 protein, result in recessive OI and Bruck syndrome, of which the latter is additionally characterized by joint contractures. FKBP65 is thought to act as a collagen chaperone, but it is unknown how loss of FKBP65 affects collagen synthesis and extracellular matrix formation. We evaluated the developmental and postnatal expression of Fkbp10 and analyzed the consequences of its generalized loss of function. Fkbp10 is expressed at low levels in E13.5 mouse embryos, particularly in skeletal tissues, and steadily increases through E17.5 with expression in not only skeletal tissues, but also in visceral tissues. Postnatally, expression is limited to developing bone and ligaments. In contrast to humans, with complete loss of function mutations, Fkbp10(-/-) mice do not survive birth, and embryos present with growth delay and tissue fragility. Type I calvarial collagen isolated from these mice showed reduced stable crosslink formation at telopeptide lysines. Furthermore, Fkbp10(-/-) mouse embryonic fibroblasts show retention of procollagen in the cell layer and associated dilated endoplasmic reticulum. These data suggest a requirement for FKBP65 function during embryonic connective tissue development in mice, but the restricted expression postnatally in bone, ligaments and tendons correlates with the bone fragility and contracture phenotype in humans. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Pulmonary hypertension associated with connective tissue disease.

    PubMed

    Fagan, Karen A; Badesch, David B

    2002-01-01

    Pulmonary arterial hypertension is a life threatening complication of several connective tissue diseases including scleroderma (both diffuse and limited scleroderma, or the CREST syndrome--calcinosis cutis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangectasia), systemic lupus erythomatosis (SLE), mixed connective tissue disease (MCTD), and less commonly, rheumatoid arthritis (RA) and dermatomyositis/polymyositis. This report reviews the occurrence of this complication, potential etiologies, clinical presentation, and treatment options.

  16. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor

    PubMed Central

    Wang, Ying-Na; Qin, Li; Li, Jing-Ming; Chen, Li; Pei, Cheng

    2015-01-01

    AIM To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF). METHODS HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis. RESULTS HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01). CONCLUSION Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro. PMID:26558194

  17. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover.

    PubMed

    Jugdaohsingh, Ravin; Watson, Abigail I E; Pedro, Liliana D; Powell, Jonathan J

    2015-06-01

    previously estimated which could explain why absolute silicon deficiency is difficult to achieve but, when it is achieved in young growing animals, it results in stunted growth and abnormal development of bone and other connective tissues.

  18. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover☆

    PubMed Central

    Jugdaohsingh, Ravin; Watson, Abigail I.E.; Pedro, Liliana D.; Powell, Jonathan J.

    2015-01-01

    lower than previously estimated which could explain why absolute silicon deficiency is difficult to achieve but, when it is achieved in young growing animals, it results in stunted growth and abnormal development of bone and other connective tissues. PMID:25687224

  19. Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro.

    PubMed

    Istvánffy, Rouzanna; Vilne, Baiba; Schreck, Christina; Ruf, Franziska; Pagel, Charlotta; Grziwok, Sandra; Henkel, Lynette; Prazeres da Costa, Olivia; Berndt, Johannes; Stümpflen, Volker; Götze, Katharina S; Schiemann, Matthias; Peschel, Christian; Mewes, Hans-Werner; Oostendorp, Robert A J

    2015-11-10

    Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage⁻ SCA-1⁺ KIT⁺ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further experiments demonstrated that CD34⁻ CD48⁻ CD150⁺ LSK (CD34⁻ SLAM) cell numbers from shCtgf co-cultures increase in G0 and senescence and show delayed time to first cell division. To understand this observation, a CTGF signaling network model was assembled, which was experimentally validated. In co-culture experiments of CD34⁻ SLAM cells with shCtgf stromal cells, we found that SMAD2/3-dependent signaling was activated, with increasing p27(Kip1) expression and downregulating cyclin D1. Our data support the view that LSK cells modulate gene expression in the niche to maintain repopulating HSC activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Knockdown of connective tissue growth factor by plasmid-based short hairpin RNA prevented pulmonary vascular remodeling in cigarette smoke-exposed rats.

    PubMed

    Wang, Ran; Xu, Yong-Jian; Liu, Xian-Sheng; Zeng, Da-Xiong; Xiang, Min

    2011-04-01

    Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by resulting in pulmonary vascular remodeling that involves pulmonary artery smooth muscle cell proliferation. Connective tissue growth factor (CTGF) is a cysteine-rich peptide implicated in several biological processes such as cell proliferation, survival, and migration. This study investigated the potential role of CTGF in pulmonary vascular remodeling. We constructed a plasmid-based short hairpin RNA (shRNA) to knock down the expression of CTGF in primary cultured rat pulmonary artery smooth muscle cells (rPASMCs) and in rat lung vessels. Rat PASMCs were challenged with cigarette smoke extract (CSE). Rats were exposed to cigarette smoke for 3 months in the absence or in the presence of plasmid-based short hairpin RNA against CTGF which was administrated by tail vein injection. CTGFshRNA significantly prevented CTGF and cyclin D1 expression, arrested cell cycle at G0/G1 phase and suppressed cell proliferation in rPASMCs exposed to CSE. CTGFshRNA administration ameliorated pulmonary vascular remodeling, inhibited cigarette smoke-induced CTGF elevation and reversed the cyclin D1 increase in pulmonary vessels in rats. Collectively, our data demonstrated that plasmid-based shRNA against CTGF attenuated pulmonary vascular remodeling in cigarette smoke-exposed rats. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Association Between Aqueous Connective Tissue Growth Factor and the Severity of Age-related Cataracts as Graded by the Lens Opacities Classification System III.

    PubMed

    Hwang, Hyung Bin; Yim, Hye Bin; Cho, Yang Kyung; Choi, Jin A

    2016-01-01

    To evaluate the relationship between aqueous humor concentrations of connective tissue growth factor (CTGF) and the severity of age-related cataracts. We conducted a prospective clinical study on 43 eyes of 43 patients with senile cataracts scheduled to undergo routine phacoemulsification surgery. Before surgery, all patients were graded for cataract severity using the Lens Opacities Classification System III in terms of four features: nuclear opalescence (NO), nuclear color (NC), cortical cataracts (C), and posterior sub-capsular cataracts (P). During surgery, aqueous humor samples were obtained from all patients, and sandwich enzyme-linked immunosorbent assays (ELISAs) were used to determine CTGF concentrations. To assess any relationship between cataract severity and CTGF levels of the aqueous humor, various correlation analyses and multiple linear regression were used. We found a positive correlation between the overall cataract grade and aqueous CTGF level (p < 0.05). In addition, four features of the cataract grade (nuclear opalescence, nuclear color, cortical cataract and posterior sub-capsular cataract) were positively correlated with the aqueous CTGF concentration (p < 0.05). The final regression model identified overall cataract grade as an independent predictor of increased CTGF levels in the aqueous humor (p < 0.05). CTGF tends to increase in the aqueous humor as the severity of age-related cataracts increases. Therefore, this cytokine may play an important role in the pathogenesis of age-related cataracts. Additional studies are required for clarification of this finding.

  2. Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Wagner, Diane R.; Bekerman, Elena; Chiou, Michael; James, Aaron W.; Carter, Dennis; Longaker, Michael T.

    2010-01-01

    Background Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC osteogenic differentiation. PMID:20585662

  3. Inverse expression of cystein-rich 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2) in borderline tumors and carcinomas of the ovary.

    PubMed

    Bartel, Frank; Balschun, Katharina; Gradhand, Elise; Strauss, Hans G; Dittmer, Jürgen; Hauptmann, Steffen

    2012-09-01

    Members of the CCN [cystein-rich 61 (Cyr61)/connective tissue growth factor (CTGF)/nephroblastoma (NOV)] protein family are involved in the regulation of cellular proliferation, apoptosis, and migration and are also assumed to play a role in carcinogenesis. Therefore, we performed a retrospective study to investigate the immunohistochemical expression of both Cyr61 and CTGF in 92 borderline tumors (BOTs) and 107 invasive carcinomas of the ovary (IOCs). To determine their diagnostic and prognostic value, we correlated protein expression with clinicopathologic factors including overall and disease-free survival. Cyr61 and CTGF were found to be inversely expressed in both BOTs and IOCs, with a stronger expression of Cyr61 in IOCs. Moreover, Cyr61 was found to be preferentially expressed in high-grade serous carcinomas, whereas CTGF was found more frequently in low-grade serous carcinomas. Weak Cyr61 levels correlated with both low estrogen receptor and p53 expression (P=0.038, P=0.04, respectively). However, no association was observed between CTGF, estrogen receptor, and p53 expression levels in IOCs. Regarding prognosis, Cyr61 was found to be of no value, but the loss of CTGF was found to be associated with a poor prognosis in multivariate analysis of overall (relative risk 2.8; P=0.050) and disease-free (relative risk 2.3; P=0.031) survival. Cyr61 and CTGF are inversely expressed in BOTs and IOCs, and loss of CTGF independently indicates poor prognosis in IOCs.

  4. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10

    PubMed Central

    1991-01-01

    Human umbilical vein endothelial (HUVE) cells have been previously reported to express the genes for the A and B chains of PDGF and to secrete PDGF-related factors into culture media. Antihuman PDGF IgG affinity chromatography was used to purify PDGF-related activity from HUVE cell-conditioned media. Immunoblot analysis of the affinity- purified proteins with anti-PDGF IgG and antibodies specific for the A or B chain peptides of PDGF combined with chemotactic and mitogenic assays revealed that the major PDGF immunorelated molecule secreted by HUVE cells is a monomer of approximately 36-38 kD and that less than 10% of the purified biologically active molecules are PDGF A or B chain peptides. Screening of an HUVE cell cDNA library in the expression vector lambda gtl 1 with the anti-PDGF antibody resulted in the cloning and sequencing of a cDNA with an open reading frame encoding a 38-kD cysteine-rich secreted protein which we show to be the major PDGF- related mitogen secreted by human vascular endothelial cells. The protein has a 45% overall homology to the translation product of the v- src-induced CEF-10 mRNA from chick embryo fibroblasts. We have termed this new mitogen connective tissue growth factor. PMID:1654338

  5. Connective tissue growth factor is expressed in malignant cells of Hodgkin lymphoma but not in other mature B-cell lymphomas.

    PubMed

    Birgersdotter, Anna; Baumforth, Karl R N; Wei, Wenbin; Murray, Paul G; Sjöberg, Jan; Björkholm, Magnus; Porwit, Anna; Ernberg, Ingemar

    2010-02-01

    Connective tissue growth factor (CTGF) has a major role in development of fibrosis and in the wound-healing process. Microarray analysis of 44 classical Hodgkin lymphoma (cHL) samples showed higher CTGF messenger RNA expression in the nodular sclerosis (NS) than in the mixed cellularity (MC) subtype. When analyzed by immunohistochemical analysis, Hodgkin-Reed-Sternberg (H-RS) cells and macrophages in 23 cHLs and "popcorn" cells in 2 nodular lymphocyte predominant Hodgkin lymphomas showed expression of CTGF protein correlating with the extent of fibrosis. In NS, CTGF was also expressed in fibroblasts and occasional lymphocytes. Malignant cells in 32 samples of various non-Hodgkin lymphomas were negative for CTGF. A staining pattern of stromal cells similar to that of NS cHL was seen in anaplastic large cell lymphoma. Macrophages stained positively in Burkitt lymphomas and in some mantle cell lymphomas. The high occurrence of fibrosis in cHL may be related to CTGF expression by malignant H-RS cells.

  6. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis.

    PubMed

    Raghu, Ganesh; Scholand, Mary Beth; de Andrade, João; Lancaster, Lisa; Mageto, Yolanda; Goldin, Jonathan; Brown, Kevin K; Flaherty, Kevin R; Wencel, Mark; Wanger, Jack; Neff, Thomas; Valone, Frank; Stauffer, John; Porter, Seth

    2016-05-01

    FG-3019 is a fully human monoclonal antibody that interferes with the action of connective tissue growth factor, a central mediator in the pathogenesis of fibrosis.This open-label phase 2 trial evaluated the safety and efficacy of two doses of FG-3019 administered by intravenous infusion every 3 weeks for 45 weeks in patients with idiopathic pulmonary fibrosis (IPF). Subjects had a diagnosis of IPF within the prior 5 years defined by either usual interstitial pneumonia (UIP) pattern on a recent high-resolution computed tomography (HRCT) scan, or a possible UIP pattern on HRCT scan and a recent surgical lung biopsy showing UIP pattern. Pulmonary function tests were performed every 12 weeks, and changes in the extent of pulmonary fibrosis were measured by quantitative HRCT scans performed at baseline and every 24 weeks.FG-3019 was safe and well-tolerated in IPF patients participating in the study. Changes in fibrosis were correlated with changes in pulmonary function.Further investigation of FG-3019 in IPF with a placebo-controlled clinical trial is warranted and is underway. Copyright ©ERS 2016.

  7. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  8. [Pulmonary arterial hypertension in connective tissue diseases].

    PubMed

    Cordier, Jean-François

    2009-11-01

    Among connective tissue diseases, pulmonary arterial hypertension (PAH) is frequently associated with systemic sclerosis and systemic lupus erythematosus. PAH is less common in mixed connective tissue diseases and Sjögren's syndrome, and rare in rheumatoid arthritis. PAH in systemic sclerosis may be either isolated (prevalence about 8%) or associated with interstitial lung disease. Echocardiographic screening for PAH is worthwhile in patients with systemic sclerosis, especially as treatments for idiopathic PAH (endothelin receptor antagonists, phosphodiesterase-5 inhibitors, and prostanoids) are effective in this setting. The prevalence of PAH among patients with systemic lupus erythematosus is poorly known; immunosuppressive treatment is sometimes effective by itself but most patients benefit from PAH treatment. PAH associated with connective tissue diseases has a worse prognosis than idiopathic PAH.

  9. CCN Family 2/Connective Tissue Growth Factor (CCN2/CTGF) Promotes Osteoclastogenesis via Induction of and Interaction with Dendritic Cell–Specific Transmembrane Protein (DC-STAMP)

    PubMed Central

    Nishida, Takashi; Emura, Kenji; Kubota, Satoshi; Lyons, Karen M; Takigawa, Masaharu

    2013-01-01

    CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes endochondral ossification. However, the role of CCN2 in the replacement of hypertrophic cartilage with bone is still unclear. The phenotype of Ccn2 null mice, having an expanded hypertrophic zone, indicates that the resorption of the cartilage extracellular matrix is impaired therein. Therefore, we analyzed the role of CCN2 in osteoclastogenesis because cartilage extracellular matrix is resorbed mainly by osteoclasts during endochondral ossification. Expression of the Ccn2 gene was upregulated in mouse macrophage cell line RAW264.7 on day 6 after treatment of glutathione S transferase (GST) fusion mouse receptor activator of NF-κB ligand (GST-RANKL), and a combination of recombinant CCN2 (rCCN2) and GST-RANKL significantly enhanced tartrate-resistant acid phosphatase (TRACP)–positive multinucleated cell formation compared with GST-RANKL alone. Therefore, we suspected the involvement of CCN2 in cell-cell fusion during osteoclastogenesis. To clarify the mechanism, we performed real-time PCR analysis of gene expression, coimmunoprecipitation analysis, and solid-phase binding assay of CCN2 and dendritic cell–specific transmembrane protein (DC-STAMP), which is involved in cell-cell fusion. The results showed that CCN2 induced and interacted with DC-STAMP. Furthermore, GST-RANKL–induced osteoclastogenesis was impaired in fetal liver cells from Ccn2 null mice, and the impaired osteoclast formation was rescued by the addition of exogenous rCCN2 or the forced expression of DC-STAMP by a retroviral vector. These results suggest that CCN2 expressed during osteoclastogenesis promotes osteoclast formation via induction of and interaction with DC-STAMP. PMID:20721934

  10. Effects of Antiproteinuric Intervention on Elevated Connective Tissue Growth Factor (CTGF/CCN-2) Plasma and Urine Levels in Nondiabetic Nephropathy

    PubMed Central

    Slagman, Maartje C.J.; Nguyen, Tri Q.; Waanders, Femke; Vogt, Liffert; Hemmelder, Marc H.; Goldschmeding, Roel; Navis, Gerjan

    2011-01-01

    Summary Background and objectives Connective Tissue Growth Factor (CTGF/CCN-2) is a key player in fibrosis. Plasma CTGF levels predict end-stage renal disease and mortality in diabetic chronic kidney disease (CKD), supporting roles in intra- and extrarenal fibrosis. Few data are available on CTGF in nondiabetic CKD. We investigated CTGF levels and effects of antiproteinuric interventions in nondiabetic proteinuric CKD. Design, setting, participants, & measurements In a crossover randomized controlled trial, 33 nondiabetic CKD patients (3.2 [2.5 to 4.0] g/24 h proteinuria) were treated during 6-week periods with placebo, ARB (100 mg/d losartan), and ARB plus diuretics (100 mg/d losartan plus 25 mg/d hydrochlorothiazide) combined with consecutively regular and low sodium diets (193 ± 62 versus 93 ± 52 mmol Na+/d). Results CTGF was elevated in plasma (464 [387 to 556] pmol/L) and urine (205 [135 to 311] pmol/24 h) of patients compared with healthy controls (n = 21; 96 [86 to 108] pmol/L and 73 [55 to 98] pmol/24 h). Urinary CTGF was lowered by antiproteinuric intervention, in proportion to the reduction of proteinuria, with normalization during triple therapy (CTGF 99 [67 to 146] in CKD versus 73 [55 to 98] pmol/24 h in controls). In contrast, plasma CTGF was not affected. Conclusions Urinary and plasma CTGF are elevated in nondiabetic CKD. Only urinary CTGF is normalized by antiproteinuric intervention, consistent with amelioration of tubular dysfunction. The lack of effect on plasma CTGF suggests that its driving force might be independent of proteinuria and that short-term antiproteinuric interventions are not sufficient to correct the systemic profibrotic state in CKD. PMID:21784839

  11. [Effects of rosiglitazone on the expression of connective tissue growth factor in the pulmonary arteries of rats suffering from fibrosis in lung].

    PubMed

    Cui, Mao-xiang; Chen, Xiao-ling; Chen, Chao; Hu, Xiao-jie; Jin, Hui

    2010-05-01

    To explore the effects of rosiglitazone (RSG), an agonist of peroxisome proliferators-activated receptor-gamma (PPAR-gamma), on the up-regulation of connective tissue growth factor (CTGF) and the deposition of type I and type III collagens in the pulmonary arteries of rats suffering from fibrosis in lung. Forty-eight male Sprague-Dawley rats were randomly divided into 4 groups: bleomycin (BLM) plus normal saline (NS) group (n=21), BLM plus RSG group (n=9), NS plus NS group (n=9), and NS plus RSG group (n=9). The rats were received single intratracheal instillation of BLM (5 mg/kg bw) or equal volume of NS as control, and received intra-gastric adminnistration of RSG (3 mg/(kg x day), 14 day) or the same volume of NS as vehicle. In vio, the observation was conducted on day 14 after intratracheal instillation. In vitro, the pulmonary arteries of rats on day 14 after BLM were isolated and incubated with DMEM alone or with RSG (37 degrees C, 5% CO2, for 24 h. In vivo, the expression and the content of CTGF, the contents of type I and type III collagens, and the ratio of type I collagen and type III collagen were increased in the pulmonary arteries of BLM-instilled rats, compared with those of NS-instilled rats (All P < 0.05). The above abnormal changes were ameliorated by RSG (All P < 0.05). In vitro, RSG blocked the up-regulation of CTGF (P < 0.05), but not the deposition of type I collagen and type III collagen in the pulmonary arteries isolated from the BLM-instilled rats (P > 0.05). The results suggest that RSG directly blocks the up-regulation of CTGF in pulmonary arteries of rats suffering from fibrosis in lung, and this might be one of the mechanisms underling the ameliorated pulmonary arterial remodeling by RSG.

  12. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    PubMed

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  13. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    USDA-ARS?s Scientific Manuscript database

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  14. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.

  15. CXCL12 Induces Connective Tissue Growth Factor Expression in Human Lung Fibroblasts through the Rac1/ERK, JNK, and AP-1 Pathways

    PubMed Central

    Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  16. Microgravity Stress: Bone and Connective Tissue.

    PubMed

    Bloomfield, Susan A; Martinez, Daniel A; Boudreaux, Ramon D; Mantri, Anita V

    2016-03-15

    The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions. Copyright © 2016 John Wiley & Sons, Inc.

  17. [Pulmonary involvement in connective tissue disease].

    PubMed

    Bartosiewicz, Małgorzata

    2016-01-01

    The connective tissue diseases are a variable group of autoimmune mediated disorders characterized by multiorgan damage. Pulmonary complications are common, usually occur after the onset of joint symptoms, but can also be initially presenting complaint. The respiratory system may be involved in all its component: airways, vessels, parenchyma, pleura and respiratory muscles. Lung involvement is an increasing cause of morbidity and mortality in the connective tissue diseases. Clinical course is highly variable - can range from mild to rapidly progressive, some processes are reversible, while others are irreversible. Thus, the identification of reversible disease , and separately progressive disease, are important clinical issues. The frequency, clinical presentation, prognosis and responce to therapy are different, depending on the pattern of involvement as well as on specyfic diagnostic method used to identify it. High- resolution computed tompography plays an important role in identifying patients with respiratory involvement. Pulmonary function tests are a sensitive tool detecting interstitial lung disease. In this article, pulmonary lung involvement accompanying most frequently apperaing connective tissue diseases - rheumatoid arthritis, systemic sclerosis, lupus erythematosus, polymyositis/dermatomyositis, Sjögrens syndrome and mixed connective tissue disaese are reviewed.

  18. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue.

  19. STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE

    PubMed Central

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.

    2016-01-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  20. [Effects of Chinese herbal medicine Yiqi Huoxue Formula on TGF-β/smad signal transduction pathway and connective tissue growth factor in rats with renal interstitial fibrosis].

    PubMed

    Liu, Yong-mei; Liu, Rui-hua; Liu, Wen-jun; Liu, Li; Wu, Zhi-kui; Chen, Yu-ying

    2010-12-01

    To observe the effects of Yiqi Huoxue Formula (YQHXF), a compound Chinese herbal medicine, on transforming growth factor-β (TGF-β)/smad signal transduction pathway and connective tissue growth factor (CTGF) in rats with renal interstitial fibrosis Unilateral ureteral obstruction (UUO) rat model was established and the rats were randomly divided into 5 groups: untreated group, high-, medium-, and low-dose YQHXF groups and fosinopril sodium group. Another group with sham operation was set as control. All rats were administered with corresponding drugs for 3 weeks. After the last administration, each rat was sacrificed and weighed and the serum was separated for creatinine (Cr) and blood urea nitrogen (BUN) detection. Kidneys of the rats were taken out, and mRNA and protein expressions of TGF-β, smad2, smad7 and CTGF were measured with real-time fluorescent quantitative reverse transcription-polymerase chain reaction and Western blotting respectively; fibrosis of the kidney tissue was observed with hematoxylin-eosin (HE) staining and Masson trichrome staining. Compared with sham-operation group, Cr and BUN in serum of UUO groups were increased, while high-dose YQHXF treatment decreased the UUO-induced increase of Cr and BUN levels. HE staining and Masson staining results showed that the renal tubular epithelial cells in untreated group got atrophied; lumens of renal tubules expanded; fibroplastic proliferation and inflammatory cell infiltration were observed in renal interstitium; the number of glomerulus decreased and collagen increased significantly compared with sham-operation group. In the high- and medium-dose YQHXF groups and fosinopril sodium group, the histopathological changes of inflammatory cell infiltration, fibroplastic proliferation, expansion of lumens of renal tubules was improved as compared with the untreated group. The mRNA and protein expressions of TGF-β, smad2 and CTGF in untreated group were higher than those in sham-operation group (P<0

  1. Bioreactors for Connective Tissue Engineering: Design and Monitoring Innovations

    NASA Astrophysics Data System (ADS)

    Haj, A. J. El; Hampson, K.; Gogniat, G.

    The challenges for the tissue engineering of connective tissue lie in creating off-the-shelf tissue constructs which are capable of providing organs for transplantation. These strategies aim to grow a complex tissue with the appropri ate mechanical integrity necessary for functional load bearing. Monolayer culture systems lack correlation with the in vivo environment and the naturally occur ring cell phenotypes. Part of the development of more recent models is to create growth environments or bioreactors which enable three-dimensional culture. Evidence suggests that in order to grow functional load-bearing tissues in a bioreactor, the cells must experience mechanical loading stimuli similar to that experienced in vivo which sets out the requirements for mechanical loading bioreactors. An essential part of developing new bioreactors for tissue growth is identifying ways of routinely and continuously measuring neo-tissue formation and in order to fully identify the successful generation of a tissue implant, the appropriate on-line monitoring must be developed. New technologies are being developed to advance our efforts to grow tissue ex vivo. The bioreactor is a critical part of these develop ments in supporting growth of biological implants and combining this with new advances in the detection of tissue formation allows us to refine our protocols and move nearer to off-the-shelf implants for clinical applications.

  2. Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts.

    PubMed

    Luo, Limin; Li, Jun; Liu, Han; Jian, Xiaoqing; Zou, Qianlei; Zhao, Qing; Le, Qu; Chen, Hongdou; Gao, Xinghua; He, Chundi

    2017-05-12

    Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those

  3. PDGFRα plays a crucial role in connective tissue remodeling.

    PubMed

    Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo

    2015-12-07

    Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.

  4. Undifferentiated Connective Tissue Disease, Mixed Connective Tissue Disease, and Overlap Syndromes in Rheumatology.

    PubMed

    Pepmueller, Peri Hickman

    2016-01-01

    Autoimmune diseases often have overlapping symptoms and laboratory somewhat unfamiliar to the non-rheumatologist. Characteristic signs, symptoms, and autoantibodies define specific connective tissue diseases. Some patients have some characteristic symptoms, but cannot be definitively classified. Still other patients meet criteria for more than one specific connective tissue disease. These patients can be confusing with regard to diagnosis and prognosis. Clarification of each patient's condition can lead to improved patient care.

  5. Mixed connective tissue disorder and Castleman's disease.

    PubMed

    Chrispal, Anugrah; Vasuki, Zoya; Thomas, Elsa Mary; Boorugu, Hari Kishan

    2010-08-01

    We present a 16-year-old girl who presented with polyarthritis in association with Raynaud's phenomenon, malar rash, oral ulcers, photosensitivity and alopecia of 6 months duration. On evaluation, it emerged that she had a mixed connective tissue disorder with a mesangio-proliferative glomerulonephritis. Her Chest radiograph revealed a well defined left mid and lower zone opacity with evidence of a hilar mass on CT Thorax. Histopathological examination following CT guided biopsy of the mass revealed a hyaline vascular type of Castleman's disease. Mixed Connective Tissue Disorder with Castleman's Disease is a rare association; the patient presenting with varied and interesting manifestations. It is important to understand this association in view of management. The exact etio-pathogenesis of the autoimmune manifestations in patients with Castleman's disease is not clear. Treatment with immunosuppression can suppress both immune manifestations and result in tumour regression as well.

  6. Pregnancy and autoimmune connective tissue diseases.

    PubMed

    Marder, Wendy; Littlejohn, Emily A; Somers, Emily C

    2016-02-01

    Autoimmune connective tissue diseases predominantly affect women and often occur during the reproductive years. Thus, specialized issues in pregnancy planning and management are commonly encountered in this patient population. This chapter provides a current overview of pregnancy as a risk factor for onset of autoimmune disease, considerations related to the course of pregnancy in several autoimmune connective tissue diseases, and disease management and medication issues before pregnancy, during pregnancy, and in the postpartum period. A major theme that has emerged across these inflammatory diseases is that active maternal disease during pregnancy is associated with adverse pregnancy outcomes, and that maternal and fetal health can be optimized when conception is planned during times of inactive disease and through maintaining treatment regimens compatible with pregnancy.

  7. Some connective tissue disorders of the lung.

    PubMed Central

    Turner-Warwick, M.

    1988-01-01

    Many connective tissue disorders involve the lungs. The same clinical syndrome may be associated with several distinctive types of pathology in different patients. Fibrosing alveolitis is a common feature of a number of different syndromes. An hypothesis is set out in schematic form which may help to account for some of these differences and emphasizes the potential importance of the pulmonary vasculature in pathogenesis. Images Figure 3 Figure 4 Figure 5 Figure 8 Figure 9 PMID:3074281

  8. Latest advances in connective tissue disorders

    PubMed Central

    Rao, Vijay

    2013-01-01

    The connective tissue disorders comprise a number of related conditions that include systemic lupus erythematosus (SLE) and the antiphospholipid (Hughes) syndrome, scleroderma, myositis and Sjögren’s syndrome. They are characterized by autoantibody production and other immune-mediated dysfunction. There are common clinical and serological features with some patients having multiple overlapping connective tissue disorders. The latest advances include new approaches to therapy, including more focused utilization of existing therapies and the introduction of biological therapies in SLE, more precise protocols for assessment of severe disease manifestations such as in interstitial lung disease and pulmonary artery hypertension in scleroderma, new antibodies for disease characterization in myositis and new approaches to patient assessment in Sjögren’s syndrome. B cells have a critical role in most, if not all of these disorders such that B-cell depletion or suppression of B-cell activating cytokines improves disease in many patients. In particular, the introduction of rituximab, a monoclonal antibody targeting the CD20 molecule on B cells, into clinical practice for rheumatoid arthritis and B-cell lymphoma has been a key driver of experimental approaches to therapy in connective tissue disorders. Genetic studies also suggest a role for the innate immune system in disease pathogenesis, suggesting further future targets for biological therapies over the next few years. PMID:23904866

  9. Soft tissue engineering with micronized-gingival connective tissues.

    PubMed

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2017-02-24

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm(3) ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  10. Connective Tissue Disorder-Associated Vasculitis.

    PubMed

    Sharma, Aman; Dhooria, Aadhaar; Aggarwal, Ashish; Rathi, Manish; Chandran, Vinod

    2016-06-01

    Vasculitides secondary to connective tissue diseases are classified under the category of 'vasculitis associated with systemic disease' in the revised International Chapel Hill Consensus Conference (CHCC) nomenclature. These secondary vasculitides may affect any of the small, medium or large vessels and usually portend a poor prognosis. Any organ system can be involved and the presentation would vary depending upon that involvement. Treatment depends upon the type and severity of presentation. In this review, we describe secondary vasculitis associated with rheumatoid arthritis, systemic lupus erythematosus, sarcoidosis, relapsing polychondritis, systemic sclerosis, Sjogren's syndrome and idiopathic inflammatory myositis, focusing mainly on recent advances in the past 3 years.

  11. [Connective tissue dysplasia, magnesium, and nucleotide polymorphisms].

    PubMed

    Torshin, I Iu; Gromova, O A

    2008-01-01

    Undifferentiated connective tissue dysplasia (UCTD) is one of most common diseases of the connective tissue. High frequency of UCTD in population along with the fact that it can provoke a number of other diseases make UCTD an important object of the modern biomedical research in the areas of cardiology, neurology, rheumatology and pulmonology. Modern diagnostics and determination of the predisposition to UCTD allow elaboration of personalized therapy. In particular, Mg-containing supplements and medications can be effectively used in the therapy of UCTD. In one of our previous works we have analyzed possible molecular mechanisms of UCTD etiology as well as therapeutic action of magnesium. The use of data on nucleotide polymorphisms as complementation of standard medical diagnostics is one of perspective trends of the post-genomic medical research. The present work suggest a number of nucleotide polymorphisms that can be used in genetic association analyses of the UCTD as of well as therapeutic efficiency of magnesium treatment. Selection and analysis of the polymorphisms was done on the base of molecular mechanisms we had proposed earlier, comprehensive analysis of published data and also with the use of an integral approach to analysis of the functional effects of the nucleotide polymorphisms and corresponding amino acid substitutions.

  12. Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells.

    PubMed

    Kondo, Seiji; Tanaka, Noriko; Kubota, Satoshi; Mukudai, Yoshiki; Yosimichi, Gen; Sugahara, Toshio; Takigawa, Masaharu

    2006-01-01

    Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

  13. l-Theanine prevents carbon tetrachloride-induced liver fibrosis via inhibition of nuclear factor κB and down-regulation of transforming growth factor β and connective tissue growth factor.

    PubMed

    Pérez-Vargas, J E; Zarco, N; Vergara, P; Shibayama, M; Segovia, J; Tsutsumi, V; Muriel, P

    2016-02-01

    Here we evaluated the ability of L-theanine in preventing experimental hepatic cirrhosis and investigated the roles of nuclear factor-κB (NF-κB) activation as well as transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF) regulation. Experimental hepatic cirrhosis was established by the administration of carbon tetrachloride (CCl4) to rats (0.4 g/kg, intraperitoneally, three times per week, for 8 weeks), and at the same time, adding L-theanine (8.0 mg/kg) to the drinking water. Rats had ad libitum access to water and food throughout the treatment period. CCl4 treatment promoted NF-κB activation and increased the expression of both TGF-β and CTGF. CCl4 increased the serum activities of alanine aminotransferase and γ-glutamyl transpeptidase and the degree of lipid peroxidation, and it also induced a decrease in the glutathione and glutathione disulfide ratio. L-Theanine prevented increased expression of NF-κB and down-regulated the pro-inflammatory (interleukin (IL)-1β and IL-6) and profibrotic (TGF-β and CTGF) cytokines. Furthermore, the levels of messenger RNA encoding these proteins decreased in agreement with the expression levels. L-Theanine promoted the expression of the anti-inflammatory cytokine IL-10 and the fibrolytic enzyme metalloproteinase-13. Liver hydroxyproline contents and histopathological analysis demonstrated the anti-fibrotic effect of l-theanine. In conclusion, L-theanine prevents CCl4-induced experimental hepatic cirrhosis in rats by blocking the main pro-inflammatory and pro-fibrogenic signals.

  14. Chimera Analysis Reveals That Fibroblasts and Endothelial Cells Require Platelet-Derived Growth Factor Receptorβ Expression for Participation in Reactive Connective Tissue Formation in Adults but Not during Development

    PubMed Central

    Crosby, Jeff R.; Tappan, Kristen A.; Seifert, Ronald A.; Bowen-Pope, Daniel F.

    1999-01-01

    The hypothesis that platelet-derived growth factor (PDGF) plays an important role in repair of connective tissue has been difficult to test experimentally, in part because the disruption of any of the PDGF ligand and receptor genes is embryonic lethal. We have developed a method that circumvents the embryonic lethality of the PDGF receptor (R)β−/− genotype and minimizes the tendency of compensatory processes to mask the phenotype of gene disruption by comparing the behavior of wild-type and PDGFRβ−/− cells within individual chimeric mice. This quantitative chimera analysis method has revealed that during development PDGFRβ expression is important for all muscle lineages but not for fibroblast or endothelial lineages. Here we report that fibroblasts and endothelial cells, but not leukocytes, are dependent on PDGFRβ expression during the formation of new connective tissue in and around sponges implanted under the skin. Even the 50% reduction in PDGFRβ gene dosage in PDGFRβ+/− cells reduces fibroblast and endothelial cell participation by 85%. These results demonstrate that the PDGFRβ/PDGF B-chain system plays an important direct role in driving both fibroblast and endothelial cell participation in connective tissue repair, that cell behavior can be regulated by relatively small changes in PDGFRβ expression, and that the functions served by PDGF in wound healing are different from the roles served during development. PMID:10329583

  15. Muscle and tendon connective tissue adaptation to unloading, exercise and NSAID.

    PubMed

    Dideriksen, Kasper

    2014-04-01

    The extracellular matrix network of skeletal muscle and tendon connective tissue is primarily composed of collagen and connects the muscle contractile protein to the bones in the human body. The mechanical properties of the connective tissue are important for the effectiveness of which the muscle force is transformed into movement. Periods of unloading and exercise affect the synthesis rate of connective tissue collagen protein, whereas only sparse information exits regarding collagen protein degradation. It is likely, though, that changes in both collagen protein synthesis and degradation are required for remodeling of the connective tissue internal structure that ultimately results in altered mechanical properties of the connective tissue. Both unloading and exercise lead to increased production of growth factors and inflammatory mediators that are involved in connective tissue remodeling. Despite the fact that non-steroidal anti-inflammatory drugs seem to inhibit the healing process of connective tissue and the stimulating effect of exercise on connective tissue protein synthesis, these drugs are often consumed in relation to connective tissue injury and soreness. However, the potential effect of non-steroidal anti-inflammatory drugs on connective tissue needs further investigation.

  16. [Marfan syndrome and related connective tissue disorders].

    PubMed

    Steindl, Katharina

    2013-11-27

    Marfan syndrome is an autosomal dominantly inherited connective tissue disorder with a prevalence of approximately 1:5000 people. Typical manifestations affect the cardiovascular system, eyes, skeleton, lungs, skin and dura mater. Most patients have a so-called marfanoid habitus with tall stature, long and narrow limbs, a long and narrow head shape and other skeletal abnormalities. Of particular medical importance are the possible complications such as severe scoliosis or pectus excavatum, spontaneous pneumothorax, retinal detachment, or an acute glaucoma evoked by lens luxation. However, the most dangerous complication is acute dissection of the ascending aorta, which is usually the result of a slowly progressive aortic dilatation. With the introduction of therapies the average life expectancy of previously just 32 years could be raised to above 60 years.

  17. Vasculitis associated with connective tissue diseases.

    PubMed

    Cozzani, E; Gasparini, G; Papini, M; Burlando, M; Drago, F; Parodi, A

    2015-04-01

    Vasculitis in connective tissue disease (CTD) is quite rare, it is reported in approximately 10% of patients with CTD; systemic lupus erythematosus (SLE) shows the highest association rate. Vessels of any size may be involved, but mainly small vessels vasculitis is reported. At present the classification of these vasculitis is unsatisfactory. According to the 2012 revised International Chapel Hill Consensus Conference, vasculitides secondary to CTD are a well identified entity and are classified under the category of "vasculitis associated with systemic disease". However only lupus vasculitis and rheumatoid vasculitis are explicitly listed, while the remaining are generically included under the heading "others". Petechiae, purpura, gangrene and ulcers are the most frequent cutaneous manifestations that should investigated in order to rule out potentially dangerous systemic involvement, especially if cryoglobulinemic or necrotizing vasculitis are suspected. This review will focus on the cutaneous involvement in CTD associated vasculitis.

  18. Fibroblast involvement in soft connective tissue calcification

    PubMed Central

    Ronchetti, Ivonne; Boraldi, Federica; Annovi, Giulia; Cianciulli, Paolo; Quaglino, Daniela

    2013-01-01

    Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization. PMID:23467434

  19. [Autoimmune connective tissue diseases and vaccination].

    PubMed

    Więsik-Szewczyk, Ewa; Jahnz-Różyk, Karina

    2015-12-31

    The idea that infectious agents can induce autoimmune diseases in genetically susceptible subjects has been a matter of discussion for years. Moreover, increased incidence of autoimmune diseases and introduction of prophylactic vaccinations from early childhood suggest that these two trends are linked. In the medical literature and even non-professional media, case reports or events temporally related to vaccination are reported. It raises the issue of vaccination safety. In everyday practice medical professionals, physicians, rheumatologists and other specialists will be asked their opinion of vaccination safety. The decision should be made according to evidence-based medicine and the current state of knowledge. The purpose of this paper is to discuss a potential mechanism which links infections, vaccinations and autoimmunity. We present an overview of published case reports, especially of systemic connective tissue diseases temporally related to vaccination and results from case-nested studies. As yet, no conclusive evidence supports a causal relationship between vaccination and autoimmune diseases. It has to be determined whether the performed studies are sufficiently sensitive to detect the link. The debate is ongoing, and new data may be required to explain the pathogenesis of autoimmunity. We would like to underscore the need for prophylactic vaccination in patients with autoimmune rheumatic diseases and to break down the myth that the vaccines are contraindicated in this target group.

  20. Renal involvement in autoimmune connective tissue diseases

    PubMed Central

    2013-01-01

    Connective tissue diseases (CTDs) are a heterogeneous group of disorders that share certain clinical presentations and a disturbed immunoregulation, leading to autoantibody production. Subclinical or overt renal manifestations are frequently observed and complicate the clinical course of CTDs. Alterations of kidney function in Sjögren syndrome, systemic scleroderma (SSc), auto-immune myopathies (dermatomyositis and polymyositis), systemic lupus erythematosus (SLE), antiphospholipid syndrome nephropathy (APSN) as well as rheumatoid arthritis (RA) are frequently present and physicians should be aware of that. In SLE, renal prognosis significantly improved based on specific classification and treatment strategies adjusted to kidney biopsy findings. Patients with scleroderma renal crisis (SRC), which is usually characterized by severe hypertension, progressive decline of renal function and thrombotic microangiopathy, show a significant benefit of early angiotensin-converting-enzyme (ACE) inhibitor use in particular and strict blood pressure control in general. Treatment of the underlying autoimmune disorder or discontinuation of specific therapeutic agents improves kidney function in most patients with Sjögren syndrome, auto-immune myopathies, APSN and RA. In this review we focus on impairment of renal function in relation to underlying disease or adverse drug effects and implications on treatment decisions. PMID:23557013

  1. Connective tissue disorders in domestic animals.

    PubMed

    Halper, Jaroslava

    2014-01-01

    Though soft tissue disorders have been recognized and described to some detail in several types of domestic animals and small mammals for some years, not much progress has been made in our understanding of the biochemical basis and pathogenesis of these diseases in animals. Ehlers-Danlos syndrome described in dogs already in 1943 and later in cats affects mainly skin in these animals. The involved skin is thin and hyperextensible with easily inflicted injuries resulting in hemorrhagic wounds and atrophic scars. Joint laxity and dislocation common in people are less frequently found in dogs. No systemic complications, such as organ rupture or cardiovascular problems which have devastating consequences in people have been described in cats and dogs. The diagnosis is based on clinical presentation and on light or electron microscopic features of disorganized and fragmented collagen fibrils. Several cases of bovine and ovine dermatosparaxis analogous to human Ehlers-Danlos syndrome type VIIC were found to be caused by mutations in the procollagen I N-proteinase (pnPI) or ADAMTS2 gene, though mutations in other sites are likely responsible for other types of dermatosparaxis. Cattle suffering from a form of Marfan syndrome were described to have aortic dilatation and aneurysm together with ocular abnormalities and skeletal involvement. As in people mutations at different sites of bovine FBN1 may be responsible for Marfan phenotype. Hereditary equine regional dermal asthenia (HERDA), or hyperelastosis cutis, has been recognized in several horse breeds as affecting primarily skin, and, occasionally, tendons. A mutation in cyclophilin B, a chaperon involved in proper folding of collagens, has been identified in some cases. Degenerative suspensory ligament desmitis (DSLD) affects primarily tendons and ligaments of certain horse breeds. New data from our laboratory showed excessive accumulation of proteoglycans in organs with high content of connective tissues. We have

  2. Antiphospholipid syndrome in systemic connective tissue diseases.

    PubMed

    Mitrović, D; Popović, M; Stefanović, D; Cirković, M; Glisić, B; Pavlica, L; Popović, R; Pejnović, N

    1998-01-01

    Clinical manifestation and immunoserological features of secondary antiphospholipid syndrome (SAPS) were analyzed in this paper in 107 patients with systemic connective tissue diseases. In the group of patients with confirmed systemic lupus erythematosus (SLE), antiphospholipid antibodies (aPL) were positive in 43/93 (46.23%), while in 50/93 (53.76%) they were negative. Among aPL positive patients, 33/43 (76.74%) had clinical manifestations of SAPS, while 10 patients (23.26%) were without any clinical manifestations. The most frequent manifestations of SAPS associated with SLE were: arteriovenous thrombosis in 20/43 (46.51%), thrombocitopenia in 15/43 (34.88%) and autoimmune hemolytic anemia in 7/43 (16.27%). In our patients, rare manifestations of SAPS associated with SLE were recurrent fetal loss (1 case), livedo reticularis (1 case), transversal myelitis (2 cases), neuropathy (2 cases) and aseptic endocarditis (Libman-Sacks) (5 cases). Among 7 patients, with Sjögren's syndrome, clinically manifested SAPS was observed in 2, while in other 5 only increased aPL levels were found, as well as in patients with systemic vasculitis-3, MCTD-2 and Sy. Sjögren with vasculitis-1. One RA patient had thrombosis of v. cava inferior. In majority of patients with clinically present SAPS the levels of both examined immunoglobulin isotypes (IgG + IgM) were decreased-21/40 or 52.5%, while isolated increase of IgG was found in 14 (35%) and isolated increase of IgM in 5 (19.22%) patients. In three out of five patients with Libman-Sacks only LA test was positive. This investigation have shown that arterial and venous thromboses are the most common manifestations of SAPS in SLE. Every blood vessel may be involved (from arteriolae to the aorta and from postcapilar venules to the v. cava).

  3. Electrospun nanofibrous scaffolds for engineering soft connective tissues.

    PubMed

    James, Roshan; Toti, Udaya S; Laurencin, Cato T; Kumbar, Sangamesh G

    2011-01-01

    Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft connective tissues such as skin, ligament, muscle, and tendon, as well as vascular and neural tissue. Bioactive versions of these materials have been produced by encapsulating molecules such as drugs and growth factors during fabrication. The fibers comprising these scaffolds can be designed to match the structure of the native extracellular matrix (ECM) closely by mimicking the dimensions of the collagen fiber bundles evident in soft connective tissues. These nanostructured implants show improved biological performance over the bulk materials in aspects of cellular infiltration and in vivo integration, and the topography of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical steps in engineering complex functional tissues and crucial to improved biocompatibility and functional performance. Nanofiber matrices can be fabricated using a variety of techniques, including drawing, molecular self-assembly, freeze-drying, phase separation, and electrospinning. Among these processes, electrospinning has emerged as a simple, elegant, scalable, continuous, and reproducible technique to produce polymeric nanofiber matrices from solutions and their melts. We have shown the ability of this technique to be used to fabricate matrices composed of fibers from a few hundred nanometers to several microns in diameter by simply altering the polymer solution concentration. This chapter will discuss the use of the electrospinning technique in the fabrication of ECM-mimicking scaffolds. Furthermore, selected scaffolds will be seeded with primary adipose-derived stromal cells, imaged using scanning electron microscopy and confocal microscopy, and evaluated in terms

  4. Tectal Tissue Grafted to the Midbrain of Newborn Rats: Effect of Donor Age on the Survival, Growth and Connectivity of Transplants

    PubMed Central

    Majda, Bernadette T.; Harvey, Alan R.

    1989-01-01

    Tectal tissue from fetal (E15, E18, E20) and newborn (P0) rats was transplanted to the midbrain of newborn rats. Graft survival and size decreased with increasing donor age. Host retinal input was found in E15, E18 and E20 grafts; the specific pattern of retinal innervation was similar for all fetal donor ages. PMID:2485121

  5. Pectus excavatum and heritable disorders of the connective tissue.

    PubMed

    Tocchioni, Francesca; Ghionzoli, Marco; Messineo, Antonio; Romagnoli, Paolo

    2013-09-24

    Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations) phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence.

  6. Pectus Excavatum and Heritable Disorders of the Connective Tissue

    PubMed Central

    Tocchioni, Francesca; Ghionzoli, Marco; Messineo, Antonio; Romagnoli, Paolo

    2013-01-01

    Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations) phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence. PMID:24198927

  7. Growth variability in a tissue governed by stress dependent growth

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Boudaoud, Arezki

    2012-02-01

    Cell wall mechanics lie at the heart of plant cell growth and tissue morphogenesis. Conversely, mechanical forces generated at tissue level can feedback on cellular dynamics. Differential growth of neighboring cells is one eminent origin of mechanical forces and stresses in tissues where cells adhere to each other. How can stresses arising from differential growth orchestrate large scale tissue growth? We show that cell growth coupled to the cell's main stress can reduce or increase tissue growth variability. Employing a cell-based two dimensional tissue model we investigate the dynamics of a tissue with stress depending growth dynamics. We find that the exact cell division rule strongly affects not only the tissue geometry and topology but also its growth dynamics. Our results should enable to infer underlying growth dynamics from live tissue statistics.

  8. Microrna-199a-5p Functions as a Tumor Suppressor via Suppressing Connective Tissue Growth Factor (CTGF) in Follicular Thyroid Carcinoma.

    PubMed

    Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun

    2016-04-11

    BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.

  9. Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing

    PubMed Central

    Henshaw, F. R.; Boughton, P.; Lo, L.; McLennan, S. V.; Twigg, S. M.

    2015-01-01

    Aims/Hypothesis. Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Methods. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. Results. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P < 0.001). Conclusions/Interpretation. These data collectively increasingly substantiate a functional role for CTGF in human diabetic foot ulcers. PMID:25789327

  10. Imaging of connective tissue diseases of the head and neck.

    PubMed

    Abdel Razek, Ahmed Abdel Khalek

    2016-06-01

    We review the imaging appearance of connective tissue diseases of the head and neck. Bilateral sialadenitis and dacryoadenitis are seen in Sjögren's syndrome; ankylosis of the temporo-mandibular joint with sclerosis of the crico-arytenoid joint are reported in rheumatoid arthritis and lupus panniculitis with atypical infection are reported in patients with systemic lupus erythematosus. Relapsing polychondritis shows subglottic stenosis, prominent ear and saddle nose; progressive systemic sclerosis shows osteolysis of the mandible, fibrosis of the masseter muscle with calcinosis of the subcutaneous tissue and dermatomyositis/polymyositis shows condylar erosions and autoimmune thyroiditis. Vascular thrombosis is reported in antiphospholipid antibodies syndrome; cervical lymphadenopathy is seen in adult-onset Still's disease, and neuropathy with thyroiditis reported in mixed connective tissue disorder. Imaging is important to detect associated malignancy with connective tissue disorders. Correlation of the imaging findings with demographic data and clinical findings are important for the diagnosis of connective tissue disorders.

  11. Biomarkers of connective tissue disease in patients with intracranial aneurysms.

    PubMed

    Yurt, Alaattin; Vardar, Enver; Selçuki, Mehmet; Ertürk, Ali Riza; Ozbek, Gülriz; Atçi, Burak

    2010-09-01

    Connective tissue defects may play a significant role in the development of intracranial aneurysms (IAs). Multiorgan connective tissue disorders may, therefore, indicate a risk of IA development. We investigated biomarkers of connective tissue disease in patients with IAs. A series of 62 patients with IAs was studied by physical examination, echocardiography, ultrasound examination of the kidneys and abdomen, and microscopic examination of skin tissue (temporal area) and superficial temporal artery taken at operation. Patients with IAs had a higher incidence of biomarkers of systemic connective tissue disease than controls and identification of these markers may be important for screening for IAs. Microscopic investigation of biopsies of the skin and superficial temporal artery from patients and their relatives may become valuable for clinical diagnosis, identification of people at risk and basic studies of the pathogenesis of this vascular disease.

  12. Imaging of Pulmonary Manifestations of Connective Tissue Diseases.

    PubMed

    Ahuja, Jitesh; Arora, Deepika; Kanne, Jeffrey P; Henry, Travis S; Godwin, J David

    2016-11-01

    Connective tissue diseases (CTDs) are a heterogeneous group of conditions characterized by circulating autoantibodies and autoimmune-mediated organ damage. Common CTDs with lung manifestations are rheumatoid arthritis, scleroderma or systemic sclerosis, Sjögren syndrome, polymyositis/dermatomyositis, systemic lupus erythematosis, mixed connective tissue disease, and undifferentiated connective tissue disease. The most common histopathologic patterns of CTD-related interstitial lung disease are nonspecific interstitial pneumonia, usual interstitial pneumonia, organizing pneumonia, and lymphoid interstitial pneumonia. Drug treatment of CTDs can cause complications, including opportunistic infection.

  13. MicroRNA-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1)

    PubMed Central

    Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-01-01

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension. PMID:27322082

  14. Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1).

    PubMed

    Wang, Ran; Ding, Xing; Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-11-08

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension.

  15. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2).

    PubMed

    Morales, María Gabriela; Cabrera, Daniel; Céspedes, Carlos; Vio, Carlos P; Vazquez, Yaneisi; Brandan, Enrique; Cabello-Verrugio, Claudio

    2013-07-01

    The renin-angiotensin system (RAS), through angiotensin II and the angiotensin-converting enzyme (ACE), is involved in the genesis and progression of fibrotic diseases characterized by the replacement of normal tissue by an accumulation of an extracellular matrix (ECM). Duchenne muscular dystrophy (DMD) presents fibrosis and a decrease in muscle strength produced by chronic damage. The mdx mouse is a murine model of DMD and develops the same characteristics as dystrophic patients when subjected to chronic exercise. The connective tissue growth factor (CTGF/CCN2) and transforming growth factor type beta (TGF-β), which are overexpressed in muscular dystrophies, play a major role in many progressive scarring conditions. We have tested the hypothesis that ACE inhibition decreases fibrosis in dystrophic skeletal muscle by treatment of mdx mice with the ACE inhibitor enalapril. Both sedentary and exercised mdx mice treated with enalapril showed improvement in gastrocnemius muscle strength explained by a reduction in both muscle damage and ECM accumulation. ACE inhibition decreased CTGF expression in sedentary or exercised mdx mice and diminished CTGF-induced pro-fibrotic activity in a model of CTGF overexpression by adenoviral infection. Enalapril did not have an effect on TGF-β1 expression or its signaling activity in sedentary or exercised dystrophic mice. Thus, ACE inhibition might improve muscle strength and decrease fibrosis by diminishing specifically CTGF expression and activity without affecting TGF-β1 signaling. Our data provide insights into the pathogenic events in dystrophic muscle. We propose ACE as a target for developing therapies for DMD and related diseases.

  16. Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy.

    PubMed

    Yan, Lulu; Chaqour, Brahim

    2013-12-01

    The vasculature forms a highly branched network investing every organ of vertebrate organisms. The retinal circulation, in particular, is supported by a central retinal artery branching into superficial arteries, which dive into the retina to form a dense network of capillaries in the deeper retinal layers. The function of the retina is highly dependent on the integrity and proper functioning of its vascular network and numerous ocular diseases including diabetic retinopathy, age-related macular degeneration and retinopathy of prematurity are caused by vascular abnormalities culminating in total and sometimes irreversible loss of vision. CCN1 and CCN2 are inducible extracellular matrix (ECM) proteins which play a major role in normal and aberrant formation of blood vessels as their expression is associated with developmental and pathological angiogenesis. Both CCN1 and CCN2 achieve disparate cell-type and context-dependent activities through modulation of the angiogenic and synthetic phenotype of vascular and mesenchymal cells respectively. At the molecular level, CCN1 and CCN2 may control capillary growth and vascular cell differentiation by altering the composition or function of the constitutive ECM proteins, potentiating or interfering with the activity of various ligands and/or their receptors, physically interfering with the ECM-cell surface interconnections, and/or reprogramming gene expression driving cells toward new phenotypes. As such, these proteins emerged as important prognostic markers and potential therapeutic targets in neovascular and fibrovascular diseases of the eye. The purpose of this review is to highlight our current knowledge and understanding of the most recent data linking CCN1 and CCN2 signaling to ocular neovascularization bolstering the potential value of targeting these proteins in a therapeutic context.

  17. Synergistic Effect of Simvastatin Plus Radiation in Gastric Cancer and Colorectal Cancer: Implications of BIRC5 and Connective Tissue Growth Factor

    SciTech Connect

    Lim, Taekyu; Lee, Inkyoung; Kim, Jungmin; Kang, Won Ki

    2015-10-01

    Purpose: We investigated the synergistic effect of simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor plus radiation therapy, on the proliferation and survival of gastric cancer (GC) and colorectal cancer (CRC) cells. We also studied several genes involved in the simvastatin/radiation-induced effects. Methods and Materials: Gastric cancer (AGS, SNU601, MKN1, and MKN28) and CRC (CoLo320, SW48, HT29, and HCT8) cell lines were treated with 0.2 μM simvastatin alone, or in combination with 0 to 4 Gy of radiation, and subjected to clonogenic survival and proliferation assays in vitro. To assess the molecular mechanism of the combination treatment, we performed microarray analysis, immunoblot assays, small interfering RNA knockdown experiments, and plasmid rescue assays. The antitumoral effects of simvastatin and radiation were evaluated in vivo using xenograft models. Results: The combination therapy of simvastatin plus radiation inhibited basal clonogenic survival and proliferation of GC and CRC cells in vitro. Simvastatin suppressed the expression of BIRC5 and CTGF genes in these cancer cells. In vivo, the combined treatment with simvastatin and radiation significantly reduced the growth of xenograft tumors compared with treatment with radiation alone. Conclusion: We suggest that simvastatin has a synergistic effect with radiation on GC and CRC through the induction of apoptosis, which may be mediated by a simultaneous inhibition of BIRC5 and CTGF expression. A clinical trial of simvastatin in combination with radiation in patients with GC or CRC is warranted.

  18. Micromechanics and constitutive modeling of connective soft tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints.

  19. Perioperative Management of Patients with Connective Tissue Disease

    PubMed Central

    Goodman, Susan M.; Figgie, Mark P.

    2010-01-01

    Diseases of the connective tissue are a varied group of disorders with major musculoskeletal manifestations such as joint pain and loss of function. As a consequence of the accompanying inflammatory joint disease, such patients often require surgery. Due to the protean organ-related consequences of these conditions, patients who suffer from chronic connective tissue disease are a highly challenging population in the perioperative context. This paper reviews the management of such patients in this clinical setting. PMID:22294961

  20. Silica associated mixed connective tissue disorder in a stone crusher

    PubMed Central

    Khanna, Arjun; Suri, Jagdish Chander; Ray, Animesh; Sharma, Rahul Kumar

    2013-01-01

    Silica exposure has been implicated with the development of various connective tissue diseases. We report a case of 32-year-old stone crusher who developed silicosis with mixed connective tissue disorder (MCTD) 6 years after exposure to silica. This association of silicosis with MCTD has never been reported from the Indian subcontinent, although the problem of this pneumoconiosis remains rampant. This rare association urges us to report this case. PMID:24421595

  1. Silica associated mixed connective tissue disorder in a stone crusher.

    PubMed

    Khanna, Arjun; Suri, Jagdish Chander; Ray, Animesh; Sharma, Rahul Kumar

    2013-05-01

    Silica exposure has been implicated with the development of various connective tissue diseases. We report a case of 32-year-old stone crusher who developed silicosis with mixed connective tissue disorder (MCTD) 6 years after exposure to silica. This association of silicosis with MCTD has never been reported from the Indian subcontinent, although the problem of this pneumoconiosis remains rampant. This rare association urges us to report this case.

  2. Hypocomplementemic urticarial vasculitis in mixed connective tissue disease.

    PubMed

    Calistru, Ana Maria; Lisboa, Carmen; Cruz, Maria João; Delgado, Luis; Poças, Licínio; Azevedo, Filomena

    2010-12-15

    Urticarial vasculitis is characterized clinically by urticaria-like skin lesions and histologically by leukocytoclastic vasculitis. It may be idiopathic or associated with various conditions such as infections, hematologic disorders, drugs, and connective tissue diseases, primarily systemic lupus erythematosus; an association with mixed connective tissue disease (MCTD) has rarely been reported. We present a case of hypocomplementemic urticarial vasculitis in a patient with MCTD that responded to hydroxychloroquine after a period of corticosteroid dependence.

  3. Modeling tissue growth within nonwoven scaffolds pores.

    PubMed

    Edwards, Sharon L; Church, Jeffrey S; Alexander, David L J; Russell, Stephen J; Ingham, Eileen; Ramshaw, John A M; Werkmeister, Jerome A

    2011-02-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process.

  4. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling.

    PubMed

    Chang, Chun-Hua; Ou, Ting-Tsz; Yang, Mon-Yuan; Huang, Chi-Chou; Wang, Chau-Jong

    2016-07-21

    Nelumbo nucifera Gaertn (Nymphaeaceae) has been recognized as a medicinal plant, which was distributed throughout the Asia. The aqueous extract of Nelumbo nucifera leaves extract (NLE) has various biologically active components such as polyphenols, flavonoids, oligomeric procyanidines. However, the role of NLE in breast cancer therapy is poorly understood. The purpose of this study was to identify the hypothesis that NLE can suppress tumor angiogenesis and metastasis through CTGF (connective tissue growth factor), which has been implicated in tumor angiogenesis and progression in breast cancer MDA-MB-231 cells. We examined the effects of NLE on angiogenesis in the chicken chorioallantoic membrane (CAM) model. The data showed that NLE could reduce the chorionic plexus at day 17 in CAM and the duration of this inhibition was dose-dependent. In Xenograft model, NLE treatment significantly reduced tumor weight and CD31 (capillary density) over control, respectively. We examined the role of angiogenesis involved restructuring of endothelium using human umbilical vein endothelial cell (HUVEC) in Matrigel angiogenesis model. The results indicated that vascular-like structure formation was further blocked by NLE treatment. Moreover, knockdown of CTGF expression markedly reduced the expression of MMP2 as well as VEGF, and attenuated PI3K-AKT-ERK activation, indication that these signaling pathways are crucial in mediating CTGF function. The present results suggest that NLE might be useful for treatment in therapy-resistance triple negative breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Hypericin-mediated selective photomodification of connective tissues

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V.; Hovhannisyan, A.; Ghukasyan, V.; Guo, H. W.; Chen, Y. F.; Dong, C. Y.

    2014-12-01

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin-mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.

  6. Hypericin-mediated selective photomodification of connective tissues

    SciTech Connect

    Hovhannisyan, V. Guo, H. W.; Chen, Y. F.; Hovhannisyan, A.; Ghukasyan, V.; Dong, C. Y.

    2014-12-29

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.

  7. Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro.

    PubMed

    Lee, Yu-Tsang; Shao, Hung-Jen; Wang, Jyh-Horng; Liu, Haw-Chang; Hou, Sheng-Mou; Young, Tai-Horng

    2010-04-01

    Intraarticular injection of hyaluronan (hyaluronic acid; HA) is the common way to treat osteoarthritis (OA) of knees. This treatment cannot only maintain the viscoelastic properties of knee but also release the OA pain. However, the exact molecular mechanism is unknown. In this study, after human synovial cells were stimulated with HA and Hylan (Synvisc) for 24 h, real-time polymerase chain reaction (real-time PCR) was used to detect the alteration of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) gene expression, which were specific genes related to pathogenesis of OA knees. Our results illustrated that both HA and Hylan might not cause cytotoxicity or apoptosis of synovial cells in serum deprivation environment. The gene expressions of TGF-beta1 and VEGF were significantly increased at the concentration of 0.1 mg/mL HA and 0.1 mg/mL Hylan, respectively (alpha < 0.05). The synovial cells with treatment of 0.1 mg/mL Hylan decreased the CTGF gene expression (0.66-fold) and VEGF (0.78-fold) compared to 0.1 mg/mL HA (alpha < 0.05). We suggested that the profile of CTGF, TGF-beta1, and VEGF gene expressions in our study might provide the rational mechanism for the therapeutic effect of hyaluronan on OA knees.

  8. Micromechanical modeling of rate-dependent behavior of Connective tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2017-03-07

    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. CONNECTIVE TISSUE SYNTHESIS BY SCLERODERMA SKIN FIBROBLASTS IN CELL CULTURE

    PubMed Central

    Leroy, E. Carwile

    1972-01-01

    Skin fibroblasts from subjects with scleroderma and control subjects were grown in tissue culture to compare the characteristics of connective tissue metabolism. A striking increase in soluble collagen (media hydroxyproline) was observed in eight of nine scleroderma cultures when they were compared with identically handled control cultures matched for the age and sex of the donor and the anatomic site of the donor skin. Glycoprotein content as estimated by hexosamine and sialic acid was also significantly increased in the scleroderma cultures. Estimations of protein-polysaccharide content by uronic acid determinations were low in all cultures and not significantly increased in scleroderma cultures. This report demonstrates the feasibility of using fibroblast cell cultures to study chronic rheumatic and connective tissue disorders. The initial results suggest a net increase in collagen and glycoprotein synthesis in scleroderma fibroblast cultures. The implications of an abnormality of connective tissue metabolism by skin fibroblasts propagated in vitro in the acquired disorder scleroderma are discussed. PMID:4260235

  10. Neurological manifestations of connective tissue diseases mimicking multiple sclerosis.

    PubMed

    Pelidou, Sigliti-Henrietta; Giannopoulos, Sotiris; Tzavidi, Sotiria; Tsifetaki, Niki; Kitsos, Georgios; Stefanou, Dimitrios; Kostadima, Vassiliki; Drosos, Alexandros A; Kyritsis, Athanassios P

    2007-11-01

    The objective of the study was to analyze retrospectively the clinical, laboratory and imaging findings of multiple sclerosis (MS), such as the manifestations in a cohort of 132 patients referred to the neurology in and outpatient clinic. The proposed clinical and laboratory diagnostic criteria for MS and connective tissue disorders were systematically assessed in 132 consecutive patients. Cerebrospinal fluid serology and brain or spinal cord MRI were studied in all cases. In patients suspected for connective tissue disorder, schirmer test, rose bengal staining and biopsy of minor salivary glands were performed. A total of 115 (87%) patients were diagnosed to have definite MS, while 17 (13%) were diagnosed to have connective tissue disorder. Positive neurological and MRI findings were observed in both groups. The majority of patients with connective tissue disorder demonstrated extra-neurological manifestations like Raynaud's phenomenon, arthritis, livedo reticularis, purpura and presence of multiple autoantibodies in their sera. All patients with MS should be screened systematically for connective tissue disorder. In the absence of pathognomonic clinical and laboratory findings, the diagnosis of MS is a diagnosis of exclusion.

  11. Connective tissue anomalies in patients with spontaneous cervical artery dissection

    PubMed Central

    Giossi, Alessia; Ritelli, Marco; Costa, Paolo; Morotti, Andrea; Poli, Loris; Del Zotto, Elisabetta; Volonghi, Irene; Chiarelli, Nicola; Gamba, Massimo; Bovi, Paolo; Tomelleri, Giampaolo; Carletti, Monica; Checcarelli, Nicoletta; Meneghetti, Giorgio; Morra, Michele; Chinaglia, Mauro; De Giuli, Valeria; Colombi, Marina; Padovani, Alessandro

    2014-01-01

    Objective: To investigate the prevalence of connective tissue abnormalities in patients with spontaneous cervical artery dissections (sCeAD). Methods: We systematically assessed clinically detectable signs of connective tissue aberration in a series of consecutive patients with sCeAD and of age- and sex-matched patients with ischemic stroke unrelated to CeAD (non-CeAD IS) by a standard examination protocol including 68 items, and performed extensive molecular investigation for hereditary connective tissue disorders in all patients with sCeAD. Results: The study group included 84 patients with sCeAD (mean age, 44.5 ± 7.8 years; 66.7% men) and 84 patients with non-CeAD IS. None of the patients with sCeAD met clinical or molecular diagnostic criteria for established hereditary connective tissue disorder. Connective tissue abnormalities were detected more frequently in the group of patients with sCeAD than in the group of those with non-CeAD IS (mean number of pathologic findings, 4.5 ± 3.5 vs 1.9 ± 2.3; p < 0.001). Eighty-one patients (96.4%) in the sCeAD group had at least one detectable sign compared with 55 patients (66.7%) in the group with non-CeAD IS (p < 0.001). Skeletal, ocular, and skin abnormalities, as well as craniofacial dysmorphisms, were the clinical signs more strongly associated with sCeAD. Signs suggesting connective tissue abnormality were also more frequently represented in patients with sCeAD than in patients with traumatic CeAD (28.6%, p < 0.001; mean number of pathologic findings, 1.7 ± 3.7, p = 0.045). Conclusions: Connective tissue abnormalities are frequent in patients with sCeAD. This reinforces the hypothesis that systemic aberrations of the connective tissue might be implicated in the pathogenesis of the disease. PMID:25355826

  12. [50 years of connective tissue research: from the French Connective Tissue Club to the French Society of Extracellular Matrix Biology].

    PubMed

    Maquart, François-Xavier; Borel, Jacques-Paul

    2012-01-01

    The history of connective tissue research began in the late 18th century. However, it is only 50 years later that the concept of connective tissue was shaped. It took another fifty years before biochemical knowledge of extracellular matrix macromolecules began to emerge in the first half of the 20th century. In 1962, thanks to Ladislas and Barbara Robert, back from the US, the first society called "French Connective Tissue Club" was created in Paris. The first board was constituted of Albert Delaunay, Suzanne Bazin and Ladislas Robert. Very quickly, under the influence of these pioneers, national and international meetings were organized and, in 1967, a "Federation of the European Connective Tissue Clubs" was created at the initiative of Ladislas Robert (Paris) and John Scott (Manchester). It spread rapidly to the major European nations. In 1982 the transformation of "Clubs" in "Societies" occurred, a name more in line with the requirements of the time. In 2008, the "French Connective Tissue Society" became the "French Society of Extracellular Matrix Biology" ("Société Française de Biologie de la Matrice Extracellulaire", SFBMEc), to better highlight the importance of the extracellular matrix in the biology of living organisms. The SFBMEc's mission today is to promote and develop scientific exchanges between academic, industrial, and hospital laboratories involved in research on the extracellular matrix. SFBMEc organizes or subsidizes scientific meetings and awards scholarships to Ph.D. students or post-docs to participate in international conferences. It includes 200 to 250 members from different disciplines, developing strong interactions between scientists, clinicians and pathologists. It is present all around the French territory in many research laboratories. During these last 50 years, the extraordinary advances made possible by the development of new investigation techniques, in particular molecular biology, cell and tissue imaging, molecular modeling

  13. [Connective tissue: big unifying element of the organism].

    PubMed

    Kapandji, A-I

    2012-10-01

    The anatomical unity of the organism is realized by the connective tissue, which assumes five functions: the filling of the spaces between organs; the connexion between these organs; the driving of the vascular and nervous pedicles to these organs; the stocking of nutritive reserves in fat pads; an aesthetic role with hollows and bumps erasing. The space filling is done with jointed polyedric volumes, which are constituted, according to the theories of J.-C. Guimberteau, with microvacuoles, filled with under pressure fundamental substance. This is a status of preconstraint resulting in a form memory. So, the connective tissue under constraint get back its initial status after this constraint is over, according to the laws of a new science, the tensegrity. The explorations of the connective tissue with a 25× magnifying micro endoscopes are showing micro fibrillar structures, evoluting under constraint. Its arrangement, that seems chaotic, is in fractal disposition, in reality, and follows the "universal parcimony law" established by Williams of Ockham. The structure of the connective tissue can be integrated in a holistic conception of the organism. Many characteristics of this tissue have still to be discovered. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Mechanical Forces and Growth in Animal Tissues.

    PubMed

    LeGoff, Loïc; Lecuit, Thomas

    2015-08-10

    Mechanical forces shape biological tissues. They are the effectors of the developmental programs that orchestrate morphogenesis. A lot of effort has been devoted to understanding morphogenetic processes in mechanical terms. In this review, we focus on the interplay between tissue mechanics and growth. We first describe how tissue mechanics affects growth, by influencing the orientation of cell divisions and the signaling pathways that control the rate of volume increase and proliferation. We then address how the mechanical state of a tissue is affected by the patterns of growth. The forward and reverse interactions between growth and mechanics must be investigated in an integrative way if we want to understand how tissues grow and shape themselves. To illustrate this point, we describe examples in which growth homeostasis is achieved by feedback mechanisms that use mechanical forces. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Matrix Metalloproteinase-2-deficient Fibroblasts Exhibit an Alteration in the Fibrotic Response to Connective Tissue Growth Factor/CCN2 because of an Increase in the Levels of Endogenous Fibronectin*

    PubMed Central

    Droppelmann, Cristian A.; Gutiérrez, Jaime; Vial, Cecilia; Brandan, Enrique

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin αV subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin αV subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of 125I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF. PMID:19276073

  16. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model.

    PubMed

    Lui, Pauline Po Yee; Wong, On Tik; Lee, Yuk Wa

    2016-01-01

    Treatment of tendon-derived stem cells (TDSCs) with connective tissue growth factor (CTGF) and ascorbic acid promoted their tenogenic differentiation. We investigated the effects of TDSCs pre-treated with CTGF and ascorbic acid on tendon repair in a patellar tendon window injury rat model. Green fluorescent protein-TDSCs (GFP-TDSCs) were pre-treated with or without CTGF and ascorbic acid for 2 weeks before transplantation. The patellar tendons of rats were injured and divided into three groups: fibrin glue-only group (control group), untreated and treated TDSC group. The rats were followed up until week 16. The treated TDSCs accelerated and enhanced the quality of tendon repair compared with untreated TDSCs up to week 8, which was better than that in the controls up to week 16 as shown by histology, ultrasound imaging and biomechanical test. The fibrils in the treated TDSC group showed better alignment and larger size compared with those in the control group at week 8 (P = 0.004). There was lower risk of ectopic mineralization after transplantation of treated or untreated TDSCs (all P ≤ 0.050). The transplanted cells proliferated and could be detected in the window wound up to weeks 2 to 4 and week 8 for the untreated and treated TDSC groups, respectively. The transplantation of TDSCs promoted tendon repair up to week 16, with CTGF and ascorbic acid pre-treatment showing the best results up to week 8. Pre-treatment of TDSCs with CTGF and ascorbic acid may be used to further enhance the rate and quality of tendon repair after injury. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. A Polymorphism Within the Connective Tissue Growth Factor (CTGF) Gene has No Effect on Non-Invasive Markers of Beta-Cell Area and Risk of Type 2 Diabetes

    PubMed Central

    Pivovarova, Olga; Fisher, Eva; Dudziak, Katarzyna; Ilkavets, Iryna; Dooley, Steven; Slominsky, Petr; Limborska, Svetlana; Weickert, Martin O.; Spranger, Joachim; Fritsche, Andreas; Boeing, Heiner; Pfeiffer, Andreas F. H.; Rudovich, Natalia

    2011-01-01

    Chromosomal locus 6q23 is strongly linked to type 2 diabetes (T2DM) and related features including insulin secretion in various ethnic populations. Connective tissue growth factor (CTGF) gene is an interesting T2DM candidate gene in this chromosome region. CTGF is a key mediator of progressive pancreatic fibrosis up-regulated in type 2 diabetes. In contrast, CTGF inactivation in mice compromises islet cell proliferation during embryogenesis. The aim of our study was to investigate an impact of CTGF genetic variation on pancreatic beta-cell function and T2DM pathogenesis. We studied the effect of a common CTGF polymorphism rs9493150 on the risk of the T2DM development in three independent German cohorts. Specifically, the association between CTGF polymorphism and non-invasive markers of beta-cell area derived from oral glucose tolerance test was studied in subjects without diabetes. Neither in the Metabolic Syndrome Berlin Potsdam (MESYBEPO) study (n = 1026) (OR = 0.637, CI (0.387–1.050); p = 0.077) nor in the European Prospective Investigation into Cancer and Nutrition-Potsdam (EPIC-Potsdam) (n = 3049) cohort (RR = 0.77 CI (0.49–1.20), p = 0.249 for the recessive homozygote in general model), a significant association with increased diabetes risk was observed. The risk allele of rs9493150 had also no effect on markers of beta-cell area in the combined analysis of the MESYBEPO and Tübingen Family Study (n = 1826). In conclusion, the polymorphism rs9493150 in the 5’-untranslated region of the CTGF gene has no association with T2DM risk and surrogate markers of beta-cell area. PMID:22045431

  18. A polymorphism within the connective tissue growth factor (CTGF) gene has no effect on non-invasive markers of beta-cell area and risk of type 2 diabetes.

    PubMed

    Pivovarova, Olga; Fisher, Eva; Dudziak, Katarzyna; Ilkavets, Iryna; Dooley, Steven; Slominsky, Petr; Limborska, Svetlana; Weickert, Martin O; Spranger, Joachim; Fritsche, Andreas; Boeing, Heiner; Pfeiffer, Andreas F H; Rudovich, Natalia

    2011-01-01

    Chromosomal locus 6q23 is strongly linked to type 2 diabetes (T2DM) and related features including insulin secretion in various ethnic populations. Connective tissue growth factor (CTGF) gene is an interesting T2DM candidate gene in this chromosome region. CTGF is a key mediator of progressive pancreatic fibrosis up-regulated in type 2 diabetes. In contrast, CTGF inactivation in mice compromises islet cell proliferation during embryogenesis. The aim of our study was to investigate an impact of CTGF genetic variation on pancreatic beta-cell function and T2DM pathogenesis. We studied the effect of a common CTGF polymorphism rs9493150 on the risk of the T2DM development in three independent German cohorts. Specifically, the association between CTGF polymorphism and non-invasive markers of beta-cell area derived from oral glucose tolerance test was studied in subjects without diabetes. Neither in the Metabolic Syndrome Berlin Potsdam (MESYBEPO) study (n=1026) (OR=0.637, CI (0.387-1.050); p=0.077) nor in the European Prospective Investigation into Cancer and Nutrition-Potsdam (EPIC-Potsdam) (n=3049) cohort (RR=0.77 CI (0.49-1.20), p=0.249 for the recessive homozygote in general model), a significant association with increased diabetes risk was observed. The risk allele of rs9493150 had also no effect on markers of beta-cell area in the combined analysis of the MESYBEPO and Tübingen Family Study (n=1826). In conclusion, the polymorphism rs9493150 in the 5'-untranslated region of the CTGF gene has no association with T2DM risk and surrogate markers of beta-cell area.

  19. Sustained deep-tissue pain alters functional brain connectivity.

    PubMed

    Kim, Jieun; Loggia, Marco L; Edwards, Robert R; Wasan, Ajay D; Gollub, Randy L; Napadow, Vitaly

    2013-08-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, frontoparietal control, and default mode networks: SMN, SLN, DAN, FCN, and DMN) was evaluated with functional-connectivity magnetic resonance imaging, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable, with no significant changes of subjects' pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula, and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to interindividual differences in pain sensitivity.

  20. Sustained deep-tissue pain alters functional brain connectivity

    PubMed Central

    Kim, Jieun; Loggia, Marco L.; Edwards, Robert; Wasan, Ajay D.; Gollub, Randy L.; Napadow, Vitaly

    2013-01-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically-relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, fronto-parietal control and default mode networks; SMN, SLN, DAN, FCN and DMN) was evaluated with functional-connectivity MRI, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable with no significant changes of subjects’ pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala, was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to inter-individual differences in pain sensitivity. PMID:23718988

  1. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling.

    PubMed Central

    Ashworth, J L; Murphy, G; Rock, M J; Sherratt, M J; Shapiro, S D; Shuttleworth, C A; Kielty, C M

    1999-01-01

    Fibrillin is the principal structural component of the 10-12 nm diameter elastic microfibrils of the extracellular matrix. We have previously shown that both fibrillin molecules and assembled microfibrils are susceptible to degradation by serine proteases. In this study, we have investigated the potential catabolic effects of six matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-12, MMP-13 and MMP-14) on fibrillin molecules and on intact fibrillin-rich microfibrils isolated from ciliary zonules. Using newly synthesized recombinant fibrillin molecules, major cleavage sites within fibrillin-1 were identified. In particular, the six different MMPs generated a major degradation product of approximately 45 kDa from the N-terminal region of the molecule, whereas treatment of truncated, unprocessed and furin-processed C-termini also generated large degradation products. Introduction of a single ectopia lentis-causing amino acid substitution (E2447K; one-letter symbols for amino acids) in a calcium-binding epidermal growth factor-like domain, predicted to disrupt calcium binding, markedly altered the pattern of C-terminal fibrillin-1 degradation. However, the fragmentation pattern of a mutant fibrillin-1 with a comparable E-->K substitution in an upstream calcium-binding epidermal growth factor-like domain was indistinguishable from wild-type molecules. Ultrastructural examination highlighted that fibrillin-rich microfibrils isolated from ciliary zonules were grossly disrupted by MMPs. This is the first demonstration that fibrillin molecules and fibrillin-rich microfibrils are degraded by MMPs and that certain amino acid substitutions change the fragmentation patterns. These studies have important implications for physiological and pathological fibrillin catabolism and for loss of connective tissue elasticity in ageing and disease. PMID:10229672

  2. Maternal Mixed Connective Tissue Disease and Offspring with Chondrodysplasia Punctata

    PubMed Central

    Schulz, Steffan W.; Bober, Michael; Johnson, Caitlyn; Braverman, Nancy; Jimenez, Sergio A.

    2009-01-01

    Chondrodysplasia punctata (CDP) comprises a heterogeneous group of disorders that result in abnormal development of the fetal skeleton. The hallmark of the condition is radiographic presence of abnormal islands of calcification in areas of endochondral bone formation associated with premature closure of growth plates. Recently, several cases have been described in infants born to mothers with systemic lupus erythematosus (SLE). Objectives To describe the case of a mother with mixed connective tissue disease (MCTD) whose male and female offspring from two successive pregnancies had CDP in the absence of identifiable biochemical or genetic abnormalities or teratogen exposure. Methods Description of a male and female offspring from a mother with MCTD harboring high titer anti-RNP antibodies. Maternal autoantibody assays were performed employing quantitative multiplex suspension arrays and flow cytometry, and autoantibody titer and pattern were determined by indirect immunofluorescence. Assays of phytanic acid, plasmalogen and very long chain fatty acids were performed employing commercially available reagents. Chromosomal analysis was performed on both offspring employing standard cytogenetic analysis. Review of the relevant literature was performed (PubMed search 1966 through July 2008). Results Two children with CDP born to a mother with MCTD who harbored anti-RNP autoantibodies at high titer are described. Genetic and chromosomal studies, and biochemical analysis of peroxisome function and very long chain fatty acids excluded known biochemical or genetic defects or mutations as the cause of CDP in these children. Furthermore, detailed review of the clinical history failed to disclose any evidence of maternal teratogen exposure during the two pregnancies. Conclusions Maternal MCTD is the most likely explanation for the occurrence of CDP in the two children reported here. Review of previously published cases of CDP associated with autoimmune disease suggests that

  3. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    PubMed Central

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch. PMID:26759591

  4. The C-Terminal Module IV of Connective Tissue Growth Factor, Through EGFR/Nox1 Signaling, Activates the NF-κB Pathway and Proinflammatory Factors in Vascular Smooth Muscle Cells

    PubMed Central

    Rodrigues-Diez, Raúl R.; Orejudo, Macarena; Rodrigues-Diez, Raquel; Briones, Ana Maria; Bosch-Panadero, Enrique; Kery, Gyorgy; Pato, Janos; Ortiz, Alberto; Salaices, Mercedes; Egido, Jesus; Ruiz-Ortega, Marta

    2015-01-01

    Abstract Aims: Connective tissue growth factor (CTGF/CCN2) is a developmental gene upregulated in pathological conditions, including cardiovascular diseases, whose product is a matricellular protein that can be degraded to biologically active fragments. Among them, the C-terminal module IV [CCN2(IV)] regulates many cellular functions, but there are no data about redox process. Therefore, we investigated whether CCN2(IV) through redox signaling regulates vascular responses. Results: CCN2(IV) increased superoxide anion (O2•−) production in murine aorta (ex vivo and in vivo) and in cultured vascular smooth muscle cells (VSMCs). In isolated murine aorta, CCN2(IV), via O2•−, increased phenylephrine-induced vascular contraction. CCN2(IV) in vivo regulated several redox-related processes in mice aorta, including increased nonphagocytic NAD(P)H oxidases (Nox)1 activity, protein nitrosylation, endothelial dysfunction, and activation of the nuclear factor-κB (NF-κB) pathway and its related proinflammatory factors. The role of Nox1 in CCN2(IV)-mediated vascular responses in vivo was investigated by gene silencing. The administration of a Nox1 morpholino diminished aortic O2•− production, endothelial dysfunction, NF-κB activation, and overexpression of proinflammatory genes in CCN2(IV)-injected mice. The link CCN2(IV)/Nox1/NF-κB/inflammation was confirmed in cultured VSMCs. Epidermal growth factor receptor (EGFR) is a known CCN2 receptor. In VSMCs, CCN2(IV) activates EGFR signaling. Moreover, EGFR kinase inhibition blocked vascular responses in CCN2(IV)-injected mice. Innovation and Conclusion: CCN2(IV) is a novel prooxidant factor that in VSMCs induces O2•− production via EGFR/Nox1 activation. Our in vivo data demonstrate that CCN2(IV) through EGFR/Nox1 signaling pathway induces endothelial dysfunction and activation of the NF-κB inflammatory pathway. Therefore, CCN2(IV) could be considered a potential therapeutic target for redox-related cardiovascular

  5. [The Marfan syndrome and related connective tissue disorders].

    PubMed

    Siepe, Matthias; Löffelbein, Florian

    2009-06-01

    The Marfan syndrome is an inherited disorder of the connective tissue which is mainly caused by a mutation in the fibrillin-1 gene. The defect in the connective tissue protein can lead to several organ dysfunctions. For the life expectancy, the cardiovascular aspect is of paramount importance. Patients with Marfan syndrome may develop aortic aneurysms and valvular heart defects. The risk of aortic aneurysms consists in the development of aortic dissection or rupture with their fatal consequences. Besides the cardiovascular manifestation, the skeletal and ocular system can also be affected. The skeletal manifestation is often characterised by long limbs, arachnodactyly, and abnormal joint flexibility along with other signs. Patients may also have dislocated lenses, ectasia of the dural sac, stretch marks, spontaneous pneumothorax, recurrent hernia, or a family history suspicious for Marfan. During the past years, other related connective tissue disorders with analogous organ manifestation have been described (e.g., Loeys-Dietz syndrome). In this article we present the basic knowledge about these connective tissue disorders, and we mention new insights in the recently explored pathophysiology of the disorder which is a possible target for future medical treatment options. Furthermore, recent new concepts for the prophylactic treatment of the aortic manifestation are explained.

  6. Pulmonary vascular manifestations of mixed connective tissue disease.

    PubMed

    Bull, Todd M; Fagan, Karen A; Badesch, David B

    2005-08-01

    Mixed connective tissue disease (MCTD) refers to a disease process with combined clinical features characteristic of systemic lupus erythematous, scleroderma, and polymyositis-dermatomyositis. This article focuses on the pulmonary vasculature manifestations of MCTD. We briefly discuss associations between MCTD and interstitial lung disease, pleural disease, and alveolar hemorrhage.

  7. Guiding Neuronal Growth in Tissues with Light

    DTIC Science & Technology

    2010-02-27

    Report 3. DATES COVERED (From - To) 1/12/2008-30/11,2009 4. TITLE AND SUBTITLE GUIDING NEURONAL GROWTH IN TISSUES WITH LIGHT 5a. CONTRACT NUMBER N/A...687-6594 Standard Form 298 (Rev. 8/98) Prescnbed by ANSI Std. Z39.18 Adobe Professional 7.0 Guiding Neuronal Growth in Tissues with Light PI...and provide bio-compatible scaffolds for tissue growth and organ regeneration. Unleashing the full potential of these applications requires an

  8. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.

    PubMed

    Mackey, Abigail L; Kjaer, Michael

    2017-03-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury.

  9. Systemic connective tissue features in women with fibromuscular dysplasia.

    PubMed

    O'Connor, Sarah; Kim, Esther Sh; Brinza, Ellen; Moran, Rocio; Fendrikova-Mahlay, Natalia; Wolski, Kathy; Gornik, Heather L

    2015-10-01

    Fibromuscular dysplasia (FMD) is a non-atherosclerotic disease associated with hypertension, headache, dissection, stroke, and aneurysm. The etiology is unknown but hypothesized to involve genetic and environmental components. Previous studies suggest a possible overlap of FMD with other connective tissue diseases that present with dissections and aneurysms. The aim of this study was to investigate the prevalence of connective tissue physical features in FMD. A total of 142 FMD patients were consecutively enrolled at a single referral center (97.9% female, 92.1% of whom had multifocal FMD). Data are reported for 139 female patients. Moderately severe myopia (29.1%), high palate (33.1%), dental crowding (29.7%), and early-onset arthritis (15.6%) were prevalent features. Classic connective features such as hypertelorism, cleft palate, and hypermobility were uncommon. The frequency of systemic connective tissue features was compared between FMD patients with a high vascular risk profile (having had ⩾1 dissection and/or ⩾2 aneurysms) and those with a standard vascular risk profile. A history of spontaneous pneumothorax (5.9% high risk vs 0% standard risk) and atrophic scarring (17.6% high risk vs 6.8% standard risk) were significantly more prevalent in the high risk group, p<0.05. High palate was observed in 43.1% of the high risk group versus 27.3% in the standard risk group, p=0.055. In conclusion, in a cohort of women with FMD, there was a prevalence of moderately severe myopia, high palate, dental crowding, and early-onset osteoarthritis. However, a characteristic phenotype was not discovered. Several connective tissue features such as high palate and pneumothorax were more prominent among FMD patients with a high vascular risk profile.

  10. Systemic Connective Tissue Features in Women with Fibromuscular Dysplasia

    PubMed Central

    O’Connor, Sarah; Kim, Esther S. H.; Brinza, Ellen; Moran, Rocio; Fendrikova-Mahlay, Natalia; Wolski, Kathy; Gornik, Heather L.

    2016-01-01

    Background Fibromuscular Dysplasia (FMD) is an non-atherosclerotic disease associated with hypertension, headache, dissection, stroke, and aneurysm. The etiology is unknown but hypothesized to involve genetic and environmental components. Previous studies suggest a possible overlap of FMD with other connective tissue diseases that present with dissections and aneurysms. The aim of this study was to investigate the prevalence of connective tissue physical features in FMD. Methods and Results 142 FMD patients were consecutively enrolled at a single referral center (97.9% female, 92.3% had multifocal FMD). Data are reported for 139 female patients. Moderately severe myopia (29.1%), high palate (33.1%), dental crowding (29.7%), and early onset arthritis (15.6%) were prevalent features. Classic connective features such as hypertelorism, cleft palate, and hypermobility were uncommon. Frequency of systemic connective tissue features was compared between FMD patients with a high vascular risk profile (having had ≥1 dissection and/or ≥2 aneurysms) and those with a standard vascular risk profile. History of spontaneous pneumothorax (5.9% high risk vs. 0% standard risk) and atrophic scarring (17.3% high risk vs. 6.8% standard risk) were significantly more prevalent in the high risk group, p<0.05. High palate was observed in 43.1% of the high risk group vs. 27.3% in the standard risk group, p=0.055. Conclusions In a cohort of women with FMD, there was a prevalence of moderately severe myopia, high palate, dental crowding, and early onset osteoarthritis. However, a characteristic phenotype was not discovered. Several connective tissue features such as high palate and pneumothorax were more prominent among FMD patients with a high vascular risk profile. PMID:26156071

  11. Role of PTPα in the destruction of periodontal connective tissues.

    PubMed

    Rajshankar, Dhaarmini; Sima, Corneliu; Wang, Qin; Goldberg, Stephanie R; Kazembe, Mwayi; Wang, Yongqiang; Glogauer, Michael; Downey, Gregory P; McCulloch, Christopher A

    2013-01-01

    IL-1β contributes to connective tissue destruction in part by up-regulating stromelysin-1 (MMP-3), which in fibroblasts is a focal adhesion-dependent process. Protein tyrosine phosphatase-α (PTPα) is enriched in and regulates the formation of focal adhesions, but the role of PTPα in connective tissue destruction is not defined. We first examined destruction of periodontal connective tissues in adult PTPα(+/+) and PTPα(-/-) mice subjected to ligature-induced periodontitis, which increases the levels of multiple cytokines, including IL-1β. Three weeks after ligation, maxillae were processed for morphometry, micro-computed tomography and histomorphometry. Compared with unligated controls, there was ∼1.5-3 times greater bone loss as well as 3-fold reduction of the thickness of the gingival lamina propria and 20-fold reduction of the amount of collagen fibers in WT than PTPα(-/-) mice. Immunohistochemical staining of periodontal tissue showed elevated expression of MMP-3 at ligated sites. Second, to examine mechanisms by which PTPα may regulate matrix degradation, human MMP arrays were used to screen conditioned media from human gingival fibroblasts treated with vehicle, IL-1β or TNFα. Although MMP-3 was upregulated by both cytokines, only IL-1β stimulated ERK activation in human gingival fibroblasts plated on fibronectin. TIRF microscopy and immunoblotting analyses of cells depleted of PTPα activity with the use of various mutated constructs or with siRNA or PTPα(KO) and matched wild type fibroblasts were plated on fibronectin to enable focal adhesion formation and stimulated with IL-1β. These data showed that the catalytic and adaptor functions of PTPα were required for IL-1β-induced focal adhesion formation, ERK activation and MMP-3 release. We conclude that inflammation-induced connective tissue degradation involving fibroblasts requires functionally active PTPα and in part is mediated by IL-1β signaling through focal adhesions.

  12. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools.

    PubMed

    Currie, Joshua D; Kawaguchi, Akane; Traspas, Ricardo Moreno; Schuez, Maritta; Chara, Osvaldo; Tanaka, Elly M

    2016-11-21

    Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema.

  13. Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory

    NASA Astrophysics Data System (ADS)

    Lanir, Yoram

    2017-10-01

    Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.

  14. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways

    PubMed Central

    Cheng, Yi; Lin, Chien-huang; Chen, Jing-Yun; Li, Chien-Hua; Liu, Yu-Tin; Chen, Bing-Chang

    2016-01-01

    Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and

  15. A continuous growth model for plant tissue

    NASA Astrophysics Data System (ADS)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2016-12-01

    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.

  16. A Framework for Modelling Connective Tissue Changes in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Best, L.; Gleason, R.; Mulugeta, L.; Myers, J. G.; Nelson, E. S.; Samuels, B. C.

    2014-01-01

    Insertion of astronauts into microgravity induces a cascade of physiological adaptations, notably including a cephalad fluid shift. Longer-duration flights carry an increased risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. The slow onset of changes in VIIP, their chronic nature, and the similarity of certain clinical features of VIIP to ophthalmic findings in patients with raised intracranial pressure strongly suggest that: (i) biomechanical factors play a role in VIIP, and (ii) connective tissue remodeling must be accounted for if we wish to understand the pathology of VIIP. Our goal is to elucidate the pathophysiology of VIIP and suggest countermeasures based on biomechanical modeling of ocular tissues, suitably informed by experimental data, and followed by validation and verification. We specifically seek to understand the quasi-homeostatic state that evolves over weeks to months in space, during which ocular tissue remodeling occurs. This effort is informed by three bodies of work: (i) modeling of cephalad fluid shifts; (ii) modeling of ophthalmic tissue biomechanics in glaucoma; and (iii) modeling of connective tissue changes in response to biomechanical loading.

  17. Connective Tissue Disease-Associated Interstitial Lung Diseases: Unresolved Issues.

    PubMed

    Aparicio, Irene Jarana; Lee, Joyce S

    2016-06-01

    Interstitial lung disease (ILD) complicating connective tissue disorders, such as scleroderma and rheumatoid arthritis, is associated with significant morbidity and mortality. Progress has been made in our understanding of these collective diseases; however, there are still many unanswered questions. In this review, we describe the current views on epidemiology, clinical presentation, treatment, and prognosis in patients with connective tissue disease (CTD)-associated ILD. We also highlight several areas that remain unresolved and in need of further investigation, including interstitial pneumonia with autoimmune features, histopathologic phenotype, and pharmacologic management. A multidisciplinary and multidimensional approach to diagnosis, management, and investigation of CTD-associated ILD patients is essential to advance our understanding of the epidemiology and pathobiology of this challenging group of diseases.

  18. The diagnosis and classification of undifferentiated connective tissue diseases.

    PubMed

    Mosca, Marta; Tani, Chiara; Vagnani, Sabrina; Carli, Linda; Bombardieri, Stefano

    2014-01-01

    The term undifferentiated connective tissue disease (UCTD) refers to unclassifiable systemic autoimmune diseases which share clinical and serological manifestations with definite connective tissue diseases (CTDs) but not fulfilling any of the existing classification criteria. In this review we will go through the more recent evidence on UCTD and we will discuss in what extent the availability of new criteria for the CTDs could interfere with the "UCTD concept". The development of criteria able to identify early phases of defined CTD, may help in the differentiation of stable UCTD form their early stages and may offer a valuable guide to the treating physician to set up appropriate follow up schedules as well as therapeutic protocols. This simplified subset of CTD could offer a model to study clinic pathological correlations as well as the role of possible environmental factors in the development of autoimmunity.

  19. Connective Tissue Degeneration: Mechanisms of Palmar Fascia Degeneration (Dupuytren's Disease).

    PubMed

    Karkampouna, S; Kreulen, M; Obdeijn, M C; Kloen, P; Dorjée, A L; Rivellese, F; Chojnowski, A; Clark, I; Kruithof-de Julio, Marianna

    Dupuytren's disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated by myofibroblasts that deposit collagen and other extracellular matrix proteins. We describe the clinical profile of Dupuytren's disease along with current therapeutic schemes. Recent findings on molecular and cellular parameters that are dysregulated in Dupuytren's disease, which may contribute to the onset of the disease, and the role of resident inflammation promoting fibrosis, are highlighted. We review recent literature focusing on non-myofibroblast cell types (stem cell-like cells), their pro-inflammatory and pro-fibrotic role that may account for abnormal wound healing response.

  20. Radiotherapy of spontaneous fibrous connective-tissue sarcomas in animals.

    PubMed

    Hilmas, D E; Gillette, E L

    1976-02-01

    The clinical records and follow-up data obtained over 13 years on the results of radiotherapy of spontaneous fibrous connective-tissue sarcomas in dogs, cats, and horses were reviewed. The results obtained from the treatment of fibrosarcomas and sarcoids of horses indicated that radiation administered with 60Co is important in the medical and surgical management of these tumors. Fibrous connective-tissue sarcomas in horses were radioresponsive. When radiotherapy was applied postoperatively, the probability of a 2-year cure approached 50% for all prescribed radiation doses of less than 2,000 to greater than 4,000 rads. If radiation doses of 4,500-6,000 rads were used, a 2-year cure rate may approach or exceed 60%.

  1. Anisotropic tissue motion induced by acupuncture needling along intermuscular connective tissue planes.

    PubMed

    Fox, James R; Gray, Weili; Koptiuch, Cathryn; Badger, Gary J; Langevin, Helene M

    2014-04-01

    Acupuncture needle manipulation causes mechanical deformation of connective tissue, which in turn results in mechanical stimulation of fibroblasts, with active changes in cell shape and autocrine purinergic signaling. We have previously shown using ultrasound elastography in humans that acupuncture needle manipulation causes measurable movement of tissue up to several centimeters away from the needle. The goal of this study was to quantify the spatial pattern of tissue displacement and deformation (shear strain) in response to acupuncture needling along an intermuscular connective tissue plane compared with needling over the belly of a muscle. Eleven (11) healthy human subjects underwent a single testing session during which robotic acupuncture needling was performed while recording tissue displacement using ultrasound. Outcome measures were axial and lateral tissue displacement as well as lateral shear strain calculated using ultrasound elastography postprocessing. Tissue displacement and strain extended further in the longitudinal direction when needling between muscles, and in the transverse direction when needling over the belly of a muscle. The anisotropic tissue motion observed in this study may influence the spatial distribution of local connective tissue cellular responses following acupuncture needle manipulation.

  2. [Cardiovascular manifestations in mixed connective tissue disease in adults].

    PubMed

    Badui, E; Robles Saavedra, E; García Rubí, D; Mintz Spiro, G

    1984-01-01

    Twenty two patients with mixed connective tissue disease (MCTD) were studied with noninvasive cardiovascular techniques. Fifty percent of the cases presented cardiovascular abnormalities which in order of importance were: pericarditis with effusion (28%), myocarditis (14%) and one case; myocardial infarction. Complications of less importance were: supraventricular and ventricular premature beats, enlargement of left and right cardiac chambers, septal hypertrophy and type A paradoxical septal movement. We consider that patients with MCTD should have a routine cardiological evaluation.

  3. Review of Primary Cutaneous Mucinoses in Nonlupus Connective Tissue Diseases.

    PubMed

    Wong, Russell X; Chia, Justin C; Haber, Richard M

    2017-07-01

    Lichen myxedematosus is an idiopathic, cutaneous mucinosis with 2 clinicopathologic subsets. There is the generalised papular and sclerodermoid form, more properly termed scleromyxedema, and the localised papular form. We report the first case, to our knowledge, of lichen myxedematosus in association with rheumatoid arthritis as well as a case in association with dermatomyositis. An up-to-date literature review on cutaneous mucinoses and connective tissue diseases, excluding the common association of primary and secondary mucinoses with systemic lupus erythematosus, was also performed.

  4. FOXO1 expression in keratinocytes promotes connective tissue healing

    PubMed Central

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  5. Pauci-Immune Crescentic Glomerulonephritis in Connective Tissue Disease

    PubMed Central

    Cronin, Mary; Robin, Adam; Lorna, Campbell; Rosenthal, Ann K.

    2016-01-01

    Pauci-immune crescentic glomerulonephritis is commonly seen in ANCA-associated vasculitis but it is rarely seen during the course of other connective tissue diseases like lupus or Sjogren's syndrome or MCTD. We report 3 cases of pauci-immune crescentic glomerulonephritis in patients with connective tissue disease other than vasculitis. We reviewed literature and made summary of previously reported cases of this rare entity. Clinical and laboratory features of these patients varied widely, but most of patients have met criteria for lupus. In this small population of patients there is no correlation with ANCAs. Most of the patients were treated with aggressive immunosuppression and did well if they were treated early in the course of their disease. One of our patients required renal transplant, but she presented late in the course of her disease, as evidenced by chronicity on her renal biopsy. Whether these patients are overlap of vasculitis and other connective tissue diseases or to be considered as a separate entity is yet to be described. Clinicians must be aware of these presentations because initial presentation can be severe. PMID:27504208

  6. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    SciTech Connect

    Antoniades, H.N. Center for Blood Research, Boston, MA Inst. of Molecular Biology, Boston, MA ); Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P. Inst. of Molecular Biology, Boston, MA ); Lynch, S.E. Inst. of Molecular Biology, Boston, MA Harvard School of Dental Medicine, Boston, MA )

    1991-01-15

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth.

  7. Role of insulin in the growth of fetal rat tissues.

    PubMed

    Cooke, P S; Nicoll, C S

    1984-02-01

    grow in an internal milieu that was severely deficient in insulin and/or pituitary hormones. Overall, the results indicate that insulin is necessary for normal growth of the skeletal and connective tissues of the transplanted paw, but its effects are more growth supporting than growth promoting in these tissues.

  8. Oral glucosamine increases expression of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) mRNA in rat cartilage and kidney: implications for human efficacy and toxicity.

    PubMed

    Ali, Akhtar A; Lewis, Sherry M; Badgley, Heidi L; Allaben, William T; Leakey, Julian E A

    2011-06-01

    Glucosamine is used for alleviating pain in osteoarthritis. Clinical trials have reported that glucosamine has equivocal efficacy. Glucosamine is also used in cell cultures to stimulate hexosamine flux and protein O-glycosylation, but at many-fold greater concentrations than those in human plasma following oral dosing. Lean Zucker rats were dosed orally for 6 weeks with glucosamine hydrochloride at doses (0-600 mg/kg/day) that produced peak serum concentrations of <1-35 μM, spanning the human exposure range. Relative expression of both TGFβ1 and CTGF mRNA were significantly increased up to 2.3-fold in liver, kidney and articular cartilage when evaluated 4h after final dose. Apparent threshold serum glucosamine (C(max)) concentration required to increase TGFβ1 expression in cartilage was 10-20 μM. These increases were associated with significant increases in UDP-N-acetylglucosamine concentrations suggesting increased hexosamine flux. Both TGFβ1 and CTGF are mediators of chondrocyte proliferation and cartilage repair. Study demonstrates that oral glucosamine doses that produce clinically relevant serum glucosamine concentrations can induce tissue TGFβ1 and CTGF expression in vivo and provides a mechanistic rationale for reported beneficial effects of glucosamine therapy. Induction of renal TGFβ1 and CTGF mRNA suggests that potential sclerotic side-effects may occur following consumption of potent glucosamine preparations. Published by Elsevier Inc.

  9. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  10. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  11. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  12. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  13. Influence of intercellular tissue connections on airway muscle mechanics.

    PubMed

    Meiss, R A

    1999-01-01

    Contraction of smooth muscle in visceral organs is modified by structures external to the muscle. Within muscle tissue itself, connective tissue plays an important role in force transference among the contractile cells. Connections arranged radially can affect contractile mechanics by limiting tissue expansion at short lengths. Previous work suggests that increased stiffness at extreme shortening is due to such radial constraints. Two approaches to further study of these effects are reported. To increase radial constraints, very thin Silastic bands were placed loosely about strips of canine trachealis muscle at rest length. The strips were allowed to shorten under light afterloads, expanding until restrained by the bands. Subsequent removal of the bands allowed increased shortening, with less increase in stiffness at short lengths. Related isometric effects were observed. To reduce constraints, muscle strips were partially digested with collagenase. Compared with control conditions, this treatment permitted further shortening, with less increase in stiffness at short lengths. These results emphasize the role of extracellular structures in determining mechanical function of smooth muscle.

  14. [New data on the histogenesis of connective tissue tumors].

    PubMed

    Smol'iannikov, A V; Sarkisov, D S; Pal'tsyn, A A

    1984-01-01

    The normal skin and adipose subcutaneous tissue, desmoid fibroma, lipomas with varying proliferative activity, fibrosarcoma, malignant fibrous histiocytoma, epithelioid leiomyoma are studied by means of electron microscopy and electron microscopical radioautography. It was found that the walls of the smallest vessels contain cells which are the source of a permanent physiological renewal of a different type of the connective tissue. In proportion to differentiation and gradual removal of these cells from the vascular wall their proliferative and metabolic activity is more and more decreasing. Thus, the vessels represent not only the transport-nutritive system but the central generative structure of the connective tissue as well. Pluripotential mesenchymal cell of the vascular wall which under physiological conditions is differentiating in the direction of fibro-, angio-, lipo- or osteogenesis, due to the influence of oncogenic factors gives rise to the development of benign and malignant tumours of fibrous, vascular (angiomas), smooth muscle, adipose and bone structure. This can be most demonstratively checked using electron-radioautography of tumourlike conditions and relatively slow growing tumours.

  15. Mechanisms of lamellar collagen formation in connective tissues.

    PubMed

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues.

  16. Collapsing glomerulopathy in a patient with mixed connective tissue disease.

    PubMed

    Rifkin, S I; Gutta, H; Nair, R; McFarren, C; Wheeler, D E

    2011-02-01

    Collapsing glomerulopathy (CG) is a distinct clinicopathological entity characterized by glomerular capillary collapse, podocyte proliferation, diffuse mesangial sclerosis, and podocyte maturation arrest. Initially noted primarily in HIV infected patients, a number of other diseases have now been associated with CG. Mixed connective tissue disease (MCTD) is a disease with overlapping features of systemic lupus erythematosus, progressive systemic sclerosis, and polymyositis. It was originally thought that renal involvement was a rare complication of MCTD. However, over the years, it has become clearer that renal involvement, although not always clinically apparent, is frequent. In this report we present a patient with MCTD who developed CG.

  17. [Ultrasonography in chronic inflammatory rheumatic and connective tissue disorders].

    PubMed

    Mérot, O; Le Goff, B

    2014-08-01

    Musculoskeletal ultrasonography is now widely used by almost all rheumatologists thanks to an improvement in the quality of ultrasound unit and probe and to the systematic teaching of this imaging technique to the rheumatology fellows. Applications have broadened from the study of degenerative and mechanical diseases to inflammatory rheumatic diseases. Ultrasound is more sensitive than clinical examination. Power Doppler allows the direct visualisation of inflammation within the tissues. Finally, it is a prognostic tool helping the physician in the management of the disease. This review will focus on the value and applications of ultrasonography in the 2 most frequent rheumatic diseases: rheumatoid arthritis and spondyloarthritis. We will also give some recent data on the usefulness of this imaging technique in the study of musculoskeletal manifestations associated with connective tissue disease.

  18. Hair follicle nevi and accessory tragi: variable quantity of adipose tissue in connective tissue framework.

    PubMed

    Ban, M; Kamiya, H; Yamada, T; Kitajima, Y

    1997-01-01

    Controversy exists about the histologic differences between hair follicle nevi and accessory tragi. We examined 10 congenital lesions histologically, possible diagnoses of which were hair follicle nevi or accessory tragi. Two specimens out of the 10 had tiny, mature hair follicles surrounded by thick fibrous root sheaths, a few fat cells, and no cartilage. The subcutaneous fat cells of their bases were segmented by a connective tissue framework. They had histologic features of hair follicle nevi. One specimen had cartilage and abundant fat cells with a connective tissue framework in the nodule, as well as a conglomeration of numerous well-differentiated hair follicles. It possessed both elements of a hair follicle nevus and an accessory tragus. Seven specimens had abundant subcutaneous fat and showed a prominent connective tissue framework. These were typical accessory tragi. The present study suggests that the number of fat cells in the nodule or papule differs between these two conditions. All the lesions studied revealed a connective tissue framework in the subcutaneous fat. Histologic features of both hair follicle nevi and accessory tragi can coexist in a single lesion. Hair follicle nevi may represent incomplete accessory tragi with scant fat cells.

  19. Affine kinematics in planar fibrous connective tissues: an experimental investigation.

    PubMed

    Jayyosi, C; Affagard, J-S; Ducourthial, G; Bonod-Bidaud, C; Lynch, B; Bancelin, S; Ruggiero, F; Schanne-Klein, M-C; Allain, J-M; Bruyère-Garnier, K; Coret, M

    2017-03-29

    The affine transformation hypothesis is usually adopted in order to link the tissue scale with the fibers scale in structural constitutive models of fibrous tissues. Thanks to the recent advances in imaging techniques, such as multiphoton microscopy, the microstructural behavior and kinematics of fibrous tissues can now be monitored at different stretching within the same sample. Therefore, the validity of the affine hypothesis can be investigated. In this paper, the fiber reorientation predicted by the affine assumption is compared to experimental data obtained during mechanical tests on skin and liver capsule coupled with microstructural imaging using multiphoton microscopy. The values of local strains and the collagen fibers orientation measured at increasing loading levels are used to compute a theoretical estimation of the affine reorientation of collagen fibers. The experimentally measured reorientation of collagen fibers during loading could not be successfully reproduced with this simple affine model. It suggests that other phenomena occur in the stretching process of planar fibrous connective tissues, which should be included in structural constitutive modeling approaches.

  20. Growth and dissipation in biological tissues

    NASA Astrophysics Data System (ADS)

    Ambrosi, D.; Guillou, A.

    2007-10-01

    This paper provides a unified mathematical framework so as to study the growth of biological tissues on an energetic basis. All the contributions to growth of solute chemicals and nutrients are here resumed in one scalar descriptor, the biochemical energy of the system. The free energy of the system accounts for both strain and biochemical storage. The exploitation of a dissipation inequality by standard means provides admissible couplings between growth, tension and energy. Specific admissible constitutive equations lead back, in some cases, to classical models.

  1. Connective tissue photodamage in the hairless mouse is partially reversible.

    PubMed

    Kligman, L H

    1987-03-01

    Photodamaged connective tissue in animal and human skin is characterized by excessive accumulations of elastic fibers, loss of mature collagen, concomitant overproduction of new collagen, and greatly increased levels of glycosaminoglycans. Formerly considered irreversible changes, we recently showed in hairless mice, post irradiation, that a band of normal connective tissue was laid down subepidermally. The present studies focused on 2 aspects of this repair: whether repair would occur if animals were protected by sunscreens after dermal damage was induced and irradiation continued; whether retinoic acid could enhance the repair process. To examine the first aspect, albino hairless mice were irradiated with Westinghouse FS 20 sunlamps thrice weekly for 30 weeks. Sunscreens of high sun-protection factors were applied after 10 and 20 weeks. Not only was further damage prevented, but the damage incurred before sunscreen application was repaired. This appeared as subepidermal reconstruction zones containing normal, mature collagen and a network of fine elastic fibers. The second aspect was examined by applying 0.05% retinoic acid, topically, to animals preirradiated for 10 weeks. In contrast to controls treated with vehicle, the reconstruction zone was significantly wider in retinoic acid-treated mice. The enhanced repair was dose-related.

  2. Myoarchitecture and connective tissue in hearts with tricuspid atresia

    PubMed Central

    Sanchez-Quintana, D; Climent, V; Ho, S; Anderson, R

    1999-01-01

    Objective—To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils.
Methods—Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts.
Results—There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts.
Conclusions—The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

 Keywords: tricuspid atresia; congenital heart defects; connective tissue; fibrosis PMID:9922357

  3. [Relation between autoimmune thyroid diseases and connective tissue diseases].

    PubMed

    Barragán-Garfias, Jorge Alberto; Zárate, Arturo

    2013-01-01

    The main physiological function of the immune system consists in the defense against infectious micro-organisms. Sometimes there is a loss of immunological tolerance with the consequence of ignorance of self-antibodies. Some thyroid diseases are related to autoimmune diseases associated with the most common exocrine glands between them. There are also the autoimmune thyroid organ specific diseases, such as Graves-Basedow and the Hashimoto thyroiditis. It has been shown that there is a higher prevalence of autoimmune thyroid diseases in patients with connective tissue diseases (systemic autoimmune) such as Sjögren syndrome, rheumatoid arthritis, systemic lupus erithmatosis and systemic myopathic diseases. In the same way a higher prevalence of antinuclear antibodies against antigens extracted from the nucleus in patients with a thyroid autoimmune disease has been identified. There is a high percentage of patients with subclinical thyroid diseases, and it is recommended for patients with connective tissue diseases with hypo- or hyperthyroidism to have thyroid globulin and peroxide antibodies measured.

  4. Pulmonary hypertension in connective tissue diseases: an update.

    PubMed

    Aithala, Ramya; Alex, Anoop G; Danda, Debashish

    2017-02-16

    Pulmonary hypertension (PH) is a relatively commoner complication of systemic sclerosis (SSc) with estimated prevalence ranging between 8% and 12% as compared to much lower figures in other connective tissue diseases (CTD). It is a major cause of morbidity and mortality in CTDs. PH is classified into five major groups. CTD-associated PH belongs to group 1 PH, also known as pulmonary arterial hypertension (PAH). Around 30% of scleroderma-related deaths are due to PAH. Underlying pathogenesis is related to pulmonary vasculopathy involving small vessels. The Evidence-based Detection of Pulmonary Arterial Hypertension in Systemic sclerosis (DETECT) algorithm outperforms the current European Society of Cardiology/European Respiratory Society guidelines as a screening tool in SSc-PAH; it can, therefore, suggest when to refer a patient for right heart catheterization. CTD-PAH patients constitute at least 20% of patients included in all major trials of PH-specific therapy and the results are comparable to those of idiopathic PAH. The role of anticoagulation in CTD-PAH is associated with a high risk-benefit ratio with the caveat of its potential role in those with severe disease. There appears to be no role of immunosuppression in scleroderma-PAH; however, immunosuppressive agents, namely the combination of glucocorticoids and pulse cyclophosphamide / possibly mycophenolate, may result in clinical improvement in a subset of patients with systemic lupus erythematosus and mixed connective tissue disease-related PAH.

  5. Connective Tissue Disease-associated Interstitial Lung Disease: A review

    PubMed Central

    Gutsche, Markus; Rosen, Glenn D.; Swigris, Jeffrey J.

    2012-01-01

    Interstitial lung disease (ILD) is commonly encountered in patients with connective tissue diseases (CTD). Besides the lung parenchyma, the airways, pulmonary vasculature and structures of the chest wall may all be involved, depending on the type of CTD. As a result of this so-called multi-compartment involvement, airflow limitation, pulmonary hypertension, vasculitis and extrapulmonary restriction can occur alongside fibro-inflammatory parenchymal abnormalities in CTD. Rheumatoid arthritis (RA), systemic sclerosis (SSc), poly-/dermatomyositis (PM/DM), Sjögren’s syndrome (SjS), systemic lupus erythematosus (SLE), and undifferentiated (UCTD) as well as mixed connective tissue disease (MCTD) can all be associated with the development of ILD. Non-specific interstitial pneumonia (NSIP) is the most commonly observed histopathological pattern in CTD-ILD, but other patterns including usual interstitial pneumonia (UIP), organizing pneumonia (OP), diffuse alveolar damage (DAD) and lymphocytic interstitial pneumonia (LIP) may occur. Although the majority of patients with CTD-ILD experience stable or slowly advancing ILD, a small yet significant group exhibits a more severe and progressive course. Randomized placebo-controlled trials evaluating the efficacy of immunomodulatory treatments have been conducted only in SSc-associated ILD. However, clinical experience suggests that a handful of immunosuppressive medications are potentially effective in a sizeable portion of patients with ILD caused by other CTDs. In this manuscript, we review the clinical characteristics and management of the most common CTD-ILDs. PMID:23125954

  6. Connective tissue photodamage in the hairless mouse is partially reversible

    SciTech Connect

    Kligman, L.H.

    1987-03-01

    Photodamaged connective tissue in animal and human skin is characterized by excessive accumulations of elastic fibers, loss of mature collagen, concomitant overproduction of new collagen, and greatly increased levels of glycosaminoglycans. Formerly considered irreversible changes, we recently showed in hairless mice, post irradiation, that a band of normal connective tissue was laid down subepidermally. The present studies focused on 2 aspects of this repair: whether repair would occur if animals were protected by sunscreens after dermal damage was induced and irradiation continued; whether retinoic acid could enhance the repair process. To examine the first aspect, albino hairless mice were irradiated with Westinghouse FS 20 sunlamps thrice weekly for 30 weeks. Sunscreens of high sun-protection factors were applied after 10 and 20 weeks. Not only was further damage prevented, but the damage incurred before sunscreen application was repaired. This appeared as subepidermal reconstruction zones containing normal, mature collagen and a network of fine elastic fibers. The second aspect was examined by applying 0.05% retinoic acid, topically, to animals preirradiated for 10 weeks. In contrast to controls treated with vehicle, the reconstruction zone was significantly wider in retinoic acid-treated mice. The enhanced repair was dose-related.

  7. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  8. Anisotropic growth shapes intestinal tissues during embryogenesis.

    PubMed

    Ben Amar, Martine; Jia, Fei

    2013-06-25

    Embryogenesis offers a real laboratory for pattern formation, buckling, and postbuckling induced by growth of soft tissues. Each part of our body is structured in multiple adjacent layers: the skin, the brain, and the interior of organs. Each layer has a complex biological composition presenting different elasticity. Generated during fetal life, these layers will experience growth and remodeling in the early postfertilization stages. Here, we focus on a herringbone pattern occurring in fetal intestinal tissues. Common to many mammalians, this instability is a precursor of the villi, finger-like projections into the lumen. For avians (chicks' and turkeys' embryos), it has been shown that, a few days after fertilization, the mucosal epithelium of the duodenum is smooth, and then folds emerge, which present 2 d later a pronounced zigzag instability. Many debates and biological studies are devoted to this specific morphology, which regulates the cell renewal in the intestine. After reviewing experimental results about duodenum morphogenesis, we show that a model based on simplified hypothesis for the growth of the mesenchyme can explain buckling and postbuckling instabilities. Being completely analytical, it is based on biaxial compressive stresses due to differential growth between layers and it predicts quantitatively the morphological changes. The growth anisotropy increasing with time, the competition between folds and zigzags, is proved to occur as a secondary instability. The model is compared with available experimental data on chick's duodenum and can be applied to other intestinal tissues, the zigzag being a common and spectacular microstructural pattern of intestine embryogenesis.

  9. Current concepts in the classification of connective tissue diseases. Overlap syndromes and mixed connective tissue disease (MCTD).

    PubMed

    Sharp, G C; Anderson, P C

    1980-04-01

    New principles are discussed for the classification of the diffuse collagen diseases, particularly the mixed connective tissue disease (MCTD), with clinical and historical explanation. Emphasis in classification has shifted from a concern with tissue pathology to serologic anomalies, which may involve eleven different antigens, many from human cell nuclei. New serologic tests, such as the ribonucleoprotein (RNP) antibody test, may be superior to the well-known fluorescent antinuclear antibody (ANA) studies for diagnosis and follow-up of diffuse collagen diseases. Functional clinical studies, such as esophageal motility, gas exchange in the lung, and major joint mobility, which may appear early in MCTD, are more important to diagnosis than anatomic studies of late-developing lesions.

  10. In vitro manipulation of cleft palate connective tissue: setting the bases of a proposed new treatment.

    PubMed

    Resel, Eva; Martínez-Sanz, Elena; González, Ignacio; Trinidad, Eva; Garcillán, Beatriz; Amorós, María; Alonso-Bañuelos, Carmen; González-Meli, Beatriz; Lagarón, Emilio; Murillo, Jorge; Del Río, Aurora; Barrio, Carmen; López, María; Martínez-Alvarez, Concepción

    2007-03-01

    Palatoplasty has the undesired side effect of impaired mid-facial growth. To avoid this problem, we propose an alternative to palatoplasty. We hypothesize that if BMP-2 is injected together with a carrier into the periosteum of the cleft palate borders, border volume will increase and connective tissue cells will be activated to produce extra bone. Once these borders supported by bone reach the midline, extraction of their covering epithelia with trypsin will permit adhesion of the underlying tissues. We investigated in vitro the ability of cleft palate connective tissue cells to produce extra bone in the presence of BMP-2 and the possibility of using trypsin to remove the epithelium covering the cleft palate borders without impairing the underlying tissues' ability to adhere. We used the cleft palate presented by tgf-beta(3) null mice and small fragments of human cleft palate mucoperiosteum as models. Immunolabeling BMP-2-treated or untreated cultures with TUNEL and anti-osteocalcin or PCNA antibodies was performed. The epithelium of the cleft palate borders was removed with a trypsin solution, and the de-epithelialized tissues were cultured in apposition. BMP-2 induces differentiation toward bone on cleft palate connective tissue cells without producing cell death or proliferation. Trypsin removal of the cleft palate margins' epithelium does not impair the underlying tissues' adhesion. It is possible to generate extra bone at the cleft palate margins and to chemically eliminate their covering epithelia without damaging the underlying tissues, which allows further investigation in vivo of this new approach for cleft palate closure.

  11. Cell-based and biomaterial approaches to connective tissue repair

    NASA Astrophysics Data System (ADS)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  12. Mechanisms of action of cyclosporine and effects on connective tissues.

    PubMed

    Russell, G; Graveley, R; Seid, J; al-Humidan, A K; Skjodt, H

    1992-06-01

    Cyclosporine is a potent immunomodulatory agent with an increasing number of clinical applications. Its major mode of action is inhibition of the production of cytokines involved in the regulation of T-cell activation. In particular, cyclosporine inhibits the transcription of interleukin 2. Although cyclosporine's major actions are on T cells, there is some evidence that it produces direct effects on other cell types. Its immunosuppressive action is closely linked to its binding of cyclophilin, a member of a family of high-affinity cyclosporine-binding proteins widely distributed in different cell types and in different species. The cyclophilins have been shown to have peptidyl-prolyl cis-trans isomerase enzyme activity that is blocked by cyclosporine. Although this may be a factor in cyclosporine's selective inhibition of cytokine gene transcription, it is still unclear whether inhibition of this activity is the mechanism through which cyclosporine exerts its effects on target cells. The ubiquitous presence of cyclophilins raises the question of why cyclosporine has major effects on T cells. Perhaps the critical proteins affected are transcriptional regulators restricted in their tissue distribution. The effects of cyclosporine on T cells and, directly or indirectly, on connective tissue cells, all of which can produce a range of cytokines, are of interest in relation to the tissue changes that occur in such inflammatory conditions as rheumatoid arthritis.

  13. Connecting (T)issues: How Research in Fascia Biology Can Impact Integrative Oncology.

    PubMed

    Langevin, Helene M; Keely, Patricia; Mao, Jun; Hodge, Lisa M; Schleip, Robert; Deng, Gary; Hinz, Boris; Swartz, Melody A; de Valois, Beverley A; Zick, Suzanna; Findley, Thomas

    2016-11-01

    Complementary and integrative treatments, such as massage, acupuncture, and yoga, are used by increasing numbers of cancer patients to manage symptoms and improve their quality of life. In addition, such treatments may have other important and currently overlooked benefits by reducing tissue stiffness and improving mobility. Recent advances in cancer biology are underscoring the importance of connective tissue in the local tumor environment. Inflammation and fibrosis are well-recognized contributors to cancer, and connective tissue stiffness is emerging as a driving factor in tumor growth. Physical-based therapies have been shown to reduce connective tissue inflammation and fibrosis and thus may have direct beneficial effects on cancer spreading and metastasis. Meanwhile, there is currently little knowledge on potential risks of applying mechanical forces in the vicinity of tumors. Thus, both basic and clinical research are needed to understand the full impact of integrative oncology on cancer biology as well as whole person health. Cancer Res; 76(21); 6159-62. ©2016 AACR.

  14. Inhibition of granulation tissue growth by histamine.

    PubMed

    Saeki, K; Yokoyama, J; Wake, K

    1975-06-01

    Granulomas were induced in rats by subcutaneous implantation of formalin-soaked filter-paper disks. Daily subcutaneous injection of histamine at doses of two times 0.05 mg/kg and above inhibited the growth of granulation tissue as measured by a marked decrease in the dry-defatted granuloma weight and of the hydroxyproline and hexosamine content. Histological observations of granulation tissue indicated that histamine inhibited the proliferation of fibroblasts and the formation of capillaries. Inhibitory effects were also observed with the histamine releaser, sinomenine, and the histaminase inhibitor, aminoguanidine. These histamine effects seem not to be mediated by glucocorticoid release, since an effective dose level of histamine produced no change in growth or thymus weight. Prednisolone was less potent than histamine in inhibiting Prednisolone was ineffective at the dose tested. Subcutaneous injection of the H2-receptor antagonist, burimamide, blocked these histamine effects and also of sinomeinine and aminoguanidine. The H1-receptor antagonist, mepyramine, did not block these histamine effects. Burimamide alone enhanced the growth of granuloma. These results indicate that granulation-tissue growth in inflammation is affected by the inhibitory effect of endogenous histamine acting through H2-receptors.

  15. Digital cushions in horses comprise coarse connective tissue, myxoid tissue, and cartilage but only little unilocular fat tissue.

    PubMed

    Egerbacher, M; Helmreich, M; Probst, A; König, H; Böck, P

    2005-04-01

    Digital cushions were studied in horses with particular reference to vascularization, tissue constituents and matrix components. The cushions mainly resembled a network of coarse collagen bundles. The areas inbetween the bundles were replenished with loosely woven interstitial connective tissue, myxoid tissue, and fibrocartilage. Expected masses of fat lobules were missing: only solitary adipocytes or small groups of adipocytes were seen. Vascular supply to the cushions was remarkably poor. The mucinous myxoid matrix largely consisted of hyaluronan with little sulphated glycosaminoglycans. Myxoid cells were stellate or ramified in shape and showed a tendency to store glycogen and lipid droplets. Myxoid cells reacted for vimentin and stained for S-100 protein. Moreover, myxoid cells often reacted for neuron specific enolase and glial fibrillary acidic protein. Myxoid tissue continuously transformed into loosely organized interstitial connective tissue with fibroblasts, which remained unreactive when tested for neuroectodermal markers. Myxoid tissue also was not clearly demarcated against irregularly interspersed islets of fibrocartilage or hyaline cartilage. Chondrocytes did not stain for neuron specific enolase but reactivity for S-100 protein and glial fibrillary acidic protein was noted in peripheral regions of fibrocartilage. Single or grouped unilocular fat cells were rarely placed into myxoid areas. Unilocular fat cells stained for vimentin, S-100 protein, and occasionally for glial fibrillary acidic protein but not for neuron specific enolase. Continuous transformation of myxoid tissue into cartilage together with corresponding reactivity for neuroectodermal marker proteins of myxoid cells and peripherally located chondrocytes suggest close relationship between myxoid cells and chondrocytes. The same criteria indicate relationship between myxoid cells and adipocytes. Coarse connective tissue, myxoid tissue, fibrous cartilage, and fat cells are functionally

  16. Connective tissue representation for detection of microcalcifications in digital mammograms

    NASA Astrophysics Data System (ADS)

    McLoughlin, Kristin J.; Bones, Philip J.; Kovesi, Peter

    2002-05-01

    Microcalcification clusters appear as an early sign of breast cancer and play an important role in interpreting mammograms. Progress is reported towards an automated computer aided detection system for clustered microcalcifications utilizing two image feature parameters: local contrast and shape. The use of a shape parameter is necessary to distinguish thin patches of connective tissue from microcalcifications. Two shape parameter techniques are compared in the segmentation of 15 digital mammogram images. The first technique implements the linear Hough transform, while the second uses image phase information in the Fourier domain. In both cases labeling of the image is performed by a deterministic relaxation scheme, in which both image data dn prior beliefs are weighted simultaneously. Similar segmentation results are obtained for each shape parameter technique however the execution time for the phase method is approximately one quarter that for the Hough method. Both techniques offer an improvement over segmentation results obtained without the shape parameter.

  17. Connective tissue panniculitis: lupus panniculitis, dermatomyositis, morphea/scleroderma.

    PubMed

    Hansen, Christopher B; Callen, Jeffrey P

    2010-01-01

    Panniculitis is an uncommon cutaneous manifestation of connective tissue diseases. Our discussion will include panniculitis occurring in the setting of lupus erythematosus, dermatomyositis, and scleroderma/morphea. These subtypes of panniculitis are unified by an active inflammatory stage of the disease that can progress to develop scarring, atrophy, and calcifications. Treatment is most effective if initiated during the active phase of the disease and often requires systemic therapy because of the location of the inflammation. Antimalarials are the initial treatment of choice for most cases of lupus erythematosus panniculitis, whereas corticosteroids in combination with other steroid-sparing immunosuppressive agents are the first-line treatment for panniculitis in patients with dermatomyositis. The appropriate treatment for panniculitis in the setting of morphea/scleroderma varies based on clinical severity.

  18. Cutaneous Connective Tissue Diseases: Epidemiology, Diagnosis, and Treatment

    PubMed Central

    Reddy, Bobby Y.; Hantash, Basil M.

    2010-01-01

    Connective tissue diseases (CTDs) are a group of clinical disorders that have an underlying autoimmune pathogenesis. These include a diverse set of diseases such as relapsing polychondritis, rheumatoid arthritis, and eosinophilic fasciitis, along with more common entities like Sjogren’s syndrome, dermatomyositis, scleroderma, and lupus erythematosus. The latter three will be the focus of this review, as they constitute the most significant and common CTD with cutaneous manifestations. The cutaneous signs often represent the preliminary stages of disease and the presenting clinical symptoms. Therefore, comprehensive knowledge of CTD manifestations is essential for accurate diagnosis, better assessment of prognosis, and effective management. Although the precise etiologies of CTDs remain obscure, recent advances have allowed for further understanding of their pathogenesis and improved disease classifications. In addition, there have been developments in therapeutic options for CTDs. This review provides an overview of the epidemiology, clinical presentations, and current treatment options of cutaneous lupus erythematous, dermatomyositis and scleroderma. PMID:21218179

  19. [Septic arthritis in connective tissue diseases and other chronic arthropathies].

    PubMed

    Stecher, D R; Gusis, S E; Maldonado Cocco, J A

    1991-01-01

    In order to describe the features of septic arthritis (SA) in patients with connective tissue diseases (CTDs), a series of 17 CTD cases with SA episodes were studied retrospectively. The most common CTDs were systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Involvement was oligoarticular in 64% of cases and mono-articular in the remainder. Clinical, radiological and laboratory findings proved insufficient to allow differential diagnosis between SA and an underlying arthritic flare-up, which could only be carried out by bacterial isolation from synovial fluid. The most frequent etiological agent was Staphylococcus aureus (Table 1). Throughout, patients were treated by needle drainage together with antibiotics, first by parenteral (average 17 days) and later by oral route (average 46 days). Cases with greater diagnostic delay and initiation of therapy were those requiring arthrotomy and those who presented more complications mainly osteomyelitis and permanent disability (Table 2).

  20. Topical review-connective tissue diseases: orofacial manifestations including pain.

    PubMed

    Klasser, Gary D; Balasubramaniam, Ramesh; Epstein, Joel

    2007-01-01

    This topical review presents an overview of orofacial manifestations associated with the more common connective tissue diseases affecting multiple organs. The orofacial manifestations associated with these autoimmune disorders include oral mucosa alterations, salivary gland pathosis, sensory neuropathies, headaches, and temporomandibular disorders. Since many of these orofacial manifestations may be painful, the practitioner managing pain patients should be familiar with them. An understanding of the orofacial manifestations associated with these systemic diseases will enable the pain practitioner to establish an appropriate diagnosis within the context of the underlying systemic disease. This will allow the practitioner the opportunity to contribute and collaborate as a member of a multidisciplinary health-care team in the management of these systemic autoimmune diseases.

  1. Connective tissue adaptations in the fingers of performance sport climbers.

    PubMed

    Schreiber, Tonja; Allenspach, Philippe; Seifert, Burkhardt; Schweizer, Andreas

    2015-01-01

    This study investigates the changes of the connective tissue in the fingers of performance sport climbers resulting after a minimum of 15 years of climbing. Evaluation was performed by ultrasonography on the palmar side of the fingers (Dig) II-V to measure the thickness of the A2 and A4 annular pulleys, the flexor digitorum superficialis (FDS) and profundus (FDP) tendons and the palmar plates (PP's) of the proximal interphalangeal (PIP) as well as distal interphalangeal (DIP) joint in sagittal and axial direction. Totally, 31 experienced male sport climbers (mean age 37y, 30-48y grade French scale median 8b, range 7b+ to 9a+) participated in the study. The control-group consisted of 20 male non-climbers (age 37y, 30-51y). The A2 and A4 pulleys in climbers were all significantly thicker (A2 Dig III 62%, Dig IV 69%; A4 Dig III 69%, Dig IV 76%) as compared to non-climbers pulleys. All PP's of the DIP joints were also significantly thicker, particularly at Dig III and IV (76 and 67%), whereas the PP's at PIP joints were only scarce significant for three joints. Differences of the diameter of the flexor tendons were less distinct (1-21%) being significant only over the middle phalanx. High load to the fingers of rock climbers after a minimum of 15 years of climbing years induced considerable connective tissue adaptions in the fingers, most distinct at the flexor tendon pulleys and joint capsule (PP) of the DIP joints and well detectable by ultrasound.

  2. Correction of aberrant growth preserves tissue homeostasis.

    PubMed

    Brown, Samara; Pineda, Cristiana M; Xin, Tianchi; Boucher, Jonathan; Suozzi, Kathleen C; Park, Sangbum; Matte-Martone, Catherine; Gonzalez, David G; Rytlewski, Julie; Beronja, Slobodan; Greco, Valentina

    2017-08-17

    Cells in healthy tissues acquire mutations with surprising frequency. Many of these mutations are associated with abnormal cellular behaviours such as differentiation defects and hyperproliferation, yet fail to produce macroscopically detectable phenotypes. It is currently unclear how the tissue remains phenotypically normal, despite the presence of these mutant cells. Here we use intravital imaging to track the fate of mouse skin epithelium burdened with varying numbers of activated Wnt/β-catenin stem cells. We show that all resulting growths that deform the skin tissue architecture regress, irrespective of their size. Wild-type cells are required for the active elimination of mutant cells from the tissue, while utilizing both endogenous and ectopic cellular behaviours to dismantle the aberrant structures. After regression, the remaining structures are either completely eliminated or converted into functional skin appendages in a niche-dependent manner. Furthermore, tissue aberrancies generated from oncogenic Hras, and even mutation-independent deformations to the tissue, can also be corrected, indicating that this tolerance phenomenon reflects a conserved principle in the skin. This study reveals an unanticipated plasticity of the adult skin epithelium when faced with mutational and non-mutational insult, and elucidates the dynamic cellular behaviours used for its return to a homeostatic state.

  3. Effects of microgravity on rat bone, cartlage and connective tissues

    NASA Technical Reports Server (NTRS)

    Doty, S.

    1990-01-01

    The response to hypogravity by the skeletal system was originally thought to be the result of a reduction in weight bearing. Thus a reduced rate of new bone formation in the weight-bearing bones was accepted, when found, as an obvious result of hypogravity. However, data on non-weight-bearing tissues have begun to show that other physiological changes can be expected to occur to animals during spaceflight. This overview of the Cosmos 1887 data discusses these results as they pertain to individual bones or tissues because the response seems to depend on the architecture and metabolism of each tissue under study. Various effects were seen in different tissues from the rats flown on Cosmos 1887. The femur showed a reduced bone mineral content but only in the central region of the diaphysis. This same region in the tibia showed changes in the vascularity of bone as well as some osteocytic cell death. The humerus demonstrated reduced morphometric characteristics plus a decrease in mechanical stiffness. Bone mineral crystals did not mature normally as a result of flight, suggesting a defect in the matrix mineralization process. Note that these changes relate directly to the matrix portion of the bone or some function of bone which slowly responds to changes in the environment. However, most cellular functions of bone are rapid responders. The stimulation of osteoblast precursor cells, the osteoblast function in collagen synthesis, a change in the proliferation rate of cells in the epiphyseal growth plate, the synthesis and secretion of osteocalcin, and the movement of water into or out of tissues, are all processes which respond to environmental change. These rapidly responding events produced results from Cosmos 1887 which were frequently quite different from previous space flight data.

  4. Long-term effects of connective tissue cancer treatment.

    PubMed

    Mankin, Henry J; Gunnoe, Jaime; Farid, Yasser; Hornicek, Francis J; Gebhardt, Mark C

    2004-09-01

    In 1999, we began a study to assess the long-term effect of connective tissue cancer treatment on clinical, social, and psychologic aspects of the lives of surviving patients. A specially designed computer program generated an 85-item questionnaire, which was sent to more than 2000 patients with malignant bone and soft tissue neoplasms. Twelve hundred forty-four patients responded. The data were entered into a computer system and were correlated with the clinical information already contained in the system for the individual patients. Although there are many possible uses for these data, we chose to do a study comparing the lifestyle and physical and sociologic problems for 144 patients treated with chemotherapy and surgery for high-grade osteosarcoma against a control population consisting of 61 patients treated surgically for benign giant cell tumors of bone. The data show a remarkable degree of compensation on the part of the patients with the malignant tumors in terms of some problems but some significant differences particularly in physical status and functional limitations.

  5. [Oral rehabilitation with metalloceramic restorations in patients with non-differentiated systemic connective tissue dysplasia].

    PubMed

    Stafeev, A A

    2015-01-01

    False formation of connective tissues have a great influence on structure and function of organs and tissues of the human body. In prosthodontics, the changes in connective tissues greatly occur during clinical stages of preparing metal ceramic dentures. The algorithm of treatment patients with connective tissue dysplasia during metal ceramic dentures was developed and introduced into practical dentistry based on studying the morphology and functionality of dentition and clinical experience.

  6. Myocardial Tissue Doppler Velocity in Child Growth

    PubMed Central

    Choi, Sun-Ha; Kim, Nam Kyun; Jung, Jo Won; Choi, Jae Young

    2016-01-01

    Background In adults, tissue Doppler imaging (TDI) is a recommended component of routine echocardiography. However, TDI velocities are less accepted in pediatrics, due to their strong variability and age dependence in children. This study examines the distribution of myocardial tissue Doppler velocities in healthy children to assess the effect of age with cardiac growth on the various echocardiographic measurements. Methods Total 144 healthy children were enrolled in this study. They were recruited from the pediatric outpatient clinic for routine well-child visits. The statistical relationships between age and TDI values were analyzed. Also, the statistical relationships between body surface area (BSA) and TDI values, left ventricle end-diastolic dimension (LVEDD) and TDI values were analyzed. Also, we conducted multivariate analysis of cardiac growth parameters such as, age, BSA, LVEDD and TDI velocity data. Results All of the age, BSA, and LVEDD had positive correlations with deceleration time (DT), pressure half-time (PHT), peak early diastolic myocardial velocity, peak systolic myocardial velocity, and had negative correlations with peak late diastolic velocity (A) and the ratio of trans-mitral inflow velocity to early diastolic velocity of mitral annulus (E/E'). In the multivariate analysis, all of the age, BSA, and LVEDD had positive correlations with DT, PHT, and negative correlations with A and E/E'. Conclusion The cardiac growth parameters related alterations of E/E' may suggest that diastolic myocardial velocities are cardiac growth dependent, and diastolic function has positive correlation with cardiac growth in pediatric group. This cardiac growth related myocardial functional variation would be important for assessment of cardiac involvement either in healthy and sick child. PMID:27081443

  7. Expression of growth factors and growth factor receptors in human cleft-affected tissue.

    PubMed

    Krivicka, Benita; Pilmane, Mara; Akota, Ilze

    2013-01-01

    OBJECTIVE. To investigate cleft disordered tissue in children with cleft palate and cleft lip with or without alveolar clefting for detection of local tissue growth factors and growth factor receptors and compare findings. Design. Morphological analysis of human tissue. Patients. Three groups were studied: 14 patients with cleft palate at the age from eight months to 18 years and two months, 12 patients with cleft lip with or without alveolar clefting in the age from four months to 15 years and four months and 11 control patients. RESULTS. In general, cleft palate disordered tissue showed more prominent expression of BMP2/4 (z=3.574; p=0.0004) and TGFβ (z=2.127; p=0.033), while expression of TGFBR3 significantly higher was only in connective tissue (z=3.822; p=0.0001). Cleft lip affected tissue showed significantly pronounced expression of FGFR1 in general as well as separately in epithelium. CONCLUSIONS. The marked and statistically significant expression of BMP 2/4 in cleft palate disordered soft tissue probably is delayed, but still proliferation and differentiation as well as tissue, especially, bone remodeling contributing signal. Cleft palate affected tissue show more prominent expression of TGFβ, still the weak regional expression of TGFβ type III receptors prove the disordered tissue growth and changed TGFβ signalling pathway in postnatal pathogenesis. In general, expression of TGFβ, BMP 2/4 and FGFR1 is significantly different, giving evidence to the involvement of these mentioned factors in the cleft severity morphopathogenesis.

  8. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    PubMed

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  9. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues

    PubMed Central

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult. PMID:28386539

  10. Vitamin D deficiency in undifferentiated connective tissue disease

    PubMed Central

    Zold, Eva; Szodoray, Peter; Gaal, Janos; Kappelmayer, János; Csathy, Laszlo; Gyimesi, Edit; Zeher, Margit; Szegedi, Gyula; Bodolay, Edit

    2008-01-01

    Introduction Both experimental and clinical data provide evidence that vitamin D is one of those important environmental factors that can increase the prevalence of certain autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, insulin-dependent diabetes mellitus, and inflammatory bowel disease. The aim of the present study was to investigate the prevalence of vitamin D insufficiency in patients with undifferentiated connective tissue disease (UCTD). Methods Plasma 25(OH)D3 levels in 161 UCTD patients were measured in both summer and winter periods. Autoantibody profiles (antinuclear antibody, anti-U1-ribonucleoprotein, anti-SSA, anti-SSB, anti-Jo1, anti-Scl70, anti-double-stranded DNA, anti-centromere, anti-cardiolipin, rheumatoid factor, and anti-cyclic citrullinated peptide) and clinical symptoms of the patients were assessed. Results Plasma levels of 25(OH)D3 in UCTD patients were significantly lower compared with controls in both summer and winter periods (UCTD summer: 33 ± 13.4 ng/mL versus control: 39.9 ± 11.7 ng/mL, P = 0.01; UCTD winter: 27.8 ± 12.48 ng/mL versus control: 37.8 ± 12.3 ng/mL, P = 0.0001). The presence of dermatological symptoms (photosensitivity, erythema, and chronic discoid rash) and pleuritis was associated with low levels of vitamin D. During the average follow-up period of 2.3 years, 35 out of 161 patients (21.7%) with UCTD further developed into well-established connective tissue disease (CTD). Patients who progressed into CTDs had lower vitamin D levels than those who remained in the UCTD stage (vitamin D levels: CTD: 14.7 ± 6.45 ng/mL versus UCTD: 33.0 ± 13.4 ng/mL, P = 0.0001). Conclusions In patients with UCTD, a seasonal variance in levels of 25(OH)D3 was identified and showed that these levels were significantly lower than in controls during the corresponding seasons. Our results suggest that vitamin D deficiency in UCTD patients may play a role in the subsequent progression into well-defined CTDs

  11. Epithelial-connective tissue boundary in the oral part of the human soft palate

    PubMed Central

    PAULSEN, FRIEDRICH; THALE, ANDREAS

    1998-01-01

    The papillary layer of the oral part of the human soft palate was studied in 31 subjects of different age by means of histological, immunohistochemical and scanning electron microscopical methods. For scanning electron microscopy a new maceration method was introduced. Results determine epithelial thickness, height and density of connective tissue papillae and their 3-dimensional architecture inside the lining epithelium as well as the collagenous arrangement of the openings of the glandular ducts. The individual connective tissue papillae of the soft palate are compared with the connective tissue boundary on the other side of the oral cavity. The connective tissue plateaux carrying a variable number of connective tissue papillae were found to be the basic structural units of the papillary body. The function of the epithelial-connective tissue interface and the extracellular matrix arrangement in the lamina propria are discussed in order to promote the comparability of normal with pathologically altered human soft palates. PMID:9877301

  12. Antinuclear antibody profile in Italian patients with connective tissue diseases.

    PubMed

    Neri, R; Tavoni, A; Cristofani, R; Levanti, C; Sodini, G; d'Ascanio, A; Vitali, C; Ferri, C; Bombardieri, S

    1992-08-01

    In the present work we report data on the specificity of antinuclear antibodies (ANA) in a large series of Italian patients suffering from a broad spectrum of connective tissue diseases (CTD), by using a series of homogeneous and validated techniques. The present study confirms, on the one hand, generally accepted concepts, i.e. that certain autoantibodies are strictly associated to certain disease states (such as anti-PCNA and anti-Sm in systemic lupus erythematosus, Jo 1 in polymyositis, and ACA and Scl-70 in scleroderma); the presence of 'marker' antibodies is, however, restricted to a relative minority of CTD patients. The application of a new methodological approach that considers the entire profile of ANA can greatly augment their diagnostic relevance and may provide useful indications for their interpretation, allowing us to establish for the first time the diagnostic usefulness not only of marker autoantibodies but also of certain associations between non-marker autoantibodies. Finally, the application of a more appropriate and powerful statistical tool (multiple correspondence analysis) has further emphasized the clear relationship existing between antibody specificities and certain disease states.

  13. The diagnosis and classification of mixed connective tissue disease.

    PubMed

    Tani, Chiara; Carli, Linda; Vagnani, Sabrina; Talarico, Rosaria; Baldini, Chiara; Mosca, Marta; Bombardieri, Stefano

    2014-01-01

    The term "mixed connective tissue disease" (MCTD) concerns a systemic autoimmune disease typified by overlapping features between two or more systemic autoimmune diseases and the presence of antibodies against the U1 small nuclear ribonucleoprotein autoantigen (U1snRNP). Since the first description of this condition in 1972, the understanding of clinical manifestations and long-term outcome of MCTD have significantly advanced. Polyarthritis, Raynaud's phenomenon, puffy fingers, lung involvement and esophageal dysmotility are the most frequently reported symptoms among the different cohorts during the course of the disease. Moreover, in recent years a growing interest has been focused on severe organ involvement such as pulmonary arterial hypertension and interstitial lung disease which can accrue during the long-term follow-up and can still significantly influence disease prognosis. Over the last years, significant advances have been made also in disease pathogenesis understanding and a central pathogenetic role of anti-U1RNP autoantibodies has clearly emerged. Although controversies on disease definition and classification still persist, MCTD identifies a group of patients in whom increased surveillance for specific manifestations and prognostic stratification became mandatory to improve patient's outcomes.

  14. Idiopathic interstitial pneumonias with connective tissue diseases features: A review.

    PubMed

    Cottin, Vincent

    2016-02-01

    A systematic approach is recommended to search for clinical and biological features of connective tissue disease (CTD) in any patient with interstitial lung disease (ILD). In the diagnostic approach to ILD, a diagnosis of CTD should be considered particularly in women and subjects younger than 50 years, and in those with an imaging and/or pathological pattern of non-specific interstitial pneumonia. However, the diagnosis of CTD may be difficult when ILD is the presenting or the dominant manifestation of CTD. A proportion of patients with ILD present symptoms that belong to the spectrum of CTD and/or biological autoimmune features, but do not fulfil diagnostic criteria for a given CTD. Some imaging and histopathological patterns may also suggest the presence of an underlying CTD. Although studies published to date used heterogeneous definitions and terminology for this condition, evidence is accumulating that even limited CTD features are relevant regarding symptoms, imaging features, pathological pattern and possibly evolution to overt CTD, whereas the impact on prognosis needs confirmation. Conversely, autoantibodies alone do not seem to impact the prognosis or management in patients with otherwise typical idiopathic pulmonary fibrosis and no extra-pulmonary manifestation. A collective international multidisciplinary effort has proposed a uniform definition and criteria for 'interstitial pneumonia with autoimmune features', a condition characterized by limited CTD features occurring in the setting of ILD, with the aim of fostering future clinical studies. Referral of ILD patients suspect to have CTD to a rheumatologist and possibly multidisciplinary discussion may contribute to a better management.

  15. Myoarchitecture and connective tissue in hearts with tricuspid atresia.

    PubMed

    Sanchez-Quintana, D; Climent, V; Ho, S Y; Anderson, R H

    1999-02-01

    To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils. Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts. There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts. The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

  16. Mechanical mutability in connective tissue of starfish body wall.

    PubMed

    Motokawa, Tatsuo

    2011-12-01

    Stiffness changes in response to mechanical and chemical stimulation were studied in muscle-free dermal samples from the body wall of the starfish Linckia laevigata. The ultrastructural study showed that the dermis was packed with collagen fibrils between which only a small number of cells were observed. Muscles were found only in the walls of coelomic extensions leading to papulae. Stress-strain tests were performed on isolated dermis containing no muscles. The tangent modulus was 27.5 MPa at 0.04% strain rate in the stress-strain tests. It was increased to 40.7 MPa by mechanical stimulation, which also increased the tensile strength and breaking-strain energy density. Dynamic mechanical tests showed that the increase in stiffness in response to mechanical stimulation was transient. Acetylcholine (10(-6)-10(-3) mol l(-1)) and artificial seawater with an elevated potassium concentration (KASW) stiffened the dermis. Mechanical stimulation caused a 12% mass loss. KASW also caused mass loss, which was inhibited by anesthesia. These results clearly showed that the stiffness changes in the starfish dermis were based on a non-muscular mechanism that was similar to that of other echinoderm connective tissues with mechanical mutability.

  17. Neutrophilic Skin Lesions in Autoimmune Connective Tissue Diseases

    PubMed Central

    Hau, Estelle; Vignon Pennamen, Marie-Dominique; Battistella, Maxime; Saussine, Anne; Bergis, Maud; Cavelier-Balloy, Benedicte; Janier, Michel; Cordoliani, Florence; Bagot, Martine; Rybojad, Michel; Bouaziz, Jean-David

    2014-01-01

    Abstract The pathophysiology of neutrophilic dermatoses (NDs) and autoimmune connective tissue diseases (AICTDs) is incompletely understood. The association between NDs and AICTDs is rare; recently, however, a distinctive subset of cutaneous lupus erythematosus (LE, the prototypical AICTD) with neutrophilic histological features has been proposed to be included in the spectrum of lupus. The aim of our study was to test the validity of such a classification. We conducted a monocentric retrospective study of 7028 AICTDs patients. Among these 7028 patients, a skin biopsy was performed in 932 cases with mainly neutrophilic infiltrate on histology in 9 cases. Combining our 9 cases and an exhaustive literature review, pyoderma gangrenosum, Sweet syndrome (n = 49), Sweet-like ND (n = 13), neutrophilic urticarial dermatosis (n = 6), palisaded neutrophilic granulomatous dermatitis (n = 12), and histiocytoid neutrophilic dermatitis (n = 2) were likely to occur both in AICTDs and autoinflammatory diseases. Other NDs were specifically encountered in AICTDs: bullous LE (n = 71), amicrobial pustulosis of the folds (n = 28), autoimmunity-related ND (n = 24), ND resembling erythema gyratum repens (n = 1), and neutrophilic annular erythema (n = 1). The improvement of AICTDS neutrophilic lesions under neutrophil targeting therapy suggests possible common physiopathological pathways between NDs and AICTDs. PMID:25546688

  18. Qualitative assessment of connective tissue graft with epithelial component. A microsurgical periodontal plastic surgical technique for soft tissue esthetics.

    PubMed

    Rossi, Roberto; Pilloni, Andrea; Morales, Regina Santos

    2009-01-01

    Connective tissue grafts have been used successfully in the treatment of gingival recession. In the mid 80s and late 90s, the periodontal literature presented various techniques such as free gingival grafts, pedicle flaps, subepithelial connective tissue grafts, acellular dermal matrix grafts, and guided tissue regeneration to cover denuded root surfaces. Currently, connective tissue grafting is a reliable treatment for esthetic root coverage. This paper presents a qualitative assessment of a surgical technique that uses a connective tissue graft, including a portion of epithelium in the shape of the defect. This procedure enhances the healing of the covered root surface, increases the thickness of the soft tissue and improves esthetics. The criteria used for evaluation were: color, volume, texture, and blending. This evaluation demonstrated encouraging results from an esthetic viewpoint.

  19. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.

    PubMed

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L

    2011-12-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.

  20. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models

    PubMed Central

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz

    2012-01-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094

  1. [Discontinuation of immunosuppressive and immunomodulatory drugs in connective tissue diseases].

    PubMed

    Targońska-Stępniak, Bożena

    2015-01-01

    Remission in connective tissue diseases became a realistic goal of therapy nowadays. However, there is lack of recommendations on the management after achieving a remission. Chronic exposure to immunosuppressive or immunomodulatory drugs may be associated with adverse events, that is why temporal withdrawal or discontinuation of treatment is advisable. In patients with rheumatoid arthritis (RA) who achieve sustained remission lasting for 6-12 months, an attempt to withdraw biological disease modifying antirheumatic drugs (bDMARDs) may be considered. In most patients with established RA discontinuation of bDMARDs is accompanied by a disease flare, butthe risk of loss of good therapeutic response is lower in case of slowly tapering by expanding the interval between doses or reducing the dose of bDMARDs. Patients with early RA are more likely to have successful discontinuation of therapy. Discontinuation of conventional DMARDs (cDMARDs) is usually associated with a disease flare, that is why tapering of doses is advised rather than stopping cDMARDs. DMARDs free remission occurs relatively rare, more often in patients with seronegative RA and with early onset of modifying treatment. In lupus nephritis (LN) patients with persistent, long-term remission, progressive tapering of doses of immunosuppressive drugs and glucocorticoids is recommended, with treatment discontinuation as a goal. An attempt of treatment withdrawal may be taken in patients remaining in LN complete remission as a consequence of maintenance therapy for 3 years.The process of slow tapering of doses preceding discontinuation of drugs, may last several months. The therapy with antimalarial drugs may be helpful to maintain remission after the treatment discontinuation. There is few data on treatment discontinuation in patients with systemic lupus erythematosus (SLE) without kidney involvement. Immunosuppressive drugs withdrawal is usually performed in patients with stable serological and clinically

  2. Mechanical properties of orbital fat and its encapsulating connective tissue.

    PubMed

    Chen, Kinon; Weiland, James D

    2011-06-01

    There is an increasing need to understand the mechanical properties of human orbital fat and its encapsulating connective tissue (OFCT), but such knowledge is not available in the current literature. The purpose of the present study is to examine the mechanical properties of the OFCT. From 5 pairs of 76- to 92-year-old Caucasian human eyes and 33 5- to 7-month-old porcine eyes, 5 human and 11 porcine OFCT samples were dissected at the posterior pole or adjacent to the pole in the vertical, horizontal, and radial directions. Sample dimensions were fixed or measured. Tensile tests were performed on the samples in body-temperature saline. The stress-strain relationship was first approximately linear and then became nonlinear. The linear, the neo-Hookean, and the Mooney-Rivlin constants are reported in Tables 1 and 2. No statistical difference was found among their properties in the different directions in either the human or the porcine samples. Statistical differences were found between the human and the porcine material constants in the horizontal and radial directions. Among our material models, only the Mooney-Rivlin model was able to capture the mechanical properties of the OFCT in large deformation properly. The Mooney-Rivlin model was especially adaptive to the human data. This is the first time the mechanical properties of the human and porcine OFCT have been examined in the literature. We believe our data will provide valuable information to others regarding designing implant biomaterials in orbital treatments and developing computer models to study orbital biomechanics.

  3. Distinct phenotypes in mixed connective tissue disease: subgroups and survival.

    PubMed

    Szodoray, P; Hajas, A; Kardos, L; Dezso, B; Soos, G; Zold, E; Vegh, J; Csipo, I; Nakken, B; Zeher, M; Szegedi, G; Bodolay, E

    2012-11-01

    The aim of the present study was to assess the autoantibody profile, dominant clinical symptoms and cluster characteristics of different mixed connective tissue disease (MCTD phenotypes. Two-hundred-and-one patients with MCTD were followed-up longitudinally. Five clinical parameters, Raynaud's phenomenon, pulmonary artery hypertension (PAH), myositis, interstitial lung disease (ILD), erosive arthritis and five auto-antibodies besides anti-U1RNP, antiendothelial cell antibodies (AECA), anti-CCP, anti-cardiolipin (anti-CL), anti-SSA/SSB and IgM rheumatoid factor (RF) were selected for cluster analysis. The mean age of patients was 52.9 ± 12.4 years and the mean follow-up of the disease was 12.5 ± 7.2 years. Patients were classified into three cluster groups. Cluster 1 with 77 patients, cluster 2 with 79 patients and cluster 3 with 45 patients. In cluster 1 the prevalence of PAH (55.8%; p < 0.001), Raynaud's phenomenon (92.2%; p < 0.001) and livedo reticularis (24.6%, p < 0.001) was significantly greater than in cluster 2 and 3. In cluster 2, the incidence of ILD (98.7%; p < 0.001), myositis (77.2%; p < 0.001), and esophageal dysmotility (89.8%; p < 0.001) was significantly greater than that in cluster 1 and 3. In cluster 3, anti-CCP antibodies were present in 31 of 45 patients (68.8%) with erosions. Anti-CCP antibodies were present in 37 of 42 patients (88.0%) with erosions. PAH, angina, venous thrombosis was observed in cluster 1 and pulmonary fibrosis in cluster 2, musculosceletal damage, gastrointestinal symptoms and osteoporotic fractures were most frequent in cluster 3. Cumulative survival assessment indicated cluster 1 patients having the worst prognosis. Cluster analysis is valuable to differentiate among various subsets of MCTD and useful prognostic factor regarding the disease course.

  4. Molecular regulation of CCN2 in the intervertebral disc: lessons learned from other connective tissues.

    PubMed

    Tran, Cassie M; Shapiro, Irving M; Risbud, Makarand V

    2013-08-08

    Connective tissue growth factor (CCN2/CTGF) plays an important role in extracellular matrix synthesis, especially in skeletal tissues such as cartilage, bone, and the intervertebral disc. As a result there is a growing interest in examining the function and regulation of this important molecule in the disc. This review discusses the regulation of CCN2 by TGF-β and hypoxia, two critical determinants that characterize the disc microenvironment, and discusses known functions of CCN2 in the disc. The almost ubiquitous regulation of CCN2 by TGF-β, including that seen in the disc, emphasizes the importance of the TGF-β-CCN2 relationship, especially in terms of extracellular matrix synthesis. Likewise, the unique cross-talk between CCN2 and HIF-1 in the disc highlights the tissue and niche specific mode of regulation. Taken together the current literature supports an anabolic role for CCN2 in the disc and its involvement in the maintenance of tissue homeostasis during both health and disease. Further studies of CCN2 in this tissue may reveal valuable targets for the biological therapy of disc degeneration.

  5. Pulmonary manifestations of Sjögren syndrome, systemic lupus erythematosus, and mixed connective tissue disease.

    PubMed

    Mira-Avendano, Isabel C; Abril, Andy

    2015-05-01

    Interstitial lung disease is a common and often life-threatening manifestation of different connective tissue disorders, often affecting its overall prognosis. Systemic lupus erythematosus, Sjögren syndrome, and mixed connective tissue disease, although all unique diseases, can have lung manifestations as an important part of these conditions. This article reviews the different pulmonary manifestations seen in these 3 systemic rheumatologic conditions.

  6. [Peculiarities of the action of hyaluronidase of different origin to the connective tissue].

    PubMed

    Habriyev, R U; Kamayev, N O; Danilova, T I; Kakhoyan, E G

    2016-01-01

    The lecture is devoted to consideration of mechanism of therapeutic action of the enzyme hyaluronidase in hyperplastic connective tissue. Drugs based on hyaluronidase increase bioavailability of other drugs used in adjuvant therapy; they significantly increase effectiveness of treatment, and also provide targeted synthesis of hyaluronic acid, ths regulating the regeneration process of connective tissue.

  7. [The effect of the biopolymer chondroitin sulfate on reparative regeneration of connective tissue].

    PubMed

    Belova, S V; Norkin, I A; Puchinyan, D M

    2015-01-01

    The research objective is a study of an intra-articular method of introduction of the preparation "mukosat" for stimulation of reparative regeneration of connective tissue of knee joints in rabbits with an experimental arthritis. It is ascertained that intra-articular maintenance of chondroitin sulfate (the preparation "mukosat") acts as a stimulus for reparative regeneration of connective tissue thus showing up positive changes in the status of connective tissue elements of joints: decrease in glycosaminoglycan content in blood serum and normalization of the composition of glycosaminoglycan carbohydrate component. It probably depends on stimulation of biosynthesis of autologous normal glycosaminoglycans in tissues of animal knee joints.

  8. Developmental competence of oocytes isolated from surplus medulla tissue in connection with cryopreservation of ovarian tissue for fertility preservation.

    PubMed

    Wilken-Jensen, Helle N; Kristensen, Stine G; Jeppesen, Janni V; Yding Andersen, Claus

    2014-01-01

    Evaluating the developmental competence of immature oocytes collected from surplus medulla tissue in connection with ovarian tissue cryopreservation for fertility preservation. Cohort comparative study. University laboratory in Denmark from 2011-2012. 69 girls and women (0-38 years of age) who each had one ovary cryopreserved for fertility preservation. Ovaries were obtained directly from the local hospital or from collaborating hospitals (two to five hours' transport on ice). Immature oocytes were aspirated from large antral follicles visible on the ovaries, and collected from the saline solution, containing surplus medulla tissue, following dissection of the ovarian cortical tissue for cryopreservation. The immature oocytes were cultured for 48 h in an Embryoscope™ Time-lapse System or in culture dishes overlaid with liquid paraffin using commercial and in-house supplemented culture media. Maturation rate for immature oocytes reaching metaphase II. With a maturation rate of 3.1%, only 21 of 682 immature oocytes reached metaphase II. Immature oocytes from ovaries that had been transported on ice for two to five hours performed significantly poorer than those recovered immediately after surgery. Addition of epidermal growth factor and follicle fluid from human small antral follicles to the culture medium did not augment the maturation rate. Immature oocytes cultured in the Embryoscope performed significantly better than those in conventional culture dishes. In vitro maturation of immature oocytes should only be attempted clinically from visible antral follicles and where the ovary is not subjected to a cooling period prior to recovery of immature oocytes. © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.

  9. Leucine Supplementation Accelerates Connective Tissue Repair of Injured Tibialis Anterior Muscle

    PubMed Central

    Pereira, Marcelo G.; Silva, Meiricris T.; Carlassara, Eduardo O. C.; Gonçalves, Dawit A.; Abrahamsohn, Paulo A.; Kettelhut, Isis C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA). Young male Wistar rats were supplemented with leucine (1.35 g/kg per day); then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA) of regenerating myofibers (p > 0.05) from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I) and Smad2/3 in regenerating muscles (p < 0.05). Leucine also reduced neonatal myosin heavy chain (MyHC-n) (p < 0.05), increased adult MyHC-II expression (p < 0.05) and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05). Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases. PMID:25268835

  10. Leucine supplementation accelerates connective tissue repair of injured tibialis anterior muscle.

    PubMed

    Pereira, Marcelo G; Silva, Meiricris T; Carlassara, Eduardo O C; Gonçalves, Dawit A; Abrahamsohn, Paulo A; Kettelhut, Isis C; Moriscot, Anselmo S; Aoki, Marcelo S; Miyabara, Elen H

    2014-09-29

    This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA). Young male Wistar rats were supplemented with leucine (1.35 g/kg per day); then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA) of regenerating myofibers (p > 0.05) from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I) and Smad2/3 in regenerating muscles (p < 0.05). Leucine also reduced neonatal myosin heavy chain (MyHC-n) (p < 0.05), increased adult MyHC-II expression (p < 0.05) and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05). Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.

  11. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  12. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  13. Connective tissue and bacterial deposits on rubber dam sheet and ePTFE barrier membranes in guided periodontal tissue regeneration.

    PubMed

    Apinhasmit, Wandee; Swasdison, Somporn; Tamsailom, Suphot; Suppipat, Nophadol

    2002-01-01

    The aim of this study was to compare the connective tissue and bacterial deposits on rubber dam sheets and expanded polytetrafluoroethylene membranes used as barrier membranes in guided tissue regeneration for periodontal treatment. Twenty patients having intrabony defects and/or furcation defects were surgically treated by guided tissue regeneration employing either rubber dam sheets (10 patients) or expanded polytetrafluoroethylene membranes (10 patients) as barrier membranes. Four to six weeks after the first operation, membranes were retrieved from the lesion sites and processed for scanning electron microscopy. The lesion-facing surfaces of membranes were examined for the presence of connective tissue and bacterial deposits. The differences between the numbers of fields and the distributions of connective tissue and bacteria on both types of membranes were analysed by the Chi-square test at the level of 0.05 significance. The results showed a lot of fibroblasts with their secreted extracellular matrices, known as components of the connective tissue on rubber dam sheets and expanded polytetrafluoroethylene membranes. There was no significant difference in the total number of connective tissue on both types of membranes (P = 0.456). Many bacterial forms including cocci, bacilli, filaments and spirochetes with the interbacterial matrices were identified. The total number of bacteria on rubber dam sheets was statistically less than that on expanded polytetrafluoroethylene membranes (P < 0.001). The comparable number of connective tissue on both types of membranes suggests that the healing process under both types of membranes was also comparable. Therefore, the rubber dam sheet might be used as a barrier membrane in guided tissue regeneration.

  14. A theoretical model for tissue growth in confined geometries

    NASA Astrophysics Data System (ADS)

    Dunlop, J. W. C.; Fischer, F. D.; Gamsjäger, E.; Fratzl, P.

    2010-08-01

    It is known that cells proliferate and produce extracellular matrix in response to biochemical and mechanical stimuli. Constitutive models considering these phenomena are needed to quantitatively describe the process of tissue growth in the context of tissue engineering and regenerative medicine. In this paper we re-examine the theoretical framework provided by Ambrosi and Guana (2007) and Ambrosi and Guillou (2007). We show how a volumetric growth rate term can be obtained (both in a large and small strain setting), which is consistent with the laws of thermodynamics and then apply the model to a simple geometry of tissue growth within a circular pore. The model, despite its simplicity, is comparable with experimental measurements of tissue growth and highlights the contribution of the mechanical stresses produced during tissue growth on the growth rate itself.

  15. Phosphaturic mesenchymal tumour mixed connective tissue variant: report of three cases with unusual histological findings.

    PubMed

    Shustik, David A; Ng, David Ce; Sittampalam, Kesavan

    2015-01-01

    Phosphaturic mesenchymal tumour mixed connective tissue variant (PMTMCT) is a rare tumour occurring in bone and soft tissue that usually behaves in a benign manner. Elaboration of biologically active substances by this tumour gives rise to a paraneoplastic syndrome known as oncogenic osteomalacia, manifesting clinically as bone pain, generalized weakness and pathological fractures. Recognition of PMTMCT and its associated syndrome is important, as resection of the tumour in most instances results in prompt resolution of symptoms. Previously reported cases of this tumour have emphasized the consistent presence of certain histological features that are considered prerequisite for making the diagnosis of PMTMCT. We describe three cases of PMTMCT, of which two first presented with progressive symptoms of osteomalacia and one remained clinically silent aside from the symptom of a palpable lump. Our cases highlight the wide-ranging histological patterns displayed by these tumours, and draw attention to certain microscopic findings that until now have been given little if any mention. Tentacular growth pattern and satellite nodules appear to be common findings in PMTMCTs, and can make complete surgical excision of these tumours challenging. The ability of this otherwise histologically benign tumour to permeate vascular spaces has to our knowledge never been described previously. One tumour lacked the characteristic calcifying matrix of PMTMCT, suggesting that in some tumours this defining feature may be focal if not entirely absent. PMTMCT shares features with and can resemble a variety of bone and soft tissue neoplasms, requiring the surgical pathologist to be familiar with this entity.

  16. Removal of an amalgam tattoo using a subepithelial connective tissue graft and laser deepithelialization.

    PubMed

    Campbell, Casey M; Deas, David E

    2009-05-01

    A 56-year-old female presented for periodontal treatment with a large amalgam tattoo located in alveolar mucosa on the facial aspect of her maxillary central incisors. The lesion had been present for 42 years since having endodontic surgery at teeth #8 and #9 after a traumatic childhood incident. A two-stage surgical approach was used to eliminate the lesion, beginning with a subepithelial connective tissue graft to increase tissue thickness subjacent to the amalgam tattoo. After 6 weeks of healing, the overlying pigmented tissue was removed using laser surgery to expose the underlying grafted connective tissue. After 2 months of healing following laser surgery, the amalgam pigmentation was completely removed, with good color match and an increased width of keratinized tissue at the surgical site. A relatively large amalgam tattoo in the esthetic zone can be adequately removed by a two-stage procedure using grafted palatal connective tissue and laser deepithelialization.

  17. Stretching of the back improves gait, mechanical sensitivity and connective tissue inflammation in a rodent model.

    PubMed

    Corey, Sarah M; Vizzard, Margaret A; Bouffard, Nicole A; Badger, Gary J; Langevin, Helene M

    2012-01-01

    The role played by nonspecialized connective tissues in chronic non-specific low back pain is not well understood. In a recent ultrasound study, human subjects with chronic low back pain had altered connective tissue structure compared to human subjects without low back pain, suggesting the presence of inflammation and/or fibrosis in the low back pain subjects. Mechanical input in the form of static tissue stretch has been shown in vitro and in vivo to have anti-inflammatory and anti-fibrotic effects. To better understand the pathophysiology of lumbar nonspecialized connective tissue as well as potential mechanisms underlying therapeutic effects of tissue stretch, we developed a carrageenan-induced inflammation model in the low back of a rodent. Induction of inflammation in the lumbar connective tissues resulted in altered gait, increased mechanical sensitivity of the tissues of the low back, and local macrophage infiltration. Mechanical input was then applied to this model as in vivo tissue stretch for 10 minutes twice a day for 12 days. In vivo tissue stretch mitigated the inflammation-induced changes leading to restored stride length and intrastep distance, decreased mechanical sensitivity of the back and reduced macrophage expression in the nonspecialized connective tissues of the low back. This study highlights the need for further investigation into the contribution of connective tissue to low back pain and the need for a better understanding of how interventions involving mechanical stretch could provide maximal therapeutic benefit. This tissue stretch research is relevant to body-based treatments such as yoga or massage, and to some stretch techniques used with physical therapy.

  18. Sonographic measurements of subsynovial connective tissue thickness in patients with carpal tunnel syndrome.

    PubMed

    van Doesburg, Margriet H M; Mink van der Molen, Aebele; Henderson, Jacqueline; Cha, Stephen S; An, Kai Nan; Amadio, Peter C

    2012-01-01

    A major pathologic finding in patients with idiopathic carpal tunnel syndrome is noninflammatory fibrosis and thickening of the subsynovial connective tissue. The objective of this study was to determine the ability of sonography to depict this thickening by comparing subsynovial connective tissue thickness in patients with carpal tunnel syndrome and healthy control participants. Longitudinal sonograms of the middle finger superficial flexor tendon and subsynovial connective tissue were obtained at 3 levels: at the wrist crease (proximal tunnel), at the hook of the hamate (mid tunnel), and at the distal edge of the transverse carpal ligament (distal tunnel). The thickness of the subsynovial connective tissue perpendicular to the direction of the tendon and the diameter of the flexor digitorum superficialis tendon at the same level were measured. Then, a thickness ratio was created. At all 3 levels, the subsynovial connective tissue was thicker in patients than in controls (P < .0001) with a thickness ranging from 0.60 to 0.63 mm in patients and 0.46 to 0.50 mm in controls. The thickness ratio was significantly greater in patients at the hamate and distal levels (P = .018 and .013, respectively). With this study, we have shown that it is possible to measure subsynovial connective tissue thickness with sonography, and the tissue is thicker in patients with carpal tunnel syndrome than in healthy controls.

  19. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    PubMed

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  20. [Impaired endometrial receptivity in primary infertility in women with undifferentiated connective tissue dysplasia and hereditary thrombophilia].

    PubMed

    Zanozin, A S; Demura, T A; Kolosovsky, D Yu; Faizullina, N M; Kogan, E A

    2016-01-01

    The concurrence of undifferentiated connective tissue dysplasia (uCTD) and hereditary thrombophilia (HT) often accompanies female infertility, in the pathogenesis of which impaired endometrial receptivity plays an important role.

  1. Joint hypermobility and skin elasticity: the hereditary disorders of connective tissue.

    PubMed

    Hakim, Alan J; Sahota, Anshoo

    2006-01-01

    The hereditary disorders of connective tissues (HDCTs) encompass a spectrum of conditions linked pathophysiologically by abnormalities of collagen, fibrillin, and matrix proteins. The clinical picture ranges from morbidity because of musculoskeletal, skin, ocular and visceral pathologies to mortality from acute vascular collapse. For many of the conditions, there is a considerable overlap in clinical features, although severity varies; appreciating the subtle differences in presentation is vital to the clinician in determining the diagnosis. Though conditions associated with severe vascular pathology are rare, other hereditary disorders of connective tissues such as the joint hypermobility syndrome and Stickler's disease are common and probably underrecognized. Abnormal skin elasticity and scaring, joint hypermobility, and chronic arthralgia are important clues that should trigger the clinician to search for underlying hereditary disorders of connective tissues. In this article, we discuss the spectrum of clinical findings, management, and genetic screening of the more common hereditary disorders of connective tissues, highlighting their diagnostic criteria and their differences.

  2. Recurrent case of ibuprofen-induced aseptic meningitis in mixed connective tissue disease.

    PubMed

    Karmacharya, Paras; Mainali, Naba Raj; Aryal, Madan Raj; Lloyd, Benjamin

    2013-04-30

    Although relatively uncommon, the incidence of non-steroidal anti-inflammatory drug-induced aseptic meningitis appears to be increasing among patients with connective tissue disease and also among the healthy population. Ibuprofen is the most common culprit identified. We report a case of a 28-year-old woman with mixed connective tissue disease and recent intake of ibuprofen, presenting with a recurrent episode of ibuprofen-induced aseptic meningitis.

  3. Life-threatening acute pneumonitis in mixed connective tissue disease: a case report and literature review.

    PubMed

    Rath, Eva; Zandieh, Shahin; Löckinger, Alexander; Hirschl, Mirko; Klaushofer, Klaus; Zwerina, Jochen

    2015-10-01

    Mixed connective tissue disease (MCTD) is a rare connective tissue disease frequently involving the lungs. The main characteristic is a systemic sclerosis-like picture of slowly progressing interstitial lung disease consistent with lung fibrosis, while pulmonary arterial hypertension is rare. Herein, we present a case of a newly diagnosed MCTD patient developing life-threatening acute pneumonitis similar to lupus pneumonitis. Previous literature on this exceptionally rare complication of MCTD is reviewed and differential diagnosis and management discussed.

  4. Elevated plasma hydroxyproline. A possible risk factor associated with connective tissue injuries during overuse.

    PubMed

    Murguia, M J; Vailas, A; Mandelbaum, B; Norton, J; Hodgdon, J; Goforth, H; Riedy, M

    1988-01-01

    Basal plasma hydroxyproline was measured in 104 male Navy Seal candidates 1 week into their intense physical training program, which lasted 7 weeks, and correlated to the incidence of connective tissue injuries incurred later in the training program. Eleven subjects (10.6%) were diagnosed as having connective tissue injuries. Those subjects with connective tissue injuries had a significantly higher (P less than 0.05) mean plasma hydroxyproline value (4.02 micrograms/ml) than subjects without injury (3.10 micrograms/ml). The majority of graduates (75%) had plasma hydroxyproline values less than 3.3 micrograms/ml. These graduates represented the strongest and most enduring injury-free subjects. Of the subject pool who incurred connective tissue injuries, only 27% had plasma hydroxyproline values less than 3.3 micrograms/ml. The majority of the injured subjects (73%) had plasma hydroxyproline values greater than or equal to 3.3 micrograms/ml. In conclusion, there is a relationship between initial training basal plasma hydroxyproline levels and connective tissue injuries later incurred in an intense physical training program. These data suggest that elevated plasma hydroxyproline levels may represent a risk factor associated with connective tissue injuries.

  5. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study.

    PubMed

    Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I

    2013-04-01

    We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.

  6. TGF β1 and PDGF AA override Collagen type I inhibition of proliferation in human liver connective tissue cells

    PubMed Central

    Geremias, Alvaro T; Carvalho, Marcelo A; Borojevic, Radovan; Monteiro, Alvaro NA

    2004-01-01

    Background A marked expansion of the connective tissue population and an abnormal deposition of extracellular matrix proteins are hallmarks of chronic and acute injuries to liver tissue. Liver connective tissue cells, also called stellate cells, derived from fibrotic liver have been thoroughly characterized and correspond phenotypically to myofibroblasts. They are thought to derive from fat-storing Ito cells in the perisinusoidal space and acquire a contractile phenotype when activated by tissue injury. In the last few years it has become evident that several peptide growth factors such as PDGF AA and TGF-β are involved in the development of fibrosis by modulating myofibroblast proliferation and collagen secretion. The fact that during the development of chronic fibrosis there is concomitant deposition of collagen, a known inhibitory factor, and sustained cell proliferation, raises the possibility that stellate cells from chronic liver fibrosis patients fail to respond to normal physiologic controls. Methods In this study we address whether cells from fibrotic liver patients respond to normal controls of proliferation. We compared cell proliferation of primary human liver connective tissue cells (LCTC) from patients with liver fibrosis and skin fibroblasts (SF) in the presence of collagens type I and IV; TGF-β, PDGF AA and combinations of collagen type I and TGF-β or PDGF AA. Results Our results indicate that despite displaying normal contact and collagen-induced inhibition of proliferation LCTC respond more vigorously to lower concentrations of PDGF AA. In addition, we show that collagen type I synergizes with growth factors to promote mitogenesis of LCTC but not SF. Conclusions The synergistic interaction of growth factors and extracellular matrix proteins may underlie the development of chronic liver fibrosis. PMID:15579200

  7. Identification of tumor cells infiltrating into connective tissue in esophageal cancer by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.

  8. [Morphometric evaluation of connective tissue reaction to cartilage implants].

    PubMed

    Bumber, Z; Pezerovic Panian, R; Vukoja, M; Markov, D

    1993-03-01

    In this paper, besides already investigated cartilage implants, we studied morphologically and histometrically possibilities to use human thyroid cartilage in reconstructive surgery, especially in nasal septum and pyramid reconstructions. Preserved human thyroid and rib cartilage as well as rabbit preserved rib cartilage were implanted under the back skin of 12 New Zealand rabbits. Animals were divided into two groups with 6 specimens in each group followed 6 and 12 weeks after implantation. Beside morphological investigation we measured histometrically the thickness of connective capsule around implants. Results obtained by our morphological and histometric studies indicate that preserved human thyroid cartilage could be used in reconstructive surgery with the same success as other cartilage implants already used.

  9. Association between previously unknown connective tissue disease and subclinical hypothyroidism diagnosed during first trimester of pregnancy.

    PubMed

    Beneventi, Fausta; Locatelli, Elena; Alpini, Claudia; Lovati, Elisabetta; Ramoni, Véronique; Simonetta, Margherita; Cavagnoli, Chiara; Spinillo, Arsenio

    2015-11-01

    To investigate the presence of autoimmune rheumatic disorders among women with autoimmune thyroid disorders diagnosed during the first trimester of pregnancy and subsequent pregnancy outcomes. Case-control study. Tertiary obstetric and gynecologic center. Pregnant women in the first trimester of pregnancy. Clinical, laboratory, ultrasonographic evaluations. Thyroid-stimulating hormone (TSH) level; antibodies against thyroperoxidase, thyroid globulin and TSH receptor detection; screening for rheumatic symptoms and antinuclear antibodies (ANA); uterine artery pulsatility index evaluation; pregnancy complication onset. Out of 3,450 women enrolled, 106 (3%) were diagnosed with autoimmune thyroid disorders. ANA were present in 18 (16.9%) of 106 cases and 26 (12.6%) of 206 controls. Of the cases, 28 (26.4%) of 106 reported rheumatic symptoms, 5 of these were diagnosed with Sjögren syndrome or with undefined connective tissue disease. Autoimmune thyroid diseases are statistically significantly associated with a higher risk of preeclampsia, fetal growth restriction, and overall pregnancy complications compared with controls, with a higher uterine artery pulsatility index, suggesting a defective placentation in thyroid disorders. The effect of ANA-positivity on moderate/severe adverse pregnancy outcomes was statistically significant among the patients with thyroid disorders (9 of 18 as compared to 8 of 88, odds ratio 9.65; 95% confidence interval, 2.613-7.81). Connective tissue diseases are frequently associated with autoimmune thyroid disorders diagnosed during the first trimester of pregnancy. Thyroid autoimmunity and ANA positivity independently increased the risk of adverse pregnancy outcomes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya

    2016-09-01

    Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.

  11. Intrinsic connective tissue abnormalities in the heart muscle of cardiomyopathic Syrian hamsters.

    PubMed Central

    Cohen-Gould, L.; Robinson, T. F.; Factor, S. M.

    1987-01-01

    Significant connective tissue abnormalities occurring in hearts of cardiomyopathic Syrian hamsters are reported. These abnormalities include a pronounced loss of the intrinsic connective tissue skeletal framework around foci of myocytolytic necrosis within the non-necrotic myocardium. These changes were demonstrated by a silver impregnation technique, and they were confirmed by scanning electron microscopy. Quantitation demonstrated more than a twofold increase in the area of ventricular wall affected by pathologic changes, when the connective tissue alterations were included with the myocardial necrosis. In addition, the authors also observed focal, thick "tethering" connective tissue fibers at the termini of necrotic lesions, seemingly connecting them to normal muscle. These connective tissue abnormalities may contribute to the progressive loss of ventricular function that occurs in this model of cardiomyopathy. They may permit greater wall thinning than would occur with focal necrosis alone, and they may increase focal mural stiffness in the tethered regions. Further investigation of the pathogenesis of these changes and their mechanical significance is indicated. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:3578490

  12. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  13. Brown Adipose Tissue Growth and Development

    PubMed Central

    Symonds, Michael E.

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle. PMID:24278771

  14. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue.

    PubMed

    Azaripour, Adriano; Lagerweij, Tonny; Scharfbillig, Christina; Jadczak, Anna Elisabeth; Willershausen, Brita; Van Noorden, Cornelis J F

    2016-08-01

    For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Connective tissue responses to some heavy metals. II. Lead: histology and ultrastructure.

    PubMed Central

    Ellender, G.; Ham, K. N.

    1987-01-01

    Lead loaded ion exchange resin beads implanted into the loose connective tissue of the rat pinna induced local lesions which differed widely from those of the control (sodium loaded) beads (Ellender & Ham 1987). These lesions were characterized by changes in the granulation tissue and the approximating connective tissue. Granulation tissue contained mononuclear phagocytes in various guises, and some cells with intranuclear inclusion bodies. The matrix of the granulation tissue contained collagen fibrils having a wide range of diameters suggestive of altered collagen biosynthesis. Foci of collagen mineralization occurred in zones of combined trauma and lead impregnation. Once mineralized they became enveloped by giant cells and epithelioid cells. Lead in damaged tissues is thought to modify the protective mechanism of calcification inhibition and the biosynthesis of the matrix. Images Fig. 6 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:3040063

  16. Adipose tissue and sustainable development: a connection that needs protection

    PubMed Central

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health, and well-being or global ecological protection. PMID:26074821

  17. Adipose tissue and sustainable development: a connection that needs protection.

    PubMed

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health, and well-being or global ecological protection.

  18. Water transport and IIF parameters for a connective tissue equivalent.

    PubMed

    Balasubramanian, Saravana Kumar; Bischof, John C; Hubel, Allison

    2006-02-01

    Understanding the biophysical processes that govern freezing injury of a tissue equivalent (TE) is an important step in characterizing and improving the cryopreservation of these systems. TEs were formed by entrapping human dermal fibroblasts (HDFs) in collagen or in fibrin gels. Freezing studies were conducted using a Linkam cryostage fitted to an optical microscope allowing observation of the TEs cooled under controlled rates between 5 and 130 degrees C/min. Typically, freezing of cellular systems results in two biophysical processes that are both dependent on the cooling rate: dehydration and/or intracellular ice formation (IIF). Both these processes can potentially be destructive to cells. In this study, the biophysics of freezing cells in collagen and fibrin TEs have been quantified and compared to freezing cells in suspension. Experimental data were fitted in numerical models to extract parameters that governed water permeability, E(Lp) and L(pg), and intracellular ice nucleation, omega(o) and kappa(o). Results indicate that major differences exist between freezing HDFs in suspension and in a tissue equivalent. During freezing, 55% of the HDFs in suspension formed IIF as compared to 100% of HDFs forming IIF in collagen and fibrin TE at a cooling rate of 130 degrees C/min. Also, both the water permeability and the IIF parameters were determined to be higher for HDFs in TEs as compared to cell suspensions. Between the TEs, HDFs in fibrin TE exhibited higher values for the biophysical parameters as compared to HDFs in collagen TE. The observed biophysics seems to indicate that cell-cell and cell-matrix interactions play a major role in ice propagation in TEs.

  19. Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects

    PubMed Central

    Esfahanian, Vahid; Golestaneh, Hedayatollah; Moghaddas, Omid; Ghafari, Mohammad Reza

    2014-01-01

    Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effectiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 patients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group) or non-periosteal connective tissue graft + ABBM (control group). Probing pocket depth, clinical attachment level, free gingival margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student’s t-test and paired t-tests (α=0.05). Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduction: 3.1±0.6 (P<0.0001); 2.5±1.0 mm (P<0.0001), CAL gain: 2.3±0.9 (P<0.0001); 2.2±1.0 mm (P<0.0001), bone fill: 2.2±0.7 mm (P<0.0001); 2.2±0.7 mm (P<0.0001), respectively. No significant differences in the position of free gingival margin were observed during 6 months compared to baseline in both groups. Conclusion. Combinations of periosteal connective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects. PMID:25587379

  20. [Nailfold capillaroscopy in the evaluation of Raynaud's phenomenon and undifferentiated connective tissue disease].

    PubMed

    Cortes, Sara; Clemente-Coelho, Paulo

    2008-01-01

    Microvascular abnormalities involved in the pathogenic mechanism of several connective tissue disorders can be detected by nailfold capillaroscopy. Evaluation of the interest of nailfold capillaroscopy results in patients with Raynaud s phenomenon or undifferentiated connective tissue disease and their correlation with diagnostic and therapeutical evolution. Selection of capillaroscopic and laboratory results of patients with the diagnosis of Raynaud s phenomenon (without defined connective tissue disease) or undifferentiated connective tissue disease. Evaluation of the present diagnosis and treatment comparing with the ones existed at the time of capillaroscopy performance. 80 patients were enrolled with an age of 51.4+/-14.3 years (mean+/-SD) 78 females (97.5%) with Raynaud s phenomenon and undifferentiated connective tissue disease 27 patients (33.8%); Raynaud s Phenomenon 46 patients (57.5%); undifferentiated connective tissue disease 7 patients (8.7%). The capillaroscopic results were normal 30 patients (37.5%); minor changes tortuosity enlargement 16 patients (20.0%) major changes 34 patients (42.5%) hemorrhages 25 patients (31.3%) megacapillaries 26 patients (32.5%) avascular areas 3 patients (3.8%). The introduction of new treatments after the capillaroscopy occurred in 32 patients (40.0%) and a new diagnosis was done in 39 patients (48.8%). Major changes in capillaroscopy correlated with the change of diagnosis and the introduction of a new treatment (p<0.0001). Nailfold capillaroscopy performed in patients with isolated Raynaud s phenomenon or undifferentiated connective tissue disease has a role in the prognostic evaluation related to the possibility of an evolution of the diagnosis or to the need of the introduction of new treatments.

  1. Perimuscular connective tissue contains more and larger lymphatic vessels than the shallower layers in human gallbladders.

    PubMed

    Nagahashi, Masayuki; Shirai, Yoshio; Wakai, Toshifumi; Sakata, Jun; Ajioka, Yoichi; Hatakeyama, Katsuyoshi

    2007-09-07

    To clarify whether perimuscular connective tissue contains more lymphatic vessels than the shallower layers in human gallbladders. Lymphatic vessels were stained immunohistochemically with monoclonal antibody D2-40, which is a specific marker of lymphatic endothelium, in representative sections of 12 normal human gallbladders obtained at the time of resection for colorectal carcinoma liver metastases. In individual gallbladder specimens, nine high-power (x 200) fields with the highest lymphatic vessel density (LVD), termed "hot spots", were identified for each layer (mucosa, muscle layer, and perimuscular connective tissue). In individual hot spots, the LVD and relative lymphatic vessel area (LVA) were measured microscopically using a computer-aided image analysis system. The mean LVD and LVA values for the nine hot spots in each layer were used for statistical analyses. In the mucosa, muscle layer, and perimuscular connective tissue, the LVD was 16.1 +/- 9.2, 35.4 +/- 15.7, and 65.5 +/- 12.2, respectively, and the LVA was 0.4 +/- 0.4, 2.1 +/- 1.1, and 9.4 +/- 2.6, respectively. Thus, both the LVD and LVA differed significantly (P < 0.001 and P < 0.001, respectively; Kruskal-Wallis test) among the individual layers of the wall of the gallbladder, with the highest LVD and LVA values in the perimuscular connective tissue. Most (98 of 108) of the hot spots within the perimuscular connective tissue were located within 500 mum of the lower border of the muscle layer. The perimuscular connective tissue contains more and larger lymphatic vessels than the shallower layers in the human gallbladder. This observation partly explains why the incidence of lymph node metastasis is high in T2 (tumor invading the perimuscular connective tissue) or more advanced gallbladder carcinoma.

  2. Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects.

    PubMed

    Esfahanian, Vahid; Golestaneh, Hedayatollah; Moghaddas, Omid; Ghafari, Mohammad Reza

    2014-01-01

    Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effectiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 patients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group) or non-periosteal connective tissue graft + ABBM (control group). Probing pocket depth, clinical attachment level, free gingival margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student's t-test and paired t-tests (α=0.05). Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduction: 3.1±0.6 (P<0.0001); 2.5±1.0 mm (P<0.0001), CAL gain: 2.3±0.9 (P<0.0001); 2.2±1.0 mm (P<0.0001), bone fill: 2.2±0.7 mm (P<0.0001); 2.2±0.7 mm (P<0.0001), respectively. No significant differences in the position of free gingival margin were observed during 6 months compared to baseline in both groups. Conclusion. Combinations of periosteal connective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects.

  3. Cartilage, bone, and intermandibular connective tissue in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    PubMed

    Kemp, Anne

    2013-10-01

    The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue that links the bones of the upper jaw, contains fibroblasts and numerous bundles of collagen fibrils, extending from the trabeculae of the bones supporting the tooth plates. It differs significantly in structure and in staining reactions from the cartilage and the bone found in this species. In common with the cladistian Polypterus and with actinopterygians and some amphibians, lungfish have no intermandibular cartilage. The connective tissue linking the mandibular bones has no phylogenetic significance for systematic grouping of lungfish, as it is present in a range of different groups among lower vertebrates. Copyright © 2013 Wiley Periodicals, Inc.

  4. Growth factor delivery to re-engineer periodontal tissues.

    PubMed

    Anusaksathien, Orasa; Giannobile, William V

    2002-06-01

    Repair of tooth-supporting structures destroyed by the chronic inflammatory disease periodontitis is a major goal of oral therapy. The field of tissue engineering combines materials science and biology to repair tissues and organs. Periodontal tissue engineering has been achieved with limited success by the utilization of guiding tissue (cell occlusive) membranes and bone grafting techniques. Over the past decade investigators have begun to utilize signaling molecules such as growth factors to restore lost tooth support due to periodontitis, the most common bone disease affecting humans. This review will provide information on the status of growth factor therapies being applied in periodontology to treat advanced alveolar bone loss.

  5. Effect of connective tissue grafting on peri-implant tissue in single immediate implant sites: a RCT.

    PubMed

    Zuiderveld, Elise G; Meijer, Henny J A; den Hartog, Laurens; Vissink, Arjan; Raghoebar, Gerry M

    2017-09-23

    To assess the effect of connective tissue grafting on the mid-buccal mucosal level (MBML) of immediately placed and provisionalized single implants in the maxillofacial esthetic zone. Sixty patients with a failing tooth were provided with an immediately placed and provisionalized implant. During implant placement, patients randomly received either a connective tissue graft from the maxillary tuberosity (n=30, test group) or no graft (n=30, control group). Follow-up visits were at one (T1 ) and twelve months (T12 ) after final crown placement. The primary outcome measure was any change in MBML compared to the pre-operative situation. In addition, gingival biotype, esthetics (using the Pink Esthetic Score-White Esthetic Score), marginal bone level, soft tissue peri-implant parameters and patient satisfaction were assessed. The mean MBML change at T12 was -0.5±1.1mm in the control group and 0.1±0.8mm in the test group (p=0.03). No significant differences regarding other outcome variables were observed, neither was gingival biotype associated with a gain or loss in MBML. This one-year study shows that connective tissue grafting in single, immediately placed and provisionalized implants leads to less recession of the peri-implant soft tissue at the mid-buccal aspect, irrespective of the gingival biotype (www.trialregister.nl: TC3815). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Cells of the connective tissue differentiate and migrate into pollen sacs

    NASA Astrophysics Data System (ADS)

    Iqbal, M. C. M.; Wijesekara, Kolitha B.

    2002-01-01

    In angiosperms, archesporial cells in the anther primordium undergo meiosis to form haploid pollen, the sole occupants of anther sacs. Anther sacs are held together by a matrix of parenchyma cells, the connective tissue. Cells of the connective tissue are not known to differentiate. We report the differentiation of parenchyma cells in the connective tissue of two Gordonia species into pollen-like structures (described as pseudopollen), which migrate into the anther sacs before dehiscence. Pollen and pseudopollen were distinguishable by morphology and staining. Pollen were tricolpate to spherical while pseudopollen were less rigid and transparent with a ribbed surface. Both types were different in size, shape, staining and surface architecture. The ratio of the number of pseudopollen to pollen was 1:3. During ontogeny in the connective tissue, neither cell division nor tetrad formation was observed and hence pseudopollen were presumed to be diploid. Only normal pollen germinated on a germination medium. Fixed preparations in time seemed to indicate that pseudopollen migrate from the connective tissue into the anther sac.

  7. Should Endovascular Therapy Be Considered for Patients With Connective Tissue Disorder?

    PubMed

    Gagné-Loranger, Maude; Voisine, Pierre; Dagenais, François

    2016-01-01

    Because of early diagnosis, strict imaging follow-up, and advances in medical and surgical management, life expectancy of Marfan patients has dramatically improved since the 1970s. Although disease of the root and ascending aorta are more frequent in patients with connective tissue disorders, a subset of patients present with diffuse disease that might involve any portion of the thoracoabdominal aorta. Thoracic endovascular aortic repair (TEVAR) has gained widespread acceptance for the treatment of different pathologies of the descending aorta. In contrast, TEVAR in patients with connective tissue disorders is associated with a high risk of early and mid-term complications and reinterventions. Currently, a consensus of experts recommend that an open approach should be reserved for use in acceptable risk candidates with connective tissue disorders. TEVAR should be considered solely in patients in a complex repeat surgical setting or in patients judged to have prohibitive open surgical risk. Finally, as a bridge to a definite open repair, TEVAR might be life-saving in patients with connective tissue disorders who present with exsanguination or severe malperfusion. Future developments in stent-graft technology might decrease stent-graft-related complications in patients with connective tissue disorders, although securing a device with radial force in a fragile aorta in the long-term will be challenging.

  8. Morphometric Analysis of Connective Tissue Sheaths of Sural Nerve in Diabetic and Nondiabetic Patients

    PubMed Central

    Kundalić, Braca; Ugrenović, Slađana; Jovanović, Ivan; Stefanović, Natalija; Petrović, Vladimir; Kundalić, Jasen; Stojanović, Vesna; Živković, Vladimir; Antić, Vladimir

    2014-01-01

    One of the most common complications of diabetes mellitus is diabetic neuropathy. It may be provoked by metabolic and/or vascular factors, and depending on duration of disease, various layers of nerve may be affected. Our aim was to investigate influence of diabetes on the epineurial, perineurial, and endoneurial connective tissue sheaths. The study included 15 samples of sural nerve divided into three groups: diabetic group, peripheral vascular disease group, and control group. After morphological analysis, morphometric parameters were determined for each case using ImageJ software. Compared to the control group, the diabetic cases had significantly higher perineurial index (P < 0.05) and endoneurial connective tissue percentage (P < 0.01). The diabetic group showed significantly higher epineurial area (P < 0.01), as well as percentage of endoneurial connective tissue (P < 0.01), in relation to the peripheral vascular disease group. It is obvious that hyperglycemia and ischemia present in diabetes lead to substantial changes in connective tissue sheaths of nerve, particularly in peri- and endoneurium. Perineurial thickening and significant endoneurial fibrosis may impair the balance of endoneurial homeostasis and regenerative ability of the nerve fibers. Future investigations should focus on studying the components of extracellular matrix of connective tissue sheaths in diabetic nerves. PMID:25147820

  9. Shear Strain and Motion of the Subsynovial Connective Tissue and Median Nerve During Single Digit Motion

    PubMed Central

    Yoshii, Yuichi; Zhao, Chunfeng; Henderson, Jacqueline; Zhao, Kristin D.; An, Kai-Nan; Amadio, Peter C.

    2010-01-01

    Purpose The objective of this study was to measure the relative motion of the middle finger flexor digitorum superficialis tendon, its adjacent subsynovial connective tissue, and the median nerve during single digit motion within the carpal tunnel in human cadaver specimens, and estimate the relative motions of these structures in different wrist positions. Methods Using fluoroscopy during simulated single digit flexion, we measured the relative motion of the middle finger flexor digitorum superficialis (FDS) tendon, subsynovial connective tissue and median nerve within the carpal tunnel in twelve human cadavers. Measurements were obtained for three wrist positions: neutral; 60 degrees flexion; and 60 degrees extension. After testing with an intact carpal tunnel was completed, the flexor retinaculum was cut with a scalpel and the same testing procedure was repeated for each wrist position. The relative motions of the tendon, subsynovial connective tissue and median nerve were compared using a shear index, defined as the ratio of the difference in motion along the direction of tendon excursion between two tissues divided by tendon excursion, expressed as a percentage. Results Both tendon-subsynovial connective tissue and tendon-nerve shear index were significantly higher in the 60 degrees of wrist flexion and extension positions, compared to the neutral position. After division of the flexor retinaculum, the shear index in the 60 degrees of wrist extension position remained significantly different, compared to the neutral position. Conclusions In summary, we have found that the relative motion between a tendon and subsynovial connective tissue in the carpal tunnel is maximal at extremes of wrist motion. These positions may predispose the subsynovial connective tissue to shear injury. PMID:19121732

  10. Generation of Diverse Biological Forms through Combinatorial Interactions between Tissue Polarity and Growth

    PubMed Central

    Kennaway, Richard; Coen, Enrico; Green, Amelia; Bangham, Andrew

    2011-01-01

    A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed

  11. Effect of MELT method on thoracolumbar connective tissue: The full study.

    PubMed

    Sanjana, Faria; Chaudhry, Hans; Findley, Thomas

    2017-01-01

    Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded.

  12. An update of neurological manifestations of vasculitides and connective tissue diseases: a literature review

    PubMed Central

    Bougea, Anastasia; Anagnostou, Evangelos; Spandideas, Nikolaos; Triantafyllou, Nikolaos; Kararizou, Evangelia

    2015-01-01

    Vasculitides comprise a heterogeneous group of autoimmune disorders, occurring as primary or secondary to a broad variety of systemic infectious, malignant or connective tissue diseases. The latter occur more often but their pathogenic mechanisms have not been fully established. Frequent and varied central and peripheral nervous system complications occur in vasculitides and connective tissue diseases. In many cases, the neurological disorders have an atypical clinical course or even an early onset, and the healthcare professionals should be aware of them. The purpose of this brief review was to give an update of the main neurological disorders of common vasculitis and connective tissue diseases, aiming at accurate diagnosis and management, with an emphasis on pathophysiologic mechanisms. PMID:26313435

  13. Epithelial and connective tissue healing following electrosurgical incisions in human gingiva.

    PubMed

    Kalkwarf, K L; Krejci, R F; Wentz, F M; Edison, A R

    1983-02-01

    Electrosurgery is used for intraoral incisions by many clinicians. Much controversy surrounds the effect of lateral heat produced during the electrosurgical incision upon the healing of adjacent connective tissue. Ten electrosurgical incisions were made in the gingiva in each of five adult male volunteers. The duration of incision and actual energy production for each incision were calculated. Excisional biopsies of the incisions were obtained at 0-504 hours. At the light microscopic level, epithelium, totally degenerated immediately following the electrosurgery incision, showed extensive activity at 24-48 hours and had covered all wounds by 72 hours. Early hour specimens showed a homogenous connective tissue region, adjacent to the wound site, devoid of cells and fibers. This zone of denatured connective tissue gradually diminished until it was no longer present at 396 hours.

  14. Diagnostic and management problems in a complex case of connective tissue disease.

    PubMed

    Yeap, S S; Deighton, C M; Powell, R J; Read, R C; Finch, R G

    1995-12-01

    A 28-year-old Nigerian woman presented with persistent pyrexia, marked pruritus, eosinophilia, myalgias, flitting arthralgias, serositis and massive splenomegaly. Intensive investigation for an infective or neoplastic aetiology proved negative. Empirical treatment for helminthic infections and tuberculosis was unhelpful. Although there were no specific clues to suggest an underlying connective tissue disease, a trial of steriods and azathioprine was introduced, with no obvious response. Her condition deteriorated to a point where it was decided that intravenous immunosuppressive therapy was needed and subsequently, her condition improved remarkably. This patient illustrates the problems in the diagnosis and management of complex disorders, particularly when classical tests for connective tissue diseases are absent. Also, we would like to report that marked pruritus can be associated with connective tissue disease.

  15. Diagnostic and management problems in a complex case of connective tissue disease.

    PubMed Central

    Yeap, S. S.; Deighton, C. M.; Powell, R. J.; Read, R. C.; Finch, R. G.

    1995-01-01

    A 28-year-old Nigerian woman presented with persistent pyrexia, marked pruritis, eosinophilia, myalgias, flitting arthralgias, serositis and massive splenomegaly. Intensive investigation for an infective or neoplastic aetiology proved negative. Empirical treatment for helminthic infections and tuberculosis was unhelpful. Although there were no specific clues to suggest an underlying connective tissue disease, a trial of steriods and azathioprine was introduced, with no obvious response. Her condition deteriorated to a point where it was decided that intravenous immunosuppressive therapy was needed and subsequently, her condition improved remarkably. This patient illustrates the problems in the diagnosis and management of complex disorders, particularly when classical tests for connective tissue diseases are absent. Also, we would like to report that marked pruritis can be associated with connective tissue disease. PMID:8552544

  16. Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias

    PubMed Central

    Merrell, Allyson J.; Ellis, Benjamin J.; Fox, Zachary D.; Lawson, Jennifer A.; Weiss, Jeffrey A.; Kardon, Gabrielle

    2015-01-01

    The diaphragm is an essential mammalian skeletal muscle, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDH), a common and often lethal birth defect. The diaphragm is derived from multiple embryonic sources, but how these give rise to the diaphragm is unknown and, despite the identification of many CDH-associated genes, the etiology of CDH is incompletely understood. Using mouse genetics, we show that the pleuroperitoneal folds (PPFs), transient embryonic structures, are the source of the diaphragm’s muscle connective tissue, regulate muscle development, and their striking migration controls diaphragm morphogenesis. Furthermore, Gata4 mosaic mutations in PPF-derived muscle connective tissue fibroblasts result in the development of localized amuscular regions that are biomechanically weaker and more compliant and lead to CDH. Thus the PPFs and muscle connective tissue are critical for diaphragm development and mutations in PPF-derived fibroblasts are a source of CDH. PMID:25807280

  17. [Klinefelter's syndrome associated with mixed connective tissue disease (Sharp's syndrome) and thrombophilia with postthrombotic syndrome].

    PubMed

    Kasten, Robert; Pfirrmann, Gudrun; Voigtländer, Volker

    2005-08-01

    A 43-year-old male with eunuchoid body proportions and a history of deep venous thromboses in the right leg presented with recurrent ulcers in the right perimalleolar region for 6 years. Karyotyping revealed a 47 XXY Klinefelter's syndrome, while serologic testing showed protein S deficiency, hyperhomocysteinemia and positive lupus anticoagulant. He also had mixed connective tissue disease (Sharp's syndrome) with acrosclerosis, proximal finger edema, Raynaud's phenomenon, and high titers of ANA and U1-RNP-antibodies, as well as osteoporosis. There is evidence that patients with Klinefelter's syndrome are prone to develop connective tissue diseases and thrombophilia as a result of low androgen levels. Substitution of testosterone in Klinefelter's syndrome can have a favorable therapeutic effect on the associated connective tissue disease, thrombophilia and osteoporosis.

  18. Congenic autoimmune murine models of central nervous system disease in connective tissue disorders.

    PubMed

    Alexander, E L; Murphy, E D; Roths, J B; Alexander, G E

    1983-08-01

    Congenic mice of the MRL/Mp strain spontaneously develop an autoimmune connective tissue disease that shares immunological and histopathological features with systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome. The autoimmune disorder in these mice is accelerated markedly by the recessive gene lpr. By 6 months of age, MRL/Mp-lpr/lpr mice developed prominent mononuclear cell infiltrates restricted to the choroid plexus and meninges, whereas congeneric MRL/Mp- +/+ mice (which lack the lpr gene) showed delayed but widespread inflammatory infiltrates involving cerebral vessels and meninges, with sparing of the choroid plexus. These distinctive patterns of cerebral inflammation, which are comparable in many respects to those seen in human connective tissue disease, provide some of the first animal models of relevant central nervous system histopathological processes associated with underlying connective tissue disease.

  19. The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications.

    PubMed

    Yang, Hongli; Reynaud, Juan; Lockwood, Howard; Williams, Galen; Hardin, Christy; Reyes, Luke; Stowell, Cheri; Gardiner, Stuart K; Burgoyne, Claude F

    2017-03-12

    In a series of previous publications we have proposed a framework for conceptualizing the optic nerve head (ONH) as a biomechanical structure. That framework proposes important roles for intraocular pressure (IOP), IOP-related stress and strain, cerebrospinal fluid pressure (CSFp), systemic and ocular determinants of blood flow, inflammation, auto-immunity, genetics, and other non-IOP related risk factors in the physiology of ONH aging and the pathophysiology of glaucomatous damage to the ONH. The present report summarizes 20 years of technique development and study results pertinent to the characterization of ONH connective tissue deformation and remodeling in the unilateral monkey experimental glaucoma (EG) model. In it we propose that the defining pathophysiology of a glaucomatous optic neuropathy involves deformation, remodeling, and mechanical failure of the ONH connective tissues. We view this as an active process, driven by astrocyte, microglial, fibroblast and oligodendrocyte mechanobiology. These cells, and the connective tissue phenomena they propagate, have primary and secondary effects on retinal ganglion cell (RGC) axon, laminar beam and retrolaminar capillary homeostasis that may initially be "protective" but eventually lead to RGC axonal injury, repair and/or cell death. The primary goal of this report is to summarize our 3D histomorphometric and optical coherence tomography (OCT)-based evidence for the early onset and progression of ONH connective tissue deformation and remodeling in monkey EG. A second goal is to explain the importance of including ONH connective tissue processes in characterizing the phenotype of a glaucomatous optic neuropathy in all species. A third goal is to summarize our current efforts to move from ONH morphology to the cell biology of connective tissue remodeling and axonal insult early in the disease. A final goal is to facilitate the translation of our findings and ideas into neuroprotective interventions that target

  20. [Advances in the study on the role of connective tissue in the mechanical signal transduction of acupuncture].

    PubMed

    Jiang, Xue-Mei; Zhang, Xue-Quan; Yuan, Lin

    2009-04-01

    Non-specific connective tissue (fascia connective tissue) plays an important role in the mechanical signal transduction of acupuncture. Acupuncture needle manipulation-induced mechanical stress has a certain effect on the fibroblasts and cytoskeleton in the nonspecific connective tissue (including loose connective tissue and fat tissue) in morphology, histochemistry and biochemistry. For example, acupuncture-needle manipulation can make the fibroblast deformed, the cytoskeleton remodeled and result in the release of biochemical materials from the connective tissue. The present review summarizes new results of studies on the effect of acupuncture needle manipulation from cytobiology, imageology and physiology; and holds that making clear the transduction pathways of acupuncture mechanical stress signals in the connective tissue and its impact on the organism possesses an important significance in revealing the mechanism of acupuncture underlying clinical therapeutic effects.

  1. Mixed connective tissue disease characterized by speckled epidermal nuclear IgG deposition in normal skin.

    PubMed

    Bentley-Phillips, C B; Geake, T M

    1980-05-01

    Four African female patients are described, who presented with the features of systemic sclerosis. Overlapping features of lupus erythematosus or dermatomyositis were present in three cases but were not prominent. Direct immunofluorescence of uninvolved skin revealed a particulate (or speckled) epidermal nuclear staining, with specificity for IgG. In view of the reported association between this finding and mixed connective tissue disease, these patients were treated with corticosteroids and marked improvment occurred in all cases. The usefulness of this investigation in making the distinction between systemic sclerosis and mixed connective tissue disease and in indicating a potentially effective form of therapy is discussed.

  2. Tocilizumab in the treatment of mixed connective tissue disease and overlap syndrome in children.

    PubMed

    Cabrera, Natalia; Duquesne, Agnes; Desjonquères, Marine; Larbre, Jean-Paul; Lega, Jean-Christophe; Fabien, Nicole; Belot, Alexandre

    2016-01-01

    Arthritis is one of the main manifestations of mixed connective tissue disease (MCTD) and overlap syndrome in children and can be responsible for functional disability. We report on 2 children with arthritis that were dramatically improved by a treatment with interleukin-6 (IL-6) blockers in the context of connective tissue disease. However, in both cases, other systemic autoimmune symptoms were not modified by the treatment and autoantibodies tend to increase, suggesting a differential effect of IL-6 inhibition on articular inflammation and systemic autoimmunity.

  3. Hereditary Connective Tissue Diseases in Young Adult Stroke: A Comprehensive Synthesis

    PubMed Central

    Vanakker, Olivier M.; Hemelsoet, Dimitri; De Paepe, Anne

    2011-01-01

    Though the genetic background of ischaemic and haemorrhagic stroke is often polygenetic or multifactorial, it can in some cases result from a monogenic disease, particularly in young adults. Besides arteriopathies and metabolic disorders, several connective tissue diseases can present with stroke. While some of these diseases have been recognized for decades as causes of stroke, such as the vascular Ehlers-Danlos syndrome, others only recently came to attention as being involved in stroke pathogenesis, such as those related to Type IV collagen. This paper discusses each of these connective tissue disorders and their relation with stroke briefly, emphasizing the main clinical features which can lead to their diagnosis. PMID:21331163

  4. Tocilizumab in the treatment of mixed connective tissue disease and overlap syndrome in children

    PubMed Central

    Cabrera, Natalia; Duquesne, Agnes; Desjonquères, Marine; Larbre, Jean-Paul; Lega, Jean-Christophe; Fabien, Nicole; Belot, Alexandre

    2016-01-01

    Arthritis is one of the main manifestations of mixed connective tissue disease (MCTD) and overlap syndrome in children and can be responsible for functional disability. We report on 2 children with arthritis that were dramatically improved by a treatment with interleukin-6 (IL-6) blockers in the context of connective tissue disease. However, in both cases, other systemic autoimmune symptoms were not modified by the treatment and autoantibodies tend to increase, suggesting a differential effect of IL-6 inhibition on articular inflammation and systemic autoimmunity. PMID:27738519

  5. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    DOEpatents

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  6. The connective tissue of the adductor canal – a morphological study in fetal and adult specimens

    PubMed Central

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-01-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 µm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop. PMID:19245505

  7. Permeability of the subsynovial connective tissue in the human carpal tunnel: a cadaver study.

    PubMed

    Osamura, Naoki; Zhao, Chunfeng; Zobitz, Mark E; An, Kai-Nan; Amadio, Peter C

    2007-06-01

    The purpose of this study was to determine the permeability of the normal carpal tunnel subsynovial connective tissue. Subsynovial connective tissue samples (10mm(2)) were obtained from 10 fresh frozen human cadavers without a history of carpal tunnel syndrome. The thickness of the sample was measured using a charge-coupled device laser displacement system. Each specimen was tested for permeability in a closed pressure chamber at 13.8, 41.3, 68.9 and 96.5 kPa. Since permeated flow was very low in all specimens, the permeability could be calculated only for eight specimens at 96.5 kPa pressure and for three specimens at 68.9 kPa. The mean permeability at 96.5 kPa was mean 0.89 (SD 0.93)x10(-14)m(4)/Ns and at 68.9 kPa was mean 1.04 (SD 1.54)x10(-14)m(4)/Ns. The subsynovial connective tissue is the most characteristic tissue in the carpal tunnel; it is found in no other location in such abundance. It is well known that carpal tunnel syndrome is the result of increased pressure within the carpal tunnel. This lack of permeability in the subsynovial connective tissue may explain the predisposition of this region for pressure buildup and subsequent neuropathy.

  8. The connective tissue of the adductor canal--a morphological study in fetal and adult specimens.

    PubMed

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-03-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 microm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop.

  9. Growth factor delivery for oral and periodontal tissue engineering

    PubMed Central

    Kaigler, Darnell; Cirelli, Joni A; Giannobile, William V

    2008-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. Growth factors are critical to the development, maturation, maintenance and repair of craniofacial tissues, as they establish an extracellular environment that is conducive to cell and tissue growth. Tissue-engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. These materials have been constructed into devices that can be used as vehicles for delivery of cells, growth factors and DNA. In this review, different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral- and tooth-supporting structures, namely the periodontium and alveolar bone. PMID:16948560

  10. [Biological Role of Oligomerny Matriksny of Protein of the Cartilage in Exchange Processes Connecting Tissue].

    PubMed

    Belova, Yu S

    2015-01-01

    In the review the literary data on studying of biological role of a oligomerny matriksny of protein of the cartilage in exchange processes connecting tissue at people and animals are provided, and also results of own researches on definition of a oligomerny matriksny of protein of the cartilage as a modern marker of a metabolism of an articulate cartilage at children from undifferentiated displaziy conjunctive tissue are briefly described.

  11. Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers.

    PubMed

    Lanir, Yoram

    2015-04-01

    A new mechanistic theory was developed for soft tissues growth and remodeling (G&R). The theory considers tissues with unidirectional fibers. It is based on the loading-dependent local turnover events of each constituent and on the resulting evolution of the tissue micro-structure, the tissue dimensions and its mechanical properties. The theory incorporates the specific mechanical properties and turnover kinetics of each constituent, thereby establishing a general framework which can serve for future integration of additional mechanisms involved in G&R. The feasibility of the theory was examined by considering a specific realization of tissues with one fibrous constituent (collagen fibers), assuming a specific loading-dependent first-order fiber's turnover kinetics and the fiber's deposition characteristics. The tissue was subjected to a continuous constant rate growth. Model parameters were adopted from available data. The resulting predictions show qualitative agreement with a number of well-known features of tissues including the fibers' non-uniform recruitment density distribution, the associated tissue convex nonlinear stress-stretch relationship, and the development of tissue pre-stretch and pre-stress states. These results show that mechanistic micro-structural modeling of soft tissue G&R based on first principles can successfully capture the evolution of observed tissues' structure and size, and of their associated mechanical properties.

  12. Bioactive glass and connective tissue graft used to treat intrabony periodontal defects.

    PubMed

    Deliberador, Tatiana Miranda; Trotta, Daniel Rizzo; Klug, Luis Gustavo; Zielak, Joao Cesar; Giovanini, Allan Fernando

    2013-07-01

    Different techniques and materials can be used to treat intrabony periodontal defects caused by periodontal diseases. This case report presents an intrabony periodontal defect with bioactive glass and connective tissue graft used as a barrier. Probing depth and clinical attachment gain were reduced at 6 and 12 months post-treatment.

  13. Connective tissue integrity is lost in vitamin B-6-deficient chicks

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Yamauchi, M.; Mahuren, J. D.; Coburn, S. P.; Muniz, O. E.; Howell, D. S.

    1995-01-01

    The objective of the present investigation was to characterize further the connective tissue disorder produced by pyridoxine (vitamin B-6) deficiency, as previously evidenced by electron microscopy. Following the second post-natal week, fast growing male chicks were deprived of pyridoxine for a 1-mo period. Six weeks post-natally, blood concentrations in the experimental deficiency group had declined to deficiency levels as registered by low concentrations of pyridoxal phosphate (coenzyme form) in erythrocytes, but did not reach levels associated with neurological symptoms. Light microscopic study showed abnormalities in the extracellular matrix of the connective tissues. Collagen cross-links and the aldehyde contents were not significantly lower in cartilage and tendon collagens of vitamin B-6-deficient animals than in age-matched controls; also, their proteoglycan degrading protease and collagenase activities measured in articular cartilages were not greater. Thus, proteolysis was an unlikely alternative mechanism to account for the loss of connective tissue integrity. These results point to the need for further investigation into adhesive properties of collagen associated proteoglycans or other proteins in vitamin B-6-deficient connective tissue.

  14. Rn for treatment of periocular fibrous connective tissue sarcomas in the horse

    SciTech Connect

    Frauenfelder, H.C.; Blevins, W.E.; Page, E.H.

    1982-02-01

    Twelve periocular fibrous connective tissue sarcomas in 11 horses were treated with 222Rn. Follow-up periods ranged from 1 to 6 years; the overall nonrecurrence rate at 12 months after therapy was 92%. Two lesions recurred 2 years after treatment, and 1 after 3 years. One of the former lesions has not recurred after a 2nd 222Rn treatment.

  15. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing

    USDA-ARS?s Scientific Manuscript database

    Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). C...

  16. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    PubMed

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels.

  17. Connective tissue integrity is lost in vitamin B-6-deficient chicks

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Yamauchi, M.; Mahuren, J. D.; Coburn, S. P.; Muniz, O. E.; Howell, D. S.

    1995-01-01

    The objective of the present investigation was to characterize further the connective tissue disorder produced by pyridoxine (vitamin B-6) deficiency, as previously evidenced by electron microscopy. Following the second post-natal week, fast growing male chicks were deprived of pyridoxine for a 1-mo period. Six weeks post-natally, blood concentrations in the experimental deficiency group had declined to deficiency levels as registered by low concentrations of pyridoxal phosphate (coenzyme form) in erythrocytes, but did not reach levels associated with neurological symptoms. Light microscopic study showed abnormalities in the extracellular matrix of the connective tissues. Collagen cross-links and the aldehyde contents were not significantly lower in cartilage and tendon collagens of vitamin B-6-deficient animals than in age-matched controls; also, their proteoglycan degrading protease and collagenase activities measured in articular cartilages were not greater. Thus, proteolysis was an unlikely alternative mechanism to account for the loss of connective tissue integrity. These results point to the need for further investigation into adhesive properties of collagen associated proteoglycans or other proteins in vitamin B-6-deficient connective tissue.

  18. Ultrastructure of sea urchin tube feet. Evidence for connective tissue involvement in motor control.

    PubMed

    Florey, E; Cahill, M A

    1977-02-09

    An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation. The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells. On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.

  19. Volumetric changes following barrier regeneration procedures for the surgical management of grade II molar furcation defects in baboons: II. Bone, cementum, epithelium, and connective tissue.

    PubMed

    Butler, J R; Rajnay, Z W; Vernino, A R; Parker, D

    1998-02-01

    In Part I, a computer imaging technique was used to measure the volumetric fill that occurred in surgically created grade II molar furcation defects after they had been treated using the principles of guided tissue regeneration. In Part II, the volumetric fill for each of the specific tissues comprising the defect fill (epithelium, connective tissue, bone, and cementum) was compared. The histologic material consisted of defects treated using one of three types of surgical treatment as well as untreated control sites. All volumetric measurements were expressed as a percentage of the original surgically created defect size, with 100% indicating complete healing of the defect. The results indicate that none of the defects achieved complete healing. Teeth receiving flap debridement had the most overall defect fill (79.50% comprised of 17.13% bone, 35.81% connective tissue, 37.35% epithelium, and 9.71% cementum). Teeth that received a biodegradable barrier showed a mean overall defect fill of 74.98% (7.41% bone, 47.13% connective tissue, 36.20% epithelium, and 9.26% cementum. Sites treated with an exclusion barrier showed 70.75% overall fill (9.63% bone, 40.89% connective tissue, 39.00% epithelium, and 10.48% cementum). The untreated control teeth showed a mean overall fill of 78.70% (5.56% bone, 59.11% connective tissue, 31.06% epithelium, and 4.27% cementum). No significant differences were found among teeth within the same animal and between treatment and controls. The following conclusions were drawn: (1) connective tissue comprised nearly one half of the total fill of the surgically created defects; (2) the percentage of new bone growth was significantly lower than anticipated; and (3) no significant differences were found among the treatment modalities and the untreated control sites for each of the specific tissue types.

  20. The effect of geometry on three-dimensional tissue growth

    PubMed Central

    Rumpler, Monika; Woesz, Alexander; Dunlop, John W.C; van Dongen, Joost T; Fratzl, Peter

    2008-01-01

    Tissue formation is determined by uncountable biochemical signals between cells; in addition, physical parameters have been shown to exhibit significant effects on the level of the single cell. Beyond the cell, however, there is still no quantitative understanding of how geometry affects tissue growth, which is of much significance for bone healing and tissue engineering. In this paper, it is shown that the local growth rate of tissue formed by osteoblasts is strongly influenced by the geometrical features of channels in an artificial three-dimensional matrix. Curvature-driven effects and mechanical forces within the tissue may explain the growth patterns as demonstrated by numerical simulation and confocal laser scanning microscopy. This implies that cells within the tissue surface are able to sense and react to radii of curvature much larger than the size of the cells themselves. This has important implications towards the understanding of bone remodelling and defect healing as well as towards scaffold design in bone tissue engineering. PMID:18348957

  1. Effects of Growth and Mutation on Pattern Formation in Tissues

    PubMed Central

    Mengel Pers, Benedicte; Krishna, Sandeep; Chakraborty, Sagar; Pigolotti, Simone; Sekara, Vedran; Semsey, Szabolcs; Jensen, Mogens H.

    2012-01-01

    In many developing tissues, neighboring cells enter different developmental pathways, resulting in a fine-grained pattern of different cell states. The most common mechanism that generates such patterns is lateral inhibition, for example through Delta-Notch coupling. In this work, we simulate growth of tissues consisting of a hexagonal arrangement of cells laterally inhibiting their neighbors. We find that tissue growth by cell division and cell migration tends to produce ordered patterns, whereas lateral growth leads to disordered, patchy patterns. Ordered patterns are very robust to mutations (gene silencing or activation) in single cells. In contrast, mutation in a cell of a disordered tissue can produce a larger and more widespread perturbation of the pattern. In tissues where ordered and disordered patches coexist, the perturbations spread mostly at boundaries between patches. If cell division occurs on time scales faster than the degradation time, disordered patches will appear. Our work suggests that careful experimental characterization of the disorder in tissues could pinpoint where and how the tissue is susceptible to large-scale damage even from single cell mutations. PMID:23144963

  2. Role of tissue growth factors in aqueous humor homeostasis.

    PubMed

    Welge-Lüssen, U; May, C A; Neubauer, A S; Priglinger, S

    2001-04-01

    The aqueous humor supplies nutrients to the nonvascularized cornea, lens, and trabecular meshwork. A number of tissue growth factors have been detected in this fluid. The composition of these proteins changes dramatically with different ocular conditions, such as inflammation and glaucoma. In this review, an overview of new findings regarding effects of aqueous humor growth factors is given. Our main emphasis is on the regulation of the avascular anterior eye compartment, the possible role of growth factors in the pathogenesis of glaucoma, and the importance of growth factors for the special immunosuppressive status of the anterior chamber.

  3. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    NASA Astrophysics Data System (ADS)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  4. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue.

    PubMed

    Alazami, Anas M; Al-Qattan, Sarah M; Faqeih, Eissa; Alhashem, Amal; Alshammari, Muneera; Alzahrani, Fatema; Al-Dosari, Mohammed S; Patel, Nisha; Alsagheir, Afaf; Binabbas, Bassam; Alzaidan, Hamad; Alsiddiky, Abdulmonem; Alharbi, Nasser; Alfadhel, Majid; Kentab, Amal; Daza, Riza M; Kircher, Martin; Shendure, Jay; Hashem, Mais; Alshahrani, Saif; Rahbeeni, Zuhair; Khalifa, Ola; Shaheen, Ranad; Alkuraya, Fowzan S

    2016-05-01

    Ehlers-Danlos syndrome (EDS) describes a group of clinical entities in which the connective tissue, primarily that of the skin, joint and vessels, is abnormal, although the resulting clinical manifestations can vary widely between the different historical subtypes. Many cases of hereditary disorders of connective tissue that do not seem to fit these historical subtypes exist. The aim of this study is to describe a large series of patients with inherited connective tissue disorders evaluated by our clinical genetics service and for whom a likely causal variant was identified. In addition to clinical phenotyping, patients underwent various genetic tests including molecular karyotyping, candidate gene analysis, autozygome analysis, and whole-exome and whole-genome sequencing as appropriate. We describe a cohort of 69 individuals representing 40 families, all referred because of suspicion of an inherited connective tissue disorder by their primary physician. Molecular lesions included variants in the previously published disease genes B3GALT6, GORAB, ZNF469, B3GAT3, ALDH18A1, FKBP14, PYCR1, CHST14 and SPARC with interesting variations on the published clinical phenotypes. We also describe the first recessive EDS-like condition to be caused by a recessive COL1A1 variant. In addition, exome capture in a familial case identified a homozygous truncating variant in a novel and compelling candidate gene, AEBP1. Finally, we also describe a distinct novel clinical syndrome of cutis laxa and marked facial features and propose ATP6V1E1 and ATP6V0D2 (two subunits of vacuolar ATPase) as likely candidate genes based on whole-genome and whole-exome sequencing of the two families with this new clinical entity. Our study expands the clinical spectrum of hereditary disorders of connective tissue and adds three novel candidate genes including two that are associated with a highly distinct syndrome.

  5. Spontaneous coronary artery dissection and its association with heritable connective tissue disorders.

    PubMed

    Henkin, Stanislav; Negrotto, Sara M; Tweet, Marysia S; Kirmani, Salman; Deyle, David R; Gulati, Rajiv; Olson, Timothy M; Hayes, Sharonne N

    2016-06-01

    Spontaneous coronary artery dissection (SCAD) is an under-recognised but important cause of myocardial infarction and sudden cardiac death. We sought to determine the role of medical and molecular genetic screening for connective tissue disorders in patients with SCAD. We performed a single-centre retrospective descriptive analysis of patients with spontaneous coronary artery disease who had undergone medical genetics evaluation 1984-2014 (n=116). The presence or absence of traits suggestive of heritable connective tissue disease was extracted. Genetic testing for connective tissue disorders and/or aortopathies, if performed, is also reported. Of the 116 patients (mean age 44.2 years, 94.8% women and 41.4% with non-coronary fibromuscular dysplasia (FMD)), 59 patients underwent genetic testing, of whom 3 (5.1%) received a diagnosis of connective tissue disorder: a 50-year-old man with Marfan syndrome; a 43-year-old woman with vascular Ehlers-Danlos syndrome and FMD; and a 45-year-old woman with vascular Ehlers-Danlos syndrome. An additional 12 patients (20.3%) had variants of unknown significance, none of which was thought to be a definite disease-causing mutation based on in silico analyses. Only a minority of patients with SCAD who undergo genetic evaluation have a likely pathogenic mutation identified on gene panel testing. Even fewer exhibit clinical features of connective tissue disorder. These findings underscore the need for further studies to elucidate the molecular mechanisms of SCAD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture.

    PubMed

    Langevin, H M; Churchill, D L; Cipolla, M J

    2001-10-01

    The mechanism of action of acupuncture remains largely unknown. The reaction to acupuncture needling known as 'de qi', widely viewed as essential to the therapeutic effect of acupuncture, may be a key to understanding its mechanism of action. De qi includes a characteristic needling sensation, perceived by the patient, and 'needle grasp' perceived by the acupuncturist. During needle grasp, the acupuncturist feels pulling and increased resistance to further movement of the inserted needle. We hypothesize that 1) needle grasp is due to mechanical coupling between the needle and connective tissue with winding of tissue around the needle during needle rotation and 2) needle manipulation transmits a mechanical signal to connective tissue cells via mechanotransduction. Such a mechanism may explain local and remote, as well as long-term effects of acupuncture.

  7. Biodynamic profiling of three-dimensional tissue growth techniques

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Dan; Turek, John; Nolte, David

    2016-03-01

    Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.

  8. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  9. GROWTH ACCESSORY SUBSTANCES FOR PATHOGENIC BACTERIA IN ANIMAL TISSUES

    PubMed Central

    Kligler, I. J.

    1919-01-01

    The growth of all the pathogenic bacteria studied was favorably influenced by the addition of small amounts of tissue extracts. Beef heart, rabbit and cat tissues, and human nasal secretions contain substances favorable to the growth of the organisms tested. The mucosa of different organs, spleen, liver, and kidney, are relatively rich in these substances, while muscle is relatively poor. The favorable effect of the extracts is manifested by an enhancement of growth and a reduction of lag. The water-soluble substances are apparently the ones essential for bacterial development; the ether extract has no effect on growth. Experiments are reported which indicate that the substances in question belong to the class of so called vitamines. PMID:19868343

  10. FUNCTION OF THE GALL BLADDER EPITHELIUM AS AN OSTEOGENIC STIMULUS AND THE PHYSIOLOGICAL DIFFERENTIATION OF CONNECTIVE TISSUE

    PubMed Central

    Huggins, C. B.; Sammet, J. F.

    1933-01-01

    Evidence is presented that the proliferating gall bladder epithelium in the dog and guinea pig is capable of stimulating bone formation in certain connective tissues such as the abdominal wall. Other connective tissue areas such as the subepithelial connective tissue of the gall bladder and urinary bladder do not share in this tissue reaction and resist the bone stimulus of the epithelium. The formation of bone in these circumstances is thus biphasic. A difference between connective tissues morphologically identical can be proven physiologically, by their response to the osteogenic stimulus of appropriate epithelia. Calcium carbonate microliths occurred in the mucus of the occluded gall bladder in which there was transplanted connective tissue forming part of the wall. PMID:19870204

  11. Dynamic ultrastructural changes of the connective tissue sheath of human hair follicles during hair cycle.

    PubMed

    Ito, M; Sato, Y

    1990-01-01

    Ultrastructural changes of the connective tissue sheath (CTS), including the hyaline membrane, of human hair follicles during the hair cycle, were studied in normal scalp skin specimens. In early anagen, the CTS was composed of a thin basal lamina and surrounding collagen tissue. The collagen tissue gradually thickened during the development of the hair and hair follicle. In mature anagen hair follicles, the collagen tissue was separated into three layers. The inner collagen layer, just outside the basal lamina, was thin and composed of collagen fibres running longitudinally parallel to the hair axis. The middle collagen layer was very thick with its collagen fibres running transversely against the hair axis and surrounding the inner hair tissue. Many fibroblasts were present among the collagen fibres in the middle layer, whereas the inner layer contained almost none. In the outer collagen layer, collagen fibres ran in various directions parallel to the outer surface of the outer root sheath cells. In late anagen, the basal lamina became very thick. In catagen, the basal lamine and the inner collagen layer became corrugated and showed oedematous change and degeneration. Surrounding fibroblasts showed active production of new collagen fibres, which seemed to fill the spaces left by the retraction of the hair follicle and hyaline membrane. These ultrastructural changes of the CTS show that there may be dynamic metabolic changes of the connective tissue around human hair follicles during the hair cycle.

  12. The potential for studying the effects of microgravity on connective tissue by small angle light scattering

    NASA Astrophysics Data System (ADS)

    McNamara, K.; Bellare, A.; Shortkroff, S.; Dahlgren, E.

    In order to address the effects of microgravity on living tissue, we must examine and understand tissue response on a molecular level. Doing so requires the development of quantitative techniques for characterizing tissue behavior on the micrometer scale under both normal and reduced gravitational fields. It has been demonstrated that small angle light scattering holds great promise in this regard. Small angle light scattering (SALS) has been used to probe tissue microstructure on the micron and sub-micron length scales. Quantitative information on feature geometry, dimension and orientation was obtained. Here, we discuss the application of small angle light scattering techniques to the study of connective tissue. Two terrestrial situations relevant to future microgravity studies were considered: the anisotropic behavior of collagen fibers in rabbit tendon in response to increasing load; and, the variation in collagen structure in healthy and arthritic human cartilage. SALS allowed quantitative determination of both fiber diameter and degree of orientation, providing a level of information beyond that obtainable by light and electron microscopies. The primary advantages of SALS over these techniques lies in its quantitative nature and reduced sample preparation requirements. SALS requires neither vacuum or the use of dyes, eliminating important potential sources of artifacts. Results from these studies compare favorably with microscopy studies and demonstrate the importance of the quantitative nature of the technique. In addition, these results also demonstrate the potential of SALS for providing quantitative analysis of effects of microgravity on structural and connective tissue.

  13. Growth hormone and adipose tissue: beyond the adipocyte

    PubMed Central

    Berryman, Darlene E.; List, Edward O.; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J.

    2011-01-01

    The last two decades have seen resurgence in the interest in, and research on, adipose tissue. In part, the increased interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters adipose tissue, a better appreciation of the newer complexities requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and how GH may influence and contribute to these newer complexities with special focus on the available data from mice with altered GH action. PMID:21470887

  14. Interstitial Growth and Remodeling of Biological Tissues: Tissue Composition as State Variables

    PubMed Central

    Myers, Kristin; Ateshian, Gerard A.

    2013-01-01

    Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue’s interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular matrix, may similarly evolve. Therefore, growth theories may be formulated by accounting for the evolution of tissue composition over time in response to various biological and mechanical triggers. This approach has been the foundation of classical bone remodeling theories that successfully describe Wolff’s law by establishing a dependence between Young’s modulus and bone apparent density and by formulating a constitutive relation between bone mass supply and the state of strain. The goal of this study is to demonstrate that adding tissue composition as state variables in the constitutive relations governing the stress-strain response and the mass supply represents a very general and straightforward method to model interstitial growth and remodeling in a wide variety of biological tissues. The foundation for this approach is rooted in the framework of mixture theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further generalization is to allow each solid constituent in a constrained solid mixture to have its own reference (stress-free) configuration. Several illustrations are provided, ranging from bone remodeling to cartilage tissue engineering and cervical remodeling during pregnancy. PMID:23562499

  15. Fractal analysis of the structural complexity of the connective tissue in human carotid bodies

    PubMed Central

    Guidolin, Diego; Porzionato, Andrea; Tortorella, Cinzia; Macchi, Veronica; De Caro, Raffaele

    2014-01-01

    The carotid body (CB) may undergo different structural changes during perinatal development, aging, or in response to environmental stimuli. In the previous literature, morphometric approaches to evaluate these changes have considered quantitative first order parameters, such as volumes or densities, while changes in spatial disposition and/or complexity of structural components have not yet been considered. In the present study, different strategies for addressing morphological complexity of CB, apart from the overall amount of each tissue component, were evaluated and compared. In particular, we considered the spatial distribution of connective tissue in the carotid bodies of young control subjects, young opiate-related deaths and aged subjects, through analysis of dispersion (Morisita's index), gray level co-occurrence matrix (entropy, angular second moment, variance, correlation), and fractal analysis (fractal dimension, lacunarity). Opiate-related deaths and aged subjects showed a comparable increase in connective tissue with respect to young controls. However, the Morisita's index (p < 0.05), angular second moment (p < 0.05), fractal dimension (p < 0.01), and lacunarity (p < 0.01) permitted to identify significant differences in the disposition of the connective tissue between these two series. A receiver operating characteristic (ROC) curve was also calculated to evaluate the efficiency of each parameter. The fractal dimension and lacunarity, with areas under the ROC curve of 0.9651 (excellent accuracy) and 0.8835 (good accuracy), respectively, showed the highest discriminatory power. They evidenced higher level of structural complexity in the carotid bodies of opiate-related deaths than old controls, due to more complex branching of intralobular connective tissue. Further analyses will have to consider the suitability of these approaches to address other morphological features of the CB, such as different cell populations, vascularization, and innervation

  16. Fractal analysis of the structural complexity of the connective tissue in human carotid bodies.

    PubMed

    Guidolin, Diego; Porzionato, Andrea; Tortorella, Cinzia; Macchi, Veronica; De Caro, Raffaele

    2014-01-01

    The carotid body (CB) may undergo different structural changes during perinatal development, aging, or in response to environmental stimuli. In the previous literature, morphometric approaches to evaluate these changes have considered quantitative first order parameters, such as volumes or densities, while changes in spatial disposition and/or complexity of structural components have not yet been considered. In the present study, different strategies for addressing morphological complexity of CB, apart from the overall amount of each tissue component, were evaluated and compared. In particular, we considered the spatial distribution of connective tissue in the carotid bodies of young control subjects, young opiate-related deaths and aged subjects, through analysis of dispersion (Morisita's index), gray level co-occurrence matrix (entropy, angular second moment, variance, correlation), and fractal analysis (fractal dimension, lacunarity). Opiate-related deaths and aged subjects showed a comparable increase in connective tissue with respect to young controls. However, the Morisita's index (p < 0.05), angular second moment (p < 0.05), fractal dimension (p < 0.01), and lacunarity (p < 0.01) permitted to identify significant differences in the disposition of the connective tissue between these two series. A receiver operating characteristic (ROC) curve was also calculated to evaluate the efficiency of each parameter. The fractal dimension and lacunarity, with areas under the ROC curve of 0.9651 (excellent accuracy) and 0.8835 (good accuracy), respectively, showed the highest discriminatory power. They evidenced higher level of structural complexity in the carotid bodies of opiate-related deaths than old controls, due to more complex branching of intralobular connective tissue. Further analyses will have to consider the suitability of these approaches to address other morphological features of the CB, such as different cell populations, vascularization, and innervation.

  17. Clinical Characteristics of Connective Tissue Nevi in Tuberous Sclerosis Complex With Special Emphasis on Shagreen Patches.

    PubMed

    Bongiorno, Michelle A; Nathan, Neera; Oyerinde, Oyetewa; Wang, Ji-An; Lee, Chyi-Chia Richard; Brown, G Thomas; Moss, Joel; Darling, Thomas N

    2017-07-01

    Patients with tuberous sclerosis complex (TSC) frequently develop collagenous connective tissue nevi. The prototypical lesion is a large shagreen patch located on the lower back, but some patients only manifest small collagenomas or have lesions elsewhere on the body. The ability to recognize these variable presentations can be important for the diagnosis of TSC. To describe the clinical characteristics of connective tissue nevi on the trunk and extremities of patients with tuberous sclerosis complex. A retrospective analysis of patient medical records and skin photography was performed; 104 adult patients with TSC were enrolled in an observational cohort study that was enriched for those with pulmonary lymphangioleiomyomatosis, and was therefore composed mostly of women (99 women, 5 men). All patients included were examined at the National Institutes of Health (NIH) in Bethesda, Maryland, from 1998 to 2013. Connective tissue nevi were categorized per anatomic location and size. Lesions less than 1 cm in diameter were termed collagenomas. Shagreen patches were characterized as small (1 to <4 cm), medium (4 to <8 cm), and large (≥8 cm). Frequency, anatomic location, size, and histological appearance of connective tissue nevi in patients with TSC. Overall, 58 of 104 patients (median [range] age, 42 [19-70] years) with TSC (56%) had at least 1 connective tissue nevus on the trunk or thighs; of these, 28 of 58 patients (48%) had a solitary lesion, and 30 of 58 patients (52%) had 2 or more lesions. Overall, 120 lesions from 55 patients were classified by size; 46 lesions (38%) were collagenomas; 39 lesions (32%) were small shagreen patches; 21 lesions (18%), medium shagreen patches; and 14 lesions (12%), large shagreen patches. The distribution of lesions was 9% (n = 11), upper back; 29% (n = 35), middle back; 51% (n = 61), lower back; and 11% (n = 13), other locations. All 26 shagreen patches that were analyzed histopathologically had coarse collagen

  18. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  19. [Antinuclear antibodies without connective tissue disease : Antibodies against LEDGF/DSF70].

    PubMed

    Mierau, R

    2016-05-01

    Testing for antinuclear antibodies (ANA) by the indirect immunofluorescence test (IFT) is regarded as a fundamental serological screening method for diagnosing connective tissue diseases (CTD). In the case of a negative result exclusion of certain CTDs is indicated, especially systemic lupus erythematosus, and a positive ANA result is the starting point for further tests aimed at finding disease-specific autoantibodies. The recently discovered antibodies against lens epithelium-derived growth factor (LEDGF/DSF70) deviate from the normal interpretation pattern in ANA diagnostics. These antibodies give rise to a characteristic dense fine speckled (DSF) immunofluorescence pattern in IFT and target the ubiquitously expressed nuclear stress protector protein LEDGFp75. They can be detected, sometimes in high titers, not only in patients with diverse disorders of the skin or eyes and with neoplasms but also in persons with relatively mild or unspecific complaints and even in apparently healthy individuals; however, they are less frequent in CTD. These anti-LEDGF antibodies can be found in all age groups with a tendency to a higher prevalence in younger people and the frequency does not increase in advanced age. The vast majority of anti-LEDGF carriers are female. The CTDs with isolated anti-LEDGF antibodies, i. e. unaccompanied by autoantibodies typical for the respective CTD, are extremely rare. Detection of ANA exclusively with a DSF immunofluorescence pattern and confirmed by a specific anti-LEDGF binding assay, does not therefore indicate the presence of CTD but is indicative of exclusion of systemic lupus erythematosus, systemic sclerosis and an ANA-associated overlap syndrome, similar to a completely negative ANA result.

  20. Connecting chromosome replication with cell growth in bacteria.

    PubMed

    Murray, Heath

    2016-12-01

    For bacteria to proliferate they must duplicate their genetic material so that it can be passed to their progeny. This requires that DNA replication is coordinated with cell growth and division. In the natural environment bacterial growth is dynamic and strongly influenced by changes in nutrient availability. Recent studies have found that bacteria utilize a range of regulatory systems, many of them species-specific, to coordinate DNA replication with cell growth. This variability likely reflects the diverse lifestyles of different bacterial types.

  1. Connective tissue in gut development: a key player in motility and in intestinal desmosis.

    PubMed

    Bruhin-Feichter, Sonja; Meier-Ruge, William; Martucciello, Giuseppe; Bruder, Elisabeth

    2012-12-01

    Efficient intestinal peristalsis is a function of intact enteric nervous system, muscle, and connective muscularis propria tissue. Malfunction of any component results in impaired peristalsis. Hirschsprung disease (HD) as prototypic enteric neural migration disorder is increasingly well characterized. More recently, intestinal myopathies and particularly defects of myenteric collagenization have entered the focus of attention. However, detailed development of muscularis propria connective tissue is not well known. The aim of this study was to morphologically characterize intestinal connective tissue in fetal and postnatal development and intestinal pseudo-obstruction. In this study, 130 archival specimens of fetal autopsies, intestinal resections, and biopsies were analyzed. Patients' age was 10th gestational week (gw) to 70 years. Muscularis mucosae, muscle layers, collagen tissue, and enteric plexus were analyzed. Picrosirius red stains, enzyme histochemistry, and immunohistochemistry for collagens I, III, and IV were performed. Total 89 normal intestinal specimens were from fetal autopsies or intestinal resections; 41 patients showed a primary structural colon wall defect (HD, desmosis). Our results showed a constant increase in tunica muscularis propria thickness with age. Separation into circular and longitudinal muscle layer first occurred in the 11th gw. A tendinous collagen plexus layer first arose in the 10th gw and showed a steady caliber increase. Muscularis mucosae first appeared in the 10th gw and grew independent of any primary gastrointestinal disease. In the 11th gw, enteric ganglia were fully developed. In desmosis, a collagen plexus layer was absent. In contrast, in HD, muscularis mucosae showed hypertrophy, but the collagen plexus layer was intact in the aganglionic segment. In intestinal neuronal dysplasia and hypoganglionosis, nerve cell development was disturbed; connective tissue and muscle layers were well developed. Our comprehensive study

  2. Comparing dynamic connective tissue in echinoderms and sponges: morphological and mechanical aspects and environmental sensitivity.

    PubMed

    Sugni, Michela; Fassini, Dario; Barbaglio, Alice; Biressi, Anna; Di Benedetto, Cristiano; Tricarico, Serena; Bonasoro, Francesco; Wilkie, Iain C; Candia Carnevali, Maria Daniela

    2014-02-01

    Echinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing protection against predation) or to the detachment of body parts (in response to a predator or to adverse environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of echinoderm and sponge collagenous tissues to ionic composition and temperature makes them potentially vulnerable to global environmental changes.

  3. Homeostatic pressure, tumor growth and fingering of epithelial tissues: Some generic physics arguments

    NASA Astrophysics Data System (ADS)

    Risler, Thomas

    2011-03-01

    We propose that one aspect of homeostasis is the regulation of tissues to preferred pressures, which can lead to a competition for space of purely mechanical origin and be an underlying mechanism for tumor growth. Surface and bulk contributions to pressure lead to the existence of a critical size that must be overcome by metastases to reach macroscopic sizes. This property qualitatively explains the observed size distributions of metastases, while size-independent growth rates cannot account for clinical and experimental data. It also potentially explains the observed preferential growth of metastases on tissue surfaces and membranes, suggests a mechanism underlying the seed and soil hypothesis introduced by Stephen Paget in 1889, and yields realistic values for metastatic inefficiency. Treating epithelial tissues as viscous fluids with effective cell division, we find a novel hydrodynamic instability that leads to the formation of fingering protrusions of the epithelium into the connective tissue. Arising from a combination of viscous friction effects and proliferation of the epithelial cells, this instability provides physical insight into a potential mechanism by which interfaces between epithelia and stroma undulate, and potentially by which tissue dysplasia leads to cancerous invasion. In collaboration with M. Basan, J.-F. Joanny, X. Sastre-Garau and J. Prost.

  4. Subcutaneous connective tissue reactions to three types of bioactive glass nanopowders.

    PubMed

    Mehdikhani-Nahrkhalajil, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Razavi, S M

    2011-06-01

    Silica-based bioactive glasses are considered promising bone substitutes and tissue regeneration matrices, because of their bioactivity, biocompatibility, osteoconductivity, and possibly even osteoinductivity. The aim of this work was to evaluate the subcutaneous connective tissue reactions to 58S, 63S, and 72S bioactive glass nanopowders. Our previous study showed the antibacterial activities of 58S and 63S bioactive glass nanopowders on aerobic bacteria, while 72S showed no antibacterial effects at all. Bioactive glass nanopowders were prepared via the sol-gel technique. Characterization techniques such as X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray fluorescent (XRF) were utilized to carry out the phase analysis, study of the structure, particle size and the composition of the synthesized bioactive glasses. To evaluate the subcutaneous connective tissue reactions, the specimens were placed in polyethylene tubes and implanted into the dorsal connective tissue of rats. Empty polyethylene tubes were used as the control and bioactive glass micropowders (NovaBone) was used as a FDA approved bone graft. The evaluation of inflammatory reactions was performed 3, 7, 15, and 28 days after implantation. Results showed a particle size of below 100 nm for samples with amorphous structure. The samples were well tolerated by the tissues over a 28-day evaluation period. The extra tissue reactions of the 72S specimen in comparison with 58S and 63S specimens could be attributed to its higher silica content. It may be concluded that biocompatible 58S and 63S bioactive glass nanopowders with antibacterial activities can be synthesized for the treatment of osseous defects.

  5. Scleroderma renal crisis in a case of mixed connective tissue disease.

    PubMed

    Vij, Mukul; Agrawal, Vinita; Jain, Manoj

    2014-07-01

    Mixed connective tissue disease (MCTD) is an overlap syndrome first defined in 1972 by Sharp et al. In this original study, the portrait emerged of a connective tissue disorder sharing features of systemic lupus erythematosus, systemic sclerosis (scleroderma) and polymyositis. Scleroderma renal crisis (SRC) is an extremely infrequent but serious complication that can occur in MCTD. The histologic picture of SRC is that of a thrombotic micro-angiopathic process. Renal biopsy plays an important role in confirming the clinical diagnosis, excluding overlapping/superimposed diseases that might lead to acute renal failure in MCTD patients, helping to predict the clinical outcome and optimizing patient management. We herewith report a rare case of SRC in a patient with MCTD and review the relevant literature.

  6. Interstitial lung disease in connective tissue diseases: evolving concepts of pathogenesis and management

    PubMed Central

    2010-01-01

    Interstitial lung disease (ILD) is a challenging clinical entity associated with multiple connective tissue diseases, and is a significant cause of morbidity and mortality. Effective therapies for connective tissue disease-associated interstitial lung disease (CTD-ILD) are still lacking. Multidisciplinary clinics dedicated to the early diagnosis and improved management of patients with CTD-ILD are now being established. There is rapid progress in understanding and identifying the effector cells, the proinflammatory and profibrotic mediators, and the pathways involved in the pathogenesis of CTD-ILD. Serum biomarkers may provide new insights as risk factors for pulmonary fibrosis and as measures of disease progression. Despite these recent advances, the management of patients with CTD-ILD remains suboptimal. Further studies are therefore urgently needed to better understand these conditions, and to develop effective therapeutic interventions. PMID:20735863

  7. Exposure to industrial wideband noise increases connective tissue in the rat liver.

    PubMed

    Oliveira, Maria João R; Freitas, Diamantino; Carvalho, António P O; Guimarães, Laura; Pinto, Ana; Águas, Artur P

    2012-01-01

    Rats were daily exposed (eight hours/day) for a period of four weeks to the same high-intensity wideband noise that was recorded before in a large textile plant. Histologic observation of liver sections of the rats was used to perform quantitative comparison of hepatic connective tissue (dyed by Masson trichromic staining) between the noise-exposed and control animals. For that, we have photographed at random centrolobular areas of stained rat liver sections. We found that noise exposure resulted in significant enhancement in the area of collagen-rich connective tissue present in the centrolobular domain of the rat liver. Our data strengthen previous evidence showing that fibrotic transformation is a systemic effect of chronic exposure of rodents and humans to industrial wideband noise.

  8. Genetic Dissection of Marfan Syndrome and Related Connective Tissue Disorders: An Update 2012

    PubMed Central

    Hoffjan, S.

    2012-01-01

    Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue characterized by early development of thoracic aortic aneurysms/dissections together with symptoms of the ocular and skeletal systems. While most patients/families with a classic phenotypic expression of MFS harbour mutations in the gene encoding fibrillin-1 (FBN1), genetic studies of the recent years revealed that the clinical features, as well as the mutated genes, show a high degree of overlap between MFS and other connective tissue diseases (e.g. Loeys-Dietz syndrome, Ehlers-Danlos syndrome, familial thoracic aneurysms and dissections and others). We summarize herein the current knowledge about the wide spectrum of differential diagnoses and their genetic background as well as novel therapeutic approaches in order to provide appropriate counselling and clinical follow-up for the patients. PMID:23326250

  9. Marshall-Smith syndrome: natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities.

    PubMed

    Adam, Margaret P; Hennekam, Raoul C M; Keppen, Laura Davis; Bull, Marilyn J; Clericuzio, Carol L; Burke, Leah W; Ormond, Kelly E; Hoyme, Eugene H

    2005-08-30

    The Marshall-Smith syndrome (MSS) is a distinct malformation syndrome characterized by accelerated skeletal maturation, relative failure to thrive, respiratory difficulties, mental retardation, and unusual facies, including prominent forehead, shallow orbits, blue sclerae, depressed nasal bridge, and micrognathia. At least 33 cases have been reported in the literature, mostly as single case reports or small series. The purpose of the present study is to report on the clinical findings and natural history of MSS in five children and to review the features of three others previously reported, with particular attention to the skeletal and connective tissue findings. Our study demonstrates an increased rate of nontraumatic fractures and other bony and connective tissue abnormalities that support the hypothesis that MSS should be considered an osteochondrodysplasia. In addition, long-term survival beyond infancy is possible if respiratory problems are expectantly and aggressively managed. (c) 2005 Wiley-Liss, Inc.

  10. Reconstruction of interdental papilla using autogenous bone and connective tissue grafts

    PubMed Central

    Muthukumar, Santhanakrishnan; Ajit, Pooja; Sundararajan, Shiyamali; Rao, Suresh Ranga

    2016-01-01

    Previous studies have reported the management of Class I and II papillary defects, but knowledge on Class III defects, estimated to have a poor periodontal prognosis, remains minimal. In this case report, a Class III papillary defect reconstruction was attempted mainly since the patient reported with difficulty in phonetics. In Stage I, autogenous bone graft from the maxillary tuberosity and subepithelial connective tissue graft was augmented to decrease the distance between the interdental bone crest and contact point, simultaneously achieving a switch in the periodontal biotype. In Stage II, subepithelial connective tissue graft was augmented to achieve papillary fill. To avoid manual errors associated with quantifying the posttreatment outcomes, image data processing ImageJ software was used to assess the length, perimeter, and surface area of papillary loss using the preoperative images.

  11. Mechano-sensing and mechano-reaction of soft connective tissue cells

    NASA Astrophysics Data System (ADS)

    Lambert, Ch. A.; Nusgens, B. V.; Lapière, Ch. M.

    One main function of the connective tissues is to provide cells with a mechanically resistant attachment support required for survival, division and differentiation. All cells contain membrane-anchored attachment proteins able to recognize specific chemical motifs in the extracellular macromolecules forming the supporting scaffold, made of various types of collagen, adhesive glycoproteins, elastin, proteoglycans, etc... These cell-matrix interactions are mainly mediated by re ceptors of the integrins family, heterodimeric molecules made of an extracellular domain connected through a transmembrane sequence to an intracytoplasmic tail. Upon recognition of the extracellular ligand, the clustering and activation of the integrins result in the recruitment of a complex of proteins and formation of the focal adhesion plaque, containing both cytoskeletal and catalytic signaling molecules. Activation results in polymerization of actin and formation of stress fibers. These structures establish a physical link between the extracellular matrix components and the cytoskeleton through the integrins providing a continuous path acting as a mechanotransducer. This connection is used by the cells to perform their mechanical functions as adhesion, migration and traction. In vitro experimental models using fibroblasts in a collagen gel demonstrate that cells are in mechanical equilibrium with their support which regulates their replicative and biosynthetic phenotype. The present review discusses the molecular structures operating in the transmission of the mechanical messages from the support to the connective tissue cells, and their effect on the cellular machinery. We present arguments for investigating these mechanisms in understanding the perception of reduced gravity and the resulting reaction leading to microgravity induced pathologies.

  12. Dimensional changes during early healing after a subepithelial connective tissue graft procedure.

    PubMed

    Rotenberg, Shaun A; Tatakis, Dimitris N

    2014-07-01

    The subepithelial connective tissue graft (CTG) is a popular means to treat gingival recession and augment keratinized tissue. Studies exist that examine long-term outcomes of this procedure; however, changes in tissue dimensions during early healing (0 to 21 days postoperatively) are unknown. The aim of this study is to examine bucco-lingual tissue dimension (gingival tissue thickness [GT]) changes during early CTG healing using a non-invasive technique. Thirteen patients who had treatment planned for CTG on a single tooth were recruited for the study. Using a customized acrylic stent, GT was measured preoperatively, at surgery completion, and at 3, 7, 14, and 21 days postoperatively. CTG was performed using an envelope technique. GT changes were analyzed by repeated-measures analysis of variance. All CTG procedures were considered successful with no postoperative complications. GT increased 1.5 mm immediately after surgery (baseline) compared to the preoperative measurement. GT increased on average 96%, 47%, and 2% compared to baseline at days 3, 7, and 14, respectively. Day 3 and day 7 measurements were significantly different from baseline (P <0.001). At day 21, GT decreased 15% compared to baseline, with an average increase of 1.29 mm from preoperative measurements. The early postoperative healing of CTGs used for root coverage exhibits a significant but transient increase in bucco-lingual tissue dimension. The observed increase in bucco-lingual tissue dimension subsides by the end of the second postoperative week.

  13. Interpretation of autoantibody positivity in interstitial lung disease and lung-dominant connective tissue disease.

    PubMed

    Pereira, Daniel Antunes Silva; Kawassaki, Alexandre de Melo; Baldi, Bruno Guedes

    2013-01-01

    The initial evaluation of patients with interstitial lung disease (ILD) primarily involves a comprehensive, active search for the cause. Autoantibody assays, which can suggest the presence of a rheumatic disease, are routinely performed at various referral centers. When interstitial lung involvement is the condition that allows the definitive diagnosis of connective tissue disease and the classical criteria are met, there is little debate. However, there is still debate regarding the significance, relevance, specificity, and pathophysiological role of autoimmunity in patients with predominant pulmonary involvement and only mild symptoms or formes frustes of connective tissue disease. The purpose of this article was to review the current knowledge of autoantibody positivity and to discuss its possible interpretations in patients with ILD and without clear etiologic associations, as well as to enhance the understanding of the natural history of an allegedly new disease and to describe the possible prognostic implications. We also discuss the proposition of a new term to be used in the classification of ILDs: lung-dominant connective tissue disease.

  14. Mixed connective tissue disease presenting with progressive scleroderma symptoms in a 10-year-old girl.

    PubMed

    Latuśkiewicz-Potemska, Joanna; Zygmunt, Agnieszka; Biernacka-Zielińska, Małgorzata; Stańczyk, Jerzy; Smolewska, Elżbieta

    2013-10-01

    Mixed connective tissue disease (MCTD) is a systemic inflammatory disease affecting connective tissue with the underlying autoimmunological mechanism. The core of MCTD is an appearance of symptoms of several other inflammatory diseases of connective tissue - systemic lupus erythematosus, systemic scleroderma, poly- or dermatomyositis, rheumatoid arthritis at the same time, accompanied by a high level of anti-ribonucleoprotein antibodies (anti-U1RNP). The disease was described more than 40 years ago by Sharp et al. During recent years, many efforts to better understand clinical and serological features of MCTD have been made. Diagnosis of MCTD can be difficult. Obligatory international diagnostic criteria are required to be fulfilled. Several versions of such criteria have been proposed, but the most widely used one was described by Kasukawa. There is no consensus about treatment - a choice of drugs depends on symptoms. We present a case of a 10-year-old girl with sclerodactyly and trophic damages of fingers accompanied by symptoms of Raynaud's phenomenon. After an almost 2-year course of the disease, a diagnosis of MCTD has been established.

  15. Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6(-/-)).

    PubMed

    LaRusso, Jennifer; Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2009-06-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive multisystem disorder characterized by ectopic connective tissue mineralization, with clinical manifestations primarily in the skin, eyes, and cardiovascular system. There is considerable, both intra- and interfamilial, variability in the spectrum of phenotypic presentation. Previous studies have suggested that mineral content of the diet may modify the severity of the clinical phenotype in PXE. In this study, we utilized a targeted mutant mouse (Abcc6(-/-)) as a model system for PXE. We examined the effects of changes in dietary phosphate and magnesium on the mineralization process using calcification of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Mice placed on custom-designed diets either high or low in phosphate did not show changes in mineralization, which was similar to that noted in Abcc6(-/-) mice on control diet. However, mice placed on diet enriched in magnesium (fivefold) showed no evidence of connective tissue mineralization in this mouse model of PXE. The inhibitory capacity of magnesium was confirmed in a cell-based mineralization assay system in vitro. Collectively, our observations suggest that assessment of dietary magnesium in patients with PXE may be warranted.

  16. Interpretation of autoantibody positivity in interstitial lung disease and lung-dominant connective tissue disease*

    PubMed Central

    Pereira, Daniel Antunes Silva; Kawassaki, Alexandre de Melo; Baldi, Bruno Guedes

    2013-01-01

    The initial evaluation of patients with interstitial lung disease (ILD) primarily involves a comprehensive, active search for the cause. Autoantibody assays, which can suggest the presence of a rheumatic disease, are routinely performed at various referral centers. When interstitial lung involvement is the condition that allows the definitive diagnosis of connective tissue disease and the classical criteria are met, there is little debate. However, there is still debate regarding the significance, relevance, specificity, and pathophysiological role of autoimmunity in patients with predominant pulmonary involvement and only mild symptoms or formes frustes of connective tissue disease. The purpose of this article was to review the current knowledge of autoantibody positivity and to discuss its possible interpretations in patients with ILD and without clear etiologic associations, as well as to enhance the understanding of the natural history of an allegedly new disease and to describe the possible prognostic implications. We also discuss the proposition of a new term to be used in the classification of ILDs: lung-dominant connective tissue disease. PMID:24473767

  17. Isolated Ro52 Antibodies as Immunological Marker of a Mild Phenotype of Undifferentiated Connective Tissue Diseases

    PubMed Central

    Navarro-Gonzálvez, José Antonio; Rodríguez-Lozano, Beatriz

    2017-01-01

    The term undifferentiated connective tissue disease (UCTD) is used to describe undiagnosed patients that do not fulfill classification criteria for definite connective tissue disease (Systemic Lupus, Systemic Sclerosis, Sjögren Syndrome, and Dermatomyositis/Polymyositis). It is important to find serological markers as predictors of the evolution or severity of these diseases. The objective of this retrospective study was to investigate if there was a milder subgroup of UCTD with a special clinical profile consisting only in the presence of anti-Ro52 autoantibodies. Immunological and clinical records of 62 patients attending the hospital during 30 months were studied. Results showed a target population formed by mostly women, aged between 40 and 80 years at the moment of the study, with a registered age of onset between 40 and 60 years. Speckled pattern was the most frequent pattern found by indirect immunofluorescence. Given the obtained results and keeping in mind possible limitations because of sample size, isolated positive anti-Ro52 autoantibodies seem to lead to a benign effect in terms of evolution of the disease. As a future objective, the follow-up of these patients should be necessary to investigate new clinical symptoms, serological markers, or development of a definite connective tissue disease over time. PMID:28210273

  18. Pathological changes in the subsynovial connective tissue increase with self-reported carpal tunnel syndrome symptoms.

    PubMed

    Tat, Jimmy; Wilson, Katherine E; Keir, Peter J

    2015-05-01

    Fibrosis and thickening of the subysnovial connective tissue are the most common pathological findings in carpal tunnel syndrome. The relationship between subsynovial connective tissue characteristics and self-reported carpal tunnel syndrome symptoms was assessed. Symptoms were characterized using the Boston Carpal Tunnel Questionnaire and Katz hand diagram in twenty-two participants (11 with symptoms, 11 with no symptoms). Using ultrasound, the thickness of the subsynovial connective tissue was measured using a thickness ratio (subsynovial thickness/tendon thickness) and gliding function was assessed using a shear strain index ((Displacement(tendon)-Displacement(subsynovial))/Displacement(tendon)x 100). For gliding function, participants performed 10 repeated flexion-extension cycles of the middle finger at a rate of one cycle per second. Participants with symptoms had a 38.5% greater thickness ratio and 39.2% greater shear strain index compared to participants without symptoms (p<0.05). Ultrasound detected differences the SSCT in symptomatic group that was characterized by low self-reported symptom severity scores. This study found ultrasound useful for measuring structural and functional changes in the SSCT that could provide insight in the early pathophysiology associated with carpal tunnel syndrome symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. An ultrastructural study of connective tissue in mollusc integument III. Cephalopoda.

    PubMed

    Bairati, A; Comazzi, M; Gioria, M

    2003-06-01

    We studied structure and ultrastructure of the subepidermal connective tissue (SEC) of the integument of three cephalopods (Sepia officinalis, Octopus vulgaris and Loligo pealii). In all species, three distinct regions of the SEC were recognised: (a) an outer zone (OZ) that included the dermal-epidermal junction, and consisted of a thin layer of connective tissue containing muscles, (b) an extensive middle zone (MZ) containing a compact network of collagen fibres and numerous cells, (c) an inner zone (IZ) of loose connective tissue that merged with muscular fascia. This arrangement differs from that in bivalves and gastropods and recalls vertebrate integument. The dermal-epidermal junction of cephalopods differed from that of bivalves, gastropods and mammals in that the epidermal cells did not possess hemidesmosomes, and their intermediate filaments terminated directly in the plasmamembrane. The thick (120-500 nm) basal membrane (BM) had a superficial zone containing a regular array of granules; a lamina densa composed of a compact network of small filaments and granules; and an IZ distinguished by expansions of granular material protruding into underlying structures. Collagen fibres contained fibroblast-derived cytoplasmic thread, running through their centres and were surrounded by granular material that joins them to adjacent fibres. The collagen fibrils were of medium diameter (30-80 nm) had the typical ultrastructure of fibrillar collagens, and were surrounded by abundant interfibrillar material. The hypodermis was loose, with a network of small bundles of collagen fibrils. Cephalopod integument appears to represent a major evolutionary step distinguishing this class of molluscs.

  20. Connective tissue graft vs. emdogain: A new approach to compare the outcomes

    PubMed Central

    Sayar, Ferena; Akhundi, Nasrin; Gholami, Sanaz

    2013-01-01

    Background: The aim of this clinical trial study was to clinically evaluate the use of enamel matrix protein derivative combined with the coronally positioned flap to treat gingival recession compared to the subepithelial connective tissue graft by a new method to obtain denuded root surface area. Materials and Methods: Thirteen patients, each with two or more similar bilateral Miller class I or II gingival recession (40 recessions) were randomly assigned to the test (enamel matrix protein derivative + coronally positioned flap) or control group (subepithelial connective tissue graft). Recession depth, width, probing depth, keratinized gingival, and plaque index were recorded at baseline and at one, three, and six months after treatment. A stent was used to measure the denuded root surface area at each examination session. Results were analyzed using Kolmogorov-Smirnov, Wilcoxon, Friedman, paired-sample t test. Results: The average percentages of root coverage for control and test groups were 63.3% and 55%, respectively. Both groups showed significant keratinized gingival increase (P < 0.05). Recession depth decreased significantly in both groups. Root surface area was improved significantly from baseline with no significant difference between the two study groups (P > 0.05). The results of Friedman test were significant for clinical indices (P < 0.05), except for probing depth in control group (P = 0.166). Conclusion: Enamel matrix protein derivative showed the same results as subepithelial connective tissue graft with relatively easy procedure to perform and low patient morbidity. PMID:23878562

  1. In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models?

    PubMed

    Brown, Robert A

    2013-10-01

    In the 40 years since Elsdale and Bard's analysis of fibroblast culture in collagen gels we have moved far beyond the concept that such 3D fibril network systems are better models than monolayer cultures. This review analyses key aspects of that progression of models, against a background of what exactly each model system tries to mimic. This story tracks our increasing understanding of fibroblast responses to soft collagen gels, in particularly their cytoskeletal contraction, migration and integrin attachment. The focus on fibroblast mechano-function has generated models designed to directly measure the overall force generated by fibroblast populations, their reaction to external loads and the role of the matrix structure. Key steps along this evolution of 3D collagen models have been designed to mimic normal skin, wound repair, tissue morphogenesis and remodelling, growth and contracture during scarring/fibrosis. As new models are developed to understand cell-mechanical function in connective tissues the collagen material has become progressively more important, now being engineered to mimic more complex aspects of native extracellular matrix structure. These have included collagen fibril density, alignment and hierarchical structure, controlling material stiffness and anisotropy. But of these, tissue-like collagen density is key in that it contributes to control of the others. It is concluded that across this 40 year window major progress has been made towards establishing a family of 3D experimental collagen tissue-models, suitable to investigate normal and pathological fibroblast mechano-functions. © 2013 Elsevier Inc. All rights reserved.

  2. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    PubMed

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4