Transportation planning implications of automated/connected vehicles on Texas highways.
DOT National Transportation Integrated Search
2017-04-01
This research project was focused on the transportation planning implications of automated/connected : vehicles (AV/CVs) on Texas highways. The research assessed how these potentially transformative : technologies can be included in transportation pl...
Cheng, Wei; Rolls, Edmund T; Gu, Huaguang; Zhang, Jie; Feng, Jianfeng
2015-05-01
Whole-brain voxel-based unbiased resting state functional connectivity was analysed in 418 subjects with autism and 509 matched typically developing individuals. We identified a key system in the middle temporal gyrus/superior temporal sulcus region that has reduced cortical functional connectivity (and increased with the medial thalamus), which is implicated in face expression processing involved in social behaviour. This system has reduced functional connectivity with the ventromedial prefrontal cortex, which is implicated in emotion and social communication. The middle temporal gyrus system is also implicated in theory of mind processing. We also identified in autism a second key system in the precuneus/superior parietal lobule region with reduced functional connectivity, which is implicated in spatial functions including of oneself, and of the spatial environment. It is proposed that these two types of functionality, face expression-related, and of one's self and the environment, are important components of the computations involved in theory of mind, whether of oneself or of others, and that reduced connectivity within and between these regions may make a major contribution to the symptoms of autism. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
NASA Astrophysics Data System (ADS)
Henderson, Joseph A.
2015-09-01
How might we understand the complex nature of our existence in the world, and what are the implications of such examination? Moreover, how might we go about engaging others in this practice and what are the complications of such an endeavor? Expanding on Quigley, Dogbey, Che and Hallo's findings, I consider the implications of human-environment connections and examine the difficulty of articulating such connections via photovoice methods in particular places. Further, I use a Foucauldian discourse lens to situate this connective process to larger political and social dynamics at work in their paper, and in environmental education in general. Implications for sustainability and sustainability education are then developed, along with suggestions for future research in this emerging field.
The smart/connected city and its implications for connected transportation.
DOT National Transportation Integrated Search
2014-10-14
This white paper outlines the potential for the emerging connected transportation system to interface with smart/connected cities. Its aim is to lay the foundation for defining steps that the U.S. Department of Transportation (USDOT) Connected Vehicl...
Laterality patterns of brain functional connectivity: gender effects.
Tomasi, Dardo; Volkow, Nora D
2012-06-01
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).
Laterality Patterns of Brain Functional Connectivity: Gender Effects
Tomasi, Dardo; Volkow, Nora D.
2012-01-01
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483
Anticevic, Alan; Hu, Xinyu; Xiao, Yuan; Hu, Junmei; Li, Fei; Bi, Feng; Cole, Michael W.; Savic, Aleksandar; Yang, Genevieve J.; Repovs, Grega; Murray, John D.; Wang, Xiao-Jing; Huang, Xiaoqi; Lui, Su; Krystal, John H.
2015-01-01
Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in early-course patients, predictive of symptoms and diagnostic classification, but less evidence for “hypoconnectivity.” At the whole-brain level, we observed “hyperconnectivity” around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n = 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications. PMID:25568120
Anticevic, Alan; Hu, Xinyu; Xiao, Yuan; Hu, Junmei; Li, Fei; Bi, Feng; Cole, Michael W; Savic, Aleksandar; Yang, Genevieve J; Repovs, Grega; Murray, John D; Wang, Xiao-Jing; Huang, Xiaoqi; Lui, Su; Krystal, John H; Gong, Qiyong
2015-01-07
Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in early-course patients, predictive of symptoms and diagnostic classification, but less evidence for "hypoconnectivity." At the whole-brain level, we observed "hyperconnectivity" around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n = 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications. Copyright © 2015 the authors 0270-6474/15/350267-20$15.00/0.
Connected and autonomous vehicles 2040 vision.
DOT National Transportation Integrated Search
2014-07-01
The Pennsylvania Department of Transportation (PennDOT) commissioned a one-year project, Connected and Autonomous : Vehicles 2040 Vision, with researchers at Carnegie Mellon University (CMU) to assess the implications of connected and : autonomous ve...
Pectus Excavatum and Heritable Disorders of the Connective Tissue
Tocchioni, Francesca; Ghionzoli, Marco; Messineo, Antonio; Romagnoli, Paolo
2013-01-01
Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations) phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence. PMID:24198927
ERIC Educational Resources Information Center
Harle, Marissa; Towns, Marcy
2011-01-01
Chemists and scientists use spatial abilities as part of the way they understand and communicate their subject areas. A review of the foundational research literature in spatial ability and its connections to chemistry as a field and chemical education research allows for the formulation of implications for teaching in chemistry. (Contains 7…
The spatial distribution of riparian ash: implications for the dispersal of the emerald ash borer
Susan J. Crocker; W. Keith Moser; Mark H. Hansen; Mark D. Nelson
2007-01-01
A pilot study to assess riparian ash connectivity and its implications for emerald ash borer dispersal was conducted in three subbasins in Michigan's Southern Lower Peninsula. Forest Inventory and Analysis data were used to estimate ash biomass. The nineteen percent of plots in riparian physiographic classes contained 40 percent of ash biomass. Connectivity of...
A selective involvement of putamen functional connectivity in youth with internet gaming disorder.
Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung
2015-03-30
Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder. Copyright © 2015. Published by Elsevier B.V.
Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age
Graham, Alice M.; Buss, Claudia; Rasmussen, Jerod M.; Rudolph, Marc D.; Demeter, Damion V.; Gilmore, John H.; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D.; Fair, Damien A.
2015-01-01
The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255
The Always-Connected Generation
ERIC Educational Resources Information Center
Bull, Glen
2010-01-01
The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…
Automated and connected vehicle implications and analysis.
DOT National Transportation Integrated Search
2017-05-01
Automated and connected vehicles (ACV) and, in particular, autonomous vehicles have captured : the interest of the public, industry and transportation authorities. ACVs can significantly reduce : accidents, fuel consumption, pollution and the costs o...
ERIC Educational Resources Information Center
Popovic, Gorjana; Lederman, Judith S.
2015-01-01
The Common Core Standard for Mathematical Practice 4: Model with Mathematics specifies that mathematically proficient students are able to make connections between school mathematics and its applications to solving real-world problems. Hence, mathematics teachers are expected to incorporate connections between mathematical concepts they teach and…
Trust, Connectivity, and Thriving: Implications for Innovative Behaviors at Work
ERIC Educational Resources Information Center
Carmeli, Abraham; Spreitzer, Gretchen M.
2009-01-01
This study examines how trust, connectivity and thriving drive employees' innovative behaviors in the workplace. Using a sample of one hundred and seventy two employees across a variety of jobs and industries, we investigated the relationship between trust, connectivity (both measured at Time 1), thriving and innovative work behaviors (both…
Addiction Related Alteration in Resting-state Brain Connectivity
Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-Ming; Hu, Xiaoping; Zhang, Da-Ren
2009-01-01
It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), and orbital frontal cortex (OFC), between amygdala and OFC; and reduced functional connectivity between prefrontal cortex and OFC, and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state. PMID:19703568
Gromann, Paula M; Tracy, Derek K; Giampietro, Vincent; Brammer, Michael J; Krabbendam, Lydia; Shergill, Sukhwinder S
2012-01-01
Repetitive transcranial magnetic stimulation (rTMS) has been shown to have clinically beneficial effects in altering the perception of auditory hallucinations (AH) in patients with schizophrenia. However, the mode of action is not clear. Recent neuroimaging findings indicate that rTMS has the potential to induce not only local effects but also changes in remote, functionally connected brain regions. Frontotemporal dysconnectivity has been proposed as a mechanism leading to psychotic symptoms in schizophrenia. The current study examines functional connectivity between temporal and frontal brain regions after rTMS and the implications for AH in schizophrenia. A connectivity analysis was conducted on the fMRI data of 11 healthy controls receiving rTMS, compared with 11 matched subjects receiving sham TMS, to the temporoparietal junction, before engaging in a task associated with robust frontotemporal activation. Compared to the control group, the rTMS group showed an altered frontotemporal connectivity with stronger connectivity between the right temporoparietal cortex and the dorsolateral prefrontal cortex and the angular gyrus. This finding provides preliminary evidence for the hypothesis that normalizing the functional connectivity between the temporoparietal and frontal brain regions may underlie the therapeutic effect of rTMS on AH in schizophrenia.
Jin, Seung-A Annie
2010-10-01
What are the impacts of creating an avatar replicating the actual self versus an avatar projecting the ideal self on game players' avatar-self connection? This study leveraged an avatar-creating game (Mii Channel) within a video-game console (Wii) in a controlled, randomized study. The results of a two-group comparison (actual self-priming vs. ideal self-priming) between-subjects study (N = 76) demonstrated the significant main effect of self-priming via avatar (Mii) creation on avatar-self connection. Game players who were primed to create a Mii reflecting the ideal self felt greater avatar-self connection than those primed to create a replica Mii mirroring the actual self. Theoretical values and implications for a burgeoning body of research on the "malleable self" and the multidimensionality of the self-concept in avatar-based interactive media are discussed.
Mashek, Debra; Stuewig, Jeffrey; Furukawa, Emi; Tangney, June
2011-01-01
Without a doubt, people can feel simultaneously connected to multiple communities (e.g., Deaux, 1993; Roccas & Brewer, 2002). But, to what degree can people feel simultaneously connected to communities with opposing beliefs and values? And, more importantly, what are the psychological implications of being dually connected to these communities? Capitalizing on a sample of individuals positioned to potentially feel connected to two very distinct communities, we examined jail inmates’ (N = 256) sense of connectedness to the criminal community and to the community at large. Results indicated that (a) connectedness to the community at large is orthogonal to connectedness to the criminal community, supporting the supposition that it is possible to be dually connected to opposing communities; and (b) connectedness to the community at large moderated the relationship between criminal connectedness and indicators of psychological distress, suggesting that connectedness to the criminal community is especially problematic when it occurs in tandem with connectedness to the community at large. These findings are consistent with predictions from the self-expansion model. PMID:21532983
Reduced prefrontal connectivity in psychopathy.
Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael
2011-11-30
Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.
Reduced Prefrontal Connectivity in Psychopathy
Motzkin, Julian C.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael
2012-01-01
Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy. PMID:22131397
Crook, David A; Lowe, Winsor H; Allendorf, Frederick W; Erős, Tibor; Finn, Debra S; Gillanders, Bronwyn M; Hadwen, Wade L; Harrod, Chris; Hermoso, Virgilio; Jennings, Simon; Kilada, Raouf W; Nagelkerken, Ivan; Hansen, Michael M; Page, Timothy J; Riginos, Cynthia; Fry, Brian; Hughes, Jane M
2015-11-15
Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
INTRINSIC CURVATURE: A MARKER OF MILLIMETER-SCALE TANGENTIAL CORTICO-CORTICAL CONNECTIVITY?
RONAN, LISA; PIENAAR, RUDOLPH; WILLIAMS, GUY; BULLMORE, ED; CROW, TIM J.; ROBERTS, NEIL; JONES, PETER B.; SUCKLING, JOHN; FLETCHER, PAUL C.
2012-01-01
In this paper, we draw a link between cortical intrinsic curvature and the distributions of tangential connection lengths. We suggest that differential rates of surface expansion not only lead to intrinsic curvature of the cortical sheet, but also to differential inter-neuronal spacing. We propose that there follows a consequential change in the profile of neuronal connections: specifically an enhancement of the tendency towards proportionately more short connections. Thus, the degree of cortical intrinsic curvature may have implications for short-range connectivity. PMID:21956929
Bacci, Jennifer L; Berenbrok, Lucas A
2018-06-07
The scope of community pharmacy practice has expanded beyond the provision of drug product to include the provision of patient care services. Likewise, the community pharmacist's approach to patient safety must also expand beyond prevention of errors during medication dispensing to include optimization of medications and prevention of adverse events throughout the entire medication use process. Connectivity to patient data and other healthcare providers has been a longstanding challenge in community pharmacy with implications for the delivery and safety of patient care. Here, we describe three innovative advances in connectivity in community pharmacy practice that enhance patient safety in the provision of community pharmacist patient care services across the entire medication use process. Specifically, we discuss the growing use of immunization information systems, quality improvement platforms, and health information exchanges in community pharmacy practice and their implications for patient safety. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Differences between Military-Connected Undergraduates: Implications for Institutional Research
ERIC Educational Resources Information Center
Molina, Dani; Morse, Andrew
2017-01-01
This chapter discusses how understanding differences between National Guard members, reservists, active duty personnel, and veterans in higher education can better inform institutional evidence-based decision-making to support military-connected individuals' college access and success.
ERIC Educational Resources Information Center
Önen, Emine
2015-01-01
This study aimed to examine connections between modes of thinking and approaches to learning. Participants were 1490 students attending to 9 high schools located in Ankara. The Style of Learning and Thinking-Youth Form and Revised Version of Learning Process Questionnaire were administered to these students. The connections between modes of…
ERIC Educational Resources Information Center
Courtney, Mark E.; Hook, Jennifer L.; Lee, JoAnn S.
2012-01-01
The Fostering Connections to Success and Increasing Adoptions Act of 2008 ("Fostering Connections Act") fundamentally changed the nature of federal support for young people in state care by extending entitlement funding under Title IV-E of the Social Security Act to age 21 beginning in FY2011. While the Fostering Connections Act provides…
Network Sampling and Classification:An Investigation of Network Model Representations
Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.
2011-01-01
Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773
Connectivity as a multiple: In, with and as "nature".
Hodgetts, Timothy
2018-03-01
Connectivity is a central concept in contemporary geographies of nature, but the concept is often understood and utilised in plural ways. This is problematic because of the separation, rather than the confusion, of these different approaches. While the various understandings of connectivity are rarely considered as working together, the connections between them have significant implications. This paper thus proposes re-thinking connectivity as a "multiple". It develops a taxonomy of existing connectivity concepts from the fields of biogeography and landscape ecology, conservation biology, socio-economic systems theory, political ecology and more-than-human geography. It then considers how these various understandings might be re-thought not as separate concerns, but (following Annemarie Mol) as "more than one, but less than many". The implications of using the connectivity multiple as an analytic for understanding conservation practices are demonstrated through considering the creation of wildlife corridors in conservation practice. The multiple does not just serve to highlight the practical and theoretical linkages between ecological theories, social inequities and affectual relationships in more-than-human worlds. It is also suggestive of a normative approach to environmental management that does not give temporal priority to biological theories, but considers these as always already situated in these social, often unequal, always more-than-human ecologies.
Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell
2010-01-01
Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...
On the connectivity of the cosmic web: theory and implications for cosmology and galaxy formation
NASA Astrophysics Data System (ADS)
Codis, Sandrine; Pogosyan, Dmitri; Pichon, Christophe
2018-06-01
Cosmic connectivity and multiplicity, i.e. the number of filaments globally or locally connected to a given cluster is a natural probe of the growth of structure and in particular of the nature of dark energy. It is also a critical ingredient driving the assembly history of galaxies as it controls mass and angular momentum accretion. The connectivity of the cosmic web is investigated here via the persistent skeleton. This tool identifies topologically the ridges of the cosmic landscape which allows us to investigate how the nodes of the cosmic web are connected together. When applied to Gaussian random fields corresponding to the high redshift universe, it is found that on average the nodes are connected to exactly κ = 4 neighbours in two dimensions and ˜6.1 in three dimensions. Investigating spatial dimensions up to d = 6, typical departures from a cubic lattice κ = 2d are shown to scale like the power 7/4 of the dimension. These numbers strongly depend on the height of the peaks: the higher the peak the larger the connectivity. Predictions from first principles based on peak theory are shown to reproduce well the connectivity and multiplicity of Gaussian random fields and cosmological simulations. As an illustration, connectivity is quantified in galaxy lensing convergence maps and large dark haloes catalogues. As a function of redshift and scale the mean connectivity decreases in a cosmology-dependent way. As a function of halo mass it scales like 10/3 times the log of the mass. Implications on galactic scales are discussed.
Big data’s implications for transportation operations : an exploration.
DOT National Transportation Integrated Search
2014-12-01
The purpose of this white paper is to expand the understanding of big data for transportation operations, the value it could provide, and the implications for the future direction of the U.S. Department of Transportation (USDOT) Connected Vehicle Rea...
Cloutman, Lauren L.; Binney, Richard J.; Morris, David M.; Parker, Geoffrey J.M.; Lambon Ralph, Matthew A.
2013-01-01
Primate studies have recently identified the dorsal stream as constituting multiple dissociable pathways associated with a range of specialized cognitive functions. To elucidate the nature and number of dorsal pathways in the human brain, the current study utilized in vivo probabilistic tractography to map the structural connectivity associated with subdivisions of the left supramarginal gyrus (SMG). The left SMG is a prominent region within the dorsal stream, which has recently been parcellated into five structurally-distinct regions which possess a dorsal–ventral (and rostral-caudal) organisation, postulated to reflect areas of functional specialisation. The connectivity patterns reveal a dissociation of the arcuate fasciculus into at least two segregated pathways connecting frontal-parietal-temporal regions. Specifically, the connectivity of the inferior SMG, implicated as an acoustic-motor speech interface, is carried by an inner/ventro-dorsal arc of fibres, whilst the pathways of the posterior superior SMG, implicated in object use and cognitive control, forms a parallel outer/dorso-dorsal crescent. PMID:23937853
Sinha, Rajita; Lacadie, Cheryl M.; Scheinost, Dustin; Jastreboff, Ania M.; Constable, R. Todd; Potenza, Marc N.
2016-01-01
Introduction: Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. Methods: The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. Results: During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. Conclusions: These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. Implications: This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. PMID:26995796
Pu, Weidan; Rolls, Edmund T.; Guo, Shuixia; Liu, Haihong; Yu, Yun; Xue, Zhimin; Feng, Jianfeng; Liu, Zhening
2014-01-01
In order to analyze functional connectivity in untreated and treated patients with schizophrenia, resting-state fMRI data were obtained for whole-brain functional connectivity analysis from 22 first-episode neuroleptic-naïve schizophrenia (NNS), 61 first-episode neuroleptic-treated schizophrenia (NTS) patients, and 60 healthy controls (HC). Reductions were found in untreated and treated patients in the functional connectivity between the posterior cingulate gyrus and precuneus, and this was correlated with the reduction in volition from the Positive and Negative Symptoms Scale (PANSS), that is in the willful initiation, sustenance, and control of thoughts, behavior, movements, and speech, and with the general and negative symptoms. In addition in both patient groups interhemispheric functional connectivity was weaker between the orbitofrontal cortex, amygdala and temporal pole. These functional connectivity changes and the related symptoms were not treated by the neuroleptics. Differences between the patient groups were that there were more strong functional connectivity links in the NNS patients (including in hippocampal, frontal, and striatal circuits) than in the NTS patients. These findings with a whole brain analysis in untreated and treated patients with schizophrenia provide evidence on some of the brain regions implicated in the volitional, other general, and negative symptoms, of schizophrenia that are not treated by neuroleptics so have implications for the development of other treatments; and provide evidence on some brain systems in which neuroleptics do alter the functional connectivity. PMID:25389520
A network of amygdala connections predict individual differences in trait anxiety.
Greening, Steven G; Mitchell, Derek G V
2015-12-01
In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.
2017-12-01
Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.
Elemental signatures in otoliths (fish ear-stones) have become a powerful tool in fisheries science for identifying fish migration patterns, reconstructing environmental histories, and for delineating the nursery origins of adult fish populations. Assessing connectivity between a...
Anomalous White Matter Morphology in Adults Who Stutter
ERIC Educational Resources Information Center
Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.
2015-01-01
Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…
DOT National Transportation Integrated Search
2014-07-01
In the past, U.S. studies on high-speed rail (HSR) have focused primarily on the economic implications of high-speed rail development. Recently, however, studies have begun evaluating multimodal connectivity of HSR stations. The ways in which differe...
Learning Global Citizenship?: Exploring Connections between the Local and the Global
ERIC Educational Resources Information Center
Mayo, Marjorie; Gaventa, John; Rooke, Alison
2009-01-01
This article identifies historical connections between adult learning, popular education and the emergence of the public sphere in Europe, exploring potential implications for adult learning and community development, drawing upon research evaluating programmes to promote community-based learning "for" active citizenship in UK. The…
Anticipating changes to future connectivity within a network of marine protected areas.
Coleman, Melinda A; Cetina-Heredia, Paulina; Roughan, Moninya; Feng, Ming; van Sebille, Erik; Kelaher, Brendan P
2017-09-01
Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self-seeding within higher-latitude MPAs tended to increase, and the role of low-latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Hematopoietic stem cell origin of connective tissues.
Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K
2010-07-01
Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.
Chloride dynamics in a restored urban stream and the influence of road salts on water quality
Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...
Causal Connections in Beginning Reading: The Importance of Rhyme.
ERIC Educational Resources Information Center
Goswami, Usha
2000-01-01
Discusses the implications of Goswami and Bryant's (1990) theory about important causal connections in reading for classroom teaching, and reviews more recent "rhyme and analogy" research within this framework. Discusses new research on the nature of the English spelling system and the representation of linguistic knowledge. Emphasizes the…
Implementation and Impact of the Check & Connect Mentoring Program
ERIC Educational Resources Information Center
Heppen, Jessica; O'Cummings, Mindee; Poland, Lindsay; Zeiser, Krissy; Mills, Nicholas
2015-01-01
High school graduation rates remain unacceptably low in the U.S., especially among disadvantaged youth (Chapman, Laird, Ifill, & KelalRamani, 2011; Stillwell, 2010), with troubling implications for future earnings and employment status (Bureau of Labor Statistics, 2012). Check & Connect (C&C) is an individualized program that pairs…
Maintaining connections in children's grief narratives in popular film.
Sedney, Mary Anne
2002-04-01
Children's grief narratives in popular films were examined for their portrayal of connection-maintaining strategies with the deceased. Comparisons were made between strategies found in actual parentally bereaved children and in child characters in films. Implications of these filmed grief narratives for models of grieving and for practice are discussed.
Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E
2016-01-01
Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.
Implications of Post-Natal Cortical Development for Creativity Research.
ERIC Educational Resources Information Center
Gordon, Marjory; Dacey, John
Man's long period of cerebral growth has important implications for education. The brain goes through major developmental changes after birth, and researchers have suggested that this growth process presents an opportunity for fostering the plasticity of genetically determined connections. Animal studies show that postnatal growth of the brain is…
Meier, Timothy B; Lancaster, Melissa A; Mayer, Andrew R; Teague, T Kent; Savitz, Jonathan
2017-02-15
There is a great need to identify potential long-term consequences of contact sport exposure and to identify molecular pathways that may be associated with these changes. We tested the hypothesis that football players with (Ath-mTBI) (n = 25) and without a concussion history (Ath) (n = 24) have altered resting state functional connectivity in regions with previously documented structural changes relative to healthy controls without football or concussion history (HC) (n = 27). As a secondary aim, we tested the hypothesis that group differences in functional connectivity are moderated by the relative ratio of neuroprotective to neurotoxic metabolites of the kynurenine pathway. Ath-mTBI had significantly increased connectivity of motor cortex to the supplementary motor area relative to Ath and HC. In contrast, both Ath-mTBI and Ath had increased connectivity between the left orbital frontal cortex and the right lateral frontal cortex, and between the left cornu ammonis areas 2 and 3/dentate gyrus (CA2-3/DG) of the hippocampus and the middle and posterior cingulate cortices, relative to HC. The relationship between the ratio of plasma concentrations of kynurenic acid to quinolinic acid (KYNA/QUIN) and left pregenual anterior cingulate cortex connectivity to multiple regions as well as KYNA/QUIN and right CA2-3/DG connectivity to multiple regions differed significantly according to football and concussion history. The results suggest that football exposure with and without concussion history can have a significant effect on intrinsic brain connectivity and implicate the kynurenine metabolic pathway as one potential moderator of functional connectivity dependent on football exposure and concussion history.
The Policy Implications of Internet Connectivity in Public Libraries
ERIC Educational Resources Information Center
Jaeger, Paul T.; Bertot, John Carlo; McClure, Charles R.; Langa, Lesley A.
2006-01-01
The provision of public Internet access and related networked services by public libraries is affected by a number of information policy issues. This article analyzes the policy dimensions of Internet connectivity in public libraries in light of the data and findings from a national survey of public libraries conducted by the authors of this…
The Effect of Online College Attendance on Job Obtainment through Social Connections
ERIC Educational Resources Information Center
Taggart, Gabel
2017-01-01
Attending college online has implications for students' ability to make social connections and eventually obtain jobs by means of social capital. Previous academic work has tested employer callback rates to fictitious resumes treated by indications of either online or face-to-face college attendance but such methods overlook the networking aspect…
Theorizing the Spatial Dimensions and Pedagogical Implications of Transnationalism
ERIC Educational Resources Information Center
Warriner, Doris
2017-01-01
The construct of transnationalism has been used to describe and examine how people maintain connections with their homeland while learning about and participating in the practices of the receiving context. This notion has influenced a great deal of research that seeks to capture how transnational connections are created and sustained--and also how…
Environmentalism and community: connections and implications for social action
Benjamin J. Marcus; Allen M. Omoto; Patricia L. Winter
2011-01-01
This qualitative study explored conceptualizations of environmentalism and community, as well as the connections of ethnicity to these concepts in a small but diverse sample. Semistructured interviews were conducted with eight participants and included a conceptual content cognitive mapping procedure. The resulting maps were examined for themes and ideas about the key...
Brain networks for visual creativity: a functional connectivity study of planning a visual artwork.
De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David
2016-12-19
Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition.
Brain networks for visual creativity: a functional connectivity study of planning a visual artwork
De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David
2016-01-01
Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition. PMID:27991592
Chen, Juan; Snow, Jacqueline C; Culham, Jody C; Goodale, Melvyn A
2018-04-01
Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.
The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness
Mangus, J Michael; Turner, Benjamin O
2017-01-01
Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500
Issues of Perception Post 9/11 and Implications for Antiterrorism Education
ERIC Educational Resources Information Center
Barner, Rayford E.
2015-01-01
This research study sought to determine a connection between antiterrorism education training and police officer's perception of the cultural communities implicated in the September 11, 2001 terrorist attacks. The study employs a mixed-methods research design using surveys and interviews. The sample is taken from 52 police officers of a police…
Shaping the Future for Children with Foetal Alcohol Spectrum Disorders
ERIC Educational Resources Information Center
Blackburn, Carolyn; Carpenter, Barry; Egerton, Jo
2010-01-01
This article describes work undertaken in connection with an ongoing research project funded by the Training and Development Agency for Schools. It illustrates the educational implications of foetal alcohol spectrum disorders (FASD) and its implications for the educational workforce in seeking to meet the needs of those children who are affected.
ERIC Educational Resources Information Center
Torrance, Deirdre; Forde, Christine
2017-01-01
This article connects with an international debate around the place of professional standards in educational policy targeted at enhancing teacher quality, with associated implications for continuing teacher education. Scotland provides a fertile context for discussion, having developed sets of professional standards in response to a recent…
Ancient Athenian Democratic Knowledge and Citizenship: Connectivity and Intercultural Implications
ERIC Educational Resources Information Center
Gundara, Jagdish S.
2011-01-01
This paper explores the implications that ancient Athens had for modern representative democracies and the links that can be made to the philosophical principles that form the essence of intercultural education. Such an exploration shows that modern democratic societies have ignored many key aspects of the important legacy left to us by these…
ERIC Educational Resources Information Center
Nutchey, David; Grant, Edlyn; English, Lyn
2016-01-01
This paper reports on the use of the RAMR framework within a curriculum project. Description of the RAMR framework's theoretical bases is followed by two descriptions of students' learning in the classroom. Implications include the need for the teacher to connect student activities in a structured sequence, although this may be predicated on the…
Connecting to Nature at the Zoo: Implications for Responding to Climate Change
ERIC Educational Resources Information Center
Clayton, Susan; Luebke, Jerry; Saunders, Carol; Matiasek, Jennifer; Grajal, Alejandro
2014-01-01
Societal response to climate change has been inadequate. A perception that the issue is both physically and temporally remote may reduce concern; concern may also be affected by the political polarization surrounding the issue in the USA. A feeling of connection to nature or to animals may increase personal relevance, and a supportive social…
ERIC Educational Resources Information Center
Rodriguez, Sophia
2018-01-01
This article theorizes migration as risk, drawing on Biesta's notion of risk. The author explores how productive risk connects with emancipation, seeing the risky migrant subjects in societies in new ways, rather than positioning them as marginalized threats. Finally, the author connects the theory of migration as risk to current qualitative data…
NASA Astrophysics Data System (ADS)
Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.
2017-12-01
Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested in morphodynamics of the river in the alluvial reaches.
ERIC Educational Resources Information Center
Fosco, Gregory M.; Van Ryzin, Mark J.; Xia, Mengya; Feinberg, Mark E.
2016-01-01
The formation and maintenance of young adult romantic relationships that are free from violence and are characterized by love, connection, and effective problem-solving have important implications for later well-being and family functioning. In this study, we examined adolescent hostile-aggressive behavior (HAB) and family relationship quality as…
ERIC Educational Resources Information Center
Stack, Sue; Watson, Jane; Abbott-Chapman, Joan
2013-01-01
Tasmania, one of the first locations to have communities connected to the national broadband network (NBN), provided the context within which to ask significant questions about the implications of the NBN for all levels and sectors of education. This paper reports findings from a research project that developed innovative methodology to explore…
Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C
2016-08-01
Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Bernard, Jessica A; Goen, James R M; Maldonado, Ted
2017-09-01
Though schizophrenia (SCZ) is classically defined based on positive symptoms and the negative symptoms of the disease prove to be debilitating for many patients, motor deficits are often present as well. A growing literature highlights the importance of motor systems and networks in the disease, and it may be the case that dysfunction in motor networks relates to the pathophysiology and etiology of SCZ. To test this and build upon recent work in SCZ and in at-risk populations, we investigated cortical and cerebellar motor functional networks at rest in SCZ and controls using publically available data. We analyzed data from 82 patients and 88 controls. We found key group differences in resting-state connectivity patterns that highlight dysfunction in motor circuits and also implicate the thalamus. Furthermore, we demonstrated that in SCZ, these resting-state networks are related to both positive and negative symptom severity. Though the ventral prefrontal cortex and corticostriatal pathways more broadly have been implicated in negative symptom severity, here we extend these findings to include motor-striatal connections, as increased connectivity between the primary motor cortex and basal ganglia was associated with more severe negative symptoms. Together, these findings implicate motor networks in the symptomatology of psychosis, and we speculate that these networks may be contributing to the etiology of the disease. Overt motor deficits in SCZ may signal underlying network dysfunction that contributes to the overall disease state. Hum Brain Mapp 38:4535-4545, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Aberrant striatal functional connectivity in children with autism.
Di Martino, Adriana; Kelly, Clare; Grzadzinski, Rebecca; Zuo, Xi-Nian; Mennes, Maarten; Mairena, Maria Angeles; Lord, Catherine; Castellanos, F Xavier; Milham, Michael P
2011-05-01
Models of autism spectrum disorders (ASD) as neural disconnection syndromes have been predominantly supported by examinations of abnormalities in corticocortical networks in adults with autism. A broader body of research implicates subcortical structures, particularly the striatum, in the physiopathology of autism. Resting state functional magnetic resonance imaging has revealed detailed maps of striatal circuitry in healthy and psychiatric populations and vividly captured maturational changes in striatal circuitry during typical development. Using resting state functional magnetic resonance imaging, we examined striatal functional connectivity (FC) in 20 children with ASD and 20 typically developing children between the ages of 7.6 and 13.5 years. Whole-brain voxelwise statistical maps quantified within-group striatal FC and between-group differences for three caudate and three putamen seeds for each hemisphere. Children with ASD mostly exhibited prominent patterns of ectopic striatal FC (i.e., functional connectivity present in ASD but not in typically developing children), with increased functional connectivity between nearly all striatal subregions and heteromodal associative and limbic cortex previously implicated in the physiopathology of ASD (e.g., insular and right superior temporal gyrus). Additionally, we found striatal functional hyperconnectivity with the pons, thus expanding the scope of functional alterations implicated in ASD. Secondary analyses revealed ASD-related hyperconnectivity between the pons and insula cortex. Examination of FC of striatal networks in children with ASD revealed abnormalities in circuits involving early developing areas, such as the brainstem and insula, with a pattern of increased FC in ectopic circuits that likely reflects developmental derangement rather than immaturity of functional circuits. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness.
Huskey, Richard; Mangus, J Michael; Turner, Benjamin O; Weber, René
2017-12-01
While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. © The Author (2017). Published by Oxford University Press.
Beltz, Adriene M; Gates, Kathleen M; Engels, Anna S; Molenaar, Peter C M; Pulido, Carmen; Turrisi, Robert; Berenbaum, Sheri A; Gilmore, Rick O; Wilson, Stephen J
2013-04-01
The upsurge in alcohol use that often occurs during the first year of college has been convincingly linked to a number of negative psychosocial consequences and may negatively affect brain development. In this longitudinal functional magnetic resonance imaging (fMRI) pilot study, we examined changes in neural responses to alcohol cues across the first year of college in a normative sample of late adolescents. Participants (N=11) were scanned three times across their first year of college (summer, first semester, second semester), while completing a go/no-go task in which images of alcoholic and non-alcoholic beverages were the response cues. A state-of-the-art effective connectivity mapping technique was used to capture spatiotemporal relations among brain regions of interest (ROIs) at the level of the group and the individual. Effective connections among ROIs implicated in cognitive control were greatest at the second assessment (when negative consequences of alcohol use increased), and effective connections among ROIs implicated in emotion processing were lower (and response times were slower) when participants were instructed to respond to alcohol cues compared to non-alcohol cues. These preliminary findings demonstrate the value of a prospective effective connectivity approach for understanding adolescent changes in alcohol-related neural processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.
Isaak, Daniel J; Thurow, Russell F; Rieman, Bruce E; Dunham, Jason B
2007-03-01
Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities.
Chinook salmon use of spawning patches: Relative roles of habitat quality, size, and connectivity
Isaak, D.J.; Thurow, R.F.; Rieman, B.E.; Dunham, J.B.
2007-01-01
Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km 2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities. ?? 2007 by the Ecological Society of America.
Hale, James D.; Fairbrass, Alison J.; Matthews, Tom J.; Sadler, Jon P.
2012-01-01
Background Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Conclusions/Significance Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification. PMID:22428015
Hale, James D; Fairbrass, Alison J; Matthews, Tom J; Sadler, Jon P
2012-01-01
Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km(2) scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification.
Bisecco, Alvino; Rocca, Maria A; Pagani, Elisabetta; Mancini, Laura; Enzinger, Christian; Gallo, Antonio; Vrenken, Hugo; Stromillo, Maria Laura; Copetti, Massimiliano; Thomas, David L; Fazekas, Franz; Tedeschi, Gioacchino; Barkhof, Frederik; Stefano, Nicola De; Filippi, Massimo
2015-07-01
In this multicenter study, we performed a tractography-based parcellation of the thalamus and its white matter connections to investigate the relationship between thalamic connectivity abnormalities and cognitive impairment in multiple sclerosis (MS). Dual-echo, morphological and diffusion tensor (DT) magnetic resonance imaging (MRI) scans were collected from 52 relapsing-remitting MS patients and 57 healthy controls from six European centers. Patients underwent an extensive neuropsychological assessment. Thalamic connectivity defined regions (CDRs) were segmented based on their cortical connectivity using diffusion tractography-based parcellation. Between-group differences of CDRs and cortico-thalamic tracts DT MRI indices were assessed. A vertex analysis of thalamic shape was also performed. A random forest analysis was run to identify the best imaging predictor of global cognitive impairment and deficits of specific cognitive domains. Twenty-two (43%) MS patients were cognitively impaired (CI). Compared to cognitively preserved, CI MS patients had increased fractional anisotropy of frontal, motor, postcentral and occipital connected CDRs (0.002
Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea
2017-01-01
Abstract Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson’s disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. PMID:28040671
Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea
2017-02-01
Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson's disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Niño, Alba; Kissil, Karni; Davey, Maureen P
2016-01-01
With the growing diversity in the United States among both clinicians and clients, many therapeutic encounters are cross-cultural, requiring providers to connect across cultural differences. Foreign-born therapists have many areas of differences to work through. Thus, exploring how foreign-born family therapists in the United States connect to their clients can uncover helpful strategies that all therapists can use to establish stronger cross-cultural therapeutic connections. A thematic analysis was conducted to understand strategies 13 foreign-born therapists used during therapeutic encounters. Four themes were identified: making therapy a human-to-human connection, dealing with stereotypes, what really matters, and flexibility. Findings suggest that developing a deep therapeutic connection using emotional attunement and human-to-human engagement is crucial for successful cross-cultural therapy. Clinical and training implications are provided. © 2015 American Association for Marriage and Family Therapy.
Conscious Connections: Phenomenology and Decoding the Disciplines
ERIC Educational Resources Information Center
Currie, Genevieve
2017-01-01
This chapter describes how seven disciplinary bottlenecks from four diverse disciplines were analyzed using a phenomenological perspective and includes a discussion of embodied knowing and implications for educators.
Connecting the self to traumatic and positive events: links to identity and well-being.
Merrill, Natalie; Waters, Theodore E A; Fivush, Robyn
2016-11-01
Self-event connections in autobiographical narratives help integrate specific episodes from memory into the life story, which has implications for identity and well-being. Previous research has distinguished differential relations between positive and negative self-event connections to psychological well-being but less research has examined identity. In this study, examining self-event connections in emerging adults' narratives, 225 participants narrated a traumatic and an intensely positive experience and completed questionnaires assessing identity development and well-being. Participants who described more negative connections to self overall had higher psychological distress and identity distress, compared to those who described fewer negative connections. Participants who described positive connections to the self in traumatic events were more likely to have lower psychological distress, higher post-traumatic growth, and higher identity commitment, whereas positive connections in positive events was related to higher identity exploration and marginally higher post-traumatic growth. These findings contribute to a growing body of literature that suggests linking autobiographical memories to self can have differential effects on identity and well-being depending on the valence of the event and the connections made.
Clinical Ethics Consultation After God: Implications for Advocacy and Neutrality.
Parker, J Clint
2018-06-01
In After God: Morality and Bioethics in a Secular Age, H. Tristram Engelhardt, Jr. explores the broad implications for moral reasoning once a culture has lost a God's-eye perspective. In this paper, I focus on the implications of Engelhardt's views for clinical ethics consultation. I begin by examining the question of whether clinical ethics consultants (CECs) should advocate a particular viewpoint and/or process during consultations or adopt a neutral stance. I then examine the implications of Engelhardt's views for this question. Finally, I discuss some of Engelhardt's foundational ontological, metaphysical, meta-ethical, and epistemological commitments and how these commitments connect to his views on clinical ethics consultation.
'White matter connectivity and Internet gaming disorder' and broader considerations in the field.
Tam, Philip G E
2017-01-01
This invited commentary on the paper 'White Matter Connectivity and Internet gaming disorder' by Jeong et al. (unpublished) looks at the implications and importance of the MRI findings in the present study-one of the largest to date-and also considers the broader developments of neuroimaging within the complex, emerging field of 'Internet psychology' and problematic Internet usage. © 2015 Society for the Study of Addiction.
Evolution equations for connected and disconnected sea parton distributions
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
2017-08-01
It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.
ERIC Educational Resources Information Center
Henderson, Joseph A.
2015-01-01
How might we understand the complex nature of our existence in the world, and what are the implications of such examination? Moreover, how might we go about engaging others in this practice and what are the complications of such an endeavor? Expanding on Quigley, Dogbey, Che and Hallo's findings, I consider the implications of human-environment…
Functional connectivity correlates of response inhibition impairment in anorexia nervosa.
Collantoni, Enrico; Michelon, Silvia; Tenconi, Elena; Degortes, Daniela; Titton, Francesca; Manara, Renzo; Clementi, Maurizio; Pinato, Claudia; Forzan, Monica; Cassina, Matteo; Santonastaso, Paolo; Favaro, Angela
2016-01-30
Anorexia nervosa (AN) is a disorder characterized by high levels of cognitive control and behavioral perseveration. The present study aims at exploring inhibitory control abilities and their functional connectivity correlates in patients with AN. Inhibitory control - an executive function that allows the realization of adaptive behavior according to environmental contingencies - has been assessed by means of the Stop-Signal paradigm. The study involved 155 patients with lifetime AN and 102 healthy women. A subsample underwent resting-state functional magnetic resonance imaging and was genotyped for COMT and 5-HTTLPR polymorphisms. AN patients showed an impaired response inhibition and a disruption of the functional connectivity of the ventral attention circuit, a neural network implicated in behavioral response when a stimulus occurs unexpected. The 5-HTTLPR genotype appears to significantly interact with the functional connectivity of ventral attention network in explaining task performance in both patients and controls, suggesting a role of the serotoninergic system in mechanisms of response selection. The disruption of the ventral attention network in patients with AN suggests lower efficiency of bottom-up signal filtering, which might be involved in difficulties to adapt behavioral responses to environmental needs. Our findings deserve further research to confirm their scientific and therapeutic implications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Multivariate pattern dependence
Saxe, Rebecca
2017-01-01
When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809
Altered striatal intrinsic functional connectivity in pediatric anxiety
Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique
2016-01-01
Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799
Svob, Connie; Wang, Zhishun; Weissman, Myrna M.; Wickramaratne, Priya; Posner, Jonathan
2016-01-01
Individuals at high risk for depression have increased default mode network (DMN) connectivity, as well as reduced inverse connectivity between the DMN and the central executive network (CEN) (Posner et al., 2015). Other studies have indicated that the belief in the importance of religion/spirituality (R/S) is protective against depression in high risk individuals (Miller et al., 2012). Given these findings, we hypothesized that R/S importance would moderate DMN connectivity, potentially reducing DMN connectivity or increasing DMN-CEN inverse connectivity in individuals at high risk for depression. Using resting-state functional connectivity MRI (rs-fcMRI) in a sample of 104 individuals (aged 11 – 60) at high and low risk for familial depression, we previously reported increased DMN connectivity and reduced DMN-CEN inverse connectivity in high risk individuals. Here, we found that this effect was moderated by self-report measures of R/S importance. Greater R/S importance in the high risk group was associated with decreased DMN connectivity. These results may represent a protective neural adaptation in the DMN of individuals at high risk for depression, and may have implications for other meditation-based therapies for depression. PMID:27717831
Svob, Connie; Wang, Zhishun; Weissman, Myrna M; Wickramaratne, Priya; Posner, Jonathan
2016-11-10
Individuals at high risk for depression have increased default mode network (DMN) connectivity, as well as reduced inverse connectivity between the DMN and the central executive network (CEN) [8]. Other studies have indicated that the belief in the importance of religion/spirituality (R/S) is protective against depression in high risk individuals [5]. Given these findings, we hypothesized that R/S importance would moderate DMN connectivity, potentially reducing DMN connectivity or increasing DMN-CEN inverse connectivity in individuals at high risk for depression. Using resting-state functional connectivity MRI (rs-fcMRI) in a sample of 104 individuals (aged 11-60) at high and low risk for familial depression, we previously reported increased DMN connectivity and reduced DMN-CEN inverse connectivity in high risk individuals. Here, we found that this effect was moderated by self-report measures of R/S importance. Greater R/S importance in the high risk group was associated with decreased DMN connectivity. These results may represent a protective neural adaptation in the DMN of individuals at high risk for depression, and may have implications for other meditation-based therapies for depression. Published by Elsevier Ireland Ltd.
Controlling percolation with limited resources.
Schröder, Malte; Araújo, Nuno A M; Sornette, Didier; Nagler, Jan
2017-12-01
Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work, however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources, percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study its implications, revealing a discontinuous transition as an unintended side effect of optimal control.
Controlling percolation with limited resources
NASA Astrophysics Data System (ADS)
Schröder, Malte; Araújo, Nuno A. M.; Sornette, Didier; Nagler, Jan
2017-12-01
Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work, however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources, percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study its implications, revealing a discontinuous transition as an unintended side effect of optimal control.
Resting state brain networks and their implications in neurodegenerative disease
NASA Astrophysics Data System (ADS)
Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong
2012-10-01
Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.
Systemic inflammation and resting state connectivity of the default mode network.
Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J
2017-05-01
The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Ellard, Kristen K; Zimmerman, Jared P; Kaur, Navneet; Van Dijk, Koene R A; Roffman, Joshua L; Nierenberg, Andrew A; Dougherty, Darin D; Deckersbach, Thilo; Camprodon, Joan A
2018-05-01
Patients with bipolar depression are characterized by dysregulation across the full spectrum of mood, differentiating them from patients with unipolar depression. The ability to switch neural resources among the default mode network, salience network, and executive control network (ECN) has been proposed as a key mechanism for adaptive mood regulation. The anterior insula is implicated in the modulation of functional network switching. Differential connectivity between anterior insula and functional networks may provide insights into pathophysiological differences between bipolar and unipolar mood disorders, with implications for diagnosis and treatment. Resting-state functional magnetic resonance imaging data were collected from 98 subjects (35 unipolar, 24 bipolar, and 39 healthy control subjects). Pearson correlations were computed between bilateral insula seed regions and a priori defined target regions from the default mode network, salience network, and ECN. After r-to-z transformation, a one-way multivariate analysis of covariance was conducted to identify significant differences in connectivity between groups. Post hoc pairwise comparisons were conducted and Bonferroni corrections were applied. Receiver-operating characteristics were computed to assess diagnostic sensitivity. Patients with bipolar depression evidenced significantly altered right anterior insula functional connectivity with the inferior parietal lobule of the ECN relative to patients with unipolar depression and control subjects. Right anterior insula-inferior parietal lobule connectivity significantly discriminated patients with bipolar depression. Impaired functional connectivity between the anterior insula and the inferior parietal lobule of the ECN distinguishes patients with bipolar depression from those with unipolar depression and healthy control subjects. This finding highlights a pathophysiological mechanism with potential as a therapeutic target and a clinical biomarker for bipolar disorder, exhibiting reasonable sensitivity and specificity. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Park, Jennifer; Chu, Hye-Eun; Martin, Sonya N.
2016-01-01
Demographic trends in Korea indicate that the student population is becoming more diverse with regards to culture, ethnicity and language. These changes have implications for science classrooms where inquiry-based, student-centered activities require culturally and linguistically diverse (CLD) students to connect with their peers and successfully…
Structural connectivity of the developing human amygdala.
Saygin, Zeynep M; Osher, David E; Koldewyn, Kami; Martin, Rebecca E; Finn, Amy; Saxe, Rebecca; Gabrieli, John D E; Sheridan, Margaret
2015-01-01
A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.
Critical connections: Communication for the future
NASA Astrophysics Data System (ADS)
1990-01-01
A broad context for evaluating the impacts of new communication technologies is provided. The implications of new communication technologies for business, politics, culture, and individuals, and possible strategies and options for congressional consideration are suggested.
[Seeking the aetiology of autistic spectrum disorder. Part 2: Functional neuroimaging].
Bryńska, Anita
2012-01-01
Multiple functional imaging techniques help to a better understanding of the neurobiological basis of autism-spectrum disorders (ASD). The early functional imaging studies on ASD focused on task-specific methods related to core symptom domains and explored patterns of activation in response to face processing, theory of mind tasks, language processing and executive function tasks. On the other hand, fMRI research in ASD focused on the development of functional connectivity methods and has provided evidence of alterations in cortical connectivity in ASD and establish autism as a disorder of under-connectivity among the brain regions participating in cortical networks. This atypical functional connectivity in ASD results in inefficiency and poor integration of processing in network connections to achieve task performance. The goal of this review is to summarise the actual neuroimaging functional data and examine their implication for understanding of the neurobiology of ASD.
Finn, Emily S; Todd Constable, R
2016-09-01
Functional brain connectivity measured with functional magnetic resonance imaging (fMRI) is a popular technique for investigating neural organization in both healthy subjects and patients with mental illness. Despite a rapidly growing body of literature, however, functional connectivity research has yet to deliver biomarkers that can aid psychiatric diagnosis or prognosis at the single-subject level. One impediment to developing such practical tools has been uncertainty regarding the ratio of intra- to interindividual variability in functional connectivity; in other words, how much variance is state- versus trait-related. Here, we review recent evidence that functional connectivity profiles are both reliable within subjects and unique across subjects, and that features of these profiles relate to behavioral phenotypes. Together, these results suggest the potential to discover reliable correlates of present and future illness and/or response to treatment in the strength of an individual's functional brain connections. Ultimately, this work could help develop personalized approaches to psychiatric illness.
NASA Astrophysics Data System (ADS)
Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.
2016-12-01
Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.
Fajardo, Inmaculada; Tavares, Gema; Ávila, Vicenta; Ferrer, Antonio
2013-04-01
Cohesive elements of texts such as connectives (e.g., but, in contrast) are expected to facilitate inferential comprehension in poor readers. Two experiments tested this prediction in poor readers with intellectual disability (ID) by: (a) comparing literal and inferential text comprehension of texts with and without connectives and/or high frequency content words (Experiment 1) and (b) exploring the effects of type and familiarity of connectives on two-clause text comprehension by means of a cloze task (Experiment 2). Neither the addition of high frequency content words nor connectives in general produced inferential comprehension improvements. However, although readers with ID were less likely to select the target connective in the cloze task than chronologically age-matched readers (mean age=21 years) in general, their performance was affected by the type of connective and its familiarity. Familiarity had a facilitative effect for additive and contrastive connectives, but interfered in the case of temporal and causal connectives. The average performance of a reading level-matched control group (typically developing children) was similar to the group of readers with ID although the pattern of interaction between familiarity and type of connectives varied between groups. The implications of these findings for the adaptation of texts in special education contexts are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia
2017-04-01
In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions on the distribution of vegetation leading to degradation are related to sharp variations on the landscape surface connectivity. Finally we will discuss results analysing the potential effect of soils depths on the coevolution of system structures and connectivity. The relevance and implications of these results for the successful reclamation of water-limited environments in which vegetation stability largely depends on the redistribution of the scarce water resources will be discussed.
Zhu, Xueling; Zhu, Qiuling; Shen, Huaizhen; Liao, Weihua; Yuan, Fulai
2017-01-01
Neuroimaging evidence implicates the association between rumination and default mode network (DMN) in major depressive disorder (MDD). However, the relationship between rumination and DMN subsystems remains incompletely understood, especially in patients with MDD. Thirty-three first-episode drug-naive patients with MDD and thirty-three healthy controls (HCs) were enrolled and underwent resting-sate fMRI scanning. Functional connectivity analysis was performed based on 11 pre-defined regions of interest (ROIs) for three DMN subsystems: the midline core, dorsal medial prefrontal cortex (dMPFC) and medial temporal lobe (MTL). Compared with HCs group, patients with MDD exhibited increased within-system connectivity in the dMPFC subsystem and inter-system connectivity between the dMPFC and MTL subsystems. Decreased inter-system connectivity was identified between the midline core and dMPFC subsystem in MDD patients. Depressive rumination was positively correlated with within-system connectivity in the dMPFC subsystem (dMPFC-TempP) and with inter-system connectivity between the dMPFC and MTL subsystems (LTC-PHC). Our results suggest MDD may be characterized by abnormal DMN subsystems connectivity, which may contribute to the pathophysiology of the maladaptive self-focus in MDD patients. PMID:28225084
Topographical maps as complex networks
NASA Astrophysics Data System (ADS)
da Fontoura Costa, Luciano; Diambra, Luis
2005-02-01
The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modularity, short and long range interactions, spatial correlations, and topographical connections. Particularly interesting, the latter type of organization implies special demands on developing systems in order to achieve precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical connections in the mammalian brain remains an elusive issue. The present work reports on how recent results from complex network formalism can be used to quantify and model the effect of topographical connections between neuronal cells over the connectivity of the network. While the topographical mapping between two cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are adopted for implementing intramodular connections, including random, preferential-attachment, short-range, and long-range networks. It is shown that, though spatially uniform and simple, topographical connections between modules can lead to major changes in the network properties in some specific cases, depending on intramodular connections schemes, fostering more effective intercommunication between the involved neuronal cells and modules. The possible implications of such effects on cortical operation are discussed.
Altered cortical communication in amyotrophic lateral sclerosis.
Blain-Moraes, Stefanie; Mashour, George A; Lee, Heonsoo; Huggins, Jane E; Lee, Uncheol
2013-05-24
Amyotrophic lateral sclerosis (ALS) is a disorder associated primarily with the degeneration of the motor system. More recently, functional connectivity studies have demonstrated potentially adaptive changes in ALS brain organization, but disease-related changes in cortical communication remain unknown. We recruited individuals with ALS and age-matched controls to operate a brain-computer interface while electroencephalography was recorded over three sessions. Using normalized symbolic transfer entropy, we measured directed functional connectivity from frontal to parietal (feedback connectivity) and parietal to frontal (feedforward connectivity) regions. Feedback connectivity was not significantly different between groups, but feedforward connectivity was significantly higher in individuals with ALS. This result was consistent across a broad electroencephalographic spectrum (4-35 Hz), and in theta, alpha and beta frequency bands. Feedback connectivity has been associated with conscious state and was found to be independent of ALS symptom severity in this study, which may have significant implications for the detection of consciousness in individuals with advanced ALS. We suggest that increases in feedforward connectivity represent a compensatory response to the ALS-related loss of input such that sensory stimuli have sufficient strength to cross the threshold necessary for conscious processing in the global neuronal workspace. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Engineered nanomaterials in food: implications for food safety and consumer health.
Martirosyan, Alina; Schneider, Yves-Jacques
2014-05-28
From the current state-of-the-art, it is clear that nanotechnology applications are expected to bring a range of benefits to the food sector aiming at providing better quality and conservation. In the meantime, a growing number of studies indicate that the exposure to certain engineered nanomaterials (ENMs) has a potential to lead to health complications and that there is a need for further investigations in order to unravel the biological outcomes of nanofood consumption. In the current review, we summarize the existing data on the (potential) use of ENMs in the food industry, information on the toxicity profiles of the commonly applied ENMs, such as metal (oxide) nanoparticles (NPs), address the potential food safety implications and health hazards connected with the consumption of nanofood. A number of health complications connected with the human exposure to ENMs are discussed, demonstrating that there is a real basis for the arisen concern not only connected with the gut health, but also with the potency to lead to systemic toxicity. The toxicological nature of hazard, exposure levels and risk to consumers from nanotechnology-derived food are on the earliest stage of investigation and this review also highlights the major gaps that need further research and regulation.
Floodplain Connectivity and implications for flooding and floodplain function
NASA Astrophysics Data System (ADS)
Barrow, E.
2017-12-01
Regime theory suggests that floodplains should be inundated on average once every two years to maintain form and function of both the river and the floodplain. Natural disconnection along non-alluvial reaches and where the river has moved to flow against terrace edges is to be expected, however, disconnectivity caused by river management is now affecting increasing lengths of watercourses. This study utilises aerial Lidar data to determine the relative height difference between the watercourse and adjacent valley bottoms to assess the degree of disconnectivity along main river systems across Cumbria in the UK. The results reveal that many rivers are now poorly connected to their floodplains which are now largely non-functional. Floodplain geomorphic units, although often present, are currently inactive and water table levels are reduced resulting in a loss of wetland in favour of ruderal species tolerant of drier conditions. The causes of such widespread disconnectivity may be attributed to historic dredging and straightening of these rivers and revetment and riparian tree planting has further exacerbated the problem restricting lateral activity and the subsequent development of new areas of connected floodplain. The high degree of disconnection has implications for future river management and river restoration and these are discussed.
Morrogh-Bernard, Helen C; Husson, Simon J; Harsanto, Fransiskus A; Chivers, David J
2014-01-01
This study was conducted to see how orang-utans (Pongo pygmaeus wurmbii) were coping with fine-scale habitat disturbance in a selectively logged peat swamp forest in Central Kalimantan, Borneo. Seven habitat classes were defined, and orang-utans were found to use all of these, but were selective in their preference for certain classes over others. Overall, the tall forest classes (≥20 m) were preferred. They were preferred for feeding, irrespective of canopy connectivity, whereas classes with a connected canopy (canopy cover ≥75%), irrespective of canopy height, were preferred for resting and nesting, suggesting that tall trees are preferred for feeding and connected canopy for security and protection. The smaller forest classes (≤10 m high) were least preferred and were used mainly for travelling from patch to patch. Thus, selective logging is demonstrated here to be compatible with orang-utan survival as long as large food trees and patches of primary forest remain. Logged forest, therefore, should not automatically be designated as 'degraded'. These findings have important implications for forest management, forest classification and the designation of protected areas for orang-utan conservation.
[Machismo, made in Mexico? Social implications of the masculine hegemony in Mexico].
Ortiz-Ortega, Adriana; Rivas-Zivy, Marta
2006-01-01
Hegemonic masculinity may be considered a public health problem in that it promotes aggressive behavior, violence towards men and women, and self-injury. "Being a man" within such a pattern implies stress, tension and anxiety to prove one's own masculinity. This article proposes that it is necessary to understand how dominant masculinity is individually and socially connected with the exercise of power over women and its implications in legislation and rights, to go beyond it. This text reviews these connections both through interviews with men and through examining how literature on masculinities presents the rarely discussed connections among power, law, legislation and dominant notions of masculinity. It explores the notion of power present both in literature and in men's perceptions, as a way to understand which perceptions of authority are culturally and socially legitimated by men. It is concluded that masculinities are in a process of transformation in Mexico, but that important vacuums persist which arrest the eradication of dominant masculinity. The analysis is based on a bibliographic revision, together with group and individual interviews with men. Results show how in the men's perceptions and reflections on the exercise of power, there persists a lack of criticism.
ERIC Educational Resources Information Center
Fishback, Sarah Jane
1999-01-01
Reviews research on the brain and memory, emotions, aging, and learning. Outlines practice implications: connect new learning to personal experiences, make sure learners are paying attention, recognize the role of emotions, and be aware that stimulation influences the aging brain. (SK)
Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.
Celià-Terrassa, Toni
2018-05-04
Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.
Working memory involvement in stuttering: exploring the evidence and research implications.
Bajaj, Amit
2007-01-01
Several studies of utterance planning and attention processes in stuttering have raised the prospect of working memory involvement in the disorder. In this paper, potential connections between stuttering and two elements of Baddeley's [Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Neuroscience, 4, 829-839] working memory model, phonological memory and central executive, are posited. Empirical evidence is drawn from studies on phonological memory and dual-task performance among children and adults who stutter to examine support for the posited connections. Implications for research to examine working memory as one of the psycholinguistic bases of stuttering are presented. The reader will learn about and be able to: (1) appraise potential relationships between working memory and stuttering; (2) evaluate empirical evidence that suggests the possibility of working memory involvement in stuttering; and (3) identify research directions to explore the role of working memory in stuttering.
Hepatic venous connection to a persistent inferior caval vein in left isomerism.
Guenthard, J; Carvalho, J S; Anderson, R H; Rigby, M L
1990-09-01
In 22 cases of left atrial isomerism studied at the Brompton Hospital, four cases were found to have an unusual arrangement of the abdominal vessels. There was persistence of an inferior caval vein, partially anomalous hepatic venous connection and additional continuation of part of the venous return from the lower body through the azygos venous system. This venous pattern had surgical implications in our index case, since redirection of the inferior caval venous return was necessary.
Structural Connectivity of the Developing Human Amygdala
Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret
2015-01-01
A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758
Why Broadband Internet Should Not Be the Priority for Developing Countries
NASA Astrophysics Data System (ADS)
Noam, Eli
With broadband Internet connectivity progressing, the focus of attention has shifted to those left behind. The shorthand word for this concern is the classic “digital divide.” Underlying virtually every discussion about a gap in broadband penetrations is the implicit assumption that overcoming such a divide is a priority (Meschi et al., 2004; Crandall et al., 2007). But maybe we first should pause for a moment and understand the implications of ending this divide. If we do that, we might end up changing our perspective on Internet policy in an important way: away from a focus on broadband Internet connectivity, and towards universal connectivity and the creation of E-transactions, E-commerce, and E-content.
Health Vlogger-Viewer Interaction in Chronic Illness Management
Liu, Leslie S.; Huh, Jina; Neogi, Tina; Inkpen, Kori; Pratt, Wanda
2014-01-01
Health video blogs (vlogs) allow individuals with chronic illnesses to share their stories, experiences, and knowledge with the general public. Furthermore, health vlogs help in creating a connection between the vlogger and the viewers. In this work, we present a qualitative study examining the various methods that health vloggers use to establish a connection with their viewers. We found that vloggers used genres to express specific messages to their viewers while using the uniqueness of video to establish a deeper connection with their viewers. Health vloggers also explicitly sought interaction with their viewers. Based on these results, we present design implications to help facilitate and build sustainable communities for vloggers. PMID:24634895
Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I
2014-10-01
Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Implications of the S-Web Model for Impulsive SEPs
NASA Astrophysics Data System (ADS)
Antiochos, Spiro K.; Higginson, Aleida K.; DeVore, C. Richard
2017-08-01
One of the most important discoveries of the STEREO mission is that impulsive Solar Energetic Particle (SEP) events frequently exhibit large longitudinal spread in the heliosphere, up to 100 degrees or more. This result is especially puzzling given the long-standing observations that impulsive SEPs originate in highly localized regions in the corona, angular extent less than one degree, and that the SEPs frequently show so-called drop-outs, effectively ruling out diffusion as a mechanism for the observed spread. We discuss the implications of the S-Web slow solar wind model for the propagation of SEPs and their distribution in the heliosphere. We present results from 3D MHD simulations demonstrating that for commonly-observed coronal magnetic topologies, the connectivity of the corona to heliosphere will be quasi-singular, with small regions near the Sun dynamically connecting to giant arcs in the heliosphere that span tens of degrees in both latitude and longitude. We show that the S-Web model can account for both SEP longitudinal spread and dropouts, and discuss implications for observations from the upcoming Solar Orbiter and Solar Probe Plus missions.This research was supported, in part, by the NASA LWS Program.
Virtual Teaching on the Tundra.
ERIC Educational Resources Information Center
McAuley, Alexander
1998-01-01
Describes how a teacher and a distance-learning consultant collaborate in using the Internet and Computer Supported Intentional Learning Environment (CISILE) to connect multicultural students on the harsh Baffin Island (Canada). Discusses the creation of the class's database and future implications. (AEF)
White matter structural connectivity and episodic memory in early childhood.
Ngo, Chi T; Alm, Kylie H; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S; Olson, Ingrid R
2017-12-01
Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children's performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
White Matter Structural Connectivity and Episodic Memory in Early Childhood
Ngo, Chi T.; Alm, Kylie H.; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S.; Olson, Ingrid R.
2018-01-01
Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children’s performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory PMID:29175538
Beaty, Roger E.; Benedek, Mathias; Wilkins, Robin W.; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J.; Hodges, Donald A.; Koschutnig, Karl; Neubauer, Aljoscha C.
2014-01-01
The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. PMID:25245940
The ties that bind what is known to the recognition of what is new.
Nelson, D L; Zhang, N; McKinney, V M
2001-09-01
Recognition success varies with how information is encoded (e.g., level of processing) and with what is already known as a result of past learning (e.g., word frequency). This article presents the results of experiments showing that preexisting connections involving the associates of studied words facilitate their recognition regardless of whether the words are intentionally encoded or are incidentally encoded under semantic or nonsemantic conditions. Words are more likely to be recognized when they have either more resonant connections coming back to them from their associates or more connections among their associates. Such results occur even though attention is never drawn to these associates. Regression analyses showed that these connections affect recognition independently of frequency, so the present results add to the literature showing that prior lexical knowledge contributes to episodic recognition. In addition, equations that use free-association data to derive composite strength indices of resonance and connectivity were evaluated. Implications for theories of recognition are discussed.
Eisman, Andria B; Lee, Daniel B; Hsieh, Hsing-Fang; Stoddard, Sarah A; Zimmerman, Marc A
2018-06-08
Violence and substance use disproportionately affect African American youth in urban, disadvantaged communities. Expanding positive peer and adult connections is a mechanism by which organized activity participation may reduce risk of negative outcomes. We assessed if organized activity participation decreases the likelihood of later negative outcomes through expanding positive social connections using a parallel mediation model (Wave 1: N = 681; 50% female; M age = 14.86 years; SD = 0.65). We found indirect effects from participation to cigarette use (b = -0.04, 95% CI: -0.07, -0.01) and violent behavior (b = -0.04; 95% CI: -0.07, -0.01) through positive peer connections. We did not find indirect effects through positive adult connections. This may be because of the notable influence of peers on negative outcomes during adolescence. Organized activities can help youth expand positive peer connections, which, in turn, reduces risk of later negative outcomes. Implications for prevention are discussed.
The implications of brain connectivity in the neuropsychology of autism
Maximo, Jose O.; Cadena, Elyse J.; Kana, Rajesh K.
2014-01-01
Autism is a neurodevelopmental disorder that has been associated with atypical brain functioning. Functional connectivity MRI (fcMRI) studies examining neural networks in autism have seen an exponential rise over the last decade. Such investigations have led to characterization of autism as a distributed neural systems disorder. Studies have found widespread cortical underconnectivity, local overconnectivity, and mixed results suggesting disrupted brain connectivity as a potential neural signature of autism. In this review, we summarize the findings of previous fcMRI studies in autism with a detailed examination of their methodology, in order to better understand its potential and to delineate the pitfalls. We also address how a multimodal neuroimaging approach (incorporating different measures of brain connectivity) may help characterize the complex neurobiology of autism at a global level. Finally, we also address the potential of neuroimaging-based markers in assisting neuropsychological assessment of autism. The quest for a biomarker for autism is still ongoing, yet new findings suggest that aberrant brain connectivity may be a promising candidate. PMID:24496901
Tone-deafness – a new disconnection syndrome?
Loui, Psyche; Alsop, David; Schlaug, Gottfried
2009-01-01
Communicating with one’s environment requires efficient neural interaction between action and perception. Neural substrates ofsound perception and production are connected by the arcuate fasciculus (AF). While AF is known to be involved in language, its roles in non-linguistic functions are unexplored. Here we show that tone-deaf people, with impaired sound perception and production, have reduced AF connectivity. Diffusion tensor tractography and psychophysics were assessed in tone-deaf individuals and matched controls. Abnormally-reduced AF connectivity was observed in the tone-deaf. Furthermore, we observed relationships between AF and auditory-motor behavior: superior and inferior AF branches predict psychophysically-assessed pitch-discrimination and sound production-perception abilities respectively. This neural abnormality suggests that tone-deafness leads to a reduction in connectivity resulting in pitch-related impairments. Results support a dual-stream anatomy of sound production and perception implicated in vocal communications. By identifying white-matter differences and their psychophysical correlates, results contribute to our understanding of how neural connectivity subserves behavior. PMID:19692596
Ryan, Cathryn T; Kramer, Jessica M; Cohn, Ellen S
2016-08-01
The purpose of this study was to examine the role of the self-disclosure process in regard to connection development and relationship quality in peer mentoring relationships between transition-age youth (ages 15-20) and young adults (ages 18-36) with intellectual and/or developmental disabilities. Self-disclosure is defined as "the disclosure of inner feelings and experiences to another person" that "fosters liking, caring, and trust, thereby facilitating the deepening of close relationships" ( Reis & Shaver, 1988 , p. 372). Nine peer mentoring dyads with varied interpersonal connections were purposefully selected from a larger intervention study. Recorded mentoring conversations were analyzed for self-disclosure content and peer mentor response. The findings demonstrated trends related to connection development and differences across degree of connection. In relationships with stronger connections, there was a higher quantity of self-disclosure and more frequent disclosure of emotions, and peer mentors responded more frequently with advice and reciprocated self-disclosure. Implications of findings for promoting higher-quality peer mentoring relationships are discussed.
Bonhomme, Vincent; Boveroux, Pierre; Hans, Pol; Brichant, Jean François; Vanhaudenhuyse, Audrey; Boly, Melanie; Laureys, Steven
2011-10-01
To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity.
Real-time Internet connections: implications for surgical decision making in laparoscopy.
Broderick, T J; Harnett, B M; Doarn, C R; Rodas, E B; Merrell, R C
2001-08-01
To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were "grabbed" from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation.
Abraham, Eyal; Gilam, Gadi; Kanat-Maymon, Yaniv; Jacob, Yael; Zagoory-Sharon, Orna; Hendler, Talma; Feldman, Ruth
2017-11-01
Alloparental care, the cooperative care of offspring by group members other than the biological mother, has been widely practiced since early hominin evolution to increase infant survival and thriving. The coparental bond-a relationship of solidarity and commitment between two adults who join their effort to care for children-is a central contributor to children's well-being and sociality; yet, the neural basis of coparenting has not been studied in humans. Here, we followed 84 first-time co-parents (42 couples) across the first 6 years of family formation, including opposite-sex and same-sex couples, measured brain response to coparental stimuli, observed collaborative and undermining coparental behaviors in infancy and preschool, assayed oxytocin (OT) and vasopressin (AVP), and measured coparenting and child behavior problems at 6 years. Across family types, coparental stimuli activated the striatum, specifically the ventral striatum and caudate, striatal nodes implicated in motivational goal-directed social behavior. Psychophysiological interaction analysis indicated that both nodes were functionally coupled with the vmPFC in support of the human coparental bond and this connectivity was stronger as collaborative coparental behavior increased. Furthermore, caudate functional connectivity patterns differentiated distinct corticostriatal pathways associated with two stable coparental behavioral styles; stronger caudate-vmPFC connectivity was associated with more collaborative coparenting and was linked to OT, whereas a stronger caudate-dACC connectivity was associated with increase in undermining coparenting and was related to AVP. Finally, dyadic path-analysis model indicated that the parental caudate-vmPFC connectivity in infancy predicted lower child externalizing symptoms at 6 years as mediated by collaborative coparenting in preschool. Findings indicate that the coparental bond is underpinned by striatal activations and corticostriatal connectivity similar to other human affiliative bonds; highlight specific corticostriatal pathways as defining distinct coparental orientations that underpin family life; chart brain-hormone-behavior constellations for the mature, child-orientated coparental bond; and demonstrate the flexibility of this bond across family constellations and its unique contribution to child well-being.
Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.
2014-01-01
Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.
Auditory Resting-State Network Connectivity in Tinnitus: A Functional MRI Study
Maudoux, Audrey; Lefebvre, Philippe; Cabay, Jean-Evrard; Demertzi, Athena; Vanhaudenhuyse, Audrey; Laureys, Steven; Soddu, Andrea
2012-01-01
The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI “resting-state” connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus. PMID:22574141
Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng
2017-03-01
A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.
Roth, Jennifer K.; Johnson, Marcia K.; Tokoglu, Fuyuze; Murphy, Isabella; Constable, R. Todd
2014-01-01
Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data. These regions show functional connectivity to different networks, thus supporting the parcellation of these major regions into functional subregions. Many regions showing significant connectivity during the working memory residual data (with task events regressed from the data) were also significantly connected during rest suggesting that these network connections to subregions within major regions of cortex are intrinsic. For some of these connections, task demands modulate activity in these intrinsic networks. Approximately half of the connections significant during task were significant during rest, indicating that some of the connections are intrinsic while others are recruited only in the service of the task. Furthermore, the network connections to traditional ‘task positive’ and ‘task negative’ (a.k.a ‘default mode’) regions shift from positive connectivity to negative connectivity depending on task demands. These findings demonstrate that such task-identified subregions are part of distinct networks, and that these networks have different patterns of connectivity for task as they do during rest, engaging connections both to task positive and task negative regions. These results have implications for understanding the parcellation of commonly active regions into more specific functional networks. PMID:24637793
Gut microbiome can control antitumor immune function in liver
An NCI study in mice that found a connection between gut bacteria and antitumor immune responses in the liver has implications for understanding mechanisms that lead to liver cancer and for potential treatments. The study was published in Science.
Adapting Teaching Strategies To Encompass New Technologies.
ERIC Educational Resources Information Center
Oravec, Jo Ann
2001-01-01
The explosion of special-purpose computing devices--Internet appliances, handheld computers, wireless Internet, networked household appliances--challenges business educators attempting to provide computer literacy education. At a minimum, they should address connectivity, expanded applications, and social and public policy implications of these…
Resting connectivity between salience nodes predicts recognition memory.
Andreano, Joseph M; Touroutoglou, Alexandra; Dickerson, Bradford C; Barrett, Lisa F
2017-06-01
The resting connectivity of the brain's salience network, particularly the ventral subsystem of the salience network, has been previously associated with various measures of affective reactivity. Numerous studies have demonstrated that increased affective arousal leads to enhanced consolidation of memory. This suggests that individuals with greater ventral salience network connectivity will exhibit greater responses to affective experience, leading to a greater enhancement of memory by affect. To test this hypothesis, resting ventral salience connectivity was measured in 41 young adults, who were then exposed to neutral and negative affect inductions during a paired associate memory test. Memory performance for material learned under both negative and neutral induction was tested for correlation with resting connectivity between major ventral salience nodes. The results showed a significant interaction between mood induction (negative vs neutral) and connectivity between ventral anterior insula and pregenual anterior cingulate cortex, indicating that salience node connectivity predicted memory for material encoded under negative, but not neutral induction. These findings suggest that the network state of the perceiver, measured prior to affective experience, meaningfully influences the extent to which affect modulates memory. Implications of these findings for individuals with affective disorder, who show alterations in both connectivity and memory, are considered. © The Author (2017). Published by Oxford University Press.
Stakeholder analysis of perceived relevance of connectivity - the implication to your research
NASA Astrophysics Data System (ADS)
Smetanova, Anna; Müller, Eva Nora Nora; Fernández-Getino, Ana Patricia; José Marqués, María; Vericat, Damià; Dugodan, Recep; Kapovic, Marijana; Ljusa, Melisa; Ferreira, Carla Sofia; Cavalli, Marco; Marttila, Hannu; Broja, Manuel Esteban Lucas; Święchowicz, Jolanta; Zumr, David
2016-04-01
Effectively communicated connectivity research is inevitable for targeting the real world connectivity issues, the land and water managers - stakeholders, deal with every day. The understanding of stakeholder's perception of connectivity and the usage of the connectivity concept in their work (both theoretically and practically), are the pre-requisites for successful dialogue between scientist and the end-users of the scientific advancements, that is one of the goals of the COST Action ES1306: Connecting European connectivity research (Connecteur). The contribution presents the results of a questionnaire survey on stakeholders perception of connectivity from 20 European countries. Potential stakeholders on local/ regional and national level, in agriculture, water and land management, or cross-sectoral management authorities, were identified and interviewed in their native language by 29 members of the Connecteur network. Semi-structured interviews consisted of mix of 20 opened, multiple-choice and closed questions. They focused on the context the stakeholders' work, the management issues they deal with, the sources and type of data their use, their collaborative network in relation to management, understanding of connectivity and their expectation on connectivity research. Semi-qualitative analysis was applied to the final datasets of 85 questionnaires in order to (i) understand the stakeholders mental models and perception of connectivity,(ii) to identify the management issues where immediate scientific cooperation is required and / or demanded, and (iii) to identify the tools to represent connectivity that would accepted and implemented by the practitioners. Direct implications for the experts in different domains of the connectivity research, including (i) its theoretical conceptualisation, (ii) measurements, (iii) modelling, (iv) connectivity indices and (v)communication, are presented. Following members of the Connecteur expert team are acknowledged for conducting interview with a stakeholder: Charles Bielders (Catholic University Louvain, Belgium), Frédéric Darboux (Department of Soil Science Orléans, INRA, France), Dragana Dordevic (Centre of Chemistry, University of Belgrade, Serbia), Tobias Heckmann (Catholic University of Eichstätt-Ingolstadt, Germany), Anna Kidová (Institute of Geography, Slovak Academy of Sciences, Slovakia), Tobias Krüger (Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt University, Germany), Carly Maynard (Department of Geography and the Lived Environment, University of Edinburgh, UK), Eva Mockler, (School of Civil, Structural and Environmental Engineering , University College Dublin, Ireland), Tony Parsons, (Department of Geography, University Sheffield, UK), Thorunn Petursdottir (RECARE, Soil Conservation Service of Iceland, Iceland), Ronald Pöppel (Institute of Geography and Regional Research, University Vienna, Austria), Jerzy Rejman (Institute of Agronomy, Polish Academy of Sciences, Poland), Jose López-Tarazón (Institute of Earth and Environmental Sciences, University of Potsdam, Germany), Sophie Tindale (Department of Geography, University, Durham, UK), Brigitta Tóth (Department of Crop Production and Soil Sciences, Pannonian University, Hungary) and Marco Vainu (Institute of Ecology, Tallinn University, Estonia). The project was supported by COST-STSM-ECOST-STSM-ES1306-011215-063624.
Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA?
Wong, Min May; Chong, Geeng Loo; Verslues, Paul E
2017-01-01
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Thompson, William H; Fransson, Peter
2015-01-01
When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.
Tompkins, Catherine J; Ihara, Emily S; Cusick, Alison; Park, Nan Sook
2012-01-01
Social support is a key component of well-being for older adults, particularly for those who have moved from independent living to assisted living involving a transformation of roles, relationships, and responsibilities. Twenty-nine assisted-living facility residents were interviewed to understand the perceived continuity of relationships with family and friends. An inductive approach to thematic analysis revealed 1 main theme and 3 subthemes. The main theme that emerged was: maintaining connections but wanting more. Residents appreciated maintaining connections with family and friends, but often expressed feelings of discontentment with the continuity of former relationships. The subthemes included: appreciating family and friends, waiting for more, and losing control. Implications for research and practice are discussed.
Canonical microcircuits for predictive coding
Bastos, Andre M.; Usrey, W. Martin; Adams, Rick A.; Mangun, George R.; Fries, Pascal; Friston, Karl J.
2013-01-01
Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate. PMID:23177956
Multidimensional Identity Model Revisited: Implications for Student Affairs
ERIC Educational Resources Information Center
Pope, Raechele L.; Reynolds, Amy L.
2017-01-01
This chapter explores the connection between the authors' foundational Multidimensional Identity Model and intersectionality. The authors discuss the challenges and promises of capturing a holistic, intersectional perspective in identity theory, as well as how to engage the concept of identity as practitioners.
Research Think Tank: "Complexifying" International Communication and Communication Technology.
ERIC Educational Resources Information Center
Thomas, Gail Fann
1997-01-01
Describes the Research Think Tank of the Association for Business Communication: its history, 1996 focus and participants, and its process. Notes that key ideas emerging from this process focused on international communication, communication technology, connecting international communication, and implications for researchers. (SR)
Stormwater management via passive green infrastructure - College Park, MD
The purpose of the presentation is two-fold: 1) Use field data to connect concepts in stormwater-wastewater management, hydrologic implications of urban land management and demolition, urban soils, field methods to gather appropriate data; and to define passive green infrastructu...
CONNECTIVITY OF ENVIRONMENT, HUMAN HEALTH AND SOCIOECONOMICS: IMPLICATIONS FOR SCIENCE AND POLICY
Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization of commerce, evolving patterns of land use, and technological advances in such areas as manufacturing and genetically modified food...
ERIC Educational Resources Information Center
Marder, Michael
2013-01-01
Striking differences between physics and biology have important implications for interdisciplinary science, technology, engineering, and mathematics (STEM) education. The author is a physicist with interdisciplinary connections. The research group in which he works, the Center for Nonlinear Dynamics at the University of Texas at Austin, is…
Supporting the Social Lives of Adolescents Who Are Blind: Research to Practice
ERIC Educational Resources Information Center
Arndt, Katrina; Lieberman, Lauren; James, Alisa
2014-01-01
Seven adolescents who are blind and seven of their parents were interviewed about the adolescents' social lives. Adolescent and parent perspectives are reviewed, followed by implications for teachers to support the social connections of students who are blind.
The NFSNET: Beginnings of a National Research Internet.
ERIC Educational Resources Information Center
Catlett, Charles E.
1989-01-01
Describes the development, current status, and possible future of NSFNET, which is a backbone network designed to connect five national supercomputer centers established by the National Science Foundation. The discussion covers the implications of this network for research and national networking needs. (CLB)
Critical Connections: Communication for the Future.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
This report analyzes the implications of new communication technologies for business, politics, culture, and individuals, and suggests possible strategies and options for Congressional consideration. The report consists of 13 chapters: (1) Summary; (2) Conceptual Framework for Analyzing Communication Issues; (3) New Technologies and Changing…
Children's Conflict-Related Emotions: Implications for Morality and Autonomy.
ERIC Educational Resources Information Center
Arsenio, William; Cooperman, Sharon
1996-01-01
Investigates the influence of children's affective dispositions and knowledge of emotions on their ability to use nonaggressive conflict resolution strategies, exploring connections between autonomy and socioemotional development. Finds that individual differences in affective dispositions and emotional knowledge influence children's abilities to…
de Castro, Fernando
2009-01-01
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny. PMID:20582279
Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health
Martirosyan, Alina; Schneider, Yves-Jacques
2014-01-01
From the current state-of-the-art, it is clear that nanotechnology applications are expected to bring a range of benefits to the food sector aiming at providing better quality and conservation. In the meantime, a growing number of studies indicate that the exposure to certain engineered nanomaterials (ENMs) has a potential to lead to health complications and that there is a need for further investigations in order to unravel the biological outcomes of nanofood consumption. In the current review, we summarize the existing data on the (potential) use of ENMs in the food industry, information on the toxicity profiles of the commonly applied ENMs, such as metal (oxide) nanoparticles (NPs), address the potential food safety implications and health hazards connected with the consumption of nanofood. A number of health complications connected with the human exposure to ENMs are discussed, demonstrating that there is a real basis for the arisen concern not only connected with the gut health, but also with the potency to lead to systemic toxicity. The toxicological nature of hazard, exposure levels and risk to consumers from nanotechnology-derived food are on the earliest stage of investigation and this review also highlights the major gaps that need further research and regulation. PMID:24879486
FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network
Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun
2008-01-01
Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532
Academic stress and personality interact to increase the neural response to high-calorie food cues.
Neseliler, Selin; Tannenbaum, Beth; Zacchia, Maria; Larcher, Kevin; Coulter, Kirsty; Lamarche, Marie; Marliss, Errol B; Pruessner, Jens; Dagher, Alain
2017-09-01
Psychosocial stress is associated with an increased intake of palatable foods and weight gain in stress-reactive individuals. Personality traits have been shown to predict stress-reactivity. However, it is not known if personality traits influence brain activity in regions implicated in appetite control during psychosocial stress. The current study assessed whether Gray's Behavioural Inhibition System (BIS) scale, a measure of stress-reactivity, was related to the activity of brain regions implicated in appetite control during a stressful period. Twenty-two undergraduate students participated in a functional magnetic resonance imaging (fMRI) experiment once during a non-exam period and once during final exams in a counter-balanced order. In the scanner, they viewed food and scenery pictures. In the exam compared with the non-exam condition, BIS scores related to increased perceived stress and correlated with increased blood-oxygen-level dependent (BOLD) response to high-calorie food images in regions implicated in food reward and subjective value, such as the ventromedial prefrontal cortex, (vmPFC) and the amygdala. BIS scores negatively related to the functional connectivity between the vmPFC and the dorsolateral prefrontal cortex. The results demonstrate that the BIS trait influences stress reactivity. This is observed both as an increased activity in brain regions implicated in computing the value of food cues and decreased connectivity of these regions to prefrontal regions implicated in self-control. This suggests that the effects of real life stress on appetitive brain function and self-control is modulated by a personality trait. This may help to explain why stressful periods can lead to overeating in vulnerable individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry
2013-01-01
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258
Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms.
Wang, Jiahui; Ren, Yudan; Hu, Xintao; Nguyen, Vinh Thai; Guo, Lei; Han, Junwei; Guo, Christine Cong
2017-04-01
Functional connectivity analysis has become a powerful tool for probing the human brain function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting-state paradigm to examine functional connectivity networks in the brain, thanks to its low demand and high tolerance that are essential for clinical studies. However, the test-retest reliability of resting-state connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high ecological validity, could potentially improve the reliability of functional connectivity measures. To test this hypothesis, we characterized the test-retest reliability of functional connectivity measures during a natural viewing condition, and benchmarked it against resting-state connectivity measures acquired within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of connectivity and graph theoretical measures of brain networks is significantly improved during natural viewing conditions over resting-state conditions, with an average increase of almost 50% across various connectivity measures. Not only sensory networks for audio-visual processing become more reliable, higher order brain networks, such as default mode and attention networks, but also appear to show higher reliability during natural viewing. Our results support the use of natural viewing paradigms in estimating functional connectivity of brain networks, and have important implications for clinical application of fMRI. Hum Brain Mapp 38:2226-2241, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Brain-Based Teaching/Learning and Implications for Religious Education.
ERIC Educational Resources Information Center
Weber, Jean Marie
2002-01-01
Argues that physical activity and water can increase brain activity, and hence, learning. Findings of neuroscientists regarding the brain can inform educators. Brain-based teaching emphasizes teamwork, cooperative learning, and global responsibility. Argues against gathering information without relevance. Connects brain-based learning concepts to…
DOT National Transportation Integrated Search
2017-01-01
Through outreach to stakeholders during the workshops, researchers found that there is a need to be able to explain AV/CV technology and its impacts on long-range transportation plans. Given that the future is uncertain, planners either choose to ign...
Critical Connections. Communication for the Future. Summary.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
This summary of the larger report analyzes the implications of new communication technologies for business, politics, culture, and individuals, and suggests possible strategies and options for Congressional consideration. The first of four major sections describes the changing U.S. communications infrastructure. The second section summarizes some…
Assessing Variation in Permanence/Pragmatism Orientations: Implications for Marital Stability.
ERIC Educational Resources Information Center
Morgan, Mary Y.; Scanzoni, John
1987-01-01
Traces history of construct known as "permanent availability,""universal availability," and "permanence/pragmatism." Connects latter with emerging research tradition labeled "causes and consequences of divorce." Based on data collected from college students, constructed an index of permanence/pragmatism in close relationship. (Author)
Friston, Karl J.; Mattingley, Jason B.; Roepstorff, Andreas; Garrido, Marta I.
2014-01-01
Detecting the location of salient sounds in the environment rests on the brain's ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispaces are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain's coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model. We show that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology. PMID:24695717
Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H
2017-10-01
Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (<20) impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.
Life story resources in dementia care: a review
Kindell, Jacqueline; Burrow, Simon; Wilkinson, Ray; Keady, John David
2014-01-01
Purpose Life story work has a relatively long tradition in the caring sciences and is recognised as an important component of dementia care and practice. However, to date, there has not been a review of accessible life story resources. The paper aims to discuss these issues. Design/methodology/approach Following a systematic approach to identification and inclusion, 11 life story resources were reviewed to ascertain areas of commonality and divergence between the materials. Findings The authors were able to group the analysis under eight areas and at the end of this process, it was uncertain if life story work is a formal staff intervention or an informal activity that people with dementia and their families could engage in. Resources also varied in terms of whether the life story information was organised in a chronological way, or with topics of interest/discussion or with a combination of both. Life story evaluation and its impact on the life of the person with dementia is in need of development. Practical implications Across the resources the authors identified four reasons to do life story work which the authors have named as: emotional connections; interactional connections; building new connections and practical care connections. Social implications There was limited guidance aimed at helping people with dementia to develop and compile their own life story. Originality/value This paper provides new insights into the usefulness, future directions and content of life story resources in dementia care. It will be of interest to those in health and social care as well as people living with dementia. PMID:25419453
Mitchell, Marci R.; Balodis, Iris M.; DeVito, Elise E.; Lacadie, Cheryl M.; Yeston, Jon; Scheinost, Dustin; Constable, R. Todd; Carroll, Kathleen M.; Potenza, Marc N.
2013-01-01
Background Cocaine-dependent individuals demonstrate neural and behavioral differences compared to healthy comparison subjects when performing the Stroop color-word inference test. Stroop measures also relate to treatment outcome for cocaine dependence. Intrinsic connectivity analyses assess the extent to which task-related regional brain activations are related to each other in the absence of defining a priori regions-of-interest. Objective This study examined: 1) the extent to which cocaine-dependent and non-addicted individuals differed on measures of intrinsic connectivity during fMRI Stroop performance; and, 2) the relationships between fMRI Stroop intrinsic connectivity and treatment outcome in cocaine dependence. Methods Sixteen treatment-seeking cocaine-dependent patients and matched non-addicted comparison subjects completed an fMRI Stroop task. Between-group differences in intrinsic connectivity were assessed and related to self-reported and urine-toxicology-based cocaine-abstinence measures. Results Cocaine-dependent patients vs. comparison subjects showed less intrinsic connectivity in cortical and sub-cortical regions. When adjusting for individual degree of intrinsic connectivity, cocaine-dependent vs. comparison subjects showed relatively greater intrinsic connectivity in the ventral striatum, putamen, inferior frontal gyrus, anterior insula, thalamus, and substantia nigra. Non-mean-adjusted intrinsic-connectivity measures in the midbrain, thalamus, ventral striatum, substantia nigra, insula, and hippocampus negatively correlated with measures of cocaine abstinence. Conclusion The diminished intrinsic connectivity in cocaine-dependent vs. comparison subjects suggests poorer communication across brain regions during cognitive-control processes. In mean-adjusted analyses, the cocaine-dependent group displayed relatively greater Stroop-related connectivity in regions implicated in motivational processes in addictions. The relationships between treatment outcomes and connectivity in the midbrain and basal ganglia suggest that connectivity represents a potential treatment target. PMID:24200209
Gut microbiota: Implications in Parkinson's disease.
Parashar, Arun; Udayabanu, Malairaman
2017-05-01
Gut microbiota (GM) can influence various neurological outcomes, like cognition, learning, and memory. Commensal GM modulates brain development and behavior and has been implicated in several neurological disorders like Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, anxiety, stress and much more. A recent study has shown that Parkinson's disease patients suffer from GM dysbiosis, but whether it is a cause or an effect is yet to be understood. In this review, we try to connect the dots between GM and PD pathology using direct and indirect evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Supernatural impotence: historical review with anthropological and clinical implications.
Margolin, J; Witztum, E
1989-12-01
The historical and cultural background of the belief in supernatural impotence is presented, emphasizing its possible implications for clinical practice. A brief historical survey of the concept in Judaism and Christianity is followed by a short anthropological survey of supernatural impotence in different ethnic subcultures in Israel. A case demonstration exemplifies the connection between understanding the patient's cultural background and beliefs and the clinical competence of the therapist. The relationship between the clinical-therapeutic process in psychiatric practice and knowledge of the patient's cultural background and beliefs is stressed.
Anderson, Ariana; Locke, Jill; Kretzmann, Mark; Kasari, Connie
2016-01-01
Although children with autism spectrum disorder are frequently included in mainstream classrooms, it is not known how their social networks change compared to typically developing children and whether the factors predictive of this change may be unique. This study identified and compared predictors of social connectivity of children with and without autism spectrum disorder using a social network analysis. Participants included 182 children with autism spectrum disorder and 152 children without autism spectrum disorder, aged 5–12 years in 152 general education K-5 classrooms. General linear models were used to compare how age, classroom size, gender, baseline connectivity, diagnosis, and intelligence quotient predicted changes in social connectivity (closeness). Gender and classroom size had a unique interaction in predicting final social connectivity and the change in connectivity for children with autism spectrum disorder; boys who were placed in larger classrooms showed increased social network fragmentation. This increased fragmentation for boys when placed in larger classrooms was not seen in typically developing boys. These results have implications regarding placement, intervention objectives, and ongoing school support that aimed to increase the social success of children with autism spectrum disorder in public schools. PMID:26567264
Opposing Amygdala and Ventral Striatum Connectivity During Emotion Identification
Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James
2011-01-01
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anti-correlation between the amygdala and the ventral striatum /ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification. PMID:21600684
Beaty, Roger E; Benedek, Mathias; Wilkins, Robin W; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J; Hodges, Donald A; Koschutnig, Karl; Neubauer, Aljoscha C
2014-11-01
The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-06-01
Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Achal, Sanjay; Hoeft, Fumiko; Bray, Signe
2016-01-01
Reading skills vary widely in both children and adults, with a number of factors contributing to this variability. The most prominent factor may be related to efficiency of storage, representation, or retrieval of speech sounds. This phonological hypothesis is supported by findings of reduced activation in poor readers in left hemisphere ventro-lateral prefrontal and temporo-parietal phonological processing regions. Less well explained by phonological theories are reported hyperactivation in prefrontal, striatal, and insular regions. This study investigated functional connectivity of a core phonological processing region, the temporo-parietal junction (TPJ), in relation to reading skill in an adult community sample. We hypothesized that connectivity between TPJ and regions implicated in meta-analyses of reading disorder would correlate with individual differences in reading. Forty-four adults aged 30–54, ranging in reading ability, underwent resting fMRI scans. Data-driven connectivity clustering was used to identify TPJ subregions for seed-based connectivity analyses. Correlations were assessed between TPJ connectivity and timed-pseudoword reading (decoding) ability. We found a significant correlation wherein greater left supramarginal gyrus to anterior caudate connectivity was associated with weaker decoding. This suggests that hyperactivation of the dorsal striatum, reported in poor readers during reading tasks, may reflect compensatory or inefficient overintegration into attention networks. PMID:26400921
Dissociable Frontostriatal White Matter Connectivity Underlies Reward and Motor Impulsivity
Hampton, William H.; Alm, Kylie H.; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R.
2017-01-01
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. PMID:28189592
Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A
2017-09-01
Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.
Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi
2014-12-01
To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.
Study on traditional Chinese medicine theory of lung being connected with large intestine.
Liu, Ping; Wang, Ping; Tian, Daizhi; Liu, Junfeng; Chen, Gang; Liu, Songlin
2012-09-01
The theory of lung being connected with large intestine, which is a major topic in Traditional Chinese Medicine (TCM), has guided clinical practice for thousands of years in China. In this study, we analyzed the history, main contents, clinical application, and material basis of the theory, to attempt to improve the potential clinical significance of "lung being connected with large intestine" in China. The lung being connected with large intestine was first described in "Huang Di Nei Jing", and formed one of the basic theories of TCM. For thousands of years, the majority of TCM practitioners explored this theory continuously, leading to its development and use as an important theory in the guidance of TCM clinics In the last decade, researchers in the field of integrated TCM and Western medicine have studied clinical applications and biomedical mechanisms with experimental methods to explore the implications of the theory. With the further development of science and technology, research concerning the theory of lung being connected with large intestine will be greatly stimulated and contribute to the modernization of TCM.
Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H.; Seifritz, Erich; Vollenweider, Franz X.
2015-01-01
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders. PMID:26909323
Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X
2016-01-01
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.
Anomalies of the systemic venous return: a review.
Mazzucco, A; Bortolotti, U; Stellin, G; Gallucci, V
1990-06-01
Congenital anomalies of the systemic venous connection to the heart represent a rather wide and heterogeneous group of malformations, whose physiological consequences may vary from nil to the most severe form of systemic arterial desaturation. The malformations may be summarized as follows: (1) Left superior vena cava connected to the coronary sinus, interrupted inferior vena cava and absent right superior vena cava that do not indicate surgical repair 'per se', but require some technical attention during open heart surgery performed for other anomalies; (2) Left superior vena cava connected to the left atrium, due to incorporation of the coronary sinus into the left atrial cavity, resulting in a right-to-left-shunt; (3) Right superior vena cava or inferior vena cava draining into the left atrium, both are extremely rare and require treatment for the ensuing right-to-left shunt; (4) Total anomalous systemic venous connection to the left atrium, usually combined with atrial isomerism and other very complex heart malformations; (5) Cor triatriatum dexter, which has been frequently diagnosed as an anomalous venous connection for its similar hemodynamic consequences. Such anomalies are reviewed with particular respect to their surgical implications.
Neuromorphic device architectures with global connectivity through electrolyte gating
NASA Astrophysics Data System (ADS)
Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Malliaras, George G.
2017-05-01
Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene):poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity.
Functional Internet Literacy: Required Cognitive Skills with Implications for Instruction
ERIC Educational Resources Information Center
Johnson, Genevieve Marie
2007-01-01
Patterns of typical Internet use provide the basis for defining "functional Internet literacy." Internet use commonly includes communication, information, recreation, and commercial activities. Technical competence with connectivity, security, and downloads is a prerequisite for using the Internet for such activities. Bloom's taxonomy of cognitive…
A survey of copy number variation in the porcine genome detected from whole-genome sequence
USDA-ARS?s Scientific Manuscript database
An important challenge to post-genomic biology is relating observed phenotypic variation to the underlying genotypic variation. Genome-wide association studies (GWAS) have made thousands of connections between single nucleotide polymorphisms (SNPs) and phenotypes, implicating regions of the genome t...
(Dis-) Locating the Transformative Dimension of Global Citizenship Education
ERIC Educational Resources Information Center
Bamber, Philip; Lewin, David; White, Morgan
2018-01-01
Despite a groundswell of evidence for transformative education, manifestos for 'transformative pedagogy for global citizenship' remain under-theorized and pay limited attention to implications for practice. This paper connects theory and practice through analyzing a curriculum development project that sought to produce a framework for 'engaged…
16 CFR 260.2 - Scope of guides.
Code of Federal Regulations, 2012 CFR
2012-01-01
... directly or by implication, through words, symbols, emblems, logos, depictions, product brand names, or... electronic mail. The guides apply to any claim about the environmental attributes of a product, package or service in connection with the sale, offering for sale, or marketing of such product, package or service...
ERIC Educational Resources Information Center
Barnes, Bradley; Bourke, Brian
2015-01-01
The authors advance the concept that institutional culture is a purposeful framework by which to view SEM's utility, particularly as a cultural change agent. Through the connection of seemingly independent functions of performance and behavior, implications emerge that deepen the understanding of the influence of culture on performance outcomes…
A METHOD TO INCORPORATE ECOLOGY INTO RESIDENCE TIME OF CHEMICALS IN EMBAYMENTS: LOCAL EFFECT TIME
Residence times are classically defined by the physical and chemical aspects of water bodies rather than by their ecological implications. Therefore, a more clear and direct connection between the residence times and ecological effects is necessary to quantitatively relate these ...
The Origins of Agrarianism and the Development of the Self.
ERIC Educational Resources Information Center
Hanson, Victor Davis
1998-01-01
Describes the history of agrarianism and its connection with Western cultural values of private property, civil liberties, constitutional government, separation of power, individualism, and self-reliance. Argues that agrarian history has vast implications beyond just farming, affecting the language, values, and foundations of culture. Discusses…
Equal Opportunities--For Whom?
ERIC Educational Resources Information Center
Mittler, Peter
1999-01-01
Discusses the implications of evidence on the connections between social and economic deprivation and special educational needs in a British context. Focuses on several recent government reports which detail evidence of the association between poverty and low educational attainment and urges schools to work with other agencies to address the…
The Reading Connection: Literacy Development and Homeless Children.
ERIC Educational Resources Information Center
Hanning, Eileen
1996-01-01
Describes a model of intervention that is designed to support and encourage literacy development among children whose families are or recently have been homeless. The article then places this model within a global context, discussing the broader implications of providing literacy support services for homeless families. (GR)
The Direct Satellite Connection: Definitions and Prospects.
ERIC Educational Resources Information Center
Wigand, Rolf T.
1980-01-01
Defines direct satellite broadcasting as the transmission of broadcast signals via high-powered satellites that permit direct reception of television or radio programs by means of small antennas. Outlines American, European, and Japanese plans for direct-to-home television reception and implications for the broadcasting industry. (JMF)
Transportation Secure Data Center Publications | Transportation Secure Data
: Emerging Technologies, June 2015 Pavement Performance Evaluation Using Connected Vehicles Author: R Research Procedia, 2015 Quantification of Temperature Implications and Investigation of Battery Design Design, and Consumer Usage Authors: E. Wood, J. Neubauer, A. Brooker, J. Gonder, and K. Smith Conference
Neuroscience, Play and Early Childhood Education: Connections, Implications and Assessment
ERIC Educational Resources Information Center
Rushton, Stephen; Juola-Rushton, Anne; Larkin, Elizabeth
2010-01-01
Paralleling the works of Cambourne's Conditions of Literacy Learning ("The Reading Teacher, 54"(4), 414-429, 2001), Copple and Bredekamp's ("Developmentally appropriate practice in early childhood programs serving children from birth though age." National Association for the Education of Young Children, Washington, 2009)…
Implications of Information and Communication Technologies (ICT) for School-Home Communication
ERIC Educational Resources Information Center
Heath, Don; Maghrabi, Rozan; Carr, Nora
2015-01-01
Research demonstrates the positive impact of parental involvement on students, families and schools. Studies also indicate a close connection between effective school-home communication and increased parental involvement and engagement in learning. Effective selection and use of Information Communication Technologies (ICT) invites more effective…
Neurobiology of Addictions: Implications for Clinical Practice.
ERIC Educational Resources Information Center
Spence, Richard T., Ed.; DiNitto, Diana M., Ed.; Straussner, Shulamith Lala Ashenberg, Ed.
This book offers helping professionals an introduction to the neurobiological aspects of substance abuse. It presents the basic information on the subject, including the various neurobiological theories of addiction, and places them in a psychosocial context. In addition to connecting the theoretical information with practical applications, the…
An Act of Sovereignty: Governing Tribal Higher Education
ERIC Educational Resources Information Center
Crazy Bull, Cheryl; Lindquist, Cynthia; Gipp, David M.
2015-01-01
Governance at tribal colleges and universities (TCUs) affirms the connection between the sovereignty of tribal nations and regional accreditation standards. Shared governance, where faculty, administrators, and trustees all contribute to oversight and decision-making, is a central component at TCUs and has unique implications for tribal…
Healthy Homes: A Contemporary Initiative for Extension Education
ERIC Educational Resources Information Center
Maring, Elisabeth Fost; Singer, Barbara Jones; Shenassa, Edmond
2011-01-01
This article connects Extension education and the Healthy Homes Initiative. Background on housing research and education is provided in the context of four issues (toxic materials, dangerous gases, hazards related to asthma, and other residential hazards). The federally funded Healthy Homes Partnership is described, and implications for…
Vocabulary Acquisition: Implications for Reading Comprehension
ERIC Educational Resources Information Center
Wagner, Richard K., Ed.; Muse, Andrea E., Ed.; Tannenbaum, Kendra R., Ed.
2006-01-01
Understanding a text requires more than the ability to read individual words: it depends greatly on vocabulary knowledge. This important book brings together leading literacy scholars to synthesize cutting-edge research on vocabulary development and its connections to reading comprehension. The volume also reviews an array of approaches to…
Higher Education for Cultural Liberation.
ERIC Educational Resources Information Center
Smith, Donald H.
1993-01-01
D. M. Stewart draws no implications for connecting African history and culture to academic achievement. Racism continues to exist; and only education that leads to cultural liberation, political solidarity, and economic strengths will prevail against it. Howard University must see itself as a center for academic and cultural excellence. (SLD)
Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination.
Grimm, O; Kraehenmann, R; Preller, K H; Seifritz, E; Vollenweider, F X
2018-04-24
Recent studies suggest that the antidepressant effects of the psychedelic 5-HT2A receptor agonist psilocybin are mediated through its modulatory properties on prefrontal and limbic brain regions including the amygdala. To further investigate the effects of psilocybin on emotion processing networks, we studied for the first-time psilocybin's acute effects on amygdala seed-to-voxel connectivity in an event-related face discrimination task in 18 healthy volunteers who received psilocybin and placebo in a double-blind balanced cross-over design. The amygdala has been implicated as a salience detector especially involved in the immediate response to emotional face content. We used beta-series amygdala seed-to-voxel connectivity during an emotional face discrimination task to elucidate the connectivity pattern of the amygdala over the entire brain. When we compared psilocybin to placebo, an increase in reaction time for all three categories of affective stimuli was found. Psilocybin decreased the connectivity between amygdala and the striatum during angry face discrimination. During happy face discrimination, the connectivity between the amygdala and the frontal pole was decreased. No effect was seen during discrimination of fearful faces. Thus, we show psilocybin's effect as a modulator of major connectivity hubs of the amygdala. Psilocybin decreases the connectivity between important nodes linked to emotion processing like the frontal pole or the striatum. Future studies are needed to clarify whether connectivity changes predict therapeutic effects in psychiatric patients. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R
2014-07-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.
Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.
2014-01-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816
Age differences in the intrinsic functional connectivity of default network subsystems
Campbell, Karen L.; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L.
2013-01-01
Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults. PMID:24294203
NASA Astrophysics Data System (ADS)
Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut
2017-10-01
Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.
Age differences in the intrinsic functional connectivity of default network subsystems.
Campbell, Karen L; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L
2013-01-01
Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1973-01-01
A new computer subroutine, which solves the attitude equations of motion for any vehicle idealized as a topological tree of hinge-connected rigid bodies, is used to simulate and analyze science instrument pointing control interaction with a flexible Mariner Venus/Mercury (MVM) spacecraft. The subroutine's user options include linearized or partially linearized hinge-connected models whose computational advantages are demonstrated for the MVM problem. Results of the pointing control/flexible vehicle interaction simulations, including imaging experiment pointing accuracy predictions and implications for MVM science sequence planning, are described in detail.
Promoting interest and performance in high school science classes.
Hulleman, Chris S; Harackiewicz, Judith M
2009-12-04
We tested whether classroom activities that encourage students to connect course materials to their lives will increase student motivation and learning. We hypothesized that this effect will be stronger for students who have low expectations of success. In a randomized field experiment with high school students, we found that a relevance intervention, which encouraged students to make connections between their lives and what they were learning in their science courses, increased interest in science and course grades for students with low success expectations. The results have implications for the development of science curricula and theories of motivation.
Lattice Theory, Measures and Probability
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2007-11-01
In this tutorial, I will discuss the concepts behind generalizing ordering to measuring and apply these ideas to the derivation of probability theory. The fundamental concept is that anything that can be ordered can be measured. Since we are in the business of making statements about the world around us, we focus on ordering logical statements according to implication. This results in a Boolean lattice, which is related to the fact that the corresponding logical operations form a Boolean algebra. The concept of logical implication can be generalized to degrees of implication by generalizing the zeta function of the lattice. The rules of probability theory arise naturally as a set of constraint equations. Through this construction we are able to neatly connect the concepts of order, structure, algebra, and calculus. The meaning of probability is inherited from the meaning of the ordering relation, implication, rather than being imposed in an ad hoc manner at the start.
NASA Astrophysics Data System (ADS)
Gardner, W. P.
2016-12-01
In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.
Eack, Shaun M.; Newhill, Christina E.; Keshavan, Matcheri S.
2016-01-01
Objective Cognitive remediation is emerging as an effective psychosocial intervention for addressing untreated cognitive and functional impairments in persons with schizophrenia, and might achieve its benefits through neuroplastic changes in brain connectivity. This study seeks to examine the effects of cognitive enhancement therapy (CET) on fronto-temporal brain connectivity in a randomized controlled trial with individuals in the early course of schizophrenia. Method Stabilized, early course outpatients with schizophrenia or schizoaffective disorder (N = 41) were randomly assigned to CET (n = 25) or an active enriched supportive therapy (EST) control (n = 16) and treated for 2 years. Functional MRI data were collected annually, and pseudo resting-state functional connectivity analysis was used to examine differential changes in fronto-temporal connectivity between those treated with CET compared with EST. Results Individuals receiving CET evidenced significantly less functional connectivity loss between the resting-state network and the left dorsolateral prefrontal cortex as well as significantly increased connectivity with the right insular cortex compared to EST (all corrected p < .01). These neural networks are involved in emotion processing and problem-solving. Increased connectivity with the right insula significantly mediated CET effects on improved emotion perception (z′ = −1.96, p = .021), and increased connectivity with the left dorsolateral prefrontal cortex mediated CET-related improvements in emotion regulation (z′ = −1.71, p = .052). Conclusions These findings provide preliminary evidence that CET, a psychosocial cognitive remediation intervention, may enhance connectivity between frontal and temporal brain regions implicated in problem-solving and emotion processing in service of cognitive enhancement in schizophrenia. PMID:27713804
Hinkley, Leighton B.N.; Vinogradov, Sophia; Guggisberg, Adrian G.; Fisher, Melissa; Findlay, Anne M.; Nagarajan, Srikantan S.
2011-01-01
Background Schizophrenia is associated with functional decoupling between cortical regions, but we do not know whether and where this occurs in low-frequency electromagnetic oscillations. The goal of this study was to use magnetoencephalography (MEG) to identify brain regions that exhibit abnormal resting-state connectivity in the alpha frequency range in patients with schizophrenia and investigate associations between functional connectivity and clinical symptoms in stable outpatient participants. Method Thirty patients with schizophrenia and fifteen healthy comparison participants were scanned in resting-state MEG (eyes closed). Functional connectivity MEGI (fcMEGI) data were reconstructed globally in the alpha range, quantified by the mean imaginary coherence between a voxel and the rest of the brain. Results In patients, decreased connectivity was observed in left pre-frontal cortex (PFC) and right superior temporal cortex while increased connectivity was observed in left extrastriate cortex and the right inferior PFC. Functional connectivity of left inferior parietal cortex was negatively related to positive symptoms. Low left PFC connectivity was associated with negative symptoms. Functional connectivity of midline PFC was negatively correlated with depressed symptoms. Functional connectivity of right PFC was associated with other (cognitive) symptoms. Conclusions This study demonstrates direct functional disconnection in schizophrenia between specific cortical fields within low-frequency resting-state oscillations. Impaired alpha coupling in frontal, parietal, and temporal regions is associated with clinical symptoms in these stable outpatients. Our findings indicate that this level of functional disconnection between cortical regions is an important treatment target in schizophrenia. PMID:21861988
Utopian Education and Anti-Utopian Anthropology
ERIC Educational Resources Information Center
Papastephanou, Marianna
2013-01-01
This article explores the connection of education, utopia and anthropology, aiming to tease out some educational implications of anti-utopian anthropological essentialism and to show why these should be staved off. It will be shown how an anthropology that tarnishes human nature operates and how it affects educational intervention in the shaping…
Plus Ca Change: Minitel and Teletel, Electronic Marvels with Language Teaching Potential.
ERIC Educational Resources Information Center
Carney, William J.
The impact and cultural implications of the French Minitel and Teletel system are discussed, and second language clasroom applications are examined. These electronic instruments were developed for nationwide transmission of computerized data using small television-like terminals connected by modem to existing telephone circuits. Wise marketing…
Dr. Deming and the Improvement of Schooling: No Instant Pudding.
ERIC Educational Resources Information Center
Holt, Maurice
1993-01-01
To keep Deming's ideas alive, this article reexamines how Deming's philosophy connects with education and discusses implications for educators, parents, and legislators. Expecting to achieve "quality" results in little time encourages "quick fixes" and a crisis mentality that distort Deming's message and lead nowhere. There are…
Re-Storying an Entrepreneurial Identity: Education, Experience and Self-Narrative
ERIC Educational Resources Information Center
Harmeling, Susan S.
2011-01-01
Purpose: This paper aims to explore the ways in which entrepreneurship education may serve as an identity workspace. Design/methodology/approach: This is a conceptual/theoretical paper based on previously completed empirical work. Findings: The paper makes the connection between worldmaking, experience, action and identity. Practical implications:…
Release the Body, Release the Mind.
ERIC Educational Resources Information Center
Stoner, Martha Goff
1998-01-01
A college English teacher describes the anxiety and resentment of students during in-class writing assignments and the successful classroom use of meditation and body movement. Movement seemed to relax the students, change their attitudes, and release their creative impulses to write. Implications related to the body-mind connection are pondered.…
STEM Integration: Solids, CAD, and 3D Printers
ERIC Educational Resources Information Center
Fujiwara, Yujiro
2018-01-01
While many students may struggle to make sense of a mathematical formula and its practical implications, they can benefit greatly from an intuitive visualization and the engineering application of the topic. Effective STEM programs create clear connections at least with two subject areas, which translates into an enhanced student learning…
Edge Effects in Line Intersect Sampling With
David L. R. Affleck; Timothy G. Gregoire; Harry T. Valentine
2005-01-01
Transects consisting of multiple, connected segments with a prescribed configuration are commonly used in ecological applications of line intersect sampling. The transect configuration has implications for the probability with which population elements are selected and for how the selection probabilities can be modified by the boundary of the tract being sampled. As...
Multiculturalism and Social Justice: Two Sides of the Same Coin
ERIC Educational Resources Information Center
Ratts, Manivong J.
2011-01-01
The development of multicultural and advocacy competencies evolved out of the multicultural and social justice movements. To help readers more fully understand the complementary nature between these 2 sets of competencies and to connect both movements, this article introduces the Multicultural and Advocacy Dimensions model. Implications are also…
The National Latina/o Psychological Association: Like a Phoenix Rising
ERIC Educational Resources Information Center
Chavez-Korell, Shannon; Delgado-Romero, Edward A.; Illes, Roseanne
2012-01-01
This article addresses the re-founding of the National Hispanic Psychological Association into the National Latina/o Psychological Association. A brief history is provided, followed by current status and resources, connections to counseling psychology, and implications for the Society of Counseling Psychology and for the future of the National…
On Empathy: The Mirror Neuron System and Art Education
ERIC Educational Resources Information Center
Jeffers, Carol S.
2009-01-01
This paper re/considers empathy and its implications for learning in the art classroom, particularly in light of relevant neuroscientific investigations of the mirror neuron system recently discovered in the human brain. These investigations reinterpret the meaning of perception, resonance, and connection, and point to the fundamental importance…
ERIC Educational Resources Information Center
Hochstadt, Jesse; Nakano, Hiroko; Lieberman, Philip; Friedman, Joseph
2006-01-01
Studies of sentence comprehension deficits in Parkinson's disease (PD) patients suggest that language processing involves circuits connecting subcortical and cortical regions. Anatomically segregated neural circuits appear to support different cognitive and motor functions. To investigate which functions are implicated in PD comprehension…
Legal Implications of Physical Examinations
Felton, Jean Spencer
1978-01-01
With the new national emphasis on the prevention of occupationally incurred disease, legislative constraints have been placed in connection with the medical examination of employed persons at health risk. Concurrently, there is mandated a system of communication to the worker of the significant clinical findings encountered on his physical and laboratory inventories. PMID:636417
Connecting Children's eCulture to Curriculum: Implications for Educators
ERIC Educational Resources Information Center
Laverick, Deanna M.
2009-01-01
This article discusses the benefits of including "children's eCulture" in school curricula. "Children's eCulture" is the culture of children as it relates to electronics and technology. Integrating children's eCulture into formal learning experiences allows teachers to promote multiple literacies in their students. The article will describe the…
Citizenship: What's Mathematics Have to Do with It?
ERIC Educational Resources Information Center
Cotton, Tony
2016-01-01
British mathematics educator Tony Cotton suggests that teachers use math instruction to help students--who live in an internationally connected world--ponder international events and the global implications of policies in depth. He describes two math-based activities toward that end. First, teachers might guide learners in examining data connected…
The Implications of Modern Approaches to Language for Teacher Training.
ERIC Educational Resources Information Center
Williams, Huw
1984-01-01
Connections between recent developments in theories about language, learning theory, and language teaching are traced from Chomsky's work elaborating the distinction between competence and performance. The evolution of the concepts of function and notion from the study of how language and communication come together in linguistic philosophy is…
Connections: A Journal of Adult Literacy. Volume IV.
ERIC Educational Resources Information Center
Connections: A Journal of Adult Literacy, 1991
1991-01-01
This journal provides a forum for adult educators to express their ideas on adult literacy. The following articles are included: "Teaching Moments: Teaching People, Not Lessons" (Patricia Wild); "Whole Language: Implications for the Adult Learner" (Jeri Gillin); "Gatekeepers or Advocates?" (Rosie Wickert); "Writing with Teen Mothers: I Have…
NASA Astrophysics Data System (ADS)
Montmessin, F.; Lefèvre, F.; Korablev, O.; Fedorova, A.; Bertaux, J.-L.; Chaufray, J.-Y.; Chaffin, M.; Schneider, N.; Maltagliati, L.; Määttänen, A.; Trokhimovsky, A.
2014-07-01
We present a synthesis of the decade-long Mars Express SPICAM observations in an attempt to assemble a single, coherent picture that has implications for the long-term evolution of water and hydrogen on Mars.
ERIC Educational Resources Information Center
Klipfel, Kevin Michael
2015-01-01
This article articulates and defends a student-centered approach to reference and instructional librarianship defined by authentic engagement with students' interests. A review of the history of the construct of authenticity in philosophy, humanistic and existential psychology, and contemporary educational psychology is traced. Connections are…
Understanding temporal and spatial variability in community-level interactions of PNW estuaries has implications for ecosystem-based management principles. Here, we are analyzing the contribution of marsh derived food sources to non-commercial resident fish in Yaquina Bay, a tem...
Addressing the Spiritual Needs of African American Students: Implications for School Counselors
ERIC Educational Resources Information Center
Curry, Jennifer R.
2010-01-01
The historical tendency for educational institutions to symptomize behavior of African American children as dysfunctional or representative of mental disorder is well documented. However, recent scholarship illuminates the connection between oppression social injustice, racial trauma, and racial microaggressions as the core of stress, depression,…
The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency
Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect o...
"Wearing a Mask" vs. Connecting Identity with Learning
ERIC Educational Resources Information Center
Faircloth, Beverly S.
2012-01-01
Contemporary insights regarding identity emphasize its situated, negotiated nature (i.e., identity is shaped by--and shapes in response--the contexts in which it is formed; and ) Recent work also suggests that this identity/context intersection holds powerful implications regarding engagement in learning (Brophy, 2008). This pair of qualitative…
The influence of road salts on water quality in a restored urban stream (Columbus, OH)
Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...
Multidimensionality of Cultural Practices: Implications for Culturally Relevant Science Education
ERIC Educational Resources Information Center
Ares, Nancy
2011-01-01
Alfred Schademan's close and systematic analysis of the sociohistorical and science-related practices developed by African American men goes a long way in disrupting deficit-based notions of such students' capabilities. The rich resources he identifies open many possibilities for connecting peer and classroom knowledges. This response offers some…
Implications for Middle Schools from Adolescent Brain Research
ERIC Educational Resources Information Center
Robinson, Rebecca
2017-01-01
Neuroscience research has discovered that during adolescence the brain establishes stronger connections between brain regions, prunes out unused synapses, and increases activity in the emotional and social centers. This research supports many concepts that have been part of the concept of middle schools for over 50 years, including integrated…
ERIC Educational Resources Information Center
Brandi, Ulrik; Iannone, Rosa Lisa
2016-01-01
The article examines learning strategies at the enterprise level, conceptualising them into three main dimensions: learning systems and incentives, connecting to the affective dimension of learning which behavioural learning addresses effectively; skills' development, chiefly addressing the cognitive dimension of learning to which cognitive and…
Critical Connections: Technology Use that Empowers
ERIC Educational Resources Information Center
O'Hara, Kate E.
2010-01-01
This research employs the use of narrative and auto-ethnography in an examination of the complex relationships that arise when students and teachers use technology as an instructional tool. The story unfolds in an exploration of the significant impact and implications the use of computers and related technologies have on educational and societal…
Real-Time Internet Connections: Implications for Surgical Decision Making in Laparoscopy
Broderick, Timothy J.; Harnett, Brett M.; Doarn, Charles R.; Rodas, Edgar B.; Merrell, Ronald C.
2001-01-01
Objective To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Summary Background Data Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Methods Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were “grabbed” from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. Results The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Conclusions Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation. PMID:11505061
Assessing the effects of large mobile predators on ecosystem connectivity.
McCauley, Douglas J; Young, Hillary S; Dunbar, Robert B; Estes, James A; Semmens, Brice X; Micheli, Fiorenza
2012-09-01
Large predators are often highly mobile and can traverse and use multiple habitats. We know surprisingly little about how predator mobility determines important processes of ecosystem connectivity. Here we used a variety of data sources drawn from Palmyra Atoll, a remote tropical marine ecosystem where large predators remain in high abundance, to investigate how these animals foster connectivity. Our results indicate that three of Palmyra's most abundant large predators (e.g., two reef sharks and one snapper) use resources from different habitats creating important linkages across ecosystems. Observations of cross-system foraging such as this have important implications for the understanding of ecosystem functioning, the management of large-predator populations, and the design of conservation measures intended to protect whole ecosystems. In the face of widespread declines of large, mobile predators, it is important that resource managers, policy makers, and ecologists work to understand how these predators create connectivity and to determine the impact that their depletions may be having on the integrity of these linkages.
Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)
Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.
2014-01-01
We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475
Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress
Sadeh, Naomi; Spielberg, Jeffrey M.; Warren, Stacie L.; Miller, Gregory A.; Heller, Wendy
2014-01-01
Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing. PMID:25419500
Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress.
Sadeh, Naomi; Spielberg, Jeffrey M; Warren, Stacie L; Miller, Gregory A; Heller, Wendy
2014-11-01
Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing.
Impacts of Larval Connectivity on Coral Heat Tolerance
NASA Astrophysics Data System (ADS)
Pinsky, M. L.; Kleypas, J. A.; Thompson, D. M.; Castruccio, F. S.; Curchitser, E. N.; Watson, J. R.
2016-02-01
The sensitivity of corals to elevated temperature depends on their acclimation and adaptation to the local maximum temperature regime. Through larval dispersal, however, coral populations can receive larvae from regions that are significantly warmer or colder. If these exogenous larvae carry genetic-based tolerances to colder or warmer temperatures, then the thermal sensitivity of the receiving population may be lower or higher, respectively. Using a high-resolution Regional Ocean Modeling System (ROMS) configuration for the Coral Triangle region, we quantify the potential role of connectivity in determining the thermal stress threshold (TST) of a typical broadcast spawner. The model results suggest that even with a pelagic larval dispersal period of only 10 days, many reefs receive larvae from reefs that are warmer or cooler than the local temperature, and that accounting for this connectivity improves bleaching predictions. This has important implications for conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than would be predicted based on local conditions alone.
Salvy, Sarah-Jeanne; Bowker, Julie C; Nitecki, Lauren A; Kluczynski, Melissa A; Germeroth, Lisa J; Roemmich, James N
2012-01-01
Assess the effect of ostracism and social connection-related activities on adolescents' motivation to eat and their energy intake. Participants (n = 103; M age = 13.6 years) were either ostracized or included when playing a computer game, Cyberball. Next, they wrote about their friend (social-connection), watched television (distraction), or completed Sudoku puzzles (cognitive-load), and then completed a task to earn points toward snack food and/or socializing. Afterwards, participants were given access to food and social activities. Ostracized adolescents were more motivated to earn food than adolescents who were in the included/control condition. Follow-up contrasts indicated that ostracized adolescents who wrote about friends worked more for food points and consumed more food than other adolescents. Results suggest that social connection-related activities following ostracism may further deplete self-regulatory resources, thereby resulting in increased unhealthy food patterns. Study limitations as well as clinical implications of these findings are discussed.
Kleypas, Joan A; Thompson, Diane M; Castruccio, Frederic S; Curchitser, Enrique N; Pinsky, Malin; Watson, James R
2016-11-01
Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone. © 2016 John Wiley & Sons Ltd.
Khambhati, Ankit N.; Davis, Kathryn A.; Oommen, Brian S.; Chen, Stephanie H.; Lucas, Timothy H.; Litt, Brian; Bassett, Danielle S.
2015-01-01
The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in a web of structural and functional connections. Clinically, seizure foci are considered optimal targets for surgery. However, poor surgical outcome suggests a complex relationship between foci and the surrounding network that drives seizure dynamics. We developed a novel technique to objectively track seizure states from dynamic functional networks constructed from intracranial recordings. Each dynamical state captures unique patterns of network connections that indicate synchronized and desynchronized hubs of neural populations. Our approach suggests that seizures are generated when synchronous relationships near foci work in tandem with rapidly changing desynchronous relationships from the surrounding epileptic network. As seizures progress, topographical and geometrical changes in network connectivity strengthen and tighten synchronous connectivity near foci—a mechanism that may aid seizure termination. Collectively, our observations implicate distributed cortical structures in seizure generation, propagation and termination, and may have practical significance in determining which circuits to modulate with implantable devices. PMID:26680762
Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template
Sürmeli, Gülşen; Akay, Turgay; Ippolito, Gregory; Tucker, Philip W; Jessell, Thomas M
2011-01-01
Summary Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype, or indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serves as a determinant of the pattern of sensory input specificity, and thus motor coordination. PMID:22036571
Palatini formulation of f( R, T) gravity theory, and its cosmological implications
NASA Astrophysics Data System (ADS)
Wu, Jimin; Li, Guangjie; Harko, Tiberiu; Liang, Shi-Dong
2018-05-01
We consider the Palatini formulation of f( R, T) gravity theory, in which a non-minimal coupling between the Ricci scalar and the trace of the energy-momentum tensor is introduced, by considering the metric and the affine connection as independent field variables. The field equations and the equations of motion for massive test particles are derived, and we show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy-momentum trace dependent metric, related to the physical metric by a conformal transformation. Similar to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We obtain the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra force, which is identical to the one obtained in the metric case. The thermodynamic interpretation of the theory is also briefly discussed. We investigate in detail the cosmological implications of the theory, and we obtain the generalized Friedmann equations of the f( R, T) gravity in the Palatini formulation. Cosmological models with Lagrangians of the type f=R-α ^2/R+g(T) and f=R+α ^2R^2+g(T) are investigated. These models lead to evolution equations whose solutions describe accelerating Universes at late times.
NASA Astrophysics Data System (ADS)
Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.
2017-12-01
Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.
Reward Sensitivity and Waiting Impulsivity: Shift towards Reward Valuation away from Action Control
Mechelmans, Daisy J; Strelchuk, Daniela; Doñamayor, Nuria; Banca, Paula; Robbins, Trevor W; Baek, Kwangyeol
2017-01-01
Abstract Background Impulsivity and reward expectancy are commonly interrelated. Waiting impulsivity, measured using the rodent 5-Choice Serial Reaction Time task, predicts compulsive cocaine seeking and sign (or cue) tracking. Here, we assess human waiting impulsivity using a novel translational task, the 4-Choice Serial Reaction Time task, and the relationship with reward cues. Methods Healthy volunteers (n=29) performed the monetary incentive delay task as a functional MRI study where subjects observe a cue predicting reward (cue) and wait to respond for high (£5), low (£1), or no reward. Waiting impulsivity was tested with the 4-Choice Serial Reaction Time task. Results For high reward prospects (£5, no reward), greater waiting impulsivity on the 4-CSRT correlated with greater medial orbitofrontal cortex and lower supplementary motor area activity to cues. In response to high reward cues, greater waiting impulsivity was associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula, but decreased connectivity with regions implicated in action selection and preparation. Conclusion These findings highlight a shift towards regions implicated in reward valuation and a shift towards compulsivity away from higher level motor preparation and action selection and response. We highlight the role of reward sensitivity and impulsivity, mechanisms potentially linking human waiting impulsivity with incentive approach and compulsivity, theories highly relevant to disorders of addiction. PMID:29020291
Overlooking evidence: media ignore environmental connections to breast cancer.
Spencer, Miranda C
2009-01-01
In this article, the author reviews seven years' worth of major news media coverage of the role of environmental pollutants in the etiology of breast cancer. The time frame was 2002-2008 and the outlets studied included prominent newspapers, national news magazines, and network television news programs. Noting that a growing body of private, university, and government environmental health research has implicated a variety of common chemicals and radiation in the disease, the author looked for quantity and quality of coverage of two scientific metastudies during the specified time frame: State of the Evidence: The Connection Between Breast Cancer and the Environment and Environmental Pollutants and Breast Cancer: Epidemiological Studies. She also examined reporting on breast cancer in the month of October ("National Breast Cancer Awareness Month") during the seven years. Despite recent scientific findings, the news media have downplayed and frequently overlooked the evidence. None of the outlets studied covered the State of the Evidence report, and only one covered the Environmental Pollutants report. Breast Cancer Awareness Month similarly saw few articles or newscasts about environmental connections. The author attributes the dearth of coverage to several factors: journalists' lack of awareness about environmental health science, the seemingly higher standards of proof for research findings that implicate chemicals in disease than for other types of scientific research, establishments' lack of acceptance of environmental theories of breast cancer, and economic pressures on news outlets not to alienate their advertisers.
NASA Astrophysics Data System (ADS)
Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.
2017-12-01
In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang
2014-01-01
Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative effect. © 2013. Published by Elsevier Inc. All rights reserved.
de Lacy, Nina; Kodish, Ian; Rachakonda, Srinivas; Calhoun, Vince D
2018-04-22
From childhood to adolescence, strengthened coupling in frontal, striatal and parieto-temporal regions associated with cognitive control, and increased anticorrelation between task-positive and task-negative circuits, subserve the reshaping of behavior. ADHD is a common condition peaking in adolescence and regressing in adulthood, with a wide variety of cognitive control deficits. Alternate hypotheses of ADHD emphasize lagging circuitry refinement versus categorical differences in network function. However, quantifying the individual circuit contributions to behavioral findings, and relative roles of maturational versus categorical effects, is challenging in vivo or in meta-analyses using task-based paradigms within the same pipeline, given the multiplicity of neurobehavioral functions implicated. To address this, we analyzed 46 positively-correlated and anticorrelated circuits in a multivariate model in resting-state data from 504 age- and gender-matched youth, and created a novel in silico method to map individual quantified effects to reverse inference maps of 8 neurocognitive functions consistently implicated in ADHD, as well as dopamine and hyperactivity. We identified only age- and gender-related effects in intrinsic connectivity, and found that maturational refinement of circuits in youth with ADHD occupied 3-10x more brain locations than in typical development, with the footprint, effect size and contribution of individual circuits varying substantially. Our analysis supports the maturational hypothesis of ADHD, suggesting lagging connectivity reorganization within specific subnetworks of fronto-parietal control, ventral attention, cingulo-opercular, temporo-limbic and cerebellar sub-networks contribute across neurocognitive findings present in this complex condition. We present the first analysis of anti-correlated connectivity in ADHD and suggest new directions for exploring residual and non-responsive symptoms. © 2018 Wiley Periodicals, Inc.
Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561
Garrison, Kathleen A; Sinha, Rajita; Lacadie, Cheryl M; Scheinost, Dustin; Jastreboff, Ania M; Constable, R Todd; Potenza, Marc N
2016-09-01
Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Angular default mode network connectivity across working memory load.
Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A
2017-01-01
Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Habenula functional resting-state connectivity in pediatric CRPS.
Erpelding, Nathalie; Sava, Simona; Simons, Laura E; Lebel, Alyssa; Serrano, Paul; Becerra, Lino; Borsook, David
2014-01-01
The habenula (Hb) is a small brain structure located in the posterior end of the medial dorsal thalamus and through medial (MHb) and lateral (LHb) Hb connections, it acts as a conduit of information between forebrain and brainstem structures. The role of the Hb in pain processing is well documented in animals and recently also in acute experimental pain in humans. However, its function remains unknown in chronic pain disorders. Here, we investigated Hb resting-state functional connectivity (rsFC) in patients with complex regional pain syndrome (CRPS) compared with healthy controls. Twelve pediatric patients with unilateral lower-extremity CRPS (9 females; 10-17 yr) and 12 age- and sex-matched healthy controls provided informed consent to participate in the study. In healthy controls, Hb functional connections largely overlapped with previously described anatomical connections in cortical, subcortical, and brainstem structures. Compared with controls, patients exhibited an overall Hb rsFC reduction with the rest of the brain and, specifically, with the anterior midcingulate cortex, dorsolateral prefrontal cortex, supplementary motor cortex, primary motor cortex, and premotor cortex. Our results suggest that Hb rsFC parallels anatomical Hb connections in the healthy state and that overall Hb rsFC is reduced in patients, particularly connections with forebrain areas. Patients' decreased Hb rsFC to brain regions implicated in motor, affective, cognitive, and pain inhibitory/modulatory processes may contribute to their symptomatology.
Coveleskie, K.; Kilpatrick, L. A.; Gupta, A.; Stains, J.; Connolly, L.; Labus, J. S.; Sanmiguel, C.
2017-01-01
Summary Objective The differential effect of GLP‐1 agonist Exenatide on functional connectivity of the nucleus tractus solitaries (NTS), a key region associated with homeostasis, and on appetite‐related behaviours was investigated in women with normal weight compared with women with obesity. Methods Following an 8‐h fast, 19 female subjects (11 lean, 8 obese) participated in a 2‐d double blind crossover study. Subjects underwent functional magnetic resonance imaging at fast and 30‐min post subcutaneous injection of 5 μg of Exenatide or placebo. Functional connectivity was examined with the NTS. Drug‐induced functional connectivity changes within and between groups and correlations with appetite measures were examined in a region of interest approach focusing on the thalamus and hypothalamus. Results Women with obesity reported less hunger after drug injection. Exenatide administration increased functional connectivity of the left NTS with the left thalamus and hypothalamus in the obese group only and increased the correlation between NTS functional connectivity and hunger scores in all subjects, but more so in the obese. Conclusions Obesity can impact the effects of Exenatide on brain connectivity, specifically in the NTS and is linked to changes in appetite control. This has implications for the use of GLP‐1 analogues in therapeutic interventions. PMID:29259802
Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity.
Hampton, William H; Alm, Kylie H; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R
2017-04-15
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. Copyright © 2017 Elsevier Inc. All rights reserved.
Intranasal oxytocin modulates neural functional connectivity during human social interaction.
Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim
2018-02-10
Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.
Hibino, Yuri
2015-02-01
Until recently, surrogacy was banned in Vietnam for all cases. The government, however, has altered its position on reproductive technology and will soon legalize non-commercial surrogacy among relatives. Motherhood is highly venerated in Vietnamese society and, under this local kinship conception, gestational process is of paramount importance in establishing a connection between the fetus and the woman. The implications of this new government decision for local kinship, motherhood and the individuals concerned will be discussed. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair
2014-06-01
Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.
Karolis, Vyacheslav R.; Froudist-Walsh, Sean; Brittain, Philip J.; Kroll, Jasmin; Ball, Gareth; Edwards, A. David; Dell'Acqua, Flavio; Williams, Steven C.; Murray, Robin M.; Nosarti, Chiara
2016-01-01
The second half of pregnancy is a crucial period for the development of structural brain connectivity, and an abrupt interruption of the typical processes of development during this phase caused by the very preterm birth (<33 weeks of gestation) is likely to result in long-lasting consequences. We used structural and diffusion imaging data to reconstruct the brain structural connectome in very preterm-born adults. We assessed its rich-club organization and modularity as 2 characteristics reflecting the capacity to support global and local information exchange, respectively. Our results suggest that the establishment of global connectivity patterns is prioritized over peripheral connectivity following early neurodevelopmental disruption. The very preterm brain exhibited a stronger rich-club architecture than the control brain, despite possessing a relative paucity of white matter resources. Using a simulated lesion approach, we also investigated whether putative structural reorganization takes place in the very preterm brain in order to compensate for its anatomical constraints. We found that connections between the basal ganglia and (pre-) motor regions, as well as connections between subcortical regions, assumed an altered role in the structural connectivity of the very preterm brain, and that such alterations had functional implications for information flow, rule learning, and verbal IQ. PMID:26742566
Temporally dynamic habitat suitability predicts genetic relatedness among caribou.
Yannic, Glenn; Pellissier, Loïc; Le Corre, Maël; Dussault, Christian; Bernatchez, Louis; Côté, Steeve D
2014-10-07
Landscape heterogeneity plays a central role in shaping ecological and evolutionary processes. While species utilization of the landscape is usually viewed as constant within a year, the spatial distribution of individuals is likely to vary in time in relation to particular seasonal needs. Understanding temporal variation in landscape use and genetic connectivity has direct conservation implications. Here, we modelled the daily use of the landscape by caribou in Quebec and Labrador, Canada and tested its ability to explain the genetic relatedness among individuals. We assessed habitat selection using locations of collared individuals in migratory herds and static occurrences from sedentary groups. Connectivity models based on habitat use outperformed a baseline isolation-by-distance model in explaining genetic relatedness, suggesting that variations in landscape features such as snow, vegetation productivity and land use modulate connectivity among populations. Connectivity surfaces derived from habitat use were the best predictors of genetic relatedness. The relationship between connectivity surface and genetic relatedness varied in time and peaked during the rutting period. Landscape permeability in the period of mate searching is especially important to allow gene flow among populations. Our study highlights the importance of considering temporal variations in habitat selection for optimizing connectivity across heterogeneous landscape and counter habitat fragmentation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Spatial embedding of structural similarity in the cerebral cortex
Song, H. Francis; Kennedy, Henry; Wang, Xiao-Jing
2014-01-01
Recent anatomical tracing studies have yielded substantial amounts of data on the areal connectivity underlying distributed processing in cortex, yet the fundamental principles that govern the large-scale organization of cortex remain unknown. Here we show that functional similarity between areas as defined by the pattern of shared inputs or outputs is a key to understanding the areal network of cortex. In particular, we report a systematic relation in the monkey, human, and mouse cortex between the occurrence of connections from one area to another and their similarity distance. This characteristic relation is rooted in the wiring distance dependence of connections in the brain. We introduce a weighted, spatially embedded random network model that robustly gives rise to this structure, as well as many other spatial and topological properties observed in cortex. These include features that were not accounted for in any previous model, such as the wide range of interareal connection weights. Connections in the model emerge from an underlying distribution of spatially embedded axons, thereby integrating the two scales of cortical connectivity—individual axons and interareal pathways—into a common geometric framework. These results provide insights into the origin of large-scale connectivity in cortex and have important implications for theories of cortical organization. PMID:25368200
Jiang, Ying; Oathes, Desmond; Hush, Julia; Darnall, Beth; Charvat, Mylea; Mackey, Sean; Etkin, Amit
2016-09-01
Maladaptive responses to pain-related distress, such as pain catastrophizing, amplify the impairments associated with chronic pain. Many of these aspects of chronic pain are similar to affective distress in clinical anxiety disorders. In light of the role of the amygdala in pain and affective distress, disruption of amygdalar functional connectivity in anxiety states, and its implication in the response to noxious stimuli, we investigated amygdala functional connectivity in 17 patients with chronic low back pain and 17 healthy comparison subjects, with respect to normal targets of amygdala subregions (basolateral vs centromedial nuclei), and connectivity to large-scale cognitive-emotional networks, including the default mode network, central executive network, and salience network. We found that patients with chronic pain had exaggerated and abnormal amygdala connectivity with central executive network, which was most exaggerated in patients with the greatest pain catastrophizing. We also found that the normally basolateral-predominant amygdala connectivity to the default mode network was blunted in patients with chronic pain. Our results therefore highlight the importance of the amygdala and its network-level interaction with large-scale cognitive/affective cortical networks in chronic pain, and help link the neurobiological mechanisms of cognitive theories for pain with other clinical states of affective distress.
Subspecialization in the human posterior medial cortex
Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.
2014-01-01
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801
Zhu, Xi; Helpman, Liat; Papini, Santiago; Schneier, Franklin; Markowitz, John C; Van Meter, Page E; Lindquist, Martin A; Wager, Tor D; Neria, Yuval
2017-07-01
Individuals with comorbid posttraumatic stress disorder and major depressive disorder (PTSD-MDD) often exhibit greater functional impairment and poorer treatment response than individuals with PTSD alone. Research has not determined whether PTSD-MDD is associated with different network connectivity abnormalities than PTSD alone. We used functional magnetic resonance imaging (fMRI) to measure resting state functional connectivity (rs-FC) patterns of brain regions involved in fear and reward processing in three groups: patients with PTSD-alone (n = 27), PTSD-MDD (n = 21), and trauma-exposed healthy controls (TEHCs, n = 34). Based on previous research, seeds included basolateral amygdala (BLA), centromedial amygdala (CMA), and nucleus accumbens (NAcc). Regardless of MDD comorbidity, PTSD was associated with decreased connectivity of BLA-orbitalfrontal cortex (OFC) and CMA-thalamus pathways, key to fear processing, and fear expression, respectively. PTSD-MDD, compared to PTSD-alone and TEHC, was associated with decreased connectivity across multiple amygdala and striatal-subcortical pathways: BLA-OFC, NAcc-thalamus, and NAcc-hippocampus. Further, while both the BLA-OFC and the NAcc-thalamus pathways were correlated with MDD symptoms, PTSD symptoms correlated with the amygdala pathways (BLA-OFC; CMA-thalamus) only. Comorbid PTSD-MDD may be associated with multifaceted functional connectivity alterations in both fear and reward systems. Clinical implications are discussed. © 2016 Wiley Periodicals, Inc.
The Magnetic Connectivity of the Sun to the Heliosphere
NASA Technical Reports Server (NTRS)
Antiochos, S. K.
2010-01-01
A prime research focus of the upcoming Solar Probe Plus and Solar Orbiter missions will be to determine how the heliospheric magnetic field and plasma connect to the Sun's corona and photosphere. For much of the heliosphere this connection appears to be well understood. The quasi-steady fast wind emanates from so-called coronal holes, which appear dark in X-rays and are predominantly unipolar at the photosphere. However, the connection to the Sun of the slow, non-steady wind is far from understood and remains a major mystery. We review the existing theories for the sources of the nonsteady wind and demonstrate that they have difficulty accounting for both the observed composition of the wind and its large angular extent. A new theory is described in which this wind originates from the continuous opening and closing of narrow open field corridors in the corona, which gives rise to a web of separatrices (the S-Web) in the heliosphere. Note that in this theory the corona - heliosphere connection is intrinsically dynamic, at least, for this type of wind. We present numerical simulations of the model and describe observational tests. We discuss the implications of our results for the competing slow wind theories and for understanding the corona - heliosphere connection, in general.
Prediction of vein connectivity using the percolation approach: model test with field data
NASA Astrophysics Data System (ADS)
Belayneh, M.; Masihi, M.; Matthäi, S. K.; King, P. R.
2006-09-01
Evaluating the uncertainty in fracture connectivity and its effect on the flow behaviour of natural fracture networks formed under in situ conditions is an extremely difficult task. One widely used probabilistic approach is to use percolation theory, which is well adapted to estimate the connectivity and conductivity of geometrical objects near the percolation threshold. In this paper, we apply scaling laws from percolation theory to predict the connectivity of vein sets exposed on the southern margin of the Bristol Channel Basin. Two vein sets in a limestone bed interbedded with shales on the limb of a rollover fold were analysed for length, spacing and aperture distributions. Eight scan lines, low-level aerial photographs and mosaics of photographs taken with a tripod were used. The analysed veins formed contemporaneously with the rollover fold during basin subsidence on the hanging wall of a listric normal fault. The first vein set, V1, is fold axis-parallel (i.e. striking ~100°) and normal to bedding. The second vein set, V2, strikes 140° and crosscuts V1. We find a close agreement in connectivity between our predictions using the percolation approach and the field data. The implication is that reasonable predictions of vein connectivity can be made from sparse data obtained from boreholes or (limited) sporadic outcrop.
Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.
2015-01-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470
Westlund Schreiner, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A; Eberly, Lynn E; Reigstad, Kristina M; Carstedt, Patricia A; Thomas, Kathleen M; Hunt, Ruskin H; Lim, Kelvin O; Cullen, Kathryn R
2017-10-15
Non-suicidal self-injury (NSSI) is a significant mental health problem among adolescents. Research is needed to clarify the neurobiology of NSSI and identify candidate neurobiological targets for interventions. Based on prior research implicating heightened negative affect and amygdala hyperactivity in NSSI, we pursued a systems approach to characterize amygdala functional connectivity networks during rest (resting-state functional connectivity [RSFC)]) and a task (task functional connectivity [TFC]) in adolescents with NSSI. We examined amygdala networks in female adolescents with NSSI and healthy controls (n = 45) using resting-state fMRI and a negative emotion face-matching fMRI task designed to activate the amygdala. Connectivity analyses included amygdala RSFC, amygdala TFC, and psychophysiological interactions (PPI) between amygdala connectivity and task conditions. Compared to healthy controls, adolescents with NSSI showed atypical amygdala-frontal connectivity during rest and task; greater amygdala RSFC in supplementary motor area (SMA) and dorsal anterior cingulate; and differential amygdala-occipital connectivity between rest and task. After correcting for depression symptoms, amygdala-SMA RSFC abnormalities, among others, remained significant. This study's limitations include its cross-sectional design and its absence of a psychiatric control group. Using a multi-modal approach, we identified widespread amygdala circuitry anomalies in adolescents with NSSI. While deficits in amygdala-frontal connectivity (driven by depression symptoms) replicates prior work in depression, hyperconnectivity between amygdala and SMA (independent of depression symptoms) has not been previously reported. This circuit may represent an important mechanism underlying the link between negative affect and habitual behaviors. These abnormalities may represent intervention targets for adolescents with NSSI. Copyright © 2017 Elsevier B.V. All rights reserved.
Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M
2015-11-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).
A posteriori model validation for the temporal order of directed functional connectivity maps.
Beltz, Adriene M; Molenaar, Peter C M
2015-01-01
A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).
Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter
2016-01-01
Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038
Confucian Self-Cultivation and Daoist Personhood: Implications for Peace Education
ERIC Educational Resources Information Center
Wang, Hongyu
2013-01-01
This essay argues that the concept of reaching peace within in order to sustain peace outside in classical Confucianism and Daoism offers us important lessons for peace education in the contemporary age. Building harmonious connections between differences in one's personhood paves a path for negotiating interconnections across conflicting…
ERIC Educational Resources Information Center
Elwood, Jannette; Lundy, Laura
2010-01-01
The linkage between the impact of assessment and compliance with children's rights is a connection, which although seemingly obvious, is nonetheless rarely made, particularly by governments, which, as signatories to the relevant human rights treaties, have the primary responsibility for ensuring that educational practice is compatible with…
ERIC Educational Resources Information Center
Zolliker, Susan
Exploring the use of the prefix "meta" and the use of "meta" terms in the context of Lev S. Vygotsky's theories demonstrates that students need to use language to learn about language. "Writing about writing" is already part of many classrooms, but by establishing a connection between metadiscourse written informally…
Schools and Religious Communities' Contributions to the Religious Formation of Christian Youth
ERIC Educational Resources Information Center
de Kock, A.
2015-01-01
This article questions the implications of tribal forms of religious socialization for (religious) schools' and communities' contributions to the religious formation of Christian youth. It clarifies that the religious education of a new generation of young Christians requires authorities and communities to connect in a worldwide pedagogical space…
Speaking Habermas to Gramsci: Implications for the Vocational Preparation of Community Educators
ERIC Educational Resources Information Center
Bamber, John; Crowther, Jim
2012-01-01
Re-working the Gramscian idea of the "organic" intellectual from the cultural-political sphere to Higher Education (HE), suggests the need to develop critical and questioning "counter hegemonic" ideas and behaviour in community education students. Connecting this reworking to the Habermasian theory of communicative action, suggests that these…
Values and Ethics in Child and Youth Care Practice
ERIC Educational Resources Information Center
Gharabaghi, Kiaras
2008-01-01
The implications of the practitioner's personal values are explored in relation to the professional issues of child and youth care practice. Values are inevitably a component of decision-making and therefore are integrally connected to ethics in the field. The prevalence of subjectivity over objectivity is emphasized in relation to in-the-moment…
Zone of Proximal Development, Liminality, and Communitas: Implications for Religious Education
ERIC Educational Resources Information Center
Junker, Debora B. Agra
2013-01-01
This article seeks to understand religious education as a process of communal endeavor that prioritizes and considers the learning experience intrinsically connected to its social and cultural contexts. Two authors will be of help to develop this pursuit: Lev Vygotsky, whose work emphasizes learning as constructed through interactions and in…
Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification
ERIC Educational Resources Information Center
Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James
2011-01-01
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…
ERIC Educational Resources Information Center
Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay
2014-01-01
Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…
ERIC Educational Resources Information Center
Mulligan, Joanne
2015-01-01
This commentary adopts a broad perspective in considering the contributions of papers from cross- and interdisciplinary fields of mathematics education, psychology, child development and neuroscience. The discussion aims to complement the commentary by Dindyal, focused on background research on geometry and implications for pedagogy and curricula.…
Teaching about the U.S. Constitution through Metaphor: Government as a Machine.
ERIC Educational Resources Information Center
Mills, Randy K.
1988-01-01
Briefly reviews theories of brain hemisphere functions and draws implications for social studies instruction. Maintains that the metaphor aids the development of understanding because it connects right and left brain functions. Provides a learning activity based on the metaphor of the U.S. government functioning as a machine. (BSR)
Connected Learning in the Library as a Product of Hacking, Making, Social Diversity and Messiness
ERIC Educational Resources Information Center
Bilandzic, Mark
2016-01-01
Learning is most effective when intrinsically motivated through personal interest, and situated in a supportive socio-cultural context. This paper reports on findings from a study that explored implications for design of interactive learning environments through 18 months of ethnographic observations of people's interactions at "Hack The…
ERIC Educational Resources Information Center
Kali, Yael, Ed.; Linn, Marcia, Ed.; Roseman, Jo Ellen, Ed.
2008-01-01
This edited collection synthesizes current research on the most promising methods and models for designing coherent science instruction. Arising from the National Science Foundation-funded Delineating and Evaluating Coherent Instructional Designs for Education (DECIDE) project, this volume combines the insights of researchers from two Centers for…
The Asian American Psychological Association: Parallels and Intersections with Counseling Psychology
ERIC Educational Resources Information Center
Alvarez, Alvin N.; Singh, Anneliese A.; Wu, Jenny
2012-01-01
This article provides an overview of the Asian American Psychological Association (AAPA). A brief history is provided, followed by current status and resources, connections to counseling psychology, and implications for the Society of Counseling Psychology and for the future of the AAPA. AAPA was created in 1972 in response to psychology's neglect…
Principal Connection / Amazon and the Whole Teacher
ERIC Educational Resources Information Center
Hoerr, Thomas R.
2015-01-01
A recent controversy over Amazon's culture has strong implications for the whole child approach, and it offers powerful lessons for principals. A significant difference between the culture of so many businesses today and the culture at good schools is that in good schools, the welfare of the employees is very important. Student success is the…
Long-Term Implications of Early Education and Care Programs for Australian Children
ERIC Educational Resources Information Center
Coley, Rebekah Levine; Lombardi, Caitlin McPherran; Sims, Jacqueline
2015-01-01
Using nationally representative data from the Longitudinal Study of Australian Children (LSAC; N = 5,107), this study assessed prospective connections between children's early education and care (EEC) experiences from infancy through preschool and their cognitive and behavioral functioning in 1st grade. Incorporating 6 waves of data, analyses…
Effects of urban development on ant communities: implications for ecosystem services and management
M.P. Sanford; Patricia N. Manley; Dennis D. Murphy
2009-01-01
Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient...
Connections with the Schooling Enterprise: Implications for Music Education Policy
ERIC Educational Resources Information Center
Frierson-Campbell, Carol
2007-01-01
In this article, the author explores music education counterforces, examining whether and how (a) federal and state education policies can better address the in-service needs of special area teachers, particularly music teachers, in the school setting; and (b) policy organizations in the music education profession (i.e., The National Association…
Family Mobility and Neighborhood Change: New Evidence and Implications for Community Initiatives
ERIC Educational Resources Information Center
Coulton, Claudia; Theodos, Brett; Turner, Margery A.
2009-01-01
Americans change residences frequently. Residential mobility can reflect positive changes in a family's circumstances or be a symptom of instability and insecurity. Mobility may also change neighborhoods as a whole. To shed light on these challenges, this report uses a unique survey conducted for the "Making Connections" initiative. The…
Increased White Matter Gyral Depth in Dyslexia: Implications for Corticocortical Connectivity
ERIC Educational Resources Information Center
Casanova, Manuel F.; El-Baz, Ayman S.; Giedd, Jay; Rumsey, Judith M.; Switala, Andrew E.
2010-01-01
Recent studies provide credence to the minicolumnar origin of several developmental conditions, including dyslexia. Characteristics of minicolumnopathies include abnormalities in how the cortex expands and folds. This study examines the depth of the gyral white matter measured in an MRI series of 15 dyslexic adult men and eleven age-matched…
New Visuality in Art/Science: A Pedagogy of Connection for Cognitive Growth and Creativity
ERIC Educational Resources Information Center
Grushka, Kathryn; Hope, Alice; Clement, Neville; Lawry, Miranda; Devine, Andy
2018-01-01
New visuality in art/science pedagogies challenges teachers to rethink their curriculum and the role of digital new media in facilitating conceptual thinking and the role of the creative representation of knowledge. Recent neuroscientific research on cognition, perception, memory, and emotion inform and provoke implications for 21st-century…
An Analysis of the Ontological Causal Relation in Physics and Its Educational Implications
ERIC Educational Resources Information Center
Cheong, Yong Wook
2016-01-01
An ontological causal relation is a quantified relation between certain interactions and changes in corresponding properties. Key ideas in physics, such as Newton's second law and the first law of thermodynamics, are representative examples of these relations. In connection with the teaching and learning of these relations, this study investigated…
ERIC Educational Resources Information Center
Rushton, Stephen P.; Eitelgeorge, Janice; Zickafoose, Ruby
2003-01-01
Relates each of the eight conditions of learning in Brian Cambourne's theory of literacy to findings in brain research within a constructivist approach to early childhood education. Cites sample classroom dialogues demonstrating classroom elements that foster a brain-based, developmentally appropriate learning environment supporting Cambourne's…
City of Physics--Analogies to Increase Cognitive Coherence in Physics Learning
ERIC Educational Resources Information Center
Tabor-Morris, A. E.; Froriep, K. A.; Briles, T. M.; McGuire, C. M.
2009-01-01
Physics educators and researchers can be concerned with how students attain cognitive coherence: specifically, how students understand and intra-connect the whole of their knowledge of the "field of physics". Starting instead with the metaphor "city of physics", the implication of applying architectural concepts for the human acquisition of mental…
Parallel Process and Isomorphism: A Model for Decision Making in the Supervisory Triad
ERIC Educational Resources Information Center
Koltz, Rebecca L.; Odegard, Melissa A.; Feit, Stephen S.; Provost, Kent; Smith, Travis
2012-01-01
Parallel process and isomorphism are two supervisory concepts that are often discussed independently but rarely discussed in connection with each other. These two concepts, philosophically, have different historical roots, as well as different implications for interventions with regard to the supervisory triad. The authors examine the difference…
ERIC Educational Resources Information Center
Reynolds, Holly Kirkland
2017-01-01
Purpose: The purpose of this study was to determine what beliefs, knowledge, skills, and early childhood education teachers should acquire to effectively teach and work with children who exhibit challenging behaviors. A significant body of literature demonstrates a connection between behavioral difficulties for children and negative academic,…
Making the Connection. The Adult Education Movement and the 4th Unesco Conference.
ERIC Educational Resources Information Center
International Council for Adult Education, Toronto (Ontario).
These eight papers highlight implications of the 1985 Unesco Conference for adult educators involved with nongovernmental organizations (NGOs). The papers were prepared as a contribution to the discussion and follow-up of the conference proceedings. "Unesco Conference Poses New Expectations for the Adult Education Movement and ICAE…
ERIC Educational Resources Information Center
Wilson, Helen W.; Stover, Carla Smith; Berkowitz, Steven J.
2009-01-01
Background: The connection between childhood violence exposure and antisocial behavior in adolescence has received much attention and has important implications for understanding and preventing criminal behavior. However, there are a limited number of well-designed prospective studies that can suggest a causal relationship, and little is known…
Aesthetic Experience and Early Language and Literacy Development
ERIC Educational Resources Information Center
Johnson, Helen L.
2007-01-01
The present paper explores the connections between theory and research in language development and aesthetic education and their implications for early childhood classroom practice. The present paper posits that arts experiences make a unique and vital contribution to the child's development of language and literacy, as well as to the sense of…
ERIC Educational Resources Information Center
Wiegand, Douglas M.; Geller, E. Scott
2005-01-01
Positive psychology is becoming established as a reputable sub-discipline in psychology despite having neglected the role of positive reinforcement in enhancing quality of life. The authors discuss the relevance of positive reinforcement for positive psychology, with implications for broadening the content of organizational behavior management.…
Fractured Connections: Migration and Holistic Models of Counselling
ERIC Educational Resources Information Center
Wright, Jeannie; Lang, Steve K. W.; Cornforth, Sue
2011-01-01
In this article we aim to explore those points at which migrant identity and landscape intersect. We also consider implications for holistic models of counselling with migrant groups. The New Zealand migration literature was the starting point to consider how and why the experience of migration has been studied. We asked how collective biography…
ERIC Educational Resources Information Center
Whiteman, Shawn D.; Barry, Adam E.; Mroczek, Daniel K.; MacDermid Wadsworth, Shelley
2013-01-01
Student service members/veterans represent a growing population on college campuses. Despite this growth, scholarly investigations into their health- and adjustment-related issues are almost nonexistent. The limited research that is available suggests that student service members/veterans may have trouble connecting with their civilian…
ERIC Educational Resources Information Center
Thomas, M. O. J., Ed.
This volume contains the proceedings of the International Conference on Technology in Mathematics Education (TIME 2000). It includes papers, posters, and short oral reports. Research papers include: (1) "Implications of the Shift from Isolated Expensive Technology to Connected, Inexpensive, Ubiquitous and Diverse Technologies" (Jim…
Indentations and Starting Points in Traveling Sales Tour Problems: Implications for Theory
ERIC Educational Resources Information Center
MacGregor, James N.
2012-01-01
A complete, non-trivial, traveling sales tour problem contains at least one "indentation", where nodes in the interior of the point set are connected between two adjacent nodes on the boundary. Early research reported that human tours exhibited fewer such indentations than expected. A subsequent explanation proposed that this was because…
Aeolian Nutrient Fluxes Following Wildfire in Sagebrush Steppe: Implications for Soil Carbon Storage
2011-12-14
World atlas of desertification , Arnold, London, 1997. Miller, R. F. and Heyerdahl, E. K.: Fine-scale variation of historical fire regimes in...Fredrickson, E. L.: Do changes in connectivity explain desertification ?, Bioscience, 59, 237–244, 2009. Rau, B. M., Chambers, J. C., Blank, R. R., and
Coding and Comprehension in Skilled Reading and Implications for Reading Instruction.
ERIC Educational Resources Information Center
Perfetti, Charles A.; Lesgold, Alan M.
A view of skilled reading is suggested that emphasizes an intimate connection between coding and comprehension. It is suggested that skilled comprehension depends on a highly refined facility for generating and manipulating language codes, especially at the phonetic/articulatory level. The argument is developed that decoding expertise should be a…
Community College Study Abroad: Implications for Student Success
ERIC Educational Resources Information Center
Raby, Rosalind Latiner; Rhodes, Gary M.; Biscarra, Albert
2014-01-01
The aim of this research is to explore whether participation in study abroad by community college students impacts levels of engagement and if there is a connection between studying abroad and academic achievement. While university-level studies have a history in exploring these questions, the same is not true for community colleges. The…
Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians?
Didier, Kevin; Bolko, Loïs; Giusti, Delphine; Toquet, Segolene; Robbins, Ailsa; Antonicelli, Frank; Servettaz, Amelie
2018-01-01
Connective tissue diseases (CTDs) such as systemic lupus erythematosus, systemic sclerosis, myositis, Sjögren’s syndrome, and rheumatoid arthritis are systemic diseases which are often associated with a challenge in diagnosis. Autoantibodies (AAbs) can be detected in these diseases and help clinicians in their diagnosis. Actually, pathophysiology of these diseases is associated with the presence of antinuclear antibodies. In the last decades, many new antibodies were discovered, but their implication in pathogenesis of CTDs remains unclear. Furthermore, the classification of these AAbs is nowadays misused, as their targets can be localized outside of the nuclear compartment. Interestingly, in most cases, each antibody is associated with a specific phenotype in CTDs and therefore help in better defining either the disease subtypes or diseases activity and outcome. Because of recent progresses in their detection and in the comprehension of their pathogenesis implication in CTD-associated antibodies, clinicians should pay attention to the presence of these different AAbs to improve patient’s management. In this review, we propose to focus on the different phenotypes and features associated with each autoantibody used in clinical practice in those CTDs. PMID:29632529
Kratz, Lyn; Uding, Nancy; Trahms, Cristine M; Villareale, Nanci; Kieckhefer, Gail M
2009-12-01
When children have special health care needs, parents assume the roles of care coordinator, medical expert, and systems advocate as well as their typical parenting roles. They face many challenges in managing their child's chronic condition in the context of everyday life. Health care providers are uniquely positioned to assist parents in meeting those challenges and to promote parent competency and confidence in their child's care. The data for this analysis were collected during classes for parents of children with chronic conditions who took part in a randomized controlled study of a curriculum's effectiveness. During facilitated discussions, parents discussed challenges they faced and generated strategies they found helpful. Qualitative data analysis revealed dominant themes across subject areas. Challenges included social isolation, strained relationships and ongoing frustrations with health care and educational systems. Helpful strategies focused on being prepared, connecting with peers, becoming an advocate, developing partnerships and caring for one's self. Implications for health care providers include: understanding common challenges parents face; promoting parent-to-parent connections; and building partnerships with parents and their children with special needs.
Moeller, Scott J.; London, Edythe D.; Northoff, Georg
2015-01-01
Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications. PMID:26657968
Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R.
2011-01-01
There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks. PMID:22163013
Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R
2011-01-01
There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.
Genomic connectivity networks based on the BrainSpan atlas of the developing human brain
NASA Astrophysics Data System (ADS)
Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.
2014-03-01
The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.
Differences in resting corticolimbic functional connectivity in bipolar I euthymia
Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L
2012-01-01
Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587
Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study
Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv
2017-01-01
Abstract Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. PMID:26912785
Oxytocin effects on complex brain networks are moderated by experiences of maternal love withdrawal.
Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J
2013-10-01
The neuropeptide oxytocin has been implicated in a variety of social processes. However, recent studies indicate that oxytocin does not enhance prosocial behavior in all people in all circumstances. Here, we investigate effects of intranasal oxytocin administration on intrinsic functional brain connectivity with resting state functional magnetic resonance imaging. Participants were 42 women who received a nasal spray containing either 16 IU of oxytocin or a placebo and reported how often their mother used love withdrawal as a disciplinary strategy involving withholding love and affection after a failure or misbehavior. We found that oxytocin changes functional connectivity between the posterior cingulate cortex (PCC) and the brainstem. In the oxytocin group there was a positive connectivity between these regions, whereas the placebo group showed negative connectivity. In addition, oxytocin induced functional connectivity changes between the PCC, the cerebellum and the postcentral gyrus, but only for those participants who experienced low levels of maternal love withdrawal. We speculate that oxytocin enhances prosocial behavior by influencing complex brain networks involved in self-referential processing and affectionate touch, most prominently in individuals with supportive family backgrounds. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Clennon, J A; King, C H; Muchiri, E M; Kitron, U
2007-05-01
Urinary schistosomiasis is an important source of human morbidity in Msambweni, Kenya, where the intermediate host snail, Bulinus nasutus is found in ponds and water pools. In the past, aquatic habitats in the area have been studied separately; however, recent collections of B. nasutus snails and shells indicated that many of these ponds are in fact connected during and following sufficient rains. Satellite imagery and a geographical information system (GIS) were used to survey the main water courses and potential drainage routes, to locate potential source populations of snails and to determine probable snail dispersal routes. The 2 water bodies implicated as being the most important Schistosoma haematobium transmission foci in the area were found to differ in their degree of connectivity to other B. nasutus source habitats. One pond becomes connected even after normal rains, while the other pond requires prolonged rains or flooding to become connected with source habitats. Consequently, the transmission foci differ in their susceptibility to snail population control measures. Spatially explicit dispersal models that consider the spatial and temporal patterns of connectivity between aquatic habitats will contribute to improved snail surveillance and more focused control for urinary schistosomiasis at a local level.
Muftuler, L Tugan; Larson, Christine L
2018-01-01
Abstract Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants’ self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala–BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism. PMID:29126127
Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L
2018-01-01
Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants' self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala-BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism. © The Author (2017). Published by Oxford University Press.
Connecting Ca2+ and lysosomes to Parkinson disease
Kilpatrick, Bethan S.
2017-01-01
The neurodegenerative movement disorder Parkinson disease (PD) is prevalent in the aged population. However, the underlying mechanisms that trigger disease are unclear. Increasing work implicates both impaired Ca2+ signalling and lysosomal dysfunction in neuronal demise. Here I aim to connect these distinct processes by exploring the evidence that lysosomal Ca2+ signalling is disrupted in PD. In particular, I highlight defects in lysosomal Ca2+ content and signalling through NAADP-regulated two-pore channels in patient fibroblasts harbouring mutations in the PD-linked genes, GBA1 and LRRK2. As an emerging contributor to PD pathogenesis, the lysosomal Ca2+ signalling apparatus could represent a novel therapeutic target. PMID:28529829
Psychotherapy, psychopathology, research and practice: pathways of connections and integration.
Castonguay, Louis G
2011-03-01
This paper describes three pathways of connections between different communities of knowledge seekers: integration of psychotherapeutic approaches, integration of psychotherapy and psychopathology, and integration of science and practice. Some of the issues discussed involve the delineation and investigation of common factors (e.g., principles of change), improvement of major forms of psychotherapy, clinical implications of psychopathology research, as well as current and future directions related to practice-research networks. The aim of this paper is to suggest that building bridges across theoretical orientations, scientific fields, professional experiences, and epistemological views may be a fruitful strategy to improve our understanding and the impact of psychotherapy.
Home Infotainment Platform - A Ubiquitous Access Device for Masses
NASA Astrophysics Data System (ADS)
Pal, Arpan; Prashant, M.; Ghose, Avik; Bhaumik, Chirabrata
There is tremendous need for a low-cost Internet-Enabled Platform for developing countries like India that uses TV as the display medium and can connect to Internet using various available connectivity solutions. The paper presents how a generic framework middleware can be used to create a Home Infotainment Platform that can support variety of value-added applications. It also talks about the innovative designs employed to bring about the low-cost solution keeping in mind both the limitations of TV as a display and non-availability of high quality-of-service networks. Finally the social, economic and environmental implications of wide-spread deployment of the proposed solution are outlined.
Connections between cadherin-catenin proteins, spindle misorientation, and cancer
Shahbazi, Marta N; Perez-Moreno, Mirna
2015-01-01
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance. PMID:26451345
Network marketing with bounded rationality and partial information
NASA Astrophysics Data System (ADS)
Kiet, Hoang Anh Tuan; Kim, Beom Jun
2008-08-01
Network marketing has been proposed and used as a way to spread the product information to consumers through social connections. We extend the previous game model of the network marketing on a small-world tree network and propose two games: In the first model with the bounded rationality, each consumer makes purchase decision stochastically, while in the second model, consumers get only partial information due to the finite length of social connections. Via extensive numerical simulations, we find that as the rationality is enhanced not only the consumer surplus but also the firm’s profit is increased. The implication of our results is also discussed.
Teleparallel equivalent of Lovelock gravity
NASA Astrophysics Data System (ADS)
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
Overcoming obstacles to the exchange of information between risk tools
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Cornford, Steven L.; Meshkat, Leila; Voss, Luke
2005-01-01
Our work to date in connecting risk tools hs had successes, but also has revealed there to be significant impediments to information exchange between them. These impediments stem from the well-known phenomenon of 'semantic dissonance' - mismatch between conceptual assumptions made by the separately developed tools. This issue represents a fundamental challenge that arises regardless of the mechanism of information exchange. This paper explains the issue and illustrates it with reference to our experiences to date connecting several risk tools. We motivate this work, present and discuss the solutions we have adopted to surmount these impediments, and the implications this work has for future efforts to integrate risk tools.
Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study.
Luo, Cheng; Qiu, Chuan; Guo, Zhiwei; Fang, Jiajia; Li, Qifu; Lei, Xu; Xia, Yang; Lai, Yongxiu; Gong, Qiyong; Zhou, Dong; Yao, Dezhong
2011-01-01
Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy.
Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R
2016-07-22
Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.
Hulvershorn, Leslie; Cullen, Kathryn; Anand, Amit
2011-01-01
Child and adolescent psychiatric neuroimaging research typically lags behind similar advances in adult disorders. While the pediatric depression imaging literature is less developed, a recent surge in interest has created the need for a synthetic review of this work. Major findings from pediatric volumetric and functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and resting state functional connectivity studies converge to implicate a corticolimbic network of key areas that work together to mediate the task of emotion regulation. Imaging the brain of children and adolescents with unipolar depression began with volumetric studies of isolated brain regions that served to identify key prefrontal, cingulate and limbic nodes of depression-related circuitry elucidated from more recent advances in DTI and functional connectivity imaging. Systematic review of these studies preliminarily suggests developmental differences between findings in youth and adults, including prodromal neurobiological features, along with some continuity across development. PMID:21901425
Optimal Control of Connected and Automated Vehicles at Roundabouts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liuhui; Malikopoulos, Andreas; Rios-Torres, Jackeline
Connectivity and automation in vehicles provide the most intriguing opportunity for enabling users to better monitor transportation network conditions and make better operating decisions to improve safety and reduce pollution, energy consumption, and travel delays. This study investigates the implications of optimally coordinating vehicles that are wirelessly connected to each other and to an infrastructure in roundabouts to achieve a smooth traffic flow without stop-and-go driving. We apply an optimization framework and an analytical solution that allows optimal coordination of vehicles for merging in such traffic scenario. The effectiveness of the efficiency of the proposed approach is validated through simulationmore » and it is shown that coordination of vehicles can reduce total travel time by 3~49% and fuel consumption by 2~27% with respect to different traffic levels. In addition, network throughput is improved by up to 25% due to elimination of stop-and-go driving behavior.« less
From a meso- to micro-scale connectome: array tomography and mGRASP
Rah, Jong-Cheol; Feng, Linqing; Druckmann, Shaul; Lee, Hojin; Kim, Jinhyun
2015-01-01
Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors. PMID:26089781
Mechanisms Underlying Development of Visual Maps and Receptive Fields
Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara
2008-01-01
Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps. PMID:18558864
The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network
Vega-Zuniga, Tomas; Trost, Dominik; Schicker, Katrin; Bogner, Eva M.; Luksch, Harald
2018-01-01
Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv), and the adjacent n. intercalatus thalami (ICT). We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM), griseum tectale (GT), ICT, n. principalis precommissuralis (PPC), and optic tectum (TeO). The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC). Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception. PMID:29479309
McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J
2015-01-01
Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252
Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard WJ; McKinnon, Margaret C; Lanius, Ruth A
2015-01-01
Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD−DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD−DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception—implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD. PMID:25790021
Clinical implications of atrial isomerism.
Chiu, I S; How, S W; Wang, J K; Wu, M H; Chu, S H; Lue, H C; Hung, C R
1988-01-01
Right atrial isomerism or left atrial isomerism is frequently diagnosed as situs ambiguous without further discrimination of the specific morbid anatomy. Thirty six cases of right atrial isomerism and seven cases of left atrial isomerism were collected from the records and pathological museum at the National Taiwan University Hospital. There was a necropsy report for 18 cases. In all patients one or more of the following conditions was met: (a) isomeric bronchial anatomy, (b) echocardiographic and angiocardiographic evidence of isomerism, and (c) surgical or necropsy evidence of abnormal atrial anatomy. An anomalous pulmonary venous connection was present in 55% of patients with right atrial isomerism; in left atrial isomerism one case (14%) had a partial anomalous pulmonary venous connection. Forty per cent of cases of anomalous pulmonary venous connection with right atrial isomerism had obstruction. Six (86%) of seven cases with left atrial isomerism had an ambiguous biventricular atrioventricular connection. In contrast, univentricular atrioventricular connection (26 of 36, 72%) was significantly more common in right atrial isomerism. A common atrioventricular valve was the most frequent mode of connection in both forms. Two discrete atrioventricular valves were significantly more common in left atrial isomerism. Atrioventricular valve regurgitation was detected in 14 cases. Double outlet right ventricle was the most common type of ventriculoarterial connection. The most commonly cited causes of death after either palliative or definitive operation were undetected anomalous pulmonary venous connection, pulmonary venous stricture, and uncorrected atrioventricular valve or aortic regurgitation complicated by abnormal coagulation. Although the prognosis is poor, successful operation depends on knowledge of the precise anatomical arrangement associated with atrial isomerism. Images Fig 1 Fig 2 Fig 3 PMID:3408620
Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A
2016-04-30
The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Haihong; Kaneko, Yoshio; Ouyang, Xuan; Li, Li; Hao, Yihui; Chen, Eric Y H; Jiang, Tianzi; Zhou, Yuan; Liu, Zhening
2012-03-01
Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
Auditory and visual connectivity gradients in frontoparietal cortex
Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert
2016-01-01
Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304
Hyperconnectivity is a fundamental response to neurological disruption.
Hillary, Frank G; Roman, Cristina A; Venkatesan, Umesh; Rajtmajer, Sarah M; Bajo, Ricardo; Castellanos, Nazareth D
2015-01-01
In the cognitive and clinical neurosciences, the past decade has been marked by dramatic growth in a literature examining brain "connectivity" using noninvasive methods. We offer a critical review of the blood oxygen level dependent functional MRI (BOLD fMRI) literature examining neural connectivity changes in neurological disorders with focus on brain injury and dementia. The goal is to demonstrate that there are identifiable shifts in local and large-scale network connectivity that can be predicted by the degree of pathology. We anticipate that the most common network response to neurological insult is hyperconnectivity but that this response depends upon demand and resource availability. To examine this hypothesis, we initially reviewed the results from 1,426 studies examining functional brain connectivity in individuals diagnosed with multiple sclerosis, traumatic brain injury, mild cognitive impairment, and Alzheimer's disease. Based upon inclusionary criteria, 126 studies were included for detailed analysis. RESULTS from 126 studies examining local and whole brain connectivity demonstrated increased connectivity in traumatic brain injury and multiple sclerosis. This finding is juxtaposed with findings in mild cognitive impairment and Alzheimer's disease where there is a shift to diminished connectivity as degeneration progresses. This summary of the functional imaging literature using fMRI methods reveals that hyperconnectivity is a common response to neurological disruption and that it may be differentially observable across brain regions. We discuss the factors contributing to both hyper- and hypoconnectivity results after neurological disruption and the implications these findings have for network plasticity. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Andreou, Christina; Steinmann, Saskia; Kolbeck, Katharina; Rauh, Jonas; Leicht, Gregor; Moritz, Steffen; Mulert, Christoph
2018-06-01
Reports linking a 'jumping-to-conclusions' bias to delusions have led to growing interest in the neurobiological correlates of probabilistic reasoning. Several brain areas have been implicated in probabilistic reasoning; however, findings are difficult to integrate into a coherent account. The present study aimed to provide additional evidence by investigating, for the first time, effective connectivity among brain areas involved in different stages of evidence gathering. We investigated evidence gathering in 25 healthy individuals using fMRI and a new paradigm (Box Task) designed such as to minimize the effects of cognitive effort and reward processing. Decisions to collect more evidence ('draws') were contrasted to decisions to reach a final choice ('conclusions') with respect to BOLD activity. Psychophysiological interaction analysis was used to investigate effective connectivity. Conclusion events were associated with extensive brain activations in widely distributed brain areas associated with the task-positive network. In contrast, draw events were characterized by higher activation in areas assumed to be part of the task-negative network. Effective connectivity between the two networks decreased during draws and increased during conclusion events. Our findings indicate that probabilistic reasoning may depend on the balance between the task-positive and task-negative network, and that shifts in connectivity between the two may be crucial for evidence gathering. Thus, abnormal connectivity between the two systems may significantly contribute to the jumping-to-conclusions bias. Copyright © 2018 Elsevier Inc. All rights reserved.
Current Perspectives on the Cerebellum and Reading Development.
Alvarez, Travis A; Fiez, Julie A
2018-05-03
The dominant neural models of typical and atypical reading focus on the cerebral cortex. However, Nicolson et al. (2001) proposed a model, the cerebellar deficit hypothesis, in which the cerebellum plays an important role in reading. To evaluate the evidence in support of this model, we qualitatively review the current literature and employ meta-analytic tools examining patterns of functional connectivity between the cerebellum and the cerebral reading network. We find evidence for a phonological circuit with connectivity between the cerebellum and a dorsal fronto-parietal pathway, and a semantic circuit with cerebellar connectivity to a ventral fronto-temporal pathway. Furthermore, both cerebral pathways have functional connections with the mid-fusiform gyrus, a region implicated in orthographic processing. Consideration of these circuits within the context of the current literature suggests the cerebellum is positioned to influence both phonological and word-based decoding procedures for recognizing unfamiliar printed words. Overall, multiple lines of research provide support for the cerebellar deficit hypothesis, while also highlighting the need for further research to test mechanistic hypotheses. Copyright © 2018. Published by Elsevier Ltd.
Cross-hemispheric functional connectivity in the human fetal brain.
Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto
2013-02-20
Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.
Reducing a cortical network to a Potts model yields storage capacity estimates
NASA Astrophysics Data System (ADS)
Naim, Michelangelo; Boboeva, Vezha; Kang, Chol Jun; Treves, Alessandro
2018-04-01
An autoassociative network of Potts units, coupled via tensor connections, has been proposed and analysed as an effective model of an extensive cortical network with distinct short- and long-range synaptic connections, but it has not been clarified in what sense it can be regarded as an effective model. We draw here the correspondence between the two, which indicates the need to introduce a local feedback term in the reduced model, i.e. in the Potts network. An effective model allows the study of phase transitions. As an example, we study the storage capacity of the Potts network with this additional term, the local feedback w, which contributes to drive the activity of the network towards one of the stored patterns. The storage capacity calculation, performed using replica tools, is limited to fully connected networks, for which a Hamiltonian can be defined. To extend the results to the case of intermediate partial connectivity, we also derive the self-consistent signal-to-noise analysis for the Potts network; and finally we discuss the implications for semantic memory in humans.
Ezekiel, Fredrick; Bosma, Rachael; Morton, J Bruce
2013-07-01
The Dimensional Change Card Sort (DCCS) is a standard procedure for assessing executive functioning early in development. In the task, participants switch from sorting cards one way (e.g., by color) to sorting them a different way (e.g., by shape). Traditional accounts associate age-related changes in DCCS performance with circumscribed changes in lateral prefrontal cortex (lPFC) functioning, but evidence of age-related differences in the modulation of lPFC activity by switching is mixed. The current study therefore tested for possible age-related differences in functional connectivity of lPFC with regions that comprise a larger cognitive control network. Functional magnetic resonance imaging (fMRI) data collected from children and adults performing the DCCS were analyzed by means of independent components analysis (ICA). The analysis revealed several important age-related differences in functional connectivity of lPFC. In particular, lPFC was more strongly connected with the anterior cingulate, inferior parietal cortex, and the ventral tegmental area in adults than in children. Theoretical implications are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Learning and Teaching with Social Network Sites: A Decade of Research in K-12 Related Education
ERIC Educational Resources Information Center
Greenhow, Christine; Askari, Emilia
2017-01-01
The increasingly widespread use of social network sites to expand and deepen one's social connections is a relatively new but potentially important phenomenon that has implications for teaching and learning and teacher education in the 21st century. This paper surveys the educational research literature to examine: How such technologies are…
Media and Violence. Part One: Making the Connections. Media & Values 62.
ERIC Educational Resources Information Center
Silver, Rosalind, Ed.
1993-01-01
This issue of "Media & Values" explores the influence of mass media and violence in our society. The essays present various interpretations of that influence and the implications for the society. A special section entitled "Media and Violence Forum" contains 10 articles. Articles include: (1) "No Doubt About It - TV Violence Affects Behavior"…
The Complexity Turn in Studies of Organisations and Leadership: Relevance and Implications
ERIC Educational Resources Information Center
Johannessen, Stig O.
2009-01-01
The widespread experience of complexity is the experience of radical unpredictability and loss of clear connections between cause and effect. The typical response from leaders and researchers is to suggest that more complex contexts require new ways of management control and that particular ways of organising and leading are better than others in…
Examples of Best Practice 2. Holocaust Education as a Universal Challenge
ERIC Educational Resources Information Center
Kalisman, Raya
2010-01-01
The Center for Humanistic Education (CHE) engages high-school students and teachers from the Arab and Jewish sectors in an examination of connections between the Holocaust, personal and social morals, and implications for present Israeli society. Since 1997, CHE has been working regularly with about 25 Jewish and Arab high schools, engaging about…
ERIC Educational Resources Information Center
Kizito, Rita Ndagire
2016-01-01
This paper examines the possible characteristics and the value of designing learning activities grounded in connectivism--an emerging learning theory. It is an exploratory attempt to connect the theory to the prevailing technology adoption archetypes used in African contexts with the aim of extracting influences that could shape pedagogical…
Developing a Curriculum for Initial Teacher Education Using a Situated Learning Perspective
ERIC Educational Resources Information Center
Skinner, Nigel
2010-01-01
This paper argues that the implications of the concept of situated learning are important when developing a curriculum for initial teacher education (ITE). It describes and analyses the use of a model of ITE designed to stimulate discussions promoting the development of professional craft knowledge situated mainly in schools and to connect these…
ERIC Educational Resources Information Center
Lyons, Cheryl
2014-01-01
Reasoning about systems is necessary for understanding many modern issues that face society and is important for future scientists and all citizens. Systems thinking may allow students to make connections and identify common themes between seemingly different situations and phenomena, and is relevant to the focus on cross-cutting concepts in…
Workplace Bullying and the Racially Diverse Urban Context: Implications for Adult Education
ERIC Educational Resources Information Center
Altman, Brian A.
2009-01-01
From the perspective of the racial diversity of the urban environment (Daley, Fisher, & Martin, 2000), a literature review was conducted to explore how race connects to the issue of workplace bullying. Results of the literature review suggest that there are multiple points of view regarding whether workplace bullying includes or is separate…
Making the Connection: The Use of Student Development Theory in First-Year and Transition Programs
ERIC Educational Resources Information Center
Torres, Vasti; LePeau, Lucy A.
2013-01-01
This article focuses on past and present research studies that examined the creation of developmental theories to help understand how students develop while in college. The implications of this manuscript include understanding how the diversity of today's student body influences practice, considering the appropriate knowledge base needed to…
ERIC Educational Resources Information Center
Wilsz, Jolanta
2015-01-01
The concept of personality's constant individual traits and its significance, as well as implications for problems connected with choosing an occupation have been presented in the paper. Selected theories of occupational development have been analyzed from the concept viewpoint and certain traits of occupational personality presented by authors of…
The Enunciation of the Subject: Sharing Jean-Luc Nancy's Singular Plural in the Classroom
ERIC Educational Resources Information Center
Collins, Ashok
2015-01-01
This article seeks to explore the implications of Jean-Luc Nancy's reading of the subject for educational philosophy by connecting his re-interpretation of Descartes to his later thinking on what he names the ontological singular plural. Nancy's re-imagining of the Cogito coalesces around the figure of the mouth ("la bouche") through…
David Wm. Smith
2006-01-01
A brief overview and some personal thoughts are offered that deal with the implications of our social and political systems on the long-term sustainability of our forest resources. The connection of the most recent climatic events, in a geologic-time context, to the development of present day oak dominated forests of the Eastern United States is discussed. The impacts...
The Color of Giftedness: A Policy Genealogy Implicating Educators Past, Present, and Future
ERIC Educational Resources Information Center
Mansfield, Katherine Cumings
2016-01-01
This article offers a critical rereading of gifted education in the United States using a genealogical framework as defined by postcolonial theory. Using genealogy is appropriate because it sets the education profession within a family research tradition, implies the close connection between past and present, and enables us to systematically trace…
The selfish goal meets the selfish gene.
Neuberg, Steven L; Schaller, Mark
2014-04-01
The connection between selfish genes and selfish goals is not merely metaphorical. Many goals that shape contemporary cognition and behavior are psychological products of evolutionarily fundamental motivational systems and thus are phenotypic manifestations of genes. An evolutionary perspective can add depth and nuance to our understanding of "selfish goals" and their implications for human cognition and behavior.
Implications of Out-of-School Activities for School Engagement in African American Adolescents
ERIC Educational Resources Information Center
Dotterer, Aryn M.; McHale, Susan M.; Crouter, Ann C.
2007-01-01
The connection between out-of-school activities and school engagement was examined in 140, 6th through 9th grade African American adolescents. Youth's out-of-school activities were measured with a series of 7 nightly phone calls and focused on time in structured (homework, academically-oriented, extracurricular/sports) and unstructured (watching…
Culture, place and urban growth in the U.S. South
Cassandra Y. Johnson; Wayne C. Zipperer
2007-01-01
People's connection to land is an important contributor to identity in traditional southern society. In small southern communities, to know where someone lives is to know who someone is because place assigns biography. Studies have investigated the physical and economic implication of landscape change in the South, but comparatively little research focuses on the...
ERIC Educational Resources Information Center
Moallem, Mahnaz; Earle, Rodney S.
1998-01-01
In an effort to connect current research findings on teacher thinking with components of instructional design models and principles, this article discusses a new contextual model for thinking about teaching and considers the implications of the model for instructional development of research in instructional design and teacher thinking. (Author)
ERIC Educational Resources Information Center
Thorburn, Malcolm; Stolz, Steven
2017-01-01
We write as critical theorists, who consider that in terms of scoping out robust conceptual elaborations which are suitable for contemporary schooling, that physical education has ground to make up connecting theory with practice and practice with theory. We advocate that aspects of existentialism and phenomenology can provide a theoretically…
ERIC Educational Resources Information Center
Taylor, Pamela G.
2014-01-01
The problematic issues related to standardized assessment of the nonstandard and to multiple ways of knowing in the visual arts motivated the research and first phase development of eLASTIC: electronic learning and assessment tool for interdisciplinary connections. In this article, the author describes the evolution and implications associated…
ERIC Educational Resources Information Center
Liu, Laura Blythe
2017-01-01
Globally, teachers are trained to educate and assess children through matrices based on comparative competition, a practice that thrives on ranking. In an era of glocalization, how might educational systems cultivate classroom connections embracing diverse student gifts? This arts-based narrative inquiry explores fatherly life lessons of 17…
ERIC Educational Resources Information Center
Kennedy, Teresa J.
2006-01-01
Cognitive sciences are discovering many things that educators have always intuitively known about language learning. However, the important point is actively using this new information to improve both students learning and current teaching practices. The implications of neuroscience for educational reform regarding second language (L2) learning…
The Implications of Self-Creation and Self-Care in Higher Education: A Transdisciplinary Inquiry
ERIC Educational Resources Information Center
Jackson, Lesley A.
2017-01-01
This dissertation explores and connects the concepts of self-creation and self-care as a means to better address the evolving needs of students seeking to actualize themselves in and beyond higher education. These needs include helping students manage change, and other issues such as stress, anxiety, substance abuse, and physical health…
Social Connectivity in the Mobile Workplace. Workscape 21: The Ecology of New Ways of Working.
ERIC Educational Resources Information Center
Becker, Franklin; Tennessen, Carolyn M.
A study examined the social implications of a workplace strategy in which employees who previously worked together in a main office became virtual office workers. The study site was a Digital Equipment Corporation flexible work program implemented at its Newmarket, England, office, where a large traditional office was closed and its employees…
ERIC Educational Resources Information Center
Osgood-Campbell, Elisabeth
2015-01-01
Much educational neuroscience research investigates connections between cognition, neuroscience, and educational theory and practice without reference to the body. In contrast, proponents of embodied cognition posit that the bodily action and perception play a central role in cognitive development. Some researchers within the field of Mind, Brain,…
ERIC Educational Resources Information Center
Bernasek, Lisa; Canning, John
2009-01-01
Middle Eastern Studies, modern foreign languages and Islamic Studies have been recognized by the UK government as strategically important subjects in higher education. Motivated by government concerns about lack of knowledge about the Middle East and the radicalization of British Muslims, this designation has complex implications for the teaching…
Service-Learning: Implications for Empathy and Community Engagement in Elementary School Children
ERIC Educational Resources Information Center
Scott, Katharine E.; Graham, James A.
2015-01-01
The literature on service-learning outcomes in pre-adolescent children is relatively sparse. Empathy (i.e., overall, cognitive, affective) and community engagement (i.e., connection to the community, civic awareness, civic efficacy) were assessed in 155 first, second, and fifth graders (n = 79 males; n = 76 females) using a pre/post design for a…
The Implications of Talent Management for Diversity Training: An Exploratory Study
ERIC Educational Resources Information Center
Stewart, Jim; Harte, Victoria
2010-01-01
Purpose: The paper seeks to explore the proposition that there is a need for research to address the connections between talent management (TM) and managing diversity as one example of achieving better integration and less separation in academic work on human resource (HR). Design/methodology/approach: An exploratory study of one organisation at a…
ERIC Educational Resources Information Center
Kakihara, Fumiko; Tilton-Weaver, Lauree; Kerr, Margaret; Stattin, Hakan
2010-01-01
Recent research suggests that youths interpret parental control and that this may have implications for how control affects youths' adjustment. In this study, we propose that youths' feelings about being over-controlled by parents and feeling connected to parents are intermediary processes linking parental control and youths' adjustment. We used…
Is Education a Lost Cause? Zizek, Schooling, and Universal Emancipation
ERIC Educational Resources Information Center
Cooley, Aaron
2009-01-01
This paper discusses the work of Slavoj Zizek and links several of his ideas to educational contexts. After giving a brief background on his unique intellectual perspective, I pull three themes (control, torture, and politics) from his body of work, and I consider their educational connections and implications. I conclude by speculating on the…
Implications of Korean Experiences of ICT in Education in Indian Context: A Viewpoint
ERIC Educational Resources Information Center
Bansal, C.; Misra, P. K.
2018-01-01
South Korea has achieved the rank of high tech nations of 21 century, 100% literacy and 100% schools with internet connectivity in a span of 20 years. There are several factors responsible for these notable achievements. Optimal and effective integration of ICT (Information and Communication Technology) in education is one of the main reasons…
ERIC Educational Resources Information Center
Beaudry, Christine
2015-01-01
In the United States, preservice teachers often graduate and go on to work with students whose backgrounds are different from their own and in communities in which they have limited lived experience (Sleeter 2000). This holds significant implications for teacher education programs given the importance of life and educational experiences in…
Threats to Autonomy in Consumer Societies and Their Implications for Education
ERIC Educational Resources Information Center
Schinkel, Anders; de Ruyter, Doret; Steutel, Jan
2010-01-01
The development of autonomy in children is a central concern of liberal philosophers of education. We endorse the liberal intuition that autonomy matters and that it is an appropriate aim of education. However, we divert from autonomy liberals, who defend a rather limited and demanding conception of autonomy that is closely connected with skills…
Musical Meaning in the Lives of Those Affected by the Holocaust: Implications for Music Education
ERIC Educational Resources Information Center
Cunningham, Deborah A.
2014-01-01
This qualitative study investigated the role of music in the lives of those affected by the Holocaust. Participants were identified through purposeful and snowball sampling techniques, and a total of five were selected based on their connection to the Holocaust. Participants included those incarcerated in camps and ghettos, those who escaped…
ERIC Educational Resources Information Center
Blanco Ramírez, Gerardo; Palu-ay, Lyssa
2015-01-01
Social media sites and other contemporary technologies open the possibility for the construction of online identities that are loosely connected to physical bodies; this construction allows individuals to edit their identities constantly, in a continuous process of self-recreation. In parallel, universities utilise printed and electronic media to…
A posteriori model validation for the temporal order of directed functional connectivity maps
Beltz, Adriene M.; Molenaar, Peter C. M.
2015-01-01
A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data). PMID:26379489
Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.
Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella
2017-05-01
Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Neill, A. J.; Tetzlaff, D.; Strachan, N.; Soulsby, C.
2016-12-01
The non-linearities of runoff generation processes are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Despite major advances in understanding hydrological connectivity and runoff generation, the role of connectivity in the contamination of potable water supplies by faecal pathogens from grazing animals remains unclear. This is a water quality issue with serious implications for public health. Here, we sought to understand the dynamics of hydrological connectivity, flow paths and linked faecal pathogen transport in a montane catchment in Scotland with high deer populations. We firstly calibrated, within an uncertainty framework, a parsimonious tracer-aided hydrological model to daily discharge and stream isotope data. The model, developed on the basis of past empirical and tracer studies, conceptualises the catchment as three interacting hydrological source areas (dynamic saturation zone, dynamic hillslope, and groundwater) for which water fluxes, water ages and storage-based connectivity can be simulated. We next coupled several faecal indicator organism (FIO; a common indicator of faecal pathogen contamination) behaviour and transport schemes to the robust hydrological models. A further calibration was then undertaken based on the ability of each coupled model to simulate daily FIO concentrations. This gave us a final set of coupled behavioural models from which we explored how in-stream FIO dynamics could be related to the changing connectivity between the three hydrological source areas, flow paths, water ages and consequent dominant runoff generation processes. We found that high levels of FIOs were transient and episodic, and strongly correlated with periods of high connectivity through overland flow. This non-linearity in connectivity and FIO flux was successfully captured within our dynamic, tracer-aided hydrological model.
Affective traits and history of depression are related to ventral striatum connectivity.
DelDonno, Sophie R; Jenkins, Lisanne M; Crane, Natania A; Nusslock, Robin; Ryan, Kelly A; Shankman, Stewart A; Phan, K Luan; Langenecker, Scott A
2017-10-15
Studying remitted Major Depressive Disorder (rMDD) facilitates a better understanding of neural mechanisms for risk, given that confounding effects of active symptoms are removed. Disrupted functional connectivity has been reported in multiple networks in MDD. However, no study to date of rMDD has specifically examined connectivity of the ventral striatum (VS), a region highly implicated in reward and motivation. We investigated functional connectivity of the VS in individuals with and without a history of MDD, and in relation to affective personality traits. Forty-two individuals with rMDD and 28 healthy controls across two sites completed resting-state fMRI and the Behavioral Inhibition System/Behavioral Activation System Scale. Voxel-wise, whole-brain comparisons were conducted across and between groups for four seeds: left and right inferior VS (VSi), left and right superior VS (VSs). VSs connectivity to temporal and subcortical regions including the putamen and amygdala was positive and greater in HCs compared to rMDD individuals. Across groups, VSi connectivity was positively correlated with trait reward-responsiveness in somatomotor regions. Across groups, VSs connectivity was positively correlated with trait drive, particularly in the putamen, parahippocampal, and inferior temporal gyrus, and was negatively associated with trait behavioral inhibition in the anterior cingulate, frontal gyri, and insula. Limitations include scanning at two sites and using multiple comparisons. Group connectivity differences emerged from the VSs rather than VSi. VSs showed associations with trait drive and behavioral inhibition, whereas VSi corrrelated with reward-responsiveness. Depression history and affective traits contribute meaningful and specific information about VS connectivity in understanding risk for MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cliver, E. W.; von Steiger, R.
2017-09-01
During the last decade it has been proposed that both the Sun and the solar wind have minimum magnetic states, lowest order levels of magnetism that underlie the 11-yr cycle as well as longer-term variability. Here we review the literature on basal magnetic states at the Sun and in the heliosphere and draw a connection between the two based on the recent deep 2008-2009 minimum between cycles 23 and 24. In particular, we consider the implications of the low solar activity during the recent minimum for the origin of the slow solar wind.
Amygdala Functional Connectivity is Reduced After the Cold Pressor Task
Clewett, David; Schoeke, Andrej; Mather, Mara
2013-01-01
The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370
Desjardins, Marie-Ève; Carrier, Julie; Lina, Jean-Marc; Fortin, Maxime; Gosselin, Nadia; Montplaisir, Jacques
2017-01-01
Abstract Study Objectives: Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. Methods: We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient’s episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results: Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes’ onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Conclusions: Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep sleep. PMID:28204773
Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.
2016-01-01
Skilled reading depends on recognizing words efficiently in isolation (word-level processing; WL) and extracting meaning from text (discourse-level processing; DL); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as unique regions for DL processing, however less is known about how WL and DL processes interact. Here we examined functional connectivity from seed regions derived from where BOLD signal overlapped during word and passage reading in 38 adolescents ranging in reading ability, hypothesizing that even though certain regions support word- and higher-level language, connectivity patterns from overlapping regions would be task modulated. Results indeed revealed that the left-lateralized semantic and working memory (WM) seed regions showed task-dependent functional connectivity patterns: during DL processes, semantic and WM nodes all correlated with the left angular gyrus, a region implicated in semantic memory/coherence building. In contrast, during WL, these nodes coordinated with a traditional WL area (left occipitotemporal region). Additionally, these WL and DL findings were modulated by decoding and comprehension abilities, respectively, with poorer abilities correlating with decreased connectivity. Findings indicate that key regions may uniquely contribute to multiple levels of reading; we speculate that these connectivity patterns may be especially salient for reading outcomes and intervention response. PMID:27147257
What We Know About the Brain Structure-Function Relationship.
Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette
2018-04-18
How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.
Should dentistry be part of the National Health Information Infrastructure?
Schleyer, Titus K L
2004-12-01
The National Health Information Infrastructure, or NHII, proposes to improve the effectiveness, efficiency and overall quality of health in the United States by establishing a national, electronic information network for health care. To date, dentistry's integration into this network has not been discussed widely. The author reviews the NHII and its goals and structure through published reports and background literature. The author evaluates the advantages and disadvantages of the NHII regarding their implications for the dental care system. The NHII proposes to implement computer-based patient records, or CPRs, for most Americans by 2014, connect personal health information with other clinical and public health information, and enable different types of care providers to access CPRs. Advantages of the NHII include transparency of health information across health care providers, potentially increased involvement of patients in their care, better clinical decision making through connecting patient-specific information with the best clinical evidence, increased efficiency, enhanced bioterrorism defense and potential cost savings. Challenges in the implementation of the NHII in dentistry include limited use of CPRs, required investments in information technology, limited availability and adoption of standards, and perceived threats to privacy and confidentiality. The implementation of the NHII is making rapid strides. Dentistry should become an active participant in the NHII and work to ensure that the needs of dental patients and the profession are met. Practice Implications. The NHII has far-reaching implications on dental practice by making it easier to access relevant patient information and by helping to improve clinical decision making.
The development of principled connections and kind representations.
Haward, Paul; Wagner, Laura; Carey, Susan; Prasada, Sandeep
2018-07-01
Kind representations draw an important distinction between properties that are understood as existing in instances of a kind by virtue of their being the kind of thing they are and properties that are not understood in this manner. For example, the property of barking for the kind dog is understood as being had by dogs by virtue of the fact that they are dogs. These properties are said to have a principled connection to the kind. In contrast, the property of wearing a collar is not understood as existing in instances by virtue of their being dogs, despite the fact that a large percentage of dogs wear collars. Such properties are said to have a statistical connection to the kind. Two experiments tested two signatures of principled connections in 4-7 year olds and adults: (i) that principled connections license normative expectations (e.g., we judge there to be something wrong with a dog that does not bark), and (ii) that principled connections license formal explanations which explain the existence of a property by reference to the kind (e.g., that barks because it is a dog). Experiment 1 showed that both the children and adults have normative expectations for properties that have a principled connection to a kind, but not those that have a mere statistical connection to a kind. Experiment 2 showed that both children and adults are more likely to provide a formal explanation when explaining the existence of properties with a principled connection to a kind than properties with statistical connections to their kinds. Both experiments showed no effect of age (over ages 4, 7, and adulthood) on the extent to which participants differentiated principled and statistical connections. We discuss the implications of the results for theories of conceptual representation and for the structure of explanation. Copyright © 2018 Elsevier B.V. All rights reserved.
Networks In Real Space: Characteristics and Analysis for Biology and Mechanics
NASA Astrophysics Data System (ADS)
Modes, Carl; Magnasco, Marcelo; Katifori, Eleni
Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.
Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana
2017-08-01
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.
Glucose Suppresses Biological Ferroelectricity in Aortic Elastin
Liu, Yuanming; Wang, Yunjie; Chow, Ming-Jay; Chen, Nataly Q.; Ma, Feiyue; Zhang, Yanhang; Li, Jiangyu
2013-01-01
Elastin is an intriguing extracellular matrix protein present in all connective tissues of vertebrates, rendering essential elasticity to connective tissues subjected to repeated physiological stresses. Using piezoresponse force microscopy, we show that the polarity of aortic elastin is switchable by an electrical field, which may be associated with the recently discovered biological ferroelectricity in the aorta. More interestingly, it is discovered that the switching in aortic elastin is largely suppressed by glucose treatment, which appears to freeze the internal asymmetric polar structures of elastin, making it much harder to switch, or suppressing the switching completely. Such loss of ferroelectricity could have important physiological and pathological implications from aging to arteriosclerosis that are closely related to glycation of elastin. PMID:23679639
Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim
2016-04-27
Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development. Copyright © 2016 the authors 0270-6474/16/364772-14$15.00/0.
Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim
2016-01-01
Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. SIGNIFICANCE STATEMENT A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long-term phasic molding hypothesis that resting-state network development is influenced by recurring stimulus-elicited connectivity through prospective examination of the developing human amygdala-cortical functional connections. Our results provide critical insight into how early environmental events sculpt functional network architecture across development and highlight childhood as a potential developmental period of heightened malleability for the amygdala-medial prefrontal cortex circuit. These findings have implications for how both positive and adverse experiences influence the developing brain and motivate future investigations of whether this molding mechanism reflects a general phenomenon of brain development. PMID:27122035
Hernaus, Dennis; Casales Santa, Marta Ma; Offermann, Jan Stefan; Van Amelsvoort, Thérèse
2017-04-01
Experimental animal work has demonstrated that dopamine and noradrenaline play an essential role in modulating prefrontal cortex-mediated networks underlying working memory performance. Studies of functional connectivity have been instrumental in extending such notions to humans but, so far, have almost exclusively focussed on pharmacological agents with a predominant dopaminergic mechanism of action. Here, we investigate the effect of a single dose of atomoxetine 60mg, a noradrenaline transporter inhibitor, on working memory performance and associated functional connectivity during an n-back task in 19 healthy male volunteers. Atomoxetine increased functional connectivity between right anterior insula and dorsolateral prefrontal cortex, precentral gyrus, posterior parietal cortex and precuneus during the high-working memory load condition of the n-back task. Increased atomoxetine-induced insula-dorsolateral prefrontal cortex functional connectivity during this condition correlated with decreased reaction time variability and was furthermore predicted by working memory capacity. These results show for the first time that noradrenaline transporter blockade-induced increases in cortical catecholamines accentuate fronto-parietal working memory-related network integrity. The observation of significant inter-subject variability in response to atomoxetine has implications for inverted-U frameworks of dopamine and noradrenaline function, which could be useful to predict drug effects in clinical disorders with variable treatment response. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Reduced Default Mode Connectivity in Adolescents With Conduct Disorder.
Broulidakis, M John; Fairchild, Graeme; Sully, Kate; Blumensath, Thomas; Darekar, Angela; Sonuga-Barke, Edmund J S
2016-09-01
Conduct disorder (CD) is characterized by impulsive, aggressive, and antisocial behaviors that might be related to deficits in empathy and moral reasoning. The brain's default mode network (DMN) has been implicated in self-referential cognitive processes of this kind. This study examined connectivity between key nodes of the DMN in 29 adolescent boys with CD and 29 age- and sex-matched typically developing adolescent boys. The authors ensured that group differences in DMN connectivity were not explained by comorbidity with other disorders by systematically controlling for the effects of substance use disorders (SUDs), attention-deficit/hyperactivity disorder (ADHD) symptoms, psychopathic traits, and other common mental health problems. Only after adjusting for co-occurring ADHD symptoms, the group with CD showed hypoconnectivity between core DMN regions compared with typically developing controls. ADHD symptoms were associated with DMN hyperconnectivity. There was no effect of psychopathic traits on DMN connectivity in the group with CD, and the key results were unchanged when controlling for SUDs and other common mental health problems. Future research should directly investigate the possibility that the aberrant DMN connectivity observed in the present study contributes to CD-related deficits in empathy and moral reasoning and examine self-referential cognitive processes in CD more generally. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. All rights reserved.
The changing landscape of functional brain networks for face processing in typical development.
Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S
2012-11-15
Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories. Copyright © 2012 Elsevier Inc. All rights reserved.
Resting-state functional connectivity of the default mode network associated with happiness
Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun
2016-01-01
Happiness refers to people’s cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people’s perceived happiness. PMID:26500289
Depression in chronic ketamine users: Sex differences and neural bases.
Li, Chiang-Shan R; Zhang, Sheng; Hung, Chia-Chun; Chen, Chun-Ming; Duann, Jeng-Ren; Lin, Ching-Po; Lee, Tony Szu-Hsien
2017-11-30
Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users. Copyright © 2017 Elsevier B.V. All rights reserved.
Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study.
Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv
2017-03-01
Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Soundararajan, Venky; Aravamudan, Murali
2014-12-01
The efficacy and mechanisms of therapeutic action are largely described by atomic bonds and interactions local to drug binding sites. Here we introduce global connectivity analysis as a high-throughput computational assay of therapeutic action - inspired by the Google page rank algorithm that unearths most ``globally connected'' websites from the information-dense world wide web (WWW). We execute short timescale (30 ps) molecular dynamics simulations with high sampling frequency (0.01 ps), to identify amino acid residue hubs whose global connectivity dynamics are characteristic of the ligand or mutation associated with the target protein. We find that unexpected allosteric hubs - up to 20Å from the ATP binding site, but within 5Å of the phosphorylation site - encode the Gibbs free energy of inhibition (ΔGinhibition) for select protein kinase-targeted cancer therapeutics. We further find that clinically relevant somatic cancer mutations implicated in both drug resistance and personalized drug sensitivity can be predicted in a high-throughput fashion. Our results establish global connectivity analysis as a potent assay of protein functional modulation. This sets the stage for unearthing disease-causal exome mutations and motivates forecast of clinical drug response on a patient-by-patient basis. We suggest incorporation of structure-guided genetic inference assays into pharmaceutical and healthcare Oncology workflows.
Structural brain network analysis in families multiply affected with bipolar I disorder.
Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm
2015-10-30
Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó
2016-02-16
Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.
Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne
2016-06-28
The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.
Sidlauskaite, Justina; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R
2016-06-01
Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesised to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six-minute resting-state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement, making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli.
PDGFRα plays a crucial role in connective tissue remodeling.
Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo
2015-12-07
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.
PDGFRα plays a crucial role in connective tissue remodeling
Horikawa, Shinjiro; Ishii, Yoko; Hamashima, Takeru; Yamamoto, Seiji; Mori, Hisashi; Fujimori, Toshihiko; Shen, Jie; Inoue, Ran; Nishizono, Hirofumi; Itoh, Hiroshi; Majima, Masataka; Abraham, David; Miyawaki, Toshio; Sasahara, Masakiyo
2015-01-01
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling. PMID:26639755
Two Distinct Scene-Processing Networks Connecting Vision and Memory.
Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M
2016-01-01
A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.
Cservenka, Anita; Casimo, Kaitlyn; Fair, Damien; Nagel, Bonnie
2014-01-01
Adolescents with a family history of alcoholism (FHP) are at heightened risk for developing alcohol use disorders (AUDs). The nucleus accumbens (NAcc), a key brain region for reward processing, is implicated in the development of AUDs. Thus, functional connectivity of the NAcc may be an important marker of risk in FHP youth. Resting state functional magnetic resonance imaging (rs-fcMRI) was used to examine the intrinsic connectivity of the NAcc in 47 FHP and 50 family history negative (FHN) youth, ages 10–16 years old. FHP and FHN adolescents showed significant group differences in resting state synchrony between the left NAcc and bilateral inferior frontal gyri and the left postcentral gyrus (PG). Additionally, FHP youth differed from FHN youth in right NAcc functional connectivity with the left orbitofrontal cortex (OFC), left superior temporal gyrus, right cerebellum, left PG, and right occipital cortex. These results indicate that FHP youth have less segregation between the NAcc and executive functioning brain regions, and less integration with reward-related brain areas, such as the OFC. The findings of the current study highlight that premorbid atypical connectivity of appetitive systems, in the absence of heavy alcohol use, may be a risk marker in FHP adolescents. PMID:24440571
ERIC Educational Resources Information Center
Tarakeshwar, Nalini; Fox, Ashley; Ferro, Carol; Khawaja, Shazia; Kochman, Arlene; Sikkema, Kathleen J.
2005-01-01
A qualitative study was conducted with 28 women who are human immunodeficiency virus (HIV)-positive and have experienced childhood sexual abuse (CSA) in order to examine (1) the challenges generated by the experience of sexual abuse and related coping strategies, (2) the impact of the HIV diagnosis on their coping strategies, and (3) the links…
ERIC Educational Resources Information Center
Welsh, Richard O.
2018-01-01
Mobile students and absent students are important subsets of at-risk students in schools and districts nationwide. As such, student mobility and school absenteeism are two challenges in K-12 education with significant policy and equity implications. Although both issues are at the nexus of schooling and society and there is an apparent overlap in…
ERIC Educational Resources Information Center
Baginski, Jessie
2010-01-01
Many college campuses across the country have implemented U-Pass transit programs to mitigate transportation costs for students. However, urban university U-pass programs fall short for suburban students who cannot get to the urban metro area without connecting public transportation. As urban universities rely on suburbs as feeder communities,…
ERIC Educational Resources Information Center
Fuller, Alison; Kakavelakis, Kostas; Felstead, Alan; Jewson, Nick; Unwin, Lorna
2009-01-01
This paper explores the nature of the relationship between Head Office and stores in a large British supermarket chain. It focuses on the role played by a range of technological tools available for managing the stock and connecting different parts of the productive system and the implications this has for employee learning in stores. The evidence…
ERIC Educational Resources Information Center
Taylor-Leech, Kerry; Yates, Lynda
2012-01-01
This article draws on ethnographic data from a longitudinal study of newly-arrived immigrants of non English-speaking background in the Australian Adult Migrant English Program to investigate their opportunities for using English and the language learning strategies (LLS) they used to make the most of these opportunities. Analysis of their reports…
ERIC Educational Resources Information Center
Hardman, Randy K.; Berrett, Michael E.; Richards, P. Scott
2003-01-01
Authors describe ten false beliefs that women with eating disorders may hold. They explain how the pursuit of these beliefs can prevent the women from connecting with God and with others in genuine ways. They also suggest some therapeutic strategies that may help women with eating disorders find a healing and helpful spiritual perspective.…
Tubing misconnections--a systems failure with human factors: lessons for nursing practice.
Simmons, Debora; Graves, Krisanne
2008-12-01
In a neonatal unit, an experienced nurse inadvertently connected a feeding tube to an intravenous catheter. An analysis of this error, including the historical perspective, reveals that this threat to safety has been documented since 1972. Implications for nursing practice include the redesign of systems to accommodate human factors science and a change in health care's view of vigilance.
ERIC Educational Resources Information Center
Wynn, Cordell
The objective of teacher education programs should be to assist prospective teachers in developing competencies needed to intervene successfully in the development of youth from diverse cultural backgrounds. This objective has a number of implications for teacher education programs and for school curriculum at all levels. Teacher education…
ERIC Educational Resources Information Center
Thompson, Ross A.
2008-01-01
The past decade has seen an upsurge in public understanding of early brain development. News reports, statements by policymakers, and commercial marketing of products for infants and young children have all contributed to a widespread understanding of the explosive growth of the brain in the early years and that stimulation acts as a catalyst to…
Incivility in nursing: the connection between academia and clinical settings.
Luparell, Susan
2011-04-01
Incivility and bullying in nursing are complex problems that have garnered much attention in recent years. Emerging evidence suggests that incivility in the workplace has significant implications for nurses, patients, and health care organizations. Because today's students are tomorrow's colleagues, conversations regarding how to address incivility and bullying should include specific aspects of nursing academia and the preparation of new nurses.
ERIC Educational Resources Information Center
McCaughtry, Nate; Barnard, Sara; Martin, Jeffrey; Shen, Bo; Kulinna, Pamela Hodges
2006-01-01
The purpose of this study was to analyze how the challenges of urban schools influence physical education teachers' emotional understanding and connections with their students and the implications on their teaching. Sixty-one elementary physical educators from an urban school district in the midwestern U.S. were interviewed multiple times (N =…
ERIC Educational Resources Information Center
Oloruntegbe, Kunle Oke; Ikpe, Adakole
2011-01-01
Making connections between science concepts taught in school and real-world phenomena is considered important in engaging students in learning. The present study examines students' abilities to relate their in-school science learning to everyday experiences at home. The sample comprised 200 senior secondary chemistry students drawn from Ondo…
ERIC Educational Resources Information Center
Roman, Tiffany A.; Ottenbreit-Leftwich, Anne T.
2016-01-01
Within the United States, there has been a call for timely, effective, and targeted communication between home and school environments to increase student achievement and engage parents (Project Tomorrow, 2011a). Although teachers can use websites as a means of communication to connect with parents online (Dunn, 2011; Janicki &…
ERIC Educational Resources Information Center
Baker, Vicki L.; Pifer, Meghan J.; Flemion, Blair
2013-01-01
This article reports on an exploratory study that examined the transition to independence in Stage 2 of the doctoral student experience in two applied social science fields. We rely on an interdisciplinary framework that integrates developmental networks and sociocultural perspectives of learning to better understand the connection between the…
ERIC Educational Resources Information Center
Urban, Mathias; Vandenbroeck, Michel; Van Laere, Katrien; Lazzari, Arianna; Peeters, Jan
2012-01-01
The close connection between the quality of provision for young children and professionalisation of the field has long been supported by international research. That the two are inseparable aspects of one picture is beginning to become accepted at European policy level, as evident in recent high level EU policy documents. This article explores the…
ERIC Educational Resources Information Center
Johnson, Adam N.; Sievert, Regina; Durglo, Michael, Sr.; Finley, Vernon; Adams, Louis; Hofmann, Michael H.
2014-01-01
We investigated connections between the natural and the cultural history of the Flathead Indian Reservation through the integration of geoscience, traditional tribal knowledge, and oral narratives for the purpose of improving Earth Science education in the tribal community. The project served as an avenue for the incorporation of indigenous…
ERIC Educational Resources Information Center
Lawrence, Sharmila; Smith, Sheila; Banerjee, Rashida
2016-01-01
A recent policy statement issued by the U.S. Department of Health and Human Services (HHS) and U.S. Department of Education (DOE) on early childhood inclusion presents extensive recommendations for state and local actions that could improve young children's access to high quality inclusive preschool programs (HHS/DOE, 2015). This brief builds on…
Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.
2009-01-01
Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410
Randomness versus specifics for word-frequency distributions
NASA Astrophysics Data System (ADS)
Yan, Xiaoyong; Minnhagen, Petter
2016-02-01
The text-length-dependence of real word-frequency distributions can be connected to the general properties of a random book. It is pointed out that this finding has strong implications, when deciding between two conceptually different views on word-frequency distributions, i.e. the specific 'Zipf's-view' and the non-specific 'Randomness-view', as is discussed. It is also noticed that the text-length transformation of a random book does have an exact scaling property precisely for the power-law index γ = 1, as opposed to the Zipf's exponent γ = 2 and the implication of this exact scaling property is discussed. However a real text has γ > 1 and as a consequence γ increases when shortening a real text. The connections to the predictions from the RGF (Random Group Formation) and to the infinite length-limit of a meta-book are also discussed. The difference between 'curve-fitting' and 'predicting' word-frequency distributions is stressed. It is pointed out that the question of randomness versus specifics for the distribution of outcomes in case of sufficiently complex systems has a much wider relevance than just the word-frequency example analyzed in the present work.
Ouma, Wilberforce Zachary; Pogacar, Katja; Grotewold, Erich
2018-04-01
Understanding complexity in physical, biological, social and information systems is predicated on describing interactions amongst different components. Advances in genomics are facilitating the high-throughput identification of molecular interactions, and graphs are emerging as indispensable tools in explaining how the connections in the network drive organismal phenotypic plasticity. Here, we describe the architectural organization and associated emergent topological properties of gene regulatory networks (GRNs) that describe protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectivity, our results show that the anticipated scale-free network architectures are characterized by organism-specific power law scaling exponents. These exponents are independent of the fraction of the GRN experimentally sampled, enabling prediction of properties of the complete GRN for an organism. We further demonstrate that the exponents describe inequalities in transcription factor (TF)-target gene recognition across GRNs. These observations have the important biological implication that they predict the existence of an intrinsic organism-specific trans and/or cis regulatory landscape that constrains GRN topologies. Consequently, architectural GRN organization drives not only phenotypic plasticity within a species, but is also likely implicated in species-specific phenotype.
Moeller, Scott J; London, Edythe D; Northoff, Georg
2016-02-01
Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolving soils and hydrologic connectivity in semiarid hillslopes
NASA Astrophysics Data System (ADS)
Saco, Patricia M.
2015-04-01
Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.
Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing
2015-01-01
Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
Trujillo-Arias, Natalia; Dantas, Gisele P M; Arbeláez-Cortés, Enrique; Naoki, Kazuya; Gómez, Maria I; Santos, Fabricio R; Miyaki, Cristina Y; Aleixo, Alexandre; Tubaro, Pablo L; Cabanne, Gustavo S
2017-07-01
The Atlantic Forest is separated from the Andean tropical forest by dry and open vegetation biomes (Chaco and Cerrado). Despite this isolation, both rainforests share closely related lineages, which suggest a past connection. This connection could have been important for forest taxa evolution. In this study, we used the Saffron-billed Sparrow (Arremon flavirostris) as a model to evaluate whether the Andean and the Atlantic forests act as a refugia system, as well as to test for a history of biogeographic connection between them. In addition, we evaluated the molecular systematic of intraspecific lineages of the studied species. We modeled the current and past distribution of A. flavirostris, performed phylogeographic analyses based on mitochondrial and nuclear genes, and used Approximate Bayesian Computation (ABC) analyses to test for biogeographic scenarios. The major phylogeographic disjunction within A. flavirostris was found between the Andean and the Atlantic forests, with a divergence that occurred during the Mid-Pleistocene. Our paleodistribution models indicated a connection between these forest domains in different periods and through both the Chaco and Cerrado. Additionally, the phylogeographic and ABC analyses supported that the Cerrado was the main route of connection between these rainforests, but without giving decisive evidence against a Chaco connection. Our study with A. flavirostris suggest that the biodiversity of the Andean and of the Atlantic forests could have been impacted (and perhaps enriched?) by cycles of connections through the Cerrado and Chaco. This recurrent cycle of connection between the Andean and the Atlantic Forest could have been important for the evolution of Neotropical forest taxa. In addition, we discussed taxonomic implications of the results and proposed to split the studied taxon into two full species. Copyright © 2017 Elsevier Inc. All rights reserved.
Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick
2013-01-01
Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985
Cooke, Georgina M; Schlub, Timothy E; Sherwin, William B; Ord, Terry J
2016-01-01
Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
Aghajani, Moji; Colins, Olivier F; Klapwijk, Eduard T; Veer, Ilya M; Andershed, Henrik; Popma, Arne; van der Wee, Nic J; Vermeiren, Robert R J M
2016-11-01
Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit-level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct-disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait-specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self-centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017-4033, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Colins, Olivier F.; Klapwijk, Eduard T.; Veer, Ilya M.; Andershed, Henrik; Popma, Arne; van der Wee, Nic J.; Vermeiren, Robert R.J.M.
2016-01-01
Abstract Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit‐level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct‐disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait‐specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self‐centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017–4033, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27453465
NASA Astrophysics Data System (ADS)
Li, Gen; West, A. Joshua; Densmore, Alexander L.; Hammond, Douglas E.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Hilton, Robert G.
2016-04-01
Evaluating the influence of earthquakes on erosion, landscape evolution, and sediment-related hazards requires understanding fluvial transport of material liberated in earthquake-triggered landslides. The location of landslides relative to river channels is expected to play an important role in postearthquake sediment dynamics. In this study, we assess the position of landslides triggered by the Mw 7.9 Wenchuan earthquake, aiming to understand the relationship between landslides and the fluvial network of the steep Longmen Shan mountain range. Combining a landslide inventory map and geomorphic analysis, we quantify landslide-channel connectivity in terms of the number of landslides, landslide area, and landslide volume estimated from scaling relationships. We observe a strong spatial variability in landslide-channel connectivity, with volumetric connectivity (ξ) ranging from ~20% to ~90% for different catchments. This variability is linked to topographic effects that set local channel densities, seismic effects (including seismogenic faulting) that regulate landslide size, and substrate effects that may influence both channelization and landslide size. Altogether, we estimate that the volume of landslides connected to channels comprises 43 + 9/-7% of the total coseismic landslide volume. Following the Wenchuan earthquake, fine-grained (<~0.25 mm) suspended sediment yield across the Longmen Shan catchments is positively correlated to catchment-wide landslide density, but this correlation is statistically indistinguishable whether or not connectivity is considered. The weaker-than-expected influence of connectivity on suspended sediment yield may be related to mobilization of fine-grained landslide material that resides in hillslope domains, i.e., not directly connected to river channels. In contrast, transport of the coarser fraction (which makes up >90% of the total landslide volume) may be more significantly affected by landslide locations.
Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M
2013-03-19
Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Finer, Matt; Jenkins, Clinton N.
2012-01-01
Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979
Finer, Matt; Jenkins, Clinton N
2012-01-01
Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.
The graphical brain: Belief propagation and active inference
Friston, Karl J.; Parr, Thomas; de Vries, Bert
2018-01-01
This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models. Crucially, these models can entertain both discrete and continuous states, leading to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to elucidate the requisite message passing in terms of its form and scheduling. To accommodate mixed generative models (of discrete and continuous states), one also has to consider link nodes or factors that enable discrete and continuous representations to talk to each other. When mapping the implicit computational architecture onto neuronal connectivity, several interesting features emerge. For example, Bayesian model averaging and comparison, which link discrete and continuous states, may be implemented in thalamocortical loops. These and other considerations speak to a computational connectome that is inherently state dependent and self-organizing in ways that yield to a principled (variational) account. We conclude with simulations of reading that illustrate the implicit neuronal message passing, with a special focus on how discrete (semantic) representations inform, and are informed by, continuous (visual) sampling of the sensorium. Author Summary This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models that can entertain both discrete and continuous states. This leads to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to characterize the requisite message passing, and link this formal characterization to canonical microcircuits and extrinsic connectivity in the brain. PMID:29417960
Brain network dysregulation, emotion, and complaints after mild traumatic brain injury.
van der Horn, Harm J; Liemburg, Edith J; Scheenen, Myrthe E; de Koning, Myrthe E; Marsman, Jan-Bernard C; Spikman, Jacoba M; van der Naalt, Joukje
2016-04-01
To assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Fifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matched for age, sex, education, and handedness) were included. Resting-state fMRI was performed at four weeks post-injury. Static and dynamic functional connectivity were studied within and between the default mode, executive (frontoparietal and bilateral frontal network), and salience network. The hospital anxiety and depression scale (HADS) was used to measure anxiety (HADS-A) and depression (HADS-D). Regarding within-network functional connectivity, none of the selected brain networks were different between groups. Regarding between-network interactions, patients with complaints exhibited lower functional connectivity between the bilateral frontal and salience network compared to patients without complaints. In the total patient group, higher HADS-D scores were related to lower functional connectivity between the bilateral frontal network and both the right frontoparietal and salience network, and to higher connectivity between the right frontoparietal and salience network. Furthermore, whereas higher HADS-D scores were associated with lower connectivity within the parietal midline areas of the bilateral frontal network, higher HADS-A scores were related to lower connectivity within medial prefrontal areas of the bilateral frontal network. Functional interactions of the executive and salience networks were related to emotion regulation and complaints after mTBI, with a key role for the bilateral frontal network. These findings may have implications for future studies on the effect of psychological interventions. © 2016 Wiley Periodicals, Inc.
Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams
Jaeger, Kristin L.; Olden, Julian D.; Pelland, Noel A.
2014-01-01
Protecting hydrologic connectivity of freshwater ecosystems is fundamental to ensuring species persistence, ecosystem integrity, and human well-being. More frequent and severe droughts associated with climate change are poised to significantly alter flow intermittence patterns and hydrologic connectivity in dryland streams of the American Southwest, with deleterious effects on highly endangered fishes. By integrating local-scale hydrologic modeling with emerging approaches in landscape ecology, we quantify fine-resolution, watershed-scale changes in habitat size, spacing, and connectance under forecasted climate change in the Verde River Basin, United States. Model simulations project annual zero-flow day frequency to increase by 27% by midcentury, with differential seasonal consequences on continuity (temporal continuity at discrete locations) and connectivity (spatial continuity within the network). A 17% increase in the frequency of stream drying events is expected throughout the network with associated increases in the duration of these events. Flowing portions of the river network will diminish between 8% and 20% in spring and early summer and become increasingly isolated by more frequent and longer stretches of dry channel fragments, thus limiting the opportunity for native fishes to access spawning habitats and seasonally available refuges. Model predictions suggest that midcentury and late century climate will reduce network-wide hydrologic connectivity for native fishes by 6–9% over the course of a year and up to 12–18% during spring spawning months. Our work quantifies climate-induced shifts in stream drying and connectivity across a large river network and demonstrates their implications for the persistence of a globally endemic fish fauna. PMID:25136090
Fan, Jie; Zhong, Mingtian; Zhu, Xiongzhao; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Yi, Jinyao; Tan, Changlian
2017-01-01
Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD), though the salience network (SN) has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs) functional connectivity (FC) of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI) data from 21 OCD patients with good insight (OCD-GI), 19 OCD patients with poor insight (OCD-PI), and 24 healthy controls (HCs). Seed-based whole-brain FC and ROI (region of interest)-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI) and dorsal anterior cingulate cortex (dACC). The right AI-right medial orbital frontal cortex (mOFC) connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC). Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.
Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity.
Napadow, Vitaly; LaCount, Lauren; Park, Kyungmo; As-Sanie, Sawsan; Clauw, Daniel J; Harris, Richard E
2010-08-01
Fibromyalgia (FM) is considered to be the prototypical central chronic pain syndrome and is associated with widespread pain that fluctuates spontaneously. Multiple studies have demonstrated altered brain activity in these patients. The objective of this study was to investigate the degree of connectivity between multiple brain networks in patients with FM, as well as how activity in these networks correlates with the level of spontaneous pain. Resting-state functional magnetic resonance imaging (FMRI) data from 18 patients with FM and 18 age-matched healthy control subjects were analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic, or resting-state, connectivity was evaluated in multiple brain networks: the default mode network (DMN), the executive attention network (EAN), and the medial visual network (MVN), with the MVN serving as a negative control. Spontaneous pain levels were also analyzed for covariance with intrinsic connectivity. Patients with FM had greater connectivity within the DMN and right EAN (corrected P [P(corr)] < 0.05 versus controls), and greater connectivity between the DMN and the insular cortex, which is a brain region known to process evoked pain. Furthermore, greater intensity of spontaneous pain at the time of the FMRI scan correlated with greater intrinsic connectivity between the insula and both the DMN and right EAN (P(corr) < 0.05). These findings indicate that resting brain activity within multiple networks is associated with spontaneous clinical pain in patients with FM. These findings may also have broader implications for how subjective experiences such as pain arise from a complex interplay among multiple brain networks.
Intrinsic Brain Connectivity in Fibromyalgia is Associated with Chronic Pain Intensity
Napadow, Vitaly; LaCount, Lauren; Park, Kyungmo; As-Sanie, Suzie; Clauw, Daniel J; Harris, Richard E
2010-01-01
OBJECTIVE Fibromyalgia (FM) is considered to be the prototypical central chronic pain syndrome and is associated with widespread pain that fluctuates spontaneously. Multiple studies have demonstrated altered brain activity in these patients. Our objective was to investigate the degree of connectivity between multiple brain networks in FM, as well as how activity in these networks correlates with spontaneous pain. METHODS Resting functional magnetic resonance imaging (fMRI) data in FM patients (n=18) and age-matched healthy controls (HC, n=18) were analyzed using dual regression independent component analysis (ICA) - a data driven approach used to identify independent brain networks. We evaluated intrinsic, or resting, connectivity in multiple brain networks: the default mode network (DMN), the executive attention network (EAN), and the medial visual network (MVN), with the MVN serving as a negative control. Spontaneous pain levels were also covaried with intrinsic connectivity. RESULTS We found that FM patients had greater connectivity within the DMN and right EAN (rEAN; p<0.05, corrected), and greater connectivity between the DMN and the insular cortex – a brain region known to process evoked pain. Furthermore, greater spontaneous pain at the time of the scan correlated with greater intrinsic connectivity between the insula and both the DMN and rEAN (p<0.05, corrected). CONCLUSION Our findings indicate that resting brain activity within multiple networks is associated with spontaneous clinical pain in FM. These findings may also have broader implications for how subjective experiences such as pain arise from a complex interplay amongst multiple brain networks. PMID:20506181
Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P
2017-07-01
Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.
Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.
2018-01-01
Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (p<0.05, corrected). In exploratory analyses, among attempters, right rostral prefrontal connectivity was negatively correlated with suicidal ideation (p<0.05), and left ventral prefrontal connectivity was negatively correlated with attempt lethality (p<0.05). Conclusions Adolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845
Time-frequency dynamics of resting-state brain connectivity measured with fMRI.
Chang, Catie; Glover, Gary H
2010-03-01
Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Lobular patterns of cerebellar resting-state connectivity in adults with Autism Spectrum Disorder.
Olivito, Giusy; Lupo, Michela; Laghi, Fiorenzo; Clausi, Silvia; Baiocco, Roberto; Cercignani, Mara; Bozzali, Marco; Leggio, Maria
2018-03-01
Autism spectrum disorder is a neurodevelopmental disorder characterized by core deficits in social functioning. Core autistics traits refer to poor social and imagination skills, poor attention-switching/strong focus of attention, exceptional attention to detail, as expressed by the autism-spectrum quotient. Over the years, the importance of the cerebellum in the aetiology of autism spectrum disorder has been acknowledged. Neuroimaging studies have provided a strong support to this view, showing both structural and functional connectivity alterations to affect the cerebellum in autism spectrum disorder. According to the underconnectivity theory, disrupted connectivity within cerebello-cerebral networks has been specifically implicated in the aetiology of autism spectrum disorder. However, inconsistent results have been generated across studies. In this study, an integrated approach has been used in a selected population of adults with autism spectrum disorder to analyse both cerebellar morphometry and functional connectivity. In individuals with autism spectrum disorder, a decreased cerebellar grey matter volume affected the right Crus II, a region showing extensive connections with cerebral areas related to social functions. This grey matter reduction correlates with the degree of autistic traits as measured by autism-spectrum quotient. Interestingly, altered functional connectivity was found between the reduced cerebellar Crus II and contralateral cerebral regions, such as frontal and temporal areas. Overall, the present data suggest that adults with autism spectrum disorder present with specific cerebellar structural alterations that may affect functional connectivity within cerebello-cerebral modules relevant to social processing and account for core autistics traits. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
van Holst, Ruth J; Chase, Henry W; Clark, Luke
2014-01-01
Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. 'Near-miss' events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the 'illusion of control'). Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression. For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex. These findings corroborate the 'non-categorical' nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling.
Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn
2015-12-01
The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.
Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams.
Jaeger, Kristin L; Olden, Julian D; Pelland, Noel A
2014-09-23
Protecting hydrologic connectivity of freshwater ecosystems is fundamental to ensuring species persistence, ecosystem integrity, and human well-being. More frequent and severe droughts associated with climate change are poised to significantly alter flow intermittence patterns and hydrologic connectivity in dryland streams of the American Southwest, with deleterious effects on highly endangered fishes. By integrating local-scale hydrologic modeling with emerging approaches in landscape ecology, we quantify fine-resolution, watershed-scale changes in habitat size, spacing, and connectance under forecasted climate change in the Verde River Basin, United States. Model simulations project annual zero-flow day frequency to increase by 27% by midcentury, with differential seasonal consequences on continuity (temporal continuity at discrete locations) and connectivity (spatial continuity within the network). A 17% increase in the frequency of stream drying events is expected throughout the network with associated increases in the duration of these events. Flowing portions of the river network will diminish between 8% and 20% in spring and early summer and become increasingly isolated by more frequent and longer stretches of dry channel fragments, thus limiting the opportunity for native fishes to access spawning habitats and seasonally available refuges. Model predictions suggest that midcentury and late century climate will reduce network-wide hydrologic connectivity for native fishes by 6-9% over the course of a year and up to 12-18% during spring spawning months. Our work quantifies climate-induced shifts in stream drying and connectivity across a large river network and demonstrates their implications for the persistence of a globally endemic fish fauna.
Hardee, Jillian E.; Benson, Brenda E.; Bar-Haim, Yair; Mogg, Karin; Bradley, Brendan P; Chen, Gang; Britton, Jennifer C.; Ernst, Monique; Fox, Nathan A.; Pine, Daniel S.; Pérez-Edgar, Koraly
2013-01-01
Background Biased attention to threat is found in both individuals with anxiety symptoms and children with the childhood temperament of behavioral inhibition (BI). Although perturbed fronto-amygdala function is implicated in biased attention among anxious individuals, no work has examined the neural correlates of attention biases in BI. Work in this area may clarify underlying mechanisms for anxiety in a sample at risk for internalizing disorders. We examined the relations among early childhood BI, fronto-amygdala connectivity during an attention bias task in young adulthood, and internalizing symptoms, assessed in young adulthood. Methods Children were assessed for BI at multiple age points from infancy through age seven. Based on a composite of observational and maternal report data, we selected 21 young adults classified as having a history of BI and 23 classified as non-BI for this study (N=44). Participants completed an event-related fMRI attention-bias task involving threat (angry faces) and neutral trials. Internalizing symptoms were assessed by self-report and diagnostic interviews. Results The young adults characterized in childhood with BI exhibited greater strength in threat-related connectivity than non-behaviorally inhibited young adults. Between-group differences manifested in connections between the amygdala and two frontal regions: dorsolateral prefrontal cortex and anterior insula. Amygdala-insula connectivity also interacted with childhood BI to predict young adult internalizing symptoms. Conclusions BI during early childhood predicts differences as young adults in threat and attention-related fronto-amygdala connectivity. Connectivity strength, in turn, moderated the relations between early BI and later psychopathology. PMID:23489415
Subcortical Local Functional Hyperconnectivity in Cannabis Dependence.
Manza, Peter; Tomasi, Dardo; Volkow, Nora D
2018-03-01
Cannabis abuse (CA) has been associated with psychopathology, including negative emotionality and higher risk of psychosis, particularly with early age of initiation. However, the mechanisms underlying this association are poorly understood. Because aberrant dopamine signaling is implicated in cannabis-associated psychopathology, we hypothesized that regular CA would be associated with altered resting-state functional connectivity in dopamine midbrain-striatal circuits. We examined resting-state brain activity of subcortical regions in 441 young adults from the Human Connectome Project, including 30 subjects with CA meeting DSM-IV criteria for dependence and 30 control subjects matched on age, sex, education, body mass index, anxiety, depression, and alcohol and tobacco usage. Across all subjects, local functional connectivity density hubs in subcortical regions were most prominent in ventral striatum, hippocampus, amygdala, dorsal midbrain, and posterior-ventral brainstem. As hypothesized, subjects with CA showed markedly increased local functional connectivity density relative to control subjects, not only in ventral striatum (where nucleus accumbens is located) and midbrain (where substantia nigra and ventral tegmental nuclei are located) but also in brainstem and lateral thalamus. These effects were observed in the absence of significant differences in subcortical volumes and were most pronounced in individuals who began cannabis use earliest in life and who reported high levels of negative emotionality. Together, these findings suggest that chronic CA is associated with changes in resting-state brain function, particularly in dopaminergic nuclei implicated in psychosis but that are also critical for habit formation and reward processing. These results shed light on neurobiological differences that may be relevant to psychopathology associated with cannabis use. Published by Elsevier Inc.
A New Kinematic Model for Polymodal Faulting: Implications for Fault Connectivity
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.
2015-12-01
Conjugate, or bimodal, fault patterns dominate the geological literature on shear failure. Based on Anderson's (1905) application of the Mohr-Coulomb failure criterion, these patterns have been interpreted from all tectonic regimes, including normal, strike-slip and thrust (reverse) faulting. However, a fundamental limitation of the Mohr-Coulomb failure criterion - and others that assume faults form parallel to the intermediate principal stress - is that only plane strain can result from slip on the conjugate faults. However, deformation in the Earth is widely accepted as being three-dimensional, with truly triaxial stresses and strains. Polymodal faulting, with three or more sets of faults forming and slipping simultaneously, can generate three-dimensional strains from truly triaxial stresses. Laboratory experiments and outcrop studies have verified the occurrence of the polymodal fault patterns in nature. The connectivity of polymodal fault networks differs significantly from conjugate fault networks, and this presents challenges to our understanding of faulting and an opportunity to improve our understanding of seismic hazards and fluid flow. Polymodal fault patterns will, in general, have more connected nodes in 2D (and more branch lines in 3D) than comparable conjugate (bimodal) patterns. The anisotropy of permeability is therefore expected to be very different in rocks with polymodal fault patterns in comparison to conjugate fault patterns, and this has implications for the development of hydrocarbon reservoirs, the genesis of ore deposits and the management of aquifers. In this contribution, I assess the published evidence and models for polymodal faulting before presenting a novel kinematic model for general triaxial strain in the brittle field.
[Social representations on HIV/AIDS among adolescentes: implications for nursing care].
Thiengo, Maria Aparecida; de Oliveira, Denize Cristina; Rodrigues, Benedita Maria Rêgo Deusdará
2005-03-01
With the objective of discussing the implications of the social representations of HIV/AIDS for the interpersonal relations and the practices for protection among adolescents, 15 semidirective interviews were carried out with adolescents, both with and without HIV, assisted at a Hospital School in Rio de Janeiro. The software ALCESTE 4.5 was used for the data analysis. It was observed that the social representation of AIDS is structured around cognitions connected to prevention, revealing a contradiction between the knowledge and the practices reported by the group. It is suggested that the nursing practices should be directed towards the reduction of the distance between practices, representations and scientific knowledge.
Neurocontrol and neurobiology - New developments and connections
NASA Technical Reports Server (NTRS)
Werbos, Paul J.; Pellionisz, Andras J.
1992-01-01
At McDonnell-Douglas, controllers which combine adaptive critic networks with the use of backpropagation in real time have solved difficult control problems crucial to the feasibility of building the National Aerospace Plane (NASP) able to reach earth orbit. As details emerged, parallels to neurobiology have grown stronger and have begun to lead to empirical possibilities of importance to neuroscience. This has led to thoughts of institutional collaboration facilitating what could become a Newtonian revolution in neuroscience, with cognitive implications as well. The authors elaborate on each of these points. The topics discussed are recent progress in neurocontrol; progress in optimization and reinforcement learning; implications for neurobiology and science policy; and a new view of the brain.
A birds-eye view of biological connectivity in mangrove systems
NASA Astrophysics Data System (ADS)
Buelow, Christina; Sheaves, Marcus
2015-01-01
Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top-down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have contributed to shifting the initial, historical perception of mangrove-ecosystem functioning from that of a simple system based on nutrient and energy retention, to a view that includes fish-facilitated energy export. In a similar way, understanding the nature and implications of mangrove connectivity through bird movements and migrations affords new possibilities for revising our view of the extent of functional links between mangroves and other ecosystems.
NASA Astrophysics Data System (ADS)
Belland, Brian Robert
Middle school students have difficulty creating evidence-based arguments (EBAs) during problem-based learning (PBL) units due to challenges (a) adequately representing the unit's central problem (Ge & Land, 2004; Liu & Bera, 2005), (b) determining and obtaining the most relevant evidence (Pedersen & Liu, 2002-2003), and (c) synthesizing gathered information to construct a sound argument (Cho & Jonassen, 2002). I designed and developed the Connection Log to support middle school students in this process. This study addressed (1) the Connection Log's impact on (a) argument evaluation ability, and (b) group argument quality and (2) how and why middle school science students used the Connection Log. Four sections of a 7th-grade science class participated. Student groups selected a stakeholder position related to the Human Genome Project (HGP) and needed to decide on and promote a plan to use $3 million to further their position as pertains to the HGP. I randomly assigned one higher-achieving and one lower-achieving class to Connection Log or no Connection Log conditions. Students completed an argument evaluation test, and impact on argument evaluation ability was determined using nested ANOVA. Two graduate students, blind to treatment conditions, rated group arguments, and impact on group argument quality was determined using nested MANOVA. To determine how and why students used the Connection Log, I videotaped and interviewed one small group from each class in the experimental condition. I coded transcripts and generated themes, triangulating the two data sources with informal observations during all class sessions and what students wrote in the Connection Log. I detected no significant differences on claim, evidence, or connection of claim to evidence ratings of debate performances. However, students used the Connection Log to counter different difficulties, and I found a significant main effect of the Connection Log on argument evaluation ability, as well as a significant simple main effect of the Connection Log on argument evaluation ability of lower-achieving students. Implications include the Connection Log's potential to facilitate the creation of evidence-based arguments and the importance of (a) supporting English as a New Language students' efforts and (b) redundancy in communication.
FRONTO-STRIATAL FUNCTIONAL CONNECTIVITY DURING RESPONSE INHIBITION IN ALCOHOL DEPENDENCE
Courtney, Kelly E.; Ghahremani, Dara G.; Ray, Lara A.
2013-01-01
Poor response inhibition has been implicated in the development of alcohol dependence, yet little is known about how neural pathways underlying cognitive control are affected in this disorder. Moreover, endogenous opioid levels may impact the functionality of inhibitory control pathways. This study investigated the relationship between alcohol dependence severity and functional connectivity of fronto-striatal networks during response inhibition in an alcohol dependent sample. A secondary aim of this study was to test the moderating effect of a functional polymorphism (A118G) of the µ-opioid receptor (OPRM1) gene. Twenty individuals with alcohol dependence (6 females; 90% Caucasian; mean age = 29.4) who were prospectively genotyped on the OPRM1 gene underwent blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while performing a Stop Signal Task (SST). The relationship between alcohol dependence severity and functional connectivity within fronto-striatal networks important for response inhibition was assessed using psychophysiological interaction (PPI) analyses. Analyses revealed greater alcohol dependence severity associated with weaker functional connectivity between the putamen and prefrontal regions (e.g., the anterior insula, anterior cingulate, and medial prefrontal cortex) during response inhibition. Further, the OPRM1 genotype was associated with differential response inhibition-related functional connectivity. This study demonstrates that individuals with more severe alcohol dependence exhibit less frontal connectivity with the striatum, a component of cognitive control networks important for response inhibition. These findings suggest that the fronto-striatal pathway underlying response inhibition is weakened as alcoholism progresses. PMID:23240858
Structural connectivity of neural reward networks in youth at risk for substance use disorders.
Squeglia, Lindsay M; Sorg, Scott F; Jacobus, Joanna; Brumback, Ty; Taylor, Charles T; Tapert, Susan F
2015-07-01
Having a positive family history of alcohol use disorders (FHP), as well as aberrant reward circuitry, has been implicated in the initiation of substance use during adolescence. This study explored the relationship between FHP status and reward circuitry in substance naïve youth to better understand future risky behaviors. Participants were 49 FHP and 45 demographically matched family history negative (FHN) substance-naïve 12-14 year-olds (54 % female). Subjects underwent structural magnetic resonance imaging, including diffusion tensor imaging. Nucleus accumbens and orbitofrontal cortex volumes were derived using FreeSurfer, and FSL probabilistic tractography probed structural connectivity and differences in white matter diffusivity estimates (e.g. fractional anisotropy, and mean, radial, and axial diffusivity) between fiber tracts connecting these regions. FHP and FHN youth did not differ on nucleus accumbens or orbitofrontal cortex volumes, white matter tract volumes, or percentages of streamlines (a proxy for fiber tract count) connecting these regions. However, within white matter tracts connecting the nucleus accumbens to the orbitofrontal cortex, FHP youth had significantly lower mean and radial diffusivity (ps < 0.03) than FHN youth. While white matter macrostructure between salience and reward regions did not differ between FHP and FHN youth, FHP youth showed greater white matter coherence within these tracts than FHN youth. Aberrant connectivity between reward regions in FHP youth could be linked to an increased risk for substance use initiation.
A survey of disease connections for CD4+ T cell master genes and their directly linked genes.
Li, Wentian; Espinal-Enríquez, Jesús; Simpfendorfer, Kim R; Hernández-Lemus, Enrique
2015-12-01
Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej
2016-05-01
The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Desjardins, Marie-Ève; Carrier, Julie; Lina, Jean-Marc; Fortin, Maxime; Gosselin, Nadia; Montplaisir, Jacques; Zadra, Antonio
2017-04-01
Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient's episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes' onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R
2015-02-15
The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.
Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D
2014-01-01
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.
Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; Turner, J.A.; Vaidya, J.G.; van Erp, T.G.; Calhoun, V.D.
2014-01-01
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. PMID:25161896
NASA Astrophysics Data System (ADS)
Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary
2018-04-01
Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.
Gullifer, Jason W; Chai, Xiaoqian J; Whitford, Veronica; Pivneva, Irina; Baum, Shari; Klein, Denise; Titone, Debra
2018-05-01
We investigated the independent contributions of second language (L2) age of acquisition (AoA) and social diversity of language use on intrinsic brain organization using seed-based resting-state functional connectivity among highly proficient French-English bilinguals. There were two key findings. First, earlier L2 AoA related to greater interhemispheric functional connectivity between homologous frontal brain regions, and to decreased reliance on proactive executive control in an AX-Continuous Performance Task completed outside the scanner. Second, greater diversity in social language use in daily life related to greater connectivity between the anterior cingulate cortex and the putamen bilaterally, and to increased reliance on proactive control in the same task. These findings suggest that early vs. late L2 AoA links to a specialized neural framework for processing two languages that may engage a specific type of executive control (e.g., reactive control). In contrast, higher vs. lower degrees of diversity in social language use link to a broadly distributed set of brain networks implicated in proactive control and context monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Lubin; Zou, Feng; Shao, Yongcong; Ye, Enmao; Jin, Xiao; Tan, Shuwen; Hu, Dewen; Yang, Zheng
2014-12-01
The default mode network (DMN) plays an important role in the physiopathology of schizophrenia. Previous studies have suggested that the cerebellum participates in higher-order cognitive networks such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities in schizophrenia has yet to be established. In this study, we investigated cerebellar functional connectivity differences between 60 patients with schizophrenia and 60 healthy controls from a public resting-state fMRI database. Seed-based correlation analysis was performed by using seeds from the left Crus I, right Crus I and Lobule IX, which have previously been identified as being involved in the DMN. Our results revealed that, compared with the healthy controls, the patients showed significantly reduced cerebellar functional connectivity with the thalamus and several frontal regions including the middle frontal gyrus, anterior cingulate cortex, and supplementary motor area. Moreover, the positive correlations between the strength of frontocerebellar and thalamocerebellar functional connectivity observed in the healthy subjects were diminished in the patients. Our findings implicate disruptive changes of the fronto-thalamo-cerebellar circuit in schizophrenia, which may provide further evidence for the "cognitive dysmetria" concept of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Griffa, Annalisa; Carlson, Daniel; Berta, Maristella; Sciascia, Roberta; Corgnati, Lorenzo; Mantovani, Carlo; Fredji, Erick; Magaldi, Marcello; Zambianchi, Enrico; Poulain, Pierre Marie; Russo, Aniello; Carniel, Sandro
2017-04-01
Surface transport in the Adriatic Sea is investigated using data from historic drifter data, HF radar and virtual particles computed from a numerical model. Alongshore coastal currents and cyclonic gyres are the primary circulation features that connect regions in the Adriatic Sea. Their strength is highly dependent on the wind, with Southeasterly Sirocco winds driving eastward cross-Adriatic transport from the Italian coasts and Northwesterly Mistral winds enhancing east-to-west transport. Results from the analysis show that Cross-Adriatic connection percentages were higher for east-to-west transport, with westward (eastward) transport observed mostly in the northern (southern) arms of the central and southern gyres. These pathways of patterns influence the connection between Marine Protected Areas (MPAs) and between spawning and nursery areas for small pelagic fish. Percentage connections between MPAs are computed, showing that while the highest percentages occur through boundary currents, significant percentages also occur through cross-gyre transport, suggesting the concept of cell-based ecosystems. The nursery area of the Manfredonia Gulf has limited retention properties, and eggs and larvae are likely to reach the Gulf mostly from remote spawning areas through current transport
NASA Astrophysics Data System (ADS)
Ye, H.; Deyle, E. R.; Hsieh, C.; Sugihara, G.
2012-12-01
We used convergent cross mapping (CCM), a method grounded in nonlinear dynamical systems theory to analyze long-term time series of fish species from the California Cooperative Oceanic Fisheries Investigations ichthyoplankton (isolated to the Southern California Bight [SCB]) and NOAA National Marine Fisheries Service Northeast Fisheries Science Center trawl survey (isolated to the Georges Bank [GB] region) data sets. CCM gives a nonparametric indicator of the realized dynamic influence that one species has on another (i.e. how much the abundance of X at a particular time is dependent on the historical abundance of Y). We found there are more interactions between species in SCB compared to GB. An analysis of the interaction matrix showed that there is also more structure in the connectivity network of SCB compared to GB. We attribute this difference in connectivity to historical overexploitation of fish stocks in the North Atlantic, and reproduce this effect in simple multi-species fishery models. We discuss the implications of these results for ecosystem-based management and for restoration efforts.; Connectivity Networks for Fishes in the Southern California Bight (SCB) and Georges Bank (GB) as determined using cross-mapping.
NASA Astrophysics Data System (ADS)
Hooke, Janet
2017-04-01
Flow and sediment processes in ephemeral channels are highly dynamic and spatially variable. The connectivity characteristics in a range of events are examined for several semi-arid catchments in Southeast Spain. Rainfall thresholds for runoff generation on slopes and for flow generation in channels have been identified at various scales. In many events, flow is not continuous down the channel system due partly to localised rainfall and to transmission losses but also to structural and morphological conditions. One extreme flow event with high sediment supply produced very high flow and sediment connectivity throughout the system. Results of spatial analysis of variation in hydraulics and sediment processes are presented and the effects are analysed. Amounts and locations of sediment storage were identified from repeat surveys. The overall contribution of such an event to morphological and sedimentological changes in the channel and longer-term landscape evolution is assessed. Land use and management are demonstrated to have a profound influence on the sediment delivery and connectivity functioning. The implications for land, channel and flood management in such an environment, together with the impacts of longer-term variations in flow regime due to land use and climate change, are considered.
NASA Astrophysics Data System (ADS)
Battista, Christian; Evans, Tanya M.; Ngoon, Tricia J.; Chen, Tianwen; Chen, Lang; Kochalka, John; Menon, Vinod
2018-01-01
Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A. Peyton; Bond-Lamberty, Ben; Benscoter, Brian W.
Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soilmore » moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.« less
Social Connections, Trajectories of Hopelessness, and Serious Violence in Impoverished Urban Youth
Stoddard, Sarah A.; Henly, Susan J.; Sieving, Renee E.; Bolland, John
2011-01-01
Youth living in impoverished urban neighborhoods are at risk for becoming hopeless about their future and engaging in violent behaviors. The current study seeks to examine the longitudinal relationship between social connections, hopelessness trajectories, and subsequent violent behavior across adolescence. Our sample included 723 (49% female) African American youth living in impoverished urban neighborhoods who participated in the Mobile Youth Survey from 1998 through 2006. Using general growth mixture modeling, we found two hopelessness trajectory classes for both boys and girls during middle adolescence: a consistently low hopelessness class and an increasingly hopeless class with quadratic change. In all classes, youth who reported stronger early adolescent connections to their mothers were less hopeless at age 13. The probability of later adolescent violence with a weapon was higher for boys and was associated with the increasingly hopeless class for both boys and girls. Implications for new avenues of research and design of hope-based prevention interventions will be discussed. PMID:20690037
Variation by Gender in Abu Dhabi High School Students' Interests in Physics
NASA Astrophysics Data System (ADS)
Badri, Masood; Mazroui, Karima Al; Al Rashedi, Asma; Yang, Guang
2016-04-01
Abu Dhabi high school students' interest in physics in different contexts was investigated with a survey conducted in connection with the international project, The Relevance of Science Education (ROSE). The sample consisted of 2248 students in public and private schools. Means of most items that belong to the school physics context for both girls and boys were below the score of (3.0). The most interesting topics for both genders were connected with fantasy items. The least interesting items (particularly for girls) were connected with artifacts and technological processes. Girls assigned the highest scores for "why we dream" and "life and death." Boys assigned the highest scores for "inventions and discoveries" and "life outside of earth." The main message of the study is that new curricular approaches and textbooks can be developed through combining technological and human contexts. The implications for curriculum development, teacher professional development programs, and other education strategies in Abu Dhabi are discussed in light of the ROSE survey.
Kim, Byunghyuk; Emmons, Scott W
2017-09-13
Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans , we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.
A biomechanical model of agonist-initiated contraction in the asthmatic airway.
Brook, B S; Peel, S E; Hall, I P; Politi, A Z; Sneyd, J; Bai, Y; Sanderson, M J; Jensen, O E
2010-01-31
This paper presents a modelling framework in which the local stress environment of airway smooth muscle (ASM) cells may be predicted and cellular responses to local stress may be investigated. We consider an elastic axisymmetric model of a layer of connective tissue and circumferential ASM fibres embedded in parenchymal tissue and model the active contractile force generated by ASM via a stress acting along the fibres. A constitutive law is proposed that accounts for active and passive material properties as well as the proportion of muscle to connective tissue. The model predicts significantly different contractile responses depending on the proportion of muscle to connective tissue in the remodelled airway. We find that radial and hoop-stress distributions in remodelled muscle layers are highly heterogenous with distinct regions of compression and tension. Such patterns of stress are likely to have important implications, from a mechano-transduction perspective, on contractility, short-term cytoskeletal adaptation and long-term airway remodelling in asthma. Copyright 2009 Elsevier B.V. All rights reserved.
Mapping Epileptic Activity: Sources or Networks for the Clinicians?
Pittau, Francesca; Mégevand, Pierre; Sheybani, Laurent; Abela, Eugenio; Grouiller, Frédéric; Spinelli, Laurent; Michel, Christoph M.; Seeck, Margitta; Vulliemoz, Serge
2014-01-01
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity. PMID:25414692
White Matter Correlates of Musical Anhedonia: Implications for Evolution of Music.
Loui, Psyche; Patterson, Sean; Sachs, Matthew E; Leung, Yvonne; Zeng, Tima; Przysinda, Emily
2017-01-01
Recent theoretical advances in the evolution of music posit that affective communication is an evolutionary function of music through which the mind and brain are transformed. A rigorous test of this view should entail examining the neuroanatomical mechanisms for affective communication of music, specifically by comparing individual differences in the general population with a special population who lacks specific affective responses to music. Here we compare white matter connectivity in BW, a case with severe musical anhedonia, with a large sample of control subjects who exhibit normal variability in reward sensitivity to music. We show for the first time that structural connectivity within the reward system can predict individual differences in musical reward in a large population, but specific patterns in connectivity between auditory and reward systems are special in an extreme case of specific musical anhedonia. Results support and extend the Mixed Origins of Music theory by identifying multiple neural pathways through which music might operate as an affective signaling system.