Science.gov

Sample records for connexin43 potentiates osteoblast

  1. Proliferation, differentiation and apoptosis in connexin43-null osteoblasts

    NASA Technical Reports Server (NTRS)

    Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.

    2001-01-01

    Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.

  2. Connexin-43 expression in oral-derived human osteoblasts after transforming growth factor-beta and prostaglandin E2 exposure.

    PubMed

    Adamo, C T; Mailhot, J M; Smith, A K; Borke, J L

    2001-01-01

    Dental implant placement stimulates a response in the supporting tissue; the response involves bone remodeling and release of wound-healing factors, including cytokines. Important factors such as transforming growth factor-beta (TGF-beta), which promotes matrix synthesis, and prostaglandin E2 (PGE2), a mediator of inflammation, have the potential to alter the communication between bone cells and interfere with implant site healing. Cells responsible for the formation of bone are interconnected to form a multicellular network. Cell-to-cell communication in this network occurs in part via gap junctions. In bone cells, the predominant gap junction protein is connexin-43. TGF-beta is a growth modulator produced by osteoblasts and released from the matrix in response to resorption and may influence the progression of periodontal disease. TGF-beta also promotes the synthesis of extracellular matrix proteins such as collagen, fibronectin, and adhesion molecules. PGE2 is a mediator of inflammation produced in response to periodontal pathogens. PGE2 levels in the gingival sulcular fluid have been correlated with attachment loss and bone resorption. The relationship between these factors and connexin-43 is unclear. Oral-derived (alveolar) bone was used because the phenotype of bone can differ between species and between different sites in the body. For our studies, explants of human osteoblasts were cultured on eight well plates and characterized by their expression of osteocalcin, osteonectin, alkaline phosphatase, type 1 collagen, and connexin-43. Cells were grown to near confluence on 12 well plates in 20% fetal bovine serum (FBS) Dulbecco modified Eagle medium (DMEM) and then cultured for 24 hours in 0.5% FBS DMEM before exposure to either 1, 5, or 10 ng/mL of TGF-beta in serum-free DMEM for 12 or 24 hours or to 20, 80, or 300 ng/mL of PGE2 in serum-free DMEM for 12 or 24 hours. After incubation, cells were removed from plates by scraping and assayed for connexin-43

  3. Bisphosphonates Improve Trabecular Bone Mass and Normalize Cortical Thickness in Ovariectomized, Osteoblast Connexin43 Deficient Mice

    PubMed Central

    Watkins, Marcus P.; Norris, Jin Yi; Grimston, Susan K.; Zhang, Xiaowen; Phipps, Roger J.; Ebetino, Frank H.; Civitelli, Roberto

    2012-01-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20µg/kg) or alendronate (40µg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. PMID:22750450

  4. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    PubMed

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface.

  5. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling.

    PubMed

    Watkins, Marcus; Grimston, Susan K; Norris, Jin Yi; Guillotin, Bertrand; Shaw, Angela; Beniash, Elia; Civitelli, Roberto

    2011-04-15

    Connexin43 (Cx43) has an important role in skeletal homeostasis, and Cx43 gene (Gja1) mutations have been linked to oculodentodigital dysplasia (ODDD), a human disorder characterized by prominent skeletal abnormalities. To determine the function of Cx43 at early steps of osteogenesis and its role in the ODDD skeletal phenotype, we have used the Dermo1 promoter to drive Gja1 ablation or induce an ODDD mutation in the chondro-osteogenic linage. Both Gja1 null and ODDD mutant mice develop age-related osteopenia, primarily due to a progressive enlargement of the medullary cavity and cortical thinning. This phenotype is the consequence of a high bone turnover state, with increased endocortical osteoclast-mediated bone resorption and increased periosteal bone apposition. Increased bone resorption is a noncell autonomous defect, caused by exuberant stimulation of osteoclastogenesis by Cx43-deficient bone marrow stromal cells, via decreased Opg production. The latter is part of a broad defect in osteoblast differentiation and function, which also results in abnormal structural and material properties of bone leading to decreased resistance to mechanical load. Thus Cx43 in osteogenic cells is a critical regulator of both arms of the bone remodeling cycle, its absence causing structural changes remindful of aged or disused bone.

  6. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling

    PubMed Central

    Watkins, Marcus; Grimston, Susan K.; Norris, Jin Yi; Guillotin, Bertrand; Shaw, Angela; Beniash, Elia; Civitelli, Roberto

    2011-01-01

    Connexin43 (Cx43) has an important role in skeletal homeostasis, and Cx43 gene (Gja1) mutations have been linked to oculodentodigital dysplasia (ODDD), a human disorder characterized by prominent skeletal abnormalities. To determine the function of Cx43 at early steps of osteogenesis and its role in the ODDD skeletal phenotype, we have used the Dermo1 promoter to drive Gja1 ablation or induce an ODDD mutation in the chondro-osteogenic linage. Both Gja1 null and ODDD mutant mice develop age-related osteopenia, primarily due to a progressive enlargement of the medullary cavity and cortical thinning. This phenotype is the consequence of a high bone turnover state, with increased endocortical osteoclast-mediated bone resorption and increased periosteal bone apposition. Increased bone resorption is a noncell autonomous defect, caused by exuberant stimulation of osteoclastogenesis by Cx43-deficient bone marrow stromal cells, via decreased Opg production. The latter is part of a broad defect in osteoblast differentiation and function, which also results in abnormal structural and material properties of bone leading to decreased resistance to mechanical load. Thus Cx43 in osteogenic cells is a critical regulator of both arms of the bone remodeling cycle, its absence causing structural changes remindful of aged or disused bone. PMID:21346198

  7. Inhibition of GSK-3β rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice.

    PubMed

    Loiselle, Alayna E; Lloyd, Shane A J; Paul, Emmanuel M; Lewis, Gregory S; Donahue, Henry J

    2013-01-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair.

  8. The Potential Prognostic Value of Connexin 43 Expression in Head and Neck Squamous Cell Carcinomas.

    PubMed

    Dános, Kornél; Brauswetter, Diána; Birtalan, Ede; Pató, Anna; Bencsik, Gabriella; Krenács, Tibor; Peták, István; Tamás, László

    2016-08-01

    Gap juctions are transmembrane communication channels known to be involved in the control of cell proliferation by mediating the exchange of ions and small molecules between cells. Gap junctions are composed of connexon hemichannels made up of 6 connexin proteins, which abnormal expression and functions have been linked to tumor progression and poorer prognosis. Here, we studied the prognostic impact of the most prevalent connexin isotype, connexin 43 (Cx43) in head and neck squamous cell carcinomas (HNSCC). Tissue microarrays made from tumor samples of 90 HNSCC patients were immunostained for Cx43 and cell cycle regulation-related biomarkers including p53, Ki67, p16, aurora A, geminin, and p21 proteins. Scoring and histopathologic evaluation were performed in digital slides. A 4-tier scoring distinguishing the percentage of positively stained tumor cells was used including score 1: <5%, score 2: 6% to 20%, score 3: 21% to 60%, and score 4: >60%. For statistics, Kaplan-Meier curves with log-rank tests, Cox-regression, and Pearson χ/Fisher exact tests were used.A significant positive correlation was found between Cx43 expression and disease-specific survival of patients (P=0.004). The rate of p21 protein-positive tumor cells also proved to be a significant positive prognostic marker (P=0.014). Cx43 levels also showed a significant positive correlation with p53 expression (P=0.036). However, there was no statistical association between Cx43 levels and the rest of the markers tested neither with T, N, or M stage.In conclusion, our data suggest that reduced Cx43 expression and low p21 protein levels may have a significant negative impact on HNSCC prognosis.

  9. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential

    PubMed Central

    Retamal, Mauricio A.; Schalper, Kurt A.; Shoji, Kenji F.; Bennett, Michael V. L.; Sáez, Juan C.

    2007-01-01

    Nonjunctional membrane in many cells contains connexin gap junction hemichannels (or connexons) that can open to allow permeation of small molecules. Opening of Cx43 hemichannels is infrequent in normal extracellular Ca2+ and enhanced by low Ca2+, positive membrane potentials, and dephosphorylation of critical residues. Here we report that lowering intracellular redox potential increases Cx43 hemichannel open probability under otherwise normal conditions. We studied dye uptake and single-channel activity in HeLa cells transfected with wild-type Cx43, Cx43 with enhanced GFP attached to its C terminus (Cx43-EGFP), and Cx43 with enhanced GFP attached to its N terminus (EGFP-Cx43). Dithiothreitol [(DTT) 10 mM], a membrane permeant-reducing agent, increased the rate of dye uptake by cells expressing Cx43 and Cx43-EGFP, but not by parental cells or cells expressing EGFP-Cx43. Induced dye uptake was blocked by La3+, by a peptide gap junction and hemichannel blocker (gap 26), and by flufenamic acid. DTT increased Cx43-EGFP hemichannel opening at positive voltages. Bath application of reduced glutathione, a membrane impermeant-reducing agent, did not increase dye uptake, but glutathione in the recording pipette increased hemichannel opening at positive voltages, suggesting that it acted intracellularly. DTT caused little change in levels of surface Cx43 or Cx43-EGFP, or in intracellular pH. These findings suggest that lowering intracellular redox potential increases the opening of Cx43 and Cx43-EGFP hemichannels, possibly by action on cytoplasmic cysteine residues in the connexin C terminus. PMID:17494739

  10. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential.

    PubMed

    Retamal, Mauricio A; Schalper, Kurt A; Shoji, Kenji F; Bennett, Michael V L; Sáez, Juan C

    2007-05-15

    Nonjunctional membrane in many cells contains connexin gap junction hemichannels (or connexons) that can open to allow permeation of small molecules. Opening of Cx43 hemichannels is infrequent in normal extracellular Ca(2+) and enhanced by low Ca(2+), positive membrane potentials, and dephosphorylation of critical residues. Here we report that lowering intracellular redox potential increases Cx43 hemichannel open probability under otherwise normal conditions. We studied dye uptake and single-channel activity in HeLa cells transfected with wild-type Cx43, Cx43 with enhanced GFP attached to its C terminus (Cx43-EGFP), and Cx43 with enhanced GFP attached to its N terminus (EGFP-Cx43). Dithiothreitol [(DTT) 10 mM], a membrane permeant-reducing agent, increased the rate of dye uptake by cells expressing Cx43 and Cx43-EGFP, but not by parental cells or cells expressing EGFP-Cx43. Induced dye uptake was blocked by La(3+), by a peptide gap junction and hemichannel blocker (gap 26), and by flufenamic acid. DTT increased Cx43-EGFP hemichannel opening at positive voltages. Bath application of reduced glutathione, a membrane impermeant-reducing agent, did not increase dye uptake, but glutathione in the recording pipette increased hemichannel opening at positive voltages, suggesting that it acted intracellularly. DTT caused little change in levels of surface Cx43 or Cx43-EGFP, or in intracellular pH. These findings suggest that lowering intracellular redox potential increases the opening of Cx43 and Cx43-EGFP hemichannels, possibly by action on cytoplasmic cysteine residues in the connexin C terminus.

  11. Connexin43-containing gap junctions potentiate extracellular Ca²⁺-induced odontoblastic differentiation of human dental pulp stem cells via Erk1/2.

    PubMed

    Li, Shiting; He, Haitao; Zhang, Gang; Wang, Fei; Zhang, Ping; Tan, Yinghui

    2015-10-15

    Extracellular Ca(2+) can promote dentin sialophosphoprotein (DSPP) expression and odontoblastic differentiation of dental pulp stem cells (DPSCs). Gap junctions mediated by connexin43 (Cx43) allow diffusion of small molecules (such as Ca(2+)) among cells to regulate cell-to-cell communications. However, it is unclear whether Cx43 is required for the Ca(2+)-induced cell differentiation. Here, we found that the influx of extracellular Ca(2+) through L-type Ca(2+) channels increases intracellular free Ca(2+) levels to promote DSPP expression. Cx43 overexpression potentiated the extracellular Ca(2+)-induced DSPP expression via Erk1/2. Flow cytometry analyses showed that Cx43 increased the percentage of p-Erk1/2 positive cells in response to Ca(2+), indicating that Cx43 in DPSCs possibly acts as a traditional gap junction channel, which permits the sharing of signals among coupled cells to make more DPSCs respond to Ca(2+). Furthermore, inhibition of Cx43 function and gap junction communication decreased Ca(2+)-induced the expression of DSPP, suggesting that cell-to-cell contacts are required for Cx43 to promote the Ca(2+)-induced cell differentiation. Similarly, the study performed on DPSCs cultured at low-density and high-density revealed that intercellular contacts are required to potentiate Erk1/2 activity and DSPP expression. In total, this study indicates that Cx43 increases Ca(2+)-induced DSPP expression and odontoblastic differentiation of DPSCs via Erk1/2 through gap junction-mediated cell-to-cell contacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells.

    PubMed

    Pollok, Simone; Pfeiffer, Ann-Catherine; Lobmann, Ralf; Wright, Catherine S; Moll, Ingrid; Martin, Patricia E M; Brandner, Johanna M

    2011-04-01

    During early wound healing (WH) events Connexin 43 (Cx43) is down-regulated at wound margins. In chronic wound margins, including diabetic wounds, Cx43 expression is enhanced suggesting that down-regulation is important for WH. We previously reported that the Cx43 mimetic peptide Gap27 blocks Cx43 mediated intercellular communication and promotes skin cell migration of infant cells in vitro. In the present work we further investigated the molecular mechanism of Gap27 action and its therapeutic potential to improve WH in skin tissue and diabetic and non-diabetic cells. Ex vivo skin, organotypic models and human keratinocytes/fibroblasts of young and old donors and of diabetic and non-diabetic origin were used to assess the impact of Gap27 on cell migration, proliferation, Cx43 expression, localization, phosphorylation and hemichannel function. Exposure of ex vivo WH models to Gap27 decreased dye spread, accelerated WH and elevated cell proliferation. In non-diabetic cell cultures Gap27 decreased dye uptake through Cx hemichannels and after scratch wounding cells showed enhanced migration and proliferation. Cells of diabetic origin were less susceptible to Gap27 during early passages. In late passages these cells showed responses comparable to non-diabetic cells. The cause of the discrepancy between diabetic and non-diabetic cells correlated with decreased Cx hemichannel activity in diabetic cells but excluded differences in Cx43 expression, localization and Ser368-phosphorylation. These data emphasize the importance of Cx43 in WH and support the concept that Gap27 could be a beneficial therapeutic to accelerate normal WH. However, its use in diabetic WH may be restricted and our results highlight differences in the role of Cx43 in skin cells of different origin.

  13. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43.

    PubMed

    Plotkin, L I; Bellido, T

    2001-01-01

    Preservation of the mechanosensory function of osteocytes by inhibiting their apoptosis might contribute to the beneficial effects of bisphosphonates in bone. We report herein a mechanism by which connexin43 hemichannel opening by bisphosphonates triggers the activation of the kinases Src and ERKs and promotes cell survival. Bisphosphonate-induced anti-apoptosis requires connexin channel integrity, but not gap junctions. Osteocytic cells express functional hemichannels that are opened by bisphosphonates, as demonstrated by dye uptake, regulation by established agonists and antagonists, and cell surface biotinylation. The anti-apoptotic effect of bisphosphonates depends on connexin43 expression in mouse embryonic fibroblasts and osteoblastic cells. Transfection of connexin43, but not other connexins, into connexin43 naïve cells confers de novo responsiveness to the drugs. The signal transducing property of connexin43 requires the pore-forming, as well as the C-terminal domains of the protein, the interaction of connexin43 with Src. and the activation of both Src and ERK kinases. These studies establish a role for connexin43 hemichannels in bisphosphonate action, and a novel function of connexin43--beyond gap junction communication--in the regulation of survival signaling pathways.

  14. Functional consequences of co-expressing connexin40 or connexin45 with connexin43 on intercellular electrical coupling.

    PubMed

    Thomas, Neil M; Gray, Rosaire; Fry, Christopher H; Desplantez, Thomas; Peters, Nicholas S; Severs, Nicholas J; Macleod, Kenneth T; Dupont, Emmanuel

    2017-01-29

    The functional characteristics of the co-expression of connexin43, connexin40, and connexin45 proteins in human myocardium are thought to play an important role in governing normal propagation of the cardiac electrical impulse and in generating the myocardial substrate for some arrhythmias and conduction disturbances. A rat liver epithelial cell line, that endogenously expresses connexin43, was used to induce also expression of connexin40 or connexin45 after stable transfection using an inducible ecdysone system. Electrical coupling was estimated from measurement of the input resistance of transfected cells using an intracellular microelectrode to inject current and record changes to membrane potential. However, varied expression of the transfected connexin40 or connexin45 did not change electrical coupling, although connexin43/40 co-expression led to better coupling than connexin43/45 co-expression. Quantification of endogenous connexin43 expression, at both mRNA and protein levels, showed that it was altered in a manner dependent on the transfected connexin isotype. The data using rat liver epithelial cells indicate an increased electrical coupling upon expression of connexin40 and connexin43 but decreased coupling with connexin45 and connexin43 co-expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro

    PubMed Central

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-01-01

    Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than

  16. CONNEXIN 43 AND BONE: NOT JUST A GAP JUNCTION PROTEIN

    PubMed Central

    Plotkin, Lilian I.

    2012-01-01

    Connexins are essential for the communication of cells among themselves and with their environment. Connexin hexamers assemble at the plasma membrane to form hemichannels that allow the exchange of cellular contents with the extracellular milieu. In addition, hemichannels expressed in neighboring cells align to form gap junction channels that mediate the exchange of contents among cells. Connexin 43 (Cx43) is the most abundant connexin expressed in bone cells and its deletion in all tissues leads to osteoblast dysfunction, as evidenced by reduced expression of osteoblast markers and delayed ossification. Moreover, Cx43 is essential for the survival of osteocytes; and mice lacking Cx43 in these cells exhibit increased prevalence of osteocyte apoptosis and empty lacunae in cortical bone. Work of several groups for the past few years has unveiled the role of Cx43 on the response of bone cells to a variety of stimuli. Thus, the preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo. This survival effect does not require cell-to-cell communication and is mediated by unopposed hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes induced by mechanical stimulation in vitro. More recent evidence showed that the cAMP-mediated survival effect of parathyroid hormone (PTH) also requires Cx43 expression. Moreover, the hormone does not increase bone mineral content in mice haploinsufficient for Cx43 or lacking Cx43 in osteoblastic cells. Since inhibition of osteoblast apoptosis contributes, at least in part, to bone anabolism by PTH, the lack of response to the hormone might be due to the requirement of Cx43 for the effect of PTH on osteoblast survival. In summary, mounting evidence indicate that Cx43 is a key component of the intracellular machinery responsible for the transduction of signals in the skeleton in response to

  17. The emerging role of connexin 43 in testis pathogenesis.

    PubMed

    Chevallier, D; Carette, D; Gilleron, J; Segretain, D; Pointis, G

    2013-09-01

    Direct intercellular communication is mediated by gap junctions and their constitutive proteins, the connexins, which are organized in a hexameric arrangement forming a channel between adjacent cells. Connexins are essential for cell homeostasis and are also involved in many physiological processes such as cell growth, differentiation and death. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival and apoptosis, in which one connexin isoform, connexin 43, plays an essential role as evidenced by the targeted genetic deletion of Cx43 gene. A controlled balance of germ cell growth is a prerequisite to maintain either normal level of spermatozoa necessary for fertility and/or to limit an uncontrolled and anarchic germ cell proliferation, a major risk for germ cell tumor cell development. In the present review, we highlight the emerging role of connexins in testis pathogenesis, specifically in two intimately interconnected human testicular diseases: azoospermia with impaired spermatogenesis and testicular germ cell tumors, whose incidence increased during the last decades. This review proposes the gap junction protein connexin 43 as a new potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.

  18. Role of connexin 43 in cardiovascular diseases.

    PubMed

    Michela, Pecoraro; Velia, Verrilli; Aldo, Pinto; Ada, Popolo

    2015-12-05

    Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.

  19. Connexin43 is dispensable for phagocytosis.

    PubMed

    Glass, Aaron M; Wolf, Benjamin J; Schneider, Karin M; Princiotta, Michael F; Taffet, Steven M

    2013-05-01

    Macrophages that lack connexin43 (Cx43), a gap junction protein, have been reported to exhibit dramatic deficiencies in phagocytosis. In this study, we revisit these findings using well-characterized macrophage populations. Cx43 knockout (Cx43(-/-)) mice die soon after birth, making the harvest of macrophages from adult Cx43(-/-) mice problematic. To overcome this obstacle, we used several strategies: mice heterozygous for the deletion of Cx43 were crossed to produce Cx43(+/+) (wild type [WT]) and Cx43(-/-) fetuses. Cells isolated from 12- to 14-d fetal livers were used to reconstitute irradiated recipient animals. After reconstitution, thioglycollate-elicited macrophages were collected by peritoneal lavage and bone marrow was harvested. Bone marrow cells and, alternatively, fetal liver cells were cultured in media containing M-CSF for 7-10 d, resulting in populations of cells that were >95% macrophages based on flow cytometry. Phagocytic uptake was detected using flow cytometric and microscopic techniques. Quantification of phagocytic uptake of IgG-opsonized sheep erythrocytes, zymosan particles, and Listeria monocytogenes failed to show any significant difference between WT and Cx43(-/-) macrophages. Furthermore, the use of particles labeled with pH-sensitive dyes showed equivalent acidification of phagosomes in both WT and Cx43(-/-) macrophages. Our findings suggest that modulation of Cx43 levels in cultured macrophages does not have a significant impact on phagocytosis.

  20. Involvement of connexin43 in acetaminophen-induced liver injury

    PubMed Central

    Maes, Michaël; McGill, Mitchell R.; da Silva, Tereza Cristina; Abels, Chloé; Lebofsky, Margitta; Maria Monteiro de Araújo, Cintia; Tiburcio, Taynã; Veloso Alves Pereira, Isabel; Willebrords, Joost; Crespo Yanguas, Sara; Farhood, Anwar; Beschin, Alain; Van Ginderachter, Jo A.; Zaidan Dagli, Maria Lucia; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2017-01-01

    Background and aims Being goalkeepers of liver homeostasis, gap junctions are also involved in hepatotoxicity. However, their role in this process is ambiguous, as gap junctions can act as both targets and effectors of liver toxicity. This particularly holds true for drug-induced liver insults. In the present study, the involvement of connexin 26, connexin32 and connexin43, the building blocks of liver gap junctions, was investigated in acetaminophen-induced hepatotoxicity. Methods C57BL/6 mice were overdosed with 300 mg/kg body weight acetaminophen followed by analysis of the expression and localization of connexins as well as monitoring of hepatic gap junction functionality. Furthermore, acetaminophen-induced liver injury was compared between mice genetically deficient in connexin43 and wild type littermates. Evaluation of the toxicological response was based on a set of clinically relevant parameters, including protein adduct formation, measurement of alanine aminotransferase activity, cytokines and glutathione. Results It was found that gap junction communication deteriorates upon acetaminophen intoxication in wild type mice, which is associated with a switch in mRNA and protein production from connexin32 and connexin26 to connexin43. The upregulation of connexin43 expression is due, at least in part, to de novo production by hepatocytes. Connexin43-deficient animals tended to show increased liver cell death, inflammation and oxidative stress in comparison with wild type counterparts. Conclusion These results suggest that hepatic connexin43-based signaling may protect against acetaminophen-induced liver toxicity. PMID:26912412

  1. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques

    PubMed Central

    1991-01-01

    We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43- NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form. PMID:1659577

  2. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers.

    PubMed

    Zhang, Ruowen; Wang, Liping; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R; Zhou, Xu Dong; Somji, Seema

    2016-10-01

    Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize.

  3. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers

    PubMed Central

    Zhang, Ruowen; Wang, Liping; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.; Zhou, Xu Dong; Somji, Seema

    2016-01-01

    Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize. PMID:27531258

  4. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    SciTech Connect

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  5. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cδ cascade.

    PubMed

    Niger, Corinne; Luciotti, Maria A; Buo, Atum M; Hebert, Carla; Ma, Vy; Stains, Joseph P

    2013-06-01

    Connexin43 (Cx43) plays a critical role in osteoblast function and bone mass accrual, yet the identity of the second messengers communicated by Cx43 gap junctions, the targets of these second messengers and how they regulate osteoblast function remain largely unknown. We have shown that alterations of Cx43 expression in osteoblasts can impact the responsiveness to fibroblast growth factor-2 (FGF2), by modulating the transcriptional activity of runt-related transcription factor 2 (Runx2). In this study, we examined the contribution of the phospholipase Cγ1/inositol polyphosphate/protein kinase C delta (PKCδ) cascade to the Cx43-dependent transcriptional response of MC3T3 osteoblasts to FGF2. Knockdown of expression and/or inhibition of function of phospholipase Cγ1, inositol polyphosphate multikinase, which generates inositol 1,3,4,5-tetrakisphosphate (InsP₄) and InsP₅, and inositol hexakisphosphate kinase 1/2, which generates inositol pyrophosphates, prevented the ability of Cx43 to potentiate FGF2-induced signaling through Runx2. Conversely, overexpression of phospholipase Cγ1 and inositol hexakisphosphate kinase 1/2 enhanced FGF2 activation of Runx2 and the effect of Cx43 overexpression on this response. Disruption of these pathways blocked the nuclear accumulation of PKCδ and the FGF2-dependent interaction of PKCδ and Runx2, reducing Runx2 transcriptional activity. These data reveal that FGF2-signaling involves the inositol polyphosphate cascade, including inositol hexakisphosphate kinase (IP6K), and demonstrate that IP6K regulates Runx2 and osteoblast gene expression. Additionally, these data implicate the water-soluble inositol polyphosphates as mediators of the Cx43-dependent amplification of the osteoblast response to FGF2, and suggest that these low molecular weight second messengers may be biologically relevant mediators of osteoblast function that are communicated by Cx43-gap junctions.

  6. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome

    PubMed Central

    Nademanee, Koonlawee; Raju, Hariharan; de Noronha, Sofia V.; Papadakis, Michael; Robinson, Laurence; Rothery, Stephen; Makita, Naomasa; Kowase, Shinya; Boonmee, Nakorn; Vitayakritsirikul, Vorapot; Ratanarapee, Samrerng; Sharma, Sanjay; van der Wal, Allard C.; Christiansen, Michael; Tan, Hanno L.; Wilde, Arthur A.; Nogami, Akihiko; Sheppard, Mary N.; Veerakul, Gumpanart; Behr, Elijah R.

    2015-01-01

    Background The right ventricular outflow tract (RVOT) is acknowledged to be responsible for arrhythmogenesis in Brugada syndrome (BrS), but the pathophysiology remains controversial. Objectives This study assessed the substrate underlying BrS at post-mortem and in vivo, and the role for open thoracotomy ablation. Methods Six whole hearts from male post-mortem cases of unexplained sudden death (mean age 23.2 years) with negative specialist cardiac autopsy and familial BrS were used and matched to 6 homograft control hearts by sex and age (within 3 years) by random risk set sampling. Cardiac autopsy sections from cases and control hearts were stained with picrosirius red for collagen. The RVOT was evaluated in detail, including immunofluorescent stain for connexin-43 (Cx43). Collagen and Cx43 were quantified digitally and compared. An in vivo study was undertaken on 6 consecutive BrS patients (mean age 39.8 years, all men) during epicardial RVOT ablation for arrhythmia via thoracotomy. Abnormal late and fractionated potentials indicative of slowed conduction were identified, and biopsies were taken before ablation. Results Collagen was increased in BrS autopsy cases compared with control hearts (odds ratio [OR]: 1.42; p = 0.026). Fibrosis was greatest in the RVOT (OR: 1.98; p = 0.003) and the epicardium (OR: 2.00; p = 0.001). The Cx43 signal was reduced in BrS RVOT (OR: 0.59; p = 0.001). Autopsy and in vivo RVOT samples identified epicardial and interstitial fibrosis. This was collocated with abnormal potentials in vivo that, when ablated, abolished the type 1 Brugada electrocardiogram without ventricular arrhythmia over 24.6 ± 9.7 months. Conclusions BrS is associated with epicardial surface and interstitial fibrosis and reduced gap junction expression in the RVOT. This collocates to abnormal potentials, and their ablation abolishes the BrS phenotype and life-threatening arrhythmias. BrS is also associated with increased collagen throughout the heart

  7. Osterix plays a critical role in BMP4-induced promoter activity of connexin43.

    PubMed

    Han, Younho; Cho, Dong Hyeok; Chung, Dong Jin; Lee, Kwang Youl

    2016-09-16

    Osterix is an essential transcription factor for osteogenesis and is expressed in osteoblasts. Although Osterix has been shown to be induced by bone morphogenetic protein 4, the molecular mechanism underlying Osterix function during osteoblast differentiation remains unclear. Connexin43 (Cx43) is the most abundant gap junction protein in bone cells and plays a critical role in osteoblast differentiation. However, little is known about the functional interactions between Osterix and the Cx43 promoter. In the present study, we investigated the relationship between Osterix and Cx43 in HEK293 and C2C12 cells. Cx43 expression was significantly repressed by the addition of shRNA against Osterix, whereas overexpression of Osterix resulted in enhanced Cx43 expression. Furthermore, Osterix directly occupied the promoter region of Cx43 and subsequently increased Cx43 promoter activity in a dose-dependent manner. In addition, phosphorylation of the Ser76 and Ser80 residues in Osterix were found to be critical for its activity on the Cx43 promoter. Our results suggest that Osterix plays an important role in increasing bone morphogenetic protein 4-induced Cx43 activity.

  8. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia.

    PubMed

    Danesh-Meyer, Helen V; Kerr, Nathan M; Zhang, Jie; Eady, Elizabeth K; O'Carroll, Simon J; Nicholson, Louise F B; Johnson, Cameron S; Green, Colin R

    2012-02-01

    Connexin43 gap junction protein is expressed in astrocytes and the vascular endothelium in the central nervous system. It is upregulated following central nervous system injury and is recognized as playing an important role in modulating the extent of damage. Studies that have transiently blocked connexin43 in spinal cord injury and central nervous system epileptic models have reported neuronal rescue. The purpose of this study was to investigate neuronal rescue following retinal ischaemia-reperfusion by transiently blocking connexin43 activity using a connexin43 mimetic peptide. A further aim was to evaluate the effect of transiently blocking connexin43 on vascular permeability as this is known to increase following central nervous system ischaemia. Adult male Wistar rats were exposed to 60 min of retinal ischaemia. Treatment groups consisted of no treatment, connexin43 mimetic peptide and scrambled peptide. Retinas were then evaluated at 1-2, 4, 8 and 24 h, and 7 and 21 days post-ischaemia. Evans blue dye leak from retinal blood vessels was used to assess vascular leakage. Blood vessel integrity was examined using isolectin-B4 labelling. Connexin43 levels and astrocyte activation (glial fibrillary acidic protein) were assessed using immunohistochemistry and western blot analysis. Retinal whole mounts and retinal ganglion cell counts were used to quantify neurodegeneration. An in vitro cell culture model of endothelial cell ischaemia was used to assess the effect of connexin43 mimetic peptide on endothelial cell survival and connexin43 hemichannel opening using propidium iodide dye uptake. We found that retinal ischaemia-reperfusion induced significant vascular leakage and disruption at 1-2, 4 and 24 h following injury with a peak at 4 h. Connexin43 immunoreactivity was significantly increased at 1-2, 4, 8 and 24 h post ischaemia-reperfusion injury co-localizing with activated astrocytes, Muller cells and vascular endothelial cells. Connexin43 mimetic peptide

  9. Connexin43 null mice reveal that astrocytes express multiple connexins.

    PubMed

    Dermietzel, R; Gao, Y; Scemes, E; Vieira, D; Urban, M; Kremer, M; Bennett, M V; Spray, D C

    2000-04-01

    The gap junction protein connexin43 (Cx43) is the primary component of intercellular channels in cardiac tissue and in astrocytes, the most abundant type of glial cells in the brain. Mice in which the gene for Cx43 is deleted by homologous recombination die at birth, due to profound hypertrophy of the ventricular outflow tract and stenosis of the pulmonary artery. Despite this significant cardiovascular abnormality, brains of connexin43 null [Cx43 (-/-)] animals are shown to be macroscopically normal and to display a pattern of cortical lamination that is not detectably different from wildtype siblings. Presence of Cx40 and Cx45 in brains and astrocytes cultured from both Cx43 (-/-) mice and wildtype littermates was confirmed by RT-PCR, Northern blot analyses and by immunostaining; Cx46 was detected by RT-PCR and Northern blot analyses. Presence of Cx26 in astrocyte cultures was indicated by RT-PCR and by Western blot analysis, although we were unable to resolve whether it was contributed by contaminating cells; Cx30 mRNA was detected by Northern blot in long term (2 weeks) but not fresh cultures of astrocytes. These studies thus reveal that astrocyte gap junctions may be formed of multiple connexins. Presumably, the metabolic and ionic coupling provided by these diverse gap junction types may functionally compensate for the absence of the major astrocyte gap junction protein in Cx43 (-/-) mice, providing whatever intercellular signaling is necessary for brain development and cortical lamination.

  10. Viral regulation of aquaporin 4, connexin 43, microcephalin and nucleolin.

    PubMed

    Fatemi, S Hossein; Folsom, Timothy D; Reutiman, Teri J; Sidwell, Robert W

    2008-01-01

    The current study investigated whether human influenza viral infection in midpregnancy leads to alterations in proteins involved in brain development. Human influenza viral infection was administered to E9 pregnant Balb/c mice. Brains of control and virally-exposed littermates were subjected to microarray analysis, SDS-PAGE and western blotting at three postnatal stages. Microarray analysis of virally-exposed mouse brains showed significant, two-fold change in expression of multiple genes in both neocortex and cerebellum when compared to sham-infected controls. Levels of mRNA and protein levels of four selected genes were examined in brains of exposed mice. Nucleolin mRNA was significantly decreased in day 0 and day 35 neocortex and significantly increased in day 35 cerebellum. Protein levels were significantly upregulated at days 35 and 56 in neocortex and at day 56 in cerebellum. Connexin 43 protein levels were significantly decreased at day 56 in neocortex. Aquaporin 4 mRNA was significantly decreased in day 0 neocortex. Aquaporin 4 protein levels decreased in neocortex significantly at day 35. Finally, microcephalin mRNA was significantly decreased in day 56 neocortex and protein levels were significantly decreased at 56 cerebellum. These data suggest that influenza viral infection in midpregnancy in mice leads to long-term changes in brain markers for enhanced ribosome genesis (nucleolin), increased production of immature neurons (microcephalin), and abnormal glial-neuronal communication and neuron migration (connexin 43 and aquaporin 4).

  11. Viral regulation of aquaporin 4, connexin 43, microcephalin and nucleolin

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.; Reutiman, Teri J.; Sidwell, Robert W.

    2008-01-01

    The current study investigated whether human influenza viral infection in midpregnancy leads to alterations in proteins involved in brain development. Human influenza viral infection was administered to E9 pregnant Balb/c mice. Brains of control and virally exposed littermates were subjected to microarray analysis, SDS-PAGE and western blotting at three postnatal stages. Microarray analysis of virally-exposed mouse brains showed significant, two-fold change in expression of multiple genes in both neocortex and cerebellum when compared to sham-infected controls. Levels of mRNA and protein levels of four selected genes were examined in brains of exposed mice. Nucleolin mRNA was significantly decreased in day 0 and day 35 neocortex and significantly increased in day 35 cerebellum. Protein levels were significantly upregulated at days 35 and 56 in neocortex and at day 56 in cerebellum. Connexin 43 protein levels were significantly decreased at day 56 in neocortex. Aquaporin 4 mRNA was significantly decreased in day 0 neocortex. Aquaporin 4 protein levels decreased in neocortex significantly at day 35. Finally, microcephalin mRNA was significantly decreased in day 56 neocortex and protein levels were significantly decreased at 56 cerebellum. These data suggest that influenza viral infection in midpregnancy in mice leads to long term changes in brain markers for enhanced ribosome genesis (nucleolin), increased production of immature neurons (microcephalin), and abnormal glial-neuronal communication (connexin 43 and aquaporin 4). PMID:17997079

  12. Connexin 43 hemichannels and intracellular signaling in bone cells

    PubMed Central

    Plotkin, Lilian I.

    2014-01-01

    Cell function and survival are controlled by intracellular signals, and modulated by surrounding cells and the extracellular environment. Connexin channels participate in these processes by mediating cell-to-cell communication. In bone cells, gap junction channels were detected in the early 1970s, and are present among bone resorbing osteoclasts, bone forming osteoblasts, and osteocytes - mature osteoblasts embedded in the mineralized matrix. These channels are composed mainly by Cx43, although the expression of other connexins (45, 46, and 37) has also been reported. It is now believed that undocked Cx43 hemichannels (connexons) formed in unopposed cell membranes facing the extracellular environment participate in the interaction of bone cells with the extracellular environment, and in their communication with neighboring cells. Thus, we and others demonstrated the presence of active hemichannels in osteoblastic and osteocytic cells. These hemichannels open in response to pharmacological and mechanical stimulation. In particular, preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo, and is mediated by undocked hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes, and for cell survival induced by mechanical stimulation in vitro. Moreover, they are required for the anti-apoptotic effect of parathyroid hormone in osteoblastic cells. This review summarizes the current knowledge on the presence and function of undocked connexons, and the role of hemichannel regulation for the maintenance of bone cell viability and, potentially, bone health. PMID:24772090

  13. Osteoinductivity of Calcium Phosphate Mediated by Connexin 43

    PubMed Central

    Syed-Picard, Fatima N.; Jayaraman, Thottala; Lam, Raymond S.K.; Beniash, Elia; Sfeir, Charles

    2013-01-01

    Recent reports have alluded to the osteoinductive properties of calcium phosphate, yet the cellular processes behind this are not well understood. To gain insight into the molecular mechanisms of this phenomenon, we have conducted a series of in vitro and in vivo experiments using a scaffoldless three dimensional (3D) dental pulp cell (DPC) construct as a physiologically relevant model. We demonstrate that amorphous calcium phosphate (ACP) alters cellular functions and 3D spatial tissue differentiation patterns by increasing local calcium concentration, which modulates connexin 43 (Cx43)-mediated gap junctions. These observations indicate a chemical mechanism for osteoinductivity of calcium phosphates. These results provide new insights for possible roles of mineral phases in bone formation and remodeling. This study also emphasizes the strong effect of scaffold materials on cellular functions and is expected to advance the design of future tissue engineering materials. PMID:23465492

  14. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide

    PubMed Central

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2015-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance, and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM and perhaps other TMZ-resistant cancers. PMID:26542214

  15. Connexin 43 enhances paclitaxel cytotoxicity in colorectal cancer cell lines

    PubMed Central

    Wang, Siqi; Zhang, Shiwu; Zhao, Zhenying; Zhang, Chunze; Yang, Xiaoyun; Wang, Yijia

    2017-01-01

    Colorectal cancer has a relatively low sensitivity to paclitaxel. The purpose of this study was to investigate the role of connexin 43 (Cx43), which is a structural component of gap junctional communication (GJC), in paclitaxel cytotoxicity in colorectal cancer cells. Three colorectal cancer cell lines (HCT106, HCT116 and LoVo) were transfected with Cx43 and used to examine paclitaxel cytotoxicity. A western blot assay was used to confirm Cx43 expression in transfected cell lines as well as the expression of several proteins that are associated with paclitaxel cytotoxicity. A parachute dye-coupling assay was used to measure GJC function. An MTT assay was used to analyze the viability of paclitaxel-treated cells. Cx43 expression level and GJC function were significantly upregulated by the transfection (P<0.05). The viability of transfected cells was significantly inhibited compared with that of untransfected cells when treated with paclitaxel (20 or 80 nM) at high culture density but not at low culture density (P<0.05). Cx43 transfection significantly increased the mitotic arrest, tubulin polymerization and apoptosis effects of paclitaxel (P<0.05). It was also found that paclitaxel had an inhibitory effect on GJC function after 12 h of treatment in LoVo cells (P<0.05). These results indicate that Cx43 may serve as a target of paclitaxel chemotherapy for colorectal cancer. PMID:28810580

  16. Inhibition of connexin 43 prevents trauma-induced heterotopic ossification

    PubMed Central

    Tu, Bing; Liu, Shen; Liu, Guangwang; Li, Zhiwei; Sun, Yangbai; Fan, Cunyi

    2016-01-01

    Heterotopic ossification (HO) can result from traumatic injury, surgery or genetic diseases. Here, we demonstrate that overexpression of connexin 43 (Cx43) is critical for the development and recurrence of traumatic HO in patients. Inhibition of Cx43 by shRNA substantially suppressed the osteogenic differentiation of MC-3T3 cells and the expression of osteogenic genes. We employed a tenotomy mouse model to explore the hypothesis that Cx43 is vital to the development of HO. Inhibition of Cx43 by a specific shRNA decreased extraskeletal bone formation in vivo. In addition, we demonstrated that ERK signaling activated by Cx43 plays an important role in promoting HO. ERK signaling was highly activated in HO tissue collected from patient and mouse models. Importantly, de novo soft tissue HO was significantly attenuated in mice treated with U0126. Inhibition of Cx43 and ERK led to decreased expressions of Runx2, BSP and Col-1 in vivo and in vitro. Moreover, HO patients with low Cx43 expression or ERK activation had a lower risk of recurrence after the lesions were surgically removed. Our findings indicate that Cx43 promotes trauma-induced HO formation by activating the ERK pathway and enhances the expression of osteogenic markers. PMID:27849058

  17. HIV-Associated Cardiovascular Disease: Role of Connexin 43.

    PubMed

    Prevedel, Lisa; Morocho, Camilla; Bennett, Michael V L; Eugenin, Eliseo A

    2017-09-01

    Chronic HIV infection due to effective antiretroviral treatment has resulted in a broad range of clinical complications, including accelerated heart disease. Individuals with HIV infection have a 1.5 to 2 times higher incidence of cardiovascular diseases than their uninfected counterparts; however, the underlying mechanisms are poorly understood. To explore the link between HIV infection and cardiovascular diseases, we used postmortem human heart tissues obtained from HIV-infected and control uninfected individuals to examine connexin 43 (Cx43) expression and distribution and HIV-associated inflammation. Here, we demonstrate that Cx43 is dysregulated in the hearts of HIV-infected individuals. In all HIV heart samples analyzed, there were areas where Cx43 was overexpressed and found along the lateral membrane of the cardiomyocyte and in the intercalated disks. Areas of HIV tissue with anomalous Cx43 expression and localization also showed calcium overload, sarcofilamental atrophy, and accumulation of collagen. All these changes were independent of viral replication, CD4 counts, inflammation, and type of antiretroviral treatment. Overall, we propose that HIV infection increases Cx43 expression in heart, resulting in tissue damage that likely contributes to the high rates of cardiovascular disease in HIV-infected individuals. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide.

    PubMed

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2016-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ-blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM, and perhaps other TMZ-resistant cancers. ©2015 American Association for Cancer Research.

  19. Connexin 43, breast cancer tumor suppressor: Missed connections?

    PubMed

    Grek, Christina L; Rhett, J Matthew; Bruce, Jaclynn S; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-04-28

    Connexins are a family of transmembrane proteins that are characterized by their capacity to form intercellular channels called gap junctions that directly link the cytoplasm of adjacent cells. The formation of gap junctions by connexin proteins facilitates intercellular communication between neighboring cells by allowing for the transfer of ions and small signaling molecules. Communication through gap junctions is key to cellular equilibrium, where connexins, and the gap junction intercellular communication that connexins propagate, have roles in cellular processes such as cell growth, differentiation, and tissue homeostasis. Due to their importance in maintaining cellular functions, the disruption of connexin expression and function underlies the etiology and progression of numerous pathologies, including cancer. Over the past half a century, the role of connexins and gap junction intercellular communication have been highlighted as critical areas of research in cellular malignancies, and much research effort has been geared toward understanding their dysfunction in human cancers. Although ample evidence supports the role of connexins in a variety of human cancers, detailed examination in specific cancers, such as breast cancer, is still lacking. This review highlights the most abundant gap junction connexin isoform in higher vertebrate organisms, Connexin 43, and its role in breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Inhibition of connexin43 gap junction channels by the endocrine disruptor ioxynil

    SciTech Connect

    Leithe, Edward; Kjenseth, Ane; Bruun, Jarle; Sirnes, Solveig; Rivedal, Edgar

    2010-08-15

    Gap junctions are intercellular plasma membrane domains containing channels that mediate transport of ions, metabolites and small signaling molecules between adjacent cells. Gap junctions play important roles in a variety of cellular processes, including regulation of cell growth and differentiation, maintenance of tissue homeostasis and embryogenesis. The constituents of gap junction channels are a family of trans-membrane proteins called connexins, of which the best-studied is connexin43. Connexin43 functions as a tumor suppressor protein in various tissue types and is frequently dysregulated in human cancers. The pesticide ioxynil has previously been shown to act as an endocrine disrupting chemical and has multiple effects on the thyroid axis. Furthermore, both ioxynil and its derivative ioxynil octanoate have been reported to induce tumors in animal bioassays. However, the molecular mechanisms underlying the possible tumorigenic effects of these compounds are unknown. In the present study we show that ioxynil and ioxynil octanoate are strong inhibitors of connexin43 gap junction channels. Both compounds induced rapid loss of connexin43 gap junctions at the plasma membrane and increased connexin43 degradation. Ioxynil octanoate, but not ioxynil, was found to be a strong activator of ERK1/2. The compounds also had different effects on the phosphorylation status of connexin43. Taken together, the data show that ioxynil and ioxynil octanoate are potent inhibitors of intercellular communication via gap junctions.

  1. Connexin43 gap junction protein plays an essential role in morphogenesis of the embryonic chick face.

    PubMed

    McGonnell, I M; Green, C R; Tickle, C; Becker, D L

    2001-11-01

    Normal outgrowth and fusion of facial primordia during vertebrate development require interaction of diverse tissues and co-ordination of many different signalling pathways. Gap junction channels, made up of subunits consisting of connexin proteins, facilitate communication between cells and are implicated in embryonic development. Here we describe the distribution of connexin43 and connexin32 gap junction proteins in the developing chick face. To test the function of connexin43 protein, we applied antisense oligodeoxynucleotides that specifically reduced levels of connexin43 protein in cells of early chick facial primordia. This resulted in stunting of primordia outgrowth and led to facial defects. Furthermore, cell proliferation in regions of facial primordia that normally express high levels of connexin43 protein was reduced and this was associated with lower levels of Msx-1 expression. Facial defects arise when retinoic acid is applied to the face of chick embryos at later stages. This treatment also resulted in significant reduction in connexin43 protein, while connexin32 protein expression was unaffected. Taken together, these results indicate that connexin43 plays an essential role during early morphogenesis and subsequent outgrowth of the developing chick face.

  2. Role of CAPE on cardiomyocyte protection via connexin 43 regulation under hypoxia.

    PubMed

    Chen, Chien-Cheng; Kuo, Chan-Yen; Chen, Rong-Fu

    2016-01-01

    Background: Cardiomyocyte under hypoxia cause cell death or damage is associated with heart failure. Gap junction, such as connexin 43 play a role in regulation of heart function under hypoxia. Caffeic acid phenethyl ester (CAPE) has been reported as an active component of propolis, has antioxidative, anti-inflammatory antiproliferative and antineoplastic biological properties. Aims: Connexin 43 appear to have a critical role in heart failure under hypoxia, there has been considerable interest in identifying the candidate component or compound to reduce cell death. Methods: In this study, we used human cardiomyocyte as a cell model to study the role of connexin 43 in hypoxia- incubated human cardiomyocyte in absence or presence of CAPE treatment. Results: Results showed that hypoxia induced connexin 43 expression, but not altered in connexin 40. Interestingly, CAPE attenuates hypoxia-caused connexin 43 down-regulation and cell death or cell growth inhibition. Conclusion: We suggested that reduction of cell death in cardiomyocytes by CAPE is associated with an increase in connexin 43 expression.

  3. Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process.

    PubMed

    Leykauf, Kerstin; Salek, Mojibrahman; Bomke, Jörg; Frech, Matthias; Lehmann, Wolf-Dieter; Dürst, Matthias; Alonso, Angel

    2006-09-01

    Connexin43 is degraded by the proteasomal as well as the lysosomal pathway with ubiquitin playing a role in both degradation pathways. So far, no ubiquitin protein ligase has been identified for any of the connexins. By using pull-down assays, here we show binding of a ubiquitin protein ligase, Nedd4, to the C-terminus of connexin43. This observation was confirmed in vivo by coimmunoprecipitation and immunofluorescence, showing colocalization of Nedd4 and connexin43. Binding of Nedd4 to its interaction partners is generally carried out by its WW domains. Our results indicate that the interaction with connexin43 occurs through all three WW domains of Nedd4. Furthermore, whereas WW1 and WW2 domains mainly interact with the unphosphorylated form of connexin43, WW3 binds phosphorylated and unphosphorylated forms equally. In addition, using the surface plasmon resonance approach we show that only the WW2 domain binds to the PY motif located at the C-terminus of connexin43. Suppression of Nedd4 expression with siRNA resulted in an accumulation of gap junction plaques at the plasma membrane, suggesting an involvement of the ubiquitin protein ligase Nedd4 in gap junction internalization.

  4. Reduced Connexin 43 expression is associated with tumor malignant behaviors and biochemical recurrence-free survival of prostate cancer

    PubMed Central

    Xu, Ning; Chen, Hui-Jun; Chen, Shao-Hao; Xue, Xue-Yi; Chen, Hong; Zheng, Qing-Shui; Wei, Yong; Li, Xiao-Dong; Huang, Jin-Bei; Cai, Hai; Sun, Xiong-Lin

    2016-01-01

    Connexin 43, a gap junction protein, coordinates cell-to-cell communication and adhesion. Altered Connexin 43 expression associated with cancer development and progression. In this study, we assessed Connexin 43 expression for association with clinicopathological features and biochemical recurrence of prostate cancer after radical prostatectomy. Pathological specimens were collected from 243 patients who underwent radical prostatectomy and from 60 benign prostatic hyperplasia (BPH) patients to construct tissue microarrays and immunohistochemical analysis of Connexin 43 expression. Kaplan-Meier curves and multivariable Cox proportion hazard model were performed to associate Connexin 43 expression with postoperative biochemical recurrence-free survival (BFS). Connexin 43 expression was significantly reduced or lost in tumor tissues compared to that of BPHs (39.1% vs. 96.7%, P<0.001). Reduced Connexin 43 expression was associated with high levels of preoperative PSA, high Gleason score, advanced pT stage, positive surgical margin, extracapsular extension, and seminal vesicle invasion (P < 0.05, for all). Kaplan–Meier curves showed that reduced Connexin 43 expression was associated with shortened postoperative BFS (P < 0.001). Multivariate analysis showed that reduced Connexin 43 expression, high Gleason score and advanced pT stage were independent predictors for BFS of patients (P < 0.05). Connexin 43 expression was significantly reduced or lost in prostate cancer tissues, which was associated with advanced clinicopathological features and poor BFS of patients after radical prostatectomy. PMID:27623212

  5. Sleep deprivation and sleep recovery modifies connexin36 and connexin43 protein levels in rat brain.

    PubMed

    Franco-Pérez, Javier; Ballesteros-Zebadúa, Paola; Fernández-Figueroa, Edith A; Ruiz-Olmedo, Isabel; Reyes-Grajeda, Pablo; Paz, Carlos

    2012-01-25

    Gap junctional communication is mainly mediated by connexin36 and connexin43 in neurons and astrocytes, respectively. It has been suggested that connexin36 allows electrical coupling between neurons whereas connexin43 participates in several process including release of ATP. It was recently reported that blockage of gap junctional communication mediated by connexin36 can disrupt the sleep architecture of the rat. However, there is no experimental approach about effects of sleep deprivation on connexins expression. Therefore, we examined in adult male Wistar rats whether protein levels of connexin36 and connexin43 change in pons, hypothalamus, and frontal cortex after 24 h of total sleep deprivation and 4 h of sleep recovery. Western blot revealed that total sleep deprivation significantly decreases the levels of connexin36 in the hypothalamus and this decrease maintains after sleep recovery. Meanwhile, connexin43 is not altered by total sleep deprivation but interestingly the sleep recovery period induces an increase of this connexin. These results suggest that electrical coupling between hypothalamic neurons could be altered by sleep deprivation and that sleep recovery drives changes in connexin43 expression probably as a mechanism related to ATP release and energy regulation during sleep.

  6. Connexin43 is required for production of the aqueous humor in the murine eye.

    PubMed

    Calera, Mónica R; Topley, Heather L; Liao, Yongbo; Duling, Brian R; Paul, David L; Goodenough, Daniel A

    2006-11-01

    Connexin43 is a major component of the gap junctions between pigmented and non-pigmented cells of the double-layered epithelium in the ciliary body of the eye. We directly tested the hypothesis that gap junctions play a crucial role in the production of the aqueous humor by inactivating the GJA1 (connexin43) gene in the pigmented epithelium with cre-loxP technology. To accomplish this, we crossed a line expressing cre recombinase driven by the nestin promoter and a line with floxed connexin43 alleles. Resultant lines exhibited loss of connexin43 from the pigmented epithelium, iris, retinal pigment epithelium and the lens. We observed plasma proteins in the aqueous humor and pathological changes consistent with a loss of intraocular pressure. As the ciliary body is responsible for aqueous humor production, these data support the hypothesis that the gap junctions between pigmented and non-pigmented epithelium are necessary for production of the aqueous humor that is in turn required for the generation of normal intraocular pressure and nourishment of the postnatal lens. The loss of connexin43 expression in the iris correlated with a separation of the posterior pigmented epithelium from the anterior myoepithelium and with meiosis, possibly resulting from a loss of function of the dilator pupillae.

  7. The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43.

    PubMed

    Wei, Ning; Mori, Yoichiro; Tolkacheva, Elena G

    2016-05-21

    Decreased and heterogeneous expression of connexin 43 (Cx43) are common features in animal heart failure models. Ephpatic coupling, which relies on the presence of junctional cleft space between the ends of adjacent cells, has been suggested to play a more active role in mediating intercellular electrical communication when gap junctions are reduced. To better understand the interplay of Cx43 expression and ephaptic coupling on cardiac conduction during heart failure, we performed numerical simulations on our model when Cx43 expression is reduced and heterogeneous. Under severely reduced Cx43 expression, we identified three new phenomena in the presence of ephaptic coupling: alternating conduction, in which ephaptic and gap junction-mediated mechanisms alternate; instability of planar fronts; and small amplitude action potential (SAP), which has a smaller potential amplitude than the normal action potential. In the presence of heterogeneous Cx43 expression, ephaptic coupling can either prevent or promote conduction block (CB) depending on the Cx43 knockout (Cx43KO) content. When Cx43KO content is relatively high, ephaptic coupling reduces the probabilities of CB. However, ephaptic coupling promotes CB when Cx43KO and wild type cells are mixed in roughly equal proportion, which can be attributed to an increase in current-to-load mismatch.

  8. Expression of gap junction protein connexin 43 in bovine urinary bladder tumours.

    PubMed

    Corteggio, A; Florio, J; Roperto, F; Borzacchiello, G

    2011-01-01

    The aetiopathogenesis of urinary bladder tumours in cattle involves prolonged ingestion of bracken fern and infection by bovine papillomavirus types 1 or 2 (BPV-1/2). The oncogenic activity of BPV is largely associated with the major oncoprotein E5. Gap junctions are the only communicating junctions found in animal tissues and are composed of proteins known as connexins. Alterations in connexin expression have been associated with oncogenesis. The present study investigated biochemically and immunohistochemically the expression of connexin 43 in samples of normal (n=2), dysplastic (n=3) and neoplastic (n=23) bovine urothelium. The tumours included 10 carcinomas in situ, five papillary urothelial carcinomas and eight invasive urothelial carcinomas. Normal and dysplastic urothelium had membrane expression of connexin 43, but this was reduced in samples of carcinoma in situ. Papillary urothelial carcinomas showed moderate cytoplasmic and membrane labelling, while invasive carcinoma showed loss of connexin 43 expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart

    NASA Astrophysics Data System (ADS)

    Mahoney, Vanessa M.; Mezzano, Valeria; Mirams, Gary R.; Maass, Karen; Li, Zhen; Cerrone, Marina; Vasquez, Carolina; Bapat, Aneesh; Delmar, Mario; Morley, Gregory E.

    2016-05-01

    Studies have demonstrated non-myocytes, including fibroblasts, can electrically couple to myocytes in culture. However, evidence demonstrating current can passively spread across scar tissue in the intact heart remains elusive. We hypothesize electrotonic conduction occurs across non-myocyte gaps in the heart and is partly mediated by Connexin43 (Cx43). We investigated whether non-myocytes in ventricular scar tissue are electrically connected to surrounding myocardial tissue in wild type and fibroblast-specific protein-1 driven conditional Cx43 knock-out mice (Cx43fsp1KO). Electrical coupling between the scar and uninjured myocardium was demonstrated by injecting current into the myocardium and recording depolarization in the scar through optical mapping. Coupling was significantly reduced in Cx43fsp1KO hearts. Voltage signals were recorded using microelectrodes from control scars but no signals were obtained from Cx43fsp1KO hearts. Recordings showed significantly decreased amplitude, depolarized resting membrane potential, increased duration and reduced upstroke velocity compared to surrounding myocytes, suggesting that the non-excitable cells in the scar closely follow myocyte action potentials. These results were further validated by mathematical simulations. Optical mapping demonstrated that current delivered within the scar could induce activation of the surrounding myocardium. These data demonstrate non-myocytes in the scar are electrically coupled to myocytes, and coupling depends on Cx43 expression.

  10. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury

    PubMed Central

    Shinoda, Masamichi; Honda, Kuniya; Unno, Syumpei; Shimizu, Noriyoshi; Iwata, Koichi

    2016-01-01

    Background Clinically, it is well known that injury of mandibular nerve fiber induces persistent ectopic pain which can spread to a wide area of the orofacial region innervated by the uninjured trigeminal nerve branches. However, the exact mechanism of such persistent ectopic orofacial pain is not still known. The present study was undertaken to determine the role of connexin 43 in the trigeminal ganglion on mechanical hypersensitivity in rat whisker pad skin induced by inferior alveolar nerve injury. Here, we examined changes in orofacial mechanical sensitivity following inferior alveolar nerve injury. Furthermore, changes in connexin 43 expression in the trigeminal ganglion and its localization in the trigeminal ganglion were also examined. In addition, we investigated the functional significance of connexin 43 in relation to mechanical allodynia by using a selective gap junction blocker (Gap27). Results Long-lasting mechanical allodynia in the whisker pad skin and the upper eyelid skin, and activation of satellite glial cells in the trigeminal ganglion, were induced after inferior alveolar nerve injury. Connexin 43 was expressed in the activated satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin, and the connexin 43 protein expression was significantly increased after inferior alveolar nerve injury. Administration of Gap27 in the trigeminal ganglion significantly reduced satellite glial cell activation and mechanical hypersensitivity in the whisker pad skin. Moreover, the marked activation of satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin following inferior alveolar nerve injury implies that the satellite glial cell activation exerts a major influence on the excitability of nociceptive trigeminal ganglion neurons. Conclusions These findings indicate that the propagation of satellite glial cell activation throughout the trigeminal ganglion via gap junctions, which are

  11. Neuroprotection in the treatment of glaucoma--A focus on connexin43 gap junction channel blockers.

    PubMed

    Chen, Ying-Shan; Green, Colin R; Danesh-Meyer, Helen V; Rupenthal, Ilva D

    2015-09-01

    Glaucoma is a form of optic neuropathy and a common cause of blindness, affecting over 60 million people worldwide with an expected rise to 80 million by 2020. Successful treatment is challenging due to the various causes of glaucoma, undetectable symptoms at an early stage and inefficient delivery of drugs to the back of the eye. Conventional glaucoma treatments focus on the reduction of elevated intraocular pressure (IOP) using topical eye drops. However, their efficacy is limited to patients who suffer from high IOP glaucoma and do not address the underlying susceptibility of retinal ganglion cells (RGC) to degeneration. Glaucoma is known as a neurodegenerative disease which starts with RGC death and eventually results in damage of the optic nerve. Neuroprotective strategies therefore offer a novel treatment option for glaucoma by not only preventing neuronal loss but also disease progression. This review firstly gives an overview of the pathophysiology of glaucoma as well as current treatment options including conventional and novel delivery strategies. It then summarizes the rational for neuroprotection as a novel therapy for glaucomatous neuropathies and reviews current potential neuroprotective strategies to preserve RGC, with a focus on connexin43 (Cx43) gap junction channel blockers.

  12. The "tail" of Connexin43: An unexpected journey from alternative translation to trafficking.

    PubMed

    Basheer, Wassim; Shaw, Robin

    2016-07-01

    With each heartbeat, Connexin43 (Cx43) cell-cell communication gap junctions are needed to rapidly spread and coordinate excitation signals for an effective heart contraction. The correct formation and delivery of channels to their respective membrane subdomain is referred to as protein trafficking. Altered Cx43 trafficking is a dangerous complication of diseased myocardium which contributes to the arrhythmias of sudden cardiac death. Cx43 has also been found to regulate many other cellular processes that cannot be explained by cell-cell communication. We recently identified the existence of up to six endogenous internally translated Cx43 N-terminal truncated isoforms from the same full-length mRNA molecule. This is the first evidence that alternative translation is possible for human ion channels and in human heart. Interestingly, we found that these internally translated isoforms, more specifically the 20 kDa isoform (GJA1-20k), is important for delivery of Cx43 to its respective membrane subdomain. This review covers recent advances in Cx43 trafficking and potential importance of alternatively translated Cx43 truncated isoforms. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  13. The “Tail” of Connexin43: An Unexpected Journey from Alternative Translation to Trafficking

    PubMed Central

    Basheer, Wassim; Shaw, Robin

    2015-01-01

    With each heartbeat, Connexin43 (Cx43) cell-cell communication gap junctions are needed to rapidly spread and coordinate excitation signals for an effective heart contraction. The correct formation and delivery of channels to their respective membrane subdomain is referred to as protein trafficking. Altered Cx43 trafficking is a dangerous complication of diseased myocardium which contributes to the arrhythmias of sudden cardiac death. Cx43 has also been found to regulate many other cellular processes that cannot be explained by cell-cell communication. We recently identified the existence of up to six endogenous internally translated Cx43 N-terminal truncated isoforms from the same full-length mRNA molecule. This is the first evidence that alternative translation is possible for human ion channels and in human heart. Interestingly, we found that these internally translated isoforms, more specifically the 20 kDa isoform (GJA1-20k), is important for delivery of Cx43 to its respective membrane subdomain. This review covers recent advances in Cx43 trafficking and potential importance of alternatively translated Cx43 truncated isoforms. PMID:26526689

  14. Slow ventricular conduction in mice heterozygous for a connexin43 null mutation.

    PubMed Central

    Guerrero, P A; Schuessler, R B; Davis, L M; Beyer, E C; Johnson, C M; Yamada, K A; Saffitz, J E

    1997-01-01

    To characterize the role of the gap junction protein connexin43 (Cx43) in ventricular conduction, we studied hearts of mice with targeted deletion of the Cx43 gene. Mice homozygous for the Cx43 null mutation (Cx43 -/-) die shortly after birth. Attempts to record electrical activity in neonatal Cx43 -/- hearts (n = 5) were unsuccessful. Ventricular epicardial conduction of paced beats, however, was 30% slower in heterozygous (Cx43 -/+) neonatal hearts (0.14+/-0.04 m/s, n = 27) than in wild-type (Cx43 +/+) hearts (0.20+/-0.07 m/s, n = 32; P < 0.001). This phenotype was even more severe in adult mice; ventricular epicardial conduction was 44% slower in 6-9 mo-old Cx43 -/+ hearts (0.18+/-0.03 m/s, n = 5) than in wild-type hearts (0.32+/-0.07 m/s, n = 7, P < 0.001). Electrocardiograms revealed significant prolongation of the QRS complex in adult Cx43 -/+ mice (13.4+/-1.8 ms, n = 13) compared with Cx43 +/+ mice (11.5+/-1.4 ms, n = 12, P < 0.01). Whole-cell recordings of action potential parameters in cultured disaggregated neonatal ventricular myocytes from Cx43 -/+ and +/+ hearts showed no differences. Thus, reduction in the abundance of a major cardiac gap junction protein through targeted deletion of a Cx43 allele directly leads to slowed ventricular conduction. PMID:9109444

  15. [Impacts of early metoprolol intervention on connexin 43 and phosphorylated connexin 43 expression in rabbits with experimental myocardial infarction].

    PubMed

    Zhou, M; Lu, Q; Jiang, J Q; Chen, Z N; Gong, Z G; Li, Z G; Fu, W W; Ding, S F

    2017-04-24

    Objective: To investigate the early intervention effects of metoprolol on connexin 43(Cx43) and phosphorylated Cx43 (p-Cx43) expression in rabbits with post myocardial infarction. Methods: A total of 24 adult male New Zealand white rabbits were divided into sham group (n=6), early treatment group(n=6), routine treatment group(n=6), and myocardial infarction group(n=6) with a randomized block design blocked by weight. Myocardial infarction was induced by left anterior descending coronary artery (LAD) ligation. Rabbits in sham group received similar surgical procedure without LAD ligation. Metoprolol (12.5 mg/kg dissolved in 2 ml distilled water) was applied to rabbits in early treatment group and routine treatment group per gavage immediately after recovery from anesthesia and at 24 hours after myocardial infarction, respectively, then treated daily for 40 days. Rabbits in sham group and myocardial infarction group received 2 ml distilled water per gavage daily for 40 days. Plasma lactate dehydrogenase (LDH) and creatine kinase (CK) level were detected by automatic biochemistry analyzer after 6 hours in all rabbits. Ventricular fibrillation threshold (VFT) was measured in vivo by bipolar pacing electrodes at 40 days. Cx43 and p-Cx43 distribution in ventricular tissue was detected by immunofluorescence analyses. Cx43 and p-Cx43 protein level in ventricular tissue was determined by Western blot. Results: (1) Plasma LDH ((851.7±85.9)U/L vs. (332.3±39.6)U/L, P<0.01) and CK ((1 192.7±105.3)U/L vs. (462.3±65.6)U/L, P<0.01) were significantly higher in myocardial infarction group than in sham group (both P<0.01). (2) VFT was significantly lower in myocardial infarction group than that in sham group ((470.0±91.0) beats per minute vs. (683.3±60.9) beats per minute, P<0.05), and VFT was significantly higher in early treatment group ((633.3±43.2) beats per minute) and routine treatment group ((645.0±30.8) beats per minute) than in the myocardial infarction group (both

  16. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Decreased connexin 43 in astrocytes inhibits the neuroinflammatory reaction in an acute mouse model of neonatal sepsis.

    PubMed

    Zhou, Jing-Jing; Cheng, Cheng; Qiu, Zilong; Zhou, Wen-Hao; Cheng, Guo-Qiang

    2015-12-01

    Neonatal sepsis is common in neonatal intensive care units, often complicated by injury to the immature brain. Previous studies have shown that the expression of the gap junction protein connexin 43 (Cx43) in the brain decreases when stimulated by neuro-inflammatory drugs such as lipopolysaccharide (LPS). Here we showed that partial deletion of Cx43 in astrocytes resulted in weakened inflammatory responses. The up-regulation of pro-inflammatory cytokines was significantly reduced in mice with partial deletion of Cx43 in astrocytes compared with wild-type littermates after systemic LPS injection. Moreover, microglial activation was inhibited in mice with partial deletion of Cx43. These results showed that Cx43 in astrocytes plays a critical role in neuro-inflammatory responses. This work provides a potential therapeutic target for inhibiting neuro-inflammatory responses in neonatal sepsis.

  18. Actions of HSVtk and connexin43 gene delivery on gap junctional communication and drug sensitization in hepatocellular carcinoma.

    PubMed

    Ghoumari, A M; Mouawad, R; Zerrouqi, A; Nizard, C; Provost, N; Khayat, D; Naus, C C; Soubrane, C

    1998-08-01

    We have previously demonstrated that transfected hepatocellular carcinoma cells (Hepa1-6) with one copy (pAGO) and two copies (pYED) of the HSVtk gene, using liposomes, induced cell death of untransfected cells in the presence of ganciclovir (GCV). This phenomenon is called the 'bystander effect'. To determine whether an elevated level of connexin43 increases the bystander effect, we have cotransfected Hepa1-6 cells with a plasmid containing the HSVtk gene driven by the alpha-fetoprotein promoter (pFTK) or pAGO or pYED and connexin43. The results showed that, after GCV treatment, the percentage of growth inhibition was higher (25-30%) in cells cotransfected with HSVtk and connexin43 than in cells transfected only with HSVtk gene. The IC50 of GCV on cells transfected with pFTK/Connexin43 was 17.85-fold lower than cells transfected with pFTK alone. To improve these results, stable connexin43 transduced Hepa1-6 cells were transfected with pFTK followed by GCV treatment. In this case, the cell growth was markedly inhibited as compared with parental cells. Furthermore, we have studied the correlation between the expression of the HSVtk and the connexin43 proteins. Using flow cytometric analysis, scrape loading/dye transfer and immunoblotting assay we found that the cells transfected separately by pAGO, pYED, pFTK and pLTR-Cx43 showed an increase of connexin43 protein. This study indicates that transfecting Hepa1-6 cells with both connexin43 and HSVtk genes up-regulates connexin43 expression which enhances the bystander effect and subsequently tumor cell death.

  19. Downregulation of connexin43 by microRNA-130a in cardiomyocytes results in cardiac arrhythmias.

    PubMed

    Osbourne, Appledene; Calway, Tyler; Broman, Michael; McSharry, Saoirse; Earley, Judy; Kim, Gene H

    2014-09-01

    MicroRNAs (miRNAs) are now recognized as critical regulators of diverse physiological and pathological processes; however, studies of miRNAs and arrhythmogenesis remain sparse. Connexin43 (Cx43), a major cardiac gap junction protein, has elicited great interest in its role in arrhythmias. Additionally, Cx43 was a potential target for miR-130a as predicted by several computational algorithms. This study investigates the effect of miR-130a overexpression in the adult heart and its effect on cardiac rhythm. Using a cardiac-specific inducible system, transgenic mice demonstrated both atrial and ventricular arrhythmias. We performed ventricular-programmed electrical stimulation and found that the αMHC-miR130a mice developed sustained ventricular tachycardia beginning 6weeks after overexpression. Western blot analysis demonstrated a steady decline in Cx43 after 2weeks of overexpression with over a 90% reduction in Cx43 levels by 10weeks. Immunofluorescent staining confirmed a near complete loss of Cx43 throughout the heart. To validate Cx43 as a direct target of miR-130a, we performed in vitro target assays in 3T3 fibroblasts and HL-1 cardiomyocytes, both known to endogenously express miR-130a. Using a luciferase reporter fused to the 3'UTR of Cx43, we found a 52.9% reduction in luciferase activity in 3T3 cells (p<0.0001) and a 47.6% reduction in HL-1 cells (p=0.0056) compared to controls. Addition of an antisense miR-130a inhibitor resulted in a loss of inhibitory activity of the Cx43 3'UTR reporter. We have identified an unappreciated role for miR-130a as a direct regulator of Cx43. Overexpression of miR-130a may contribute importantly to gap junction remodeling and to the pathogenesis of atrial and ventricular arrhythmias.

  20. Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization

    PubMed Central

    Sánchez, Helmuth A.; Lee, Sung C.; Altenberg, Guillermo A.; Nathanson, Michael H.; Sáez, Juan C.

    2010-01-01

    Although alkaline pH is known to trigger Ca2+ influx in diverse cells, no pH-sensitive Ca2+ channel has been identified. Here, we report that extracellular alkalinization induces opening of connexin 43 hemichannels (Cx43 HCs). Increasing extracellular pH from 7.4 to 8.5, in the presence of physiological Ca2+/Mg2+ concentrations, rapidly increased the ethidium uptake rate and open probability of HCs in Cx43 and Cx43EGFP HeLa transfectants (HeLa-Cx3 and HeLa-Cx43EGFP, respectively) but not in parental HeLa cells (HeLa-parental) lacking Cx43 HCs. The increase in ethidium uptake induced by pH 8.5 was not affected by raising the extracellular Ca2+ concentration from 1.8 to 10 mM but was inhibited by a connexin HC inhibitor (La3+). Probenecid, a pannexin HC blocker, had no effect. Extracellular alkalinization increased the intracellular Ca2+ levels only in cells expressing HCs. The above changes induced by extracellular alkalinization did not change the cellular distribution of Cx43, suggesting that HC activation occurs through a gating mechanism. Experiments on cells expressing a COOH-terminal truncated Cx43 mutant indicated that the effects of alkalinization on intracellular Ca2+ and ethidium uptake did not depend on the Cx43 C terminus. Moreover, purified dephosphorylated Cx43 HCs reconstituted in liposomes were Ca2+ permeable, suggesting that Ca2+ influx through Cx43 HCs could account for the elevation in intracellular Ca2+ elicited by extracellular alkalinization. These studies identify a membrane pathway for Ca2+ influx and provide a potential explanation for the activation of cellular events induced by extracellular alkalinization. PMID:20881238

  1. Nonlinear behaviour of conduction and block in cardiac tissue with heterogeneous expression of connexin 43.

    PubMed

    Prudat, Yann; Kucera, Jan P

    2014-11-01

    Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with predefined contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV first decreased significantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥60%, CV became comparable to that in 100% Cx43KO strands. Co-culturing Cx43KO and wild-type cells also resulted in significantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10-50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥60%, clusters of remaining wild-type cells acted as electrical loads that impaired conduction. For Cx43KO contents of 40-60%, conduction exhibited fractal characteristics, was prone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonlinear manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.

  2. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas.

  3. Myocardial connexin-43 and N-Cadherin decrease during vanadium inhalation.

    PubMed

    Fortoul, Teresa I; Soto-Mota, Adrian; Rojas-Lemus, Marcela; Rodriguez-Lara, Vianey; Gonzalez-Villalva, Adriana; Montaño, Luis F; Paez, Araceli; Colin-Barenque, Laura; López-Valdez, Nelly; Cano-Gutiérrez, Gumaro; Bizarro-Nevares, Patricia; Ustarroz-Cano, Martha

    2016-04-01

    Particulate matter air pollution has considerably increased during the last decades; vanadium is a transition element adhered to this particulate matter, and the combustion of fossil fuels is the main source in the atmosphere. It has been reported that air pollution and specifically vanadium exposure increases the probability of suffering arrhythmias; however the biological mechanism of such a relationship remains unknown. It has been established that a diminished presence of N-Cadherin alters the Connexin-43 arrangement, and the consequent altered presence of these proteins predisposes to ventricular heart rate problems. We analyzed myocardial histology and the expression of N-Cadherin and Connexin-43 by immunohistochemistry in mouse that inhaled vanadium. Our results showed a significant and progressive reduction in both N-Cadherin and Connexin-43, as well as the presence of meganucleus; myofibrils disruption, and clumping in the exposed groups were also observed. Our findings add more information about a possible explanation for the arrythmogenic effect observed in dwellers of cities with high particulate matter atmospheric pollution.

  4. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility

    PubMed Central

    Gilleron, Jérôme; Carette, Diane; Segretain, Dominique

    2011-01-01

    Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility. PMID:22332114

  5. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection

    PubMed Central

    Schulz, Rainer; Görge, Philipp Maximilian; Görbe, Anikó; Ferdinandy, Péter; Lampe, Paul D.; Leybaert, Luc

    2015-01-01

    Connexins are widely distributed proteins in the body that are crucially important for heart and brain function. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localisation at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodelling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injury as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissue following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection. PMID:26073311

  6. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice

    PubMed Central

    Chen, Gang; Park, Chul-Kyu; Xie, Rou-Gang; Berta, Temugin; Nedergaard, Maiken

    2014-01-01

    Accumulating evidence suggests that spinal cord astrocytes play an important role in neuropathic pain sensitization by releasing astrocytic mediators (e.g. cytokines, chemokines and growth factors). However, it remains unclear how astrocytes control the release of astrocytic mediators and sustain late-phase neuropathic pain. Astrocytic connexin-43 (now known as GJ1) has been implicated in gap junction and hemichannel communication of cytosolic contents through the glial syncytia and to the extracellular space, respectively. Connexin-43 also plays an essential role in facilitating the development of neuropathic pain, yet the mechanism for this contribution remains unknown. In this study, we investigated whether nerve injury could upregulate connexin-43 to sustain late-phase neuropathic pain by releasing chemokine from spinal astrocytes. Chronic constriction injury elicited a persistent upregulation of connexin-43 in spinal astrocytes for >3 weeks. Spinal (intrathecal) injection of carbenoxolone (a non-selective hemichannel blocker) and selective connexin-43 blockers (connexin-43 mimetic peptides 43Gap26 and 37,43Gap27), as well as astroglial toxin but not microglial inhibitors, given 3 weeks after nerve injury, effectively reduced mechanical allodynia, a cardinal feature of late-phase neuropathic pain. In cultured astrocytes, TNF-α elicited marked release of the chemokine CXCL1, and the release was blocked by carbenoxolone, Gap26/Gap27, and connexin-43 small interfering RNA. TNF-α also increased connexin-43 expression and hemichannel activity, but not gap junction communication in astrocyte cultures prepared from cortices and spinal cords. Spinal injection of TNF-α-activated astrocytes was sufficient to induce persistent mechanical allodynia, and this allodynia was suppressed by CXCL1 neutralization, CXCL1 receptor (CXCR2) antagonist, and pretreatment of astrocytes with connexin-43 small interfering RNA. Furthermore, nerve injury persistently increased excitatory

  7. Monovalent Ion Selectivity Sequences of the Rat Connexin43 Gap Junction Channel

    PubMed Central

    Wang, Hong-Zhan; Veenstra, Richard D.

    1997-01-01

    The relative permeability sequences of the rat connexin 43 (rCx43) gap junction channel to seven cations and chloride were examined by double whole cell patch clamp recording of single gap junction channel currents in rCx43 transfected neuroblastoma 2A (N2A) cell pairs. The measured maximal single channel slope conductances (γj, in pS) of the junctional current-voltage relationships in 115 mM XCl were RbCl (103) ≥ CsCl (102) > KCl (97) > NaCl (79) ≥ LiCl (78) > TMACl (65) > TEACl (53) and for 115 mM KY were KBr (105) > KCl (97) > Kacetate (77) > Kglutamate (61). The single channel conductance-aqueous mobility relationships for the test cations and anions were linear. However, the predicted minimum anionic and cationic conductances of these plots did not accurately predict the rCx43 channel conductance in 115 mM KCl. Instead, the conductance of the rCx43 channel in 115 mM KCl was accurately predicted from cationic and anionic conductance-mobility plots by applying a mobility scaling factor Dx/Do, which depends upon the relative radii of the permeant ions to an estimated pore radius. Relative permeabilities were determined for all of the monovalent cations and anions tested from asymmetric salt reversal potential measurements and the Goldman-Hodgkin-Katz voltage equation. These experiments estimate the relative chloride to potassium permeability to be 0.13. The relationship between the relative cation permeability and hydrated radius was modeled using the hydrodynamic equation assuming a pore radius of 6.3 ± 0.4 Å. Our data quantitatively demonstrate that the rCx43 gap junction channel is permeable to monovalent atomic and organic cations and anions and the relative permeability sequences are consistent with an Eisenman sequence II or I, respectively. These predictions about the rCx43 channel pore provide a useful basis for future investigations into the structural determinants of the conductance and permeability properties of the connexin channel pore. PMID

  8. Osteocytic connexin 43 is not required for the increase in bone mass induced by intermittent PTH administration in male mice

    PubMed Central

    Pacheco-Costa, R.; Davis, H.M.; Atkinson, E.G.; Katchburian, E.; Plotkin, L.I.; Reginato, R.D.

    2016-01-01

    Objective: To investigate whether osteocytic connexin 43 (Cx43) is required for the bone response to intermittent PTH administration, and whether the connexin is involved in maintaining the bone matrix. Methods: Human PTH(1-34) was injected to adult male mice expressing (Cx43fl/fl) or not osteocytic Cx43 (Cx43fl/fl;DMP1-8kb-Cre) daily (100 µg/kg/d) for 14 days. Results: Cx43fl/fl;DMP1-8kb-Cre mice have no difference in body weight and BMD from 1 to 4 months of age. Intermittent PTH administration increased BMD and BV/TV and induced a similar increase in type I collagen, alkaline phosphatase, runx2, osteocalcin, and bone sialoprotein expression in mice from both genotypes. On the other hand, osteocytic deletion of Cx43 did not alter mRNA levels of glycosaminoglycans, proteoglycans, collagens and osteoblast-related genes. In addition, expression of collagens assessed by immunohistochemistry was not affected by deleting osteocytic Cx43. However, PTH administration increased type II collagen only in Cx43fl/fl control mice, whereas hormone increased type I collagen expression only in Cx43fl/fl;DMP1-8kb-Cre mice. Furthermore, PTH increased maturity of collagen fibers in control, but not in Cx43-deficient mice. Conclusion: Expression of Cx43 in osteocytes is dispensable for bone anabolism induced by intermittent PTH administration; but it can modulate, at least in part, the effect of PTH on the bone matrix environment. PMID:26944823

  9. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading.

    PubMed

    Lloyd, Shane A; Lewis, Gregory S; Zhang, Yue; Paul, Emmanuel M; Donahue, Henry J

    2012-11-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mechanical unloading via hindlimb suspension (HLS). The HLS model was selected to recapitulate the effects of skeletal unloading due to prolonged bed rest, reduced activity associated with aging, and spaceflight microgravity. At baseline, the cortical bone of cKO mice displayed an osteopenic phenotype, with expanded cortices, decreased cortical thickness, decreased bone mineral density, and increased porosity. There was no baseline trabecular phenotype. After 3 weeks of HLS, wild-type (WT) mice experienced a substantial decline in trabecular bone volume fraction, connectivity density, trabecular thickness, and trabecular tissue mineral density. These deleterious effects were attenuated in cKO mice. Conversely, there was a similar and significant amount of cortical bone loss in both WT and cKO. Interestingly, mechanical testing revealed a greater loss of strength and rigidity for cKO during HLS. Analysis of double-label quantitative histomorphometry data demonstrated a substantial decrease in bone formation rate, mineralizing surface, and mineral apposition rate at both the periosteal and endocortical surfaces of the femur after unloading of WT mice. This suppression of bone formation was not observed in cKO mice, in which parameters were maintained at baseline levels. Taken together, the results of the present study indicate that Cx43 deficiency desensitizes bone to the effects of mechanical unloading, and that this may be due to an inability of mechanosensing osteocytes to effectively communicate the unloading state to osteoblasts to suppress bone formation. Cx43 may represent a novel therapeutic target for investigation as

  10. Transfection of C6 Glioma Cells with Connexin 43 cDNA: Analysis of Expression, Intercellular Coupling, and Cell Proliferation

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Caveney, S.; Kidder, G. M.; Naus, C. C. G.

    1991-03-01

    C6 glioma cells express low levels of the gap junction protein connexin 43 and its mRNA and display very weak dye coupling. When implanted into the rat cerebrum, these cells quickly give rise to a large glioma. To investigate the role of gap junctions in the tumor characteristics of these cells, we have used Lipofectin-mediated transfection to introduce a full-length cDNA encoding connexin 43. Several transfected clones were obtained that exhibited various amounts of connexin 43 mRNA transcribed from the inserted cDNA. Immunocytochemical analysis revealed an increase in the amount of connexin 43 immunoreactivity in the transfected cells, being localized at areas of intercellular contact as well as in the cytoplasm. The level of dye coupling was also assessed and found to correlate with the amount of connexin 43 mRNA. When cell proliferation was followed over several days, cells expressing the transfected cDNA grew more slowly than nontransfected cells. These transfected cells will be useful in examining the role of gap junctions in tumorigenesis.

  11. Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels

    PubMed Central

    Orellana, Juan A.; Hernández, Diego E.; Ezan, Pascal; Velarde, Victoria; Bennett, Michael V. L.; Giaume, Christian; Sáez, Juan C.

    2009-01-01

    Brain ischemia causes more extensive injury in hyperglycemic than normoglycemic subjects, and the increased damage is to astroglia as well as neurons. In the present work, we found that in cortical astrocytes from rat or mouse, reoxygenation after hypoxia in a medium mimicking interstitial fluid during ischemia increases hemichannel activity and decreases cell-cell communication via gap junctions as indicated by dye uptake and dye coupling, respectively. These effects were potentiated by high glucose during the hypoxia in a concentration-dependent manner (and by zero glucose) and were not observed in connexin 43−/− astrocytes. The responses were transient or persistent after short and long periods of hypoxia, respectively. The persistent responses were associated with a progressive reduction in cell viability that was prevented by La3+ or peptides that block connexin 43 (Cx43) hemichannels or by inhibition of p38 MAP kinase prior to hypoxia-reoxygenation but not by treatments that block pannexin hemichannels. Block of Cx43 hemichannels did not affect the reduction in gap junction mediated dye coupling observed during reoxygenation. Cx43 hemichannels may be a novel therapeutic target to reduce cell death following stroke, particularly in hyperglycemic conditions. PMID:19705457

  12. Resveratrol protects the loss of connexin 43 induced by ethanol exposure in neonatal mouse cardiomyocytes.

    PubMed

    Tu, Su; Cao, Fu-Tao; Fan, Xiao-Chun; Yang, Cheng-Jian

    2017-06-01

    Excessive alcohol consumption provides risk to cardiomyopathy with unknown mechanisms. Resveratrol, a plant polyphenol, is widely reported for its cardiovascular benefits, while its effect on alcohol-induced impairments in cardiomyocytes largely remains unknown. Effects of resveratrol on the cardiomyocytes under ethanol insult were studied in vitro. Ethanol exposure in mouse neonatal cardiomyocytes increased cell death and induced a specific loss of tight junction protein, connexin 43. In spite of adverse effects at higher concentrations, resveratrol at 10 μM improved cell viability of cardiomyocytes in the presence of a deleterious dose of ethanol. Importantly, the co-treatment of resveratrol with ethanol exhibited the restoration of connexin 43 protein. Further assays showed that these effects were likely associated with the antioxidative actions of resveratrol, and correlated with the alleviation of MAP kinase activation in cultured cardiomyocytes in response to ethanol. Our data suggests a novel mechanism of cardiomyocyte cell loss under ethanol exposure and provides new evidence of protective effects of resveratrol in the cardiomyocytes.

  13. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    SciTech Connect

    Carette, Diane; Perrard, Marie-Hélène; Prisant, Nadia; Gilleron, Jérome; Pointis, Georges; Segretain, Dominique; Durand, Philippe

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  14. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  15. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251.

    PubMed

    Zhang, Biao; Feng, Xuequan; Wang, Jinhuan; Xu, Xinnu; Liu, Hongsheng; Lin, Na

    2010-01-14

    bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  16. [Connexin 43 expression and interacellular communicating function in acute leukemia bone marrow stroma cells].

    PubMed

    Liu, Yao; Zhang, Xi; Si, Ying-Jian; Gao, Lei; Gao, Li; Chen, Xing-Hua

    2007-08-01

    This study was purposed to investigate the connexin 43 (Cx43) expression level in acute leukemia bone marrow stromal cells (ABMSCs) and normal bone marrow stromal cells (NBMSCs), and to explore the difference in communicating functions between these cells. The Cx43 expression levels of ABMSCs and NBMSCs were detected by using immunohistochemistry and computer gray scale assay, and the difference of gap junction intercellular communication (GJIC) was examined through dry transfer technique. The results showed that expression level of Cx43 in ABMSCs was lower than that in NBMSCs and its function of GJIC in ABMSCs was also weaker than that in NBMSCs. It is concluded that cell-cell communication function is lowered in ABMSCs.

  17. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels.

    PubMed

    Alstrom, Jette Skov; Stroemlund, Line Waring; Nielsen, Morten Schak; MacAulay, Nanna

    2015-06-01

    Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results.

  18. Trafficking Highways to the Intercalated Disc: New Insights Unlocking the Specificity of Connexin 43 Localization

    PubMed Central

    Zhang, Shan-Shan; Shaw, Robin M.

    2016-01-01

    With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell – cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes. PMID:24460200

  19. Preparation of connexin43-integrated giant Liposomes by a baculovirus expression-liposome fusion method.

    PubMed

    Kamiya, Koki; Tsumoto, Kanta; Arakawa, Satoko; Shimizu, Shigeomi; Morita, Ikuo; Yoshimura, Tetsuro; Akiyoshi, Kazunari

    2010-12-01

    Connexin-43 (Cx43) containing giant liposomes (GL) were prepared by a baculovirus expression-liposome fusion method. Recombinant budded viruses expressing Cx43 were prepared and then fused with GLs containing DOPG/DOPC at pH 4.5. Connexon formation on the GL membrane was observed by transmission electron microscope. Hydrophilic fluorescent dye transfers were observed through a Cx43-mediated pathway not only between Sf9 (Spodoptera frugiperda) cells with Cx43 but also from giant Cx43 liposomes to Cx43-expressing U2OS cells (human osteosarcoma cell). The functional connexin-containing liposome is expected to be useful for cellular cytosolic delivery systems. The original orientation and function of Cx43 was maintained after integration into the liposomes. The liposome fusion method will create new opportunities as a tool for analysis of channel membrane proteins.

  20. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    PubMed

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization.

    PubMed

    Zhang, Shan-Shan; Shaw, Robin M

    2014-02-01

    With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell-cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.

  2. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior.

    PubMed

    Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang

    2016-04-01

    It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates

  3. Immunohistochemical evaluation of cardiac connexin43 in rats exposed to low-frequency noise.

    PubMed

    Antunes, Eduardo; Borrecho, Gonçalo; Oliveira, Pedro; Brito, José; Águas, Artur; Martins dos Santos, José

    2013-01-01

    Low-frequency noise (LFN) leads to an abnormal proliferation of collagen and development of tissue fibrosis. It has been shown that myocardial fibrosis in association with gap junction remodeling occurs in several cardiac diseases and can be implicated in the development of ventricular tachyarrhythmias. We previously reported a strong development of myocardial fibrosis induced by LFN in rats but it is not known whether LFN induces any modification on cardiac connexin43 (Cx43). The aim of this study was to evaluate modifications on cardiac Cx43 induced by LFN in Wistar rats. Two groups of rats were considered: A LFN-exposed group with 10 rats submitted continuously to LFN during 3 months and a control group with 8 rats. The hearts were sectioned from the ventricular apex to the atria and the mid-ventricular fragment was selected. The immunohistochemical evaluation of Cx43 was performed using the polyclonal antibody connexin-43m diluted 1:1000 overnight at 4°C. Quantifications of Cx43 and muscle were performed with the image J software and the ratio Cx43/muscle was analyzed in the left ventricle, interventricular septum and right ventricle. The ratio Cx43/muscle was significantly reduced in LFN-exposed rats (p=0.001). The mean value decreased 46.2%, 22.2% and 55.6% respectively in the left ventricle (p=0.008), interventricular septum (p=0.301) and right ventricle (p=0.004). LFN induces modifications on cardiac Cx43 in rats. The Cx43 reduction observed in our study suggests that LFN may induce an arrhythmogenic substrate and opens a new investigational area concerning the effects of LFN on the heart.

  4. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes.

    PubMed

    Shimada, M; Maeda, T; Terada, T

    2001-04-01

    Mammalian oocytes are surrounded by numerous layers of cumulus cells, and the loss of gap junctional communication in the outer layers of cumulus cells induces meiotic resumption in oocytes. In this study, we investigated the dynamic changes in the gap junctional protein connexin-43 in cumulus cells during the meiotic resumption of porcine oocytes. The amount of connexin-43 in all layers of cumulus cells recovered from cumulus-oocyte complexes was increased after 4-h cultivation. However, at 12-h cultivation, the positive signal for connexin-43 immunoreactivity was markedly reduced in the outer layers of cumulus cells. When these reductions of connexin-43 were blocked by protein kinase C (PKC) or phosphatidylinositol (PI) 3-kinase inhibitor, networks of filamentous bivalents (i.e., advanced chromosomal status) were undetectable in the germinal vesicle of the oocyte. After 28-h cultivation, when the majority of oocytes were reaching the metaphase I (MI) stage, the connexin-43 in the inner layers of cumulus cells was phosphorylated, regardless of mitogen-activated protein (MAP) kinase activation. These results suggest that the initiation of meiotic resumption, namely, the formation of networks of filamentous bivalents in germinal vesicle, is associated with the reduction of gap junctional protein connexin-43 in the outer layers of cumulus cells via the PKC and/or PI 3-kinase pathway. Moreover, the connexin-43 in the inner layers of cumulus cells is phosphorylated during meiotic progression beyond the MI stage, regardless of MAP kinase activation in cumulus cells surrounding the oocyte.

  5. Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart

    PubMed Central

    Winterhager, Elke; Pielensticker, Nicole; Freyer, Jennifer; Ghanem, Alexander; Schrickel, Jan W; Kim, Jung-Sun; Behr, Rüdiger; Grümmer, Ruth; Maass, Karen; Urschel, Stephanie; Lewalter, Thorsten; Tiemann, Klaus; Simoni, Manuela; Willecke, Klaus

    2007-01-01

    Background In order to further distinguish unique from general functions of connexin43, we have generated mice in which the coding region of connexin43 was replaced by that of connexin26. Results Heterozygous mothers showed impaired mammary gland development responsible for decreased lactation and early postnatal death of the pups which could be partially rescued by wild type foster mothers. Only about 17% of the homozygous connexin43 knock-in connexin26 mice instead of 25% expected according to Mendelian inheritance, were born and only 6% survived to day 21 post partum and longer. Neonatal and adult connexin43 knock-in connexin26 mice exhibited slowed ventricular conduction in their hearts, i.e. similar but delayed electrophysiological abnormalities as connexin43 deficient mice. Furthermore, connexin43 knock-in connexin26 male and female mice were infertile and exhibited hypotrophic gonads. In testes, tubuli seminiferi were developed and spermatogonia as well as some primary spermatocytes were present, but further differentiated stages of spermatogenesis were absent. Ovaries of female connexin43 knock-in connexin26 mice revealed only few follicles and the maturation of follicles was completely impaired. Conclusion The impaired gametogenesis of homozygous males and females can explain their infertility. PMID:17408477

  6. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors

    PubMed Central

    Gonzalez-Nieto, Daniel; Li, Lina; Kohler, Anja; Ghiaur, Gabriel; Ishikawa, Eri; Sengupta, Amitava; Madhu, Malav; Arnett, Jorden L.; Santho, Rebecca A.; Dunn, Susan K.; Fishman, Glenn I.; Gutstein, David E.; Civitelli, Roberto; Barrio, Luis C.; Gunzer, Matthias

    2012-01-01

    Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals. PMID:22498741

  7. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells

    PubMed Central

    Jiang, Guojun; Dong, Shuying; Yu, Meiling; Han, Xi; Zheng, Chao; Zhu, Xiaoguang; Tong, Xuhui

    2017-01-01

    Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced. PMID:28356970

  8. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells.

    PubMed

    Best, Monica W; Wu, Juanjuan; Pauli, Samuel A; Kane, Maureen A; Pierzchalski, Keely; Session, Donna R; Woods, Dori C; Shang, Weirong; Taylor, Robert N; Sidell, Neil

    2015-06-01

    Retinoids are essential for ovarian steroid production and oocyte maturation in mammals. Oocyte competency is known to positively correlate with efficient gap junction intercellular communication (GJIC) among granulosa cells in the cumulus-oocyte complex. Connexin 43 (C x 43) is the main subunit of gap junction channels in human cumulus granulosa cells (CGC) and is regulated by all-trans retinoic acid (ATRA) in other hormone responsive cell types. The objectives of this study were to quantify retinoid levels in human CGC obtained during IVF oocyte retrievals, to investigate the potential relationship between CGC ATRA levels and successful oocyte fertilization, and to determine the effects of ATRA on C x 43 protein expression in CGC. Results showed that CGC cultures actively metabolize retinol to produce ATRA. Grouped according to fertilization rate tertiles, mean ATRA levels were 2-fold higher in pooled CGC from women in the highest versus the lowest tertile (P < 0.05). ATRA induced a rapid dephosphorylation of C x 43 in CGC and granulosa cell line (KGN) cultures resulting in a >2-fold increase in the expression of the functional non-phosphorylated (P0) species (P < 0.02). Similar enhancement of P0 by ATRA was shown in CGC and KGN cultures co-treated with LH or hCG which, by themselves, enhanced the protein levels of C x 43 without altering its phosphorylation profile. Correspondingly, the combination of ATRA+hCG treatment of KGN caused a significant increase in GJIC compared with single agent treatments (P < 0.025) and a doubling of GJIC from that seen in untreated cells (P < 0.01). These findings indicate that CGC are a primary site of retinoid uptake and ATRA biosynthesis. Regulation of C x 43 by ATRA may serve an important role in folliculogenesis, development of oocyte competency, and successful fertilization by increasing GJIC in CGC.

  9. Investigation of connexin 43 uncoupling and prolongation of the cardiac QRS complex in preclinical and marketed drugs

    PubMed Central

    Burnham, M P; Sharpe, P M; Garner, C; Hughes, R; Pollard, C E; Bowes, J

    2014-01-01

    Background and Purpose Prolongation of the cardiac QRS complex is linked to increased mortality and may result from drug-induced inhibition of cardiac sodium channels (hNaV1.5). There has been no systematic evaluation of preclinical and marketed drugs for their additional potential to cause QRS prolongation via gap junction uncoupling. Experimental Approach Using the human cardiac gap junction connexin 43 (hCx43), a dye transfer ‘parachute’ assay to determine IC50 values for compound ranking was validated with compounds known to uncouple gap junctions. Uncoupling activity (and hNaV1.5 inhibition by automated patch clamp) was determined in a set of marketed drugs and preclinical candidate drugs, each with information regarding propensity to prolong QRS. Key Results The potency of known gap junction uncouplers to uncouple hCx43 was ranked (according to IC50) as phorbol ester>digoxin>meclofenamic acid>carbenoxolone>heptanol. Among the drugs associated with QRS prolongation, 29% were found to uncouple hCx43 (IC50 < 50 μM), whereas no uncoupling activity was observed in drugs not associated with QRS prolongation. In preclinical candidate drugs, hCx43 and hNaV1.5 IC50 values were similar (within threefold). No consistent margin over preclinical Cmax (free) was apparent for QRS prolongation associated with Cx43 inhibition. However, instances were found of QRS prolonging compounds that uncoupled hCx43 with significantly less activity at hNaV1.5. Conclusion and Implications These results demonstrate that off-target uncoupling activity is apparent in drug and drug-like molecules. Although the full ramifications of Cx inhibition remain to be established, screening for hCx43 off-target activity could reduce the likelihood of developing candidate drugs with a risk of causing QRS prolongation. PMID:24328991

  10. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells

    PubMed Central

    Best, Monica W.; Wu, Juanjuan; Pauli, Samuel A.; Kane, Maureen A.; Pierzchalski, Keely; Session, Donna R.; Woods, Dori C.; Shang, Weirong; Taylor, Robert N.; Sidell, Neil

    2015-01-01

    Retinoids are essential for ovarian steroid production and oocyte maturation in mammals. Oocyte competency is known to positively correlate with efficient gap junction intercellular communication (GJIC) among granulosa cells in the cumulus-oocyte complex. Connexin 43 (Cx43) is the main subunit of gap junction channels in human cumulus granulosa cells (CGC) and is regulated by all-trans retinoic acid (ATRA) in other hormone responsive cell types. The objectives of this study were to quantify retinoid levels in human CGC obtained during IVF oocyte retrievals, to investigate the potential relationship between CGC ATRA levels and successful oocyte fertilization, and to determine the effects of ATRA on Cx43 protein expression in CGC. Results showed that CGC cultures actively metabolize retinol to produce ATRA. Grouped according to fertilization rate tertiles, mean ATRA levels were 2-fold higher in pooled CGC from women in the highest versus the lowest tertile (P < 0.05). ATRA induced a rapid dephosphorylation of Cx43 in CGC and granulosa cell line (KGN) cultures resulting in a >2-fold increase in the expression of the functional non-phosphorylated (P0) species (P < 0.02). Similar enhancement of P0 by ATRA was shown in CGC and KGN cultures co-treated with LH or hCG which, by themselves, enhanced the protein levels of Cx43 without altering its phosphorylation profile. Correspondingly, the combination of ATRA+hCG treatment of KGN caused a significant increase in GJIC compared with single agent treatments (P < 0.025) and a doubling of GJIC from that seen in untreated cells (P < 0.01). These findings indicate that CGC are a primary site of retinoid uptake and ATRA biosynthesis. Regulation of Cx43 by ATRA may serve an important role in folliculogenesis, development of oocyte competency, and successful fertilization by increasing GJIC in CGC. PMID:25877907

  11. Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization

    PubMed Central

    Mirabelli, Pierfrancesco; Xeroudaki, Maria; Parekh, Mohit; Bertolin, Marina; Breda, Claudia; Cagini, Carlo; Ponzin, Diego; Lagali, Neil; Ferrari, Stefano

    2016-01-01

    Background and Purpose The connexin 43 (Cx43) mimetic peptide Gap27 was designed to transiently block the function of this gap junction. This study was undertaken to investigate the effect of Gap27 on corneal healing, inflammation and neovascularization. Experimental Approach The effect of Gap27 on wound healing, inflammation and vascularization was assessed in primary human corneal epithelial cells (HCEC) in vitro and whole human corneas ex vivo, and in an in vivo rat wound healing model. Key Results Gap27 enhanced the wound closure of HCEC in vitro and accelerated wound closure and stratification of epithelium in human corneas ex vivo, but did not suppress the corneal release of inflammatory mediators IL‐6 or TNF‐α in vivo. In human corneas ex vivo, F4/80 positive macrophages were observed around the wound site. In vivo, topical Gap27 treatment enhanced the speed and density of early granulocyte infiltration into rat corneas. After 7 days, the expressions of TNF‐α and TGFβ1 were elevated and correlated with inflammatory cell accumulation in the tissue. Additionally, Gap27 did not suppress VEGF release in organotypic culture, nor did it suppress early or late VEGFA expression or neovascularization in vivo. Conclusions and Implications Gap27 can be effective in promoting the healing of superficial epithelial wounds, but in deep stromal wounds it has the potential to promote inflammatory cell migration and accumulation in the tissue and does not suppress the subsequent neovascularization response. These results support the proposal that Gap27 acts as a healing agent in the transient, early stages of corneal epithelial wounding. PMID:27472295

  12. Effects of space flight on the immunohistochemical demonstration of connexin 26 and connexin 43 in the postpartum uterus of rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Alberts, J. R.

    1999-01-01

    The effect of space flight in a National Aeronautics and Space Administration shuttle was studied in pregnant rats. Rats were launched on day 11 of gestation and recovered on day 20 of gestation. Pregnancy was allowed to proceed to term and rats delivered vaginally on days 22-23, although flight animals required more labour contractions to complete the delivery process. Pups were placed with foster dams and connexin 26 and 43 were examined in the uterus of flight animals approximately 3 h after delivery. Space flight did not affect uterine connexin 26, localized primarily in epithelial cells of the endometrium, but decreased connexin 43, the major gap junction protein in the myometrium. It is suggested that decreased connexin 43 alters synchronization and coordination of labour contractions, resulting in a requirement for more contractions to complete the delivery process.

  13. Effects of space flight on the immunohistochemical demonstration of connexin 26 and connexin 43 in the postpartum uterus of rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Alberts, J. R.

    1999-01-01

    The effect of space flight in a National Aeronautics and Space Administration shuttle was studied in pregnant rats. Rats were launched on day 11 of gestation and recovered on day 20 of gestation. Pregnancy was allowed to proceed to term and rats delivered vaginally on days 22-23, although flight animals required more labour contractions to complete the delivery process. Pups were placed with foster dams and connexin 26 and 43 were examined in the uterus of flight animals approximately 3 h after delivery. Space flight did not affect uterine connexin 26, localized primarily in epithelial cells of the endometrium, but decreased connexin 43, the major gap junction protein in the myometrium. It is suggested that decreased connexin 43 alters synchronization and coordination of labour contractions, resulting in a requirement for more contractions to complete the delivery process.

  14. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds.

    PubMed

    Damaraju, Swathi; Matyas, John R; Rancourt, Derrick E; Duncan, Neil A

    2014-12-01

    Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal.

  15. Characteristics of the Localization of Connexin 43 in Satellite Cells during Skeletal Muscle Regeneration In Vivo.

    PubMed

    Ishido, Minenori; Kasuga, Norikatsu

    2015-04-28

    For myogenesis, new myotubes are formed by the fusion of differentiated myoblasts. In the sequence of events for myotube formation, intercellular communication through gap junctions composed of connexin 43 (Cx43) plays critical roles in regulating the alignment and fusion of myoblasts in advances of myotube formation in vitro. On the other hand, the relationship between the expression patterns of Cx43 and the process of myotube formation in satellite cells during muscle regeneration in vivo remains poorly understood. The present study investigated the relationship between Cx43 and satellite cells in muscle regeneration in vivo. The expression of Cx43 was detected in skeletal muscles on day 1 post-muscle injury, but not in control muscles. Interestingly, the expression of Cx43 was not localized on the inside of the basement membrane of myofibers in the regenerating muscles. Moreover, although the clusters of differentiated satellite cells, which represent a more advanced stage of myotube formation, were observed on the inside of the basement membrane of myofibers in regenerating muscles, the expression of Cx43 was not localized in the clusters of these satellite cells. Therefore, in the present study, it was suggested that Cx43 may not directly contribute to muscle regeneration via satellite cells.

  16. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes

    PubMed Central

    Gago-Fuentes, Raquel; Bechberger, John F.; Varela-Eirin, Marta; Varela-Vazquez, Adrian; Acea, Benigno; Fonseca, Eduardo

    2016-01-01

    Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis. PMID:27682878

  17. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes.

    PubMed

    Ram, Rashmi; Wescott, Andrew P; Varandas, Katherine; Dirksen, Robert T; Blaxall, Burns C

    2014-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1.

  18. Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera).

    PubMed

    Wang, Li; Li, Gang; Wang, Jinhong; Ye, Shaohui; Jones, Gareth; Zhang, Shuyi

    2009-04-01

    Gap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.

  19. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion.

    PubMed

    Naus, Christian C; Aftab, Qurratulain; Sin, Wun Chey

    2016-02-01

    Cell migration is critical for cell differentiation, tissue formation and organ development. Several mechanisms come to play in the process of cell migration, orchestrating changes in cell polarity, adhesion, process extension and motility. Recent findings have shown that gap junctions, and specifically connexin43 (Cx43), can play a significant role in these processes, impacting adhesion and cytoskeletal rearrangements. Thus Cx43 within a cell regulates its motility and migration via intracellular signaling. Furthermore, Cx43 in the host cells can impact the degree of cellular migration through that tissue. Similarities in these connexin-based processes account for both neural progenitor migration in the developing brain, and for glioma cell invasion in the mature brain. In both cases, Cx43 in the tissue ("soil") in which cells ("seeds") exist facilitates their migration and, for glioma cells, tissue invasion. Cx43 mediates these effects through channel- and non-channel-dependent mechanisms which have similarities in both paradigms of cell migration. This provides insight into developmental processes and pathological situations, as well as possible therapeutic approaches regarding specific functional domains of gap junction proteins. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish*

    PubMed Central

    Misu, Akihiro; Yamanaka, Hiroaki; Aramaki, Toshihiro; Kondo, Shigeru; Skerrett, I. Martha; Iovine, M. Kathryn; Watanabe, Masakatsu

    2016-01-01

    Fish remain nearly the same shape as they grow, but there are two different modes of bone growth. Bones in the tail fin (fin ray segments) are added distally at the tips of the fins and do not elongate once produced. On the other hand, vertebrae enlarge in proportion to body growth. To elucidate how bone growth is controlled, we investigated a zebrafish mutant, steopsel (stptl28d). Vertebrae of stptl28d/+ fish look normal in larvae (∼30 days) but are distinctly shorter (59–81%) than vertebrae of wild type fish in adults. In contrast, the lengths of fin rays are only slightly shorter (∼95%) than those of the wild type in both larvae and adults. Positional cloning revealed that stp encodes Connexin43 (Cx43), a connexin that functions as a gap junction and hemichannel. Interestingly, cx43 was also identified as the gene causing the short-of-fin (sof) phenotype, in which the fin ray segments are shorter but the vertebrae are normal. To identify the cause of this difference between the alleles, we expressed Cx43 exogenously in Xenopus oocytes and performed electrophysiological analysis of the mutant proteins. Gap junction coupling induced by Cx43stp or Cx43sof was reduced compared with Cx43-WT. On the other hand, only Cx43stp induced abnormally high (50× wild type) transmembrane currents through hemichannels. Our results suggest that Cx43 plays critical and diverse roles in zebrafish bone growth. PMID:27129238

  1. Expression of connexin 43, ion channels and Ca2+-handling proteins in rat pulmonary vein cardiomyocytes

    PubMed Central

    Xiao, Yaqiong; Cai, Xue; Atkinson, Andrew; Logantha, Sunil Jit; Boyett, Mark; Dobrzynski, Halina

    2016-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. AF is thought to be triggered by ectopic beats, originating primarily in the myocardial sleeves surrounding the pulmonary veins (PVs). The mechanisms underlying these cardiac arrhythmias remain unclear. To investigate this, frozen sections of heart and lung tissue from adult rats without arrhythmia were obtained in different planes, stained with Masson's trichrome, and immunolabeled for connexin 43 (Cx43), caveolin-3 (Cav3), hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), Nav1.5, Kir2.1, and the calcium handling proteins sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (SERCA2a) and ryanodine receptor 2 (RyR2). Transverse sections offered the best view of the majority of the PVs in the tissue samples. Cx43 was observed to be expressed throughout the atria, excluding the sinoatrial and atrioventricular nodes, and in the myocardial sleeves of the PVs. In contrast, HCN4 was only expressed in the sinoatrial and atrioventricular nodes. The immunodensity of Cav3, Nav1.5, Kir2.1, SERCA2a and RyR2 in the PVs imaged was similar to that in atria. The results suggest that in the absence of arrhythmia, the investigated molecular properties of the ion channels of rat PV cardiomyocytes resemble those of the working myocardium. This indicates that ectopic beats originating in the myocardial sleeves of the PVs occur only under pathological conditions. PMID:27882143

  2. Connexin 43 controls the multipolar phase of neuronal migration to the cerebral cortex.

    PubMed

    Liu, Xiuxin; Sun, Lin; Torii, Masaaki; Rakic, Pasko

    2012-05-22

    The prospective pyramidal neurons, migrating from the proliferative ventricular zone to the overlaying cortical plate, assume multipolar morphology while passing through the transient subventricular zone. Here, we show that this morphogenetic transformation, from the bipolar to the mutipolar and then back to bipolar again, is associated with expression of connexin 43 (Cx43) and, that knockdown of Cx43 retards, whereas its overexpression enhances, this morphogenetic process. In addition, we have observed that knockdown of Cx43 reduces expression of p27, whereas overexpression of p27 rescues the effect of Cx43 knockdown in the multipolar neurons. Furthermore, functional gap junction/hemichannel domain, and the C-terminal domain of Cx43, independently enhance the expression of p27 and promote the morphological transformation and migration of the multipolar neurons in the SVZ/IZ. Collectively, these results indicate that Cx43 regulates the passage of migrating neurons through their multipolar stage via p27 signaling and that interference with this process, by either genetic and/or environmental factors, may cause cortical malformations.

  3. Caveolin-1 and -2 Interact with Connexin43 and Regulate Gap Junctional Intercellular Communication in Keratinocytes

    PubMed Central

    Langlois, Stéphanie; Cowan, Kyle N.; Shao, Qing; Cowan, Bryce J.

    2008-01-01

    Connexin43 (Cx43) has been reported to interact with caveolin (Cav)-1, but the role of this association and whether other members of the caveolin family bind Cx43 had yet to be established. In this study, we show that Cx43 coimmunoprecipitates and colocalizes with Cav-1 and Cav-2 in rat epidermal keratinocytes. The colocalization of Cx43 with Cav-1 was confirmed in keratinocytes from human epidermis in vivo. Our mutation and Far Western analyses revealed that the C-terminal tail of Cx43 is required for its association with Cavs and that the Cx43/Cav-1 interaction is direct. Our results indicate that newly synthesized Cx43 interacts with Cavs in the Golgi apparatus and that the Cx43/Cavs complex also exists at the plasma membrane in lipid rafts. Using overexpression and small interfering RNA approaches, we demonstrated that caveolins regulate gap junctional intercellular communication (GJIC) and that the presence of Cx43 in lipid raft domains may contribute to the mechanism modulating GJIC. Our results suggest that the Cx43/Cavs association occurs during exocytic transport, and they clearly indicate that caveolin regulates GJIC. PMID:18162583

  4. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory

    PubMed Central

    Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J.

    2016-01-01

    Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory. PMID:28066184

  5. Connexin 43 is overexpressed in human fetal membrane defects after fetoscopic surgery†

    PubMed Central

    Barrett, David W.; David, Anna L.; Thrasivoulou, Christopher; Mata, Alvaro; Becker, David L.; Engels, Alex C.; Deprest, Jan A.

    2016-01-01

    Abstract Objective We examined whether surgically induced membrane defects elevate connexin 43 (Cx43) expression in the wound edge of the amniotic membrane (AM) and drives structural changes in collagen that affects healing after fetoscopic surgery. Method Cell morphology and collagen microstructure was investigated by scanning electron microscopy and second harmonic generation in fetal membranes taken from women who underwent fetal surgery. Immunofluoresence and real‐time quantitative polymerase chain reaction was used to examine Cx43 expression in control and wound edge AM. Results Scanning electron microscopy showed dense, helical patterns of collagen fibrils in the wound edge of the fetal membrane. This arrangement changed in the fibroblast layer with evidence of collagen fibrils that were highly polarised along the wound edge but not in control membranes. Cx43 was increased by 112.9% in wound edge AM compared with controls (p < 0.001), with preferential distribution in the fibroblast layer compared with the epithelial layer (p < 0.01). In wound edge AM, mesenchymal cells had a flattened morphology, and there was evidence of poor epithelial migration across the defect. Cx43 and COX‐2 expression was significantly increased in wound edge AM compared with controls (p < 0.001). Conclusion Overexpression of Cx43 in the AM after fetal surgery induces morphological and structural changes in the collagenous matrix that may interfere with normal healing mechanisms. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. PMID:27568096

  6. Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice.

    PubMed

    Kirchhoff, S; Kim, J S; Hagendorff, A; Thönnissen, E; Krüger, O; Lamers, W H; Willecke, K

    2000-09-01

    Connexin40-deficient (Cx40(-/-)/Cx43(+/+)) and connexin43-heterozygous knockout mice (Cx40(+/+)/Cx43(+/-)) are viable but show cardiac conduction abnormalities. The ECGs of adult double heterozygous animals (Cx40(+/-)/Cx43(+/-)) suggest additive effects of Cx40 and Cx43 haploinsufficiency on ventricular, but not on atrial, conduction. We also observed additive effects of both connexins on cardiac morphogenesis. Approximately half of the Cx40(-/-)/Cx43(+/+) embryos died during the septation period, and an additional 16% died after birth. The majority of the latter mice had cardiac hypertrophy in conjunction with common atrioventricular junction or a ventricular septal defect. All Cx40(-/-)/Cx43(+/-) progeny exhibited cardiac malformations and died neonatally. The most frequent defect was common atrioventricular junction with abnormal atrioventricular connection, which was more severe than that seen in Cx40(-/-)/Cx43(+/+) mice. Furthermore, muscular ventricular septal defects, premature closure of the ductus arteriosus, and subcutaneous edema were noticed in these embryos. Cx40(+/-)/Cx43(-/-) embryos showed the same phenotype (ie, obstructed right ventricular outflow tract) as reported for Cx40(+/+)/Cx43(-/-) mice. These findings demonstrate that Cx43 haploinsufficiency aggravates the abnormalities observed in the Cx40(-/-) phenotype, whereas Cx40 haploinsufficiency does not worsen the Cx43(-/-) phenotype. We conclude that the gap-junctional proteins Cx40 and Cx43 contribute to morphogenesis of the heart in an isotype-specific manner.

  7. Characteristics of the Localization of Connexin 43 in Satellite Cells during Skeletal Muscle Regeneration In Vivo

    PubMed Central

    Ishido, Minenori; Kasuga, Norikatsu

    2015-01-01

    For myogenesis, new myotubes are formed by the fusion of differentiated myoblasts. In the sequence of events for myotube formation, intercellular communication through gap junctions composed of connexin 43 (Cx43) plays critical roles in regulating the alignment and fusion of myoblasts in advances of myotube formation in vitro. On the other hand, the relationship between the expression patterns of Cx43 and the process of myotube formation in satellite cells during muscle regeneration in vivo remains poorly understood. The present study investigated the relationship between Cx43 and satellite cells in muscle regeneration in vivo. The expression of Cx43 was detected in skeletal muscles on day 1 post-muscle injury, but not in control muscles. Interestingly, the expression of Cx43 was not localized on the inside of the basement membrane of myofibers in the regenerating muscles. Moreover, although the clusters of differentiated satellite cells, which represent a more advanced stage of myotube formation, were observed on the inside of the basement membrane of myofibers in regenerating muscles, the expression of Cx43 was not localized in the clusters of these satellite cells. Therefore, in the present study, it was suggested that Cx43 may not directly contribute to muscle regeneration via satellite cells. PMID:26019374

  8. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    PubMed

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.

  9. Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts.

    PubMed

    Zhang, Yan; Kanter, Evelyn M; Laing, James G; Aprhys, Colette; Johns, David C; Kardami, Elissavet; Yamada, Kathryn A

    2008-09-01

    Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling. Interestingly, increasing Cx43 expression reduced fibroblast proliferation, whereas decreasing Cx43 expression increased proliferation. These data demonstrate that native fibroblasts isolated from the mouse heart exhibit intercellular coupling via gap junctions containing both Cx43 and Cx45. Fibroblast proliferation is inversely related to the expression level of Cx43. Thus, connexin expression and remodeling is likely to alter fibroblast function, maintenance of the extracellular matrix, and ventricular remodeling in both normal and diseased hearts.

  10. Classical swine fever virus down-regulates endothelial connexin 43 gap junctions.

    PubMed

    Hsiao, Hsiang-Jung; Liu, Pei-An; Yeh, Hung-I; Wang, Chi-Young

    2010-07-01

    Classical swine fever is a contagious disease of pigs characterized by fatal hemorrhagic fever. Classical swine fever virus (CSFV) induces the expression of pro-inflammatory and pro-coagulant factors of vascular endothelial cells and establishes a long-term infection. This study aimed to understand the effect of CSFV on endothelial connexin 43 (Cx43) expression and gap junctional intercellular coupling (GJIC). Porcine aortic endothelial cells were infected with CSFV at different multiplicity of infection for 48 h. Semi-quantitative RT-PCR, immunoconfocal microscopy, and Western blotting showed that the transcription and translation of Cx43 were reduced, and this was associated with an attenuation of GJIC. This decrease occurred in a time-dependent manner. An ERK inhibitor (PD98059), a JNK inhibitor (SP600125), and proteasome/lysosome inhibitors all significantly reversed the reduction in Cx43 protein levels without any influence on the titer of progeny virus. In addition, CSFV activated ERK and JNK in a time-dependent manner and down-regulated Cx43 promoter activity, mainly through decreased AP2 binding. This effect was primarily caused by the replication of CSFV rather than a consequence of cytokines being induced by CSFV infection of endothelial cells.

  11. Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions.

    PubMed Central

    Revilla, A; Castro, C; Barrio, L C

    1999-01-01

    Most gap junction channels are sensitive to the voltage difference between the two cellular interiors, termed the transjunctional voltage (V(j)). In several junctions, the conductance transitions induced by V(j) show more than one kinetic component. To elucidate the structural basis of the fast and slow components that characterize the V(j )dependence of connexin-32 (Cx32) and connexin-43 (Cx43) junctions, we created deletions of both connexins, where most of the carboxy-terminal (CT) domain was removed. The wild-type and "tailless" mutants were expressed in paired Xenopus oocytes, and the macroscopic gating properties were analyzed using the dual voltage clamp technique. Truncation of the CT domain of Cx32 and Cx43 abolished the fast mechanism of conductance transitions and induced novel gating properties largely attributable to the slow mechanism of gating. The formation of hybrid junctions comprising wild-type and truncated hemichannels allowed us to infer that the fast and slow components of gating reside in each hemichannel and that both gates close at a negative V(j) on the cytoplasmic side. Thus we conclude that the two kinetic components of V(j)-sensitive conductance are a result of the action of two different gating mechanisms. They constitute separate structures in the Cx32 and Cx43 molecules, the CT domain being an integral part of fast V(j) gating. PMID:10465749

  12. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    USGS Publications Warehouse

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (< 1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  13. Phosphorylation at connexin43 serine-368 is necessary for myocardial conduction during metabolic stress

    PubMed Central

    Nassal, Michelle MJ; Werdich, Andreas A.; Wan, Xiaoping; Hoshi, Malcolm; Deschênes, Isabelle; Rosenbaum, David S.; Donahue, J. Kevin

    2015-01-01

    Connexin43 (Cx43) phosphorylation alters gap junction localization and function. In particular, phosphorylation at serine-368 (S368) has been suggested to alter gap junctional conductance, but previous reports have shown inconsistent results for both timing and functional effects of S368 phosphorylation. The objective of this study was to determine the functional effects of isolated S368 phosphorylation. We evaluated wild type Cx43 (AdCx43) and mutations simulating permanent phosphorylation (Ad368E) or preventing phosphorylation (Ad368A) at S368. Function was assessed by optical mapping of electrical conduction in patterned cultures of neonatal rat ventricular myocytes, under baseline and metabolic stress (MS) conditions. Baseline conduction velocity (CV) was similar for all groups. In the AdCx43 and Ad368E groups, MS moderately decreased CV. Ad368A caused complete conduction block during MS. Triton-X solubility assessment showed no change in Cx43 location during conduction impairment. Western blot analysis showed that Cx43-S368 phosphorylation was present at baseline, and that it decreased during MS. Our data indicate that phosphorylation at S368 does not affect CV under baseline conditions, and that preventing S368 phosphorylation makes Cx43 hypersensitive to MS. These results show the critical role of S368 phosphorylation during stress conditions. PMID:26459193

  14. Phosphorylation at Connexin43 Serine-368 Is Necessary for Myocardial Conduction During Metabolic Stress.

    PubMed

    Nassal, Michelle M J; Werdich, Andreas A; Wan, Xiaoping; Hoshi, Malcolm; Deschênes, Isabelle; Rosenbaum, David S; Donahue, J Kevin

    2016-01-01

    Connexin43 (Cx43) phosphorylation alters gap junction localization and function. In particular, phosphorylation at serine-368 (S368) has been suggested to alter gap junctional conductance, but previous reports have shown inconsistent results for both timing and functional effects of S368 phosphorylation. The objective of this study was to determine the functional effects of isolated S368 phosphorylation. We evaluated wild-type Cx43 (AdCx43) and mutations simulating permanent phosphorylation (Ad368E) or preventing phosphorylation (Ad368A) at S368. Function was assessed by optical mapping of electrical conduction in patterned cultures of neonatal rat ventricular myocytes, under baseline and metabolic stress (MS) conditions. Baseline conduction velocity (CV) was similar for all groups. In the AdCx43 and Ad368E groups, MS moderately decreased CV. Ad368A caused complete conduction block during MS. Triton-X solubility assessment showed no change in Cx43 location during conduction impairment. Western blot analysis showed that Cx43-S368 phosphorylation was present at baseline, and that it decreased during MS. Our data indicate that phosphorylation at S368 does not affect CV under baseline conditions, and that preventing S368 phosphorylation makes Cx43 hypersensitive to MS. These results show the critical role of S368 phosphorylation during stress conditions. © 2015 Wiley Periodicals, Inc.

  15. Phosphorylation controls the interaction of the connexin43 C-terminal domain with tubulin and microtubules.

    PubMed

    Saidi Brikci-Nigassa, Amal; Clement, Marie-Jeanne; Ha-Duong, Tap; Adjadj, Elisabeth; Ziani, Latifa; Pastre, David; Curmi, Patrick A; Savarin, Philippe

    2012-05-29

    Connexins are structurally related transmembrane proteins that assemble to form gap junction channels involved in the mediation of intercellular communication. It has been shown that the intracellular tail of connexin43 (Cx43) interacts with tubulin and microtubules with putative impacts on its own intracellular trafficking, its activity in channel communication, and its interference with specific growth factor signal transduction cascades. We demonstrate here that the microtubule binding of Cx43 is mainly driven by a short region of 26 amino acid residues located within the intracellular tail of Cx43. The nuclear magnetic resonance structural analysis of a peptide (K26D) corresponding to this region shows that this peptide is unstructured when free in solution and adopts a helix conformation upon binding with tubulin. In addition, the resulting K26D-tubulin molecular complex defines a new structural organization that could be shared by other microtubule partners. Interestingly, the K26D-tubulin interaction is prevented by the phosphorylation of K26D at a src kinase specific site. Altogether, the results elucidate the mechanism of the interaction of Cx43 with the microtubule cytoskeleton and propose a pathway for understanding the microtubule-dependent regulation of Cx43 gap junctional communications and the involvement of Cx43 in TGF-β signal transduction.

  16. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    PubMed

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS.

  17. Th1 cells downregulate connexin 43 gap junctions in astrocytes via microglial activation

    PubMed Central

    Watanabe, Mitsuru; Masaki, Katsuhisa; Yamasaki, Ryo; Kawanokuchi, Jun; Takeuchi, Hideyuki; Matsushita, Takuya; Suzumura, Akio; Kira, Jun-ichi

    2016-01-01

    We previously reported early and extensive loss of astrocytic connexin 43 (Cx43) in acute demyelinating lesions of multiple sclerosis (MS) patients. Because it is widely accepted that autoimmune T cells initiate MS lesions, we hypothesized that infiltrating T cells affect Cx43 expression in astrocytes, which contributes to MS lesion formation. Primary mixed glial cell cultures were prepared from newborn mouse brains, and microglia were isolated by anti-CD11b antibody-conjugated magnetic beads. Next, we prepared astrocyte-rich cultures and astrocyte/microglia-mixed cultures. Treatment of primary mixed glial cell cultures with interferon (IFN) γ, interleukin (IL)-4, or IL-17 showed that only IFNγ or IL-17 at high concentrations reduced Cx43 protein levels. Upon treatment of astrocyte-rich cultures and astrocyte/microglia-mixed cultures with IFNγ, Cx43 mRNA/protein levels and the function of gap junctions were reduced only in astrocyte/microglia-mixed cultures. IFNγ-treated microglia-conditioned media and IL-1β, which was markedly increased in IFNγ-treated microglia-conditioned media, reduced Cx43 protein levels in astrocyte-rich cultures. Finally, we confirmed that Th1 cell-conditioned medium decreased Cx43 protein levels in mixed glial cell cultures. These findings suggest that Th1 cell-derived IFNγ activates microglia to release IL-1β that reduces Cx43 gap junctions in astrocytes. Thus, Th1-dominant inflammatory states disrupt astrocytic intercellular communication and may exacerbate MS. PMID:27929069

  18. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding

    PubMed Central

    Ghatnekar, Gautam S; O’Quinn, Michael P; Jourdan, L Jane; Gurjarpadhye, Abhijit A; Draughn, Robert L

    2009-01-01

    Aim Gap-junctional connexin43 (Cx43) has roles in multiple aspects of skin wound healing – including scarring. The aim here was to study the effects of a cell-permeant peptide from the Cx43 carboxyl-terminus (CT) on scarring and regeneration following cutaneous injury. Materials & methods The effects of Cx43 CT peptide were studied in mouse and pig models of cutaneous injury. The parameters assessed included neutrophil density, wound closure, granulation, regeneration and skin tensile properties. Results Cx43 CT-peptide prompted decreases in area of scar progenitor tissue and promoted restoration of dermal histoarchitecture and mechanical strength following wounding of skin. These changes in healing were preceded by peptide-induced reduction in inflammatory neutrophil infiltration and alterations in the organization of epidermal Cx43, including increased connexon aggregation. Conclusion Cx43 CT peptide promotes regenerative healing of cutaneous wounds and may have applications in tissues other than skin, including heart, cornea and spinal cord. PMID:19317641

  19. Connexin 43 hemichannel opening associated with Prostaglandin E(2) release is adaptively regulated by mechanical stimulation.

    PubMed

    Burra, Sirisha; Jiang, Jean X

    2009-05-01

    Osteocytes present in the bone are known to be the major mechanosensory cells. Their involvement in mechanoregulation of bone remodeling is not yet clear. Osteocytes are connected with each other through gap junctions formed by Connexin 43 (Cx43). Apart from forming gap junctions, Cx43 in osteocytes is also present in the form of hemichannels. Recently, we have developed a unique antibody that specifically blocks hemichannels and does not have any effect on gap junctions. Cx43 hemichannels present in osteocytes of the bone are mechanosensory in nature as they open when subjected to mechanical stimulation in the form of fluid flow shear stress (FFSS). Opening of Cx43 hemichannels results in the release of molecules like Prostaglandin E(2) (PGE(2)) that are involved in bone remodeling. Our recent report shows that the opening of Cx43 hemichannels depends on the magnitude and duration of shear stress. When osteocytes are subjected to FFSS followed by a brief rest and reapplication of FFSS, it led to further increase in opening of Cx43 hemichannels. Application of continuous FFSS for longer periods of time (24 hrs) results in decreased opening of hemichannels. These results show that Cx43 hemichannels are adaptive in response to mechanical stimulation, possibly to regulate the release PGE(2) during bone remodeling.

  20. Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels.

    PubMed

    Batra, Nidhi; Burra, Sirisha; Siller-Jackson, Arlene J; Gu, Sumin; Xia, Xuechun; Weber, Gregory F; DeSimone, Douglas; Bonewald, Lynda F; Lafer, Eileen M; Sprague, Eugene; Schwartz, Martin A; Jiang, Jean X

    2012-02-28

    The connexin 43 (Cx43) hemichannel (HC) in the mechanosensory osteocytes is a major portal for the release of factors responsible for the anabolic effects of mechanical loading on bone formation and remodeling. However, little is known about how the Cx43 molecule responds to mechanical stimulation leading to the opening of the HC. Here, we demonstrate that integrin α5β1 interacts directly with Cx43 and that this interaction is required for mechanical stimulation-induced opening of the Cx43 HC. Direct mechanical perturbation via magnetic beads or conformational activation of integrin α5β1 leads to the opening of the Cx43 HC, and this role of the integrin is independent of its association with an extracellular fibronectin substrate. PI3K signaling is responsible for the shear stress-induced conformational activation of integrin α5β1 leading to the opening of the HC. These results identify an unconventional function of integrin that acts as a mechanical tether to induce opening of the HC and provide a mechanism connecting the effect of mechanical forces directly to anabolic function of the bone.

  1. High glucose induces dysfunction of airway epithelial barrier through down-regulation of connexin 43.

    PubMed

    Yu, Hongmei; Yang, Juan; Zhou, Xiangdong; Xiao, Qian; Lü, Yang; Xia, Li

    2016-03-01

    The airway epithelium is a barrier to the inhaled antigens and pathogens. Connexin 43 (Cx43) has been found to play critical role in maintaining the function of airway epithelial barrier and be involved in the pathogenesis of the diabetic retinal vasculature, diabetes nephropathy and diabetes skin. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that the down-regulation of Cx43 induced by HG alters the expression of tight junctions (zonula occludens-1 (ZO-1) and occludin) and contributes to dysfunction of airway epithelial barrier, and Cx43 plays a critical role in the process in human airway epithelial cells (16 HBE). We show that high glucose (HG) decreased the expression of ZO-1 and occludin, disassociated interaction between Cx43 and tight junctions, and then increased airway epithelial transepithelial electrical resistance (TER) and permeability by down-regulation of Cx43 in human airway epithelial cells. These observations demonstrate an important role for Cx43 in regulating HG-induced dysfunction of airway epithelial barrier. These findings may bring new insights into the molecular pathogenesis of pulmonary infection related to diabetes mellitus and lead to novel therapeutic intervention for the dysfunction of airway epithelial barrier in chronic inflammatory airway diseases.

  2. Connexin 43 controls the multipolar phase of neuronal migration to the cerebral cortex

    PubMed Central

    Liu, Xiuxin; Sun, Lin; Torii, Masaaki; Rakic, Pasko

    2012-01-01

    The prospective pyramidal neurons, migrating from the proliferative ventricular zone to the overlaying cortical plate, assume multipolar morphology while passing through the transient subventricular zone. Here, we show that this morphogenetic transformation, from the bipolar to the mutipolar and then back to bipolar again, is associated with expression of connexin 43 (Cx43) and, that knockdown of Cx43 retards, whereas its overexpression enhances, this morphogenetic process. In addition, we have observed that knockdown of Cx43 reduces expression of p27, whereas overexpression of p27 rescues the effect of Cx43 knockdown in the multipolar neurons. Furthermore, functional gap junction/hemichannel domain, and the C-terminal domain of Cx43, independently enhance the expression of p27 and promote the morphological transformation and migration of the multipolar neurons in the SVZ/IZ. Collectively, these results indicate that Cx43 regulates the passage of migrating neurons through their multipolar stage via p27 signaling and that interference with this process, by either genetic and/or environmental factors, may cause cortical malformations. PMID:22566616

  3. Effect of Charge Substitutions at Residue His-142 on Voltage Gating of Connexin43 Channels

    PubMed Central

    Shibayama, Junko; Gutiérrez, Cristina; González, Daniel; Kieken, Fabien; Seki, Akiko; Requena Carrión, Jesus; Sorgen, Paul L.; Taffet, Steven M.; Barrio, Luis C.; Delmar, Mario

    2006-01-01

    Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119–144; referred to as “L2”). Structural analysis of L2 shows two α-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43. PMID:16963503

  4. Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes.

    PubMed

    Kasahara, Hideko; Ueyama, Tomomi; Wakimoto, Hiroko; Liu, Margaret K; Maguire, Colin T; Converso, Kimber L; Kang, Peter M; Manning, Warren J; Lawitts, Joel; Paul, David L; Berul, Charles I; Izumo, Seigo

    2003-03-01

    Nkx2.5, an evolutionarily conserved homeodomain containing transcription factor, is one of the earliest cardiogenic markers. Although its expression continues through adulthood, its function in adult cardiomyocytes is not well understood. To examine the effect of Nkx2.5 in terminal differentiated postnatal cardiomyocytes, we generated transgenic mice expressing either wild-type Nkx2.5 (TG-wild), a putative transcriptionally active mutant (carboxyl-terminus deletion mutant: TG-DeltaC) or a DNA non-binding point mutant of Nkx2.5 (TG-I183P) under alpha-myosin heavy chain promoter. Most TG-wild and TG-DeltaC mice died before 4 months of age with heart failure associated with conduction abnormalities. Cardiomyocytes expressing wild-type Nkx2.5 or a putative transcriptionally active mutant (DeltaC) had dramatically reduced expression of connexin 43 and changed sarcomere structure. Wild-type Nkx2.5 adenovirus-infected adult cardiomyocytes demonstrated connexin 43 downregulation as early as 16 h after infection, indicating that connexin 43 downregulation is due to Nkx2.5 overexpression but not due to heart failure phenotype in vivo. These studies indicate that overexpression of Nkx2.5 in terminally differentiated cardiomyocytes dramatically alters cardiac cell structure and function.

  5. Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions.

    PubMed Central

    Polacek, D.; Lal, R.; Volin, M. V.; Davies, P. F.

    1993-01-01

    The structure and function of blood vessels depend on the ability of vascular cells to receive and transduce signals and to communicate with each other. One means by which vascular cells have been shown to communicate is via gap junctions, specifically connexin43. In atherosclerosis, the normal physical patterns of communication are disrupted by the subendothelial infiltration and accumulation of blood monocytes, which in turn can differentiate into resident foam cells. In this paper we report that neither freshly isolated human peripheral blood monocytes nor differentiated monocytes/macrophages exhibit functional gap junctional dye transfer in homo-cellular culture or in co-culture with endothelial cells or smooth muscle cells. By Northern analysis, neither freshly isolated blood monocytes nor pure cultures of differentiated monocyte/macrophages expressed gap junction messenger RNA. However, immunohistochemical staining followed by in situ hybridization on sections of human atherosclerotic carotid arteries revealed strong expression of gap junction connexin43 messenger RNA by macrophage foam cells. These results suggest that tissue-specific conditions present in atherosclerotic arteries induce expression of connexin43 messenger RNA in monocyte/macrophages. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8382009

  6. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  7. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  8. Effects of rotigaptide (ZP123) on connexin43 remodeling in canine ventricular fibrillation.

    PubMed

    Su, Guo-Ying; Wang, Jing; Xu, Zhen-Xing; Qiao, Xiao-Jun; Zhong, Jing-Quan; Zhang, Yun

    2015-10-01

    The present study investigated the effects of rotigaptide (ZP123) on the expression, distribution and phosphorylation of connexin43 (Cx43) in myocardial cell membranes in cardioversion of ventricular fibrillation (VF). A model of prolonged VF (8, 12 and 30 min) was established in mongrel dogs (n=8/group), following treatment with ZP123 or normal saline (NS control). A sham control was included. Cardiopulmonary resuscitation was begun at the start of VF followed by defibrillation. Animals received a maximum of three defibrillations of increasing energy (70, 100 and 150 J biphasic shock) as required. The average defibrillation energy, defibrillation success rate, return of spontaneous circulation and survival rate were recorded. Cx43 and phosphorylated (p-)Cx43 expression in cardiomyocyte membranes was detected by western blot and immunofluorescence analyses. Compared with the NS-treated control groups, the success defibrillation rate in the 8-min and 12-min ZP123 groups was significantly higher (P<0.05), while the average defibrillation energy was significantly lower (P<0.05). Cx43 expression in the VF groups was significantly lower than that in the sham control group (P<0.05). Cx43 expression was higher in the 12-min and 30-min ZP123 groups than that in the NS control group (P<0.05), while p-Cx43 expression decreased, although the levels were significantly higher than those in the control groups (P<0.05). Cx43 expression was positively correlated with the defibrillation success rate (r=0.91; P<0.01) and negatively with the mean defibrillation energy (r=-0.854; P<0.01), while p-Cx43 expression was positively correlated with the success rate of the previous three defibrillations (r=0.926; P<0.01).In conclusion, ZP123 reduced Cx43 remodeling through regulating the expression, distribution and phosphorylation of Cx43, thereby reducing the defibrillation energy required for successful cardioversion.

  9. Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability

    PubMed Central

    2012-01-01

    Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITC-dextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 μm away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury. PMID:22561459

  10. Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization.

    PubMed

    Chkourko, Halina S; Guerrero-Serna, Guadalupe; Lin, Xianming; Darwish, Nedal; Pohlmann, Joshua R; Cook, Keith E; Martens, Jeffrey R; Rothenberg, Eli; Musa, Hassan; Delmar, Mario

    2012-07-01

    Desmosomes and adherens junctions provide mechanical continuity between cardiac cells, whereas gap junctions allow for cell-cell electrical/metabolic coupling. These structures reside at the cardiac intercalated disc (ID). Also at the ID is the voltage-gated sodium channel (VGSC) complex. Functional interactions between desmosomes, gap junctions, and VGSC have been demonstrated. Separate studies show, under various conditions, reduced presence of gap junctions at the ID and redistribution of connexin43 (Cx43) to plaques oriented parallel to fiber direction (gap junction "lateralization"). To determine the mechanisms of Cx43 lateralization, and the fate of desmosomal and sodium channel molecules in the setting of Cx43 remodeling. Adult sheep were subjected to right ventricular pressure overload (pulmonary hypertension). Tissue was analyzed by quantitative confocal microscopy and by transmission electron microscopy. Ionic currents were measured using conventional patch clamp. Quantitative confocal microscopy demonstrated lateralization of immunoreactive junctional molecules. Desmosomes and gap junctions in lateral membranes were demonstrable by electron microscopy. Cx43/desmosomal remodeling was accompanied by lateralization of 2 microtubule-associated proteins relevant for Cx43 trafficking: EB1 and kinesin protein Kif5b. In contrast, molecules of the VGSC failed to reorganize in plaques discernable by confocal microscopy. Patch-clamp studies demonstrated change in amplitude and kinetics of sodium current and a small reduction in electrical coupling between cells. Cx43 lateralization is part of a complex remodeling that includes mechanical and gap junctions but may exclude components of the VGSC. We speculate that lateralization results from redirectionality of microtubule-mediated forward trafficking. Remodeling of junctional complexes may preserve electrical synchrony under conditions that disrupt ID integrity. Copyright © 2012 Heart Rhythm Society. Published by

  11. Effects of rotigaptide (ZP123) on connexin43 remodeling in canine ventricular fibrillation

    PubMed Central

    SU, GUO-YING; WANG, JING; XU, ZHEN-XING; QIAO, XIAO-JUN; ZHONG, JING-QUAN; ZHANG, YUN

    2015-01-01

    The present study investigated the effects of rotigaptide (ZP123) on the expression, distribution and phosphorylation of connexin43 (Cx43) in myocardial cell membranes in cardioversion of ventricular fibrillation (VF). A model of prolonged VF (8, 12 and 30 min) was established in mongrel dogs (n=8/group), following treatment with ZP123 or normal saline (NS control). A sham control was included. Cardiopulmonary resuscitation was begun at the start of VF followed by defibrillation. Animals received a maximum of three defibrillations of increasing energy (70, 100 and 150 J biphasic shock) as required. The average defibrillation energy, defibrillation success rate, return of spontaneous circulation and survival rate were recorded. Cx43 and phosphorylated (p-) Cx43 expression in cardiomyocyte membranes was detected by western blot and immunofluorescence analyses. Compared with the NS-treated control groups, the success defibrillation rate in the 8-min and 12-min ZP123 groups was significantly higher (P<0.05), while the average defibrillation energy was significantly lower (P<0.05). Cx43 expression in the VF groups was significantly lower than that in the sham control group (P<0.05). Cx43 expression was higher in the 12-min and 30-min ZP123 groups than that in the NS control group (P<0.05), while p-Cx43 expression decreased, although the levels were significantly higher than those in the control groups (P<0.05). Cx43 expression was positively correlated with the defibrillation success rate (r=0.91; P<0.01) and negatively with the mean defibrillation energy (r=−0.854; P<0.01), while p-Cx43 expression was positively correlated with the success rate of the previous three defibrillations (r=0.926; P<0.01). In conclusion, ZP123 reduced Cx43 remodeling through regulating the expression, distribution and phosphorylation of Cx43, thereby reducing the defibrillation energy required for successful cardioversion. PMID:26252617

  12. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning.

    PubMed

    Boengler, Kerstin; Dodoni, Giuliano; Rodriguez-Sinovas, Antonio; Cabestrero, Alberto; Ruiz-Meana, Marisol; Gres, Petra; Konietzka, Ina; Lopez-Iglesias, Carmen; Garcia-Dorado, David; Di Lisa, Fabio; Heusch, Gerd; Schulz, Rainer

    2005-08-01

    Connexin 43 (Cx43) is involved in infarct size reduction by ischemic preconditioning (IP); the underlying mechanism of protection, however, is unknown. Since mitochondria have been proposed to be involved in IP's protection, the present study analyzed whether Cx43 is localized at mitochondria of cardiomyocytes and whether such localization is affected by IP. Western blot analysis on mitochondrial preparations isolated from rat, mouse, pig, and human hearts showed the presence of Cx43. The preparations were not contaminated with markers for other cell compartments. The localization of Cx43 to mitochondria was also confirmed by FACS sorting (double staining with MitoTracker Red and Cx43) and immuno-electron and confocal microscopy. To study the role of Cx43 in IP, mitochondria were isolated from the ischemic anterior wall (AW) and the control posterior wall (PW) of pig myocardium at the end of 90 min low-flow ischemia without (n=13) or with (n=13) a preceding preconditioning cycle of 10 min ischemia and 15 min reperfusion. With IP, the mitochondrial Cx43/adenine nucleotide transporter ratio was 3.4+/-0.7 fold greater in AW than in PW, whereas the ratio remained unchanged in non-preconditioned myocardium (1.1+/-0.2, p<0.05). The enhancement of the mitochondrial Cx43 protein level occurred rapidly, since an increase of mitochondrial Cx43 was already detected with two cycles of 5 min ischemia/reperfusion in isolated rat hearts to 262+/-63% of baseline. These data demonstrate that Cx43 is localized at cardiomyocyte mitochondria and that IP enhances such mitochondrial localization.

  13. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo.

    PubMed

    Schulz, Rainer; Gres, Petra; Skyschally, Andreas; Duschin, Alexej; Belosjorow, Sergej; Konietzka, Ina; Heusch, Gerd

    2003-07-01

    During myocardial ischemia, connexin 43 (Cx43) is dephosphorylated in vitro, and the subsequent opening of gap junctions formed by two opposing Cx43 hexamers was suggested to propagate ischemia/reperfusion injury. Reduction of infarct size (IS) by ischemic preconditioning (IP) involves activation of protein kinase C (PKC) and p38 mitogen activated protein kinase (MAPK), both of which can phosphorylate Cx43. We now studied in anesthetized pigs whether IP impacts on Cx43 phosphorylation by measuring the density of non-phosphorylated and total Cx43 (confocal laser) during normoperfusion and 90-min ischemia in non-preconditioned and preconditioned hearts. Co-localization of PKCalpha, p38MAPKalpha, and p38MAPKbeta with Cx43 and the activity of p38MAPK were assessed. IP by 10 min ischemia and 15 min reperfusion reduced IS. Non-phosphorylated Cx43 remained unchanged during ischemia in preconditioned hearts, while it increased from 35+/-3 to 75+/-8 AU (P<0.05) in non-preconditioned hearts. Co-localization of PKCalpha, p38MAPKalpha, and p38MAPKbeta with Cx43 during ischemia increased only in preconditioned hearts. While the ischemia-induced increase in p38MAPKalpha activity was comparable in preconditioned and non-preconditioned hearts, p38MAPKbeta activity was increased only in preconditioned hearts. Blockade of p38MAPK by SB203580 attenuated the IS-reduction and the increased p38MAPK-Cx43 co-localization by IP. We conclude that IP increases co-localization of protein kinases with Cx43 and preserves phosphorylation of Cx43 during ischemia.

  14. No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning.

    PubMed

    Totzeck, Andreas; Boengler, Kerstin; van de Sand, Anita; Konietzka, Ina; Gres, Petra; Garcia-Dorado, David; Heusch, Gerd; Schulz, Rainer

    2008-11-01

    Cardiac connexin 43 (Cx43) is involved in infarct propagation, and the uncoupling of Cx43-formed channels reduces infarct size. Cx43-formed channels open upon Cx43 dephosphorylation, and ischemic preconditioning (IP) prevents the ischemia-induced Cx43 dephosphorylation. In addition to the sarcolemma, Cx43 is also present in the cardiomyocyte mitochondria. We now examined the interaction of Cx43 with protein phosphatases PP1alpha, PP2Aalpha, and PP2Balpha and the role of such interaction for Cx43 phosphorylation in preconditioned myocardium. Infarct size (in %area at risk) in left ventricular anterior myocardium of Göttinger minipigs subjected to 90 min of low-flow ischemia and 120 min of reperfusion was 23.1 +/- 2.7 [n = 7, nonpreconditioned (NIP) group] and was reduced by IP to 10.0 +/- 3.2 (n = 6, P < 0.05). Mitochondrial and gap junctional Cx43 dephosphorylation increased after 85 min of ischemia in NIP myocardium, whereas Cx43 phosphorylation was preserved with IP. PP2Aalpha and PP1alpha, but not PP2Balpha, were detected by Western blot analysis in the left ventricular myocardium. Cx43 coprecipitated with PP2Aalpha but not with PP1alpha. Although the total PP2Aalpha immunoreactivity (confocal laser scan) was increased to 154 +/- 24% and 194 +/- 13% of baseline (P < 0.05) after 85 min of ischemia in NIP and IP myocardium, respectively, the PP2A activities were similar between the groups. The amount of PP2Aalpha coimmunoprecipitated with Cx43 remained unchanged. Only PP2Aalpha coprecipitates with Cx43 in pig myocardium. This interaction is not affected by IP, suggesting that PP2Aalpha is not involved in the prevention of the ischemia-induced Cx43 dephosphorylation by IP.

  15. Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria.

    PubMed

    Boengler, Kerstin; Stahlhofen, Sabine; van de Sand, Anita; Gres, Petra; Ruiz-Meana, Marisol; Garcia-Dorado, David; Heusch, Gerd; Schulz, Rainer

    2009-03-01

    Cardiomyocytes contain subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria, which differ in their respiratory and calcium retention capacity. Connexin 43 (Cx43) is located at the inner membrane of SSM, and Cx43 is involved in the cardioprotection by ischemic preconditioning (IP). The function of Cx43-formed channels is regulated in part by phosphorylation at residues in the carboxy terminus of Cx43. The aim of the present study was (1) to investigate whether Cx43 is also present in IFM, and (2) to characterize its spatial orientation in the inner mitochondrial membrane (IMM). Confirming previous findings, ADP-stimulated respiration was greater in IFM than in SSM from rat ventricles. In preparations from rats and mice not contaminated with sarcolemmal proteins, Cx43 was exclusively detected in SSM, but not in IFM by Western blot analysis (n = 6). SSM were exposed to different proteinase K concentrations to cleave peptide bonds, and Western blot analysis was performed for ATP synthase alpha (IMM, subunit in the matrix), uncoupling protein 3 (UCP3, IMM, intermembrane space epitope), and manganese superoxide dismutase (MnSOD, matrix). At a proteinase K concentration of 50 microg/ml, immunoreactivities of all the analyzed proteins were completely lost. The use of 5 microg/ml proteinase K resulted in similarly reduced immunoreactivities for Cx43 (19.4 +/- 5.8% of untreated mitochondria, n = 6) and UCP3 (23.0 +/- 4%, n = 7), whereas the immunoreactivities of ATP synthase alpha (49.1 +/- 6.4%, n = 7) and MnSOD (79.9 +/- 17.4%, n = 6) were better preserved, suggesting that the carboxy terminus of Cx43 is directed towards the intermembrane space. The results were confirmed in digitonin-treated mitochondria. Taken together, Cx43 is exclusively localized in SSM, with its carboxy terminus directed towards the intermembrane space. Since loss of mitochondrial Cx43 abolishes IP's cardioprotection, SSM and IFM apparently differ in their function in the signal transduction of

  16. Cardiac Conduction in Isolated Hearts of Genetically Modified Mice - Connexin43 and Salts

    PubMed Central

    George, Sharon A; Poelzing, Steven

    2015-01-01

    Physiologic variations in perfusate composition have been identified as a new and important modulator of cardiac conduction velocity (CV), particularly when gap junctions (GJ) are reduced. We recently demonstrated in ex vivo hearts that perfusates with low sodium and high potassium preferentially slow ventricular CV in mice genetically engineered to express 50% less of the gap junction protein, connexin43 (Cx43). We also reported the possible role of calcium in modulating CV. In this review we discuss previous murine studies that explored the CV-GJ relationship in isolated mouse heart preparations with approximately 50% reduced Cx43. Studies were grouped according to the type of perfusate utilized, and CV during GJ uncoupling was compared. Studies in Group A preferentially used perfusates with low sodium, high potassium and non-physiologic calcium, and found CV slows and arrhythmias increase in mouse hearts with reduced Cx43. Studies in Group B used solutions with high sodium, low potassium and physiologic calcium, and did not observe CV slowing nor increased arrhythmia risk with loss of Cx3. Studies in Group C used solutions with low sodium, low potassium, physiologic calcium, creatine, taurine, and insulin. CV slowing was not observed, nor was arrhythmia risk increased with loss of Cx43. We suggest that perfusate ion composition may be a major determinant of whether CV slows when Cx43 is reduced. Furthermore, the review of these studies highlights important theoretical developments in the understanding of cardiac conduction and suggests that ionic milieu can conceal electrophysiologic remodeling secondary to reduced Cx43 expression as occurs in many cardiac diseases. PMID:26627143

  17. [TGF-beta1 reduces connexin43-mediated gap junctional intercellular communication in rat Leydig cells].

    PubMed

    Liu, Man-Li; Zhang, Zhi-Hong; Wang, Zong-Ren; Ma, Jing

    2012-02-01

    To observe the effects of TGF-beta on the expression of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) in rat Leydig cells, and investigate the association of its effects on Leydig cells with its ability of changing GJIC. Primarily cultured purified Leydig cells were divided into a blank control group, a positive control group (treated with the GJIC inhibitor Carbenoxolone), and four TGF-beta1 groups (treated with TGF-beta1 at the concentration of 1, 2, 5 and 10 ng/ml, respectively, for 20 hours). The localization and expression of Cx43 were detected by immunofluorescence and Western blot, and the changes in GJIC analyzed by FRAP assay. Cx43 was expressed as scattered bright spots in the cytoplasm and membrane of Leydig cells. TGF-beta1 significantly elevated the expression of Cx43 in the cytoplasm, but caused no evident change in the membrane. Western blot showed an evident increase in the phosphorylation of Cx43 with the increased concentration of TGF-beta1 as compared with that of the blank control group (P < 0.05). After 20 hours of treatment with TGF-beta1 at 5 ng/ml, the fluorescence intensity of Leydig cells was markedly reduced (P < 0.01), with a mean fluorescence recovery rate of merely (43.58 +/- 1.87)%. TGF-beta1 could significantly down-regulate GJIC between adjacent Leydig cells, and this inhibitory effect may be achieved by promoting the expression of Cx43 in the cytoplasm and elevating the phosphorylation of Cx43.

  18. Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice.

    PubMed

    Szilvásy-Szabó, Anett; Varga, Edina; Beliczai, Zsuzsa; Lechan, Ronald M; Fekete, Csaba

    2017-10-15

    Tanycytes are specialized glial cells lining the lateral walls and the floor of the third ventricle behind the optic chiasm. In addition to functioning as barrier cells, they also have an important role in the regulation of neuroendocrine axes and energy homeostasis. To determine whether tanycytes communicate with each other via Connexin 43 (Cx43) gap junctions, individual tanycytes were loaded with Lucifer yellow (LY) through a patch pipette. In all cases, LY filled a larger group of tanycytes as well as blood vessels adjacent to tanycyte processes. The Cx43-blocker, carbenoxolone, inhibited spreading of LY. The greatest density of Cx43-immunoreactive spots was observed in the cell membrane of α-tanycyte cell bodies. Cx43-immunoreactivity was also present in the membrane of β-tanycyte cell bodies, but in lower density. Processes of both types of tanycytes also contained Cx43-immunoreactivity. At the ultrastructural level, Cx43-immunoreactivity was present in the cell membrane of all types of tanycytes including their ventricular surface, but gap junctions were more frequent among α-tanycytes. Cx43-immunoreactivity was also observed in the cell membrane between contacting tanycyte endfeet processes, and between tanycyte endfeet process and axon varicosities in the external zone of the median eminence and capillaries in the arcuate nucleus and median eminence. These results suggest that gap junctions are present not only among tanycytes, but also between tanycytes and the axons of hypophysiotropic neurons. Cx43 hemichannels may also facilitate the transport between tanycytes and extracellular fluids, including the cerebrospinal fluid, extracellular space of the median eminence and bloodstream. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Connexin43 PDZ2 Binding Domain Mutants Create Functional Gap Junctions and Exhibit Altered Phosphorylation

    PubMed Central

    Jin, Chengshi; Martyn, Kendra D.; Kurata, Wendy E.; Warn-Cramer, Bonnie J.; Lau, Alan F.

    2010-01-01

    Connexin43 (Cx43) is the most abundantly expressed gap junction protein. The C-terminal tail of Cx43 is important for regulation of gap junctions via phosphorylation of specific tyrosine and serine residues and through interactions with cellular proteins. The C-terminus of Cx43 has been shown to interact with the PDZ2 domain of the tight and adherens junction associated zona occludens 1 (ZO-1) protein. Analysis of the PDZ2 binding domain of Cx43 indicated that positions −3 and −2, and the final hydrophobic amino acid at the C-terminus, are critical for ZO-1 binding. In addition, the C-termini of connexins 40 and 45, but not Cx32, interacted with ZO-1. To evaluate the functional significance of the Cx43-ZO-1 interaction, Cx43 wild type (Cx43wt) and mutants lacking either the C-terminal hydrophobic isoleucine (Cx43ΔI382) or the last five amino acids (Cx43Δ378–382), required for ZO-1 binding in vitro, were introduced into a Cx43-deficient MDCK cell line. In vitro binding studies and coimmunoprecipitation assays indicated that these Cx43 mutants failed to interact with ZO-1. Confocal and deconvolution microscopy revealed that a fraction of Cx43wt colocalized with ZO-1 at the plasma membrane. A similar colocalization pattern was observed for the Cx43ΔI382 and Cx43Δ378–382 mutants, which were translocated to the plasma membrane and formed functional gap junction channels. The wt and mutant Cx43 appeared to have similar turnover rates. However, the P2 and P3 phosphoisoforms of the Cx43 mutants were significantly reduced compared to Cx43wt. These studies indicated that the interaction of Cx43 with ZO-1 may contribute to the regulation of Cx43 phosphorylation. PMID:16247852

  20. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI.

  1. Expression of connexin 43 in the porcine foetal gonads during development.

    PubMed

    Knapczyk-Stwora, K; Durlej-Grzesiak, M; Duda, M; Slomczynska, M

    2013-04-01

    This study was designed to reveal connexin 43 (Cx43) mRNA and protein expression in porcine foetal gonads using RT-PCR, immunohistochemistry and Western blot analysis. Expression of Cx43 was investigated in porcine foetal ovaries and testes on days 50, 70 and 90 post coitum (p.c.). RT-PCR results indicated that Cx43 mRNA was expressed in both foetal ovaries and testes at all gestational ages examined. Cx43 protein was found in the foetal ovary but its distribution varied across ovarian compartments and changed during development. In foetal ovaries, Cx43 was localized between the interstitial cells surrounding egg nests on all investigated days of prenatal period. Moreover, Cx43 expression was observed between germ cells on day 50 p.c. as well as between pre-granulosa and granulosa cells of primordial and primary follicles on days 70 and 90 p.c. In the foetal testes, Cx43 protein was detected between neighbouring Leydig cells on all examined days of prenatal period and between adjacent Sertoli cells exclusively on day 90 p.c. The presence of Cx43 protein in all investigated foetal gonads was confirmed by Western blot analysis. Cx43 protein detection between pre-granulosa cells of primordial follicles suggests its role in regulation of the initial stages of follicle development. The Cx43 immunoexpression between neighbouring Leydig and between Sertoli cells indicates its involvement in controlling their functions. We propose that Cx43-mediated gap junctional communication is involved in the regulation of porcine foetal gonadal development.

  2. Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice

    PubMed Central

    Liao, Y.; Day, K. H.; Damon, D. N.; Duling, B. R.

    2001-01-01

    Connexin 43 (Cx43) is a protein expressed in a variety of mammalian tissues. However, the lack of specific blockers and the absence of known genetic mutants have hampered the investigation of the function of this protein. Cx43-null mice die shortly after birth, thus preventing functional studies in vivo. Here, we report the generation and characterization of a vascular endothelial cell-specific deletion of the Cx43 gene (VEC Cx43 KO) in mice by using the loxP/Cre system. Using homologous recombination, a mouse line was created carrying loxP sites flanking exon 2 of the Cx43 gene (“floxed” mice). To produce cell specific deletion of the Cx43 gene, these mice were crossed with animals from a line carrying the Tie 2-Cre transgene. The homozygous VEC Cx43 KO mice survived to maturity. However, they were hypotensive and bradycardic when compared with heterozygous VEC Cx43 KO mice, or to the floxed Cx43 gene mice. The hypotension was associated with marked elevation of plasma nitric oxide (NO) levels as well as elevated plasma angiotensin (Ang) I and II. We hypothesize that endothelial cell Cx43 plays a key role in the formation and/or action of NO, and that the elevation of Ang II is a secondary event. The specific cellular basis for the hypotension remains to be established, but our findings support the idea that endothelial Cx43 gap junctions are involved in maintaining normal vascular function; moreover, these animals provide the opportunity to determine more clearly the role of endothelial Cx43 in vascular development and homeostasis. PMID:11481448

  3. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression.

    PubMed

    Moffitt, Julia A; Henry, Matthew K; Welliver, Kathryn C; Jepson, Amanda J; Garnett, Emily R

    2013-03-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43.

  4. Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression.

    PubMed

    Miguel-Hidalgo, José Javier; Wilson, Barbara A; Hussain, Syed; Meshram, Ashish; Rajkowska, Grazyna; Stockmeier, Craig A

    2014-08-01

    Reduced density of glial cells and low levels of some astrocyte proteins have been described in the orbitofrontal cortex (OFC) in depression and alcoholism, two disorders often comorbid. These regressive changes may also involve the communication between astrocytes via gap junctions and hemichannels, which play important regulatory roles in neurotransmission. We determined levels and morphological immunostaining parameters of connexin 43 (Cx43), the main protein subunit of astrocyte gap junctions/hemichannels, in the OFC of subjects with depression, alcoholism or comorbid depression/alcoholism as compared to non-psychiatric subjects. Postmortem brain samples from 23 subjects with major depressive disorder (MDD), 16 with alcohol dependence, 13 with comorbid MDD and alcohol dependence, and 20 psychiatrically-normal comparison subjects were processed for western blots to determine Cx43 levels. Area fraction of Cx43 immunoreactivity, and density and average size of immunoreactive puncta were measured in histological sections. There was a significant, larger than 60 percent decrease in Cx43 level in the three psychiatric groups as compared to controls. Area fraction of immunoreactivity and immunoreactive punctum size were reduced in all psychiatric groups, but Cx43-immunoreactive puncta density was reduced only in alcohol-dependent subjects. Among psychiatric subjects, no difference in Cx43 levels or immunostaining was found between suicides and non-suicides. The present data suggest that dysfunction of the OFC is accompanied by reduction in the levels of gap junction protein Cx43 in depression and alcoholism, and reduction in density of Cx43 immunoreactive puncta only in alcoholism, pointing to altered gap junction or hemichannel-based communication in the pathophysiology of those disorders.

  5. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells

    PubMed Central

    Lu, Gang; Haider, Husnain Kh; Porollo, Aleksey; Ashraf, Muhammad

    2010-01-01

    Aims We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. Methods and results During IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1+ (Sca-1+) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1+ cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen–glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended α-helix in this region, a known condition for BH3-driven protein–protein interactions. Conclusion Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis. PMID:20833648

  6. Suppression of cell membrane permeability by suramin: involvement of its inhibitory actions on connexin 43 hemichannels.

    PubMed

    Chi, Yuan; Gao, Kun; Zhang, Hui; Takeda, Masayuki; Yao, Jian

    2014-07-01

    Suramin is a clinically prescribed drug for treatment of human African trypanosomiasis, cancer and infection. It is also a well-known pharmacological antagonist of P2 purinoceptors. Despite its clinical use and use in research, the biological actions of this molecule are still incompletely understood. Here, we investigated the effects of suramin on membrane channels, as exemplified by its actions on non-junctional connexin43 (Cx43) hemichannels, pore-forming α-haemolysin and channels involved in ATP release under hypotonic conditions. Hemichannels were activated by removing extracellular Ca(2+) . The influences of suramin on hemichannel activities were evaluated by its effects on influx of fluorescent dyes and efflux of ATP. The membrane permeability and integrity were assessed through cellular retention of preloaded calcein and LDH release. Suramin blocked Cx43 hemichannel permeability induced by removal of extracellular Ca(2+) without much effect on Cx43 expression and gap junctional intercellular communication. This action of suramin was mimicked by its analogue NF023 and NF449 but not by another P2 purinoceptor antagonist PPADS. Besides hemichannels, suramin also significantly blocked intracellular and extracellular exchanges of small molecules caused by α-haemolysin from Staphylococcus aureus and by exposure of cells to hypotonic solution. Furthermore, it prevented α-haemolysin- and hypotonic stress-elicited cell injury. Suramin blocked membrane channels and protected cells against toxin- and hypotonic stress-elicited injury. Our finding provides novel mechanistic insights into the pharmacological actions of suramin. Suramin might be therapeutically exploited to protect membrane integrity under certain pathological situations. © 2014 The British Pharmacological Society.

  7. Hypoxia induces connexin 43 dysregulation by modulating matrix metalloproteinases via MAPK signaling.

    PubMed

    Wu, Xianghong; Huang, Wen; Luo, Gang; Alain, Laval Andy

    2013-12-01

    Connexin 43 (Cx43) is a major structural protein found in the gap junctions of the ventricular myocardium and a major determinant of its electrical properties. The effects of matrix metalloproteinases (MMPs), the mitogen-activated protein kinase (MAPK) signaling pathway, transcription factor NF-kB, and activator protein-1 (AP-1)/c-Jun on the regulation of Cx43 gene expression in H9c2 cardiomyocytes were assessed. The MAPK signaling pathway (MEK/ERK1/2 and PI3K) and transcription factors NF-kB and AP-1/c-Jun were inhibited, then Cx43 expression was assessed using Western blot analysis, and MMP-9 activity was assessed using gelatin zymography. Hypoxia decreased the Cx43 protein level by approximately 30-50 %. Doxycycline (10 μg/mL), an inhibitor of MMP, markedly attenuated the hypoxia-induced downregulation of Cx43 protein expression at 6 h. The hypoxia-induced decrease in Cx43 protein expression was significantly reversed by U0126 (10 μM), a MEK/ERK1/2 inhibitor, at 6 and 12 h; LY294002 (30 μM), a PI3K inhibitor, downregulated Cx43 expression. Hypoxia-induced MMP-9 activation was inhibited by treatment with LY294002, U0126, and, most especially, U0126. JSH-23 (30 μM), an NF-kB inhibitor, and SP600125 (10 μM), an AP-1/c-Jun inhibitor, attenuated the loss of Cx43. These results suggest that MAPK signaling and the activities NF-kB and MMPs play an important roles in the regulation of Cx43 expression.

  8. Novel Rab GAP-like Protein, CIP85, Interacts with Connexin43 and Induces Its Degradation†

    PubMed Central

    Lan, Zheng; Kurata, Wendy E.; Martyn, Kendra D.; Jin, Chengshi; Lau, Alan F.

    2009-01-01

    Gap junctions play critical roles in tissue function and homeostasis. Connexin43 (Cx43) is a major gap junction protein expressed in the mammalian heart and other tissues and may be regulated by its interaction with other cellular proteins. Using the yeast two-hybrid screen, we identified a novel Cx43-interacting protein of 85-kDa, CIP85, which contains a single TBC, SH3, and RUN domain, in addition to a short coiled coil region. Homologues containing this unique combination of domains were found in human, D. melanogaster, and C. elegans. CIP85 mRNA is expressed ubiquitously in mouse and human tissues. In vitro interaction assays and in vivo co-immunoprecipitation experiments confirmed the interaction of endogenous CIP85 with Cx43. In vitro interaction experiments using CIP85 mutants with in-frame deletions of the TBC, SH3, and RUN domains indicated that the SH3 domain of CIP85 is involved in its interaction with Cx43. Conversely, analysis of Cx43 mutants with proline to alanine substitutions in the two proline-rich regions of Cx43 revealed that the P253LSP256 motif is an important determinant of the ability of Cx43 to interact with CIP85. Laser-scanning confocal microscopy showed that CIP85 colocalized with Cx43 at the cell periphery, particularly in areas reminiscent of gap junction plaques. The functional importance of the interaction between CIP85 and Cx43 was suggested by the observation that CIP85 appears to induce the turnover of Cx43 through the lysosomal pathway. PMID:15709751

  9. Maturational changes in connexin 43 expression in the seminiferous tubules may depend on thyroid hormone action

    PubMed Central

    Marchlewska, Katarzyna; Kula, Krzysztof; Walczak-Jedrzejowska, Renata; Kula, Wojciech; Oszukowska, Elzbieta; Filipiak, Eliza; Moszura, Tomasz

    2013-01-01

    Introduction Connexin 43 (Cx43) mediates the effect of thyroid hormone on Sertoli cell maturation in vitro. We investigated the influence of triiodothyronine (T3) administration on Cx43 expression in relation to the progress in seminiferous tubule maturation. Material and methods Male rats were daily injected with 100 µg T3/kg body weight from birth until postnatal day (pnd) 5 (transient treatment – tT3) or until pnd 15 (continuous treatment – cT3) or solvent – control (C). On pnd 16 serum hormone levels, body and testes weight, seminiferous tubule morphometry, Cx43 immunostaining and germ cell degeneration were investigated. Cx43 expression was also assessed in six 50-day-old adult untreated rats. Result tT3 increased 2.6-fold serum level of T3, testes weight, and seminiferous tubule diameter, and induced maturation-like dislocation of Cx43 expression from the apical to the peripheral region of Sertoli cell cytoplasm. In addition, incidence of Cx43-positive tubules declined from 86% in C to 46% after tT3, being similar to the adult value (30% of tubules Cx43-positive). In turn, cT3 increased serum T3 level 12-fold, and decreased body weight. Seminiferous tubules became shortened and distended, Sertoli cell cytoplasm vacuolated, Cx43 expression had minimal intensity and germ cell degeneration increased. Conclusions Cx43 might intermediate a short and transient stimulatory effect of T3 on seminiferous tubule maturation that disappeared together with exposure to the toxic effect of a continuously high level of the hormone. PMID:23515877

  10. In vivo effect of growth hormone on the expression of connexin-43 in bovine ovarian follicles.

    PubMed

    Kaiser, Germán G; Kölle, Sabine; Boie, Gudrun; Sinowatz, Fred; Palma, Gustavo A; Alberio, Ricardo H

    2006-05-01

    This study assessed the in vivo effects of recombinant growth hormone (rGH) administration on the expression of connexin-43 (Cx43) in bovine ovarian follicles. Two independent experiments were carried out using either estrous unsynchronized or synchronized multiparous Aberdeen Angus cows. rGH-treated animals were inoculated with a single dose of hormone (500 mg, intramuscular) while control animals were inoculated with hormone diluent. Five and 14 days after treatment (Experiments 1 and 2, respectively), ovarian Cx43 and apoptosis expression were assessed using immunohistochemistry. In both experiments primary, secondary, and tertiary follicles from rGH-treated and control groups distinctly expressed Cx43 protein. Primordial and atretic follicles were Cx43-negative. Interestingly, the number of Cx43 dots per granulosa cell did not show significant variation at different folliculogenesis stages neither in the rGH-treated nor in the control group. In unsynchronized animals, Cx43-positive follicles per total number of follicles ratio showed an interaction between stage of folliculogenesis and treatment due to significant differences between treatment groups in the early secondary follicle stage. In synchronized animals, there were significant differences between treatment groups and folliculogenesis stage. In both experiments, atretic follicles showed apoptosis-related DNA-fragmentation as determined by terminal uridin nick end labeling (TUNEL) assay. Tertiary follicles presented moderate TUNEL staining. Our results show significant increment in the number of ovarian follicles expressing the gap junction subunit Cx43 after in vivo rGH treatment. Therefore, we conclude that growth hormone can modulate in vivo gap junction assembly at early stages of folliculogenesis. Mol. Reprod. Dev. (c) 2006 Wiley-Liss, Inc.

  11. The role of connexin43-Src interaction in astrocytomas: A molecular puzzle.

    PubMed

    Tabernero, A; Gangoso, E; Jaraíz-Rodríguez, M; Medina, J M

    2016-05-26

    Connexin43 (Cx43) as a building block of gap junction channels and hemichannels exerts important functions in astrocytes. When these cells acquire a malignant phenotype Cx43 protein but not mRNA levels are downregulated, being negligible in high-grade astrocytoma or glioblastoma multiforme, the most common and deadliest of malignant primary brain tumors in adults. Some microRNAs associated to glioma target Cx43 and could explain the lack of correlation between mRNA and protein levels of Cx43 found in some high-grade astrocytomas. More importantly, these microRNAs could be a promising therapeutic target. A great number of studies have confirmed the relationship between cancer and connexins that was proposed by Loewenstein more than 40years ago, but these studies have also revealed that this is a very complex relationship. Indeed, restoring Cx43 to glioma cells reduces their rate of proliferation and their tumorigenicity but this tumor suppressor effect could be counterbalanced by its effects on invasiveness, adhesion and migration. The mechanisms underlying these effects suggest the participation of a great variety of proteins that bind to different regions of Cx43. The present review focuses on an intrinsically disordered region of the C-terminal domain of Cx43 in which converges the interaction of several proteins, including the proto-oncogene Src. We summarize data that indicate that Cx43-Src interaction inhibits the oncogenic activity of Src and promotes a conformational change in the structure of Cx43 that allosterically modifies the binding to other important signaling proteins. As a consequence, crucial cell functions, such as proliferation or migration, could be strongly affected. We propose that the knowledge of the structural basis of the antitumorigenic effect of Cx43 on astrocytomas could help to design new therapies against this incurable disease. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Connexin43 Mutation Causes Heterogeneous Gap Junction Loss and Sudden Infant Death

    PubMed Central

    Van Norstrand, David W.; Asimaki, Angeliki; Rubinos, Clio; Dolmatova, Elena; Srinivas, Miduturu; Tester, David J.; Saffitz, Jeffrey E.; Duffy, Heather S.; Ackerman, Michael J.

    2012-01-01

    Background An estimated 10-15% of sudden infant death syndrome (SIDS) may stem from channelopathy-mediated lethal arrhythmias. Loss of the GJA1-encoded gap junction channel protein connexin43 (Cx43) is known to underlie formation of lethal arrhythmias. GJA1 mutations have been associated with cardiac diseases including atrial fibrillation. Therefore, GJA1 is a plausible candidate gene for premature sudden death. Methods and Results GJA1 open reading frame mutational analysis was performed using PCR, DHPLC, and direct DNA sequencing on DNA from 292 SIDS cases. Immunofluorescence and dual whole cell patch-clamp studies were performed to determine functionality of mutant gap junctions. Immunostaining for gap junction proteins was performed on SIDS-associated paraffin-embedded cardiac tissue. Two rare, novel missense mutations, E42K and S272P, were detected in 2 of 292 SIDS cases, a 2-month-old white male and a 3-month-old white female, respectively. Analysis of the E42K victim’s parental DNA demonstrated a de novo mutation. Both mutations involved highly conserved residues and were absent in over 1000 ethnic-matched reference alleles. Immunofluorescence demonstrated no trafficking abnormalities for either mutation and S272P demonstrated wildtype junctional conductance. However, junctional conductance measurements for the E42K mutation demonstrated a loss-of-function not rescued by wildtype. Moreover, the E42K victim cardiac tissue demonstrated a mosaic immunostaining pattern for Cx43 protein. Conclusions This study provides the first molecular and functional evidence implicating a GJA1 mutation as a novel pathogenic substrate for SIDS. E42K-Cx43 demonstrated a trafficking-independent reduction in junctional coupling in vitro as well as demonstrating a mosaic pattern of mutational DNA distribution in deceased cardiac tissue, suggesting a novel mechanism of Cx43-associated sudden death. PMID:22179534

  13. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells.

    PubMed

    Lu, Gang; Haider, Husnain Kh; Porollo, Aleksey; Ashraf, Muhammad

    2010-11-01

    We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. During IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1(+) (Sca-1(+)) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1(+) cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen-glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended α-helix in this region, a known condition for BH3-driven protein-protein interactions. Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis.

  14. Reduced Connexin 43 Immunolabeling in the Orbitofrontal Cortex in Alcohol Dependence and Depression

    PubMed Central

    Miguel-Hidalgo, José Javier; Wilson, Barbara A.; Hussain, Syed; Meshram, Ashish; Rajkowska, Grazyna; Stockmeier, Craig A.

    2014-01-01

    Reduced density of glial cells and low levels of some astrocyte proteins have been described in the orbitofrontal cortex (OFC) in depression and alcoholism, two disorders often comorbid. These regressive changes may also involve the communication between astrocytes via gap junctions and hemichannels, which play important regulatory roles in neurotransmission. We determined levels and morphological immunostaining parameters of connexin 43 (Cx43), the main protein subunit of astrocyte gap junctions/hemichannels, in the OFC of subjects with depression, alcoholism or comorbid depression/alcoholism as compared to non-psychiatric subjects. Postmortem brain samples from 23 subjects with major depressive disorder (MDD), 16 with alcohol dependence, 13 with comorbid MDD and alcohol dependence, and 20 psychiatrically-normal comparison subjects were processed for western blots to determine Cx43 levels. Area fraction of Cx43 immunoreactivity, and density and average size of immunoreactive puncta were measured in histological sections. There was a significant, larger than 60 percent decrease in Cx43 level in the three psychiatric groups as compared to controls. Area fraction of immunoreactivity and immunoreactive punctum size were reduced in all psychiatric groups, but Cx43-immunoreactive puncta density was reduced only in alcohol-dependent subjects. Among psychiatric subjects, no difference in Cx43 levels or immunostaining was found between suicides and non-suicides. The present data suggest that dysfunction of the OFC is accompanied by reduction in the levels of gap junction protein Cx43 in depression and alcoholism, and reduction in density of Cx43 immunoreactive puncta only in alcoholism, pointing to altered gap junction or hemichannel-based communication in the pathophysiology of those disorders. PMID:24774648

  15. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis.

    PubMed

    Theotokis, Paschalis; Kleopa, Kleopas A; Touloumi, Olga; Lagoudaki, Roza; Lourbopoulos, Athanasios; Nousiopoulou, Evangelia; Kesidou, Evangelia; Poulatsidou, Kyriaki-Nepheli; Dardiotis, Efthimios; Hadjigeorgiou, Georgios; Karacostas, Dimitris; Cifuentes-Diaz, Carmen; Irinopoulou, Theano; Grigoriadis, Nikolaos

    2015-10-01

    Exogenous transplanted neural precursor cells (NPCs) exhibit miscellaneous immune-modulatory effects in models of autoimmune demyelination. However, the regional interactions of NPCs with the host brain tissue in remissive inflammatory events have not been adequately studied. In this study we used the chronic MOG-induced Experimental Autoimmune Encephalomyelitis (EAE) model in C57BL/six mice. Based on previous data, we focused on neuropathology at Day 50 post-induction (D50) and studied the expression of connexin43 (Cx43) and Cx47, two of the main glial gap junction (GJ) proteins, in relation to the intraventricular transplantation of GFP(+) NPCs and their integration with the host tissue. By D50, NPCs had migrated intraparenchymally and were found in the corpus callosum at the level of the lateral ventricles and hippocampus. The majority of GFP(+) cells differentiated with simple or ramified processes expressing mainly markers of mature GLIA (GFAP and NogoA) and significantly less of precursor glial cells. GFP(+) NPCs expressed connexins and formed GJs around the hippocampus more than lateral ventricles. The presence of NPCs did not alter the increase in Cx43 GJ plaques at D50 EAE, but prevented the reduction of oligodendrocytic Cx47, increased the number of oligodendrocytes, local Cx47 levels and Cx47 GJ plaques per cell. These findings suggest that transplanted NPCs may have multiple effects in demyelinating pathology, including differentiation and direct integration into the panglial syncytium, as well as amelioration of oligodendrocyte GJ loss, increasing the supply of potent myelinating cells to the demyelinated tissue.

  16. A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection.

    PubMed

    Anand, Rahul J; Dai, Shipan; Gribar, Steven C; Richardson, Ward; Kohler, Jeff W; Hoffman, Rosemary A; Branca, Maria F; Li, Jun; Shi, Xiao-Hua; Sodhi, Chhinder P; Hackam, David J

    2008-12-15

    The pathways that lead to the internalization of pathogens via phagocytosis remain incompletely understood. We now demonstrate a previously unrecognized role for the gap junction protein connexin43 (Cx43) in the regulation of phagocytosis by macrophages and in the host response to bacterial infection of the peritoneal cavity. Primary and cultured macrophages were found to express Cx43, which localized to the phagosome upon the internalization of IgG-opsonized particles. The inhibition of Cx43 using small interfering RNA or by obtaining macrophages from Cx43 heterozygous or knockout mice resulted in significantly impaired phagocytosis, while transfection of Cx43 into Fc-receptor expressing HeLa cells, which do not express endogenous Cx43, conferred the ability of these cells to undergo phagocytosis. Infection of macrophages with adenoviruses expressing wild-type Cx43 restored phagocytic ability in macrophages from Cx43 heterozygous or deficient mice, while infection with viruses that expressed mutant Cx43 had no effect. In understanding the mechanisms involved, Cx43 was required for RhoA-dependent actin cup formation under adherent particles, and transfection with constitutively active RhoA restored a phagocytic phenotype after Cx43 inactivation. Remarkably, mortality was significantly increased in a mouse model of bacterial peritonitis after Cx43 inhibition and in Cx43 heterozygous mice compared with untreated and wild-type counterparts. These findings reveal a novel role for Cx43 in the regulation of phagocytosis and rearrangement of the F-actin cytoskeleton, and they implicate Cx43 in the regulation of the host response to microbial infection.

  17. Cardiac conduction in isolated hearts of genetically modified mice--Connexin43 and salts.

    PubMed

    George, Sharon A; Poelzing, Steven

    2016-01-01

    Physiologic variations in perfusate composition have been identified as a new and important modulator of cardiac conduction velocity (CV), particularly when gap junctions (GJ) are reduced. We recently demonstrated in ex vivo hearts that perfusates with low sodium and high potassium preferentially slow ventricular CV in mice genetically engineered to express 50% less of the gap junction protein, connexin43 (Cx43). We also reported the possible role of calcium in modulating CV. In this review we discuss previous murine studies that explored the CV-GJ relationship in isolated mouse heart preparations with approximately 50% reduced Cx43. Studies were grouped according to the type of perfusate utilized, and CV during GJ uncoupling was compared. Studies in Group A preferentially used perfusates with low sodium, high potassium and non-physiologic calcium, and found CV slows and arrhythmias increase in mouse hearts with reduced Cx43. Studies in Group B used solutions with high sodium, low potassium and physiologic calcium, and did not observe CV slowing nor increased arrhythmia risk with loss of Cx3. Studies in Group C used solutions with low sodium, low potassium, physiologic calcium, creatine, taurine, and insulin. CV slowing was not observed, nor was arrhythmia risk increased with loss of Cx43. We suggest that perfusate ion composition may be a major determinant of whether CV slows when Cx43 is reduced. Furthermore, the review of these studies highlights important theoretical developments in the understanding of cardiac conduction and suggests that ionic milieu can conceal electrophysiologic remodeling secondary to reduced Cx43 expression as occurs in many cardiac diseases.

  18. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression

    PubMed Central

    Henry, Matthew K.; Welliver, Kathryn C.; Jepson, Amanda J.; Garnett, Emily R.

    2013-01-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43. PMID:23302960

  19. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning induced connexin-43

    PubMed Central

    Lu, Gang; Haider, Husnain Kh; Jiang, Shujia; Ashraf, Muhammad

    2009-01-01

    Background We report that elevated connexin-43 (Cx-43) in stem cells preconditioned with insulin like growth factor-1 (IGF-1) is cytoprotective and reprograms the cells for cardiomyogenic differentiation. Methods and Results Sca-1+ cells were preconditioned with 100nM IGF-1 for 30-minutes followed by 8-hours (h) of oxygen glucose deprivation (OGD) to assess the cytoprotective effects of preconditioning. LDH release assay, cytochrome-c release and mitochondrial membrane potential assay showed improved survival of preconditioned Sca-1+ cells (PCSca-1+) under OGD as compared to non-preconditioned Sca-1+ cells (non-PCSca-1+) via PI3K/Akt dependent caspase-3 downregulation. We observed PI3K/Akt dependent upregulation of cardiac specific markers including MEF-2c (2.5-fold), GATA4 (3.1-fold) and Cx-43 (3.5-fold). Cx-43 inhibition with specific RNAi reduced the cell survival under OGD and post-transplantation. In vivo studies were performed in a female rat model of acute myocardial infarction (n=78). Animals were grouped to receive intramyocardially 70μl DMEM without cells (group-1), or containing male 1×106 non-PCSca-1+ (group-2) or PCSca-1+ (group-3) cells labeled with PKH26. Survival of the PCSca-1+ was 5.5-fold higher in group-3 compared to group-2 on 7-days post-transplantation. Confocal imaging after actinin and Cx-43 specific immunostaining showed extensive engraftment and myogenic differentiation of PCSca-1+. As compared to group-2, group-3 showed increased blood vessel density (22.3±1.7/microscopic field, p<0.0001) and attenuated infarction size (23.3±3.6%; p=0.002). Heart function indices including ejection fraction (56.2±3.5; p=0.029) and fractional shortening (24.3±2.1; p=0.03) were improved in group-3 compared to group-2. Conclusions Preconditioning with IGF-1 reprograms Sca-1+ for pro-survival signaling and cardiomyogenic differentiation with an important role for Cx-43 in this process. PMID:19414636

  20. Deficiency of cyclase-associated protein 2 promotes arrhythmias associated with connexin43 maldistribution and fibrosis

    PubMed Central

    Peche, Vivek Shahaji; Linhart, Markus; Nickenig, Georg; Noegel, Angelika Anna; Schrickel, Jan Wilko

    2016-01-01

    Introduction Cyclase-associated protein 2 (CAP2) plays a major role in regulating the actin cytoskeleton. Since inactivation of CAP2 in a mouse model by a gene trap approach (Cap2gt/gt) results in cardiomyopathy and increased mortality, we hypothesized that CAP2 has a major impact on arrhythmias and electrophysiological parameters. Material and methods We performed long-term-ECG recordings in transgenic CAP2 deficient mice (C57BL/6) to detect spontaneous arrhythmias. In vivo electrophysiological studies by right heart catheterization and ex vivo epicardial mapping were used to analyze electrophysiological parameters, the inducibility of arrhythmias, and conduction velocities. Expression and distribution of cardiac connexins and the amount of cardiac fibrosis were evaluated. Results Spontaneous ventricular arrhythmias could be detected in Cap2gt/gt during the long-term-ECG recording. Cap2gt/gt showed marked conduction delays at atrial and ventricular levels, including a reduced heart rate (421.0 ±40.6 bpm vs. 450.8 ±27.9 bpm; p < 0.01), and prolongations of PQ (46.3 ±4.1 ms vs. 38.6 ±6.5 ms; p < 0.01), QRS (16.2 ±2.6 ms vs. 12.6 ±1.4 ms; p < 0.01), and QTc interval (55.8 ±6.0 ms vs. 45.2 ±3.3 ms; p = 0.02) in comparison to wild type mice. The PQ prolongation was due to an infra-Hisian conduction delay (HV: 9.7 ±2.1 ms vs. 6.5 ±3.1 ms; p = 0.02). The inducibility of ventricular tachycardias during the electrophysiological studies was significantly elevated in the mutant mice (inducible animals: 88% vs. 33%; p = 0.04). Cap2gt/gt showed more abnormal distribution of connexin43 compared to WT (23.0 ±4.7% vs. 2.9 ±0.8%; p < 0.01). Myocardial fibrosis was elevated in Cap2gt/gt hearts (9.1 ±6.7% vs. 5.5 ±3.3%; p < 0.01). Conclusions Loss of CAP2 results in marked electrophysiological disturbances including impaired sinus node function, conduction delays, and susceptibility to malignant arrhythmias. Structural changes in Cap2gt/gt are associated with

  1. Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells.

    PubMed

    Dovmark, T H; Saccomano, M; Hulikova, A; Alves, F; Swietach, P

    2017-08-10

    Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H(+)-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H(+) ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore

  2. Regulatory Effect of Connexin 43 on Basal Ca2+ Signaling in Rat Ventricular Myocytes

    PubMed Central

    Li, Chen; Yu, Xinfeng; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2012-01-01

    Background It has been found that gap junction-associated intracellular Ca2+ [Ca2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca2+ signaling, in particular the basal [Ca2+]i activities, is unclear. Methods and Results Global and local Ca2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca2+ transients and local Ca2+ sparks in monolayer NRVMs and Ca2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca2+ signal and LY uptake by gap uncouplers, whereas blockade of IP3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca2+ signaling regulation in cardiomyocytes. Conclusions These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca2+ signaling in normal ventricular

  3. The role of connexin43 in hemorrhagic transformation after thrombolysis in vivo and in vitro.

    PubMed

    Yang, Xiaobo; Chu, Heling; Tang, Yuping; Dong, Qiang

    2016-08-04

    Thrombolysis with recombinant tissue plasminogen activator (rtPA) is the most effective drug treatment for acute ischemic stroke within 4.5h after symptom onset. However, the use of rtPA may increase the risk of hemorrhagic transformation (HT), particularly when it is administered after the first 4.5h. However, no effective treatments are available to reduce the HT risk. Disruption of the blood-brain barrier (BBB) is central to the genesis of HT. Connexin43 (Cx43)-mediated gap junction intercellular communication (GJIC) has been demonstrated to regulate the integrity of the BBB in ischemia. We investigated the effect of Cx43 on BBB permeability during rtPA-induced HT. Spontaneously hypertensive rats (SHRs) underwent a 1.5-h middle cerebral artery occlusion and were treated with rtPA at 4.5h. The rats were sacrificed at 24h, and their brains were evaluated for BBB permeability and the expression of tight junction (TJ) proteins and Cx43. We examined whether the effects were Cx43 dependent using multiple Cx43 inhibitors. Phosphorylated Cx43 (p-Cx43) but not total Cx43 protein expression was increased after rtPA treatment. Delayed rtPA administration induced significant HT and BBB disruption. These effects were attenuated by inhibitors that blocked GJIC and Cx43 phosphorylation and expression but not Cx43 redistribution. Additionally, rtPA administration upregulated p-Cx43 expression in hypoxia/reoxygenation (H/R)-exposed brain endothelial cells. These effects were suppressed by the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002 and the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126. We suggest that rtPA-associated hemorrhage due to an alteration in the integrity of the BBB is highly associated with an increase in p-Cx43 resulting from the activation of the PI3K and ERK pathways. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Interaction between Connexin 43 and nitric oxide synthase in mice heart mitochondria

    PubMed Central

    Kirca, Mücella; Kleinbongard, Petra; Soetkamp, Daniel; Heger, Jacqueline; Csonka, Csaba; Ferdinandy, Péter; Schulz, Rainer

    2015-01-01

    Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down-regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild-type and Cx43-deficient (Cx43Cre-ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine-nucleotide-translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co-localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild-type mice. In contrast, iNOS expression was increased in Cx43Cre-ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre-ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild-type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation. PMID:25678382

  5. CELF1 Mediates Connexin 43 mRNA Degradation in Dilated Cardiomyopathy.

    PubMed

    Chang, Kuei-Ting; Cheng, Ching-Feng; King, Pei-Chih; Liu, Shin-Yi; Wang, Guey-Shin

    2017-09-05

    Rationale: Downregulation of connexin 43 (Cx43), the major cardiac gap junction protein, is often associated with arrhythmia, dilated cardiomyopathy (DCM) and heart failure. However, the cause of the reduced expression remains elusive. Re-induction of a nuclear RNA-binding protein CUGBP, Elav-like family member 1 (CELF1) in the adult heart has been implicated in the cardiac pathogenesis of myotonic dystrophy type 1 (DM1). However, how elevated CELF1 level leads to cardiac dysfunction, such as conduction defect, DCM and heart failure, remains unclear. Objective: We investigated the mechanism of CELF1-mediated Cx43 mRNA degradation and determined whether elevated CELF1 expression is also a shared feature of the DCM heart. Methods and Results: RNA immunoprecipitation revealed the involvement of CELF1-regulated genes, including Cx43, in controlling contractility and conduction. CELF1 mediated Cx43 mRNA degradation by binding the UG-rich element in the 3' untranslated region of Cx43. Mutation of the nuclear localization signal in CELF1 abolished the ability to downregulate Cx43 mRNA, so nuclear localization was required for its function. We further identified a 3' to 5' exoribonuclease, ribosomal RNA processing protein 6 (RRP6), as a CELF1-interacting protein. The interaction of CELF1 and RRP6 was RNA-independent and nucleus-specific. With knockdown of endogenous RRP6, CELF1 failed to downregulate Cx43 mRNA, which suggests that RRP6 was required for CELF1-mediated Cx43 mRNA degradation. In addition, increased CELF1 level accompanied upregulated RRP6, and reduced Cx43 level was detected in mouse models with DCM, including DM1 and CELF1-overexpression models and a myocardial infarction model. Importantly, depletion of CELF1 in the infarcted heart preserved Cx43 mRNA level and ameliorated the cardiac phenotypes of the infarcted heart. Conclusions: Our results suggest a mechanism for increased CELF1 expression downregulating Cx43 mRNA level and a pathogenic role for

  6. Action potentials in primary osteoblasts and in the MG-63 osteoblast-like cell line.

    PubMed

    Pangalos, Maria; Bintig, Willem; Schlingmann, Barbara; Feyerabend, Frank; Witte, Frank; Begandt, Daniela; Heisterkamp, Alexander; Ngezahayo, Anaclet

    2011-06-01

    Whole-cell patch-clamp analysis revealed a resting membrane potential of -60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarization-induced action potentials were characterized by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of -20 mV and a repolarization between the spikes to -45 mV. Expressed channels were characterized by application of voltage pulses between -150 mV and 90 mV in 10 mV steps, from a holding potential of -40 mV. Voltages below -60 mV induced an inward current. Depolarizing voltages above -30 mV evoked two currents: (a) a fast activated and inactivated inward current at voltages between -30 and 30 mV, and (b) a delayed-activated outward current that was induced by voltages above -30 mV. Electrophysiological and pharmacological parameters indicated that hyperpolarization activated strongly rectifying K(+) (K(ir)) channels, whereas depolarization activated tetrodotoxin sensitive voltage gated Na(+) (Na(v)) channels as well as delayed, slowly activated, non-inactivating, and tetraethylammonium sensitive voltage gated K(+) (K(v)) channels. In addition, RT-PCR showed expression of Na(v)1.3, Na(v)1.4, Na(v)1.5, Na(v)1.6, Na(v)1.7, and K(ir)2.1, K(ir)2.3, and K(ir)2.4 as well as K(v)2.1. We conclude that osteoblasts express channels that allow firing of action potentials.

  7. Gap junction assembly: roles for the formation plaque and regulation by the C-terminus of connexin43

    PubMed Central

    Johnson, Ross G.; Reynhout, James K.; TenBroek, Erica M.; Quade, Bradley J.; Yasumura, Thomas; Davidson, Kimberly G. V.; Sheridan, Judson D.; Rash, John E.

    2012-01-01

    Using an established gap junction (GJ) assembly system with experimentally reaggregated cells, we analyzed “formation plaques” (FPs), apparent sites of GJ assembly. Employing freeze-fracture electron microscopy methods combined with filipin labeling of sterols and immunolabeling for connexin43 (Cx43), we demonstrated that FPs constitute distinct membrane “domains” and that their characteristic 10-nm particles contain connexin43, thus representing precursors (i.e., GJ hemichannels) engaged in assembly. Analysis of FPs in new systems—HeLa and N2A cells—resolved questions surrounding several key but poorly understood steps in assembly, including matching of FP membranes in apposed cells, reduction in the separation between FP membranes during assembly, and the process of particle aggregation. Findings also indicated that “docking” of GJ hemichannels occurs within FP domains and contributes to reduction of intermembrane separation between FPs. Other experiments demonstrated that FPs develop following a major C-terminal truncation of Cx43 (M257), although assembly was delayed. Particle aggregation also occurred at lower densities, and densities of particles within developing GJ aggregates failed to achieve full-length levels. With regard to regulation, inhibition of assembly following protein kinase C activation failed to occur in the M257 truncation mutants, as measured by intercellular dye transfer. However, several C-terminal serine mutations failed to disrupt inhibition. PMID:22049024

  8. Gap junction assembly: roles for the formation plaque and regulation by the C-terminus of connexin43.

    PubMed

    Johnson, Ross G; Reynhout, James K; TenBroek, Erica M; Quade, Bradley J; Yasumura, Thomas; Davidson, Kimberly G V; Sheridan, Judson D; Rash, John E

    2012-01-01

    Using an established gap junction (GJ) assembly system with experimentally reaggregated cells, we analyzed "formation plaques" (FPs), apparent sites of GJ assembly. Employing freeze-fracture electron microscopy methods combined with filipin labeling of sterols and immunolabeling for connexin43 (Cx43), we demonstrated that FPs constitute distinct membrane "domains" and that their characteristic 10-nm particles contain connexin43, thus representing precursors (i.e., GJ hemichannels) engaged in assembly. Analysis of FPs in new systems-HeLa and N2A cells-resolved questions surrounding several key but poorly understood steps in assembly, including matching of FP membranes in apposed cells, reduction in the separation between FP membranes during assembly, and the process of particle aggregation. Findings also indicated that "docking" of GJ hemichannels occurs within FP domains and contributes to reduction of intermembrane separation between FPs. Other experiments demonstrated that FPs develop following a major C-terminal truncation of Cx43 (M257), although assembly was delayed. Particle aggregation also occurred at lower densities, and densities of particles within developing GJ aggregates failed to achieve full-length levels. With regard to regulation, inhibition of assembly following protein kinase C activation failed to occur in the M257 truncation mutants, as measured by intercellular dye transfer. However, several C-terminal serine mutations failed to disrupt inhibition.

  9. The long-term effects of FSH and triiodothyronine administration during the pubertal period on Connexin 43 expression and spermatogenesis efficiency in adult rats.

    PubMed

    Marchlewska, Katarzyna; Slowikowska-Hilczer, Jolanta; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Filipiak, Eliza; Kula, Krzysztof

    2015-04-01

    Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Hyperstimulation of both hormones evokes regressional changes in connexin 43 expression and the seminiferous epithelium in young rats during testicular maturation. However, separate treatments with T3 reduce Sertoli cell number, which seems to be closely connected with the maturation of connexin 43 gap junctions. FSH elevates Sertoli cell number and function, but this effect may take place regardless of the presence of connexin 43-dependent intercellular communication. The aim of the study was to evaluate the later effects of such treatments. Newborn, male Wistar rats were divided randomly into experimental groups receiving daily subcutaneous injections of either 7.5 IU/animal FSH, or 100 mg/kg b.w. T3, or both substances or the same volume of vehicle (control group) until day 15 of life. The animals were sacrificed on day 50. Morphometric analysis and immunohistochemical reactions were performed using antibodies against Vimentin, Proliferating Cell Nuclear Antigen and Connexin 43 in the testis. Sertoli cell count, efficiency of spermatogenesis, and hormonal pattern were examined. Disturbances in the connexin 43 expression reduced the number of Sertoli cells, the efficiency of spermatogenesis and impaired endocrine function of testes in adult rats treated with FSH and T3 during puberty. Stimulation with FSH alone increased Sertoli cell number, but was associated with a negative effect on cell-to-cell connexin 43-dependent communication, with a consequential reduction of spermatogenesis efficiency. J. Exp. Zool. 323A: 256-265, 2015. © 2015 Wiley Periodicals, Inc.

  10. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats

    PubMed Central

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    Background Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. Material/Methods The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. Results Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. Conclusions These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942

  11. A Cell-Based High-Throughput Assay for Gap Junction Communication Suitable for Assessing Connexin 43-Ezrin Interaction Disruptors Using IncuCyte ZOOM.

    PubMed

    Dukic, Aleksandra R; McClymont, David W; Taskén, Kjetil

    2016-09-14

    Connexin 43 (Cx43), the predominant gap junction (GJ) protein, directly interacts with the A-kinase-anchoring protein (AKAP) Ezrin in human cytotrophoblasts and a rat liver epithelial cells (IAR20). The Cx43-Ezrin-protein kinase (PKA) complex facilitates Cx43 phosphorylation by PKA, which triggers GJ opening in cytotrophoblasts and IAR20 cells and may be a general mechanism regulating GJ intercellular communication (GJIC). Considering the importance of Cx43 GJs in health and disease, they are considered potential pharmaceutical targets. The Cx43-Ezrin interaction is a protein-protein interaction that opens possibilities for targeting with peptides and small molecules. For this reason, we developed a high-throughput cell-based assay in which GJIC can be assessed and new compounds characterized. We used two pools of IAR20 cells, calcein loaded and unloaded, that were mixed and allowed to attach. Next, GJIC was monitored over time using automated imaging via the IncuCyte imager. The assay was validated using known GJ inhibitors and anchoring peptide disruptors, and we further tested new peptides that interfered with the Cx43-Ezrin binding region and reduced GJIC. Although an AlphaScreen assay can be used to screen for Cx43-Ezrin interaction inhibitors, the cell-based assay described is an ideal secondary screen for promising small-molecule hits to help identify the most potent compounds.

  12. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    PubMed

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  13. Potentiation of Amitriptyline Anti-Hyperalgesic-Like Action By Astroglial Connexin 43 Inhibition in Neuropathic Rats

    PubMed Central

    Jeanson, Tiffany; Duchêne, Adeline; Richard, Damien; Bourgoin, Sylvie; Picoli, Christèle; Ezan, Pascal; Mouthon, Franck; Giaume, Christian; Hamon, Michel; Charvériat, Mathieu

    2016-01-01

    Antidepressants, prescribed as first line treatment of neuropathic pain, have a limited efficacy and poorly tolerated side effects. Because recent studies pointed out the implication of astroglial connexins (Cx) in both neuropathic pain and antidepressive treatment, we investigated whether their blockade by mefloquine could modulate the action of the tricyclic antidepressant amitriptyline. Using primary cultures, we found that both mefloquine and amitriptyline inhibited Cx43-containing gap junctions, and that the drug combination acted synergically. We then investigated whether mefloquine could enhance amitriptyline efficacy in a preclinical model of neuropathic pain. Sprague-Dawley rats that underwent chronic unilateral constriction injury (CCI) to the sciatic nerve (SN) were treated with either amitriptyline, mefloquine or the combination of both drugs. Whereas acute treatments were ineffective, chronic administration of amitriptyline reduced CCI-SN-induced hyperalgesia-like behavior, and this effect was markedly enhanced by co-administration of mefloquine, which was inactive on its own. No pharmacokinetic interactions between both drugs were observed and CCI-SN-induced neuroinflammatory and glial activation markers remained unaffected by these treatments in dorsal root ganglia and spinal cord. Mechanisms downstream of CCI-SN-induced neuroinflammation and glial activation might therefore be targeted. Connexin inhibition in astroglia could represent a promising approach towards improving neuropathic pain therapy by antidepressants. PMID:27941941

  14. The protein phosphatase 2A regulatory subunit Ppp2r2a is required for Connexin-43 dephosphorlyation during epidermal barrier acquisition.

    PubMed

    Gerner, Lisa; Youssef, Gehad; O'Shaughnessy, Ryan F L

    2013-11-01

    Epidermal barrier acquisition during late mammalian development is a prerequisite for terrestrial existence. Over a 24-h period, the epidermis goes from being a barrier-deficient, dye permeable epithelium to a barrier-competent epithelium. We have previously shown that Akt signalling is necessary for barrier acquisition in the mouse and that the protein phosphatase 2A regulatory subunit Ppp2r2a causes barrier acquisition by dephosphorylation of cJun. Here, we demonstrate that there is transient interaction between the gap junction protein Connexin 43 (Cx43) and Zonula occludins-1 (Zo-1) during epidermal barrier acquisition. Ppp2r2a knockdown prevented plasma membrane co-localisation and interaction between the two proteins. Ppp2r2a knockdown also increased phosphorylation at Serine 368 of Connexin 43. Cx43 phosphorlyation at Serine368 occurred just prior to the interaction between Connexin 43 and Zo-1. We therefore propose a model in which Ppp2r2a is required both for the initial interaction between Zo-1 and Cx43 and the consequent dephosphorylation of Connexin 43, preventing interaction of Zo-1 and allowing Zo-1 to initiate tight junction formation and barrier acquisition. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation.

    PubMed

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-08

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis.

  16. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation*

    PubMed Central

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-01

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. PMID:26565022

  17. Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction

    PubMed Central

    ZHANG, DUODUO; ZHANG, YAN; ZHAO, CHUNYAN; ZHANG, WENJIE; SHAO, GUOGUANG; ZHANG, HONG

    2016-01-01

    Lysophosphatidic acid (LPA) is an intermediate product of membrane phospholipid metabolism. Recently, LPA has gained attention for its involvement in the pathological processes of certain cardiovascular diseases. The aim of the present study was to clarify the association between the effect of LPA and the immune inflammatory response, and to investigate the effects of LPA on the protein expression levels of connexin 43 during myocardial infarction. Surface electrocardiograms of myocardial infarction rats and isolated rat heart tissue samples were obtained in order to determine the effect of LPA on the incidence of arrhythmia in rats that exhibited changes in immune status. The results demonstrated that the incidence of arrhythmia decreased when the rat immune systems were suppressed, and the incidence of arrhythmia increased when the rat immune systems were enhanced. The concentration levels of tumor necrosis factor (TNF)-α were determined by ELISA, and the results demonstrated that LPA induced T lymphocyte synthesis and TNF-α release. Using a patch-clamp technique, LPA was shown to increase the current amplitude of the voltage-dependent potassium channels (Kv) and calcium-activated potassium channels (KCa) in Jurkat T cells. The protein expression of connexin 43 (Cx43) was determined by immunohistochemical staining. The results indicated that LPA caused the degradation of Cx43 and decreased the expression of Cx43. This effect was associated with the immune status of the rats. There was a further decrease in Cx43 expression in the rats of the immune-enhanced group. To the best of our knowledge, these results provide the first evidence that LPA causes arrhythmia through the regulation of immune inflammatory cells and the decrease of Cx43 protein expression. The present study provided an experimental basis for the treatment of arrhythmia and may guide clinical care. PMID:27168781

  18. Cholinergic stimulation with pyridostigmine protects myocardial infarcted rats against ischemic-induced arrhythmias and preserves connexin43 protein.

    PubMed

    Santos-Almeida, Fernanda Machado; Girão, Henrique; da Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens

    2015-01-15

    We investigated the effects of acute pyridostigmine (PYR) treatment, an acetylcholinesterase inhibitor, on arterial pressure (AP), heart rate (HR), cardiac sympathovagal balance, and the incidence of arrhythmias during the first 4 h after myocardial infarction (MI) in anesthetized rats. Male Wistar rats were implanted with catheters into the femoral artery and vein for AP recordings and drug administration. Rats received the autonomic receptor blockers methyl-atropine (1 mg/kg iv) and propranolol (2 mg/kg iv) at intervals of 15 min, 1 h after saline (n=16) or PYR (0.25 mg/kg iv, n=18), to indirectly assess sympathovagal balance. Acute treatment with PYR increased cardiac vagal (86±7 vs. 44±5 beats/min) and decreased sympathetic tone (-31±8 vs. -69±7 beats/min). Different animals were implanted with ECG electrodes and catheters. A large MI was induced via left coronary artery ligation after basal recordings. Rats received PYR (n=14) or saline (n=14) 10-15 min after MI, and the recordings lasted up to 4 h. In part of the animals, hearts were removed for connexin43 quantification after all procedures. MI elicited a fall in AP (-45±5 mmHg), a progressive rise in HR (26±14 beats/min), and an increase in corrected QT interval (33±13 ms). PYR elicited a prompt bradycardia (-50±14 beats/min) that returned to basal levels over time, and it prevented the lengthening of the corrected QT interval. Treatment with PYR increased by ∼20% the occurrence of rats free of arrhythmias after MI. MI markedly decreased connexin43 in left ventricles, and PYR treatment partially prevented this decrease. Copyright © 2015 the American Physiological Society.

  19. Disturbed myocardial connexin 43 and N-cadherin expressions in hypoplastic left heart syndrome and borderline left ventricle.

    PubMed

    Mahtab, Edris A F; Gittenberger-de Groot, Adriana C; Vicente-Steijn, Rebecca; Lie-Venema, Heleen; Rijlaarsdam, Marry E B; Hazekamp, Mark G; Bartelings, Margot M

    2012-12-01

    Borderline left ventricle is the left ventricular morphology at the favorable end of the hypoplastic left heart syndrome. In contrast to the severe end, it is suitable for biventricular repair. Wondering whether it is possible to identify cases suitable for biventricular repair from a developmental viewpoint, we investigated the myocardial histology of borderline and severely hypoplastic left ventricles. Postmortem specimens of neonatal, unoperated human hearts with severe hypoplastic left heart syndrome and borderline left ventricle were compared with normal specimens and hearts from patients with transposition of the great arteries. After tissue sampling of the lateral walls of both ventricles, immunohistochemical and immunofluorescence stainings against cardiac troponin I, N-cadherin, and connexin 43, important for proper cardiac differentiation, were done. All severely hypoplastic left hearts (7/7) and most borderline left ventricle hearts (4/6) showed reduced sarcomeric expressions of troponin I in left and right ventricles. N-cadherin and connexin 43 expressions were reduced in intercalated disks. The remaining borderline left ventricle hearts (2/6) were histologically closer to control hearts. Four of 6 borderline left ventricle hearts showed myocardial histopathology similar to the severely hypoplastic left hearts. The remainder were similar to normal hearts. Our results and knowledge regarding the role of epicardial-derived cells in myocardial differentiation lead us to postulate that an abnormal epicardial-myocardial interaction could explain the observed histopathology. Defining the histopathologic severity with preoperative myocardial biopsy samples of hearts with borderline left ventricle might provide a diagnostic tool for preoperative decision making. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  20. Altered Connexin 43 and Connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole.

    PubMed

    Grippo, Angela J; Moffitt, Julia A; Henry, Matthew K; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles - a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n = 22) or control (paired, n = 23) conditions (4 weeks), alone or in combination with chronic mild stress (CMS) (1 week). Social isolation, versus paired control conditions, produced significantly (p < 0.05) increased depressive behaviors in a 5-min forced swim test, and CMS exacerbated (p < 0.05) these behaviors. Social isolation (alone) reduced (p < 0.05) total Cx43 expression in the left ventricle; whereas CMS (but not isolation) increased (p < 0.05) total Cx45 expression and reduced (p < 0.05) the Cx43/Cx45 ratio, measured via Western blot analysis. The present findings provide insight into potential cellular mechanisms underlying altered cardiac rhythmicity associated with social and environmental stress in the prairie vole.

  1. Altered Connexin 43 and Connexin 45 Protein Expression in the Heart as a Function of Social and Environmental Stress in the Prairie Vole

    PubMed Central

    Grippo, Angela J.; Moffitt, Julia A.; Henry, Matthew K.; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L.; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles – a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n=22) or control (paired, n=23) conditions (4 weeks), alone or in combination with chronic mild stress (1 week). Social isolation, versus paired control conditions, produced significantly (P < 0.05) increased depressive behaviors in a 5-min forced swim test, and chronic mild stress exacerbated (P < 0.05) these behaviors. Social isolation (alone) reduced (P < 0.05) total Cx43 expression in the left ventricle; whereas chronic mild stress (but not isolation) increased (P < 0.05) total Cx45 expression and reduced (P < 0.05) the Cx43/Cx45 ratio, measured via Western blot analysis. The present findings provide insight into potential cellular mechanisms underlying altered cardiac rhythmicity associated with social and environmental stress in the prairie vole. PMID:25338193

  2. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion

    PubMed Central

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán

    2015-01-01

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage. PMID:26459511

  3. Sustained intravitreal delivery of connexin43 mimetic peptide by poly(D,L-lactide-co-glycolide) acid micro- and nanoparticles--Closing the gap in retinal ischaemia.

    PubMed

    Chen, Ying-Shan; Green, Colin R; Wang, Kailun; Danesh-Meyer, Helen V; Rupenthal, Ilva D

    2015-09-01

    Recent research has shown that transient block of connexin43 (Cx43) hemichannels by mimetic peptides (MP) after retinal ischaemia inhibits uncontrolled hemichannel opening causing blood-brain barrier permeability and endothelial cell loss, and consequently provides improved retinal ganglion cell (RGC) survival. However, the highly hydrophilic character and potentially poor stability of native peptides can limit efficient delivery in a clinical setting. The present study investigated the ability of intravitreally injected Cx43 MP encapsulated into slow-release poly(lactic-co-glycolic) acid (PLGA) nano-(Nps) and microparticles (Mps) to promote RGC survival in a retinal ischaemia-reperfusion rat model. The particle size was around 113 nm (Nps) and 9 μm (Mps), respectively, with Cx43 MP entrapment efficiencies of 70% (Nps) and 97% (Mps). A triphasic in vitro release profile was observed with an initial burst of surface-bound Cx43 MP followed by slow release due to polymer erosion and further drug release at the point of complete particle breakdown, with 100% release achieved after 63 (Nps) and 112 (Mps) days, respectively. Nps showed the most promising results on both Cx43 down-regulation and RGC rescue in this acute injury model. Mps treatment, on the other hand, was unable to down regulate the initial inflammatory response possibly due to trapping of the bigger particles in the vitreous and the much slower release of Cx43 MP from these particles, but displayed a delayed effect on Cx43 regulation and RGC preservation due to the sustained release.

  4. Microtubule-assisted altered trafficking of astrocytic gap junction protein connexin 43 is associated with depletion of connexin 47 during mouse hepatitis virus infection.

    PubMed

    Basu, Rahul; Bose, Abhishek; Thomas, Deepthi; Das Sarma, Jayasri

    2017-09-08

    Gap junctions (GJs) are important for maintenance of CNS homeostasis. GJ proteins, connexin 43 (Cx43) and connexin 47 (Cx47), play a crucial role in production and maintenance of CNS myelin. Cx43 is mainly expressed by astrocytes in the CNS and forms gap junction intercellular communications between astrocytes-astrocytes (Cx43-Cx43) and between astrocytes-oligodendrocytes (Cx43-Cx47). Mutations of these connexin (Cx) proteins cause dysmyelinating diseases in humans. Previously, it has been shown that Cx43 localization and expression is altered due to mouse hepatitis virus (MHV)-A59 infection both in vivo and in vitro; however, its mechanism and association with loss of myelin protein was not elaborated. Thus, we explored potential mechanisms by which MHV-A59 infection alters Cx43 localization and examined the effects of viral infection on Cx47 expression and its association with loss of the myelin marker proteolipid protein. Immunofluorescence and total internal reflection fluorescence microscopy confirmed that MHV-A59 used microtubules (MTs) as a conduit to reach the cell surface and restricted MT-mediated Cx43 delivery to the cell membrane. Co-immunoprecipitation experiments demonstrated that Cx43-β-tubulin molecular interaction was depleted due to protein-protein interaction between viral particles and MTs. During acute MHV-A59 infection, oligodendrocytic Cx47, which is mainly stabilized by Cx43 in vivo, was down-regulated, and its characteristic staining remained disrupted even at chronic phase. The loss of Cx47 was associated with loss of proteolipid protein at the chronic stage of MHV-A59 infection. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells.

    PubMed

    Han, Xiao-Jian; He, Dan; Xu, Liang-Jing; Chen, Min; Wang, Yi-Qi; Feng, Jiu-Geng; Wei, Min-Jun; Hong, Tao; Jiang, Li-Ping

    2015-11-01

    Coronary artery disease (CAD) or atherosclerotic heart disease is one of the most common types of cardiovascular disease. Although percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] is a mature, well-established technique used to treat atherosclerotic heart disease, its long‑term therapeutic effects are compromised by a high incidence of vascular restenosis (RS) following angioplasty. In our previous study, we found that the principal gap junction protein, connexin 43 (Cx43), in vascular smooth muscle cells (VSMCs) was involved in the development of vascular RS following angioplasty-induced balloon injury. However, the exact role action of Cx43 in vascular RS remains unclear. In the present study, we aimed to further examine whether the knockdown of Cx43 attenuates the development of vascular RS through the inhibition of the proliferation and migration of VSMCs. We found that the use of a lentiviral vector expressing shRNA targeting Cx43 (Cx43‑RNAi-LV) efficiently silenced the mRNA and protein expression of Cx43 in cultured VSMCs. In addition, MTT and Transwell assays were used to examined the proliferation and migration of the VSMCs, respectively. The results revealed that the knockdown of Cx43 by Cx43-RNAi-LV at a multiplicity of infection (MOI) of 100 significantly inhibited the proliferation and migration of the VSMCs in vitro. Notably, the knockdown of Cx43 also effectively attenuated the development of vascular RS and intimal hyperplasia following balloon injury in vivo. Taken together, our data suggest that Cx43 is involved in the development of vascular RS and intimal hyperplasia through the regulation of the proliferation and migration of VSMCs. Thus, the present study provides new insight into the pathogenesis of vascular RS, and suggests that further comfirms that Cx43 may well be a novel potential pharmacological target for preventing vascular RS following PCI.

  6. Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway.

    PubMed

    Lee, Kyung Mi; Kwon, Jung Yeon; Lee, Ki Won; Lee, Hyong Joo

    2009-01-15

    Although the health benefits of dietary antioxidants have been extensively studied, their potential negative effects remain unclear. L-Ascorbic acid 6-palmitate (AAP), a synthetic derivative of ascorbic acid (AA), is widely used as an antioxidant and preservative in foods, vitamins, drugs, and cosmetics. Previously, we found that AA exerted an antitumor effect by protecting inhibition of gap-junctional intercellular communication (GJIC), which is closely associated with tumor progression. In this study, we examined whether AAP, an amphipathic derivative of AA, has chemopreventive effects using a GJIC model. AAP and AA exhibited dose-dependent free radical-scavenging activities and inhibited hydrogen peroxide (H(2)O(2))-induced intracellular reactive oxygen species (ROS) production in normal rat liver epithelial cells. Unexpectedly, however, AAP did not protect against the inhibition of GJIC induced by H(2)O(2); instead, it inhibited GJIC synergistically with H(2)O(2). AAP inhibited GJIC in a dose-dependent and reversible manner. This inhibitory effect was not due to the conjugated lipid structure of AAP, as treatment with palmitic acid alone failed to inhibit GJIC under the same conditions. The inhibition of GJIC by AAP was restored in the presence of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126, but not in the presence of other signal inhibitors and antioxidant (PKC inhibitors, EGFR inhibitor, NADPH oxidase inhibitor, catalase, vitamin E, or AA), indicating the critical involvement of MEK signaling in the GJIC inhibitory activity of AAP. Phosphorylation of ERK and connexin 43 (Cx43) was observed following AAP treatment, and this was reversed by U0126. These results suggest that the AAP-induced inhibition of GJIC is mediated by the phosphorylation of Cx43 via activation of the MEK-ERK pathway. Taken together, our results indicate that AAP has a potent carcinogenic effect, and that the influence of dietary

  7. Intercellular communication within the rat anterior pituitary gland: X. Immunohistocytochemistry of S-100 and connexin 43 of folliculo-stellate cells in the rat anterior pituitary gland.

    PubMed

    Shirasawa, Nobuyuki; Mabuchi, Yoshio; Sakuma, Eisuke; Horiuchi, Osamu; Yashiro, Takashi; Kikuchi, Motoshi; Hashimoto, Yasuo; Tsuruo, Yoshihiro; Herbert, Damon C; Soji, Tsuyoshi

    2004-05-01

    Since Rinehart and Farquhar reported the presence of agranulated cells in the anterior pituitary gland in 1953, the functions of the folliculo-stellate cell remain to be clarified. Intercellular junctions have been described in the monkey, rat, and teleost anterior pituitary glands, indicating the existence of cell-to-cell communication within the organ. We pointed to their possible role in the rapid dissemination of information through a complex interconnecting system of follicles involving gap junctions. The gap junctional/folliculo-stellate cellular network was essential in the maturation and regulation of the pituitary gland system such as the hypothalamic-pituitary-gonadal axis. It has been was shown that a network participated in the conduction of electrophysiological information over a long distance using the ion Ca(++), which propagates to other folliculo-stellate cells by signaling through gap junctions. Sixty-day-old male rats were used in this study for light microscopic immunohistochemistry of S-100 protein, type I collagen, and connexin 43, and for electron microscopy to observe the morphological relationships between the cellular networks of folliculo-stellate cells and granulated pituitary cells. Clusters of anti-S-100 protein-positive cells were clearly observed in a region of the hypophysis tentatively named the transition zone. Anti-S-100 protein-positive cells and their cytoplasmic processes were also present in the anterior lobe and assembled together to form follicular lumina. Type I collagen was clearly shown outlining the incomplete lobular or ductule-like structure making cell cords in the anterior pituitary gland. Numerous microvilli were present within the follicular lumen while around the lumina, junctional specializations including gap junctions were positive for the connexin 43 protein. A nonuniform distribution of the connexin 43-positive sites were observed. Small or dot-shaped positive sites were noted where two clusters of cells

  8. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.

    PubMed

    Li, Nan; Mruk, Dolores D; Mok, Ka-Wai; Li, Michelle W M; Wong, Chris K C; Lee, Will M; Han, Daishu; Silvestrini, Bruno; Cheng, C Yan

    2016-04-01

    Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to

  9. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects

    SciTech Connect

    Chen, Steven C.; Kennedy, Brian K.; Lampe, Paul D.

    2013-04-01

    An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna{sup −/−} mouse embryonic fibroblasts (MEFs) compared to Lmna{sup +/+}, and 1.8-fold more pERK1/2 co-precipitated from Lmna{sup −/−} MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna{sup −/−} MEFs by immunofluorescence. In an assay of gap junctional function, Lmna{sup −/−} MEFs transferred dye to 60% fewer partners compared to Lmna{sup +/+} controls. These results are mirrored in 5–6 week-old Lmna{sup −/−} mice compared to their Lmna{sup +/+} littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna{sup −/−} background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo. - Highlights: ► Connexin43 phosphorylation plays a role in laminopathy-associated conduction defects. ► Loss of A-type lamin activity results in release of pERK1/2 from the nucleus. ► Increased cytoplasmic localization of pERK1/2 acts to phosphorylate S279/282 of Cx43. ► Phosphorylation of S279/282 on Cx43 decreases gap junction activity in cell culture. ► Mice lacking A-type lamins have increased phosphorylation on S279/282 of Cx43.

  10. Effects of broad frequency vibration on cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.

    2003-01-01

    Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.

  11. Effects of broad frequency vibration on cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.

    2003-01-01

    Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.

  12. Human Connexin43E42K mutation from a sudden infant death victim leads to impaired ventricular activation and neonatal death in mice.

    PubMed

    Lübkemeier, Indra; Bosen, Felicitas; Kim, Jung-Sun; Sasse, Philipp; Malan, Daniela; Fleischmann, Bernd K; Willecke, Klaus

    2015-02-01

    Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction of cardiac electric activation. In the mammalian heart Connexin43 (Cx43) is the major gap junction protein expressed in ventricular cardiomyocytes. Recently, a novel Connexin43 loss-of-function mutation (Cx43E42K) was identified in a 2-month-old SIDS victim. We have generated Cx43E42K-expressing mice as a model for SIDS. Heterozygous cardiac-restricted Cx43E42K-mutated mice die neonatally without major cardiac morphological defects. Electrocardiographic recordings of embryonic Cx43+/E42K mice reveal severely disturbed ventricular activation, whereas immunohistochemical analyses show normal localization and expression patterns of gap junctional Connexin43 protein in the Cx43E42K-mutated newborn mouse heart. Because we did not find heterogeneous gap junction loss in Cx43E42K mouse hearts, we conclude that the Cx43E42K gap junction channel creates an arrhythmogenic substrate leading to lethal ventricular arrhythmias. The strong cardiac phenotype of Cx43E42K expressing mice supports the association between the human Cx43E42K mutation and SIDS and indicates that Connexin43 mutations should be considered in future studies when SIDS cases are to be molecularly explained. © 2014 American Heart Association, Inc.

  13. Dephosphorylation agents depress gap junctional communication between rat cardiac cells without modifying the Connexin43 phosphorylation degree.

    PubMed

    Duthe, F; Dupont, E; Verrecchia, F; Plaisance, I; Severs, N J; Sarrouilhe, D; Hervé, J C

    2000-12-01

    The functional state of gap junctional channels and the phosphorylation status of Connexine43 (Cx43), the major gap junctional protein in rat heart, were evaluated in primary cultures of neonatal rat cardiomyocytes. H7, able to inhibit a range of serine/threonine protein kinases, progressively reduced gap junctional conductance to approximately 13% of its initial value within 10 min except when protein phosphatase inhibitors were also present. The dephosphorylating agent 2,3-Butanedione monoxime (BDM) produced both a quick and reversible interruption of cell-to-cell communication as well as a parallel slow inhibition of junctional currents. The introduction of a non-hydrolysable ATP analogue (ATPgammaS) in the cytosol delayed the second component, suggesting that it was the consequence of protein dephosphorylation. Western blot analysis reveals 2 forms of Cx43 with different electrophoretic mobilities which correspond to its known phosphorylated and dephosphorylated forms. After exposure of the cells to H7 (1 mmol/l, 1h) or BDM (15 mmol/l, 15 min), no modification in the level of Cx43 phosphorylation was observed. The lack of direct correlation between the inhibition of cell-to-cell communication and changes in the phosphorylation status of Cx43 suggest that the functional state of junctional channels might rather be determined by regulatory proteins associated to Cx43.

  14. The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis

    SciTech Connect

    Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N.E.; Rissel, M.; Dimanche-Boitrel, M.-T.; Baffet, G.; Holme, J.A.; Lagadic-Gossmann, D.

    2010-01-15

    Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules < 1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis. Here, we have investigated benzo[a]pyrene (B[a]P) effects on GJIC and on the subcellular localization of the major protein of gap junction: connexin-43 (Cx43). Our results showed that B[a]P increased GJIC between mouse hepatoma Hepa1c1c7 cells via translocation of Cx43 from Golgi apparatus and lipid rafts into gap junction plaques. Interestingly, inhibition of GJIC by chlordane or small interference RNA directed against Cx43 enhanced B[a]P-induced apoptosis in Hepa1c1c7 cells. The increased apoptosis caused by inhibition of GJIC appeared to be mediated by ERK/MAPK pathway. It is suggested that B[a]P could induce transfer of cell survival signal or dilute cell death signal via regulation of ERK/MAPK through GJIC.

  15. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  16. Growth inhibition of pancreatic cancer by experimental treatment with 4-phenylbutyrate is associated with increased expression of Connexin 43.

    PubMed

    Dovzhanskiy, Dmitriy I; Hartwig, Werner; Lázár, Nóra G; Schmidt, Alexandra; Felix, Klaus; Straub, Beate K; Hackert, Thilo; Krysko, Dmitri V; Werner, Jens

    2012-01-01

    Histone deacetylase inhibitors are a new and promising drug family with a strong anticancer activity and potent modulation of connexin expression. The restoration of connexins in cancer cells has been suggested as a possible mechanism to control tumor progression. The aim of this study was to investigate the effects of 4-phenylbutyrate (4-PB) on the growth of human pancreatic cell lines in vitro and in vivo with a focus on connexin modulation. The proliferation of tumor cells was determined using an MTT assay, and the effect of 4-PB in vivo was studied in a chimeric mouse model. The expression and localization of connexin 43 (Cx43) were assessed by Western blot, immunofluorescence microscopy, and immunohistochemistry. Antitumoral activity was assessed by immunohistochemistry for Ki-67 and histone H4. Treatment with 4-PB resulted in the significant in vitro and in vivo growth inhibition of pancreatic tumor cells. The reduction of the xenograft tumor volume was associated with the inhibition of histone deacetylation and decrease in cell proliferation. Treatment with 4-PB caused a significant increase in the Cx43 expression in T3M4 cells (up to 2.8-fold). The newly synthesized Cx43 was localized in the cytoplasm but not on the cell membrane. Treatment with 4-PB inhibited the proliferation of human pancreatic tumor cells in vitro and in vivo and increased the expression of Cx43. Therefore, 4-PB might be useful in the therapy of pancreatic cancer.

  17. The Effect of a Connexin43-Based Peptide on the Healing of Chronic Venous Leg Ulcers: A Multicenter, Randomized Trial

    PubMed Central

    Ghatnekar, Gautam S; Grek, Christina L; Armstrong, David G; Desai, Sanjay C; Gourdie, Robert G

    2015-01-01

    The gap junction protein, connexin43 (Cx43), has critical roles in the inflammatory, edematous, and fibrotic processes following dermal injury and during wound healing, and is abnormally upregulated at the epidermal wound margins of venous leg ulcers (VLUs). Targeting Cx43 with ACT1, a peptide mimetic of the carboxyl-terminus of Cx43, accelerates fibroblast migration and proliferation, and wound reepithelialization. In a prospective, multicenter clinical trial conducted in India, adults with chronic VLUs were randomized to treatment with an ACT1 gel formulation plus conventional standard-of-care (SOC) protocols, involving maintaining wound moisture and four-layer compression bandage therapy, or SOC protocols alone. The primary end point was mean percent ulcer reepithelialization from baseline to 12 weeks. A significantly greater reduction in mean percent ulcer area from baseline to 12 weeks was associated with the incorporation of ACT1 therapy (79% (SD 50.4)) as compared with compression bandage therapy alone (36% (SD 179.8); P=0.02). Evaluation of secondary efficacy end points indicated a reduced median time to 50 and 100% ulcer reepithelialization for ACT1-treated ulcers. Incorporation of ACT1 in SOC protocols may represent a well-tolerated, highly effective therapeutic strategy that expedites chronic venous ulcer healing by treating the underlying ulcer pathophysiology through Cx43-mediated pathways. PMID:25072595

  18. Effect of dibutyl phthalate on expression of connexin 43 and testosterone production of leydig cells in adult rats.

    PubMed

    Zhang, Jing; Jin, Shuguang; Zhao, Jinchang; Li, Huan

    2016-10-01

    To investigate the adverse effect of dibutyl phthalate (DBP) on Leydig cells and its mechanism related to gap junction, Leydig cells isolated from adult rats were treated with 0.1% dimethylsulfoxide (DMSO), 50mg/L DBP, 50mg/L DBP+10μM prostaglandin E2 (PGE2) and 40μM flutamide respectively. Radioimmunoassay, semi-quantitative RT-PCR, immunofluorescence and Western blot were applied to determine the expression of testosterone and Connexin 43 (Cx43) in Leydig cells. The expression of testosterone and Cx43 were both decreased in DBP group (P<0.05). While Cx43 was up-regulated after administered to PGE2, there was no significant change in testosterone. However, testosterone was down-regulated with a significant decrease of Cx43 in flutamide group. The results indicated that the inhibitory effect of DBP on testosterone production was not through the down-regulation of Cx43. On the contrary, the change of testosterone can influence the expression of Cx43 in Leydig cells.

  19. Connexin43 mediates NF-κB signalling activation induced by high glucose in GMCs: involvement of c-Src

    PubMed Central

    2013-01-01

    Background Nuclear factor kappa-B (NF-κB) signalling plays an important role in diabetic nephropathy. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. The aim of the current study was to investigate the role of Cx43 in the activation of NF-κB induced by high glucose in glomerular mesangial cells (GMCs) and to determine whether c-Src is involved in this process. Results We found that downregulation of Cx43 expression induced by high glucose activated NF-κB in GMCs. Orverexpression of Cx43 attenuated NF-κB p65 nuclear translocation induced by high glucose. High glucose inhibited the interaction between Cx43 and c-Src, and enhanced the interaction between c-Src and IκB-α. PP2, a c-Src inhibitor, also inhibited the tyrosine phosphorylation of IκB-α and NF-κB p65 nuclear translocation induced by high glucose. Furthermore, overexpression of Cx43 or inhibition of c-Src attenuated the upregulation of intercellular adhesion molecule-1 (ICAM-1), transforming growth factor-beta 1 (TGF-β1) and fibronectin (FN) expression induced by high glucose. Conclusions In conclusion, downregulation of Cx43 in GMCs induced by high glucose activates c-Src, which in turn promotes interaction between c-Src and IκB-α and contributes to NF-κB activation in GMCs, leading to renal inflammation. PMID:23718910

  20. AMPK Suppresses Connexin43 Expression in the Bladder and Ameliorates Voiding Dysfunction in Cyclophosphamide-induced Mouse Cystitis

    PubMed Central

    Zhang, Xiling; Yao, Jian; Gao, Kun; Chi, Yuan; Mitsui, Takahiko; Ihara, Tatsuya; Sawada, Norifumi; Kamiyama, Manabu; Fan, Jianglin; Takeda, Masayuki

    2016-01-01

    Bladder voiding dysfunction is closely related to local oxidation, inflammation, and enhanced channel activities. Given that the AMP-activated protein kinase (AMPK) has anti-oxidative, anti-inflammatory and channel-inhibiting properties, we examined whether and how AMPK affected bladder activity. AMPK activation in rat bladder smooth muscle cells (BSMCs) using three different AMPK agonists resulted in a decrease in connexin43 (Cx43) expression and function, which was associated with reduced CREB phosphorylation, Cx43 promoter activity and mRNA expression, but not Cx43 degradation. Downregulation of CREB with siRNA increased Cx43 expression. A functional analysis revealed that AMPK weakened BSMC contraction and bladder capacity. AMPK also counteracted the IL-1β- and TNFα-induced increase in Cx43 in BSMCs. In vivo administration of the AMPK agonist AICAR attenuated cyclophosphamide-initiated bladder oxidation, inflammation, Cx43 expression and voiding dysfunction. Further analysis comparing the responses of the wild-type (Cx43+/+) and heterozygous (Cx43+/−) Cx43 mice to cyclophosphamide revealed that the Cx43+/− mice retained a relatively normal micturition pattern compared to the Cx43+/+ mice. Taken together, our results indicate that AMPK inhibits Cx43 in BSMCs and improves bladder activity under pathological conditions. We propose that strategies that target AMPK can be developed as novel therapeutic approaches for treating bladder dysfunction. PMID:26806558

  1. The protective effect of functional connexin43 channels on a human epithelial cell line exposed to oxidative stress.

    PubMed

    Hutnik, Cindy M L; Pocrnich, Cady E; Liu, Hong; Laird, Dale W; Shao, Qing

    2008-02-01

    To determine the role of connexin43 (Cx43) and gap junctional intercellular communication (GJIC) in the response of the human retinal pigment epithelial cell line ARPE-19 to oxidative stress. ARPE-19 cells were treated with the chemical oxidant tert-butyl hydroperoxide (t-BOOH), and cell viability was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. GJIC was evaluated by scrape loading/dye transfer and microinjection assays, and Cx43 expression was detected by Western blot and immunofluorescent staining combined with confocal microscopy analysis. Retroviral infection of ARPE-19 cells with shRNA vectors targeting Cx43 or vectors encoding Cx43, Cx26, and a disease-linked dominant negative Cx43 mutant (G21R) were used, and the effect on cell viability was assessed. t-BOOH-induced ARPE-19 cell death was correlated with reductions in GJIC and in the total level of Cx43 protein expression. Overexpression of Cx26 and Cx43 increased the viability of oxidant-treated ARPE-19 cells. Conversely, shRNA knockdown of Cx43, expression of a disease-linked dominant negative Cx43 mutant, and blocking GJIC with 18beta-glycyrrhetinic acid and flufenamic acid all increased t-BOOH-induced ARPE-19 cell death. Cx43-mediated protection of ARPE-19 cells from oxidative stress-induced death is dependent on functional Cx43 channels.

  2. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes

    PubMed Central

    González-Sánchez, Ana; Jaraíz-Rodríguez, Myriam; Domínguez-Prieto, Marta; Herrero-González, Sandra; Medina, José M.; Tabernero, Arantxa

    2016-01-01

    Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition. PMID:27391443

  3. A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK.

    PubMed

    Jaraíz-Rodríguez, Myriam; Tabernero, Ma Dolores; González-Tablas, María; Otero, Alvaro; Orfao, Alberto; Medina, Jose M; Tabernero, Arantxa

    2017-08-08

    Connexin43 (CX43), a protein that forms gap junction channels and hemichannels in astrocytes, is downregulated in high-grade gliomas. Its relevance for glioma therapy has been thoroughly explored; however, its positive effects on proliferation are counterbalanced by its effects on migration and invasion. Here, we show that a cell-penetrating peptide based on CX43 (TAT-Cx43266-283) inhibited c-Src and focal adhesion kinase (FAK) and upregulated phosphatase and tensin homolog in glioma stem cells (GSCs) derived from patients. Consequently, TAT-Cx43266-283 reduced GSC motility, as analyzed by time-lapse microscopy, and strongly reduced their invasive ability. Interestingly, we investigated the effects of TAT-Cx43266-283 on freshly removed surgical specimens as undissociated glioblastoma blocks, which revealed a dramatic reduction in the growth, migration, and survival of these cells. In conclusion, a region of CX43 (amino acids 266-283) exerts an important anti-tumor effect in patient-derived glioblastoma models that includes impairment of GSC migration and invasion. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial.

    PubMed

    Grek, Christina L; Prasad, G M; Viswanathan, Vijay; Armstrong, David G; Gourdie, Robert G; Ghatnekar, Gautam S

    2015-01-01

    Nonhealing neuropathic foot ulcers remain a significant problem in individuals with diabetes. The gap-junctional protein connexin43 (Cx43) has roles in dermal wound healing and targeting Cx43 signalling accelerates wound reepithelialization. In a prospective, randomized, multicenter clinical trial we evaluated the efficacy and safety of a peptide mimetic of the C-terminus of Cx43, alpha connexin carboxy-terminal (ACT1), in accelerating the healing of chronic diabetic foot ulcers (DFUs) when incorporated into standard of care (SOC) protocols. Adults with DFUs of at least four weeks duration were randomized to receive SOC with or without topical application of ACT1. Primary outcome was mean percent ulcer reepithelialization and safety variables included incidence of treatment related adverse events (AEs) and detection of ACT1 immunogenicity. ACT1 treatment was associated with a significantly greater reduction in mean percent ulcer area from baseline to 12 weeks (72.1% vs. 57.1%; p = 0.03). Analysis of incidence and median time-to-complete-ulcer closure revealed that ACT1 treatment was associated with a greater percentage of participants that reached 100% ulcer reepitheliazation and a reduced median time-to-complete-ulcer closure. No AEs reported were treatment related, and ACT1 was not immunogenic. Treatment protocols that incorporate ACT1 may present a therapeutic strategy that safely augments the reepithelialization of chronic DFUs. © 2015 Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of The Wound Healing Society.

  5. The effect of a connexin43-based Peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial.

    PubMed

    Ghatnekar, Gautam S; Grek, Christina L; Armstrong, David G; Desai, Sanjay C; Gourdie, Robert G

    2015-01-01

    The gap junction protein, connexin43 (Cx43), has critical roles in the inflammatory, edematous, and fibrotic processes following dermal injury and during wound healing, and is abnormally upregulated at the epidermal wound margins of venous leg ulcers (VLUs). Targeting Cx43 with ACT1, a peptide mimetic of the carboxyl-terminus of Cx43, accelerates fibroblast migration and proliferation, and wound reepithelialization. In a prospective, multicenter clinical trial conducted in India, adults with chronic VLUs were randomized to treatment with an ACT1 gel formulation plus conventional standard-of-care (SOC) protocols, involving maintaining wound moisture and four-layer compression bandage therapy, or SOC protocols alone. The primary end point was mean percent ulcer reepithelialization from baseline to 12 weeks. A significantly greater reduction in mean percent ulcer area from baseline to 12 weeks was associated with the incorporation of ACT1 therapy (79% (SD 50.4)) as compared with compression bandage therapy alone (36% (SD 179.8); P=0.02). Evaluation of secondary efficacy end points indicated a reduced median time to 50 and 100% ulcer reepithelialization for ACT1-treated ulcers. Incorporation of ACT1 in SOC protocols may represent a well-tolerated, highly effective therapeutic strategy that expedites chronic venous ulcer healing by treating the underlying ulcer pathophysiology through Cx43-mediated pathways.

  6. Effect of antipeptide antibodies directed against three domains of connexin43 on the gap junctional permeability of cultured heart cells.

    PubMed

    Bastide, B; Jarry-Guichard, T; Briand, J P; Délèze, J; Gros, D

    1996-04-01

    Cell-to-cell communication can be blocked by intracellular injections of antibodies raised against gap junction proteins, but the mechanism of channel obstruction is unknown. Binding to connexins could lead to a conformational change, interfere with regulatory domains or cause a steric hindrance. To address these questions, the effects on cell-to-cell communication of affinity purified polyclonal antibodies raised against peptides reproducing the intracellular sequences 5-17, 314-322 and 363-382 of rat connexin43 were investigated in cultured rat ventricular cells. The antibodies against sequence 363-382 were characterized by immunoblotting and immunocytochemistry. Characterization of antibodies 5-17 and 314-322 has been previously reported. In a first series of experiments, the effect on gap junctional communication was assessed by injecting a junction-permeant fluorescent dye into cells adjacent to one cell previously microinjected with antibodies. In a second series, junctional permeability was quantitatively determined on records of fluorescence recovery after the photobleaching of 6-carboxyfluorescein-loaded cells. Antibodies 5-17 marked a 43 kDa band on immunoblots, but did not immunolabel gap junctions and had no functional effect. Antibodies 314-322 recognized the 43 kDa protein and labeled the intercalated disks, but failed to interfere with junctional permeability. Antibodies to the nearby sequence 363-382, for which all immunospecific tests had been positive, caused a delayed diffusional uncoupling in 50% of the microinjected cells. It is suggested that the blocking of junctional communication by antibodies results from interference with a regulatory domain of the connexin.

  7. Do connexin 43 gap-junctional hemichannels activate and cause cell damage during ATP depletion of renal-tubule cells?

    PubMed

    Vergara, L; Bao, X; Bello-Reuss, E; Reuss, L

    2003-09-01

    We review our evidence in favour of the hypothesis that gap-junctional hemichannels (GJH) are activated by depletion of adenosine triphosphate (ATP) in human renal proximal tubule cells in primary culture (hPT cells). Undocked GJH permit fluxes of ions and hydrophilic molecules up to 1 kDa, and thus their opening can cause alterations of cell composition conducive to cell damage. We show that hPT cells express connexin 43 (Cx43) (at the mRNA and protein levels) and that the protein is expressed on the plasma membrane. Moderate levels of pharmacological depletion of ATP increased plasma-membrane permeability, as shown by loading with the hydrophilic dye 5/6 carboxyfluorescein (CF, 376 Da) and other low-molecular weight dyes, but not with fluorescein-labelled dextran (>1500 Da). Roles for endocytosis and activation of purinergic-receptor channels were experimentally ruled out. Moderate ATP depletion also caused necrosis, assessed by cell permeabilization to propidium iodide. Prolonged exposure to gadolinium reduced both the dye loading and the necrosis induced by ATP depletion, i.e. it protected the cells. Cx43 overexpressed in insect cells, purified to homogeneity and reconstituted in proteoliposomes formed hemichannels that are activated by dephosphorylation of Ser368, a residue in a protein-kinase-C consensus phosphorylation sequence near the end of the C-terminal domain. (1) ATP depletion of hPT cells induces a Gd3+-sensitive permeability of the plasma membrane to hydrophilic dyes with a cut-off size consistent with Cx43 GJH. (2) ATP depletion also increases the percentage of necrotic cells, an effect also reduced by Gd3+. (3) The experiments with purified Cx43 reconstituted in liposomes suggest that dephosphorylation of Ser368 is sufficient to activate GJH, although other mechanisms may be involved in some cells.

  8. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes.

    PubMed

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-09-04

    Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Inhibition of c-Src Tyrosine Kinase Prevents Angiotensin II-Mediated Connexin43 Remodeling and Sudden Cardiac Death

    PubMed Central

    Sovari, Ali A.; Iravanian, Shahriar; Dolmatova, Elena; Jiao, Zhe; Liu, Hong; Zandieh, Shadi; Kumar, Vibhash; Wang, Kun; Bernstein, Kenneth E.; Bonini, Marcelo G.; Duffy, Heather; Dudley, Samuel C.

    2011-01-01

    Objectives We sought to test whether c-Src tyrosine kinase mediates connexin 43 (Cx43) reduction and sudden cardiac death in a transgenic mouse model of cardiac-restricted overexpression of angiotensin-converting enzyme (ACE8/8). Background Renin-angiotensin system (RAS) activation is associated with an increased risk of arrhythmia and sudden cardiac death; however, that mechanism is not well understood. The upregulation of c-Src by angiotensin II may result in the reduction of Cx43, which impairs gap junction function and provides a substrate for arrhythmia. Method Wild-type and ACE8/8 mice with and without treatment with the c-Src inhibitor PP1 were studied. Telemetry monitoring, in vivo electrophysiology studies, Western blot analyses for total and phosphorylated c-Src and Cx43, immunohistochemistry staining for Cx43, and functional assessment of Cx43 with fluorescent dye diffusion were performed. Results The majority of the arrhythmic deaths resulted from ventricular tachycardia denegerating to ventricular fibrillation (83%). Levels of total and phosphorylated c-Src were increased and Cx43 reduced in ACE8/8 mice. PP1 reduced total and phospho c-Src levels, increased the Cx43 level by 2.1-fold (P < 0.005), increased Cx43 at the gap junctions (immunostaining), improved gap junctional communication (dye spread), and reduced ventricular tachycardia inducibility and sudden cardiac death. The survival rate increased from 11% to 86% with four weeks of PP1 treatment (P < 0.005). Treatment with an inactive analog did not change survival or Cx43 levels. Conclusion RAS activation is associated with c-Src upregulation, Cx43 loss, reduced myocyte coupling, and arrhythmic sudden death, which can be prevented by c-Src inhibition. This suggests that an increase in c-Src activity may help mediate RAS-induced arrhythmias and that c-Src inhibitors might exert antiarrhythmic activity. PMID:22093512

  10. Connexin43 Mimetic Peptide Improves Retinal Function and Reduces Inflammation in a Light-Damaged Albino Rat Model.

    PubMed

    Guo, Cindy X; Mat Nor, Mohd N; Danesh-Meyer, Helen V; Vessey, Kirstan A; Fletcher, Erica L; O'Carroll, Simon J; Acosta, Monica L; Green, Colin R

    2016-08-01

    Drugs that regulate connexin43 (Cx43) gap junction channels can reduce the spread of injury and improve functional outcomes after nervous system trauma. In the eye, Cx43 expression increases in the choroid following light damage. The aim of this study was to investigate whether Cx43 hemichannel block could preserve retinal function postinjury. Light damage was induced by exposure of adult albino Sprague-Dawley rats to 2700 Lux light for 24 hours. Intravitreal injections of a Cx43 mimetic peptide hemichannel blocker, Peptide5, or sham were administered 2 hours after the onset and at the end of the light damage period. Retinal function was assessed by electroretinogram and inflammatory responses in the choroid and retina were assessed using immunohistochemistry (ionized calcium binding adaptor molecule 1 [Iba-1], leukocyte common antigen [CD45], glial fibrillary acidic protein [GFAP]). Light-damaged rat eyes had (1) reduced neuronal responses in both the rod and cone pathways and (2) marked inflammatory responses in the choroid and retina. Peptide5 significantly preserved function of photoreceptoral and postphotoreceptoral neurons in these animals. This was evident 24 hours after injury and 2 weeks later, as shown by improved mixed a-wave and mixed b-wave amplitudes, isolated rod PII and PIII amplitudes, and cone PII responses when compared with sham-treated controls. Retinal thinning and inflammation were also significantly reduced in Peptide5-treated eyes when compared with sham-treated controls. Blocking Cx43 hemichannels after light damage can significantly improve functional outcomes of neurons in both the rod and cone photo-transduction pathways in the light-damaged animal model, likely by reducing choroid inflammation and suppressing the glial-mediated inflammatory response. These data may have relevance for the treatment of conditions such as diabetic retinopathy and age-related macular degeneration.

  11. Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells.

    PubMed

    Theofilas, Panos; Steinhäuser, Christian; Theis, Martin; Derouiche, Amin

    2017-03-30

    Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP(+) astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.

  12. Suppression of spinal connexin 43 expression attenuates mechanical hypersensitivity in rats after an L5 spinal nerve injury.

    PubMed

    Xu, Qian; Cheong, Yong-Kwan; He, Shao-Qiu; Tiwari, Vinod; Liu, Jian; Wang, Yun; Raja, Srinivasa N; Li, Jinheng; Guan, Yun; Li, Weiyan

    2014-04-30

    Activation of spinal astrocytes may contribute to neuropathic pain. Adjacent astrocytes can make direct communication through gap junctions formed by connexin 43 (Cx43) in the central nervous system. Yet, the role of spinal astroglial gap junctions in neuropathic pain is not fully understood. Since Cx43 is the connexin isoform expressed preferentially in astrocytes in the spinal cord, we used a small interfering RNA (siRNA) approach to examine whether suppression of spinal Cx43 expression inhibits mechanical hypersensitivity in rats after an L5 spinal nerve ligation (SNL). SNL rats were administered intrathecal Cx43 siRNA (3μg/15μl, twice/day) or an equal amount of mismatch siRNA (control) on days 14-17 post-SNL. Cx43 siRNA, but not mismatch siRNA, alleviated mechanical hypersensitivity in SNL rats. Furthermore, Western blot analysis showed that the pain inhibition induced by Cx43 siRNA correlated with downregulation of Cx43 expression, but not that of Cx36 (the neuronal gap junction protein) or glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) in the spinal cord of SNL rats. Western blot analysis and immunohistochemistry also showed that SNL increased GFAP expression, but decreased Cx43 expression, in spinal cord. Our results provide direct evidence that selective suppression of spinal Cx43 after nerve injury alleviates neuropathic mechanical hypersensitivity. These findings suggest that in the spinal cord, the enhanced function of astroglial gap junctions, especially those formed by Cx43, may be important to neuropathic pain in SNL rats.

  13. Cardiomyocyte-Specific Overexpression of the Ubiquitin Ligase Wwp1 Contributes to Reduction in Connexin 43 and Arrhythmogenesis

    PubMed Central

    Basheer, Wassim A.; Harris, Brett S.; Mentrup, Heather L.; Abreha, Measho; Thames, Elizabeth L.; Lea, Jessica B.; Swing, Deborah A.; Copeland, Neal G.; Jenkins, Nancy A.; Price, Robert L.; Matesic, Lydia E.

    2015-01-01

    Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8 weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. PMID:26386426

  14. Hepatic granulomas induced by Schistosoma mansoni in mice deficient for connexin 43 present lower cell proliferation and higher collagen content.

    PubMed

    Oloris, Silvia Catarina Salgado; Mesnil, Marc; Reis, Viviane Neri de Souza; Sakai, Mônica; Matsuzaki, Patrícia; Fonseca, Evelise de Souza Monteiro; da Silva, Tereza Cristina; Avanzo, José Luís; Sinhorini, Idércio Luiz; Guerra, José Luiz; Costa-Pinto, Frederico Azevedo; Maiorka, Paulo Cesar; Dagli, Maria Lúcia Zaidan

    2007-03-06

    Granuloma formation involves a coordinated interaction between monocytes and macrophages, epithelioid cells, lymphocytes, eosinophils, neutrophils and fibroblasts. It has been established that extracellular communication via cytokines is important for the assembly of granulomas. However, the importance of gap junctions and intercellular communication to granuloma formation and development had never been assessed. Connexins are proteins that form gap junctions, and connexin 43 (Cx43) is present in macrophages, lymphoid cells, myelogenous cells, fibroblasts and others. We analyzed the effect of heterologous deletion of Gja1 (Cx43 gene) on the formation and development of hepatic granulomas induced by Schistosoma mansoni eggs. Heterozygous (Cx43(+/-)) and wild-type (Cx43(+/+)) mice were infected subcutaneously with S. mansoni cercarie and evaluated after 6, 8 and 12 weeks. Granuloma cells express Cx43, as revealed by real-time PCR in isolated granulomas, and by immunohistochemistry. Cx43 expression was reduced in Cx43(+/-) mice, as expected. No differences in the average area of granulomas or number of cells per granuloma were observed between mice of different genotypes. However, granuloma cells from Cx43(+/-) mice displayed a reduced index of the proliferating cell nuclear antigen (PCNA) labeling at 8 and 12 weeks post-infection. Moreover, Cx43(+/-) granulomas unexpectedly presented a higher degree of fibrosis, quantified by morphometric analysis in Sirius Red-stained slides. Our results indicate that the deletion of one allele of the Cx43 gene, and possibly the reduced gap junction intercellular communication capacity (GJIC), may impair the interactions between granuloma cells, reducing their proliferation and increasing their collagen content, thereby modifying the characteristics of S. mansoni granuloma in mice.

  15. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1

    PubMed Central

    Ambrosi, Cinzia; Ren, Cynthia; Spagnol, Gaelle; Cavin, Gabriel; Cone, Angela; Grintsevich, Elena E.; Sorgen, Paul L.

    2016-01-01

    Gap junctions are membrane specialization domains identified in most tissue types where cells abut each other. The connexin channels found in these membrane domains are conduits for direct cell-to-cell transfer of ions and molecules. Connexin43 (Cx43) is the most ubiquitous connexin, with critical roles in heart, skin, and brain. Several studies described the interaction between Cx43 and the cytoskeleton involving the actin binding proteins Zonula occludens (ZO-1) and drebrin, as well as with tubulin. However, a direct interaction has not been identified between drebrin and Cx43. In this study, co-IP and NMR experiments were used to demonstrate that the Cx43-CT directly interacts with the highly conserved N-terminus region of drebrin. Three Cx43-CT areas were found to be involved in drebrin binding, with residues 264–275 being critical for the interaction. Mimicking Src phosphorylation within this region (Y265) significantly disrupted the interaction between the Cx43-CT and drebrin. Immunofluorescence showed colocalization of Cx43, drebrin, and F-actin in astrocytes and Vero cells membrane, indicating that Cx43 forms a submembrane protein complex with cytoskeletal and scaffolding proteins. The co-IP data suggest that Cx43 indirectly interacts with F-actin through drebrin. Along with the known interaction of the Cx43-CT with ZO-1 and tubulin, the data presented here for drebrin indicate non-overlapping and separated binding sites for all three proteins for which simultaneous binding could be important in regulating cytoskeleton rearrangements, especially for neuronal migration during brain development. PMID:27280719

  16. Structural Studies of the Nedd4 WW Domains and Their Selectivity for the Connexin43 (Cx43) Carboxyl Terminus.

    PubMed

    Spagnol, Gaelle; Kieken, Fabien; Kopanic, Jennifer L; Li, Hanjun; Zach, Sydney; Stauch, Kelly L; Grosely, Rosslyn; Sorgen, Paul L

    2016-04-01

    Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) was the first ubiquitin protein ligase identified to interact with connexin43 (Cx43), and its suppressed expression results in accumulation of gap junction plaques at the plasma membrane. Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15 and target Cx43 to the endocytic pathway. Although the Cx43 residues that undergo ubiquitination are still unknown, in this study we address other unresolved questions pertaining to the molecular mechanisms mediating the direct interaction between Nedd4 (WW1-3 domains) and Cx43 (carboxyl terminus (CT)). All three WW domains display a similar three antiparallel β-strand structure and interact with the same Cx43CT(283)PPXY(286)sequence. Although Tyr(286)is essential for the interaction, MAPK phosphorylation of the preceding serine residues (Ser(P)(279)and Ser(P)(282)) increases the binding affinity by 2-fold for the WW domains (WW2 > WW3 ≫ WW1). The structure of the WW2·Cx43CT(276-289)(Ser(P)(279), Ser(P)(282)) complex reveals that coordination of Ser(P)(282)with the end of β-strand 3 enables Ser(P)(279)to interact with the back face of β-strand 3 (Tyr(286)is on the front face) and loop 2, forming a horseshoe-shaped arrangement. The close sequence identity of WW2 with WW1 and WW3 residues that interact with the Cx43CT PPXY motif and Ser(P)(279)/Ser(P)(282)strongly suggests that the significantly lower binding affinity of WW1 is the result of a more rigid structure. This study presents the first structure illustrating how phosphorylation of the Cx43CT domain helps mediate the interaction with a molecular partner involved in gap junction regulation.

  17. Nε-lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart

    PubMed Central

    Colussi, Claudia; Rosati, Jessica; Straino, Stefania; Spallotta, Francesco; Berni, Roberta; Stilli, Donatella; Rossi, Stefano; Musso, Ezio; Macchi, Emilio; Mai, Antonello; Sbardella, Gianluca; Castellano, Sabrina; Chimenti, Cristina; Frustaci, Andrea; Nebbioso, Angela; Altucci, Lucia; Capogrossi, Maurizio C.; Gaetano, Carlo

    2011-01-01

    Wanting to explore the epigenetic basis of Duchenne cardiomyopathy, we found that global histone acetylase activity was abnormally elevated and the acetylase P300/CBP-associated factor (PCAF) coimmunoprecipitated with connexin 43 (Cx43), which was Nε-lysine acetylated and lateralized in mdx heart. This observation was paralleled by Cx43 dissociation from N-cadherin and zonula occludens 1, whereas pp60-c-Src association was unaltered. In vivo treatment of mdx with the pan-histone acetylase inhibitor anacardic acid significantly reduced Cx43 Nε-lysine acetylation and restored its association to GAP junctions (GJs) at intercalated discs. Noteworthy, in normal as well as mdx mice, the class IIa histone deacetylases 4 and 5 constitutively colocalized with Cx43 either at GJs or in the lateralized compartments. The class I histone deacetylase 3 was also part of the complex. Treatment of normal controls with the histone deacetylase pan-inhibitor suberoylanilide hydroxamic acid (MC1568) or the class IIa-selective inhibitor 3-{4-[3-(3-fluorophenyl)-3-oxo-1-propen-1-yl]-1-methyl-1H-pyrrol-2-yl}-N-hydroxy-2-propenamide (MC1568) determined Cx43 hyperacetylation, dissociation from GJs, and distribution along the long axis of ventricular cardiomyocytes. Consistently, the histone acetylase activator pentadecylidenemalonate 1b (SPV106) hyperacetylated cardiac proteins, including Cx43, which assumed a lateralized position that partly reproduced the dystrophic phenotype. In the presence of suberoylanilide hydroxamic acid, cell to cell permeability was significantly diminished, which is in agreement with a Cx43 close conformation in the consequence of hyperacetylation. Additional experiments, performed with Cx43 acetylation mutants, revealed, for the acetylated form of the molecule, a significant reduction in plasma membrane localization and a tendency to nuclear accumulation. These results suggest that Cx43 Nε-lysine acetylation may have physiopathological consequences for cell to

  18. Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats

    PubMed Central

    Hussein, Abdelaziz M.; Ghalwash, Mohammed; Magdy, Khaled; Abulseoud, Osama A.

    2016-01-01

    Background and Purpose: This study aimed to investigate the effect of ceftriaxone on oxidative stress and gap junction protein (connexin 43, Cx-43) expression in pentylenetetrazole (PTZ) induced kindling model. Methods: Twenty four Sprague dawely rats were divided into 3 equal groups (a) normal group: normal rats. (b) PTZ kindled group: received PTZ at the dose of 50 mg/kg via intraperitoneal injection (i.p.) every other day for 2 weeks (c) ceftriaxone treated group: received ceftriaxone at the dose 200 mg\\kg/12 hrs via i.p. injection daily from the 6th dose of PTZ for 3 days. Racine score, latency before beginning the first myoclonic jerk and duration of the jerks used as parameters of behavioral assessment. Immunohistopathological study for Cx-43 expression in hippocampus and measurement of markers of oxidative stress (malondialdehyde [MDA], low reduced glutathione [GSH] and catalase [CAT]) in hippocampal neurons were done. Results: PTZ kindling was associated with behavioral changes (in the form high stage of Racine score, long seizure duration and short latency for the first jerk), enhanced oxidative stress state (as demonstrated by high MDA, low GSH and CAT) and up regulation of Cx43 in hippocampal regions. While, ceftriaxone treatment ameliorated, significantly, PTZ-induced convulsions and caused significant improvement in oxidative stress markers and Cx-43 expression in hippocamal regions (p < 0.05). Conclusions: These findings support the anticonvulsive effects of some beta-lactams antibiotics which could offer a possible contributor in the basic treatment of temporal lobe epilepsy. This effect might be due to reduction of oxidative stress and Cx43 expression. PMID:27390674

  19. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells

    PubMed Central

    Johnson, Kristen E.; Mitra, Shalini; Katoch, Parul; Kelsey, Linda S.; Johnson, Keith R.; Mehta, Parmender P.

    2013-01-01

    The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions. PMID:23363606

  20. Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment.

    PubMed

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2013-11-01

    Identification and isolation of pluripotent stem cells in adult tissues represent an important advancement in the fields of stem cell biology and regenerative medicine. For several years, research has been performed on the identification of biomarkers that can isolate stem cells residing in neural crest (NC)-derived adult tissues. The NC is considered a good model in stem cell biology as cells from it migrate extensively and contribute to the formation of diverse tissues in the body during organogenesis. Migration of these cells is modulated, in part, by gap junction communication among the cell sheets. Here we present a study in which, selection of connexin 43 (Cx43) expressing cells from human adult periodontal ligament yields a novel pluripotent stem cell population. Cx43⁺ periodontal ligament stem cells express pluripotency-associated transcription factors OCT4, Nanog, and Sox2, as well as NC-specific markers Sox10, p75, and Nestin. When injected in vivo into an immunodeficient mouse model, these cells were capable of generating teratomas with tissues from the three embryological germ layers: endoderm, mesoderm, and ectoderm. Furthermore, the cells formed mature structures of tissues normally arising from the NC during embryogenesis such as eccrine sweat glands of the human skin, muscle, neuronal tissues, cartilage, and bone. Immunohistochemical analysis confirmed the human origin of the neoplastic cells as well as the ectodermal and endodermal nature of some of the structures found in the tumors. These results suggest that Cx43 may be used as a biomarker to select and isolate the remnant NC pluripotent stem cells from adult human tissues arising from this embryological structure. The isolation of these cells through routine medical procedures such as wisdom teeth extraction further enhances their applicability to the regenerative medicine field.

  1. Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL‑1 cardiomyocytes.

    PubMed

    Zhang, Qianhuan; Deng, Chunyu; Rao, Fang; Modi, Rohan M; Zhu, Jiening; Liu, Xiaoying; Mai, Liping; Tan, Honghong; Yu, Xiyong; Lin, Qiuxiong; Xiao, Dingzhang; Kuang, Sujuan; Wu, Shulin

    2013-09-01

    Desmosomes and gap junctions are situated in the intercalated disks of cardiac muscle and maintain the integrity of mechanical coupling and electrical impulse conduction between cells. The desmosomal plakin protein, desmoplakin (DSP), also plays a crucial role in the stability of these interconnected components as well as gap junction connexin proteins. In addition to cell‑to‑cell junctions, other molecules, including voltage‑gated sodium channels (Nav1.5) are present in the intercalated disk and support the contraction of cardiac muscle. Mutations in genes encoding desmosome proteins may result in fatal arrhythmias, including arrhythmogenic right ventricular cardiomyopathy (ARVC). Therefore, the aim of the present study was to determine whether the presence of DSP is necessary for the normal function and localization of gap junction protein connexin43 (Cx43) and Nav1.5. To examine this hypothesis, RNA interference was utilized to knock down the expression of DSP in HL‑1 cells and the content, distribution and function of Cx43 and Nav1.5 was assessed. Western blotting and flow cytometry experiments revealed that Cx43 and Nav1.5 expression decreased following DSP silencing. In addition, immunofluorescence studies demonstrated that a loss of DSP expression led to an abnormal distribution of Cx43 and Nav1.5, while scrape‑loading dye/transfer revealed a decrease in dye transfer in DSP siRNA‑treated cells. The sodium current was also recorded by the whole‑cell patch clamp technique. The results indicated that DSP suppression decreased sodium current and slowed conduction velocity in cultured cells. The present study indicates that impaired mechanical coupling largely affects electrical synchrony, further uncovering the pathogenesis of ARVC.

  2. Connexin 43 enhances Bax activation via JNK activation in sunitinib-induced apoptosis in mesothelioma cells.

    PubMed

    Uzu, Miaki; Sato, Hiromi; Shimizu, Ayaka; Shibata, Yukihiro; Ueno, Koichi; Hisaka, Akihiro

    2017-06-01

    The constituent protein of gap junctions, connexin (Cx), interacts with various proteins via its C-terminus region, including kinases, cell-adhesion proteins, and a pro-apoptotic protein, Bax. This molecular interaction may affect expression and functioning of the interacting proteins and modulate the cellular physiology. In our previous work, Cx43 was found to interact directly with Bax and in the presence of sunitinib, lead to the Bax-mediated apoptosis in mesothelioma cells. In this study, we investigated the mechanism of how Cx43 promotes Bax-mediated apoptosis using the same cell line. Treatment with sunitinib increased the expression of the active conformation of the Bax protein, which was predominantly localized at the mitochondria, only in Cx43-transfected cells. Bax oligomerization and decrease in the mitochondrial membrane potential were also observed. The involvement of c-Jun N-terminal kinase (JNK) in the interaction of Cx43 and Bax was further examined. Treatment with sunitinib increased the expression of phosphorylated (active) form of JNK only in the Cx43-transfected cells. Phosphorylated JNK and active Bax were co-localized, and the co-localization was suppressed by the knockdown of Cx43. Moreover, JNK inhibition clearly suppressed Bax activation. In conclusion, we identified a novel Cx43-JNK-Bax axis regulating the process of apoptosis for the first time. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion.

    PubMed

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2015-10-12

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. HIF-1 and c-Src Mediate Increased Glucose Uptake Induced by Endothelin-1 and Connexin43 in Astrocytes

    PubMed Central

    Valle-Casuso, José Carlos; González-Sánchez, Ana; Medina, José M.; Tabernero, Arantxa

    2012-01-01

    In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism. PMID:22384254

  5. MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts.

    PubMed

    Curcio, Antonio; Torella, Daniele; Iaconetti, Claudio; Pasceri, Eugenia; Sabatino, Jolanda; Sorrentino, Sabato; Giampà, Salvatore; Micieli, Mariella; Polimeni, Alberto; Henning, Beverley J; Leone, Angelo; Catalucci, Daniele; Ellison, Georgina M; Condorelli, Gianluigi; Indolfi, Ciro

    2013-01-01

    Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of

  6. Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells

    PubMed Central

    1995-01-01

    Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly

  7. MicroRNA-1 Downregulation Increases Connexin 43 Displacement and Induces Ventricular Tachyarrhythmias in Rodent Hypertrophic Hearts

    PubMed Central

    Curcio, Antonio; Torella, Daniele; Iaconetti, Claudio; Pasceri, Eugenia; Sabatino, Jolanda; Sorrentino, Sabato; Giampà, Salvatore; Micieli, Mariella; Polimeni, Alberto; Henning, Beverley J.; Leone, Angelo; Catalucci, Daniele; Ellison, Georgina M.; Condorelli, Gianluigi; Indolfi, Ciro

    2013-01-01

    Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of

  8. Argirein alleviates stress-induced and diabetic hypogonadism in rats via normalizing testis endothelin receptor A and connexin 43

    PubMed Central

    Xu, Ming; Hu, Chen; Khan, Hussein-hamed; Shi, Fang-hong; Cong, Xiao-dong; Li, Qing; Dai, Yin; Dai, De-zai

    2016-01-01

    Aim: Argirein (rhein-arginine) is a derivative of rhein isolated from Chinese rhubarb (Rheum Officinale Baill.) that exhibits antioxidant and anti-inflammatory activities. In the present study we investigated the effects of argirein on stress-induced (hypergonadotrophic) and diabetic (hypogonadotrophic) hypogonadism in male rats. Methods: Stress-induced and diabetic hypogonadism was induced in male rats via injection of isoproterenol (ISO) or streptozotocin (STZ). ISO-injected rats were treated with argirein (30 mg·kg−1·d−1, po) or testosterone replacement (0.5 mg·kg−1·d−1, sc) for 5 days, and STZ-injected rats were treated with argirein (40–120 mg·kg−1·d−1, po) or aminoguanidine (100 mg·kg−1·d−1, po) for 4 weeks. After the rats were euthanized, blood samples and testes were collected. Serum hormone levels were measured, and the expression of endothelin receptor A (ETA), connexin 43 (Cx43) and other proteins in testes was detected. For in vitro experiments, testis homogenate was prepared from normal male rats, and incubated with ISO (1 μmol/L) or high glucose (27 mmol/L). Results: ISO injection induced hyper-gonadotrophic hypogonadism characterized by low testosterone and high FSH and LH levels in the serum, whereas STZ injection induced hypogonadotrophic hypogonadism as evidenced by low testosterone and low FSH and LH levels in the serum. In the testes of ISO- and STZ-injected rats, the expression of ETA, MMP-9, NADPH oxidase and pPKCε was significantly increased, and the expression of Cx43 was decreased. Administration of argirein attenuated both the abnormal serum hormone levels and the testis changes in ISO- and STZ-injected rats, and aminoguanidine produced similar actions in STZ-injected rats; testosterone replacement reversed the abnormal serum hormone levels, but did not affect the testis changes in ISO-injected rats. Argirein (0.3–3 μmol/L) exerted similar effects in testis homogenate incubated with ISO or high glucose in

  9. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential

    PubMed Central

    2012-01-01

    Background The extracellular matrix (ECM) provides a supportive microenvironment for cells, which is suitable as a tissue engineering scaffold. Mechanical stimulus plays a significant role in the fate of osteoblast, suggesting that it regulates ECM formation. Therefore, we investigated the influence of mechanical stimulus on ECM formation and bioactivity. Methods Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with mechanical tensile strain. After removing the cells, the ECMs coated on dishes were prepared. The ECM protein and calcium were assayed and MC3T3-E1 cells were re-seeded on the ECM-coated dishes to assess osteoinductive potential of the ECM. Results The cyclic tensile strain increased collagen, bone morphogenetic protein 2 (BMP-2), BMP-4, and calcium levels in the ECM. Compared with the ECM produced by unstrained osteoblasts, those of mechanically stimulated osteoblasts promoted alkaline phosphatase activity, elevated BMP-2 and osteopontin levels and mRNA levels of runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), and increased secreted calcium of the re-seeded MC3T3-E1 cells. Conclusion Mechanical strain promoted ECM production of osteoblasts in vitro, increased BMP-2/4 levels, and improved osteoinductive potential of the ECM. This study provided a novel method to enhance bioactivity of bone ECM in vitro via mechanical strain to osteoblasts. PMID:23098360

  10. Bone morphogenetic protein 2 regulates cell-cell communication by down-regulating connexin43 expression in luteinized human granulosa cells.

    PubMed

    Wu, Yan-Ting; Chang, Hsun-Ming; Huang, He-Feng; Sheng, Jian-Zhong; Leung, Peter C K

    2017-03-01

    Does bone morphogenetic protein 2 (BMP2) regulate connexin43 (Cx43) and modulate cell-cell communication in luteinized human granulosa cells? BMP2 decreases gap junction intercellular communication (GJIC) of luteinized human granulosa cells by down-regulating Cx43 expression through an activin receptor-like kinase (ALK)2/ALK3-mediated Sma- and Mad-related protein (SMAD)-dependent signaling pathway. BMP2 and its putative receptors are highly expressed in the human corpus luteum and are involved in the process of luteolysis. Cx43-coupled gap junctions play a critical role in the development and maintenance of corpus luteum. This is a laboratory study conducted over a 1-year period. At least three independent experiments with three replicates were conducted and the experimental samples were compared with the appropriate vehicle controls for all of the inhibition-approach, concentration-dependent or time-course studies. SVOG cell line (immortalized human granulosa-lutein cells derived from in vitro fertilization patients in an academic research center) was used as the study model. The changes of Cx43 expression and levels of phosphorylated SMAD1/5/8 protein were evaluated after exposure to recombinant human BMP2. Real-time quantitative PCR and Western blot analysis were used to examine the specific mRNA and protein levels, respectively. The BMP/TGF-β type I receptor inhibitors (Dorsomorphin, DMH-1 and SB431542) and target depletion small interfering RNAs (ALK2, ALK3, ALK6 and SMAD4) were used to investigate the underlying molecular mechanisms. A scrape loading and dye transfer assay was used to evaluate the GJIC between the SVOG cells. Treatment with BMP2 down-regulated the expression of Cx43 and decreased the GJIC activity, whereas it increased the phosphorylated SMAD1/5/8 protein in SVOG cells (P < 0.05). These biological effects were abolished by pre-treatment with the BMP type I receptor inhibitors, Dorsomorphin and DMH-1 (P < 0.05), but not SB431542. Additionally

  11. Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro.

    PubMed

    Boden, S D; McCuaig, K; Hair, G; Racine, M; Titus, L; Wozney, J M; Nanes, M S

    1996-08-01

    Bone morphogenetic proteins (BMPs) induce cartilage and bone differentiation in vivo and promote osteoblast differentiation from calvarial and marrow stromal cell preparations. Functional differences between BMP-2, -4, and -6 are not well understood. Recent investigations find that these three closely related osteoinductive proteins may exert different effects in primary rat calvarial cell cultures, suggesting the possibility of unique functions in vivo. In this study, we use a fetal rat secondary calvarial cell culture system to examine the differential effects of BMP-2, -4, and -6 on early osteoblast differentiation. These cells do not spontaneously differentiate into osteoblasts, as do cells in primary calvarial cultures, but rather require exposure to a differentiation initiator such as glucocorticoid or BMP. We determined that BMP-6 is a 2- to 2.5-fold more potent inducer of osteoblast differentiation than BMP-2 or -4. BMP-6 induced the formation of more and larger bone nodules as well as increased osteocalcin secretion. The effects of all three of these BMPs were potentiated up to 10-fold by cotreatment or pretreatment with the glucocorticoid triamcinolone (Trm). The Trm effects were synergistic with those of BMP-2 or -4, suggesting that this glucocorticoid may increase the cell responsiveness to these BMPs. Finally, BMP-6 did not require either cotreatment or pretreatment with Trm to achieve greater amounts of osteoblast differentiation than seen with BMP-2 or BMP-4 treatment, suggesting that BMP-6 may act at an earlier stage of cell differentiation.

  12. Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: an involvement of PKC pathway.

    PubMed

    Wang, Lingzhi; Fu, Yanni; Peng, Jianxin; Wu, Dengpan; Yu, Meiling; Xu, Chengfang; Wang, Qin; Tao, Liang

    2013-10-04

    Some of lipophilic statins have been reported to enhance toxicities induced by antineoplastic agents but the underling mechanism is unclear. The authors investigated the involvement of Cx43-mediated gap junction intercellular communication (GJIC) in the effect of simvastatin on the cellular toxicity induced by etoposide in this study. The results showed that a major component of the cytotoxicity of therapeutic levels of etoposide is mediated by gap junctions composed of connexin 43(Cx43) and simvastatin at the dosage which does not induce cytotoxicity enhances etoposide toxicity by increasing gap junction coupling. The augmentative effect of simvastatin on GJIC was related to the inhibition of PKC-mediated Cx43 phosphorylation at ser368 and subsequent enhancement of Cx43 membrane location induced by the agent. The present study suggests the possibility that upregulation of gap junctions may be utilized to increase the efficacy of anticancer chemotherapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Function of a novel plakophilin-2 mutation in the abnormal expression of connexin43 in a patient with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Wang, Pei-Ning; Wu, Shu-Lin; Zhang, Bin; Lin, Qiu-Xiong; Shan, Zhi-Xin

    2015-03-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a desmosomal disease. Desmosomes and gap junctions are important structural components of cardiac intercalated discs. The proteins plakophilin-2 (PKP-2) and connexin43 (Cx43) are components of desmosomes and gap junctions, respectively. This study was conducted to determine whether Cx43 expression is affected by the mutation of the PKP-2 gene in patients with ARVC. A novel mutation was detected in a typical patient with ARVC. The mutated gene was transfected into rat mesenchymal stem cells expressing Cx43 through a pReversied-M-29 plasmid. Cx43 expression was detected using quantitative polymerase chain reaction analysis. Cx43 expression was significantly decreased in the mutant PKP-2 group compared with that in the wild-type PKP-2 group. In conclusion, PKP-2 affected Cx43 expression at the gene transcription level in the patient with ARVC.

  14. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E- cadherin

    PubMed Central

    1991-01-01

    Gap junctional intercellular communication (GJIC) of cultured mouse epidermal cells is mediated by a gap junction protein, connexin 43, and is dependent on the calcium concentration in the medium, with higher GJIC in a high-calcium (1.2 mM) medium. In several mouse epidermal cell lines, we found a good correlation between the level of GJIC and that of immunohistochemical staining of E-cadherin, a calcium-dependent cell adhesion molecule, at cell-cell contact areas. The variant cell line P3/22 showed both low GJIC and E-cadherin protein expression in low- and high-Ca2+ media. P3/22 cells showed very low E-cadherin mRNA expression. To test directly whether E-cadherin is involved in the Ca(2+)-dependent regulation of GJIC, we transfected the E-cadherin expression vector into P3/22 cells and obtained several stable clones which expressed high levels of E-cadherin mRNA. All transfectants expressed E-cadherin molecules at cell-cell contact areas in a calcium- dependent manner. GJIC was also observed in these transfectants and was calcium dependent. These results suggest that Ca(2+)-dependent regulation of GJIC in mouse epidermal cells is directly controlled by a calcium-dependent cell adhesion molecule, E-cadherin. Furthermore, several lines of evidence suggest that GJIC control by E-cadherin involves posttranslational regulation (assembly and/or function) of the gap junction protein connexin 43. PMID:1650371

  15. Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology.

    PubMed

    Obert, Elisabeth; Strauss, Randy; Brandon, Carlene; Grek, Christina; Ghatnekar, Gautam; Gourdie, Robert; Rohrer, Bärbel

    2017-05-01

    A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1, was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser photocoagulation triggering choroidal neovascularization (CNV) or bright light exposure leading to morphological damage. αCT1 was delivered via eye drops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light damage significantly disrupted RPE cell morphology as determined by ZO-1 and occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology. The connexin43 mimetic αCT1 accumulates in the mouse retinal pigment epithelium following topical delivery via eye drops. αCT1 eye drops prevented RPE-cell barrier dysfunction in two mouse models. αCT1 stabilizes intercellular tight junctions. Stabilization of cellular junctions via αCT1 may serve as a novel therapeutic approach for both wet and dry age-related macular degeneration.

  16. Osteogenic potential of osteoblasts from neonatal rats born to mothers treated with caffeine throughout pregnancy.

    PubMed

    Reis, Amanda Maria Sena; Ribeiro, Lorena Gabriela Rocha; Ocarino, Natália de Melo; Goes, Alfredo Miranda; Serakides, Rogéria

    2015-02-04

    Caffeine is an active alkaloid that can cause damage to bones in formation during prenatal life into adulthood. This compound can pass across the placenta and into the mother's milk, causing a reduction in bone formation, growth and mass. The objective of this study was to examine the osteogenic potential of osteoblasts extracted from neonatal rats born to mothers treated with caffeine throughout pregnancy. Twenty-four adult Wistar rats were randomly divided into four groups, consisting of one control group and three groups that were treated with 25, 50, or 100 mg/kg of caffeine by an oral-gastric probe throughout the duration of the experimental period (pregnancy). At birth, three puppies from each dam in each group were euthanized, and osteoblasts were extracted from the calvaria of these pups for in vitro testing. The osteoblasts extracted from the pups of rats that received 50 mg/kg caffeine during pregnancy exhibited increased expression of osteocalcin, osteopontin, sialoprotein, runx-2, alkaline phosphatase and type I collagen transcripts, resulting in increased synthesis of mineralization nodules. Neonates from rats treated with 50 mg/kg caffeine during pregnancy contained osteoblasts with a higher osteogenic potential characterized by increased expression of osteocalcin, osteopontin, sialoprotein, runx-2, alkaline phosphatase and type I collagen and increased synthesis of mineralization nodules.

  17. Human Spinal Bone Dust as a Potential Local Autograft: In vitro Potent Anabolic Effect on Human Osteoblasts.

    PubMed

    Gao, Ryan; Street, Matthew; Tay, Mei Lin; Callon, Karen E; Naot, Dorit; Lock, Alistair; Munro, Jacob T; Cornish, Jillian; Ferguson, John; Musson, David

    2017-07-18

    In Vitro Study. To evaluate the effect that factors released from human posterior spinal bone dust have on primary human osteoblast growth and maturation. Bone dust, created during spinal fusion surgeries has the potential to be used as an autologous bone graft by providing a source of viable autologous osteoblasts and mesenchymal stem cells with osteogenic potential. To date, no information is available on whether bone dust also provides a source of anabolic factors with the potential to enhance osteoblast proliferation and maturation, which would enhance its therapeutic potential. Bone dust was collected from consenting patients undergoing elective posterior spinal fusion surgeries, and primary human osteoblasts were cultured from patients undergoing elective hip or knee arthroplasty. Growth factors and cytokines released by bone dust were quantified using enzyme-linked immunosorbent assay (ELISA). Primary human osteoblast proliferation and gene expression in response to bone dust were assessed using H-thymidine incorporation and real-time polymerase chain reaction (qPCR), respectively. Human bone dust released anabolic cytokines (IL-1β and IL-6) and growth factors (TGF-β, VEGF, FGF-Basic and PDGF-BB) in increasing concentrations over a 7-day period. In vitro, the anabolic factors released by bone dust increased osteoblast proliferation by 7-fold, compared with osteoblasts cultured alone. In addition, the factors released from bone dust up-regulated a number of osteoblastic genes integral to osteoblast differentiation, maturation and angiogenesis. This study is the first to demonstrate that human posterior spinal bone dust released anabolic factors that potently enhance osteoblast proliferation and the expression of genes that favor bone healing and bone union. Given that bone dust is anabolic and its harvest is fast, simple, and safe to perform, spinal surgeons should be encouraged to 'recycle' bone dust and harness the regenerative potential of this free

  18. Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts.

    PubMed

    Bölükbaşı Ateş, Gamze; Ak Can, Ayşe; Gülsoy, Murat

    2017-04-01

    Photobiomodulation (PBM) describes light-induced photochemical reactions achieved by the application of red or near infrared lasers/LED light with low energy densities. This noninvasive and painless method has been used in some clinical areas but controversial outcomes demand a skeptical look for its promising and potential effects. In this detailed in vitro study, the osteoblast cells were irradiated with 635 and 809 nm diode lasers at energy densities of 0.5, 1, and 2 J/cm(2). Cell viability, proliferation, bone formation, and osteoblast differentiation were evaluated by methylthiazole tetrazolium (MTT) assay, Alamar Blue assay, acridine orange/propidium iodide staining, alkaline phosphatase (ALP) activity, Alizarin red staining, and reverse-transcription polymerase chain reaction (RT-PCR) to test the expression of collagen type I, ALPL, and osteocalcin. The results indicate that studied energy doses have a transient effect (48 h after laser irradiation) on the osteoblast viability and proliferation. Similarly, laser irradiation did not appear to have any effect on ALP activity. These results were confirmed by RT-PCR analysis of osteoblast markers. This study suggests that several irradiation parameters and variations in the methods should be clearly established in the laboratory before laser treatment becomes a postulated application for bone tissue regeneration in clinical level.

  19. Mitochondrial membrane potential changes in osteoblasts treated with parathyroid hormone and estradiol.

    PubMed

    Troyan, M B; Gilman, V R; Gay, C V

    1997-06-15

    This study assessed mitochondrial membrane potential changes in cultured osteoblasts treated with hormones known to regulate osteoblasts. A fluorescent carbocyanine dye, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide, also called JC-1, was used as a probe. JC-1 emits photons at 585 nm (orange-red) when the membrane potential in mitochondria is highly negative, but when the potential becomes reduced emission occurs at 527 nm (green). Osteoblasts were rinsed in serum-free medium for 5 min, then loaded with 1 x 10(-6) M JC-1 for 10 min. The distribution and intensity of JC-1 fluorescence were evaluated with a laser-scanning confocal microscope system. Hormone treatments included parathyroid hormone (PTH; 10(-8) M), 17beta-estradiol (10(-8) M), and thyroxine (T4; 10(-8) M). The potassium ionophore valinomycin (10(-6) M) was used as a control since it is known to disrupt the electrochemical gradient of mitochondria without interfering with the pH gradient. Valinomycin caused a profound, rapid increase (22.5% above untreated values) in the green/red ratio, which indicated a lowering of the mitochondrial membrane potential in all samples evaluated. PTH caused a less pronounced, but significant (7-14%), reduction in membrane potential in all cells examined. PTH is known to affect osteoblasts in a number of ways and is inhibitory to mitochondrial respiration; the results confirm this effect. For estradiol, half of the cells responded at a significant level, with a membrane potential reduction of 6 to 13% being recorded; the other half did not respond. Thyroxine did not alter mitochondrial membrane potential. Responses were detectable within 20 s for valinomycin, but occurred at a slower rate, over 200 to 300 s, following PTH and estradiol treatment. Responses to PTH and estradiol could be due to mitochondrial uptake of cytosolic Ca2+.

  20. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  1. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  2. Simvastatin attenuates the additive effects of TNF-α and IL-18 on the connexin 43 up-regulation and over-proliferation of cultured aortic smooth muscle cells.

    PubMed

    Lin, Yu-Chun; Chiang, Chiang-Hua; Chang, Li-Teh; Sun, Cheuk-Kwan; Leu, Steve; Shao, Pei-Lin; Hsieh, Ming-Chu; Tsai, Tzu-Hsien; Chua, Sarah; Chung, Sheng-Ying; Kao, Ying-Hsien; Yip, Hon-Kan

    2013-06-01

    Statin therapy is known to down-regulate inflammatory activities in atheromatous tissues of animals. The aims of this study were to examine the regulatory role of interleukin-18 (IL-18) in the connexin 43 (Cx43) and the proliferation of cultured aortic smooth muscle cells (SMCs) as well as to elucidate the underlying therapeutic mechanism of simvastatin. Vytorin therapy significantly alleviated high-cholesterol diet-induced hypercholesterolemia, suppressed neointimal hyperplasia, macrophage infiltration, and Cx43 and IL-18 expression in rabbit aortic walls. In vitro study using an aortic SMC line showed that IL-18 up-regulated constitutive Cx43 expression and potentiated tumor necrosis factor-α (TNF-α)-triggered Akt and MAPK signaling pathways. Simvastatin treatment alone reduced constitutive Cx43 levels and prevented the TNF-α-induced IL-18 up-regulation. Mechanistic investigation using kinase-specific inhibitors showed that simvastatin pretreatment attenuated TNF-α-elicited Akt and ERK1/2 phosphorylation, whereas PI3K and all MAPK activities were also implied in the additive effect of TNF-α and IL-18 on Cx43 up-regulation. Proliferation assay indicated that IL-18 stimulated SMC proliferation and synergized the TNF-α-stimulated cell proliferation. Likewise, simvastatin treatment suppressed the SMC over-proliferation induced not only by TNF-α alone, but also by simultaneous treatment with TNF-α and IL-18. The suppression of simvastatin in SMC proliferation was not mediated through mitochondrial related pro-apoptogenesis under both scenarios. In conclusion, simvastatin attenuates the additive effects of TNF-α and IL-18 on Cx43 up-regulation and over-proliferation of aortic SMCs, mainly through the blockade of Akt signaling pathway. These findings may fortify the rationale underlying the atheroprotective mechanism of statin therapy.

  3. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection.

    PubMed

    Rodriguez-Sinovas, Antonio; Boengler, Kerstin; Cabestrero, Alberto; Gres, Petra; Morente, Miriam; Ruiz-Meana, Marisol; Konietzka, Ina; Miró, Elisabet; Totzeck, Andreas; Heusch, Gerd; Schulz, Rainer; Garcia-Dorado, David

    2006-07-07

    We have previously shown that connexin 43 (Cx43) is present in mitochondria, that its genetic depletion abolishes the protection of ischemia- and diazoxide-induced preconditioning, and that it is involved in reactive oxygen species (ROS) formation in response to diazoxide. Here we investigated the intramitochondrial localization of Cx43, the mechanism of Cx43 translocation to mitochondria and the effect of inhibiting translocation on the protection of preconditioning. Confocal microscopy of mitochondria devoid of the outer membrane and Western blotting on fractionated mitochondria showed that Cx43 is located at the inner mitochondrial membrane, and coimmunoprecipitation of Cx43 with Tom20 (Translocase of the outer membrane 20) and with heat shock protein 90 (Hsp90) indicated that it interacts with the regular mitochondrial protein import machinery. In isolated rat hearts, geldanamycin, a blocker of Hsp90-dependent translocation of proteins to the inner mitochondrial membrane through the TOM pathway, rapidly (15 minutes) reduced mitochondrial Cx43 content by approximately one-third in the absence or presence of diazoxide. Geldanamycin alone had no effect on infarct size, but it ablated the protection against infarction afforded by diazoxide. Geldanamycin abolished the 2-fold increase in mitochondrial Cx43 induced by 2 preconditioning cycles of ischemia/reperfusion, but this effect was not associated with reduced protection. These results demonstrate that Cx43 is transported to the inner mitochondrial membrane through translocation via the TOM complex and that a normal mitochondrial Cx43 content is important for the diazoxide-related pathway of preconditioning.

  4. The E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin 43 to promote loss of gap junctions.

    PubMed

    Totland, Max Z; Bergsland, Christian H; Fykerud, Tone A; Knudsen, Lars M; Rasmussen, Nikoline L; Eide, Peter W; Yohannes, Zeremariam; Sørensen, Vigdis; Brech, Andreas; Lothe, Ragnhild A; Leithe, Edward

    2017-09-01

    Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin 43 (Cx43; also known as GJA1) is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Cx43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of Cx43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the Cx43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of Cx43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and Cx43 degradation in human carcinoma cells. © 2017. Published by The Company of Biologists Ltd.

  5. Protein kinase Cδ-mediated phosphorylation of Connexin43 gap junction channels causes movement within gap junctions followed by vesicle internalization and protein degradation.

    PubMed

    Cone, Angela C; Cavin, Gabriel; Ambrosi, Cinzia; Hakozaki, Hiroyuki; Wu-Zhang, Alyssa X; Kunkel, Maya T; Newton, Alexandra C; Sosinsky, Gina E

    2014-03-28

    Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.

  6. Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration.

    PubMed

    Mori, Ryoichi; Power, Kieran T; Wang, Chiuhui Mary; Martin, Paul; Becker, David L

    2006-12-15

    Experimental downregulation of connexin43 (Cx43) expression at skin wound sites appears to markedly improve the rate and quality of healing, but the underlying mechanisms are currently unknown. Here, we have compared physiological and cell biological aspects of the repair process with and without Cx43 antisense oligodeoxynucleotide treatment. Treated wounds exhibited accelerated skin healing with significantly increased keratinocyte and fibroblast proliferation and migration. In vitro knockdown of Cx43 in a fibroblast wound-healing model also resulted in significantly faster healing, associated with increased mRNA for TGF-beta1, and collagen alpha1 and general collagen content at the wound site. Treated wounds showed enhanced formation of granulation tissue and maturation with more rapid angiogenesis, myofibroblast differentiation and wound contraction appeared to be advanced by 2-3 days. Recruitment of both neutrophils and macrophages was markedly reduced within treated wounds, concomitant with reduced leukocyte infiltration. In turn, mRNA levels of CC chemokine ligand 2 and TNF-alpha were reduced in the treated wound. These data suggest that, by reducing Cx43 protein with Cx43-specific antisense oligodeoxynucleotides at wound sites early in the skin healing process repair is enhanced, at least in part, by accelerating cell migration and proliferation, and by attenuating inflammation and the additional damage it can cause.

  7. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis.

    PubMed

    Khan, Zahidul; Yaiw, Koon-Chu; Wilhelmi, Vanessa; Lam, Hoyin; Rahbar, Afsar; Stragliotto, Giuseppe; Söderberg-Nauclér, Cecilia

    2014-01-01

    A lack of gap junctional intercellular communication (GJIC) is common in cancer. Many oncogenic viruses have been shown to downregulate the junctional protein connexin 43 (Cx43) and reduce GJIC. Human cytomegalovirus (HCMV) is a ubiquitous, species-specific betaherpesvirus that establishes life-long latency after primary infection. It encodes two viral gene products, immediate early (IE) proteins IE1 and IE2, which are crucial in viral replication and pathogenesis of many diseases. Emerging evidence demonstrates that HCMV DNA and proteins are highly prevalent in glioblastoma multiforme (GBM) and in other tumors, but HCMV's role in tumorigenesis remains obscure. In the present study, we examined the effects of HCMV infection on Cx43 expression and GJIC as well as the viral mechanism mediating the effects in human GBM cells and tissue samples. We found that HCMV downregulated Cx43 protein, resulting in disruption of functional GJIC as assayed by fluorescent dye transfer assay. We show that both HCMV-IE72 and IE86 mediate downregulation of Cx43 by silencing RNA targeting either IE72 or IE86 coupled with ganciclovir. This finding was further validated by transfection with expression vectors encoding IE72 or IE86, and we show that viral-mediated Cx43 depletion involved proteasomal degradation. Importantly, we also observed that the Cx43 protein levels and IE staining correlated inversely in 10 human GBM tissue specimens. Thus, HCMV regulates Cx43 expression and GJIC, which may contribute to gliomagenesis.

  8. The conduction system and expressions of hyperpolarization-activated cyclic nucleotide-gated cation channel 4 and connexin43 expressions in the hearts of fetal day 13 mice.

    PubMed

    Wen, Y; Li, B

    2017-01-01

    We investigated the development of the sinus node of the heart conduction system by localizing hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) and connexin43 (Cx43) in the hearts of fetal day 13 mice. Horizontal serial sections of day 13 whole fetuses were stained by hematoxylin and eosin and immunofluorescence to identify myocardial cells that express HCN4, hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) and Cx43. Expression levels of HCN4 and Cx43 were determined by quantitative RT-PCR in both fetal day 13 and adult mice. We found that both Cx43 and HCN4 expressions were located on the cell membranes in the hearts of fetal day 13 mice, but Cx43 was distributed throughout the myocardial cells. HCN4 expression was concentrated mainly in the left dorsal epicardium of the right atrium where Cx43 expression was low or absent. Quantitative RT-PCR demonstrated that HCN4 expression was significantly higher and HCN2 expression was significantly lower in fetal day 13 mice than in adults. We found no statistically significant difference in Cx43 expression between fetal day 13 mice and adults. HCN4 stained myocardial cells in the left dorsal epicardium of the right atrium are the origin of the sinus node and the remainder of the heart conduction system.

  9. Transition from Preinvasive Carcinoma In Situ to Seminoma Is Accompanied by a Reduction of Connexin 43 Expression in Sertoli Cells and Germ Cells1

    PubMed Central

    Brehm, Ralph; Rüttinger, Christina; Fischer, Petra; Gashaw, Isabella; Winterhager, Elke; Kliesch, Sabine; Bohle, Rainer M; Steger, Klaus; Bergmann, Martin

    2006-01-01

    Abstract Carcinoma in situ (CIS) represents the preinvasive stage of human germ cell tumors, but the mechanism leading to pubertal proliferation and invasive malignancy remains unknown. Among testicular gap junctional proteins, connexin 43 (Cx43) represents the predominant Cx, and, previously, an inverse correlation between synthesis of Cx43 protein and progression of tumor development was detected. In the present study, using cDNA microarray analysis, in situ hybridization, semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) from tissue homogenates, RT-PCR from microdissected tubules with normal spermatogenesis and CIS, and seminoma cells from invasive seminoma, we asked whether reduction of Cx43 protein is accompanied by a change of Cx43 transcripts. We detected a significant downregulation of Cx43 at mRNA level in Sertoli and germ cells starting in seminiferous tubules infiltrated with CIS and resulting in a complete loss in seminoma cells. It was demonstrated that downregulation of Cx43 expression in neoplastic human testis takes place at the transcriptional level and starts in CIS. This reduction of Cx43 expression further suggests that early intratubular derangement in Cx43 gene expression and disruption of intercellular communication between Sertoli cells and/or Sertoli and preinvasive tumor cells may play a role in the progression phase of human seminoma development. PMID:16820096

  10. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  11. Influence of the antiandrogen flutamide on connexin 43 (Cx43) gene and protein expression in the porcine placenta and uterus during pregnancy.

    PubMed

    Wieciech, Iwona; Grzesiak, Małgorzata; Knapczyk-Stwora, Katarzyna; Pytlik, Anna; Słomczynska, Maria

    2014-01-01

    The study focuses on the expression of connexin 43 (Cx43), a gap junctional protein in the porcine placenta and uterus. The aim was to examine Cx43 mRNA and protein expression after antiandrogen flutamide treatment. Flutamide was injected into pregnant gilts at a daily dose of 50 mg/kg body weight at different stages of pregnancy: between days 43-49 (50 dpc), 83-89 (90 dpc) and 101-107 (108 dpc) of gestation. The animals were sacrificed and tissues were collected one day after the last injection. Cx43 immunostaining was observed in epithelial and stromal cells of the fetal part of the placenta; luminal and glandular epithelial cells of maternal part of the placenta and myometrium of the uterus within placentation sites. Cx43 was also found in glandular epithelium and myometrium of non-placental uterus. Flutamide treatment caused fluctuations in Cx43 expression especially before parturition. Although significant changes in Cx43 mRNA expression were observed only in the fetal part of the placenta, Cx43 protein level was affected within the maternal part of the placenta and non-placental uterus. These results suggest the involvement of androgens in the regulation of Cx43 expression within the feto-maternal compartment in pigs. However, androgen deficiency caused pronounced changes during late pregnancy and before parturition. These results are interesting due to the functional changes in the porcine uterus during the preparturient period that is determined by Cx43 protein.

  12. Androgen Signaling Disruption during Fetal and Postnatal Development Affects Androgen Receptor and Connexin 43 Expression and Distribution in Adult Boar Prostate

    PubMed Central

    Hejmej, Anna; Górowska, Ewelina; Kotula-Balak, Małgorzata; Chojnacka, Katarzyna; Zarzycka, Marta; Zając, Justyna; Bilińska, Barbara

    2013-01-01

    To date, limited knowledge exists regarding the role of the androgen signaling during specific periods of development in the regulation of androgen receptor (AR) and connexin 43 (Cx43) in adult prostate. Therefore, in this study we examined mRNA and protein expression, and tissue distribution of AR and Cx43 in adult boar prostates following fetal (GD20), neonatal (PD2), and prepubertal (PD90) exposure to an antiandrogen flutamide (50 mg/kg bw). In GD20 and PD2 males we found the reduction of the luminal compartment, inflammatory changes, decreased AR and increased Cx43 expression, and altered localization of both proteins. Moreover, enhanced apoptosis and reduced proliferation were detected in the prostates of these animals. In PD90 males the alterations were less evident, except that Cx43 expression was markedly upregulated. The results presented herein indicate that in boar androgen action during early fetal and neonatal periods plays a key role in the maintenance of normal phenotype and functions of prostatic cells at adulthood. Furthermore, we demonstrated that modulation of Cx43 expression in the prostate could serve as a sensitive marker of hormonal disruption during different developmental stages. PMID:24151599

  13. Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis

    PubMed Central

    Dell'Aquila, Maria Elena; Caillaud, Maud; Maritato, Filippo; Martoriati, Alain; Gérard, Nadine; Aiudi, Giulio; Minoia, Paolo; Goudet, Ghylène

    2004-01-01

    The aim of this study was to investigate cumulus expansion, nuclear maturation and expression of connexin 43, cyclooxygenase-2 and FSH receptor transcripts in equine cumuli oophori during in vivo and in vitro maturation in the presence of equine FSH (eFSH) and precursors for hyaluronic acid synthesis. Equine cumulus-oocyte complexes (COC) were cultured in a control defined medium supplemented with eFSH (0 to 5 micrograms/ml), Fetal Calf Serum (FCS), precursors for hyaluronic acid synthesis or glutamine according to the experiments. After in vitro maturation, the cumulus expansion rate was increased with 1 microgram/ml eFSH, and was the highest with 20% FCS. It was not influenced by precursors for hyaluronic acid synthesis or glutamine. The expression of transcripts related to cumulus expansion was analyzed in equine cumulus cells before maturation, and after in vivo and in vitro maturation, by using reverse transcription-polymerase chain reaction (RT-PCR) with specific primers. Connexin 43, cyclooxygenase-2 (COX-2) and FSH receptor (FSHr) mRNA were detected in equine cumulus cells before and after maturation. Their level did not vary during in vivo or in vitro maturation and was influenced neither by FSH nor by precursors for hyaluronic acid synthesis. Results indicate that previously reported regulation of connexin 43 and COX-2 proteins during equine COC maturation may involve post-transcriptional mechanisms. PMID:15212696

  14. Polycystin-1 Mediates Mechanical Strain-Induced Osteoblastic Mechanoresponses via Potentiation of Intracellular Calcium and Akt/β-Catenin Pathway

    PubMed Central

    Wang, Hua; Sun, Wen; Ma, Junqing; Pan, Yongchu; Wang, Lin; Zhang, Weibing

    2014-01-01

    Mechanical regulation of bone formation involves a complex biophysical process, yet the underlying mechanisms remain poorly understood. Polycystin-1 (PC1) is postulated to function as a mechanosensory molecule mediating mechanical signal transduction in renal epithelial cells. To investigate the involvement of PC1 in mechanical strain-induced signaling cascades controlling osteogenesis, PKD1 gene was stably silenced in osteoblastic cell line MC3T3-E1 by using lentivirus-mediated shRNA technology. Here, our findings showed that mechanical tensile strain sufficiently enhanced osteogenic gene expressions and osteoblastic proliferation. However, PC1 deficiency resulted in the loss of the ability to sense external mechanical stimuli thereby promoting osteoblastic osteogenesis and proliferation. The signal pathways implicated in this process were intracellular calcium and Akt/β-catenin pathway. The basal levels of intracellular calcium, phospho-Akt, phospho-GSK-3β and nuclear accumulation of active β-catenin were significantly attenuated in PC1 deficient osteoblasts. In addition, PC1 deficiency impaired mechanical strain-induced potentiation of intracellular calcium, and activation of Akt-dependent and Wnt/β-catenin pathways, which was able to be partially reversed by calcium ionophore A23187 treatment. Furthermore, applications of LiCl or A23187 in PC1 deficient osteoblasts could promote osteoblastic differentiation and proliferation under mechanical strain conditions. Therefore, our results demonstrated that osteoblasts require mechanosensory molecule PC1 to adapt to external mechanical tensile strain thereby inducing osteoblastic mechanoresponse, partially through the potentiation of intracellular calcium and downstream Akt/β-catenin signaling pathway. PMID:24618832

  15. Connexin43 regulates high glucose-induced expression of fibronectin, ICAM-1 and TGF-β1 via Nrf2/ARE pathway in glomerular mesangial cells.

    PubMed

    Chen, Zhiquan; Xie, Xi; Huang, Junying; Gong, Wenyan; Zhu, Xiaoyu; Chen, Qiuhong; Huang, Jiani; Huang, Heqing

    2017-01-01

    Nrf2/ARE signaling pathway is a crucial cellular defense system to cope with oxidative stress, which is adaptively activated, in diabetic condition that is not efficient enough to resist the oxidative stress provoked by hyperglycemia. We have previously demonstrated that Connexin43 (Cx43) attenuates renal fibrosis through c-Src. However, the underlying mechanisms need to be further clarified. It has been reported that Cx43 possesses the ability of anti-oxidative. The current study aimed to determine if Cx43 exerts protective effects on renal fibrosis in diabetes via activation of Nrf2/ARE pathway and explore the underlying molecular mechanisms. The following findings were observed: (1) Cx43 expression decreased and c-Src activity increased in kidneys of diabetic animals; (2) Over-expressed Cx43 in high glucose treated GMCs inhibited protein levels of FN, ICAM-1 and TGF-β1; (3) Nrf2/ARE signaling adaptively responded to high glucose treatment in GMCs; (4) Cx43 reduced ROS generation by boost Nrf2/ARE signaling under high glucose condition; (5) Inhibition of c-Src activity promoted nucleus accumulation of Nrf2; (6) Over-expressed Cx43 inhibited c-Src activity and the interaction between c-Src and Nrf2 in GMCs cultured in high glucose. Thus we propose that Cx43 might enhance the activation of Nrf2/ARE pathway by means of inhibiting c-Src activity to hinder the nuclear export of Nrf2, and then reduce expression of FN, ICAM-1 and TGF-β1, ultimately attenuating renal fibrosis in diabetes.

  16. Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic "stem-like" cells.

    PubMed

    Hsiao, Pi-Jung; Jao, Jo-Chi; Tsai, Jin-Lian; Chang, Wen-Tsan; Jeng, Kuo-Shyang; Kuo, Kung-Kai

    2014-02-01

    Chronic exposure to inorganic arsenic trioxide causes tumors of the skin, urinary bladder, lung, and liver. Several cancer initiators and promoters have been shown to alter cell-cell signaling by interference with gap junction intercellular communication (GJIC) and/or modulation of cell adhesion molecules, such as connexin43 (Cx43), E-cadherin, and β-catenin. The aim of this study was to determine whether the disruption of cell-cell interactions occurs in liver epithelial cells after exposure to arsenic trioxide. WB-F344 cells were treated with arsenic trioxide (6.25-50 μM) for up to 8 hours, and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, the changes in mRNA and protein levels of Cx43, E-cadherin, and β-catenin were determined. A significant dose- and time-dependent decrease in GJIC was observed when WB-F344 cells were exposed to arsenic trioxide (p < 0.05). Consistent with the inhibition of GJIC, cells' exposure to arsenic trioxide resulted in dose- and time-dependent decreases in Cx43 and E-cadherin mRNA expression and protein levels. However, arsenic trioxide did not alter the mRNA or protein levels of β-catenin. In an immunofluorescence study, nuclei were heavily stained with anti-β-catenin antibody, indicating significant nuclear translocation. In this study, we also demonstrated that arsenic trioxide-induced GJIC loss was a reversible process. Taken together, these data support the hypothesis that disruption of cell-cell communication may contribute to the tumor-promoting effect of inorganic arsenic trioxide.

  17. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs

    PubMed Central

    Kandasamy, Kathirvel; Escue, Rachel; Manna, Jayeeta; Adebiyi, Adebowale

    2015-01-01

    Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca2+. However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses. PMID:26163513

  18. The renin-angiotensin system mediates the effects of stretch on conduction velocity, connexin43 expression and redistribution in intact ventricle

    PubMed Central

    Hussain, Wajid; Patel, Pravina M; Chowdury, Rasheda; Cabo, Candido; Ciaccio, Edward J.; Lab, Max J; Duffy, Heather S; Wit, Andrew L; Peters, Nicholas S

    2010-01-01

    Introduction In disease states such as heart failure, myocardial infarction and hypertrophy, changes in the expression and location of Connexin43 (Cx43) occur (Cx43 remodeling), and may predispose to arrhythmias. Stretch may be an important stimulus to Cx43 remodeling; however, it has only been investigated in neonatal cell cultures, which have different physiological properties to adult myocytes. We hypothesized that localized stretch in vivo causes Cx43 remodeling, with associated changes in conduction, mediated by the renin/angiotensin system (RAS). Methods and Results In an open-chest canine model a device was used to stretch part of the right ventricle (RV) by 22% for 6 hours. Activation mapping using a 312-electrode array was performed before and after stretch. Regional stretch did not change longitudinal conduction velocity (post-stretch vs. baseline: 51.5±5.2 vs. 55.3±8.1cm/s p=0.24, n=11), but significantly reduced transverse conduction velocity (28.7±2.5 vs. 35.4±5.4cm/s, p<0.01). It also reduced total Cx43 expression, by Western blotting, compared to a nonstretched area RV of the same animal (86.1±32.2 vs. 100±19.4%, p<0.02, n=11). Cx43 labeling redistributed to the lateral cell borders. Stretch caused a small but significant increase in the proportion of the dephosphorylated form of Cx43 (stretch 9.95±1.4% vs. control 8.74±1.2%, p<0.05). Olmesartan, an angiotensin-II blocker, prevented the stretch induced changes in Cx43 levels, localization and conduction. Conclusion Myocardial stretch in vivo has opposite effects to that in neonatal myocytes in vitro. Stretch in vivo causes conduction changes associated with Cx43 remodeling that are likely caused by local stretch-induced activation of the RAS. PMID:20487124

  19. Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-stellate cells.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Kouki, Tom; Kikuchi, Motoshi; Yashiro, Takashi

    2008-12-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear. The S100b-GFP transgenic rat has recently been generated, which expresses green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary. This model is expected to be a powerful tool for studies of FS cells. The purpose of the present paper was therefore to examine the localization of GJ on connexin 43 immunohistochemistry throughout the anterior pituitary gland of S100b-GFP rats under confocal laser microscopy. The localization patterns of FS cells was also observed in primary culture of anterior pituitary cells and the question of whether GJ between FS cells are reconstructed in vitro was investigated. In vivo studies showed that GJ were present specifically between FS cells from the pars tuberalis to the pars distalis in the anterior pituitary gland. The appearance of FS cells was distinguished into two types, with localization of GJ differing between types. In vitro, it was observed for the first time that FS cells in primary culture could be categorized into two types. In vivo localization of GJ between FS cells was reconstructed in vitro. These morphological observations are consistent with the hypothesis that FS cells form an electrophysiological network throughout the anterior pituitary for signal transmission.

  20. Ex vivo investigation of ocular tissue distribution following intravitreal administration of connexin43 mimetic peptide using the microdialysis technique and LC-MS/MS.

    PubMed

    Bisht, Rohit; Mandal, Abhirup; Rupenthal, Ilva D; Mitra, Ashim K

    2016-12-01

    This study aimed to develop and evaluate an ex vivo eye model for intravitreal drug sampling and tissue distribution of connexin43 mimetic peptide (Cx43MP) following intravitreal injection using the microdialysis technique and LC-MS/MS. An LC-MS/MS method was developed, validated, and applied for quantification of Cx43MP in ocular tissues. Microdialysis probes were calibrated for in vitro recovery studies. Bovine eyes were fixed in a customized eye holder and after intravitreal injection of Cx43MP, microdialysis probes were implanted in the vitreous body. Vitreous samples were collected at particular time intervals over 24 h. Moreover, 24 and 48 h after intravitreal injection ocular tissues were collected, processed, and analyzed for Cx43MP concentrations using LC-MS/MS. The LC-MS/MS method showed good linearity (r (2) = 0.9991). The mean percent recovery for lower (LQC), medium (MQC), and higher quality control (HQC) (0.244, 3.906, and 125 μg/mL) was found to be 83.83, 84.92, and 94.52, respectively, with accuracy ranges between 96 and 99 % and limits of detection (LOD) and quantification (LOQ) of 0.122 and 0.412 μg/mL. The in vitro recovery of the probes was found to be over 80 %. As per microdialysis sample analysis, the Cx43MP concentration was found to increase slowly in the vitreous body up to 16 h and thereafter declined. After 48 h, the Cx43MP concentration was higher in vitreous, cornea, and retina compared to lens, iris, and aqueous humor. This ex vivo model may therefore be a useful tool to investigate intravitreal kinetics and ocular disposition of therapeutic molecules after intravitreal injection.

  1. Common genetic variation near the connexin-43 gene is associated with resting heart rate in African Americans: A genome-wide association study of 13,372 participants

    PubMed Central

    Deo, R.; Nalls, M.A.; Avery, C.L.; Smith, J.G.; Evans, D.S.; Keller, M.F.; Butler, A.M.; Buxbaum, S.G.; Li, G.; Quibrera, P. Miguel; Smith, E.N.; Tanaka, T.; Akylbekova, E.L.; Alonso, A.; Arking, D.E.; Benjamin, E.J.; Berenson, G.S.; Bis, J.C.; Chen, L.Y.; Chen, W.; Cummings, S.R.; Ellinor, P.T.; Evans, M.K.; Ferrucci, L.; Fox, E.R.; Heckbert, S.R.; Heiss, G.; Hsueh, W.C.; Kerr, K.F.; Limacher, M.C.; Liu, Y.; Lubitz, S.A.; Magnani, J.W.; Mehra, R.; Marcus, G.M.; Murray, S.S.; Newman, A.B.; Njajou, O.; North, K.E.; Paltoo, D.N.; Psaty, B.M.; Redline, S.S.; Reiner, A.P.; Robinson, J.G.; Rotter, J.I.; Samdarshi, T.E.; Schnabel, R.B.; Schork, N.J.; Singleton, A.B.; Siscovick, D.; Soliman, E.Z.; Sotoodehnia, N.; Srinivasan, S.R.; Taylor, H.A.; Trevisan, M.; Zhang, Z.; Zonderman, A.B.; Newton-Cheh, C.; Whitsel, E.A.

    2013-01-01

    BACKGROUND Genome-wide association studies have identified several genetic loci associated with variation in resting heart rate in European and Asian populations. No study has evaluated genetic variants associated with heart rate in African Americans. OBJECTIVE To identify novel genetic variants associated with resting heart rate in African Americans. METHODS Ten cohort studies participating in the Candidate-gene Association Resource and Continental Origins and Genetic Epidemiology Network consortia performed genome-wide genotyping of single nucleotide polymorphisms (SNPs) and imputed 2,954,965 SNPs using HapMap YRI and CEU panels in 13,372 participants of African ancestry. Each study measured the RR interval (ms) from 10-second resting 12-lead electrocardiograms and estimated RR-SNP associations using covariate-adjusted linear regression. Random-effects meta-analysis was used to combine cohort-specific measures of association and identify genome-wide significant loci (P ≤ 2.5 × 10−8). RESULTS Fourteen SNPs on chromosome 6q22 exceeded the genome-wide significance threshold. The most significant association was for rs9320841 (+13 ms per minor allele; P = 4.98 × 10−15). This SNP was approximately 350 kb downstream of GJA1, a locus previously identified as harboring SNPs associated with heart rate in Europeans. Adjustment for rs9320841 also attenuated the association between the remaining 13 SNPs in this region and heart rate. In addition, SNPs in MYH6, which have been identified in European genome-wide association study, were associated with similar changes in the resting heart rate as this population of African Americans. CONCLUSIONS An intergenic region downstream of GJA1 (the gene encoding connexin 43, the major protein of the human myocardial gap junction) and an intragenic region within MYH6 are associated with variation in resting heart rate in African Americans as well as in populations of European and Asian origin. PMID:23183192

  2. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone.

    PubMed

    Balla, Peter; Maros, Mate Elod; Barna, Gabor; Antal, Imre; Papp, Gergo; Sapi, Zoltan; Athanasou, Nicholas Anthony; Benassi, Maria Serena; Picci, Pierro; Krenacs, Tibor

    2015-01-01

    Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in

  3. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    PubMed

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1.

  4. Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes.

    PubMed

    Moore, Keith; Ghatnekar, Gautam; Gourdie, Robert G; Potts, Jay D

    2014-01-01

    The alpha-carboxy terminus 1 (αCT1) peptide is a synthetically produced mimetic modified from the DDLEI C-terminus sequence of connexin 43 (Cx43). Previous research using various wound healing models have found promising therapeutic effects when applying the drug, resulting in increased wound healing rates and reduced scarring. Previous data suggested a rapid metabolism rate in vitro, creating an interest in long term release. Using a streptozotocin (STZ) type I diabetic rat model with a surgically induced corneal injury, we delivered αCT1 both directly, in a pluronic gel solution, and in a sustained system, using polymeric alginate-poly-l-ornithine (A-PLO) microcapsules (MC). Fluorescent staining of wound area over a 5 day period indicated a significant increase in wound closure rates for both αCT1 and αCT1 MC treated groups, withαCT1 MC groups showing the most rapid wound closure overall. Analysis of inflammatory reaction to the treatment groups indicated significantly lower levels of both Interferon Inducible T-Cell Alpha Chemoattractant (ITAC) and Tumor Necrosis Factor Alpha (TNFα) markers using confocal quantification and ELISA assays. Additional analysis examining genes selected from the EMT pathway using RT-PCR and Western blotting suggested αCT1 modification of Transforming Growth Factor Beta 2 (TGFβ2), Keratin 8 (Krt8), Estrogen Receptor 1 (Esr1), and Glucose Transporter 4 (Glut4) over a 14 day period. Combined, this data indicated a possible suppression of the inflammatory response by αCT1, leading to increased wound healing rates.

  5. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs.

    PubMed

    Kandasamy, Kathirvel; Escue, Rachel; Manna, Jayeeta; Adebiyi, Adebowale; Parthasarathi, Kaushik

    2015-09-15

    Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca(2+). However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses.

  6. Anti-arrhythmic effects of atrial ganglionated plexi stimulation is accompanied by preservation of connexin43 protein in ischemia-reperfusion canine model.

    PubMed

    Wang, Songyun; Li, Hewei; Yu, Lilei; Chen, Mingxian; Wang, Zhuo; Huang, Bing; Zhou, Liping; Zhou, Xiaoya; Jiang, Hong

    2015-01-01

    Vagal nerve stimulation (VNS) has been shown to provide a protective effect against ischemia/reperfusion (I/R)-related arrhythmias by preventing the loss of Connexin43 (Cx43). Our previous studies showed that atrial epicardial ganglionated plexus stimulation (GPS) might exert a VNS-like effect on ventricular electrophysiology. To investigate whether GPS could preserve Cx43 and reduce I/R induced ventricular arrhythmia. Sixteen dogs were randomly divided into GPS group (N = 8, receiving GPS) and Sham group (N = 8, receiving sham GPS). Ventricular effective refractory period (ERP) and heart rate variability (HRV) were measured at baseline and 1 h after GPS. Myocardial I/R was then performed. Ventricular arrhythmia occurred during the first hour after reperfusion was measured and myocardial tissue from the peri-infarct zone was excised for immunohistological analysis. In another 4 dogs (Control group, receiving sham GPS and sham I/R), myocardial tissue from the corresponding area was also excised. Compared with the Sham group, GPS caused a significant increase in ventricular ERP and HRV, and a significant decrease in I/R-induced ventricular arrhythmias. Western blotting revealed a marked reduction in the amount of phosphorylated Cx43 and total Cx43 in the Sham group, whereas no significant change was observed in the GPS group compared with the Control group. Immunohistochemistry results confirmed that the myocardial I/R-induced loss of phosphorylated Cx43 from the intercellular junctions was prevented by GPS. GPS protects against I/R induced ventricular arrhythmias, accompanied by preserving Cx43.

  7. RhoA/rho kinase signaling reduces connexin43 expression in high glucose-treated glomerular mesangial cells with zonula occludens-1 involvement

    SciTech Connect

    Xie, Xi; Chen, Cheng; Huang, Kaipeng; Wang, Shaogui; Hao, Jie; Huang, Junying; Huang, Heqing

    2014-10-01

    RhoA/Rho kinase (ROCK) signaling has been suggested to be involved in diabetic nephropathy (DN) pathogenesis. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. Both of them have been found to regulate nuclear factor kappa-B (NF-κB) activation in high glucose-treated glomerular mesangial cells (GMCs). The aim of this study was to investigate the relationship between RhoA/ROCK signaling and Cx43 in the DN pathogenesis. We found that upregulation of Cx43 expression inhibited NF-κB p65 nuclear translocation induced by RhoA/ROCK signaling in GMCs. Inhibition of RhoA/ROCK signaling attenuated the high glucose-induced decrease in Cx43. F-actin accumulation and an enhanced interaction between zonula occludens-1 (ZO-1) and Cx43 were observed in high glucose-treated GMCs. ZO-1 depletion or disruption of F-actin formation also inhibited the reduction in Cx43 protein levels induced by high glucose. In conclusion, activated RhoA/ROCK signaling induces Cx43 degradation in GMCs cultured in high glucose, depending on F-actin regulation. Increased F-actin induced by RhoA/ROCK signaling promotes the association between ZO-1 and Cx43, which possibly triggered Cx43 endocytosis, a mechanism of NF-κB activation in high glucose-treated GMCs. - Highlights: • RhoA/ROCK signaling induces Cx43 degradation in GMCs. • F-actin and ZO-1 have functions in the regulation of Cx43 by RhoA/ROCK signaling. • We reveal the relationship between RhoA/ROCK and Cx43 in the activation of NF-κB.

  8. Preosteocytes/Osteocytes Have the Potential to Dedifferentiate Becoming a Source of Osteoblasts

    PubMed Central

    Torreggiani, Elena; Matthews, Brya G.; Pejda, Slavica; Matic, Igor; Horowitz, Mark C.; Grcevic, Danka; Kalajzic, Ivo

    2013-01-01

    Presently there is no clear evidence for the ability of mature osteogenic lineage cells to dedifferentiate. In order to identify and trace mature osteogenic lineage cells, we have utilized transgenic mouse models in which the dentin matrix protein 1 (Dmp1) promoter drives expression of GFP (active marker) or Cre recombinase (historic label) in preosteocytes/osteocytes. In long bone chip outgrowth cultures, in which cells on the bone surface were enzymatically removed, cells with previous activity of the Dmp1 promoter migrated onto plastic and down-regulated Dmp1-GFP expression. Dmp1Cre-labeled cells from these cultures had the potential to re-differentiate into the osteogenic lineage, while the negative population showed evidence of adipogenesis. We observed numerous Dmp1Cre-labeled osteoblasts on the surface of bone chips following their in vivo transplantation. Our data indicate that cells embedded in bone matrix are motile, and once given access to the extra bony milieu will migrate out of their lacunae. This population of cells is phenotypically and functionally heterogeneous in vitro. Once the preosteocytes/osteocytes leave lacunae, they can dedifferentiate, potentially providing an additional source of functional osteoblasts. PMID:24040401

  9. Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus-oocyte complex.

    PubMed

    Richard, Samantha; Baltz, Jay M

    2014-06-01

    Fully grown germinal vesicle stage mouse oocytes remain arrested in meiotic prophase I until ovulation. This arrest is maintained by cGMP produced in cumulus granulosa cells surrounding the oocyte. Recently, it was found that cGMP production in cumulus cells depends on NPR2 guanylate cyclase activated by its ligand natriuretic peptide precursor C (NPPC). It is assumed that cGMP reaches the oocyte through gap junctions that couple cumulus granulosa cells to each other and to the oocyte. Previous work identified two main types of gap junctions in the follicle, connexin-43 gap junctions (GJA1 protein) between granulosa cells and connexin-37 gap junctions (GJA4) between cumulus cells and the oocyte. However, it had not been established that both types are required for meiotic arrest mediated by NPPC/NPR2 signaling. To investigate this, we used connexin mimetic peptides (CMPs) that specifically disrupt gap junction isoforms within cumulus-oocyte complexes (COCs) and isolated antral follicles in culture. We furthermore developed a punctured antral follicle preparation to permit CMP access to the antral cavity in an otherwise intact follicle. CMP directed against connexin-43 (Cx43 CMP) overcame NPPC-mediated meiotic arrest in both isolated COCs and antral follicles. Cx37 CMP, in contrast, had no effect when present in the medium, but released oocyte arrest in the presence of NPPC when microinjected into the perivitelline space near the oocyte surface in COCs. This is consistent with both connexin isoforms being required for meiotic arrest and with the reported localization of connexin-43 throughout the cumulus cells and connexin-37 at the oocyte surface. © 2014 by the Society for the Study of Reproduction, Inc.

  10. Upregulation of connexin 43 and apoptosis‑associated protein expression by high glucose in H9c2 cells was improved by resveratrol via the autophagy signaling pathway.

    PubMed

    Wang, Guang-Yu; Bi, Ya-Guang; Liu, Xiang-Dong; Han, Jun-Feng; Wei, Meng; Zhang, Qing-Yong

    2017-09-01

    The expression of connexin43 (Cx43) protein and the apoptotic rate of cardiomyocytes may be regulated by autophagy and associated with diabetic cardiomyopathy. It is possible that the beneficial effect of resveratrol on diabetic cardiomyocytes occurs via the autophagy pathway. However, it remains to be elucidated whether resveratrol treatment may attenuate the hyperglycemia‑induced remodeling of Cx43 and apoptosis through the regulation of autophagy. H9c2 cardiac cells were incubated with 5.5 and 25 mM glucose, 25 mM glucose with chloroquine (50 µM), and 25 mM glucose with or without resveratrol (10, 25 µM) for 24 h. H9c2 cells were also incubated with 25 µM resveratrol in the presence of chloroquine (50 µM). Cell viability was determined using an MTT cell survival assay. Cytotoxicity was determined by quantification of the release of lactate dehydrogenase. The expression of Cx43, autophagic maker proteins [Beclin‑1, p62 and microtubule‑associated protein 1 light chain 3 (LC3)], apoptosis maker proteins (B‑cell lymphoma‑2 and Bcl‑2 associated X protein), AMP‑activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were determined using western blotting. Resveratrol treatment led to reduced Cx43 expression levels compared with the 25 mM glucose treatment and significantly reduced the expression of apoptosis‑associated proteins in H9c2 cells under hyperglycemic conditions. Autophagy was increased as indicated by the upregulation of Beclin‑1 and p62 expression and the reduced LC3‑II/LC3‑I ratio. AMPK expression was increased, whereas mTOR expression was reduced in the resveratrol treatment groups. Treatment with chloroquine reversed effect of resveratrol. In conclusion, administration resveratrol may protect H9c2 cells against hyperglycemia‑induced Cx43 upregulation and apoptosis, which may be mediated through the induction of the autophagy signaling pathway.

  11. [Effects of Chinese herbal medicines Shengmai injection and Xuesaitong injection on ventricular fibrillation threshold and connexin 43 expression in rats with myocardial infarction].

    PubMed

    Wu, Ai-Ming; Zhang, Dong-Mei; Lou, Li-Xia; Zhai, Jian-Ying; Lü, Xi-Ying; Chai, Li-Min; Wang, Shuo-Ren

    2011-07-01

    To explore the effects of Shengmai injection and Xuesaitong injection, compound Chinese herbal medicines for replenishing qi and activating blood, on ventricular fibrillation threshold, heart structure and connexin 43 (Cx43) expression in rats with myocardial infarction (MI). One hundred male SD rats were randomly divided into sham operation group, model group, Yiqi Huoxue (YQHX) group (Shengmai injection plus Xuesaitong injection) and captopril group. MI model of rats was established by ligating left anterior descending coronary artery, and rats in sham operation group were prepared in the same way except for the ligation of coronary artery. Rats were treated with corresponding drugs for 1 month from next day after modeling. After treatment ventricular fibrillation threshold was detected, and heart weight index, left ventricular internal diameter and percentage of myocardial infarction were measured. Expression of Cx43 mRNA in myocardium was detected by real-time fluorescent quantitative polymerase chain reaction, and expression of Cx43 protein was observed by immunohistochemical method. Compared with the sham operation group, ventricular fibrillation threshold decreased significantly, heart weight index and left ventricular internal diameter increased, while expressions of Cx43 mRNA and protein decreased remarkably in the model group (P<0.01). Compared with the model group, ventricular fibrillation threshold was increased significantly, heart weight index, left ventricular internal diameter and percentage of myocardial infarction were decreased significantly in the YQHX group and captopril group (P<0.05 or P<0.01). When it comes to expression of Cx43, both Cx43 mRNA and protein expressions were increased remarkably in the YQHX group compared with the model group (P<0.05 or P<0.01), while only density mean and integral optical density of Cx43 protein expression were increased significantly in the captopril group (P<0.05). The enhancements on Cx43 mRNA and positive

  12. TGF-beta1 mediates glucose-evoked up-regulation of connexin-43 cell-to-cell communication in HCD-cells.

    PubMed

    Hills, Claire E; Bland, Rosemary; Bennett, Jeanette; Ronco, Pierre M; Squires, Paul E

    2009-01-01

    In the current study we examined if the multifunctional cytokine TGF-beta1 mediated glucose-evoked increases in connexin-43(Cx43)-mediated intercellular communication in cells of the human collecting duct (HCD). RT-PCR and western blot analysis were used to confirm mRNA and protein expression of TGF-beta1 and Cx43 in HCD-cells. The effect of TGF-beta1 and high glucose (25 mM) on Cx43 protein expression, cytoskeletal organisation and cell-cell communication was determined in the presence/absence of TGF-beta1 specific immuno-neutralising antibodies. Functional cell-cell communication was determined using Ca2+-microfluorimetry. At 24 hrs, high glucose (25 mM) significantly increased Cx43 mRNA and protein expression. Changes were mimicked by TGF-beta1 (2 ng/ml) at low glucose (5 mM). Both high glucose and TGF-beta1 mediated changes were completely reversed by a pan-specific immuno-neutralising antibody to TGF-beta. Furthermore, high glucose-evoked changes were inhibited by a TGF-beta1-specific monoclonal antibody. Mannitol (25 mM), an osmotic control for high glucose, failed to alter Cx43 expression. TGF-beta1 evoked changes in Cx43 expression were biphasic. An early (4-8 hr) transient decrease in expression was followed by an increase in protein expression (12-24 hr). The decrease in Cx43 expression was paralleled by a transient reorganisation of the actin cytoskeleton, whilst increased Cx43 expression at 24 hrs coincided with a TGF-beta1 specific increase in touch-evoked transmission of Ca2+-signals between coupled cells. High glucose evoked a TGF-beta1 mediated increase in Cx43 expression and gap-junction mediated cell-cell communication in HCD-cells. These changes may maintain epithelial integrity of the collecting duct following hyperglycaemic assault as observed in diabetes. Copyright (c) 2009 S. Karger AG, Basel.

  13. Modifying the osteoblastic niche with zoledronic acid in vivo—Potential implications for breast cancer bone metastasis

    PubMed Central

    Haider, Marie-Therese; Holen, Ingunn; Dear, T. Neil; Hunter, Keith; Brown, Hannah K.

    2014-01-01

    Introduction Bone metastasis is the most common complication of advanced breast cancer. The associated cancer-induced bone disease is treated with bone-sparing agents like zoledronic acid. Clinical trials have shown that zoledronic acid also reduces breast cancer recurrence in bone; potentially by modifying the bone microenvironment surrounding disseminated tumour cells. We have characterised the early effects of zoledronic acid on key cell types of the metastatic niche in vivo, and investigated how these modify the location of breast tumour cells homing to bone. Methods Female mice were treated with a single, clinically achievable dose of zoledronic acid (100 μg/kg) or PBS. Bone integrity, osteoclast and osteoblast activity and number/mm trabecular bone on 1, 3, 5 and 10 days after treatment were assessed using μCT, ELISA (TRAP, PINP) and bone histomorphometry, respectively. The effect of zoledronic acid on osteoblasts was validated in genetically engineered mice with GFP-positive osteoblastic cells. The effects on growth plate cartilage were visualised by toluidine blue staining. For tumour studies, mice were injected i.c. with DID-labelled MDA-MB-231-NW1-luc2 breast cancer cells 5 days after zoledronic acid treatment, followed by assessment of tumour cell homing to bone and soft tissues by multiphoton microscopy, flow cytometry and ex vivo cultures. Results As early as 3 days after treatment, animals receiving zoledronic acid had significantly increased trabecular bone volume vs. control. This rapid bone effect was reflected in a significant reduction in osteoclast and osteoblast number/mm trabecular bone and reduced bone marker serum levels (day 3–5). These results were confirmed in mice expressing GFP in osteoblastic linage cells. Pre-treatment with zoledronic acid caused accumulation of an extra-cellular matrix in the growth plate associated with a trend towards preferential [1] homing of tumour cells to osteoblast-rich areas of bone, but without

  14. The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors.

    PubMed

    Vermes, C; Glant, T T; Hallab, N J; Fritz, E A; Roebuck, K A; Jacobs, J J

    2001-12-01

    Limited information is available on the responses of osteoblasts to wear debris, corrosion products, and cytokines and on the roles of altered osteoblast functions in the development of periprosthetic bone loss. Wear debris-challenged osteoblasts exhibit altered functions resulting in the loss of their capacity to produce bone matrix and to replace the resorbed bone. Also, osteoblasts may secrete cytokines, which act in a paracrine fashion to recruit inflammatory cells into the periprosthetic space and to stimulate osteoclastic bone resorption. These effects may be mediated in part by ionic metal dissolution products. We review the mechanisms by which altered osteoblast functions, in response to particulate wear debris, corrosion products, and cytokines and growth factors, may contribute to the development and the progression of periprosthetic osteolysis.

  15. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  16. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  17. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation.

    PubMed

    Yamaguchi, Dean T; Huang, Jason; Ma, Defang; Wang, Paul K C

    2002-02-01

    Electromagnetic fields have been used to augment the healing of fractures because of its ability to increase new bone formation. The mechanism of how electromagnetic fields can promote new bone formation is unknown, although the interaction of electromagnetic fields with components of the plasma membrane of cells has been hypothesized to occur in bone cells. Gap junctions occur among bone forming cells, the osteoblasts, and have been hypothesized to play a role in new bone formation. Thus it was investigated whether extremely low-frequency (ELF) magnetic fields alter gap junction intercellular communication in the pre-osteoblastic model, MC3T3-E1, and the well-differentiated osteoblastic model, ROS 17/2.8. ELF magnetic field exposure systems were designed to be used for an inverted microscope stage and for a tissue culture incubator. Using these systems, it was found that magnetic fields over a frequency range from 30 to 120 Hz and field intensities up to 12.5 G dose dependently decreased gap junction intercellular communication in MC3T3-E1 cells during their proliferative phase of development. The total amount of connexin 43 protein and the distribution of connexin 43 gap junction protein between cytoplasmic and plasma membrane pools were unaltered by treatment with ELF magnetic fields. Cytosolic calcium ([Ca(2+)](i)) which can inhibit gap junction communication, was not altered by magnetic field exposure. Identical exposure conditions did not affect gap junction communication in the ROS 17/2.8 cell line and when MC3T3-E1 cells were more differentiated. Thus ELF magnetic fields may affect only less differentiated or pre-osteoblasts and not fully differentiated osteoblasts. Consequently, electromagnetic fields may aid in the repair of bone by effects exerted only on osteoprogenitor or pre-osteoblasts.

  18. Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J.; Anderson, John G.; Grant, M. Helen

    2014-10-01

    Healthcare associated infections pose a major threat to patients admitted to hospitals and infection rates following orthopedic arthroplasty surgery are as high as 4%. A 405-nm high-intensity narrow spectrum light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in arthroplasty surgery. Cultured rat osteoblasts were exposed to varying light intensities and it was found that exposures of up to a dose of 36 J/cm2 had no significant effect on cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], function (alkaline phosphatase activity), and proliferation rate (BrdU cell proliferation assay). High irradiance exposures (54 J/cm2) significantly affected the cell viability indicating that the effects of 405-nm light on osteoblasts are dose dependent. Additionally, exposure of a variety of clinically related bacteria to a dose of 36 J/cm2 resulted in up to 100% kill. These results demonstrating the differential sensitivity of osteoblasts and bacteria to 405-nm light are an essential step toward developing the technique for decontamination in orthopedic surgery.

  19. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    SciTech Connect

    Li, Haiying; Cui, Yazhou; Luan, Jing; Zhang, Xiumei; Li, Chengzhi; Zhou, Xiaoyan; Shi, Liang; Wang, Huaxin; Han, Jinxiang

    2016-02-12

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit the level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.

  20. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells

    PubMed Central

    Crémet, Lise; Broquet, Alexis; Brulin, Bénédicte; Jacqueline, Cédric; Dauvergne, Sandie; Brion, Régis; Asehnoune, Karim; Corvec, Stéphane; Heymann, Dominique; Caroff, Nathalie

    2015-01-01

    Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts. PMID:26333570

  1. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  2. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  3. [Dynamics of local expression of connexin-43 and basic fibroblast growth factor receptors in patients with skin and soft-tissue infections against the background of diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Malinovskaia, N A; Pozhilenkova, E A; Morgun, A V; Gitlina, A G

    2014-01-01

    Clinical results of wound healing dynamics were studied in 60 patients with soft-tissue infection against the background of diabetes mellitus type II. At the same time the study considered indices of intercellular contacts protein tissue expression such as connexin 43 (Cx43) and basic fibroblast growth factor receptors (bFGFR). The basic therapy of biopsy material of wound borders was applied. The reduction of bFGFR expression and the minor growth of Cx43 expression were observed. The pain syndrome proceeded for a long time and there were signs of perifocal inflammation, retard wound healing with granulation tissue. The application of combined method of ozone therapy which included autohemotherapy with ozone and an external management of wound by ozone-oxygen mixture facilitated to considerable shortening of inflammatory phase and regeneration. It was associated with increased Cx43 expression (in 1.9 times) in comparison with initial level and bFGFR was enlarged in 1.7 times to eighth day of postoperative period.

  4. Osteoblastic potential of infrapatellar fat pad-derived mesenchymal stem cells from rheumatoid arthritis and osteoarthritis patients.

    PubMed

    Skalska, Urszula; Prochorec-Sobieszek, Monika; Kontny, Ewa

    2016-06-01

    To evaluate the osteoblastic potential of adipose-derived mesenchymal stem cells (ASCs) from infrapatellar fat pad (IPFP) of rheumatoid arthritis (RA) patients in comparison to osteoarthritis (OA) patients, as well as the influence of tumor necrosis factor alpha (TNFα) on osteoblastic ASC differentiation in vitro. ASCs were isolated from IPFP of RA and OA patients. After expansion, cells were cultured in osteogenic medium with or without TNFα. After 2 weeks, expression of BMP-2, Runx-2, osterix (Osx), collagen 1a1 (Col1a1) and osteopontin (OPN) messenger RNA (mRNA) was assessed by reverse transcription polymerase chain reaction and calcium deposition by alizarin red staining. Dickkopf-1 (DKK-1) and osteoprotegerin (OPG) protein concentrations were measured in culture supernatants using enzyme-linked immunosorbent assay. Both RA- and OA-ASCs cultured in osteogenic medium showed calcium deposition. The expression of Runx2 and OPN mRNA was increased in RA-ASCs. These cells expressed significantly more Osx and OPN than OA-ASCs. TNFα potentiated calcium deposition, up-regulated Runx2 and BMP-2 but down-regulated Col1a1 and OPN expression. In osteogenic cultures DKK-1 concentration was increased but that of OPG decreased, whereas TNFα elevated secretion of both cytokines. RA-ASCs have comparable or slightly stronger osteogenic potential than OA-ASCs. RA-ASCs seem to be more sensitive to TNFα treatment. TNFα exerts complex effects on ASC osteoblastogenesis, enhances expression of early osteogenic markers and calcium deposition, inhibits expression of mRNA coding for non-mineral bone components and alters ASC secretory activity. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  5. Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts.

    PubMed

    Toskas, Georgios; Heinemann, Sascha; Heinemann, Christiane; Cherif, Chokri; Hund, Rolf-Dieter; Roussis, Vassilios; Hanke, Thomas

    2012-07-01

    A new generation of biomaterials composed of the natural polysaccharides, ulvans extracted from the green seaweed Ulva rigida and chitosan have been investigated. Ulvan, chitosan alone and ulvan/chitosan polyelectrolyte membranes have been synthesised and characterised. The structure of the membranes was altered by the weight ratio of the polyion components. Fibrous and nanofibrous morphology was created, in accordance with a supramolecular self assembly. ATR-FTIR measurements suggested the presence of both polycationic chitosan and polyanionic ulvan in the polyelectrolyte membranes. The cytocompatibility of these new materials was examined by fluorescence microscopy. The results show that ulvan as well as ulvan/chitosan membranes promoted the attachment and proliferation of 7F2 osteoblasts and maintained the cell morphology and viability. Thus, ulvan and chitosan which possess unique properties might have high impact in biomedical applications as potential scaffold materials.

  6. Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line BC31 by a dominant-negative connexin 43 mutant.

    PubMed

    Krutovskikh, V A; Yamasaki, H; Tsuda, H; Asamoto, M

    1998-12-01

    The tumor-suppressive property of the connexin gap-junction proteins was postulated from the fact that their function of cell coupling is impaired in most cancer cells. However, in conflict with this notion, certain cancer cells are able to communicate through gap junctions despite their malignancy. To explain this phenomenon, we studied by using a dominant-negative strategy the effect on tumorigenicity of loss of intrinsic gap-junction intercellular communication (GJIC) in the rat bladder carcinoma cell line BC31, which shows both expression of connexin 43 (Cx43) and intercellular communication. In cells transfected with a mutant Cx43 with seven residues deleted from the internal loop at positions 130-136 (Cx43delta), transport of the resulting connexin protein to the plasma membrane occurred normally, but the GJIC of the cells was effectively abolished at the level of permeability of established gap junctions. Dominant-negative inhibition of GJIC by Cx43delta accelerated growth of BC31 cells in nude mice. In contrast, when GJIC in BC31 cells was artificially enforced by transfection of wild-type Cx43, the cells lost the capacity to grow in vivo. Decreased phosphorylation of Cx43delta suggested close interaction of the internal loop of connexin with its commonly phosphorylated domains in the C-terminal tail and involvement of this interaction in gap-junction permeability. Therefore, we conclude that the intrinsic GJIC observed in cancer cells should be considered a tumor-suppressor factor and that its level may influence malignant growth capacity.

  7. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid.

    PubMed

    El-Hussainy, El-Hussainy M A; Hussein, Abdelaziz M; Abdel-Aziz, Azza; El-Mehasseb, Ibrahim

    2016-08-01

    The objectives of present study were to examine the effects of aluminum oxide (Al2O3) nanoparticles on myocardial functions, electrical activities, morphology, inflammation, redox state, and myocardial expression of connexin 43 (Cx43) and the effect of gallic acid (GA) on these effects in a rat animal model. Forty male albino rats were divided into 4 equal groups: the control (normal) group; the Al2O3 group, rats received Al2O3 (30 mg·kg(-1), i.p.) daily for 14 days; the nano-alumina group, rats received nano-alumina (30 mg·kg(-1), i.p.) daily for 14 days; and the nano-alumina + GA group, rats received GA (100 mg·kg(-1) orally once daily) for 14 days before nano-alumina administration. The results showed disturbed ECG variables and significant increases in serum levels of LDH, creatine phosphokinase (CPK), CK-MB, triglycerides (TGs), cholesterol and LDL, nitric oxide (NO), and TNF-α and myocardial concentrations of NO, TNF-α, and malondialdehyde (MDA), with significant decreases in serum HDL and myocardial GSH, SOD, catalase (CAT), and Cx43 expression in the nano-alumina group. Pretreatment with GA improved significantly all parameters except serum and myocardial NO. We concluded that chronic administration of Al2O3 NPs caused myocardial dysfunctions, and pretreatment with GA ameliorates myocardial injury induced by nano-alumina, probably through its hypolipidaemic, anti-inflammatory, and antioxidant effects and upregulation of Cx43 in heart.

  8. MEK5 suppresses osteoblastic differentiation

    SciTech Connect

    Kaneshiro, Shoichi; Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  9. A functional interaction between the MAGUK protein hDlg and the gap junction protein connexin 43 in cervical tumour cells.

    PubMed

    Macdonald, Alasdair I; Sun, Peng; Hernandez-Lopez, Hegel; Aasen, Trond; Hodgins, Malcolm B; Edward, Michael; Roberts, Sally; Massimi, Paola; Thomas, Miranda; Banks, Lawrence; Graham, Sheila V

    2012-08-15

    Gap junctions, composed of Cxs (connexins), allow direct intercellular communication. Gap junctions are often lost during the development of malignancy, although the processes behind this are not fully understood. Cx43 is a widely expressed Cx with a long cytoplasmic C-terminal tail that contains several potential protein-interaction domains. Previously, in a model of cervical carcinogenesis, we showed that the loss of gap junctional communication correlated with relocalization of Cx43 to the cytoplasm late in tumorigenesis. In the present study, we demonstrate a similar pattern of altered expression for the hDlg (human discs large) MAGUK (membrane-associated guanylate kinase) family tumour suppressor protein in cervical tumour cells, with partial co-localization of Cx43 and hDlg in an endosomal/lysosomal compartment. Relocalization of these proteins is not due to a general disruption of cell membrane integrity or Cx targeting. Cx43 (via its C-terminus) and hDlg interact directly in vitro and can form a complex in cells. This novel interaction requires the N- and C-termini of hDlg. hDlg is not required for Cx43 internalization in W12GPXY cells. Instead, hDlg appears to have a role in maintaining a cytoplasmic pool of Cx43. These results demonstrate that hDlg is a physiologically relevant regulator of Cx43 in transformed epithelial cells.

  10. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells.

    PubMed

    Kaneko, Yosuke; Tachikawa, Masanori; Akaogi, Ryo; Fujimoto, Kazuhisa; Ishibashi, Megumi; Uchida, Yasuo; Couraud, Pierre-Olivier; Ohtsuki, Sumio; Hosoya, Ken-ichi; Terasaki, Tetsuya

    2015-04-01

    Dysregulation of blood-brain barrier (BBB) transport function is thought to exacerbate neuronal damage in acute ischemic stroke. The purpose of this study was to clarify the characteristics of pannexin (Px) and/or connexin (Cx) hemichannel(s)-mediated transport of organic anions and cations in human BBB endothelial cell line hCMEC/D3 and to identify inhibitors of hemichannel opening in hCMEC/D3 cells in the absence of extracellular Ca(2+), a condition mimicking acute ischemic stroke. In the absence of extracellular Ca(2+), the cells showed increased uptake and efflux transport of organic ionic fluorescent dyes. Classic hemichannel inhibitors markedly inhibited the enhanced uptake and efflux. Quantitative targeted absolute proteomics confirmed Px1 and Cx43 protein expression in plasma membrane of hCMEC/D3 cells. Knockdown of Px1 and Cx43 with the small interfering RNAs significantly inhibited the enhanced uptake and efflux of organic anionic and cationic fluorescent dyes. Clinically used cilnidipine and progesterone, which have neuroprotective effects in animal ischemia models, were identified as inhibitors of hemichannel opening. These findings suggest that altered transport dynamics at the human BBB in the absence of extracellular Ca(2+) is at least partly attributable to opening of Px1 and Cx43 hemichannels. Therefore, we speculate that Px1 and Cx43 may be potential drug targets to ameliorate BBB transport dysregulation during acute ischemia.

  11. Expression patterns of mRNAs for the gap junction proteins connexin43 and connexin42 suggest their involvement in chick limb morphogenesis and specification of the arterial vasculature.

    PubMed

    Dealy, C N; Beyer, E C; Kosher, R A

    1994-02-01

    Gap junctions which comprise a family of proteins called connexins have been implicated in the morphogenesis of the chick limb bud. We have examined the expression patterns of two members of the connexin family, connexin43 (Cx43) and connexin42 (Cx42), during the early development of the chick limb bud and embryo by in situ hybridization. Cx43 mRNA is expressed in high amounts in the apical ectodermal ridge (AER), which promotes the outgrowth of the mesodermal cells of the limb bud, and in the ectopic AER of the limb buds of polydactylous diplopodia-5 mutant embryos. In contrast, little Cx43 expression is detectable in nonridge limb ectoderm at early stages of limb development. These results suggest that Cx43 gap junctions may integrate the activity of the cells comprising the AER and compartmentalize them into a functionally distinct entity capable of directing limb outgrowth. In addition, Cx43 exhibits high expression in the posterior subridge mesoderm of the early limb bud that is growing out in response to the AER, but little expression in the anterior mesoderm. This graded distribution of Cx43 transcripts correlates with a functional gradient of gap junctional communication along the anteroposterior (AP) axis, and suggests that Cx43 gap junctions may be involved in pattern formation across the AP axis. At later stages of development, Cx43 is transiently expressed in high amounts in the precartilage condensations of the carpals and metacarpals, at a time when critical cell-cell interactions are occurring that trigger cartilage differentiation. In contrast, in the developing limb, Cx42 is expressed exclusively by the central artery. In the remainder of the chick embryo, Cx42 is expressed in high amounts by the vessels comprising the arterial vasculature, but is not expressed by the venous vasculature. Thus, Cx42 gap junctions may be involved in specification of the arterial vasculature of the limb and embryo. Cx42, but not Cx43, is expressed in the ventricle of

  12. A New Method to Investigate How Mechanical Loading of Osteocytes Controls Osteoblasts

    PubMed Central

    Vazquez, Marisol; Evans, Bronwen A. J.; Riccardi, Daniela; Evans, Sam L.; Ralphs, Jim R.; Dillingham, Christopher Mark; Mason, Deborah J.

    2014-01-01

    Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte–osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000–4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte–osteoblast co-culture model that may be useful for investigating mechanically induced

  13. Intercellular communications within the rat anterior pituitary. XVI: postnatal changes of distribution of S-100 protein positive cells, connexin 43 and LH-RH positive sites in the pars tuberalis of the rat pituitary gland. An immunohistochemical and electron microscopic study.

    PubMed

    Wada, Ikuo; Sakuma, Eisuke; Shirasawa, Nobuyuki; Wakabayashi, Kenjiro; Otsuka, Takanobu; Hattori, Kazuki; Yashiro, Takashi; Herbert, Damon C; Soji, Tsuyoshi

    2014-02-01

    The architecture of luteinizing hormone-releasing hormone (LH-RH) nerve ends and the S-100 protein containing folliculo-stellate cells forming gap junctions in the pars tuberalis is basically important in understanding the regulation of the hormone producing mechanism of anterior pituitary glands. In this study, intact male rats 5-60 days old were prepared for immunohistochemistry and electron microscopy. From immunostained sections, the S-100 containing cells in pars tuberalis were first detected on day 30 and increased in number to day 60; this was parallel to the immunohistochemical staining of gap junction protein, connexin 43. LH-RH positive sites were clearly observed on just behind the optic chiasm and on the root of pituitary stalk on day 30. On day 60, the width of layer increased, while follicles and gap junctions were frequently observed between agranular cells in 10 or more layers of pars tuberalis. In the present study, we investigated the sexual maturation of the anterior pituitary glands through the postnatal development of S-100 positive cells, connexin 43 and LH-RH nerves. It is suggested that the folliculo-stellate cell system including the LH-RH neurons in the pars tuberalis participates in the control of LH secretion along with the portal vein system.

  14. Effects of pyrite bioleaching solution of Acidithiobacillus ferrooxidans on viability, differentiation and mineralization potentials of rat osteoblasts.

    PubMed

    Zhou, Jian; Chen, Ke-Ming; Zhi, De-Juan; Xie, Qin-Jian; Xian, Cory J; Li, Hong-Yu

    2015-12-01

    Iron pyrite, an important component of traditional Chinese medicine, has a poor solubility, bioavailability, and patient compliance due to a high dose required and associated side effects, all of which have limited its clinical applications and experimental studies on its action mechanisms in improving fracture healing. This study investigated Acidithiobacillus ferrooxidans (A.f)-bioleaching of two kinds of pyrites and examined bioactivities of the derived solutions in viability and osteogenic differentiation in rat calvarial osteoblasts. A.f bioleaching improved element contents (Fe, Mn, Zn, Cu, and Se) in the derived solutions and the solutions concentration-dependently affected osteoblast viability and differentiation. While the solutions had no effects at low concentrations and inhibited the osteoblast alkaline phosphatase (ALP) activity at high concentrations, they improved ALP activity at their optimal concentrations. The improved osteoblast differentiation and osteogenic function at optimal concentrations were also revealed by levels of ALP cytochemical staining, calcium deposition, numbers and areas of mineralized nodules formed, mRNA and protein expression levels of osteogenesis-related genes (osteocalcin, Bmp-2, Runx-2, and IGF-1), and Runx-2 nuclear translocation. Data from this study will be useful in offering new strategies for improving pyrite bioavailability and providing a mechanistic explanation for the beneficial effects of pyrite in improving bone healing.

  15. Up-regulation of BMP2/4 signaling increases both osteoblast-specific marker expression and bone marrow adipogenesis in Gja1Jrt/+ stromal cell cultures.

    PubMed

    Zappitelli, Tanya; Chen, Frieda; Aubin, Jane E

    2015-03-01

    Gja1(Jrt)/+ mice carry a mutation in one allele of the gap junction protein α1 gene (Gja1), resulting in a G60S connexin 43 (Cx43) mutant protein that is dominant negative for Cx43 protein production of <50% of wild-type (WT) levels and significantly reduced gap junction formation and function in osteoblasts and other Cx43-expressing cells. Previously we reported that Gja1(Jrt)/+ mice exhibited early-onset osteopenia caused by activation of osteoclasts secondary to activation of osteoblast lineage cells, which expressed increased RANKL and produced an abnormal resorption-stimulating bone matrix high in BSP content. Gja1(Jrt)/+ mice also displayed early and progressive bone marrow atrophy, with a significant increase in bone marrow adiposity versus WT littermates but no increase in adipose tissues elsewhere in the body. BMP2/4 production and signaling were increased in Gja1(Jrt)/+ trabecular bone and osteogenic stromal cell cultures, which contributed to the up-regulated expression of osteoblast-specific markers (e.g., Bsp and Ocn) in Gja1(Jrt)/+ osteoblasts and increased Pparg2 expression in bone marrow-derived adipoprogenitors in vitro. The elevated levels of BMP2/4 signaling in G60S Cx43-containing cells resulted at least in part from elevated levels of cAMP. We conclude that up-regulation of BMP2/4 signaling in trabecular bone and/or stromal cells increases osteoblast-specific marker expression in hyperactive Gja1(Jrt)/+ osteoblasts and may also increase bone marrow adipogenesis by up-regulation of Pparg2 in the Cx43-deficient Gja1(Jrt)/+ mouse model.

  16. Are We Economically Efficient Enough to Increase the Potential of in Vitro Proliferation of Osteoblasts by Means of Pharmacochemical Agents?

    PubMed Central

    Isyar, Mehmet; Gumustas, Seyit Ali; Yilmaz, Ibrahim; Sirin, Duygu Yasar; Tosun, Hacı Bayram; Mahirogullari, Mahir

    2016-01-01

    Background: The aim of this study was to test the necessity of using expensive and unaccesible pharmacological-chemical agents in the proliferation of bone tissue cultures and in the induction of mineralized matrix formation to increase the osteogenic effect. Methods: For this purpose, human primary cell cultures were prepared and then divided into two groups. Whereas the cells in group I were fed with an osteoblast stimulator medium containing Dulbecco’s Modified Eagle Medium (DMEM) and β-glycerophosphate, the cells in group II were fed with DMEM containing dexamethasone and 2-phospho-L-ascorbic acid trisodium salt. Both groups were evaluated in terms of viability, toxicity, and proliferation and then compared in terms of cell surface morphology through inverted light and environmental scanning electron microscopy. In addition to immunoflow cytometric analyses, the effects of alkaline phosphatase activities were evaluated using the spectrophotometric method to examine the osteoblastic activities. Costs were calculated in the currency of the European Union (Euros). The Tukey Honestly Significant Difference test was used to reach the statistical evaluation of the data after the analysis of variance. Results: It was reported that the level of the alkaline phosphates was higher in group I compared to group II. It was observed that the surface morphology quality, the number of living cells, and proliferation were higher in group II and that the results were deemed statistically significant. Conclusion: It was found that the 2-phospho-L-ascorbic acid trisodium salt and dexamethasone mixture was as effective as the expensive commercial kits on the osteogenic effect on human primary bone tissue. PMID:27708738

  17. A comparative study of mechanical strain, icariin and combination stimulations on improving osteoinductive potential via NF-kappaB activation in osteoblast-like cells.

    PubMed

    Wang, Qiang-Song; Zhang, Xin-Chang; Li, Rui-Xin; Sun, Jing-Gong; Su, Wei-Hua; Guo, Yong; Li, Hao; Zhang, Xi-Zheng

    2015-05-21

    The combination of drugs and exercise was the effective treatment in bone injure and rebuilding in clinic. As mechanical strain has potential in inducing the differentiation of osteoblasts in our previous study, the further research to investigate the combination of mechanical strain and icariin stimulation on inducing osteoblast proliferation, differentiation and the possible mechanism in MC3T3-E1 cell line. A whole cell enzyme-linked immunosorbent assay that detects the bromodeoxyuridine incorporation during DNA synthesis was applied to evaluate the proliferation. The mRNA expression of alkaline phosphatase (ALP), osteocalcin (OCN), type I collagen (Col I), bone morphogenetic protein-2 (BMP-2) and BMP-4 was detected by real-time reverse-transcription polymerase chain reaction. The activity of ALP was analyzed by ELISA and the protein expression of OCN, Col I and BMP-2 was assessed by western blot. Moreover, the activity of nuclear transcription factor kappa-B (NF-κB) signaling pathway was investigated with the expression of inhibitor of κB (IκB) α, phosphorylation of IκB-α (P-IκB-α), p65, P-p65 by western blot. We observed that compared to single mechanical strain or icariin stimulation, the mRNA and protein expressions of ALP (P < 0.05 or P < 0.01), OCN (P < 0.01) and Col I (P < 0.05 or P < 0.01) were increased significantly by the combination of mechanical strain and icariin stimulation. Moreover, the combination of mechanical strain and icariin stimulation could up-regulate the expression of BMP-2 (P < 0.01) and BMP-4 compared to single mechanical strain or icariin stimulation. The combination of mechanical strain and icariin stimulation could activate NF-κB signaling pathway by increasing the expression of IκB α, P-IκB-α, p65, P-p65 (P < 0.01). The combination of mechanical strain and icariin stimulation could activate the NF-κB pathway to improve the proliferation, differentiation of osteoblast-like cells.

  18. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage.

    PubMed

    Guévremont, Melanie; Martel-Pelletier, Johanne; Massicotte, Frédéric; Tardif, Ginette; Pelletier, Jean-Pierre; Ranger, Pierre; Lajeunesse, Daniel; Reboul, Pascal

    2003-06-01

    HGF is increased in human OA cartilage, possibly from Ob's. RT-PCR shows HGF isoforms are differently regulated between chondrocytes and Ob. A paracrine cross-talk between subchondral bone and cartilage may occur during OA. Recently, hepatocyte growth factor (HGF) has been identified by immunohistochemistry in cartilage and more particularly in the deep zone of human osteoarthritic (OA) cartilage. By investigating HGF expression in cartilage, we found that chondrocytes did not express HGF; however, they expressed the two truncated isoforms, namely HGF/NK1 and HGF/NK2. Because the only other cells localized near the deep zone are osteoblasts from the subchondral bone plate, we hypothesized that they were expressing HGF. Indeed, we found that HGF was synthesized by osteoblasts from the subchondral bone plate. Moreover, OA osteoblasts produced five times more HGF than normal osteoblasts and almost no HGF/NK1, unlike normal osteoblasts. Because prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6 are involved in OA progression, we investigated whether these factors impact HGF produced by normal osteoblasts. PGE2 was the only factor tested that was able to stimulate HGF synthesis. However, the addition of NS398, a selective inhibitor of cyclo-oxygenase-2 (COX-2) had no effect on HGF produced by OA osteoblasts. HGF/NK2 had a moderate stimulating effect on HGF production by normal osteoblasts, whereas osteocalcin was not modulated by either HGF or HGF/NK2. When investigating signaling routes that might be implicated in OA osteoblast-produced HGF, we found that protein kinase A was at least partially involved. In summary, this study raises the hypothesis that the HGF found in articular cartilage is produced by osteoblasts, diffuses into the cartilage, and may be implicated in the OA process.

  19. The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces.

    PubMed

    Lumetti, S; Manfredi, E; Ferraris, S; Spriano, S; Passeri, G; Ghiacci, G; Macaluso, G; Galli, C

    2016-04-01

    The aim of the present work was to investigate the morphology and activity of the murine osteoblastic cell line MC3T3 on control smooth (Machined), commercially available rough (ZT) titanium discs, and on titanium samples obtained by modifying the ZT treatment protocol, and herein labelled as ZTF, ZTM and ZTFM. Cells were evaluated at SEM and immunofluorescence for morphology and cell-to-cell interactions and by MTT assay and real time PCR for cell growth and function. Microscopy showed that ZT modified protocols could differently affect cell shape and distribution. All the tested surfaces showed good biocompatibility by viability assay. However, cells on smoother surfaces appeared to express higher levels of transcript for Collagen 1a1, the main component of extracellular matrix, by real time PCR. Expression of the early differentiation marker Alkaline Phosphatase was higher on ZTF surfaces and ZTM enhanced the expression of later osteoblastic markers Osteoprotegerin and Osteocalcin. Noteworthy, the expression of Connexin 43, a component of cell-to-cell contacts and hemichannels, followed a similar pattern to differentiation marker genes and was higher in cells on ZTM surfaces, consistently with the microscopic observation of cell clusters. Taken together, this data showed that ZTF and ZTM treatment protocols appeared to improve the basal sand-blasting/acid-etching ZT procedure with ZTM surfaces promoting the most mature stage of differentiation.

  20. Human osteoblast damage after antiseptic treatment.

    PubMed

    Vörös, Pauline; Dobrindt, Oliver; Perka, Carsten; Windisch, Christoph; Matziolis, Georg; Röhner, Eric

    2014-01-01

    Antiseptics are powerful medical agents used for wound treatment and decontamination and have a high potential for defeating joint infections in septic surgery. Both chlorhexidine and polyhexanide are frequently used in clinical practice and have a broad antimicrobial range, but their effect on human osteoblasts has not been sufficiently studied. Our objective was to investigate the toxic effects of polyhexanide and chlorhexidine on human osteoblasts in vitro to evaluate their clinical applicability in septic surgery. We isolated and cultivated human osteoblasts in vitro and assayed the toxic effects of chlorhexidine 0.1% and polyhexanide 0.04%, concentrations commonly applied in clinical practice. Toxicity analysis was performed by visualisation of cell structure, lactate dehydrogenase (LDH) activity and evaluation of vital cells. Toxicity was evaluated by microscopic inspection of cell morphology, trypan blue staining and determination of LDH release. Damaged cell structure could be shown by microscopy. Both antiseptics promoted LDH activity after incubation with osteoblasts. The evaluation of vital osteoblasts showed a significant decrease of vital cells. Both antiseptics induced significant cell death of osteoblasts at optimum exposure. We therefore recommend cautious use of polyhexanide and chlorhexidine in septic surgery to avoid severe osteoblast toxicity.

  1. Comparative in vitro study of the cell proliferation of ovine and human osteoblast-like cells on conventionally and rapid prototyping produced scaffolds tailored for application as potential bone replacement material.

    PubMed

    Wagner, M; Kiapur, N; Wiedmann-Al-Ahmad, M; Hübner, U; Al-Ahmad, A; Schön, R; Schmelzeisen, R; Mülhaupt, R; Gellrich, N-C

    2007-12-15

    Reconstruction of bone defects in the field of craniomaxillofacial surgery is a relevant problem. In regenerative medicine, autologous bone is not available sufficiently. The full replacement of autologous bone grafts is required. A promising research field is the bone engineering. Especially the application of rapid prototyping (RP) enables new perspectives concerning the scaffold design. The aim of the study was to compare scaffolds produced by RP-technology (native and plasma-coated PLGA-scaffolds) with conventionally produced scaffolds (agar plates with hydroxyapatite and hyaluronic acid coated agar plates with hydroxyapatite) relating to proliferation, adhesion, and morphology of osteoblasts to get knowledge about the application potential of such 3D-manufactured matrices for bone engineering. TissueFoil E served as reference. To compare the scaffolds, 12 ovine and 12 human osteoblast-like cell cultures of the skull were used. Results were obtained by EZ4U, scanning electron microscopy, and light microscopy. The highest cell proliferation rate of human osteoblast-like cells was measured on TissueFoil E followed by plasma-coated PLGA-scaffolds and uncoated PLGA-scaffolds, whereas of ovine osteoblast-like cells on plasma-coated PLGA-scaffolds followed by TissueFoil E and uncoated PLGA-scaffolds. Human and ovine osteoblast-like cells on coated and uncoated agar plates had significant lower proliferation rates compared with TissueFoil E and PLGA-scaffolds. These results showed the potential of RP in the field of bone engineering. Mechanical properties of such scaffolds and in vivo studies should be investigated to examine if the scaffolds hold up the pressure it will undergo long enough to allow regrowth of bone and to examine the revascularization. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res 2007.

  2. Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors

    NASA Astrophysics Data System (ADS)

    Bloise, Nora; Ceccarelli, Gabriele; Minzioni, Paolo; Vercellino, Marco; Benedetti, Laura; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia

    2013-12-01

    Several studies have shown that low-level laser irradiation (LLLI) has beneficial effects on bone regeneration. The objective of this study was to examine the in vitro effects of LLLI on proliferation and differentiation of a human osteoblast-like cell line (Saos-2 cell line). Cultured cells were exposed to different doses of LLLI with a semiconductor diode laser (659 nm 10 mW power output). The effects of laser on proliferation were assessed daily up to seven days of culture in cells irradiated once or for three consecutive days with laser doses of 1 or 3 J/cm2. The obtained results showed that laser stimulation enhances the proliferation potential of Saos-2 cells without changing their telomerase pattern or morphological characteristics. The effects on cell differentiation were assessed after three consecutive laser irradiation treatments in the presence or absence of osteo-inductive factors on day 14. Enhanced secretion of proteins specific for differentiation toward bone as well as calcium deposition and alkaline phosphatase activity were observed in irradiated cells cultured in a medium not supplemented with osteogenic factors. Taken together these findings indicate that laser treatment enhances the in vitro proliferation of Saos-2 cells, and also influences their osteogenic maturation, which suggest it is a helpful application for bone tissue regeneration.

  3. Cold atmospheric plasma enhances osteoblast differentiation.

    PubMed

    Tominami, Kanako; Kanetaka, Hiroyasu; Sasaki, Shota; Mokudai, Takayuki; Kaneko, Toshiro; Niwano, Yoshimi

    2017-01-01

    This study was designed to assess the effects of cold atmospheric plasma on osteoblastic differentiation in pre-osteoblastic MC3T3-E1 cells. Plasma was irradiated directly to a culture medium containing plated cells for 5 s or 10 s. Alkaline phosphatase (ALP) activity assay and alizarin red staining were applied to assess osteoblastic differentiation. The plasma-generated radicals were detected directly using an electron spin resonance-spin trapping technique. Results show that plasma irradiation under specific conditions increased ALP activity and enhanced mineralization, and demonstrated that the yield of radicals was increased in an irradiation-time-dependent manner. Appropriate plasma irradiation stimulated the osteoblastic differentiation of the cells. This process offers the potential of promoting bone regeneration.

  4. Bone marrow osteoblast vulnerability to chemotherapy.

    PubMed

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F

    2013-06-01

    Osteoblasts are a major component of the bone marrow microenvironment, which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered CXCL12 protein levels, a key regulator of hematopoietic cell homing to the bone marrow. Sublethal concentrations of VP16 and melphalan also decreased the levels of several transcripts which contribute to the composition of the extracellular matrix (ECM) including osteopontin (OPN), osteocalcin (OCN), and collagen 1A1 (Col1a1). The impact of chemotherapy on message and protein levels for some targets was not always aligned, suggesting differential responses at the transcription and translation or protein stability levels. As one of the main functions of a mature osteoblast is to synthesize ECM of a defined composition, disruption of the ratio of its components may be one mechanism by which chemotherapy affects the ability of osteoblasts to support hematopoietic recovery coincident with altered marrow architecture. Collectively, these observations suggest that the osteoblast compartment of the marrow hematopoietic niche is vulnerable to functional dysregulation by damage imposed by agents frequently used in clinical settings. Understanding the mechanistic underpinning of chemotherapy-induced changes on the hematopoietic support capacity of the marrow microenvironment may contribute to improved strategies to optimize patient recovery post-transplantation.

  5. Bacterial and osteoblast behavior on titanium, cobalt-chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications.

    PubMed

    Hu, Xuefeng; Neoh, Koon Gee; Zhang, Jieyu; Kang, En-Tang

    2014-03-01

    Anatase-modified titanium (Ti) substrates have been found to possess antibacterial properties in the absence of ultraviolet irradiation, but the mechanism is not known. We hypothesize that this is due to the bactericidal effects of reactive oxygen species (ROS) generated by the surface anatase. Alkali and heat treatment was used to form anatase on Ti surface. The generation of ROS, and the behavior of bacteria and osteoblasts on the anatase-modified Ti were investigated. Cobalt-chrome (Co-Cr) alloys and stainless steel (SS) were similarly treated with alkali and heat, and their surface properties and effects on bacteria and osteoblasts were compared with the results obtained with Ti. The anatase-functionalized Ti substrates demonstrated significant bactericidal effects and promoted apoptosis in osteoblasts, likely a result of ROS generated by the anatase. The alkali and heat-treated Co-Cr and SS substrates also reduced bacterial adhesion but were not bactericidal. This effect is likely due to an increase in hydrophilicity of the surfaces, and no significant ROS were generated by the alkali and heat-treated Co-Cr and SS substrates. The treated Co-Cr and SS substrates did not induce significant apoptosis in osteoblasts, and thus with these properties, they may be promising for orthopedic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Fluid shear stress induces calcium transients in osteoblasts through depolarization of osteoblastic membrane.

    PubMed

    Sun, Junqing; Liu, Xifang; Tong, Jie; Sun, Lijun; Xu, Hao; Shi, Liang; Zhang, Jianbao

    2014-12-18

    Intracellular calcium transient ([Ca(2+)]i transient) induced by fluid shear stress (FSS) plays an important role in osteoblastic mechanotransduction. Changes of membrane potential usually affect [Ca(2+)]i level. Here, we sought to determine whether there was a relationship between membrane potential and FSS-induced [Ca(2+)]i transient in osteoblasts. Fluorescent dyes DiBAC4(3) and fura-2AM were respectively used to detect membrane potential and [Ca(2+)]i. Our results showed that FSS firstly induced depolarization of membrane potential and then a transient rising of [Ca(2+)]i in osteoblasts. There was a same threshold for FSS to induce depolarization of membrane potential and [Ca(2+)]i transients. Replacing extracellular Na(+) with tetraethylammonium or blocking stretch-activated channels (SACs) with gadolinium both effectively inhibited FSS-induced membrane depolarization and [Ca(2+)]i transients. However, voltage-activated K(+) channel inhibitor, 4-Aminopyridine, did not affect these responses. Removing extracellular Ca(2+) or blocking of L-type voltage-sensitive Ca(2+) channels (L-VSCCs) with nifedipine inhibited FSS-induced [Ca(2+)]i transients in osteoblasts too. Quantifying membrane potential with patch clamp showed that the resting potential of osteoblasts was -43.3mV and the depolarization induced by FSS was about 44mV. Voltage clamp indicated that this depolarization was enough to activated L-VSCCs in osteoblasts. These results suggested a time line of Ca(2+) mobilization wherein FSS activated SACs to promote Na(+) entry to depolarize membrane that, in turn, activated L-VSCCs and Ca(2+) influx though L-VSCCs switched on [Ca(2+)]i response in osteoblasts.

  7. Targeting connexin 43 with α-connexin carboxyl-terminal (ACT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: clinical implication for ACT1.

    PubMed

    Grek, Christina L; Rhett, Joshua Matthew; Bruce, Jaclynn S; Abt, Melissa A; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2015-04-03

    Treatment failure is a critical issue in breast cancer and identifying useful interventions that optimize current cancer therapies remains a critical unmet need. Expression and functional studies have identified connexins (Cxs), a family of gap junction proteins, as potential tumor suppressors. Studies suggest that Cx43 has a role in breast cancer cell proliferation, differentiation, and migration. Although pan-gap junction drugs are available, the lack of specificity of these agents increases the opportunity for off target effects. Consequently, a therapeutic agent that specifically modulates Cx43 would be beneficial and has not been tested in breast cancer. In this study, we now test an agent that specifically targets Cx43, called ACT1, in breast cancer. We evaluated whether direct modulation of Cx43 using a Cx43-directed therapeutic peptide, called ACT1, enhances Cx43 gap junctional activity in breast cancer cells, impairs breast cancer cell proliferation or survival, and enhances the activity of the targeted inhibitors tamoxifen and lapatinib. Our results show that therapeutic modulation of Cx43 by ACT1 maintains Cx43 at gap junction sites between cell-cell membrane borders of breast cancer cells and augments gap junction activity in functional assays. The increase in Cx43 gap junctional activity achieved by ACT1 treatment impairs proliferation or survival of breast cancer cells but ACT1 has no effect on non-transformed MCF10A cells. Furthermore, treating ER+ breast cancer cells with a combination of ACT1 and tamoxifen or HER2+ breast cancer cells with ACT1 and lapatinib augments the activity of these targeted inhibitors. Based on our findings, we conclude that modulation of Cx43 activity in breast cancer can be effectively achieved with the agent ACT1 to sustain Cx43-mediated gap junctional activity resulting in impaired malignant progression and enhanced activity of lapatinib and tamoxifen, implicating ACT1 as part of a combination regimen in breast cancer.

  8. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.

    PubMed Central

    Weinstein, R S; Jilka, R L; Parfitt, A M; Manolagas, S C

    1998-01-01

    Glucocorticoid-induced bone disease is characterized by decreased bone formation and in situ death of isolated segments of bone (osteonecrosis) suggesting that glucocorticoid excess, the third most common cause of osteoporosis, may affect the birth or death rate of bone cells, thus reducing their numbers. To test this hypothesis, we administered prednisolone to 7-mo-old mice for 27 d and found decreased bone density, serum osteocalcin, and cancellous bone area along with trabecular narrowing. These changes were accompanied by diminished bone formation and turnover, as determined by histomorphometric analysis of tetracycline-labeled vertebrae, and impaired osteoblastogenesis and osteoclastogenesis, as determined by ex vivo bone marrow cell cultures. In addition, the mice exhibited a threefold increase in osteoblast apoptosis in vertebrae and showed apoptosis in 28% of the osteocytes in metaphyseal cortical bone. As in mice, an increase in osteoblast and osteocyte apoptosis was documented in patients with glucocorticoid-induced osteoporosis. Decreased production of osteoclasts explains the reduction in bone turnover, whereas decreased production and apoptosis of osteoblasts would account for the decline in bone formation and trabecular width. Furthermore, accumulation of apoptotic osteocytes may contribute to osteonecrosis. These findings provide evidence that glucocorticoid-induced bone disease arises from changes in the numbers of bone cells. PMID:9664068

  9. Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of γ-radiation in an ERK-1/2-independent manner.

    PubMed

    Ghosh, Soma; Kumar, Ashish; Tripathi, Rajendra Prashad; Chandna, Sudhir

    2014-02-01

    Radiotherapy exposes certain regions of solid tumours to low sublethal doses of γ-radiation that may cause secondary malignancies. Therefore, evaluating low-dose-γ-radiation-induced alterations in tumorigenic potential and understanding their mechanisms could help in improving radiotherapy outcome. Limited studies have indicated connexin (Cx) up-regulation by low doses, whereas Cxs are independently shown to alter cell migration in unirradiated cells. We investigated low-dose-γ-radiation-induced alterations in Cx43 expression and cell proliferation/migration/invasion in various tumour cell lines, along with the putative molecular pathways such as p38 and extracellular signal-regulated kinase-1/2 (ERK-1/2)-mitogen-activated protein kinases (MAPKs). Interestingly, a narrow range of low doses (10-20 cGy) enhanced Cx43 expression and also selectively induced glioma cell migration without altering cell proliferation, accompanied by sustained activation of p38 and up-regulation of p21(waf1/cip1), whereas the lowest (5 cGy) dose induced cell proliferation coupled with enhanced p-ERK1/2, proliferating cell nuclear antigen and p-H3 levels without inducing cell migration. Most importantly, low-dose-γ-radiation-induced cell migration and p38 activation was strongly inhibited by knocking down Cx43 expression, thereby demonstrating latter's upstream role, whereas the knock-down had no effect on ERK-1/2 or cell proliferation. Silencing Cx43 caused near-complete inhibition of radiation-induced cell migration/invasion in all tumour cell lines (U87, BMG-1, A549 and HeLa), whereas no cell migration/invasiveness was induced in the γ-irradiated primary VH10 or transformed AA8 fibroblasts. Our study demonstrates for the first time that low-dose γ-radiation induces p38-MAPK mediated cell migration selectively in tumour cells. Further, this effect is regulated by Cx43, which could thus be an important mediator in radiation-induced secondary malignancies and/or metastasis.

  10. Myosin VI facilitates connexin 43 gap junction accretion

    PubMed Central

    Waxse, Bennett J.

    2017-01-01

    ABSTRACT In this study, we demonstrate myosin VI enrichment at Cx43 (also known as GJA1)-containing gap junctions (GJs) in heart tissue, primary cardiomyocytes and cell culture models. In primary cardiac tissue and in fibroblasts from the myosin VI-null mouse as well as in tissue culture cells transfected with siRNA against myosin VI, we observe reduced GJ plaque size with a concomitant reduction in intercellular communication, as shown by fluorescence recovery after photobleaching (FRAP) and a new method of selective calcein administration. Analysis of the molecular role of myosin VI in Cx43 trafficking indicates that myosin VI is dispensable for the delivery of Cx43 to the cell surface and connexon movement in the plasma membrane. Furthermore, we cannot corroborate clathrin or Dab2 localization at gap junctions and we do not observe a function for the myosin-VI–Dab2 complex in clathrin-dependent endocytosis of annular gap junctions. Instead, we found that myosin VI was localized at the edge of Cx43 plaques by using total internal reflection fluorescence (TIRF) microscopy and use FRAP to identify a plaque accretion defect as the primary manifestation of myosin VI loss in Cx43 homeostasis. A fuller understanding of this derangement may explain the cardiomyopathy or gliosis associated with the loss of myosin VI. PMID:28096472

  11. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia.

    PubMed

    Longchamp, Alban; Allagnat, Florent; Alonso, Florian; Kuppler, Christopher; Dubuis, Céline; Ozaki, Charles-Keith; Mitchell, James R; Berceli, Scott; Corpataux, Jean-Marc; Déglise, Sébastien; Haefliger, Jacques-Antoine

    2015-01-01

    Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment.

  12. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia

    PubMed Central

    Longchamp, Alban; Allagnat, Florent; Alonso, Florian; Kuppler, Christopher; Dubuis, Céline; Ozaki, Charles-Keith; Mitchell, James R.; Berceli, Scott; Corpataux, Jean-Marc

    2015-01-01

    Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment. PMID:26398895

  13. Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin.

    PubMed

    Krumbholz, Grit; Junker, Susann; Meier, Florian M P; Rickert, Markus; Steinmeyer, Jürgen; Rehart, Stefan; Lange, Uwe; Frommer, Klaus W; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena

    2017-01-01

    Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.

  14. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model.

    PubMed

    Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Park, Chan-Mi; Ganipisetti, Srinivas Rao; Valan Arasu, Mariadhas; Kim, Young Ock; Park, Chun Geun; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-12-29

    Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived macrophages and zebrafish. Herein, we investigated whether ginsenoside Re affects osteoblast differentiation and mineralization in in vitro and in vivo models. Mouse osteoblast precursor MC3T3-E1 cells were used to investigate cell viability, alkaline phosphatase (ALP) activity, and mineralization. In addition, we examined osteoblastic signaling pathways. Ginsenoside Re affected ALP activity without cytotoxicity, and we also observed the stimulation of osteoblast differentiation through the activation of osteoblast markers including runt-related transcription factor 2, type 1 collagen, ALP, and osteocalcin in MC3T3-E1 cells. Moreover, Alizarin red S staining indicated that ginsenoside Re increased osteoblast mineralization in MC3T3-E1 cells and zebrafish scales compared to controls. These results suggest that ginsenoside Re promotes osteoblast differentiation as well as inhibits osteoclast differentiation, and it could be a potential therapeutic agent for bone diseases.

  15. Bone marrow osteoblast vulnerability to chemotherapy

    PubMed Central

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F.

    2013-01-01

    Osteoblasts are a major component of the bone marrow microenvironment which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered CXCL12 protein levels, a key regulator of hematopoietic cell homing to the bone marrow. Sublethal concentrations of VP16 and melphalan also decreased the levels of several transcripts which contribute to the composition of the extracellular matrix (ECM) including osteopontin (OPN), osteocalcin (OCN) and collagen 1A1 (Col1a1). The impact of chemotherapy on message and protein levels for some targets was not always aligned, suggesting differential responses at the transcription and translation or protein stability levels. Since one of the main functions of a mature osteoblast is to synthesize ECM of a defined composition, disruption of the ratio of its components may be one mechanism by which chemotherapy affects the ability of osteoblasts to support hematopoietic recovery coincident with altered marrow architecture. Collectively, these observations suggest that the osteoblast compartment of the marrow hematopoietic niche is vulnerable to functional dysregulation by damage imposed by agents frequently used in clinical settings. Understanding the mechanistic underpinning of chemotherapy-induced changes on the hematopoietic support capacity of the marrow microenvironment may contribute to improved strategies to optimize patient recovery post-transplantation. PMID:23551534

  16. The osteoblastic niche in the context of multiple myeloma.

    PubMed

    Toscani, Denise; Bolzoni, Marina; Accardi, Fabrizio; Aversa, Franco; Giuliani, Nicola

    2015-01-01

    The osteoblastic niche has a critical role in the regulation of hemopoietic stem cell (HSC) quiescence and self-renewal and in the support of hematopoiesis. Several mechanisms are involved in the crosstalk between stem cells and osteoblasts, including soluble cytokines, adhesion molecules, and signal pathways such as the wingless-Int (Wnt), Notch, and parathyroid hormone pathways. According to the most recent evidence, there is an overlap between osteoblastic and perivascular niches that affects HSC function involving mesenchymal stromal and endothelial cells and a gradient of oxygen regulated by hypoxia inducible factor (HIF)-1α. Derived from plasma cells, multiple myeloma (MM) is a hematopoietic malignancy characterized by a peculiar dependency on the bone microenvironment. Quiescent MM cells may reside in the osteoblastic niche for protection from apoptotic stimuli; in turn, MM cells suppress osteoblast formation and function, leading to impairment of bone formation and the development of osteolytic lesions. Several recent studies have investigated the mechanisms involved in the relationship between osteoblasts and MM cells and identified potential therapeutic targets in the osteoblastic niche, including the HIF-1α, Runx2, and Wnt (both canonical and noncanonical) signaling pathways.

  17. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells

    NASA Astrophysics Data System (ADS)

    Ion, Raluca; Vizireanu, Sorin; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2016-07-01

    The response of MC3T3-E1 pre-osteoblasts to vertically aligned, interconnected carbon nanowalls prepared by plasma enhanced chemical vapor deposition on silicon substrate has been evaluated in terms of cell adhesion, viability and cell proliferation. The behavior of osteoblasts seeded on carbon nanowalls was analyzed in parallel and compared with the behavior of the cells maintained in contact with tissue culture polystyrene (TCPS). The results demonstrate that osteoblasts adhere and remain viable in the long term on carbon nanowalls. Moreover, on the investigated scaffold cell proliferation was significantly promoted, although to a lower extent than on TCPS. Overall, the successful culture of osteoblasts on carbon nanowalls coated substrate confirms the biocompatibility of this scaffold, which could have potential applications in the development of orthopedic biomaterials.

  18. Platelet-rich plasma stimulates osteoblastic differentiation in the presence of BMPs

    SciTech Connect

    Tomoyasu, Akihiro; Higashio, Kanji; Kanomata, Kazuhiro; Goto, Masaaki; Kodaira, Kunihiko; Serizawa, Hiroko; Suda, Tatsuo; Nakamura, Atsushi; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu . E-mail: katagiri@saitama-med.ac.jp

    2007-09-14

    Platelet-rich plasma (PRP) is clinically used as an autologous blood product to stimulate bone formation in vivo. In the present study, we examined the effects of PRP on proliferation and osteoblast differentiation in vitro in the presence of bone morphogenetic proteins (BMPs). PRP and its soluble fraction stimulated osteoblastic differentiation of myoblasts and osteoblastic cells in the presence of BMP-2, BMP-4, BMP-6 or BMP-7. The soluble PRP fraction stimulated osteoblastic differentiation in 3D cultures using scaffolds made of collagen or hydroxyapatite. Moreover, heparin-binding fractions obtained from serum also stimulated osteoblastic differentiation in the presence of BMP-4. These results suggested that platelets contain not only growth factors for proliferation but also novel potentiator(s) for BMP-dependent osteoblastic differentiation.

  19. The role of osteoblasts in peri-prosthetic osteolysis.

    PubMed

    O'Neill, S C; Queally, J M; Devitt, B M; Doran, P P; O'Byrne, J M

    2013-08-01

    Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition.

  20. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    PubMed

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  1. Sulfuretin promotes osteoblastic differentiation in primary cultured osteoblasts and in vivo bone healing

    PubMed Central

    Yun, Hyung-Mun; Lim, Hyun-Chang; Kim, Ga-Hyun; Lee, Dong-Sung; Kim, Youn-Chul; Oh, Hyuncheol; Kim, Eun-Cheol

    2016-01-01

    Although sulfuretin, the major flavonoid of Rhus verniciflua Stokes, has a variety of biological actions, its in vitro and in vivo effects on osteogenic potential remain poorly understood. The objective of the present study was to investigate the effects of sulfuretin on in vitro osteoblastic differentiation and the underlying signal pathway mechanisms in primary cultured osteoblasts and on in vivo bone formation using critical-sized calvarial defects in mice. Sulfuretin promoted osteogenic differentiation of primary osteoblasts, with increased ALP activity and mineralization, and upregulated differentiation markers, including ALP, osteocalcin, and osteopontin, in a concentration-dependent manner. The expression levels of Runx2, BMP-2, and phospho-Smad1/5/8 were upregulated by sulfuretin. Moreover, sulfuretin increased phosphorylation of Akt, mTOR, ERK, and JNK. Furthermore, sulfuretin treatment increased mRNA expression of Wnt ligands, phosphorylation of GSK3, and nuclear β-catenin protein expression. In vivo studies with calvarial bone defects revealed that sulfuretin significantly enhanced new bone formation by micro-computed tomography and histologic analysis. Collectively, these data suggest that sulfuretin acts through the activation of BMP, mTOR, Wnt/β-catenin, and Runx2 signaling to promote in vitro osteoblast differentiation and facilitate in vivo bone regeneration, and might be have therapeutic benefits in bone disease and regeneration. PMID:27713171

  2. Mechanotransductive Regulation of Gap-Junction Activity Between MLO-Y4 Osteocyte-Like and MC3T3-E1 Osteoblast-Like Cells in Three-Dimensional Co-Culture.

    NASA Technical Reports Server (NTRS)

    Juran, C. M.; Blaber, E. A.; Almeida, E. A. C.

    2016-01-01

    Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesion/attachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by

  3. Loss of Gsα Early in the Osteoblast Lineage Favors Adipogenic Differentiation of Mesenchymal Progenitors and Committed Osteoblast Precursors

    PubMed Central

    Sinha, Partha; Aarnisalo, Piia; Chubb, Rhiannon; Ono, Noriaki; Fulzele, Keertik; Selig, Martin; Saeed, Hamid; Chen, Min; Weinstein, Lee S; Pajevic, Paola Divieti; Kronenberg, Henry M; Wu, Joy Y

    2014-01-01

    In humans, aging and glucocorticoid treatment are associated with reduced bone mass and increased marrow adiposity, suggesting that the differentiation of osteoblasts and adipocytes may be coordinately regulated. Within the bone marrow, both osteoblasts and adipocytes are derived from mesenchymal progenitor cells, but the mechanisms guiding the commitment of mesenchymal progenitors into osteoblast versus adipocyte lineages are not fully defined. The heterotrimeric G protein subunit Gsα activates protein kinase A signaling downstream of several G protein-coupled receptors including the parathyroid hormone receptor, and plays a crucial role in regulating bone mass. Here, we show that targeted ablation of Gsα in early osteoblast precursors, but not in differentiated osteocytes, results in a dramatic increase in bone marrow adipocytes. Mutant mice have reduced numbers of mesenchymal progenitors overall, with an increase in the proportion of progenitors committed to the adipocyte lineage. Furthermore, cells committed to the osteoblast lineage retain adipogenic potential both in vitro and in vivo. These findings have clinical implications for developing therapeutic approaches to direct the commitment of mesenchymal progenitors into the osteoblast lineage. PMID:24806274

  4. Nacre extract restores the mineralization capacity of subchondral osteoarthritis osteoblasts.

    PubMed

    Brion, A; Zhang, G; Dossot, M; Moby, V; Dumas, D; Hupont, S; Piet, M H; Bianchi, A; Mainard, D; Galois, L; Gillet, P; Rousseau, M

    2015-12-01

    Osteoarthritis (OA) is the most common cause of joint chronic pain and involves the entire joints. Subchondral osteoarthritic osteoblasts present a mineralization defect and, to date, only a few molecules (Vitamin D3 and Bone Morphogenetic Protein2) could improve the mineralization potential of this cell type. In this context, we have tested for the first time the effect of nacre extract on the mineralization capacity of osteoblasts from OA patients. Nacre extract is known to contain osteogenic molecules which have demonstrated their activities notably on the MC3T3 pre-osteoblastic cell line. For this goal, molecules were extracted from nacre (ESM, Ethanol Soluble Matrix) and tested on osteoblasts of the subchondral bone from OA patients undergoing total knee replacement and on MC3T3 cells for comparison. We chose to investigate the mineralization with Alizarin Red staining and with the study of extracellular matrix (ECM) structure and composition. In a complementary way the structure of the ECM secreted during the mineralization phase was investigated using second harmonic generation (SHG). Nacre extract was able to induce the early presence (after 7 days) of precipitated calcium in cells. Raman spectroscopy and electron microscopy showed the presence of nanograins of an early crystalline form of calcium phosphate in OA osteoblasts ECM and hydroxyapatite in MC3T3 ECM. SHG collagen fibers signal was present in both cell types but lower for OA osteoblasts. In conclusion, nacre extract was able to rapidly restore the mineralization capacity of osteoarthritis osteoblasts, therefore confirming the potential of nacre as a source of osteogenic compounds.

  5. Pathophysiological Mechanism of Bone Loss in Type 2 Diabetes Involves Inverse Regulation of Osteoblast Function by PGC-1α and Skeletal Muscle Atrogenes: AdipoR1 as a Potential Target for Reversing Diabetes-Induced Osteopenia.

    PubMed

    Khan, Mohd Parvez; Singh, Abhishek Kumar; Joharapurkar, Amit Arvind; Yadav, Manisha; Shree, Sonal; Kumar, Harish; Gurjar, Anagha; Mishra, Jay Sharan; Tiwari, Mahesh Chandra; Nagar, Geet Kumar; Kumar, Sudhir; Ramachandran, Ravishankar; Sharan, Anupam; Jain, Mukul Rameshchandra; Trivedi, Arun Kumar; Maurya, Rakesh; Godbole, Madan Madhav; Gayen, Jiaur Rahaman; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-07-01

    Type 2 diabetes is associated with increased fracture risk and delayed fracture healing; the underlying mechanism, however, remains poorly understood. We systematically investigated skeletal pathology in leptin receptor-deficient diabetic mice on a C57BLKS background (db). Compared with wild type (wt), db mice displayed reduced peak bone mass and age-related trabecular and cortical bone loss. Poor skeletal outcome in db mice contributed high-glucose- and nonesterified fatty acid-induced osteoblast apoptosis that was associated with peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) downregulation and upregulation of skeletal muscle atrogenes in osteoblasts. Osteoblast depletion of the atrogene muscle ring finger protein-1 (MuRF1) protected against gluco- and lipotoxicity-induced apoptosis. Osteoblast-specific PGC-1α upregulation by 6-C-β-d-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF), an adiponectin receptor 1 (AdipoR1) agonist, as well as metformin in db mice that lacked AdipoR1 expression in muscle but not bone restored osteopenia to wt levels without improving diabetes. Both GTDF and metformin protected against gluco- and lipotoxicity-induced osteoblast apoptosis, and depletion of PGC-1α abolished this protection. Although AdipoR1 but not AdipoR2 depletion abolished protection by GTDF, metformin action was not blocked by AdipoR depletion. We conclude that PGC-1α upregulation in osteoblasts could reverse type 2 diabetes-associated deterioration in skeletal health.

  6. Osteoblast Differentiation at a Glance

    PubMed Central

    Rutkovskiy, Arkady; Stensløkken, Kåre-Olav; Vaage, Ingvar Jarle

    2016-01-01

    Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction

  7. Fibronectin regulates calvarial osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Moursi, A. M.; Damsky, C. H.; Lull, J.; Zimmerman, D.; Doty, S. B.; Aota, S.; Globus, R. K.

    1996-01-01

    The secretion of fibronectin by differentiating osteoblasts and its accumulation at sites of osteogenesis suggest that fibronectin participates in bone formation. To test this directly, we determined whether fibronectin-cell interactions regulate progressive differentiation of cultured fetal rat calvarial osteoblasts. Spatial distributions of alpha 5 integrin subunit, fibronectin, osteopontin (bone sialoprotein I) and osteocalcin (bone Gla-protein) were similar in fetal rat calvaria and mineralized, bone-like nodules formed by cultured osteoblasts. Addition of anti-fibronectin antibodies to cultures at confluence reduced subsequent formation of nodules to less than 10% of control values, showing that fibronectin is required for normal nodule morphogenesis. Anti-fibronectin antibodies selectively inhibited steady-state expression of mRNA for genes associated with osteoblast differentiation; mRNA levels for alkaline phosphatase and osteocalcin were suppressed, whereas fibronectin, type I collagen and osteopontin were unaffected. To identify functionally relevant domains of fibronectin, we treated cells with soluble fibronectin fragments and peptides. Cell-binding fibronectin fragments (type III repeats 6-10) containing the Arg-Gly-Asp (RGD) sequence blocked both nodule initiation and maturation, whether or not they contained a functional synergy site. In contrast, addition of the RGD-containing peptide GRGDSPK alone did not inhibit nodule initiation, although it did block nodule maturation. Thus, in addition to the RGD sequence, other features of the large cell-binding fragments contribute to the full osteogenic effects of fibronectin. Nodule formation and osteoblast differentiation resumed after anti-fibronectin antibodies or GRGDSPK peptides were omitted from the media, showing that the inhibition was reversible and the treatments were not cytotoxic. Outside the central cell-binding domain, peptides from the IIICS region and antibodies to the N terminus did not

  8. Fibronectin regulates calvarial osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Moursi, A. M.; Damsky, C. H.; Lull, J.; Zimmerman, D.; Doty, S. B.; Aota, S.; Globus, R. K.

    1996-01-01

    The secretion of fibronectin by differentiating osteoblasts and its accumulation at sites of osteogenesis suggest that fibronectin participates in bone formation. To test this directly, we determined whether fibronectin-cell interactions regulate progressive differentiation of cultured fetal rat calvarial osteoblasts. Spatial distributions of alpha 5 integrin subunit, fibronectin, osteopontin (bone sialoprotein I) and osteocalcin (bone Gla-protein) were similar in fetal rat calvaria and mineralized, bone-like nodules formed by cultured osteoblasts. Addition of anti-fibronectin antibodies to cultures at confluence reduced subsequent formation of nodules to less than 10% of control values, showing that fibronectin is required for normal nodule morphogenesis. Anti-fibronectin antibodies selectively inhibited steady-state expression of mRNA for genes associated with osteoblast differentiation; mRNA levels for alkaline phosphatase and osteocalcin were suppressed, whereas fibronectin, type I collagen and osteopontin were unaffected. To identify functionally relevant domains of fibronectin, we treated cells with soluble fibronectin fragments and peptides. Cell-binding fibronectin fragments (type III repeats 6-10) containing the Arg-Gly-Asp (RGD) sequence blocked both nodule initiation and maturation, whether or not they contained a functional synergy site. In contrast, addition of the RGD-containing peptide GRGDSPK alone did not inhibit nodule initiation, although it did block nodule maturation. Thus, in addition to the RGD sequence, other features of the large cell-binding fragments contribute to the full osteogenic effects of fibronectin. Nodule formation and osteoblast differentiation resumed after anti-fibronectin antibodies or GRGDSPK peptides were omitted from the media, showing that the inhibition was reversible and the treatments were not cytotoxic. Outside the central cell-binding domain, peptides from the IIICS region and antibodies to the N terminus did not

  9. Novel hedgehog agonists promote osteoblast differentiation in mesenchymal stem cells.

    PubMed

    Nakamura, Takashi; Naruse, Masahiro; Chiba, Yuta; Komori, Toshihisa; Sasaki, Keiichi; Iwamoto, Masahiro; Fukumoto, Satoshi

    2015-04-01

    Hedgehog (Hh) family members are involved in multiple cellular processes including proliferation, migration, differentiation, and cell fate determination. Recently, the novel Hh agonists Hh-Ag 1.3 and 1.7 were identified in a high-throughput screening of small molecule compounds that activate the expression of Gli1, a target of Hh signaling. This study demonstrates that Hh-Ag 1.3 and 1.7 strongly activate the expression of endogenous Gli1 and promote osteoblast differentiation in the mesenchymal stem cell line C3H10T1/2. Both compounds stimulated alkaline phosphatase activity in a dose-dependent manner, and induced osteoblast marker gene expression in C3H10T1/2 cells, which indicated that they had acquired an osteoblast identity. Of the markers, the expression of osterix/Sp7, a downstream target of runt-related transcription factor (Runx)2, was induced by Hh-Ag 1.7, which also rescued the osteoblast differentiation defect of RD-127, a mesenchymal cell line from Runx2-deficient mice. Hh-Ags also activated canonical Wnt signaling and synergized with low doses of BMP-2 to enhance osteoblastic potential. Thus, Hh-Ag 1.7 could be useful for bone healing in individuals with abnormalities in osteogenesis, such as osteoporosis patients and the elderly, and can contribute to the development of novel therapeutics for the treatment of bone fractures and defects. © 2014 Wiley Periodicals, Inc.

  10. Baicalin, a Flavone, Induces the Differentiation of Cultured Osteoblasts

    PubMed Central

    Guo, Ava J. Y.; Choi, Roy C. Y.; Cheung, Anna W. H.; Chen, Vicky P.; Xu, Sherry L.; Dong, Tina T. X.; Chen, Ji J.; Tsim, Karl W. K.

    2011-01-01

    Flavonoids, a group of natural compounds found in a variety of vegetables and herbal medicines, have been intensively reported on regarding their estrogen-like activities and particularly their ability to affect bone metabolism. Here, different subclasses of flavonoids were screened for their osteogenic properties by measuring alkaline phosphatase activity in cultured rat osteoblasts. The flavone baicalin derived mainly from the roots of Scutellaria baicalensis showed the strongest induction of alkaline phosphatase activity. In cultured osteoblasts, application of baicalin increased significantly the osteoblastic mineralization and the levels of mRNAs encoding the bone differentiation markers, including osteonectin, osteocalcin, and collagen type 1α1. Interestingly, the osteogenic effect of baicalin was not mediated by its estrogenic activity. In contrast, baicalin promoted osteoblastic differentiation via the activation of the Wnt/β-catenin signaling pathway; the activation resulted in the phosphorylation of glycogen synthase kinase 3β and, subsequently, induced the nuclear accumulation of the β-catenin, leading to the transcription activation of Wnt-targeted genes for osteogenesis. The baicalin-induced osteogenic effects were fully abolished by DKK-1, a blocker of Wnt/β-catenin receptor. Moreover, baicalin also enhanced the mRNA expression of osteoprotegerin, which could regulate indirectly the activation of osteoclasts. Taken together, our results suggested that baicalin could act via Wnt/β-catenin signaling to promote osteoblastic differentiation. The osteogenic flavonoids could be very useful in finding potential drugs, or food supplements, for treating post-menopausal osteoporosis. PMID:21652696

  11. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  12. Mutual enhancement of differentiation of osteoblasts and osteocytes occurs through direct cell-cell contact.

    PubMed

    Fujita, Koji; Xing, Qian; Khosla, Sundeep; Monroe, David G

    2014-11-01

    There is increasing evidence that osteocytes regulate multiple aspects of bone remodeling through bi-directional communication with osteoblasts. This is potentially mediated through cell-cell contact via osteocytic dendritic processes, through the activity of secreted factors, or both. To test whether cell-cell contact affects gene expression patterns in osteoblasts and osteocytes, we used a co-culture system where calvarial osteoblasts and IDG-SW3 osteocytes were allowed to touch through a porous membrane, while still being physically separated to allow for phenotypic characterization. Osteoblast/osteocyte cell-contact resulted in up-regulation of osteoblast differentiation genes in the osteoblasts, when compared to wells where no cell contact was allowed. Examination of osteocyte gene expression when in direct contact with osteoblasts also revealed increased expression of osteocyte-specific genes. These data suggest that physical contact mutually enhances both the osteoblastic and osteocytic character of each respective cell type. Interestingly, Gja1 (a gap junction protein) was increased in the osteoblasts only when in direct contact with the osteocytes, suggesting that Gja1 may mediate some of the effects of direct cell contact. To test this hypothesis, we treated the direct contact system with the gap junction inhibitor 18-alpha-glycyrrhetinic acid and found that Bglap expression was significantly inhibited. This suggests that osteocytes may regulate late osteoblast differentiation at least in part through Gja1. Identification of the specific factors involved in the enhancement of differentiation of both osteoblasts and osteocytes when in direct contact will uncover new biology concerning how these bone cells communicate.

  13. Identification and proteomic analysis of osteoblast-derived exosomes

    SciTech Connect

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-06

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. - Highlights: • We for the first time identified exosomes from mouse osteoblast. • Osteoblasts-derived exosomes contain osteoblast peculiar proteins. • Proteins from osteoblasts-derived exosomes are intently involved in EIF2 pathway. • EIF2α from the EIF2 pathway plays an important role in osteogenesis.

  14. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy.

    PubMed

    García-Alonso, M C; Saldaña, L; Vallés, G; González-Carrasco, J L; González-Cabrero, J; Martínez, M E; Gil-Garay, E; Munuera, L

    2003-01-01

    In this work, the influence of thermal oxidation treatments of Ti6Al4V at 500 degrees C and 700 degrees C for 1 h on the in vitro corrosion behaviour and osteoblast response is studied. The potential of these treatments, aimed to improve the wear surface performance as biomaterial, relies in the formation of an outer "ceramic" layer of rutile. The corrosion behaviour was evaluated in simulated human fluids by electrochemical impedance spectroscopy and anodic polarisation tests. The effect of these thermal oxidation treatments on osteoblastic behaviour was studied in primary cultures of human osteoblastic cells. Results show that thermal oxidation treatments do not decrease the high in vitro corrosion resistance of the Ti6Al4V alloy. Osteoblast adhesion studies indicate that thermal oxidation treatments do not impair the material biocompatibility. Moreover, the thermal oxidation at 700 degrees C enhances the in vitro osteoblastic cell attachment compared to the thermal oxidation at 500 degrees C.

  15. Psoralen stimulates osteoblast differentiation through activation of BMP signaling.

    PubMed

    Tang, De-Zhi; Yang, Feng; Yang, Zhou; Huang, Jian; Shi, Qi; Chen, Di; Wang, Yong-Jun

    2011-02-11

    Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. In order to improve the treatment of osteoporosis, identification of anabolic and orally available agents with minimal side effects is highly desirable. Psoralen is a coumarin-like derivative extracted from Chinese herbs, which have been used to treat bone diseases for thousands of years. However, the role of Psoralen in osteoblast function and the underlying molecular mechanisms remain poorly understood. In this study, we found that Psoralen promoted osteoblast differentiation in primary mouse calvarial osteoblasts in a dose-dependent manner, demonstrated by up-regulation of expressions of osteoblast-specific marker genes including type I collagen, osteocalcin and bone sialoprotein and enhancement of alkaline phosphatase activity. We further demonstrated that Psoralen up-regulated the expression of Bmp2 and Bmp4 genes, increased the protein level of phospho-Smad1/5/8, and activated BMP reporter (12xSBE-OC-Luc) activity in a dose-dependent manner, as well as enhanced the expression of Osx, the direct target gene of BMP signaling. Deletion of the Bmp2 and Bmp4 genes abolished the stimulatory effect of Psoralen on the expression of osteoblast marker genes, such as Col1, Alp, Oc and Bsp. Our results suggest that Psoralen acts through the activation of BMP signaling to promote osteoblast differentiation and demonstrate that Psoralen could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.

  16. Participation of TNF-α in Inhibitory Effects of Adipocytes on Osteoblast Differentiation.

    PubMed

    Abuna, Robrigo P F; De Oliveira, Fabiola S; Santos, Thiago De S; Guerra, Thais R; Rosa, Adalberto L; Beloti, Marcio M

    2016-01-01

    Mesenchymal stem cells from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are attractive tools for cell-based therapies to repair bone tissue. In this study, we investigated the osteogenic and adipogenic potential of BM-MSCs and AT-MSCs as well as the effect of crosstalk between osteoblasts and adipocytes on cell phenotype expression. Rat BM-MSCs and AT-MSCs were cultured either in growth, osteogenic, or adipogenic medium to evaluate osteoblast and adipocyte differentiation. Additionally, osteoblasts and adipocytes were indirectly co-cultured to investigate the effect of adipocytes on osteoblast differentiation and vice versa. BM-MSCs and AT-MSCs exhibit osteogenic and adipogenic potential under non-differentiation-inducing conditions. When exposed to osteogenic medium, BM-MSCs exhibited higher expression of bone markers compared with AT-MSCs. Conversely, under adipogenic conditions, AT-MSCs displayed higher expression of adipose tissue markers compared with BM-MSCs. The presence of adipocytes as indirect co-culture repressed the expression of the osteoblast phenotype, whereas osteoblasts did not exert remarkable effect on adipocytes. The inhibitory effect of adipocytes on osteoblasts was due to the release of tumor necrosis factor alpha (TNF-α) in culture medium by adipocytes. Indeed, the addition of exogenous TNF-α in culture medium repressed the differentiation of BM-MSCs into osteoblasts mimicking the indirect co-culture effect. In conclusion, our study showed that BM-MSCs are more osteogenic while AT-MSCs are more adipogenic. Additionally, we demonstrated the key role of TNF-α secreted by adipocytes on the inhibition of osteoblast differentiation. Thus, we postulate that the higher osteogenic potential of BM-MSCs makes them the first choice for inducing bone repair in cell-based therapies.

  17. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    PubMed

    Stalvey, Michael S; Clines, Katrina L; Havasi, Viktoria; McKibbin, Christopher R; Dunn, Lauren K; Chung, W Joon; Clines, Gregory A

    2013-01-01

    Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF). CF-related bone disease (CFBD) is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR), the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/-) mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+) littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl) mRNA was detected, significantly less osteoprotegerin (Opg) was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt signaling

  18. Osteoblast function on synthetic biodegradable polymers.

    PubMed

    Ishaug, S L; Yaszemski, M J; Bizios, R; Mikos, A G

    1994-12-01

    Rat osteoblasts were cultured on films of biodegradable poly(L-lactic acid) (PLLA), 75:25 poly(DL-lactic-co-glycolic acid) (PLGA), 50:50 PLGA, and poly(glycolic acid) (PGA) for up to 14 days. Osteoblasts attached equally well to all the polymer substrates after 8 h in culture. By day 4 in culture, osteoblasts had exceeded confluency numbers, and their proliferation leveled off by day 7. An increase in alkaline phosphatase (ALP) activity from 1.92 (+/- 0.47) x 10(-7) for day 7 to 5.75 (+/- 0.12) x 10(-7) mumol/cell per min for day 14 was reported for osteoblasts cultured on 75:25 PLGA, which was comparable to that observed for tissue culture polystyrene (TCPS) controls. The ALP activities expressed by osteoblasts cultured on PLLA, 50:50 PLGA, and PGA films did not significantly increase over time. Collagen synthesis for osteoblasts cultured on all polymer substrates was similar to that of TCPS and did not vary with time. The morphology of cultured osteoblasts was not affected by the continuous degradation of the polymer substrates. These results demonstrate that poly(alpha-hydroxy esters) can provide a suitable substrate for osteoblast culture and hold promise in bone regeneration by osteoblast transplantation.

  19. 'Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells.

    PubMed

    Okamoto, Kazuma; Miyoshi, Shunichiro; Toyoda, Masashi; Hida, Naoko; Ikegami, Yukinori; Makino, Hatsune; Nishiyama, Nobuhiro; Tsuji, Hiroko; Cui, Chang-Hao; Segawa, Kaoru; Uyama, Taro; Kami, Daisuke; Miyado, Kenji; Asada, Hironori; Matsumoto, Kenji; Saito, Hirohisa; Yoshimura, Yasunori; Ogawa, Satoshi; Aeba, Ryo; Yozu, Ryohei; Umezawa, Akihiro

    2007-07-15

    The clinical application of cell transplantation for severe heart failure is a promising strategy to improve impaired cardiac function. Recently, an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and embryonic stem cells, have become important candidates for cell sources for cardiac repair. In the present study, we focused on the placenta as a cell source. Cells from the chorionic plate in the fetal portion of the human placenta were obtained after delivery by the primary culture method, and the cells generated in this study had the Y sex chromosome, indicating that the cells were derived from the fetus. The cells potentially expressed 'working' cardiomyocyte-specific genes such as cardiac myosin heavy chain 7beta, atrial myosin light chain, cardiac alpha-actin by gene chip analysis, and Csx/Nkx2.5, GATA4 by RT-PCR, cardiac troponin-I and connexin 43 by immunohistochemistry. These cells were able to differentiate into cardiomyocytes. Cardiac troponin-I and connexin 43 displayed a discontinuous pattern of localization at intercellular contact sites after cardiomyogenic differentiation, suggesting that the chorionic mesoderm contained a large number of cells with cardiomyogenic potential. The cells began spontaneously beating 3 days after co-cultivation with murine fetal cardiomyocytes and the frequency of beating cells reached a maximum on day 10. The contraction of the cardiomyocytes was rhythmical and synchronous, suggesting the presence of electrical communication between the cells. Placenta-derived human fetal cells may be useful for patients who cannot supply bone marrow cells but want to receive stem cell-based cardiac therapy.

  20. Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts.

    PubMed

    Suzuki, Hiroyuki; Suda, Naoto; Shiga, Momotoshi; Kobayashi, Yukiho; Nakamura, Masataka; Iseki, Sachiko; Moriyama, Keiji

    2012-09-01

    Apert syndrome is characterized by craniosynostosis and syndactyly, and is predominantly caused by mutation of either S252W or P253W in the fibroblast growth factor receptor (FGFR) 2 gene. In this study, we characterized the effects of one of the mutations (S252W) using primary calvarial osteoblasts derived from transgenic mice, Ap-Tg and sAp-Tg, that expressed an Apert-type mutant FGFR2 (FGFR2IIIc-S252W; FGFR2IIIc-Ap), and the soluble form (extracellular domain only) of the mutant FGFR2 (sFGFR2IIIc-Ap), respectively. Compared to WT-derived osteoblasts, osteoblasts from Ap-Tg mouse showed a higher proliferative activity and enhanced differentiation, while those from sAp-Tg mouse exhibited reduced potential for proliferation and osteogenic differentiation. When transplanted with β-tricalcium phosphate (β-TCP) granules into immunodeficient mice, Ap-Tg-derived osteoblasts showed a higher bone forming capacity, whereas sAp-Tg-derived osteoblasts were completely deficient for this phenotype. Phosphorylation of extracellular signal-regulated kinase (ERK), MEK, PLCγ, and p38 was increased in Ap-Tg-derived osteoblasts, whereas phosphorylation of these signaling molecules was reduced in sAp-Tg-derived osteoblasts. Interestingly, when these experiments were carried out using osteoblasts from the mice generated by crossing Ap-Tg and sAp-Tg (Ap/sAp-Tg), which co-expressed FGFR2IIIc-Ap and sFGFR2IIIc-Ap, the results were comparable to those obtained from WT-derived osteoblasts. Taken together, these results indicate that osteoblasts expressing FGFR2IIIc-Ap proliferate and differentiate via highly activated MEK, ERK, and p38 pathways, while these pathways are suppressed in osteoblasts expressing sFGFR2IIIc-Ap. Our findings also suggest that altered FGFR2IIIc signaling in osteoblasts is mostly responsible for the phenotypes seen in Apert syndrome, therefore these osteoblast cell lines are useful tools for investigating the pathogenesis of Apert syndrome. Copyright © 2011

  1. Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood.

    PubMed

    Matic, Igor; Matthews, Brya G; Wang, Xi; Dyment, Nathaniel A; Worthley, Daniel L; Rowe, David W; Grcevic, Danka; Kalajzic, Ivo

    2016-12-01

    The in vivo origin of bone-producing osteoblasts is not fully defined. Skeletal stem cells, a population of mesenchymal stem cells resident in the bone marrow compartment, are thought to act as osteoprogenitors during growth and adulthood. Quiescent bone lining cells (BLCs) have been suggested as a population capable of activation into mature osteoblasts. These cells were defined by location and their morphology and studies addressing their significance have been hampered by their inaccessibility, and lack of markers that would allow for their identification and tracing. Using lineage tracing models, we have observed labeled osteoblasts at time points extending beyond the reported lifespan for this cell type, suggesting continuous reactivation of BLCs. BLCs also make a major contribution to bone formation after osteoblast ablation, which includes the ability to proliferate. In contrast, mesenchymal progenitors labeled by Gremlin1 or alpha smooth muscle actin do not contribute to bone formation in this setting. BLC activation is inhibited by glucocorticoids, which represent a well-established cause of osteoporosis. BLCs express cell surface markers characteristic of mesenchymal stem/progenitors that are largely absent in osteoblasts including Sca1 and Leptin Receptor. BLCs also show different gene expression profiles to osteoblasts, including elevated expression of Mmp13, and osteoclast regulators RANKL and macrophage colony stimulating factor, and retain osteogenic potential upon transplantation. Our findings provide evidence that bone lining cells represent a major source of osteoblasts during adulthood. Stem Cells 2016;34:2930-2942.

  2. Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells.

    PubMed

    Brodeur, Mathieu R; Brissette, Louise; Falstrault, Louise; Ouellet, Pascale; Moreau, Robert

    2008-02-15

    Cardiovascular diseases have recently been noted as potential risk factors for osteoporosis development. Although it is poorly understood how these two pathologies are related, it is a known fact that oxidized low-density lipoproteins (OxLDL) constitute potential determinants for both of them. The current study investigated the metabolism of OxLDL by osteoblasts and its effect on osteoblastic viability. The results obtained show that OxLDL are internalized but not degraded by osteoblasts while they can selectively transfer their CE to these cells. It is also demonstrated that OxLDL induce proliferation at low concentrations but cell death at high concentrations. This reduction of osteoblast viability was associated with lysosomal membrane damage caused by OxLDL as demonstrated by acridine orange relocalization. Accordingly, chloroquine, an inhibitor of lysosomal activity, accentuated cell death induced by OxLDL. Finally, we demonstrate that osteoblasts have the capacity to oxidize LDL and thereby potentially increase the local concentration of OxLDL. Overall, the current study confirms the potential role of OxLDL in the development of osteoporosis given its influence on osteoblastic viability.

  3. Strontium ranelate increases osteoblast activity.

    PubMed

    Almeida, Monica Marletti; Nani, Edson Parra; Teixeira, Lucas Novaes; Peruzzo, Daiane Cristina; Joly, Júlio César; Napimoga, Marcelo Henrique; Martinez, Elizabeth Ferreira

    2016-06-01

    Strontium ranelate (SR) is the first generation of a new class of medication for osteoporosis, which is capable of inducing bone formation and, to a certain extent, inhibiting bone resorption. The aim of this study was to evaluate the in vitro effects of SR on osteoblastic cell cultures. MC3TE-E1 cells were seeded in 24-well plates at a density of 2×10(4) cells/well and exposed to SR at 0.05, 0.1, and 0.5mM. The following parameters were assayed: 1) Cell proliferation by hemocytometer counting after 24, 48 and 72h, 2) Cell viability by MTT assay after 24, 48 and 72h, 3) Type I Collagen and Osteopontin (OPN) quantification by Western Blotting, ELISA, and Real Time PCR after 48h, 3) Immunolocalization of fibronectin (FN) by epifluorescence, and 4) matrix mineralization by Alizarin Red staining after 14days. After 24, 48 and 72h, the cell proliferation and viability were not affected by SR at 0.05 and 0.1mM (p>0.05). However, cell cultures exposed to SR at 0.5mM exhibited a decrease in both cell proliferation and cell viability in all time points assayed (p<0.05). High levels of protein and mRNA for Type I Collagen and OPN were detected in cultures exposed to SR, particularly at 0.5mM (p<0.05). SR allowed the expression of FN in osteoblastic cell cultures as observed by epifluorescence analysis. The mineralized bone-like nodule formation was affected in a concentration-dependent manner by SR, with large bone-like nodules being detected in osteoblastic cell cultures exposed to SR at 0.5mM. In conclusion, these results suggest that SR can accelerate acquisition of the osteoblastic phenotype, which explains, at least in part, the rebalancing of bone turnover in favor of bone formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    SciTech Connect

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced. • Cx43-mediated gap junction complex assembly correlated with observed changes. • We propose that membranous Cx43 sequesters β-catenin away from the nucleus.

  5. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Mathew, Suja Ann; Gupta, Pawan Kumar; Bhonde, Ramesh; Totey, Satish

    2014-02-01

    Extracellular matrix plays an important role in regulating cell growth and differentiation. The biomimetic approach of cell-based tissue engineering is based on mirroring this in vivo micro environment for developing a functional tissue engineered construct. In this study, we treated normal tissue culture plates with selected extracellular matrix components consisting of glycosaminoglycans such as chondroitin-4-sulphate, dermatan sulphate, chondroitin-6-sulphate, heparin and hyaluronic acid. Mesenchymal stem cells isolated from adult human bone marrow were cultured on the glycosaminoglycan treated culture plates to evaluate their regulatory role in cell growth and osteoblast differentiation. Although no significant improvement on human mesenchymal stem cell adhesion and proliferation was observed on the glycosaminoglycan-treated tissue culture plates, there was selective osteoblast differentiation, indicating its potential role in differentiation rather than proliferation. Osteoblast differentiation studies showed high osteogenic potential for all tested glycosaminoglycans except chondroitin-4-sulphate. Osteoblast differentiation-associated genes such as osterix, osteocalcin, integrin binding sialoprotein, osteonectin and collagen, type 1, alpha 1 showed significant upregulation. We identified osterix as the key transcription factor responsible for the enhanced bone matrix deposition observed on hyaluronic acid, heparin and chondroitin-6-sulphate. Hyaluronic acid provided the most favourable condition for osteoblast differentiation and bone matrix synthesis. Our results confirm and emphasise the significant role of extracellular matrix in regulating cell differentiation. To summarise, glycosaminoglycans of extracellular matrix played a significant role in regulating osteoblast differentiation and could be exploited in the biomimetic approach of fabricating or functionalizing scaffolds for stem cell based bone tissue engineering.

  6. Cytokine expression in human osteoblasts after antiseptic treatment: a comparative study between polyhexanide and chlorhexidine.

    PubMed

    Röhner, Eric; Hoff, Paula; Gaber, Timo; Lang, Annemarie; Vörös, Pauline; Buttgereit, Frank; Perka, Carsten; Windisch, Christoph; Matziolis, Georg

    2015-02-01

    Chlorhexidine and polyhexanide are frequently used antiseptics in clinical practice and have a broad antimicrobial range. Both antiseptics are helpful medical agents for septic wound treatment with a high potential for defeating joint infections. Their effect on human osteoblasts has, so far, not been sufficiently evaluated. The aim of this study was to investigate the activating potential of polyhexanide and chlorhexidine on inflammatory cytokines/chemokines in human osteoblasts in vitro. Human osteoblasts were isolated and cultivated in vitro and then treated separately with 0.1% and 2% chlorhexidine and 0.04% polyhexanide as commonly applied concentrations in clinical practice. Detection of cell structure and cell morphology was performed by light microscopic inspection. Cytokine and chemokine secretion was determined by using a multiplex suspension array. Cell shrinking, defective cell membrane, and the loss of cell adhesion indicated cell damage of human osteoblasts after treatment with both antiseptics was evaluated by using light microscopy. Polyhexanide, but not chlorhexidine, caused human osteoblasts to secrete various interleukins (1β, 6, and 7), interferon γ, tumor necrosis factor α, vascular endothelial growth factor, eotaxin, fibroblast growth factor basic, and granulocyte macrophage colony-stimulating factor as quantified by multiplex suspension array. Both antiseptics induced morphological cell damage at an optimum exposure between 1 and 10 min. But only polyhexanide mediated a pronounced secretion of inflammatory cytokines and chemokines in human osteoblasts. Therefore, we recommend a preferred usage of chlorhexidine in septic surgery to avoid the induction of an inflammatory reaction.

  7. The Macrophage Polarization Regulates MSC Osteoblast Differentiation in vitro.

    PubMed

    Gong, Lei; Zhao, Yan; Zhang, Yi; Ruan, Zhi

    2016-01-01

    Bone repair is a complex yet highly organized process involving interactions between various cell types and the extracellular environment. Macrophages are not only activated in inflammation during early phases of repair processes, but they are also present in bone throughout the whole bone repair process. Bone marrow derived mesenchymal stem cells (MSCs) represent an attractive therapeutic for bone fracture with their expansion potential, osteogenic capability, and potential for injury. However, less is known about the interaction between macrophage and MSC during bone repair and regeneration. This study was aimed to investigate whether macrophages in different statuses can regulate MSC osteoblast differentiation in vitro. Using in vitro cell coculture of macrophage and MSC, it was shown that macrophage polarization can regulate MSC osteoblast differentiation. This was evidenced by increased alkaline phosphatase (ALP), osteogenic markers, and bone mineralization in M2 macrophage cocultured MSC but decreased in M1 counterpart. These results might be mediated by pro-regenerative cytokines, such as TGF-β, VEGF, and IFG-1, produced by M2 macrophages and detrimental inflammation cytokines, such as IL-6, IL-12, and TNF-α, produced by M1 macrophages. Taken together, this shows that macrophage polarization could be crucial for maintaining bone homeostasis and promoting bone repair by regulating the MSC osteoblast differentiation. © 2016 by the Association of Clinical Scientists, Inc.

  8. Transdifferentiation of myoblasts into osteoblasts - possible use for bone therapy.

    PubMed

    Lin, Daphne P L; Carnagarin, Revathy; Dharmarajan, Arun; Dass, Crispin R

    2017-08-15

    Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for fracture healing, osteoporosis and bone repair post-destruction by bone tumours. Hence, this review focuses on the transdifferentiation of myoblast to osteoblast as a means to further understand the transdifferentiation process and to investigate a potential therapeutic option if successful. The potent osteoinductive effects of the bone morphogenetic protein-2 are largely implicated in the transdifferentiation of myoblast to osteoblast. Bone morphogenetic protein-2-induced activation of the Smad1 protein ultimately results in JunB synthesis, the first transcriptional step in myoblast dedifferentiation. The upregulation of the activating protein-1 binding activity triggers the transcription of the runt-related transcription factor 2 gene, a transcription factor that plays a major role in osteoblast differentiation. This potential transdifferentiation treatment may be utilised for dental implants, fracture healing, osteoporosis and bone repair post-destruction by bone tumours. © 2017 Royal Pharmaceutical Society.

  9. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    SciTech Connect

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  10. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice.

    PubMed

    Kode, A; Mosialou, I; Manavalan, S J; Rathinam, C V; Friedman, R A; Teruya-Feldstein, J; Bhagat, G; Berman, E; Kousteni, S

    2016-01-01

    Osteoblasts, the bone forming cells, affect self-renewal and expansion of hematopoietic stem cells (HSCs), as well as homing of healthy hematopoietic cells and tumor cells into the bone marrow. Constitutive activation of β-catenin in osteoblasts is sufficient to alter the differentiation potential of myeloid and lymphoid progenitors and to initiate the development of acute myeloid leukemia (AML) in mice. We show here that Notch1 is the receptor mediating the leukemogenic properties of osteoblast-activated β-catenin in HSCs. Moreover, using cell-specific gene inactivation mouse models, we show that FoxO1 expression in osteoblasts is required for and mediates the leukemogenic properties of β-catenin. At the molecular level, FoxO1 interacts with β-catenin in osteoblasts to induce expression of the Notch ligand, Jagged-1. Subsequent activation of Notch signaling in long-term repopulating HSC progenitors induces the leukemogenic transformation of HSCs and ultimately leads to the development of AML. These findings identify FoxO1 expressed in osteoblasts as a factor affecting hematopoiesis and provide a molecular mechanism whereby the FoxO1/activated β-catenin interaction results in AML. These observations support the notion that the bone marrow niche is an instigator of leukemia and raise the prospect that FoxO1 oncogenic properties may occur in other tissues.

  11. FoxO1-Dependent Induction of Acute Myeloid Leukemia by Osteoblasts in Mice

    PubMed Central

    Kode, Aruna; Mosialou, Ioanna; Manavalan, Sanil J.; Rathinam, Choza V.; Friedman, Richard A.; Teruya-Feldstein, Julie; Bhagat, Govind; Berman, Ellin; Kousteni, Stavroula

    2015-01-01

    Osteoblasts, the bone forming cells, affect self-renewal and expansion of hematopoietic stem cells (HSCs), as well as homing of healthy hematopoietic cells and tumor cells into the bone marrow. Constitutive activation of β-catenin in osteoblasts is sufficient to alter the differentiation potential of myeloid and lymphoid progenitors and to initiate the development of acute myeloid leukemia (AML) in mice. We show here that Notch1 is the receptor mediating the leukemogenic properties of osteoblast-activated β-catenin in HSCs. Moreover, using cell-specific gene inactivation mouse models, we show that FoxO1 expression in osteoblasts is required for and mediates the leukemogenic properties of β-catenin. At the molecular level, FoxO1 interacts with β-catenin in osteoblasts to induce expression of the Notch ligand, Jagged-1. Subsequent activation of Notch signaling in long-term repopulating HSC progenitors induces the leukemogenic transformation of HSCs and ultimately leads to the development of AML. These findings identify FoxO1 expressed in osteoblasts as a factor affecting hematopoiesis and provide a molecular mechanism whereby the FoxO1/activated β-catenin interaction results in AML. These observations support the notion that the bone marrow niche is an instigator of leukemia and raise the prospect that FoxO1 oncogenic properties may occur in other tissues. PMID:26108693

  12. WISP-1 Is an Osteoblastic Regulator Expressed During Skeletal Development and Fracture Repair

    PubMed Central

    French, Dorothy M.; Kaul, Raji J.; D’Souza, Aloma L.; Crowley, Craig W.; Bao, Min; Frantz, Gretchen D.; Filvaroff, Ellen H.; Desnoyers, Luc

    2004-01-01

    Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Experimental evidence suggests that CCN family members are involved in skeletogenesis and bone healing. To investigate the role of WISP-1 in osteogenic processes, we characterized its tissue and cellular expression and evaluated its activity in osteoblastic and chondrocytic cell culture models. During embryonic development, WISP-1 expression was restricted to osteoblasts and to osteoblastic progenitor cells of the perichondral mesenchyme. In vitro, we showed that WISP-1 expression in differentiating osteoblasts promotes BMP-2-induced osteoblastic differentiation. Using in situ and cell binding analysis, we demonstrated WISP-1 interaction with perichondral mesenchyme and undifferentiated chondrocytes. We evaluated the effect of WISP-1 on chondrocytes by generating stably transfected mouse chondrocytic cell lines. In these cells, WISP-1 increased proliferation and saturation density but repressed chondrocytic differentiation. Because of the similarity between skeletogenesis and bone healing, we also analyzed WISP-1 spatiotemporal expression in a fracture repair model. We found that WISP-1 expression recapitulates the pattern observed during skeletal development. Our data demonstrate that WISP-1 is an osteogenic potentiating factor promoting mesenchymal cell proliferation and osteoblastic differentiation while repressing chondrocytic differentiation. Therefore, we propose that WISP-1 plays an important regulatory role during bone development and fracture repair. PMID:15331410

  13. [Biocompatibility of a novel biological piezoelectric ceramic to the rat periosteum derived osteoblast].

    PubMed

    Wang, Peng; Zhang, Xiao-Zhou; Yang, Ping; Tian, Bao-Min; Liu, Zhi-Liang; Chen, Zhi-Qing

    2008-04-01

    A novel biological piezoelectric ceramic was made by beta-tricalcium phosphate (beta-TCP) and lithium sodium potassium niobate (LNK) piezoelectric ceramics. To study its biocompatibility to osteoblast isolated from the cranium of 1-day-old Sprague-Dawley mice. The biological piezoelectric ceramic TCPLNK1/10, TCPLNK5/5 respectively mixed by beta-TCP and LNK piezoelectric ceramic at the ratio of 1/10 and 5/5. Then osteoblasts were used and seeded respectively on the negative and positive surfaces of TCPLNK1/10 and TCPLNK5/5. Growth and proliferation of the osteoblasts on TCPLNK1/10 and TCPLNK5/5 surfaces were evaluated in vitro by means of scanning electron microscopy (SEM) examination, fluorescence dyeing of osteoblast skeleton protein and MTT assay. Cell morphology of osteoblast on positive and negative surfaces of TCPLNK1/10 and TCPLNK5/5 was normal, and both adhesion and growth characteristics showed better than control group. The growing osteoblasts on the TCPLNK1/10 negative surface were significantly higher than others. The negative surface of TCPLNK1/10 possessed better osteogenesis potential than others in vitro. The surface of TCPLNK may permit the imitation piezoelectric effect of natural bone for bone regeneration.

  14. Loss of Rictor with aging in osteoblasts promotes age-related bone loss

    PubMed Central

    Lai, Pinling; Song, Qiancheng; Yang, Cheng; Li, Zhen; Liu, Sichi; Liu, Bin; Li, Mangmang; Deng, Hongwen; Cai, Daozhang; Jin, Dadi; Liu, Anling; Bai, Xiaochun

    2016-01-01

    Osteoblast dysfunction is a major cause of age-related bone loss, but the mechanisms underlying changes in osteoblast function with aging are poorly understood. This study demonstrates that osteoblasts in aged mice exhibit markedly impaired adhesion to the bone formation surface and reduced mineralization in vivo and in vitro. Rictor, a specific component of the mechanistic target of rapamycin complex 2 (mTORC2) that controls cytoskeletal organization and cell survival, is downregulated with aging in osteoblasts. Mechanistically, we found that an increased level of reactive oxygen species with aging stimulates the expression of miR-218, which directly targets Rictor and reduces osteoblast bone surface adhesion and survival, resulting in a decreased number of functional osteoblasts and accelerated bone loss in aged mice. Our findings reveal a novel functional pathway important for age-related bone loss and support for miR-218 and Rictor as potential targets for therapeutic intervention for age-related osteoporosis treatment. PMID:27735936

  15. Berberine bioisostere Q8 compound stimulates osteoblast differentiation and function in vitro.

    PubMed

    Han, Younho; Jin, Yifeng; Lee, Sung Ho; Khadka, Daulat Bikram; Cho, Won-Jea; Lee, Kwang Youl

    2017-03-07

    The Q8 compound is a unique derivative of berberine. The present study investigated the functional role of Q8 to evaluate its potential for use in bone regeneration, especially in osteoblast differentiation. The safe concentration of Q8 increased BMP4-induced alkaline phosphatase (ALP) activity, and induced RNA expression of ALP, bone sialoprotein (BSP), and osteocalcin (OC). The activities of ALP-, BSP- and OC-luciferase reporters were also increased by Q8. During osteoblast differentiation, Q8 stabilized the Runx2 and Osterix protein abundance by blocking the ubiquitin-proteasome pathway, which in turn promoted Runx2 and Osterix induced transcriptional activity and subsequently increased the osteoblast differentiation. Meanwhile, depletion of Runx2 and Osterix markedly abolished the bone anabolic effect of Q8 on osteoblast differentiation. To evaluate the signal transduction pathway involved in the Q8-mediated regulation of Runx2 and Osterix, we examined the reporter assay using various kinase inhibitors. Treatment with a protein kinase A (PKA) inhibitor, H89 inhibited the Q8-mediated regulation of Runx2 and Osterix. Based on these findings, this study demonstrates that Q8 promotes the osteoblast differentiation by stabilization of Runx2/Osterix through the increased activation of PKA signaling. The enhancement of osteoblast function by Q8 may contribute to the prevention for osteoporosis.

  16. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  17. Effects of Hypogravity on Osteoblast Differentiation

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Doty, Steven

    1997-01-01

    Weightbearing is essential for normal skeletal function. Without weightbearing, the rate of bone formation by osteoblasts decreases in the growing rat. Defective formation may account for the decrease in the maturation, strength and mass of bone that is caused by spaceflight. These skeletal defects may be mediated by a combination of physiologic changes triggered by spaceflight, including skeletal unloading, fluid shifts, and stress-induced endocrine factors. The fundamental question of whether the defects in osteoblast function due to weightlessness are mediated by localized skeletal unloading or by systemic physiologic adaptations such as fluid shifts has not been answered. Furthermore, bone-forming activity of osteoblasts during unloading may be affected by paracrine signals from vascular, monocytic, and neural cells that also reside in skeletal tissue. Therefore we proposed to examine whether exposure of cultured rat osteoblasts to spaceflight inhibits cellular differentiation and impairs mineralization when isolated from the influence of both systemic factors and other skeletal cells.

  18. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    PubMed

    Chaturvedi, Ratna; Singha, Prajjal Kanti; Dey, Satyahari

    2013-01-01

    The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM) obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  19. Microcracks induce osteoblast alignment and maturation on hydroxyapatite scaffolds

    NASA Astrophysics Data System (ADS)

    Shu, Yutian

    Physiological bone tissue is a mineral/collagen composite with a hierarchical structure. The features in bone, such as mineral crystals, fibers, and pores can range from the nanometer to the centimeter in size. Currently available bone tissue scaffolds primarily address the chemical composition, pore size, and pore size distribution. While these design parameters are extensively investigated for mimicking bone function and inducing bone regeneration, little is known about microcracks, which is a prevalent feature found in fractured bone in vivo and associated with fracture healing and repair. Since the purpose of bone tissue engineering scaffold is to enhance bone regeneration, the coincidence of microcracks and bone densification should not be neglected but rather be considered as a potential parameter in bone tissue engineering scaffold design. The purpose of this study is to test the hypothesis that microcracks enhance bone healing. In vitro studies were designed to investigate the osteoblast (bone forming cells) response to microcracks in dense (94%) hydroxyapatite substrates. Microcracks were introduced using a well-established Vickers indentation technique. The results of our study showed that microcracks induced osteoblast alignment, enhanced osteoblast attachment and more rapid maturation. These findings may provide insight into fracture healing mechanism(s) as well as improve the design of bone tissue engineering orthopedic scaffolds for more rapid bone regeneration.

  20. Effects of sodium tri- and hexameta-phosphate in vitro osteoblastic differentiation in Periodontal Ligament and Osteoblasts, and in vivo bone regeneration.

    PubMed

    Bae, Won-Jung; Auh, Q-Schick; Kim, Gyu-Tae; Moon, Ji-Hoi; Kim, Eun-Cheol

    2016-12-01

    The present study was designed to assess the effects and underlying mechanism of two poly(P) compounds, sodium triphosphate (STP, Na5P3O10) and sodium hexametaphosphate (SHMP, Na15P13O40~Na20P18O40) on osteoblastic differentiation of human periodontal ligament cells (PDLCs) and osteoblasts in vitro, and bone formation in vivo. Differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization, and mRNA expression for marker genes. To examine the osteogenic potential to regenerate bone, the critical-sized mouse calvarial defect model was utilized. Incubation of PDLCs and osteoblasts with STP and SHMP resulted in a dose- and time-dependent increase in growth, alkaline phosphatase (ALP) activity, mineralization and mRNA expression for marker genes. STP and SHMP increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), Akt, and mammalian target of rapamycin (mTOR), and mitogen-activated protein kinases (MAPK). Treatment with the mTOR inhibitor, rapamycin, attenuatted STP- and SHMP-induced osteoblastic differentiation. Micro-CT and histologic analysis showed that STP significantly increased new bone formation in calvarial defects, compared with SHMP and control group. Collectively, this is the first study to demonstrate that STP and SHMP promotes the osteoblastic differentiation in vitro, whereas STP only stimulated bone repair in vivo. Therefore, STP may be useful therapeutic approach for the regeneration of bone or periodontal tissue. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  1. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration.

    PubMed

    Loiselle, Alayna E; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M; Lewis, Gregory S; Gao, Jun; Lakhtakia, Akhlesh; Donahue, Henry J

    2013-08-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50-60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50-60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma.

  2. Specific Biomimetic Hydroxyapatite Nanotopographies Enhance Osteoblastic Differentiation and Bone Graft Osteointegration

    PubMed Central

    Loiselle, Alayna E.; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M.; Lewis, Gregory S.; Gao, Jun; Lakhtakia, Akhlesh

    2013-01-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50–60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50–60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma. PMID:23510012

  3. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair

    PubMed Central

    Hu, Kai; Olsen, Bjorn R.

    2016-01-01

    Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte–derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing. PMID:26731472

  4. MiR-214 regulates the function of osteoblast under simulated microgravity by targeting ATF4

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Wang, Xiaogang; Li, Qi; Lv, Ke; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Background: MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3'-untranslated region (UTR) of mRNAs, resulting in translational repression. Growing evidence shows that microRNAs (miRNAs) regu-late various developmental and homeostatic events in vertebrates and invertebrates. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass; How-ever, the physiological role of non-coding small RNAs, especially miRNAs, in osteoblast dif-ferentiation remains elusive. Methods: To study the potential involvement of miRNAs in osteoblast differentiation under stimulated microgravity, we analyzed the expression of 20 bone relative miRNAs using real time PCR platform to find particularly miRNAs whose expression is altered during osteoblast differentiation. TargetScan, miRBase and Miranda were used to predict the target gene of candidate miRNA. To investigate whether ATF4 can be directly targeted by miR-214, we engineered luciferase reporters that have either the wild-type 3'UTRs of these genes, or the mutant UTRs with a 6 base pair (bp) deletion in the target sites. Lastly, to address the in vivo role of miR-214 in bone formation, tail suspension mice model was used to simulate the change of osteoblast function and bone loss. Results: Recent studies have sug-gested that miRNAs might play a role in osteoblast differentiation and bone formation. Here, we identify miR-214 in MC3T3-E1 cells, which is a primary mouse osteoblasts cell line, to promote osteoblast differentiation by repressing Activating Transcription Factor4 (ATF4) ex-pression at the posttranscriptional level. What is more, miR-214 was found to be transcribed in C2C12 cells during bone morphogenetic protein 2-induced (BMP2-induced) osteogenesis, and overexpression of miR-214 attenuated BMP2-induced osteoblastogenesis

  5. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    SciTech Connect

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-07-12

    suggesting that PTH utilized an Extracellular Signal Regulated Kinase (ERK)-independent but p38 dependent pathway to regulate CARP-1 protein expression in osteoblasts. Immunofluorescence staining of differentiated osteoblasts further revealed nuclear to cytoplasmic translocation of CARP-1 protein following PTH treatment. Collectively, our studies identified CARP-1 for the first time in osteoblasts and suggest its potential role in PTH signaling and bone anabolic action.

  6. Expansion and Characterization of Human Embryonic Stem Cell-Derived Osteoblast-Like Cells

    PubMed Central

    Arpornmaeklong, Premjit; Wang, Zhuo; Pressler, Michael J.; Brown, Shelley E.

    2010-01-01

    Abstract Human embryonic stem cells (hESCs) have the potential to serve as a repository of cells for the replacement of damaged or diseased tissues and organs. However, to use hESCs in clinically relevant scenarios, a large number of cells are likely to be required. The aim of this study was to demonstrate an alternative cell culture method to increase the quantity of osteoblast-like cells directly derived from hESCs (hESCs-OS). Undifferentiated hESCs were directly cultivated and serially passaged in osteogenic medium (hESC-OS), and exhibited similar expression patterns of osteoblast-related genes to osteoblast-like cells derived from mesenchymal stem cells derived from hESCs (hESCs-MSCs-OS) and human bone marrow stromal cells (hBMSCs-OS). In comparison to hESCs-MSCs-OS, the hESCs-OS required a shorter expansion time to generate a homogenous population of osteoblast-like cells that did not contain contaminating undifferentiated hESCs. Identification of human specific nuclear antigen (HuNu) in the newly formed bone in calvarial defects verified the role of the transplanted hESCs-OS as active bone forming cells in vivo. Taken together, this study suggests that osteoblast-like cells directly derived from hESCs have the potential to serve as an alternative source of osteoprogenitors for bone tissue engineering strategies. PMID:20698777

  7. Identification of Differentially Expressed Genes Between Osteoblasts and Osteocytes

    PubMed Central

    Paic, Frane; Igwe, John C.; Ravi, Nori; Kronenberg, Mark S.; Franceschetti, Tiziana; Harrington, Patrick; Kuo, Lynn; Shin, Don-Guk; Rowe, David W.; Harris, Stephen E.; Kalajzic, Ivo

    2009-01-01

    some new aspects of osteocyte biology. Although a large number of genes differentially expressed in DMP1topaz+ and Col2.3cyan+ cells in our study have already been assigned to bone development and physiology, for most of them we still lack any substantial data. Therefore, isolation of osteocyte and osteoblast cell populations and their subsequent microarray analysis allowed us to identify a number or genes and pathways with potential roles in regulation of bone mass. PMID:19539797

  8. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection

    PubMed Central

    Meresta, Anna; Folkert, Justyna; Gaber, Timo; Miksch, Korneliusz; Buttgereit, Frank; Detert, Jacqueline; Pischon, Nicole; Gurzawska, Katarzyna

    2017-01-01

    Background Bioengineered plant-derived Rhamnogalacturonan-Is (RG-Is) from pectins are potential candidates for surface nanocoating of medical devices. It has recently been reported that RG-I nanocoatings may prevent bacterial infection and improve the biocompatibility of implants. The aim of the study was to evaluate in vitro impact of bioengineered RG-I nanocoatings on osteogenic capacity and proinflammatory cytokine response of murine osteoblasts following Porphyromonas gingivalis infection. Methods Murine MC3T3-E1 osteoblasts and isolated primary calvarial osteoblasts from C57BL/6J (B6J osteoblasts) mice were infected with P. gingivalis and incubated on tissue culture polystyrene plates with or without nanocoatings of unmodified RG-Is isolated from potato pulps (PU) or dearabinanated RG-Is (PA). To investigate a behavior of infected osteoblasts cultured on RG-Is cell morphology, proliferation, metabolic activity, mineralization and osteogenic and pro-inflammatory gene expression were examined. Results Following P. gingivalis infection, PA, but not PU, significantly promoted MC3T3-E1 and BJ6 osteoblasts proliferation, metabolic activity, and calcium deposition. Moreover, Il-1b, Il-6, TNF-α, and Rankl gene expressions were downregulated in cells cultured on PU and to a higher extent on PA as compared to the corresponding control, whereas Runx, Alpl, Col1a1, and Bglap gene expressions were upregulated vice versa. Conclusion Our data clearly showed that pectin RG-Is nanocoating with high content of galactan (PA) reduces the osteoblastic response to P. gingivalis infection in vitro and may, therefore, reduce a risk of inflammation especially in immunocompromised patients with rheumatoid or periodontal disorders. PMID:28138240

  9. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection.

    PubMed

    Meresta, Anna; Folkert, Justyna; Gaber, Timo; Miksch, Korneliusz; Buttgereit, Frank; Detert, Jacqueline; Pischon, Nicole; Gurzawska, Katarzyna

    2017-01-01

    Bioengineered plant-derived Rhamnogalacturonan-Is (RG-Is) from pectins are potential candidates for surface nanocoating of medical devices. It has recently been reported that RG-I nanocoatings may prevent bacterial infection and improve the biocompatibility of implants. The aim of the study was to evaluate in vitro impact of bioengineered RG-I nanocoatings on osteogenic capacity and proinflammatory cytokine response of murine osteoblasts following Porphyromonas gingivalis infection. Murine MC3T3-E1 osteoblasts and isolated primary calvarial osteoblasts from C57BL/6J (B6J osteoblasts) mice were infected with P. gingivalis and incubated on tissue culture polystyrene plates with or without nanocoatings of unmodified RG-Is isolated from potato pulps (PU) or dearabinanated RG-Is (PA). To investigate a behavior of infected osteoblasts cultured on RG-Is cell morphology, proliferation, metabolic activity, mineralization and osteogenic and pro-inflammatory gene expression were examined. Following P. gingivalis infection, PA, but not PU, significantly promoted MC3T3-E1 and BJ6 osteoblasts proliferation, metabolic activity, and calcium deposition. Moreover, Il-1b, Il-6, TNF-α, and Rankl gene expressions were downregulated in cells cultured on PU and to a higher extent on PA as compared to the corresponding control, whereas Runx, Alpl, Col1a1, and Bglap gene expressions were upregulated vice versa. Our data clearly showed that pectin RG-Is nanocoating with high content of galactan (PA) reduces the osteoblastic response to P. gingivalis infection in vitro and may, therefore, reduce a risk of inflammation especially in immunocompromised patients with rheumatoid or periodontal disorders.

  10. Cherubism Gene Sh3bp2 is Important for Optimal Bone Formation, Osteoblast Differentiation and Function

    PubMed Central

    Mukherjee, Padma M.; Wang, Chiachien J.; Chen, I-Ping; Jafarov, Toghrul; Olsen, Bjorn R.; Ueki, Yasuyoshi; Reichenberger, Ernst J.

    2012-01-01

    Introduction Cherubism is a human genetic disorder that causes bilateral symmetrical enlargement of the maxilla and mandible in children. It is caused by mutations in SH3BP2. The exact pathogenesis of the disorder is an area of active research. Sh3bp2 knock-in mice were developed by introducing a Pro416Arg mutation (Pro418Arg in humans) in the mouse genome. The osteoclast phenotype of this mouse model was recently described. Methods We examined the bone phenotype of the cherubism mouse model, the role of Sh3bp2 during bone formation, osteoblast differentiation and osteoblast function. Results We observed delays in early postnatal development of homozygous Sh3bp2KI/KI mice. Sh3bp2KI/KI mice exhibit increased growth plate thickness and significantly decreased trabecular bone thickness and reduced bone mineral density. Histomorphometric and μ-CT analyses reveal bone loss in cranial and appendicular skeleton. Sh3bp2KI/KI mice also exhibit a significant decrease in osteoid formation that indicates a defect in osteoblast function. Calvarial osteoblast cell cultures exhibit a decrease in alkaline phosphatase expression and mineralization suggesting reduced differentiation potential. Gene expression of osteoblast differentiation markers like collagen type-I, alkaline phosphatase and osteocalcin are decreased in osteoblast cultures from Sh3bp2KI/KI mice. Conclusions These data suggest that Sh3bp2 function regulates bone homeostasis not only through osteoclast-specific effects but also through effects on osteoblast differentiation and function. PMID:20691350

  11. Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone.

    PubMed

    Wan, Qilong; Schoenmaker, Ton; Jansen, Ineke D C; Bian, Zhuan; de Vries, Teun J; Everts, Vincent

    2016-05-01

    Several studies have demonstrated the existence of functional differences between osteoclasts harbored in different bones. The mechanisms involved in the occurrence of such a heterogeneity are not yet understood. Since cells of the osteoblast lineage play a critical role in osteoclastogenesis, osteoclast heterogeneity may be due to osteoblasts that differ at the different bone sites. In the present study we evaluated possible differences in the capacity of calvaria and long bone osteoblasts to induce osteoclastogenesis. Osteoblasts were isolated from calvaria and long bone of mice and co-cultured with osteoclast precursors obtained from bone marrow of both types of bone, spleen and peripheral blood. Irrespective of the source of the precursors, a significantly higher number of TRACP-positive multinucleated cells were formed with calvaria osteoblasts. The expression of osteoclastogenesis related genes was analyzed by qPCR. OPG was significantly higher expressed by long bone osteoblasts. The RANKL/OPG ratio and TNF-α gene expression were significantly higher in calvaria osteoblast cultures. OPG added to the culture system inhibited osteoclastogenesis in both groups. Blocking TNF-α had no effect on osteoclastogenesis. Calvaria and long bone osteoblasts were pre-stimulated with VitD3 for 5days. Subsequently, osteoclast precursors were added to these cultures. After a co-culture of 6days, it was shown that VitD3 pre-stimulation of long bone osteoblasts strongly improved their capacity to induce osteoclast formation. This coincided with an increased ratio of RANKL/OPG. Taken together, the data demonstrated differences in the capacity of calvaria and long bone osteoblasts to induce osteoclastogenesis. This appeared to be due to differences in the expression of RANKL and OPG. VitD3 pre-stimulation improved the ability of long bone osteoblasts to induce osteoclast formation. Our findings demonstrate bone-site specific differences in osteoblast-mediated formation of

  12. Experiments with osteoblasts cultured under hypergravity conditions

    NASA Technical Reports Server (NTRS)

    Kacena, Melissa A.; Todd, Paul; Gerstenfeld, Louis C.; Landis, William J.

    2004-01-01

    To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditions in vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (90 cells/microscopic field). Specifically, confluent 1.0 G control cultures contained an average of 91 +/- 8 cells/field, 3.3 G samples had 88 +/- 8 cells/field, and 4.0 G cultures averaged 90 +/- 7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (l.0 G was similar to 3.3 and 4.0 G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18-23% decrease) and an increase in number of vinculin bulbs (202-374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast- substrate adhesion.

  13. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes

    PubMed Central

    Komori, Toshihisa

    2016-01-01

    Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced. PMID:27929439

  14. Experiments with osteoblasts cultured under hypergravity conditions

    NASA Technical Reports Server (NTRS)

    Kacena, Melissa A.; Todd, Paul; Gerstenfeld, Louis C.; Landis, William J.

    2004-01-01

    To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditions in vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (90 cells/microscopic field). Specifically, confluent 1.0 G control cultures contained an average of 91 +/- 8 cells/field, 3.3 G samples had 88 +/- 8 cells/field, and 4.0 G cultures averaged 90 +/- 7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (l.0 G was similar to 3.3 and 4.0 G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18-23% decrease) and an increase in number of vinculin bulbs (202-374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast- substrate adhesion.

  15. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway

    PubMed Central

    Dai, Zhipeng; Yang, Jingjing; Zheng, Jin

    2016-01-01

    Background Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. Purpose In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. Methods The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Results Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and

  16. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway.

    PubMed

    Tian, Qing; Wu, Shilei; Dai, Zhipeng; Yang, Jingjing; Zheng, Jin; Zheng, Qixin; Liu, Yong

    2016-01-01

    Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and blocked the apoptotic events

  17. Biological effect of resorbable plates on normal osteoblasts and osteoblasts derived from Pfeiffer syndrome.

    PubMed

    Palmieri, Annalisa; Zollino, Ilaria; Clauser, Luigi; Lucchese, Alessandra; Girardi, Ambra; Farinella, Francesca; Carinci, Francesco

    2011-05-01

    Biodegradable fixation devices made of the polymers polylactide, polyglycolide and their copolymers are used routinely during maxillofacial, craniofacial, and orthopedic reconstructive surgical procedures, thanks to their property of biodegradation that avoid the need for implant removal. In particular, they are used in the treatment of craniosynostosis in pediatric patients affected by Pfeiffer syndrome, where the resorption time of 1 year or less does not interfere with the normal growth of the skull. To study the mechanism how polylactide-polyglycolide (PLPG) acid plates can induce osteoblast differentiation and proliferation in normal osteoblasts and in osteoblasts derived from a patient with Pfeiffer syndrome, the expression levels of bone-related genes were analyzed using real-time reverse transcription-polymerase chain reaction. Osteoblasts grown on the PLPG acid plates resulted in significant upregulation of mRNA expression of many genes related to osteodifferentiation during the treatment, indicating that polylactide, polyglycolide biopolymers enhance proliferation, differentiation, and deposition of matrix in osteoblasts. This study also revealed some differences in gene expression between normal osteoblasts and osteoblasts derived from patients with Pfeiffer syndrome, cultivated on PLPG acid plates.

  18. Skeletal Collagen Turnover by the Osteoblast

    NASA Technical Reports Server (NTRS)

    Partridge, Nicola C.

    1997-01-01

    Among the most overt negative changes experienced by man and experimental animals under conditions of weightlessness are the loss of skeletal mass and attendant hypercalciuria. These clearly result from some disruption in the balance between bone formation and bone resorption (i.e. remodelling) which appears to be due to a decrease in the functions of the osteoblast. In the studies funded by this project, the clonal osteoblastic cell line, UMR 106-01, has been used to investigate the regulation of collagenase and Tissue Inhibitors of MetalloProteases (TIMPs). This project has shed light on the comprehensive role of the osteoblast in the remodelling process, and, in so doing, provided some insight into how the process might be disrupted under conditions of microgravity.

  19. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    SciTech Connect

    Hong, Dun; Chen, Hai-Xiao; Yu, Hai-Qiang; Liang, Yong; Wang, Carrie; Lian, Qing-Quan; Deng, Hai-Teng; Ge, Ren-Shan

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  20. Nuclear chromatin-concentrated osteoblasts in renal bone diseases.

    PubMed

    Kazama, Junichiro James; Yamamoto, Suguru; Narita, Ichiei; Kurihara, Satoshi

    2011-06-01

    The morphological appearance of an osteoblast largely alters with its differentiation and maturation, along with the change of cell function. We quantitatively observed the osteoblast morphology and compared it with bone metabolism. Biopsied iliac bone samples obtained from 77 dialysis patients (14 mild change, 37 osteitis fibrosa, 2 osteomalacia, 8 mixed, and 16 adynamic bone) were included in the study. Osteoblast appearances were classified into three groups: (i) type II and III osteoblasts, namely, active osteoblasts characterized by cuboidal or columnar shapes with or without a nuclear clear zone; (ii) type IV osteoblasts, lining osteoblasts characterized by extremely thin cytoplasm; and (iii) type V osteoblasts, apoptotic osteoblasts characterized by nuclear chromatin concentration. The results were quantitatively expressed as the length of bone surface covered by each type of osteoblasts. The type II and III osteoblasts were predominant in osteitis fibrosa, mixed, and mild change. The type IV osteoblasts were overwhelmingly predominant in adynamic bone. The type V osteoblasts appeared most frequently in osteitis fibrosa, followed by mixed and mild change. Both absolute and relative lengths of bone surface covered by the type V osteoblasts were significantly higher in the high-turnover bone group (osteitis fibrosa and mixed) than the low-turnover bone group (adynamic bone and osteomalacia). The type V osteoblasts were slightly correlated with serum intact parathyroid hormone levels. In conclusion, a high bone-turnover condition seems to be associated with the promotion of osteoblastic apoptosis in dialysis patients. This finding may explain the fact that osteopenia develops faster in CKD patients with high turnover of bone.

  1. FGF Suppresses Poldip2 Expression in Osteoblasts.

    PubMed

    Katsumura, Sakie; Izu, Yayoi; Yamada, Takayuki; Griendling, Kathy; Harada, Kiyoshi; Noda, Masaki; Ezura, Yoichi

    2016-12-05

    Osteoporosis is one of the most prevalent ageing-associated diseases that are soaring in the modern world. Although various aspects of the disease have been investigated to understand the bases of osteoporosis, the pathophysiological mechanisms underlying bone loss is still incompletely understood. Poldip2 is a molecule that has been shown to be involved in cell migration of vascular cells and angiogenesis. However, expression of Poldip2 and its regulation in bone cells were not known. Therefore, we examined the Poldip2 mRNA expression and the effects of bone regulators on the Poldip2 expression in osteoblasts. We found that Poldip2 mRNA is expressed in osteoblastic MC3T3-E1 cells. As FGF controls osteoblasts and angiogenesis, FGF regulation was investigated in these cells. FGF suppressed the expression of Poldip2 in MC3T3-E1 cells in a time dependent manner. Protein synthesis inhibitor but not transcription inhibitor reduced the FGF effects on Poldip2 gene expression in MC3T3-E1 cells. As for bone-related hormones, dexamethasone was found to enhance the expression of Poldip2 in osteoblastic MC3T3-E1 cells whereas FGF still suppressed such dexamethasone effects. With respect to function, knockdown of Poldip2 by siRNA suppressed the migration of MC3T3-E1 cells. Poldip2 was also expressed in the primary cultures of osteoblast-enriched cells and FGF also suppressed its expression. Finally, Poldip2 was expressed in femoral bone in vivo and its levels were increased in aged mice compared to young adult mice. These data indicate that Poldip2 is expressed in osteoblastic cells and is one of the targets of FGF. J. Cell. Biochem. 9999: 1-8, 2017. © 2016 Wiley Periodicals, Inc.

  2. Enhancing osteoblast-affinity of titanium scaffolds for bone engineering by use of ultraviolet light treatment.

    PubMed

    Ishijima, Manabu; Soltanzadeh, Pooya; Hirota, Makoto; Tsukimura, Naoki; Shigami, Tomohiko; Ogawa, Takahiro

    2015-01-01

    Ultraviolet (UV) treatment immediately prior to use is attracting attention as an effective surface conditioning method for titanium to improve osteoblast-affinity. The affinity of titanium to osteoblasts in two-dimensional plate culture has been well studied, but that in three-dimensional cultures remains unclear. Here, we examined the effect of UV treatment on titanium scaffolds, comprising micro-thin titanium fibers, used in bone engineering. Titanium scaffolds, with and without UV treatment, were seeded with rat bone marrow derived osteoblasts, and the number of cells attached to scaffolds and osteoblastic phenotype in the cultures were examined. UV treatment improved the wettability of scaffolds and significantly reduced the percentage of surface carbon. Along with these physicochemical changes in the scaffolds, cell attachment increased by a factor of 1.3 as compared to that of the untreated control. In addition, alkaline phosphatase activity and calcium deposition significantly increased by a factor of 2.3 and 2.0, respectively. Robust formation of mineralized structures consisting of clear peaks of calcium and phosphorus was observed in the UV-treated scaffolds. The observed increase in osteoblast affinity and capability of mineralized matrix formation indicates the potential use of UV-treated titanium scaffolds for bone engineering.

  3. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells.

    PubMed

    Suh, K S; Choi, E M; Rhee, S Y; Kim, Y S

    2014-02-01

    Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca(2+) chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca(2+) release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.

  4. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation.

    PubMed

    Leidi, Marzia; Dellera, Federica; Mariotti, Massimo; Banfi, Giuseppe; Crapanzano, Calogero; Albisetti, Walter; Maier, Jeanette A M

    2012-10-01

    An adequate intake of magnesium (Mg) is important for bone cell activity and contributes to the prevention of osteoporosis. Because (a) Mg is mitogenic for osteoblasts and (b) reduction of osteoblast proliferation is detected in osteoporosis, we investigated the influence of different concentrations of extracellular Mg on osteoblast-like SaOS-2 cell behavior. We found that low Mg inhibited SaOS-2 cell proliferation by increasing the release of nitric oxide through the up-regulation of inducible nitric oxide synthase (iNOS). Indeed, both pharmacological inhibition with the iNOS inhibitor l-N(6)-(iminoethyl)-lysine-HCl and genetic silencing of iNOS by small interfering RNA restored the normal proliferation rate of the cells. Because a moderate induction of nitric oxide is sufficient to potentiate bone resorption and a relative deficiency in osteoblast proliferation can result in their inadequate activity, we conclude that maintaining Mg homeostasis is relevant to ensure osteoblast function and, therefore, to prevent osteoporosis.

  5. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  6. Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica.

    PubMed

    Tiyasatkulkovit, Wacharaporn; Charoenphandhu, Narattaphol; Wongdee, Kannikar; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Malaivijitnond, Suchinda

    2012-10-15

    Phytoestrogens have attracted attention for their potential in the prevention of postmenopausal osteoporosis. Recently, phytoestrogen-rich herb Pueraria mirifica has been demonstrated to possess an osteogenic effect on bone in ovariectomized rats, but its underlying cellular mechanism was not known. Here, we investigated the effects of P. mirifica extract and its major isoflavone compound, puerarin, on cell viability, cell proliferation and the expression of differentiation markers in rat osteoblast-like UMR106 cells. After exposure to 17β-estradiol (E2), genistein, P. mirifica extract and puerarin, proliferation but not viability of UMR106 cells was markedly decreased. Quantitative real-time PCR revealed that P. mirifica extract and puerarin significantly increased the mRNA expression of alkaline phosphatase (ALP) and osteoprotegerin, but not Runx2, osterix or osteocalcin. Puerarin also decreased the mRNA expression of receptor activator of nuclear factor-κB ligand, an osteoclastogenic factor, suggesting that it could induce bone gain by enhancing osteoblast differentiation and suppressing osteoclast function. Furthermore, after an exposure to high affinity estrogen receptor (ER) antagonist (ICI182780), the E2-, genistein-, P. mirifica extract- and puerarin-induced upregulation of ALP expressions were completely abolished. It could be concluded that P. mirifica extract and puerarin induced osteoblast differentiation rather than osteoblast proliferation in an ER-dependent manner. The present findings, therefore, corroborated the potential benefit of P. mirifica extract and puerarin in the prevention and treatment of postmenopausal osteoporosis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. C-reactive protein, sodium azide, and endothelial connexin43 gap junctions.

    PubMed

    Wang, Hsueh-Hsiao; Yeh, Hung-I; Wang, Chi-Young; Su, Cheng-Huang; Wu, Yih-Jer; Tseng, Yuen-Yi; Lin, Yi-Chun; Tsai, Cheng-Ho

    2010-04-01

    We investigated the effect of C-reactive protein (CRP) and sodium azide (NaN(3)) on endothelial Cx43 gap junctions. Human aortic endothelial cells (HAEC) were treated with (a) detoxified CRP, (b) detoxified dialyzed CRP, (c) detoxified dialyzed CRP plus NaN(3), (d) NaN(3), or (e) dialyzed NaN(3). The concentration of CRP in all preparations was fixed to 25 microg/ml and that of NaN(3) in the preparations of (c) to (e) was equivalent to that contained in the 25 microg/ml CRP purchased commercially. The results showed that both the expression of Cx43 protein and gap junctional communication function post-48-h incubation were reduced and inhibited by the detoxified CRP, NaN(3), or detoxified dialyzed CRP plus NaN(3), but not by the detoxified dialyzed CRP or dialyzed NaN(3). Reverse transcription-polymerase chain reaction analysis of cells treated for 72 h also showed a pattern of transcriptional regulation essentially the same as that for the proteins. We concluded that CRP does not have a significant effect on Cx43 gap junctions of HAEC, but NaN(3) inhibited the viability of cells and downregulate their junctions.

  8. Connexin 43 expression on peripheral blood eosinophils: role of gap junctions in transendothelial migration.

    PubMed

    Vliagoftis, Harissios; Ebeling, Cory; Ilarraza, Ramses; Mahmudi-Azer, Salahaddin; Abel, Melanie; Adamko, Darryl; Befus, A Dean; Moqbel, Redwan

    2014-01-01

    Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx)43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.

  9. Expression and Function of Connexin 43 in Human Gingival Wound Healing and Fibroblasts

    PubMed Central

    Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari

    2015-01-01

    Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva. PMID:25584940

  10. Connexin 43 is not essential for the control of renin synthesis and secretion.

    PubMed

    Gerl, Melanie; Kurt, Birgül; Kurtz, Armin; Wagner, Charlotte

    2014-05-01

    The juxtaglomerular areas of mammalian kidneys express the gap junction proteins connexin 37, 40, 43, and 45. Among these, Cx40 plays a major role for the function of juxtaglomerular renin-expressing cells, while Cx37 and Cx45 appear to be less relevant in this context. Since the role of the remaining Cx43 for the function of renin expression is not well understood, this study aimed to systematically characterize the direct role of Cx43 for renin expression and secretion. For this aim, we generated mice with endothelium and with renin cell-specific deletions of Cx43, and we characterized the regulation of renin expression and renin secretion in the kidneys of these mice on normal salt diet and during chronic challenge of the renin system by pretreatment of mice with a low-salt diet in combination with an angiotensin I-converting enzyme inhibitor. We found that renal renin mRNA abundance, plasma renin concentration, and systolic blood pressure did not differ between wild-type, Cx43(fl/fl) Ren1d(+/Cre) mice as well as Cx43(fl/fl) Tie-2(+/Cre) mice under basal conditions nor under chronic stimulation by salt depletion. The localization of renin-expressing cells was also regular in kidneys of all genotypes, and moreover, regulation of renin secretion by beta-adrenergic stimulation and renal perfusion pressure measured in isolated perfused kidneys of Cx43(fl/fl) Ren1d(+/Cre) and Cx43(fl/fl) Tie-2(+/Cre) mice was not different from control. We infer from these results that Cx43 plays if at all only a minor role for the functional control of renin-producing cells in the kidney.

  11. Reduced connexin 43 in eutopic endometrium and cultured endometrial stromal cells from subjects with endometriosis.

    PubMed

    Yu, Jie; Boicea, Anisoara; Barrett, Kara L; James, Christopher O; Bagchi, Indrani C; Bagchi, Milan K; Nezhat, Ceana; Sidell, Neil; Taylor, Robert N

    2014-03-01

    Accumulating evidence indicates that reduced fecundity associated with endometriosis reflects a failure of embryonic receptivity. Microdomains composed of endometrial gap junctions, which facilitate cell-cell communication, may be implicated. Pharmacological or genetic inhibition of connexin (Cx) 43 block human endometrial cell differentiation in vitro and conditional uterine deletion of Cx43 alleles cause implantation failure in mice. The aim of this study was to determine whether women with endometriosis have reduced eutopic endometrial Cx43. Cx26 acted as a control. Endometrial biopsies were collected from age, race and cycle phase-matched women without (15 controls) or with histologically confirmed endometriosis (15 cases). Immunohistochemistry confirmed a predominant localization of Cx43 in the endometrial stroma, whereas Cx26 was confined to the epithelium. Cx43 immunostaining was reduced in eutopic biopsies of endometriosis subjects and western blotting of tissue lysates confirmed lower Cx43 levels in endometriosis cases, with Cx43/β-actin ratios=.4±1.5 in control and =1.2±0.3 in endometriosis biopsies (P<0.01). When endometrial stromal cells (ESC) were isolated from endometriosis cases, Cx43 levels and scrape loading-dye transfer were reduced by ∼45% compared with ESC from controls. In vitro decidualization of ESC derived from endometriosis versus control subjects resulted in lesser epithelioid transformation and a significantly reduced up-regulation of Cx43 protein (1.2±0.2- versus 1.7±0.4-fold, P<0.01). No changes in Cx26 were observed. While basal steady-state levels of Cx43 mRNA did not differ with respect to controls, ESC from endometriosis cases failed to manifest a response to hormone treatment in vitro. In summary, eutopic endometrial Cx43 concentrations in endometriosis cases were <50% those of controls in vivo and in vitro, functional gap junctions were reduced and hormone-induced Cx43 mRNA levels were blunted.

  12. Connexin43 reduces melanoma growth within a keratinocyte microenvironment and during tumorigenesis in vivo.

    PubMed

    Ableser, Mark J; Penuela, Silvia; Lee, Jack; Shao, Qing; Laird, Dale W

    2014-01-17

    Connexins (Cx) have been identified as tumor suppressors or enhancers, a distinction that appears to be dependent on the type and stage of disease. However, the role of connexins in melanoma tumorigenesis and their status during cancer onset and progression remain controversial and unclear. Here, we show that the aggressive B16-BL6 mouse melanoma cell line expresses low basal levels of Cx26 and Cx43, rendering them gap junctional intercellular communication-deficient as elucidated by immunofluorescence, Western blotting, and dye transfer studies. Following ectopic expression of green fluorescent protein-tagged Cx26 and Cx43 in these connexin-deficient melanomas, punctate gap junction-like plaques were evident at sites of cell-cell apposition, and the incidence of dye transfer was significantly increased similar to connexin-rich keratinocytes. We found that the expression of Cx43, but not Cx26, significantly reduced cellular proliferation and anchorage-independent growth from control melanomas, whereas migration was unaffected. Additionally, melanomas expressing Cx43 displayed significantly reduced growth within the in situ-like microenvironment of keratinocytes, despite a lack of heterocellular gap junctional intercellular communication between the two cell types. Furthermore, when grown in vivo in the chicken chorioallantoic membrane, primary tumors derived from Cx43-expressing melanomas were significantly smaller than controls, whereas Cx26-expressing melanomas produced tumors similar to controls. Collectively, these results suggest that Cx43, and not Cx26, can act as a tumor suppressor during melanoma tumorigenesis.

  13. Connexin43 with a cytoplasmic loop deletion inhibits the function of several connexins

    PubMed Central

    Wang, Min; Martínez, Agustín D.; Berthoud, Viviana M.; Seul, Kyung H.; Gemel, Joanna; Valiunas, Virginijus; Kumari, Sindhu; Brink, Peter R.; Beyer, Eric C.

    2009-01-01

    Connexins (Cx) form gap junction channels mediating direct intercellular communication. To study the role of amino acids within the cytoplasmic loop, we produced a recombinant adenovirus containing Cx43 with a deletion of amino acids 130–136 (Cx43del130–136). Cx43del130–136 expressed alone in HeLa cells localized within the cytoplasm and did not allow transfer of ions, neurobiotin or Lucifer yellow. When co-expressed with wild type Cx43, Cx43del130–136 blocked electrical coupling and transfer of neurobiotin or Lucifer yellow. Cx43del130–136 and Cx43 co-localized by immunofluorescence and were co-purified from Triton X-100-solubilized cell extracts. Intercellular transfer mediated by Cx37 and Cx45 (but not Cx26 or Cx40) was inhibited when co-expressed with Cx43del130–136. Cx43del130–136 co-localized with Cx37, Cx40, or Cx45, but not Cx26. These data suggest that Cx43del130–136 produces connexin-specific inhibition of intercellular communication through formation of heteromeric connexons that are non-functional and/or retained in the cytoplasm. PMID:15979566

  14. Role of connexin-43 hemichannels in the pathogenesis of Yersinia enterocolitica.

    PubMed

    Velasquez Almonacid, L A; Tafuri, S; Dipineto, L; Matteoli, G; Fiorillo, E; Della Morte, R; Fioretti, A; Menna, L F; Staiano, N

    2009-12-01

    Connexin (Cx) channels are sites of cytoplasmic communication between contacting cells. Evidence indicates that the opening of hemichannels occurs under both physiological and pathological conditions. In this paper, the involvement of Cx-43 hemichannels is demonstrated in the pathogenesis of Yersinia. Parental HeLa cells and transfected HeLa cells stably expressing Cx-43 (HCx43) were infected with Yersiniaenterocolitica, and bacterial uptake was measured by the colony-forming unit method. Bacterial uptake was higher in HCx43 cells than in parental cells and was inhibited by the Cx channel blocker, 18-alpha-glycyrrhetinic acid (AGA). The inhibitory effect of AGA was more pronounced on the Y. enterocolitica uptake by HCx43 cells than by parental cells. The ability of HCx43 cells to incorporate the permeable fluorescent tracer Lucifer Yellow (LY) was assessed. Dye incorporation was inhibited by AGA, whereas Y. enterocolitica infection of HCx43 cells increased LY incorporation. Western blotting analysis demonstrated that Y. enterocolitica infection of HCx43 cells induced tyrosine phosphorylation of Cx-43, thus supporting a critical role for Cx-43 in the strategies exploited by bacterial pathogens to invade non-phagocytic cells.

  15. Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.

    PubMed

    Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra

    2005-01-01

    Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.

  16. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS.

  17. Role of connexin 43 in cadmium-induced proliferation of human prostate epithelial cells.

    PubMed

    Liu, Qingping; Ji, Xiaoli; Ge, Zehe; Diao, Haipeng; Chang, Xiuli; Wang, Lihua; Wu, Qing

    2017-02-08

    Connexins (Cxs), the subunits of gap junction channels, are involved in many physiological processes. Aberrant control of Cxs and gap junction intercellular communication may contribute to many diseases, including the promotion of cancer. Cd exposure is associated with increased risk of human prostate cancer and benign prostatic hyperplasia. The roles of Cxs in the effects of Cd on the prostate have, however, not been reported previously. In this study, the human prostate epithelial cell line RWPE-1 was exposed to Cd. A low dose of Cd stimulated cell proliferation along with a lower degree of gap junction intercellular communication and an elevated level of the protein Cx43. Cd exposure increased the levels of intracellular Ca(2+) and phosphorylated Cx43 at the Ser368 site. Knockdown of Cx43 using siRNA blocked Cd-induced proliferation and interfered with the Cd-induced changes in the protein levels of cyclin D1, cyclin B1, p27(Kip1) (p27) and p21(Waf1/Cip1) (p21). The increase in Cx43 expression induced by Cd was presumably mediated by the androgen receptor, because it was abolished upon treatment with the androgen receptor antagonist, flutamide. Thus, a low dose of Cd promotes cell proliferation in RWPE-1, possibly mediated by Cx43 expression through an effect on cell cycle-associated proteins. Cx43 might be a target for prostatic diseases associated with Cd exposure. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Estradiol Reduces Connexin43 Gap Junctions in the Uterus during Adenomyosis in Cows.

    PubMed

    Korzekwa, A J; Łupicka, M; Socha, B M; Szczepańska, A A

    2016-09-01

    Adenomyosis is defined as the presence of glandular foci external to the endometrium of the uterus, either in the myometrium or/and perimetrium, depending on the progress of this dysfunction. To date, we showed that steroids secretion and prolactin expression and proliferative processes are disturbed during uterine adenomyosis in cows. During endometriosis in eutopic endometrium in women, gap junctions are down regulated. The transmembrane gap junction protein, connexin (Cx43) is necessary for endometrial morphological, biochemical and angiogenic functions. The aim of this study is recognition of adenomyosis etiology by determination of the role of Cx43 in this process. Immunolocalization and comparison of Cx43 mRNA and protein expression in healthy (N=9) and adenomyotic uterine tissue (N=9), and Cx43 mRNA expression (real time PCR) in uterine stromal - myometrium co-culture under 24-hour stimulation with 17-beta estradiol (10-7M) isolated from healthy (N=5) and adenomyotic (N=5) cows were determined. Cx43 was localized in healthy and adenomyotic uteri. mRNA and protein expression was down-regulated in uterine tissue in adenomyotic compared with healthy cows (p<0.05). Estradiol stimulated Cx43 mRNA expression in myometrial cell culture and co-culture of stromal and myometrial cells in adenomyotic compared with healthy cows (p<0.05). In summary, down-regulation of Cx43 expression in the junction zone might play an important role in pathogenesis of adenomyosis. Estradiol modulates gap junctions during adenomyosis.

  19. Expression and function of connexin 43 in human gingival wound healing and fibroblasts.

    PubMed

    Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari

    2015-01-01

    Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva.

  20. Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation*

    PubMed Central

    Batra, Nidhi; Riquelme, Manuel A.; Burra, Sirisha; Kar, Rekha; Gu, Sumin; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone. PMID:24563481

  1. Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells.

    PubMed

    Oxford, Eva M; Musa, Hassan; Maass, Karen; Coombs, Wanda; Taffet, Steven M; Delmar, Mario

    2007-09-28

    Desmosomes and gap junctions are distinct structural components of the cardiac intercalated disc. Here, we asked whether the presence of plakophilin (PKP)2, a component of the desmosome, is essential for the proper function and distribution of the gap junction protein connexin (Cx)43. We used RNA silencing technology to decrease the expression of PKP2 in cardiac cells (ventricular myocytes, as well as epicardium-derived cells) obtained from neonatal rat hearts. We evaluated the content, distribution, and function of Cx43 gap junctions. Our results show that loss of PKP2 expression led to a decrease in total Cx43 content, a significant redistribution of Cx43 to the intracellular space, and a decrease in dye coupling between cells. Separate experiments showed that Cx43 and PKP2 can coexist in the same macromolecular complex. Our results support the notion of a molecular crosstalk between desmosomal and gap junction proteins. The results are discussed in the context of arrhythmogenic right ventricular cardiomyopathy, an inherited disease involving mutations in desmosomal proteins, including PKP2.

  2. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins.

    PubMed

    Yuan, Dongdong; Sun, Guoliang; Zhang, Rui; Luo, Chenfang; Ge, Mian; Luo, Gangjian; Hei, Ziqing

    2015-11-01

    Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.

  3. Pilot investigation of the molecular discrimination of human osteoblasts from different bone entities.

    PubMed

    Wein, Martin; Fretwurst, Tobias; Nahles, Susanne; Duttenhoefer, Fabian; Tomakidi, Pascal; Steinberg, Thorsten; Nelson, Katja

    2015-10-01

    In oral and maxillofacial surgery, autologous grafts from the iliac crest remain the 'gold standard' for alveolar ridge reconstruction, whereas intraoral bone grafts are considered in smaller defects. To date, a comparison of the osteogenic potential of osteoblasts with regard to their tissue origin is missing. Primary osteoblasts have proven useful for the investigation of the tissue-specific osteogenic properties. The present study compares primary human alveolar (aHOBs) and iliac osteoblasts (iHOBs) derived from three female patients undergoing routine intraoral bone grafting. Proliferation potential of the osteoblasts was evaluated using real-time impedance monitoring. Relative gene expression of bone specific biomarkers was analyzed and quantified using quantitative polymerase chain reactions (qPCR). Immunohistochemistry and phase contrast microscopy were performed, as well as alkaline phosphatase assay and alizarin red staining to visualize morphology and mineralization capacity. A twofold faster proliferation rate of aHOBs compared with iHOBs (130 h vs. 80 h) was observed. Alkaline phosphatase activity and alizarin red staining in both HOBs indicated similar mineralization capacity. Gene expression of seven genes (BMP1, CSF-1, TGFBR1, ICAM1, VCAM1, SPP1 and DLX5) was significantly higher in iHOB than in aHOB samples. These data suggest a higher osteogenic potential of osteoblasts derived from the iliac crest compared with primary osteoblasts from the alveolar bone and may lead to a better understanding of the molecular impact of bone cells from different bone entities on bone regeneration in alveolar ridge reconstructions.

  4. Connexin45 interacts with zonula occludens-1 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Laing, J. G.; Manley-Markowski, R. N.; Koval, M.; Civitelli, R.; Steinberg, T. H.

    2001-01-01

    Connexin43 (Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.

  5. Connexin45 interacts with zonula occludens-1 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Laing, J. G.; Manley-Markowski, R. N.; Koval, M.; Civitelli, R.; Steinberg, T. H.

    2001-01-01

    Connexin43 (Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.

  6. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Huang, Baoxin; Mai, Sui; Wu, Xiayi; Zhang, Hanqing; Qiao, Wei; Luo, Xin; Chen, Zhuofan

    2015-06-01

    Biological hydroxyapatite, derived from animal bones, is the most widely used bone substitute in orthopedic and dental treatments. Fluorine is the trace element involved in bone remodeling and has been confirmed to promote osteogenesis when administered at the appropriate dose. To take advantage of this knowledge, fluorinated porcine hydroxyapatite (FPHA) incorporating increasing levels of fluoride was derived from cancellous porcine bone through straightforward chemical and thermal treatments. Physiochemical characteristics, including crystalline phases, functional groups and dissolution behavior, were investigated on this novel FPHA. Human osteoblast-like MG63 cells were cultured on the FPHA to examine cell attachment, cytoskeleton, proliferation and osteoblastic differentiation for in vitro cellular evaluation. Results suggest that fluoride ions released from the FPHA play a significant role in stimulating osteoblastic activity in vitro, and appropriate level of fluoridation (1.5 to 3.1 atomic percents of fluorine) for the FPHA could be selected with high potential for use as a bone substitute.

  7. Osteoblast behavior on various ultra short pulsed laser deposited surface coatings.

    PubMed

    Qu, Chengjuan; Myllymaa, Sami; Prittinen, Juha; Koistinen, Arto P; Lappalainen, Reijo; Lammi, Mikko J

    2013-04-01

    Ultra short pulsed laser deposition technique was utilized to create amorphous diamond, alumina and carbon nitride, and two different titania coatings on silicon wafers, thus producing five different surface deposited films with variable physico-chemical properties. The surface characterizations, including the roughness, the contact angle and the zeta potential measurements were performed before we tested the growth properties of human osteoblast-like Saos-2 cells on these surfaces (three separate experiments). The average roughness and hydrophobicity were the highest on titania-deposited surfaces, while carbon nitride was the most hydrophilic one. Osteoblasts on all surfaces showed a flattened, spread-out morphology, although on amorphous diamond the cell shape appeared more elongated than on the other surfaces. On rough titania, the area covered by the osteoblasts was smaller than on the other ones. Cell proliferation assay did not show any statistically significant differences. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. T