Sample records for connexins

  1. Connexin channels and phospholipids: association and modulation

    PubMed Central

    Locke, Darren; Harris, Andrew L

    2009-01-01

    Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581

  2. Alterations in gap junction connexin43/connexin45 ratio mediate a transition from quiescence to excitation in a mathematical model of the myometrium

    PubMed Central

    Sheldon, Rachel E.; Mashayamombe, Chipo; Shi, Shao-Qing; Garfield, Robert E.; Shmygol, Anatoly; Blanks, Andrew M.; van den Berg, Hugo A.

    2014-01-01

    The smooth muscle cells of the uterus contract in unison during delivery. These cells achieve coordinated activity via electrical connections called gap junctions which consist of aggregated connexin proteins such as connexin43 and connexin45. The density of gap junctions governs the excitability of the myometrium (among other factors). An increase in gap junction density occurs immediately prior to parturition. We extend a mathematical model of the myometrium by incorporating the voltage-dependence of gap junctions that has been demonstrated in the experimental literature. Two functional subtypes exist, corresponding to systems with predominantly connexin43 and predominantly connexin45, respectively. Our simulation results indicate that the gap junction protein connexin45 acts as a negative modulator of uterine excitability, and hence, activity. A network with a higher proportion of connexin45 relative to connexin43 is unable to excite every cell. Connexin45 has much more rapid gating kinetics than connexin43 which we show limits the maximum duration of a local burst of activity. We propose that this effect regulates the degree of synchronous excitation attained during a contraction. Our results support the hypothesis that as labour approaches, connexin45 is downregulated to allow action potentials to spread more readily through the myometrium. PMID:25401181

  3. Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43.

    PubMed

    Fykerud, Tone Aase; Kjenseth, Ane; Schink, Kay Oliver; Sirnes, Solveig; Bruun, Jarle; Omori, Yasufumi; Brech, Andreas; Rivedal, Edgar; Leithe, Edward

    2012-09-01

    Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junction channels are made of a family of integral membrane proteins called connexins, of which the best-studied member is connexin43. Gap junctions are dynamic plasma membrane domains, and connexin43 has a high turnover rate in most tissue types. However, the mechanisms involved in the regulation of connexin43 endocytosis and transport to lysosomes are still poorly understood. Here, we demonstrate by live-cell imaging analysis that treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) induces endocytosis of subdomains of connexin43 gap junctions. The internalized, connexin43-enriched vesicles were found to fuse with early endosomes, which was followed by transport of connexin43 to the lumen of early endosomes. The HECT E3 ubiquitin ligase smad ubiquitination regulatory factor-2 (Smurf2) was found to be recruited to connexin43 gap junctions in response to TPA treatment. Depletion of Smurf2 by small interfering RNA resulted in enhanced levels of connexin43 gap junctions between adjacent cells and increased gap junction intercellular communication. Smurf2 depletion also counteracted the TPA-induced endocytosis and degradation of connexin43. Collectively, these data identify Smurf2 as a novel regulator of connexin43 gap junctions.

  4. Immunohistochemical Characterization of Connexin43 Expression in a Mouse Model of Diabetic Retinopathy and in Human Donor Retinas

    PubMed Central

    Mugisho, Odunayo O.; Green, Colin R.; Zhang, Jie; Binz, Nicolette; Acosta, Monica L.; Rakoczy, Elizabeth

    2017-01-01

    Diabetic retinopathy (DR) develops due to hyperglycemia and inflammation-induced vascular disruptions in the retina with connexin43 expression patterns in the disease still debated. Here, the effects of hyperglycemia and inflammation on connexin43 expression in vitro in a mouse model of DR and in human donor tissues were evaluated. Primary human retinal microvascular endothelial cells (hRMECs) were exposed to high glucose (HG; 25 mM) or pro-inflammatory cytokines IL-1β and TNF-α (10 ng/mL each) or both before assessing connexin43 expression. Additionally, connexin43, glial fibrillary acidic protein (GFAP), and plasmalemma vesicular associated protein (PLVAP) were labeled in wild-type (C57BL/6), Akita (diabetic), and Akimba (DR) mouse retinas. Finally, connexin43 and GFAP expression in donor retinas with confirmed DR was compared to age-matched controls. Co-application of HG and cytokines increased connexin43 expression in hRMECs in line with results seen in mice, with no significant difference in connexin43 or GFAP expression in Akita but higher expression in Akimba compared to wild-type mice. On PLVAP-positive vessels, connexin43 was higher in Akimba but unchanged in Akita compared to wild-type mice. Connexin43 expression appeared higher in donor retinas with confirmed DR compared to age-matched controls, similar to the distribution seen in Akimba mice and correlating with the in vitro results. Although connexin43 expression seems reduced in diabetes, hyperglycemia and inflammation present in the pathology of DR seem to increase connexin43 expression, suggesting a causal role of connexin43 channels in the disease progression. PMID:29186067

  5. Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus.

    PubMed

    Rash, J E; Olson, C O; Pouliot, W A; Davidson, K G V; Yasumura, T; Furman, C S; Royer, S; Kamasawa, N; Nagy, J I; Dudek, F E

    2007-10-26

    Suprachiasmatic nucleus (SCN) neurons generate circadian rhythms, and these neurons normally exhibit loosely-synchronized action potentials. Although electrotonic coupling has long been proposed to mediate this neuronal synchrony, ultrastructural studies have failed to detect gap junctions between SCN neurons. Nevertheless, it has been proposed that neuronal gap junctions exist in the SCN; that they consist of connexin32 or, alternatively, connexin36; and that connexin36 knockout eliminates neuronal coupling between SCN neurons and disrupts circadian rhythms. We used confocal immunofluorescence microscopy and freeze-fracture replica immunogold labeling to examine the distributions of connexin30, connexin32, connexin36, and connexin43 in rat and mouse SCN and used whole-cell recordings to re-assess electrotonic and tracer coupling. Connexin32-immunofluorescent puncta were essentially absent in SCN but connexin36 was relatively abundant. Fifteen neuronal gap junctions were identified ultrastructurally, all of which contained connexin36 but not connexin32, whereas nearby oligodendrocyte gap junctions contained connexin32. In adult SCN, one neuronal gap junction was >600 connexons, whereas 75% were smaller than 50 connexons, which may be below the limit of detectability by fluorescence microscopy and thin-section electron microscopy. Whole-cell recordings in hypothalamic slices revealed tracer coupling with neurobiotin in <5% of SCN neurons, and paired recordings (>40 pairs) did not reveal obvious electrotonic coupling or synchronized action potentials, consistent with few neurons possessing large gap junctions. However, most neurons had partial spikes or spikelets (often <1 mV), which remained after QX-314 [N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide] had blocked sodium-mediated action potentials within the recorded neuron, consistent with spikelet transmission via small gap junctions. Thus, a few "miniature" gap junctions on most SCN neurons appear to mediate weak electrotonic coupling between limited numbers of neuron pairs, thus accounting for frequent detection of partial spikes and hypothetically providing the basis for "loose" electrical or metabolic synchronization of electrical activity commonly observed in SCN neuronal populations during circadian rhythms.

  6. Structural analysis of key gap junction domains--Lessons from genome data and disease-linked mutants.

    PubMed

    Bai, Donglin

    2016-02-01

    A gap junction (GJ) channel is formed by docking of two GJ hemichannels and each of these hemichannels is a hexamer of connexins. All connexin genes have been identified in human, mouse, and rat genomes and their homologous genes in many other vertebrates are available in public databases. The protein sequences of these connexins align well with high sequence identity in the same connexin across different species. Domains in closely related connexins and several residues in all known connexins are also well-conserved. These conserved residues form signatures (also known as sequence logos) in these domains and are likely to play important biological functions. In this review, the sequence logos of individual connexins, groups of connexins with common ancestors, and all connexins are analyzed to visualize natural evolutionary variations and the hot spots for human disease-linked mutations. Several gap junction domains are homologous, likely forming similar structures essential for their function. The availability of a high resolution Cx26 GJ structure and the subsequently-derived homology structure models for other connexin GJ channels elevated our understanding of sequence logos at the three-dimensional GJ structure level, thus facilitating the understanding of how disease-linked connexin mutants might impair GJ structure and function. This knowledge will enable the design of complementary variants to rescue disease-linked mutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gap junction- and hemichannel-independent actions of connexins.

    PubMed

    Jiang, Jean X; Gu, Sumin

    2005-06-10

    Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.

  8. In vitro optimization of antisense oligodeoxynucleotide design: an example using the connexin gene family.

    PubMed

    Law, Lee Yong; Zhang, Wei V; Stott, N Susan; Becker, David L; Green, Colin R

    2006-09-01

    The completion of the human and mouse genomes has identified at least 20 connexin isomers in this family of intercellular channel proteins. However, there are no specific gap junction blockers or channel-blocking mimetic peptides available for the study of specific connexins. We designed antisense oligodeoxynucleotides that functionally reduce targeted connexin protein expression and can be used to reveal the biological function of individual connexins in vivo. Connexin mRNA was firstly exposed in vitro to deoxyribozymes complementing the sense coding sequence. Those that cleaved the target connexin mRNA in defined regions were used as the basis to design oligodeoxynucleotides to the accessible sites, thus taking into account tertiary mRNA configurations rather than relying on computed predictions. Antisense oligodeoxynucleotides designed to bind to accessible mRNA sites selectively reduced connexin26 and -43 mRNA expression in a corneal epithelium ex vivo model. Connexin43 protein levels were reduced correlating with the knockdown in mRNA and the protein's rapid turnover; protein levels of connexin26 did not alter, supporting lower turnover rates reported for that protein. We show, for the first time, an inexpensive and empirical approach to the preparation of specific and functional antisense oligodeoxynucleotides against known gene targets in the post-genomic era.

  9. Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling.

    PubMed

    Rash, John E; Kamasawa, Naomi; Davidson, Kimberly G V; Yasumura, Thomas; Pereda, Alberto E; Nagy, James I

    2012-06-01

    Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.

  10. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice.

    PubMed

    Maes, Michaël; Crespo Yanguas, Sara; Willebrords, Joost; Weemhoff, James L; da Silva, Tereza Cristina; Decrock, Elke; Lebofsky, Margitta; Pereira, Isabel Veloso Alves; Leybaert, Luc; Farhood, Anwar; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2017-08-15

    Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones.

    PubMed

    Grümmer, R; Chwalisz, K; Mulholland, J; Traub, O; Winterhager, E

    1994-12-01

    A distinct spatial and temporal pattern of connexin26 and connexin43 (cx26 and cx43) expression was observed in the rat endometrium in response to embryo implantation; however, connexin expression was suppressed during the preimplantation period. Pseudopregnant rats did not show connexin mRNA, while artificial decidualization induced by a scratch led to a strong expression of cx26 and cx43 in the endometrium of these animals. In order to examine the regulatory effects of ovarian steroid hormones on connexin expression, ovariectomized rats were treated with progesterone (P) and/or estradiol-17 beta (E2). Untreated, ovariectomized animals expressed mRNA for cx43, but not for cx26. Endometrial expression of mRNA for both connexins was strongly enhanced by E2 treatment; immunolabeling revealed protein for cx26 in the uterine luminal epithelial cells and for cx43 in the uterine stromal cells. P treatment, either alone or in combination with E2, suppressed expression of connexin mRNA. P suppression in the presence of E2 was reversible when P was withdrawn. When administered on Days 0-2 of pregnancy, the antiprogestin onapristone inhibited the effect of P and gave rise to strong expression of both connexin transcripts. These results demonstrate that expression of cx26 and cx43 in the rat uterine endometrium is differentially regulated by E2 and P during early pregnancy.

  12. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection

    PubMed Central

    Schulz, Rainer; Görge, Philipp Maximilian; Görbe, Anikó; Ferdinandy, Péter; Lampe, Paul D.; Leybaert, Luc

    2015-01-01

    Connexins are widely distributed proteins in the body that are crucially important for heart and brain function. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localisation at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodelling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injury as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissue following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection. PMID:26073311

  13. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice.

    PubMed

    Crispino, Giulia; Di Pasquale, Giovanni; Scimemi, Pietro; Rodriguez, Laura; Galindo Ramirez, Fabian; De Siati, Romolo Daniele; Santarelli, Rosa Maria; Arslan, Edoardo; Bortolozzi, Mario; Chiorini, John A; Mammano, Fabio

    2011-01-01

    The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre) mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre) mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre) mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.

  14. Gap Junctional Coupling in Lenses from α8 Connexin Knockout Mice

    PubMed Central

    Baldo, George J.; Gong, Xiaohua; Martinez-Wittinghan, Francisco J.; Kumar, Nalin M.; Gilula, Norton B.; Mathias, Richard T.

    2001-01-01

    Lens fiber cell gap junctions contain α3 (Cx46) and α8 (Cx50) connexins. To examine the roles of the two different connexins in lens physiology, we have genetically engineered mice lacking either α3 or α8 connexin. Intracellular impedance studies of these lenses were used to measure junctional conductance and its sensitivity to intracellular pH. In Gong et al. 1998, we described results from α3 connexin knockout lenses. Here, we present original data from α8 connexin knockout lenses and a comparison with the previous results. The lens has two functionally distinct domains of fiber cell coupling. In wild-type mouse lenses, the outer shell of differentiating fibers (see 1, DF) has an average coupling conductance per area of cell–cell contact of ∼1 S/cm2, which falls to near zero when the cytoplasm is acidified. In the inner core of mature fibers (see 1, MF), the average coupling conductance is ∼0.4 S/cm2, and is insensitive to acidification of the cytoplasm. Both connexin isoforms appear to contribute about equally in the DF since the coupling conductance for either heterozygous knockout (+/−) was ∼70% of normal and 30–40% of the normal for both −/− lenses. However, their contribution to the MF was different. About 50% of the normal coupling conductance was found in the MF of α3 +/− lenses. In contrast, the coupling of MF in the α8 +/− lenses was the same as normal. Moreover, no coupling was detected in the MF of α3 −/− lenses. Together, these results suggest that α3 connexin alone is responsible for coupling MF. The pH- sensitive gating of DF junctions was about the same in wild-type and α3 connexin −/− lenses. However, in α8 −/− lenses, the pure α3 connexin junctions did not gate closed in the response to acidification. Since α3 connexin contributes about half the coupling conductance in DF of wild-type lenses, and that conductance goes to zero when the cytoplasmic pH drops, it appears α8 connexin regulates the gating of α3 connexin. Both connexins are clearly important to lens physiology as lenses null for either connexin lose transparency. Gap junctions in the MF survive for the lifetime of the organism without protein turnover. It appears that α3 connexin provides the long-term communication in MF. Gap junctions in DF may be physiologically regulated since they are capable of gating when the cytoplasm is acidified. It appears α8 connexin is required for gating in DF. PMID:11696604

  15. Inhibitors of connexin and pannexin channels as potential therapeutics

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Crespo Yanguas, Sara; Vinken, Mathieu

    2018-01-01

    While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential. PMID:28720428

  16. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    PubMed Central

    Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr

    2008-01-01

    Background The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Methods Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Results Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Conclusion Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis. PMID:18647409

  18. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium.

    PubMed

    Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr

    2008-07-22

    The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.

  19. Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process.

    PubMed

    Leykauf, Kerstin; Salek, Mojibrahman; Bomke, Jörg; Frech, Matthias; Lehmann, Wolf-Dieter; Dürst, Matthias; Alonso, Angel

    2006-09-01

    Connexin43 is degraded by the proteasomal as well as the lysosomal pathway with ubiquitin playing a role in both degradation pathways. So far, no ubiquitin protein ligase has been identified for any of the connexins. By using pull-down assays, here we show binding of a ubiquitin protein ligase, Nedd4, to the C-terminus of connexin43. This observation was confirmed in vivo by coimmunoprecipitation and immunofluorescence, showing colocalization of Nedd4 and connexin43. Binding of Nedd4 to its interaction partners is generally carried out by its WW domains. Our results indicate that the interaction with connexin43 occurs through all three WW domains of Nedd4. Furthermore, whereas WW1 and WW2 domains mainly interact with the unphosphorylated form of connexin43, WW3 binds phosphorylated and unphosphorylated forms equally. In addition, using the surface plasmon resonance approach we show that only the WW2 domain binds to the PY motif located at the C-terminus of connexin43. Suppression of Nedd4 expression with siRNA resulted in an accumulation of gap junction plaques at the plasma membrane, suggesting an involvement of the ubiquitin protein ligase Nedd4 in gap junction internalization.

  20. Next-Generation Connexin and Pannexin Cell Biology.

    PubMed

    Esseltine, Jessica L; Laird, Dale W

    2016-12-01

    Connexins and pannexins are two families of large-pore channel forming proteins that are capable of passing small signaling molecules. While connexins serve the seminal task of direct gap junctional intercellular communication, pannexins are far less understood but function primarily as single membrane channels in autocrine and paracrine signaling. Advancements in connexin and pannexin biology in recent years has revealed that in addition to well-described classical functions at the plasma membrane, exciting new evidence suggests that connexins and pannexins participate in alternative pathways involving multiple intracellular compartments. Here we briefly highlight classical functions of connexins and pannexins but focus our attention mostly on the transformative findings that suggest that these channel-forming proteins may serve roles far beyond our current understandings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Connexins and skin disease: insights into the role of beta connexins in skin homeostasis.

    PubMed

    Martin, Patricia E M; van Steensel, Maurice

    2015-06-01

    Cell-to-cell communication triggered by connexin channels plays a central role in maintaining epidermal homeostasis. Here, we discuss the role of the beta connexin subgroup, where site-specific mutations in at least 4 of these proteins lead to distinctive non-inflammatory and inflammatory hyperproliferative epidermal disorders. Recent advances in the molecular pathways evoked and correlation with clinical outcome are discussed. The latest data provide increasing evidence that connexins in the epidermis are sensors to environmental stress and that targeting aberrant hemichannel activity holds significant therapeutic potential for inflammatory skin disorders.

  2. Deciphering the potential efficacy of acetyl-L-carnitine (ALCAR) in maintaining connexin-mediated lenticular homeostasis

    PubMed Central

    Muralidharan, Arumugam Ramachandran; Leema, George; Annadurai, Thangaraj; Anitha, Thirugnanasambandhar Sivasubramanian; Thomas, Philip A.

    2012-01-01

    Purpose To determine the putative role of acetyl-L-carnitine (ALCAR) in maintaining normal intercellular communication in the lens through connexin. Methods In the present study, Wistar rat pups were divided into 3 groups of eight each. On postpartum day ten, Group I rat pups received an intraperitoneal injection (50 µl) of 0.89% saline. Rats in Groups II and III received a subcutaneous injection (50 µl) of sodium selenite (19 µmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of ALCAR (200 mg/kg bodyweight) once daily on postpartum days 9–14. Both eyes of each pup were examined from day 16 up to postpartum day 30. Alterations in the mean activity of the channel pumps, calcium-ATPase and sodium/potassium-ATPase, were determined. The expression of genes encoding key lenticular gap junctions (connexin 46 and connexin 50) and a channel pump (plasma membrane Ca2+-ATPase [PMCA1]) was evaluated by reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of key lenticular connexin proteins. In addition, bioinformatics analysis was performed to determine the interacting residues of the connexin proteins with ALCAR. Results Significantly lower mean activities of Ca2+-ATPase and Na+/K+ -ATPase were observed in the lenses of Group II rats than those in Group I rat lenses. However, the observed mean activities of Ca2+-ATPase and Na+/K+-ATPase in Group III rat lenses were significantly higher than those in Group II rat lenses. The mean mRNA transcript levels of the connexin 46 and connexin 50 genes were significantly lower, while the mean levels of PMCA1 gene transcripts were significantly higher, in Group II rat lenses than in Group I rat lenses. Immunoblot analysis also confirmed the altered expression of connexin proteins in lysates of whole lenses of Group II rats. However, the expression of connexin 46 and connexin 50 proteins in lenses from group III rats was essentially similar to that noted in lenses from normal (Group I) rats. Hydrogen bond-interaction between ALCAR and amino acid residues at the functional domain regions of connexin 46 and connexin 50 proteins was also demonstrated through bioinformatics tools. Conclusions The results suggest that ALCAR plays a key role in maintaining lenticular homeostasis by promoting gap junctional intercellular communication. PMID:22876134

  3. Deciphering the potential efficacy of acetyl-L-carnitine (ALCAR) in maintaining connexin-mediated lenticular homeostasis.

    PubMed

    Muralidharan, Arumugam Ramachandran; Leema, George; Annadurai, Thangaraj; Anitha, Thirugnanasambandhar Sivasubramanian; Thomas, Philip A; Geraldine, Pitchairaj

    2012-01-01

    To determine the putative role of acetyl-L-carnitine (ALCAR) in maintaining normal intercellular communication in the lens through connexin. In the present study, Wistar rat pups were divided into 3 groups of eight each. On postpartum day ten, Group I rat pups received an intraperitoneal injection (50 µl) of 0.89% saline. Rats in Groups II and III received a subcutaneous injection (50 µl) of sodium selenite (19 µmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of ALCAR (200 mg/kg bodyweight) once daily on postpartum days 9-14. Both eyes of each pup were examined from day 16 up to postpartum day 30. Alterations in the mean activity of the channel pumps, calcium-ATPase and sodium/potassium-ATPase, were determined. The expression of genes encoding key lenticular gap junctions (connexin 46 and connexin 50) and a channel pump (plasma membrane Ca(2+)-ATPase [PMCA1]) was evaluated by reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of key lenticular connexin proteins. In addition, bioinformatics analysis was performed to determine the interacting residues of the connexin proteins with ALCAR. Significantly lower mean activities of Ca(2+)-ATPase and Na(+)/K(+) -ATPase were observed in the lenses of Group II rats than those in Group I rat lenses. However, the observed mean activities of Ca(2+)-ATPase and Na(+)/K(+)-ATPase in Group III rat lenses were significantly higher than those in Group II rat lenses. The mean mRNA transcript levels of the connexin 46 and connexin 50 genes were significantly lower, while the mean levels of PMCA1 gene transcripts were significantly higher, in Group II rat lenses than in Group I rat lenses. Immunoblot analysis also confirmed the altered expression of connexin proteins in lysates of whole lenses of Group II rats. However, the expression of connexin 46 and connexin 50 proteins in lenses from group III rats was essentially similar to that noted in lenses from normal (Group I) rats. Hydrogen bond-interaction between ALCAR and amino acid residues at the functional domain regions of connexin 46 and connexin 50 proteins was also demonstrated through bioinformatics tools. The results suggest that ALCAR plays a key role in maintaining lenticular homeostasis by promoting gap junctional intercellular communication.

  4. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro

    PubMed Central

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-01-01

    Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. Conclusion The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts. PMID:16756651

  5. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro.

    PubMed

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; Macleod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-06-06

    Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.

  6. Connexin Channel Permeability to Cytoplasmic Molecules

    PubMed Central

    Harris, Andrew L.

    2007-01-01

    Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated. PMID:17470375

  7. Impact of genetic counseling and Connexin-26 and Connexin-30 testing on deaf identity and comprehension of genetic test results in a sample of deaf adults: a prospective, longitudinal study.

    PubMed

    Palmer, Christina G S; Boudreault, Patrick; Baldwin, Erin E; Sinsheimer, Janet S

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results.

  8. Joint diseases: from connexins to gap junctions.

    PubMed

    Donahue, Henry J; Qu, Roy W; Genetos, Damian C

    2017-12-19

    Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

  9. Degradation of connexins and gap junctions

    PubMed Central

    Falk, Matthias M.; Kells, Rachael M.; Berthoud, Viviana M.

    2014-01-01

    Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting for degradation. PMID:24486527

  10. Effects of space flight on the immunohistochemical demonstration of connexin 26 and connexin 43 in the postpartum uterus of rats

    NASA Technical Reports Server (NTRS)

    Burden, H. W.; Zary, J.; Alberts, J. R.

    1999-01-01

    The effect of space flight in a National Aeronautics and Space Administration shuttle was studied in pregnant rats. Rats were launched on day 11 of gestation and recovered on day 20 of gestation. Pregnancy was allowed to proceed to term and rats delivered vaginally on days 22-23, although flight animals required more labour contractions to complete the delivery process. Pups were placed with foster dams and connexin 26 and 43 were examined in the uterus of flight animals approximately 3 h after delivery. Space flight did not affect uterine connexin 26, localized primarily in epithelial cells of the endometrium, but decreased connexin 43, the major gap junction protein in the myometrium. It is suggested that decreased connexin 43 alters synchronization and coordination of labour contractions, resulting in a requirement for more contractions to complete the delivery process.

  11. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    PubMed Central

    Axelsen, Lene N.; Calloe, Kirstine; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten S.

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated, and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins. PMID:24155720

  12. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes.

    PubMed

    Leaphart, Cynthia L; Qureshi, Faisal; Cetin, Selma; Li, Jun; Dubowski, Theresa; Baty, Catherine; Batey, Catherine; Beer-Stolz, Donna; Guo, Fengli; Murray, Sandra A; Hackam, David J

    2007-06-01

    Necrotizing enterocolitis (NEC) is characterized by interferon-gamma (IFN-gamma) release and inadequate intestinal restitution. Because enterocytes migrate together, mucosal healing may require interenterocyte communication via connexin 43-mediated gap junctions. We hypothesize that enterocyte migration requires interenterocyte communication, that IFN impairs migration by impairing connexin 43, and that impaired healing during NEC is associated with reduced gap junctions. NEC was induced in Swiss-Webster or IFN(-/-) mice, and restitution was determined in the presence of the gap junction inhibitor oleamide, or via time-lapse microscopy of IEC-6 cells. Connexin 43 expression, trafficking, and localization were detected in cultured or primary enterocytes or mouse or human intestine by confocal microscopy and (35)S-labeling, and gap junction communication was assessed using live microscopy with oleamide or connexin 43 siRNA. Enterocytes expressed connexin 43 in vitro and in vivo, and exchanged fluorescent dye via gap junctions. Gap junction inhibition significantly reduced enterocyte migration in vitro and in vivo. NEC was associated with IFN release and loss of enterocyte connexin 43 expression. IFN inhibited enterocyte migration by reducing gap junction communication through the dephosphorylation and internalization of connexin 43. Gap junction inhibition significantly increased NEC severity, whereas reversal of the inhibitory effects of IFN on gap junction communication restored enterocyte migration after IFN exposure. Strikingly, IFN(-/-) mice were protected from the development of NEC, and showed restored connexin 43 expression and intestinal restitution. IFN inhibits enterocyte migration by preventing interenterocyte gap junction communication. Connexin 43 loss may provide insights into the development of NEC, in which restitution is impaired.

  13. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision.

    PubMed

    Pogoda, Kristin; Kameritsch, Petra; Retamal, Mauricio A; Vega, José L

    2016-05-24

    Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.

  14. Impact of Genetic Counseling and Connexin-26 and Connexin-30 Testing on Deaf Identity and Comprehension of Genetic Test Results in a Sample of Deaf Adults: A Prospective, Longitudinal Study

    PubMed Central

    Palmer, Christina G. S.; Boudreault, Patrick; Baldwin, Erin E.; Sinsheimer, Janet S.

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results. PMID:25375116

  15. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels.

    PubMed

    Barr, Travis P; Albrecht, Phillip J; Hou, Quanzhi; Mongin, Alexander A; Strichartz, Gary R; Rice, Frank L

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.

  16. Intercellular communication in the immune system: differential expression of connexin40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations

    PubMed Central

    Oviedo‐orta, E; Hoy, T; Evans, W H

    2000-01-01

    The distribution and function of connexins (integral membrane proteins assembled into gap junction intercellular communication channels) were studied in human lymphocyte subpopulations. The expression of mRNA encoding connexins in peripheral blood and tonsil‐derived T, B and natural killer (NK) lymphocytes was examined. Connexin43 (Cx43) mRNA was expressed in peripheral blood and tonsil lymphocytes, but Cx40 mRNA expression was confined to tonsil‐derived T and B lymphocytes; Cx26, Cx32, Cx37 and Cx45 were not detected by reverse transcription–polymerase chain reaction (RT–PCR). Western blot analysis also demonstrated the presence of Cx40 and Cx43 proteins in T and B lymphocytes in a manner coincidental to the mRNA detection. Stimulation in vitro of T and B lymphocytes with phytohaemagglutinin (PHA) and lipopolysaccharide (LPS), respectively, increased Cx40 and Cx43 protein expression. Flow cytometric analysis, using antibodies to extracellular loop amino acid sequences of connexins, confirmed the surface expression of connexins in all lymphocyte subpopulations. Assembly of connexins into gap junctions providing direct intercellular channels linking attached lymphocytes was demonstrated by using a dye transfer technique. The exchange of dye between lymphocytes was inhibited by a connexin extracellular loop mimetic peptide and α‐glycyrrhetinic acid, two reagents that restrict intercellular communication across gap junctions. Dye coupling occurred between homologous and heterologous co‐cultures of T and B lymphocytes, and was not influenced by their stimulation with PHA and LPS. The connexin mimetic peptide caused a significant decrease in the in vitro synthesis of immunoglobulin M (IgM) by T‐ and B‐lymphocyte co‐cultured populations in the presence or absence of stimulation by PHA. The results identify connexins as important cell surface components that modulate immune processes. PMID:10792506

  17. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?

    PubMed

    Johnson, Robert D; Camelliti, Patrizia

    2018-03-15

    The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.

  18. BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS

    PubMed Central

    Johnstone, Scott; Isakson, Brant; Locke, Darren

    2010-01-01

    Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177

  19. Connexin mutations in X-linked Charcot-Marie-Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergoffen, J.; Scherer, S.S.; Wang, S.

    1993-12-24

    X-linked Charcot-Marie-Tooth disease (CMTX) is a form of hereditary neuropathy with demyelination. Recently, this disorder was mapped to chromosome Xq13.1. The gene for the gap junction protein connexin32 is located in the same chromosomal segment, which led to its consideration as a candidate gene for CMTX. With the use of Northern (RNA) blot and immunohistochemistry techniques, it was found that connexin32 is normally expressed in myelinated peripheral nerve. Direct sequencing of the connexin32 gene showed seven different mutations in affected persons from eight CMTX families. These findings, a demonstration of inherited defects in a gap junction protein, suggest that connexin32more » plays an important role in peripheral nerve.« less

  20. Expression of gap junction protein connexin 43 in bovine urinary bladder tumours.

    PubMed

    Corteggio, A; Florio, J; Roperto, F; Borzacchiello, G

    2011-01-01

    The aetiopathogenesis of urinary bladder tumours in cattle involves prolonged ingestion of bracken fern and infection by bovine papillomavirus types 1 or 2 (BPV-1/2). The oncogenic activity of BPV is largely associated with the major oncoprotein E5. Gap junctions are the only communicating junctions found in animal tissues and are composed of proteins known as connexins. Alterations in connexin expression have been associated with oncogenesis. The present study investigated biochemically and immunohistochemically the expression of connexin 43 in samples of normal (n=2), dysplastic (n=3) and neoplastic (n=23) bovine urothelium. The tumours included 10 carcinomas in situ, five papillary urothelial carcinomas and eight invasive urothelial carcinomas. Normal and dysplastic urothelium had membrane expression of connexin 43, but this was reduced in samples of carcinoma in situ. Papillary urothelial carcinomas showed moderate cytoplasmic and membrane labelling, while invasive carcinoma showed loss of connexin 43 expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    PubMed Central

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  2. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility

    PubMed Central

    Gilleron, Jérôme; Carette, Diane; Segretain, Dominique

    2011-01-01

    Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility. PMID:22332114

  3. Gap junction connexins in female reproductive organs: implications for women's reproductive health.

    PubMed

    Winterhager, Elke; Kidder, Gerald M

    2015-01-01

    Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth. CX40, which characterizes the extravillous trophoblast (EVT), supports proliferation of the proximal EVTs while preventing them from differentiating into the invasive pathway. Furthermore, women with recurrent early pregnancy loss as well as those with endometriosis exhibit reduced levels of CX43 in their decidua. The antimalaria drug mefloquine, which blocks gap junction function, is responsible for increased risk of early pregnancy loss and stillbirth, probably due to inhibition of intercellular communication in the decidua or between trophoblast layers followed by an impairment of placental growth. Gap junctions also play a critical role in regulating uterine blood flow, contributing to the adaptive response to pregnancy. Given that reproductive impairment can result from connexin mutations in mice, it is advised that women suffering from somatic disease symptoms associated with connexin gene mutations be additionally tested for impacts on reproductive function. Better knowledge of these essential connexin functions in human female reproductive organs is important for safeguarding women's reproductive health. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease

    PubMed Central

    Vidal-Brime, Laia; Lynn, K. Sabrina

    2018-01-01

    Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease. PMID:29701678

  5. Therapeutic effects of connexin inhibitors on detrusor overactivity induced by bladder outlet obstruction in rats.

    PubMed

    Kim, Su Jin; Park, Eun Young; Hwang, Tae-Kon; Kim, Joon Chul

    2011-08-01

    To investigate the alterations in Connexin 43 (Cx43) and connexin 26 (Cx26) levels in the bladder outlet obstruction (BOO)-induced detrusor overactivity and examine the effect of connexin inhibitors on this condition. Fifty Sprague-Dawley rats were divided into 4 groups: sham-operated control group (n = 10), BOO group (n = 10), and 2 groups that were administered connexin inhibitors. The first of these 2 groups was administered 18β-glycyrrhetinic acid (BOO-18β-GA group, n = 15) and the second group was given oleamide (BOO-oleamide group, n = 15). Cystometrogram was performed in all groups after 2 weeks of obstruction. The expression levels of Cx26 and Cx43 were analyzed using immunohistochemical staining and Western blot. The intercontraction interval was markedly shorter in the BOO group compared with the control group (P <.05). Intercontraction intervals in the BOO-18β-GA and BOO-oleamide groups at 2 weeks were significantly longer than that observed for the BOO group (P <.05). The expression of Cx43 and Cx26 were increased in the BOO group. After administration of connexin inhibitors, downregulation of Cx43 and Cx26 was noted. These results suggest that upregulation of Cx43 and Cx26 induce detrusor overactivity after BOO, and connexin inhibitors may have some role in relieving BOO-induced detrusor overactivity in rats. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Different domains are critical for oligomerization compatibility of different connexins

    PubMed Central

    MARTÍNEZ, Agustín D.; MARIPILLÁN, Jaime; ACUÑA, Rodrigo; MINOGUE, Peter J.; BERTHOUD, Viviana M.; BEYER, Eric C.

    2011-01-01

    Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies. PMID:21348854

  7. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  8. Variations in gap junctional intercellular communication and connexin expression in fibroblasts derived from keloid and hypertrophic scars.

    PubMed

    Lu, Feng; Gao, JianHua; Ogawa, Rei; Hyakusoku, Hiko

    2007-03-01

    Expression of connexins and other constituent proteins of gap junctions along with gap junctional intercellular communication are involved in cellular development and differentiation processes. In addition, an increasing number of hereditary skin disorders appear to be linked to connexins. Therefore, in this report, the authors studied in vitro gap junctional intercellular communication function and connexin expression in fibroblasts derived from keloid and hypertrophic scar patients. Fibroblasts harvested from each of six keloid and hypertrophic scar patients were used for this study. Gap junctional intercellular communication function was investigated using the gap fluorescence recovery after photobleaching method, and expression of connexin proteins was studied using quantitative confocal microscopic analyses. Compared with normal skin, a decreased level of gap junctional intercellular communication was seen in fibroblasts derived from hypertrophic scar tissue, whereas an extremely low gap junctional intercellular communication level was detected in fibroblasts derived from keloid tissue. We also detected little connexin 43 (Cx43) protein localized in fibroblasts derived from keloids. Moreover, Cx43 protein levels were much lower in fibroblasts derived from hypertrophic scars than in those derived from normal skin. The authors' data suggest that the loss of gap junctional intercellular communication and connexin expression may affect intercellular recognition and thus break the proliferation and apoptosis balance in fibroblasts derived from keloid and hypertrophic scar tissue.

  9. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the expression of connexin 32-type gap junctions. (2) The increased sensitivity of FRTL-5 cells to proton irradiation was independent of their ability to communicate through connexin 32 gap junctions. (3) The fact that the beta components of the survival curves from both gamma rays and proton beams were similar (average 0.022 +/- 0.008 Gy(-2), P > 0.1, n = 39) suggests that at higher doses the loss of viability occurs at a relatively constant rate and is independent of radiation quality and the presence of functional gap junctions.

  10. Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function.

    PubMed

    Shi, Huijuan; Shi, Dongxuan; Wu, Yansong; Shen, Qiang; Li, Jing

    2016-09-28

    Qigesan (QGS), a well-known traditional Chinese medicinal formula, has long been used to treat patients with esophageal cancer. However, the anticancer mechanisms of action of QGS remain unknown. This study aims to determine whether QGS regulates gap junction (GJ) function and affects the invasiveness of esophageal cancer cells. Our results demonstrate that QGS markedly inhibits the migration and invasion of esophageal cancer cells in vitro. We further show that QGS enhances the function of GJ in esophageal cancer cells. We therefore hypothesized that enhanced connexin expression leads to enhanced GJ function and inhibition of metastasis. We found that QGS enhances expression of connexin 26 and connexin 43 in esophageal cancer cells. This study suggests that QGS increases GJ function via enhancing the expression of connexins, resulting in reduced esophageal cancer cell migration and invasion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Gap Junctions and Connexin Hemichannels Underpin Haemostasis and Thrombosis

    PubMed Central

    Vaiyapuri, Sakthivel; Jones, Chris I.; Sasikumar, Parvathy; Moraes, Leonardo A.; Munger, Stephanie J.; Wright, Joy R.; Ali, Marfoua S.; Sage, Tanya; Kaiser, William J.; Tucker, Katherine L.; Stain, Christopher J.; Bye, Alexander P.; Jones, Sarah; Oviedo-Orta, Ernesto; Simon, Alexander M.; Mahaut-Smith, Martyn P.; Gibbins, Jonathan M.

    2012-01-01

    Background Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have now examined the role of connexins in platelets, blood cells that circulate in isolation, but upon tissue injury adhere to each other and the vessel wall to prevent blood loss and facilitate wound repair. Methods and Results We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses prior to platelet-platelet contact, and reduced laser induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion and clot retraction indicating an important role for Cx37 hemichannels and gap junctions in platelet thrombus function. Conclusions Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of haemostasis and thrombosis and represent potential therapeutic targets. PMID:22528526

  12. Extracellular domains play different roles in gap junction formation and docking compatibility.

    PubMed

    Bai, Donglin; Wang, Ao Hong

    2014-02-15

    GJ (gap junction) channels mediate direct intercellular communication and play an important role in many physiological processes. Six connexins oligomerize to form a hemichannel and two hemichannels dock together end-to-end to form a GJ channel. Connexin extracellular domains (E1 and E2) have been shown to be important for the docking, but the molecular mechanisms behind the docking and formation of GJ channels are not clear. Recent developments in atomic GJ structure and functional studies on a series of connexin mutants revealed that E1 and E2 are likely to play different roles in the docking. Non-covalent interactions at the docking interface, including hydrogen bonds, are predicted to form between interdocked extracellular domains. Protein sequence alignment analysis on the docking compatible/incompatible connexins indicate that the E1 domain is important for the formation of the GJ channel and the E2 domain is important in the docking compatibility in heterotypic channels. Interestingly, the hydrogen-bond forming or equivalent residues in both E1 and E2 domains are mutational hot spots for connexin-linked human diseases. Understanding the molecular mechanisms of GJ docking can assist us to develop novel strategies in rescuing the disease-linked connexin mutants.

  13. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite.

    PubMed

    Herde, Katja; Hartmann, Sonja; Brehm, Ralph; Kilian, Olaf; Heiss, Christian; Hild, Anne; Alt, Volker; Bergmann, Martin; Schnettler, Reinhard; Wenisch, Sabine

    2007-11-01

    In bone a role of connexin 43 has been implicated with the fusion of mononuclear precursors of the monocyte/macrophage lineage into multinucleated cells. In order to investigate the putative role of connexin 43 in formation of bone osteoclast-like foreign body giant cells which are formed in response to implantation of biomaterials, nanoparticulate hydroxyapatite had been implanted into defects of minipig femura. After 20 days the defect areas were harvested and connexin 43 expression and synthesis were investigated by using immunohistochemistry, Western Blot, and in situ hybridization within macrophages and osteoclast-like foreign body giant cells. Morphological analysis of gap junctions is performed ultrastructurally. As shown on protein and mRNA level numerous connexin 43 positive macrophages and foreign body giant cells (FBGC) were localized within the granulation tissue and along the surfaces of the implanted hydroxyapatite (HA). Besides, the formation of FBGC by fusion of macrophages could be shown ultrastructurally. Connexin 43 labeling observed on the protein and mRNA level could be attributed to gap junctions identified ultrastructurally between macrophages, between FBGC, and between FBGC and macrophages. Annular gap junctions in the cytoplasm of FBGC pointed to degradation of the channels, and the ubiquination that had occurred in the course of degradation was confirmed by Western blot analysis. All in all, the presently observed pattern of connexin 43 labeling refers to an functional role of gap junctional communication in the formation of osteoclast-like foreign body giant cells formed in response to implantation of the nanoparticulate HA.

  14. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders

    PubMed Central

    Xu, Liang; Carrer, Andrea; Zonta, Francesco; Qu, Zhihu; Ma, Peixiang; Li, Sheng; Ceriani, Federico; Buratto, Damiano; Crispino, Giulia; Zorzi, Veronica; Ziraldo, Gaia; Bruno, Francesca; Nardin, Chiara; Peres, Chiara; Mazzarda, Flavia; Salvatore, Anna M.; Raspa, Marcello; Scavizzi, Ferdinando; Chu, Youjun; Xie, Sichun; Yang, Xuemei; Liao, Jun; Liu, Xiao; Wang, Wei; Wang, Shanshan; Yang, Guang; Lerner, Richard A.; Mammano, Fabio

    2017-01-01

    Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies. PMID:29018324

  15. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis

    PubMed Central

    Pointis, Georges; Gilleron, Jérome; Carette, Diane; Segretain, Dominique

    2010-01-01

    Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell–cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli–Sertoli cell functional synchronization and the Sertoli–germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation. PMID:20403873

  16. Phylogenetic and bioinformatic analysis of gap junction-related proteins, innexins, pannexins and connexins.

    PubMed

    Fushiki, Daisuke; Hamada, Yasuo; Yoshimura, Ryoichi; Endo, Yasuhisa

    2010-04-01

    All multi-cellular animals, including hydra, insects and vertebrates, develop gap junctions, which communicate directly with neighboring cells. Gap junctions consist of protein families called connexins in vertebrates and innexins in invertebrates. Connexins and innexins have no homology in their amino acid sequence, but both are thought to have some similar characteristics, such as a tetra-membrane-spanning structure, formation of a channel by hexamer, and transmission of small molecules (e.g. ions) to neighboring cells. Pannexins were recently identified as a homolog of innexins in vertebrate genomes. Although pannexins are thought to share the function of intercellular communication with connexins and innexins, there is little information about the relationship among these three protein families of gap junctions. We phylgenetically and bioinformatically examined these protein families and other tetra-membrane-spanning proteins using a database and three analytical softwares. The clades formed by pannexin families do not belong to the species classification but do to paralogs of each member of pannexins. Amino acid sequences of pannexins are closely related to those of innexins but less to those of connexins. These data suggest that innexins and pannexins have a common origin, but the relationship between innexins/pannexins and connexins is as slight as that of other tetra-membrane-spanning members.

  17. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.

    PubMed

    Rash, J E; Yasumura, T; Dudek, F E; Nagy, J I

    2001-03-15

    The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.

  18. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss – A Common Hereditary Deafness

    PubMed Central

    Wingard, Jeffrey C.; Zhao, Hong-Bo

    2015-01-01

    Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required. PMID:26074771

  19. Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43

    PubMed Central

    1995-01-01

    Many cells express multiple connexins, the gap junction proteins that interconnect the cytosol of adjacent cells. Connexin43 (Cx43) channels allow intercellular transfer of Lucifer Yellow (LY, MW = 443 D), while connexin45 (Cx45) channels do not. We transfected full-length or truncated chicken Cx45 into a rat osteosarcoma cell line ROS-17/2.8, which expresses endogenous Cx43. Both forms of Cx45 were expressed at high levels and colocalized with Cx43 at plasma membrane junctions. Cells transfected with full-length Cx45 (ROS/Cx45) and cells transfected with Cx45 missing the 37 carboxyl-terminal amino acids (ROS/Cx45tr) showed 30-60% of the gap junctional conductance exhibited by ROS cells. Intercellular transfer of three negatively charged fluorescent reporter molecules was examined. In ROS cells, microinjected LY was transferred to an average of 11.2 cells/injected cell, while dye transfer between ROS/Cx45 cells was reduced to 3.9 transfer between ROS/Cx45 cells was reduced to 3.9 cells. In contrast, ROS/Cx45tr cells transferred LY to > 20 cells. Transfer of calcein (MW = 623 D) was also reduced by approximately 50% in ROS/Cx45 cells, but passage of hydroxycoumarin carboxylic acid (HCCA; MW = 206 D) was only reduced by 35% as compared to ROS cells. Thus, introduction of Cx45 altered intercellular coupling between cells expressing Cx43, most likely the result of direct interaction between Cx43 and Cx45. Transfection of Cx45tr and Cx45 had different effects in ROS cells, consistent with a role of the carboxyl-terminal domain of Cx45 in determining gap junction permeability or interactions between connexins. These data suggest that coexpression of multiple connexins may enable cells to achieve forms of intercellular communication that cannot be attained by expression of a single connexin. PMID:7642714

  20. The long-term effects of FSH and triiodothyronine administration during the pubertal period on Connexin 43 expression and spermatogenesis efficiency in adult rats.

    PubMed

    Marchlewska, Katarzyna; Slowikowska-Hilczer, Jolanta; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Filipiak, Eliza; Kula, Krzysztof

    2015-04-01

    Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Hyperstimulation of both hormones evokes regressional changes in connexin 43 expression and the seminiferous epithelium in young rats during testicular maturation. However, separate treatments with T3 reduce Sertoli cell number, which seems to be closely connected with the maturation of connexin 43 gap junctions. FSH elevates Sertoli cell number and function, but this effect may take place regardless of the presence of connexin 43-dependent intercellular communication. The aim of the study was to evaluate the later effects of such treatments. Newborn, male Wistar rats were divided randomly into experimental groups receiving daily subcutaneous injections of either 7.5 IU/animal FSH, or 100 mg/kg b.w. T3, or both substances or the same volume of vehicle (control group) until day 15 of life. The animals were sacrificed on day 50. Morphometric analysis and immunohistochemical reactions were performed using antibodies against Vimentin, Proliferating Cell Nuclear Antigen and Connexin 43 in the testis. Sertoli cell count, efficiency of spermatogenesis, and hormonal pattern were examined. Disturbances in the connexin 43 expression reduced the number of Sertoli cells, the efficiency of spermatogenesis and impaired endocrine function of testes in adult rats treated with FSH and T3 during puberty. Stimulation with FSH alone increased Sertoli cell number, but was associated with a negative effect on cell-to-cell connexin 43-dependent communication, with a consequential reduction of spermatogenesis efficiency. J. Exp. Zool. 323A: 256-265, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Complexity of gap junctions between horizontal cells of the carp retina.

    PubMed

    Greb, H; Hermann, S; Dirks, P; Ommen, G; Kretschmer, V; Schultz, K; Zoidl, G; Weiler, R; Janssen-Bienhold, U

    2017-01-06

    In the vertebrate retina, horizontal cells (HCs) reveal homologous coupling by gap junctions (gj), which are thought to consist of different connexins (Cx). However, recent studies in mouse, rabbit and zebrafish retina indicate that individual HCs express more than one connexin. To provide further insights into the composition of gj connecting HCs and to determine whether HCs express multiple connexins, we examined the molecular identity and distribution of gj between HCs of the carp retina. We have cloned four carp connexins designated Cx49.5, Cx55.5, Cx52.6 and Cx53.8 with a close relationship to connexins previously reported in HCs of mouse, rabbit and zebrafish, respectively. Using in situ hybridization, Cx49.5 expression was detected in different subpopulations of retinal neurons including HCs, whereas the Cx52.6 transcript was localized exclusively in HCs. Using specific antibodies, Cx55.5 and Cx53.8 were detected on dendrites of all four HC subtypes and axon terminals. Immunoelectron microscopy confirmed the presence of Cx55.5 and Cx53.8 in gap junctions between these processes and Cx55.5 was additionally observed in HC dendrites invaginating cone pedicles, suggesting its participation in the modulation of photoreceptor output in the carp retina. Furthermore, using single-cell RT-PCR, all four connexins were detected in different subtypes of HCs, suggesting overlapping expression patterns. Thus, the composition of gj mediating homologous coupling between subtypes of carp HCs appears to be more complex than expected. Moreover, BLAST searches of the preliminary carp genome, using novel sequences as query, suggest that most of the analyzed connexin genes are duplicated in carp. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood–brain barrier permeability

    PubMed Central

    De Bock, Marijke; Culot, Maxime; Wang, Nan; Bol, Mélissa; Decrock, Elke; De Vuyst, Elke; da Costa, Anaelle; Dauwe, Ine; Vinken, Mathieu; Simon, Alexander M; Rogiers, Vera; De Ley, Gaspard; Evans, William Howard; Bultynck, Geert; Dupont, Geneviève; Cecchelli, Romeo; Leybaert, Luc

    2011-01-01

    The cytoplasmic Ca2+ concentration ([Ca2+]i) is an important factor determining the functional state of blood–brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca2+]i changes on BBB function. We applied different agonists that trigger [Ca2+]i oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca2+]i oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca2+]i with BAPTA, indicating that [Ca2+]i oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca2+]i oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca2+]i oscillations provoked by exposure to adenosine 5′ triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations. PMID:21654699

  3. Electroporation transiently decreases GJB2 (connexin 26) expression in B16/BL6 melanoma cell line.

    PubMed

    Rangel, Marcelo Monte Mór; Chaible, Lucas Martins; Nagamine, Marcia Kazumi; Mennecier, Gregory; Cogliati, Bruno; de Oliveira, Krishna Duro; Fukumasu, Heidge; Sinhorini, Idércio Luiz; Mir, Lluis Maria; Dagli, Maria Lúcia Zaidan

    2015-02-01

    Connexins are proteins that form gap junctions. Perturbations in the cell membrane reportedly promote changes in the expression profile of connexins. Electroporation promotes destabilization by applying electrical pulses, and this procedure is used in electrochemotherapy and gene therapy, among others. This in vitro work aimed to study the interference of electroporation on the expression profile of GJB2 (Cx26 gene) and Connexin 26 in melanoma cell line B16/BL6. The techniques of immunocytochemistry, Western blot, and real-time PCR were used. After electroporation, cells showed a transient decrease in GJB2 mRNA. The immunostaining of Cx26 showed no noticeable change after electroporation at different time points. However, Western blot showed a significant reduction in Cx26 30 min after electroporation. Our results showed that electroporation interferes transiently in the expression of Connexin 26 in melanoma and are consistent with the idea that electroporation is a process of intense stress that promotes cell homeostatic imbalance and results in disruption of cell physiological processes such as transcription and translation.

  4. Redox-mediated regulation of connexin proteins; focus on nitric oxide.

    PubMed

    García, Isaac E; Sánchez, Helmuth A; Martínez, Agustín D; Retamal, Mauricio A

    2018-01-01

    Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redox potential, and divalent cations, among others, and the imbalance of this regulation have been linked to many acquired and genetic diseases. Concerning the redox potential regulation, the nitric oxide (NO) has been described as a modulator of the hemichannels and gap junction channels properties. However, how NO regulates these channels is not well understood. In this mini-review, we summarize the current knowledge about the effects of redox potential focused in NO on the trafficking, formation and functional properties of hemichannels and gap junction channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Connexin Type and Fluorescent Protein Fusion Tag Determine Structural Stability of Gap Junction Plaques.

    PubMed

    Stout, Randy F; Snapp, Erik Lee; Spray, David C

    2015-09-25

    Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A structural and functional comparison of gap junction channels composed of connexins and innexins.

    PubMed

    Skerrett, I Martha; Williams, Jamal B

    2017-05-01

    Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017. © 2016 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.

  7. A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain.

    PubMed

    Somaraju Chalasani, Madhavi Latha; Muppirala, Madhavi; G Ponnam, Surya Prakash; Kannabiran, Chitra; Swarup, Ghanshyam

    2013-01-01

    Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.

  8. CO2 directly modulates connexin 26 by formation of carbamate bridges between subunits

    PubMed Central

    Meigh, Louise; Greenhalgh, Sophie A; Rodgers, Thomas L; Cann, Martin J; Roper, David I; Dale, Nicholas

    2013-01-01

    Homeostatic regulation of the partial pressure of CO2 (PCO2) is vital for life. Sensing of pH has been proposed as a sufficient proxy for determination of PCO2 and direct CO2-sensing largely discounted. Here we show that connexin 26 (Cx26) hemichannels, causally linked to respiratory chemosensitivity, are directly modulated by CO2. A ‘carbamylation motif’, present in CO2-sensitive connexins (Cx26, Cx30, Cx32) but absent from a CO2-insensitive connexin (Cx31), comprises Lys125 and four further amino acids that orient Lys125 towards Arg104 of the adjacent subunit of the connexin hexamer. Introducing the carbamylation motif into Cx31 created a mutant hemichannel (mCx31) that was opened by increases in PCO2. Mutation of the carbamylation motif in Cx26 and mCx31 destroyed CO2 sensitivity. Course-grained computational modelling of Cx26 demonstrated that the proposed carbamate bridge between Lys125 and Arg104 biases the hemichannel to the open state. Carbamylation of Cx26 introduces a new transduction principle for physiological sensing of CO2. DOI: http://dx.doi.org/10.7554/eLife.01213.001 PMID:24220509

  9. Role of connexins in metastatic breast cancer and melanoma brain colonization

    PubMed Central

    Stoletov, Konstantin; Strnadel, Jan; Zardouzian, Erin; Momiyama, Masashi; Park, Frederick D.; Kelber, Jonathan A.; Pizzo, Donald P.; Hoffman, Robert; VandenBerg, Scott R.; Klemke, Richard L.

    2013-01-01

    Summary Breast cancer and melanoma cells commonly metastasize to the brain using homing mechanisms that are poorly understood. Cancer patients with brain metastases display poor prognosis and survival due to the lack of effective therapeutics and treatment strategies. Recent work using intravital microscopy and preclinical animal models indicates that metastatic cells colonize the brain, specifically in close contact with the existing brain vasculature. However, it is not known how contact with the vascular niche promotes microtumor formation. Here, we investigate the role of connexins in mediating early events in brain colonization using transparent zebrafish and chicken embryo models of brain metastasis. We provide evidence that breast cancer and melanoma cells utilize connexin gap junction proteins (Cx43, Cx26) to initiate brain metastatic lesion formation in association with the vasculature. RNAi depletion of connexins or pharmacological blocking of connexin-mediated cell–cell communication with carbenoxolone inhibited brain colonization by blocking tumor cell extravasation and blood vessel co-option. Activation of the metastatic gene twist in breast cancer cells increased Cx43 protein expression and gap junction communication, leading to increased extravasation, blood vessel co-option and brain colonization. Conversely, inhibiting twist activity reduced Cx43-mediated gap junction coupling and brain colonization. Database analyses of patient histories revealed increased expression of Cx26 and Cx43 in primary melanoma and breast cancer tumors, respectively, which correlated with increased cancer recurrence and metastasis. Together, our data indicate that Cx43 and Cx26 mediate cancer cell metastasis to the brain and suggest that connexins might be exploited therapeutically to benefit cancer patients with metastatic disease. PMID:23321642

  10. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    PubMed Central

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  11. Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel

    NASA Astrophysics Data System (ADS)

    Alizadeh, Hadi; Davoodi, Jamal; Zeilinger, Carsten; Rafii-Tabar, Hashem

    2018-01-01

    Connexin hemichannels mediate cytoplasm and extracellular milieu communication by exchanging a variety of cytoplasmic molecules and ions. These hemichannels can be regulated by external stimuli such as mechanical stress, applied voltage, pH and temperature changes. Although there are many studies on structures and functions of connexin 26 in contexts of pH, ion concentration and voltage, employing computational methods, no such study has been performed so far involving temperature changes. In this study, using molecular dynamics simulation, we investigate thermosensitivity of the human Connexin 26 hemichannel. Our results show that the channel approaches a structurally closed state at lower temperature compared to higher temperature. This is in fair agreement with experimental results that indicate channel closure at lower temperature. Furthermore, our MD simulation results show that some regions of connexin 26 hemichannel are more sensitive to temperature compared to other regions. Whereas the intercellular half of the channel does not show any considerable response to temperature during the simulation time accessible in this study, the cytoplasmic half approaches a closed structural state at lower temperature compared to the higher temperature. Specifically, our results suggest that the cytoplasmic loop, the cytoplasmic half of the second transmembrane helix, and the N-terminus helix play a dominant role in temperature gating.

  12. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling.

    PubMed

    Morel, Sandrine

    2014-01-01

    Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.

  13. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus).

    PubMed

    Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo

    2016-01-01

    Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.

  14. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target.

    PubMed

    Charvériat, Mathieu; Naus, Christian C; Leybaert, Luc; Sáez, Juan C; Giaume, Christian

    2017-01-01

    Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.

  15. Trafficking Highways to the Intercalated Disc: New Insights Unlocking the Specificity of Connexin 43 Localization

    PubMed Central

    Zhang, Shan-Shan; Shaw, Robin M.

    2016-01-01

    With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell – cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes. PMID:24460200

  16. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  17. Kinase programs spatiotemporally regulate gap junction assembly and disassembly: effects on wound repair

    PubMed Central

    Solan, Joell L.; Lampe, Paul D.

    2016-01-01

    Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43’s half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. PMID:26706150

  18. Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair.

    PubMed

    Solan, Joell L; Lampe, Paul D

    2016-02-01

    Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure.

    PubMed

    Beyer, Eric C; Lipkind, Gregory M; Kyle, John W; Berthoud, Viviana M

    2012-08-01

    The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011. Published by Elsevier B.V.

  20. A structural and functional comparison of gap junction channels composed of connexins and innexins

    PubMed Central

    Williams, Jamal B.

    2016-01-01

    ABSTRACT Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre‐chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue‐ and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure–function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin‐based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522–547, 2017 PMID:27582044

  1. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    PubMed Central

    Zhong, Guoqiang; Akoum, Nazem; Appadurai, Daniel A.; Hayrapetyan, Volodya; Ahmed, Osman; Martinez, Agustin D.; Beyer, Eric C.; Moreno, Alonso P.

    2017-01-01

    In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules. PMID:28611680

  2. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry.

    PubMed

    Zhong, Guoqiang; Akoum, Nazem; Appadurai, Daniel A; Hayrapetyan, Volodya; Ahmed, Osman; Martinez, Agustin D; Beyer, Eric C; Moreno, Alonso P

    2017-01-01

    In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules.

  3. Homotypic gap junctional communication associated with metastasis increases suppression increases with PKA kinase activity and is unaffected by P13K inhibition

    USDA-ARS?s Scientific Manuscript database

    Loss of gap junctional intercellular communication (GJIC) between cancer cells is a common characteristic of malignant transformation. This communication is mediated by connexin proteins that make up the functional units of gap junctions. Connexins are highly regulated at the protein level and phosp...

  4. In Vitro Motility of Liver Connexin Vesicles along Microtubules Utilizes Kinesin Motors*

    PubMed Central

    Fort, Alfredo G.; Murray, John W.; Dandachi, Nadine; Davidson, Michael W.; Dermietzel, Rolf; Wolkoff, Allan W.; Spray, David C.

    2011-01-01

    Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μm of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μm ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4–0.5 μm/s, which was inhibited with 1 mm of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μm vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32. PMID:21536677

  5. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin

    PubMed Central

    Fontes, Joseph D.; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V.; Belousov, Andrei B.

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008

  6. Role of connexin43 hemichannels in mechanical stress-induced ATP release in human periodontal ligament cells.

    PubMed

    Luckprom, P; Kanjanamekanant, K; Pavasant, P

    2011-10-01

    Our previous studies showed that mechanical stress could induce ATP release in human periodontal ligament (HPDL) cells. By signaling through P2 purinergic receptors, ATP increased the expression and the synthesis of osteopontin and RANKL. In this study, the mechanism of stress-induced ATP release was investigated. Continuous compressive forces were applied on cultured HPDL cells. The ATP released was measured using luciferin-luciferase bioluminescence. The expression of gap-junction proteins was examined using RT-PCR and western blot analysis. The opening of hemichannels was demonstrated by cellular uptake of a fluorescent dye, 5(6)-carboxyfluorescein, which is known to penetrate hemichannels. Intracellular signal transduction was investigated using inhibitors and antagonists. Mechanical stress induced the release of ATP into the culture medium, which was attenuated by carbenoxolone, a nonspecific gap-junction inhibitor. Addition of meclofenamic acid sodium salt, a connexin43 inhibitor, inhibited ATP release by mechanical stress. Knockdown of connexin43 expression by small interfering RNA reduced the amount of ATP released by mechanical stress, suggesting the role of connexin43 hemichannels. In addition, intracellular Ca(2+) blockers could also inhibit mechanical stress-induced ATP release and the opening of the gap junction. Our study demonstrated the involvement of gap-junction hemichannels, especially connexin43, in the stress-induced ATP-release mechanism. Furthermore, this mechanism may be regulated by the intracellular Ca(2+) signaling pathway. These results suggest an important role of gap-junction hemichannels in the function and behavior of HPDL cells. © 2011 John Wiley & Sons A/S.

  7. Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes.

    PubMed

    Dere, E; De Souza-Silva, M A; Frisch, C; Teubner, B; Söhl, G; Willecke, K; Huston, J P

    2003-08-01

    Gap-junction channels in the brain, formed by connexin (Cx) proteins with a distinct regional/cell-type distribution, allow intercellular electrical and metabolic communication. In astrocytes, mainly the connexins 43, 26 and 30 are expressed. In addition, connexin30 is expressed in ependymal and leptomeningeal cells, as well as in skin and cochlea. The functional implications of the astrocytic gap-junctional network are not well understood and evidence regarding their behavioural relevance is lacking. Thus, we have tested groups of Cx30-/-, Cx30+/-, and Cx30+/+ mice in the open-field, an object exploration task, in the graded anxiety test and on the rotarod. The Cx30-/- mice showed reduced exploratory activity in terms of rearings but not locomotion in the open-field and object exploration task. Furthermore, Cx30-/- mice exhibited anxiogenic behaviour as shown by higher open-field centre avoidance and corner preference. Graded anxiety test and rotarod performance was similar across groups. The Cx30-/- mice had elevated choline levels in the ventral striatum, possibly related to their aberrant behavioural phenotypes. The Cx30+/- mice had lower dopamine and metabolite levels in the amygdala and ventral striatum and lower hippocampal 5-hydroxyindole acid (5-HIAA) concentrations relative to Cx30+/+ mice. Furthermore, the Cx30+/- mice had lower acetylcholine concentrations in the ventral striatum and higher choline levels in the neostriatum, relative to Cx30+/+ mice. Our data suggest that the elimination of connexin30 can alter the reactivity to novel environments, pointing to the importance of gap-junctional signalling in behavioural processes.

  8. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics.

    PubMed

    Solan, Joell L; Lampe, Paul D

    2018-01-01

    Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (<1000Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP 3 ) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    not morphological changes during an epithelium -to-mesenchyme transition . J Cell Sci 118, 873-887 30. Cotrina, M. L., and Nedergaard, M. (2009...Rhett, J. M., Jourdan, J., and Gourdie, R. G. (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Molecular...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Gap junctions are conglomerations of cell-cell channels that are

  10. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    the plaque as double membrane vesicles, by endocytosis and targeted to the lysosome for degradation. Alternatively, undocked connexons may be...endocytosed by clathrin mediated or non-clathrin mediated endocytosis (Figure 2) [13-16]. Tasks of Aim 1: 1. Prepare recombinant retroviruses that...results were described in 2014 report. 7) Determine if N-cadherin induces endocytosis of gap junctions in connexin-expressing LNCaP (ATCC) and

  11. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation.

    PubMed

    Nagy, J I; Lynn, B D; Senecal, J M M; Stecina, K

    2018-05-07

    Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Immunofluorescence reveals unusual patterns of labelling for connexin43 localized to calbindin-D28K-positive interstitial cells in the pineal gland.

    PubMed

    Tsao, D D; Wang, S G; Lynn, B D; Nagy, J I

    2017-06-01

    Gap junctions between cells in the pineal gland have been described ultrastructurally, but their connexin constituents have not been fully characterized. We used immunofluorescence in combination with markers of pineal cells to document the cellular localization of connexin43 (Cx43). Immunofluorescence labelling of Cx43 with several different antibodies was widely distributed throughout the pineal, whereas another connexin examined, connexin26, was not found in pineal but only in surrounding leptomeninges. Labelling apparently associated with plasma membranes was visualized either as fine Cx43-puncta (1-2 μm) or as unusually large pools of Cx43 ranging up to 4-7 μm in diameter or length. These puncta and pools were highly concentrated in perivascular spaces, where they were associated with numerous cells devoid of labelling for markers of pinealocytes (e.g. tryptophan hydroxylase and serotonin), and where they were minimally associated with blood vessels and lacked association with resident macrophages. Astrocytes labelled for glial fibrillary acidic protein were largely restricted to the anterior pole of the pineal gland, where they displayed only fine and sparse Cx43-puncta along their processes. Labelling for Cx43 was localized largely though not exclusively to the somata and long processes of a subpopulation of perivascular interstitial cells that were immunopositive for calbindin-D28K. These cells were often located among dense bundles or termination areas of sympathetic fibres labelled for tyrosine hydroxylase or serotonin. The results indicate that interstitial cells form abundant gap junctions composed of Cx43, and suggest that gap junction-mediated intracellular communication by these cells supports the activities of pinealocytes. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Temporal changes in expression of connexin 43 after load-induced hypertrophy in vitro.

    PubMed

    Bupha-Intr, Tepmanas; Haizlip, Kaylan M; Janssen, Paul M L

    2009-03-01

    Upon remodeling of the ventricle after a provoking stimulus, such as hypertension, connections between adjacent myocytes may need to be "reformatted" to preserve a synchronization of excitation of the remodeling heart. In the mammalian heart, the protein connexin forms the gap junctions that allow electrical and chemical signaling communication between neighboring cells. We aim to elucidate whether mechanical load, in isolation, potentially changes the expression of connexin 43 (Cx43), the major isoform of the connexin family in the ventricle, and its phosphorylation. Cx43 expression levels and contractile function of multicellular rabbit cardiac preparations were assessed in a newly developed in vitro system that allows for the study of the transition of healthy multicellular rabbit myocardium to hypertrophied myocardium. We found that in mechanically loaded cardiac trabeculae, Cx43 levels remained stable for about 12 h and then rapidly declined. Phosphorylation at Ser368 declined much faster, being almost absent after 2 h of high-load conditions. No-load conditions did not affect Cx43 levels, nor did phosphorylation at Ser368. The downregulation of Cx43 under mechanical load did not correspond with the contractile changes that were observed. Furthermore, blocking paracrine activity of the muscle could only partially prevent the downregulation of Cx43. Additionally, no effect of mechanical loading on the expression of N-cadherin and zonula occludens-1 was observed, indicating a specificity of the connexin response. High mechanical load induced a rapid loss of Cx43 phosphorylation, followed by a decrease in Cx43 protein levels. Paracrine factors are partly responsible for the underlying mechanism of action, whereas no direct correlation to contractile ability was observed.

  14. Temporal changes in expression of connexin 43 after load-induced hypertrophy in vitro

    PubMed Central

    Bupha-Intr, Tepmanas; Haizlip, Kaylan M.; Janssen, Paul M. L.

    2009-01-01

    Upon remodeling of the ventricle after a provoking stimulus, such as hypertension, connections between adjacent myocytes may need to be “reformatted” to preserve a synchronization of excitation of the remodeling heart. In the mammalian heart, the protein connexin forms the gap junctions that allow electrical and chemical signaling communication between neighboring cells. We aim to elucidate whether mechanical load, in isolation, potentially changes the expression of connexin 43 (Cx43), the major isoform of the connexin family in the ventricle, and its phosphorylation. Cx43 expression levels and contractile function of multicellular rabbit cardiac preparations were assessed in a newly developed in vitro system that allows for the study of the transition of healthy multicellular rabbit myocardium to hypertrophied myocardium. We found that in mechanically loaded cardiac trabeculae, Cx43 levels remained stable for about 12 h and then rapidly declined. Phosphorylation at Ser368 declined much faster, being almost absent after 2 h of high-load conditions. No-load conditions did not affect Cx43 levels, nor did phosphorylation at Ser368. The downregulation of Cx43 under mechanical load did not correspond with the contractile changes that were observed. Furthermore, blocking paracrine activity of the muscle could only partially prevent the downregulation of Cx43. Additionally, no effect of mechanical loading on the expression of N-cadherin and zonula occludens-1 was observed, indicating a specificity of the connexin response. High mechanical load induced a rapid loss of Cx43 phosphorylation, followed by a decrease in Cx43 protein levels. Paracrine factors are partly responsible for the underlying mechanism of action, whereas no direct correlation to contractile ability was observed. PMID:19136602

  15. Microtubule-assisted altered trafficking of astrocytic gap junction protein connexin 43 is associated with depletion of connexin 47 during mouse hepatitis virus infection.

    PubMed

    Basu, Rahul; Bose, Abhishek; Thomas, Deepthi; Das Sarma, Jayasri

    2017-09-08

    Gap junctions (GJs) are important for maintenance of CNS homeostasis. GJ proteins, connexin 43 (Cx43) and connexin 47 (Cx47), play a crucial role in production and maintenance of CNS myelin. Cx43 is mainly expressed by astrocytes in the CNS and forms gap junction intercellular communications between astrocytes-astrocytes (Cx43-Cx43) and between astrocytes-oligodendrocytes (Cx43-Cx47). Mutations of these connexin (Cx) proteins cause dysmyelinating diseases in humans. Previously, it has been shown that Cx43 localization and expression is altered due to mouse hepatitis virus (MHV)-A59 infection both in vivo and in vitro ; however, its mechanism and association with loss of myelin protein was not elaborated. Thus, we explored potential mechanisms by which MHV-A59 infection alters Cx43 localization and examined the effects of viral infection on Cx47 expression and its association with loss of the myelin marker proteolipid protein. Immunofluorescence and total internal reflection fluorescence microscopy confirmed that MHV-A59 used microtubules (MTs) as a conduit to reach the cell surface and restricted MT-mediated Cx43 delivery to the cell membrane. Co-immunoprecipitation experiments demonstrated that Cx43-β-tubulin molecular interaction was depleted due to protein-protein interaction between viral particles and MTs. During acute MHV-A59 infection, oligodendrocytic Cx47, which is mainly stabilized by Cx43 in vivo , was down-regulated, and its characteristic staining remained disrupted even at chronic phase. The loss of Cx47 was associated with loss of proteolipid protein at the chronic stage of MHV-A59 infection. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A Mutant Connexin50 with Enhanced Hemichannel Function Leads to Cell Death

    PubMed Central

    Minogue, Peter J.; Tong, Jun-Jie; Arora, Anita; Russell-Eggitt, Isabelle; Hunt, David M.; Moore, Anthony T.; Ebihara, Lisa; Beyer, Eric C.; Berthoud, Viviana M.

    2009-01-01

    PURPOSE To determine the consequences of expression of a novel connexin50 (CX50) mutant identified in a child with congenital total cataracts. METHODS The GJA8 gene was directly sequenced. Formation of functional channels was assessed by two-microelectrode voltage-clamp. Connexin protein levels and distribution were assessed by immunoblotting and immunofluorescence. The proportion of apoptotic cells was determined by flow cytometry. RESULTS Direct sequencing of the GJA8 gene identified a 137 G>T transition that resulted in the replacement of glycine by valine at position 46 of the coding region of CX50 (CX50G46V). Both CX50 and CX50G46V induced gap junctional currents in pairs of Xenopus oocytes. In single Xenopus oocytes, CX50G46V induced connexin hemichannel currents that were activated by removal of external calcium; their magnitudes were much higher than those in oocytes injected with similar amounts of CX50 cRNA. When expressed in HeLa cells under the control of an inducible promoter, both CX50 and CX50G46V formed gap junctional plaques. Induction of CX50G46V expression led to a decrease in cell number and an increase in the proportion of apoptotic cells. CX50G46V-induced cell death was prevented by high concentrations of extracellular calcium ions. CONCLUSIONS Unlike previously characterized CX50 mutants that exhibit impaired trafficking and/or lack of function, CX50G46V traffics properly to the plasma membrane and forms functional hemichannels and gap junction channels; however, it causes cell death even when expressed at minute levels. The biochemical results indirectly suggest a potential novel mechanism by which connexin mutants could lead to cataracts: cytotoxicity due to enhanced hemichannel function. PMID:19684000

  17. Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions.

    PubMed

    Musa, Hassan; Fenn, Edward; Crye, Mark; Gemel, Joanna; Beyer, Eric C; Veenstra, Richard D

    2004-06-15

    Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.

  18. Connexins and Cadherin Cross-talk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    switching: essential for behavioral but not morphological changes during an epithelium -to-mesenchyme transition . J Cell Sci 118, 873-887 30. Cotrina, M...Jourdan, J., and Gourdie, R. G. (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Molecular biology of the cell...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Gap junctions are conglomerations of cell-cell channels that are formed

  19. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2013-11-01

    the Golgi Apparatus for Cargo Transport Prior to Complete Assembly. Mol.Biol.Cell, 17, 4105-4117. 79. Hunziker,W. and Geuze,H. (2011...tumor growth by inducing the assembly of other junctional and signaling complexes? Wild type connexins which form functional gap junctions and mutant...and influences the function of two other important proteins that have been shown to prevent the spread of cancer cells from prostate to distant organs

  20. Low concentrations of alendronate increase the local invasive potential of osteoblastic sarcoma cell lines via connexin 43 activation.

    PubMed

    Yoshitani, Kazuhiro; Kido, Akira; Honoki, Kanya; Akahane, Manabu; Fujii, Hiromasa; Tanaka, Yasuhito

    2011-07-15

    Bisphosphonates (BPs) are agents used for treating disorders of excessive bone resorption. In addition, due to their cell-killing activity, BPs were potent candidates for adjuvant cancer therapy. On the other hand, low-concentrations of BPs have been reported to increase cellular viability in several types of tumor cells. Therefore, we focused on the effect of BPs on cellular aggressiveness of malignant bone tumors at low concentrations. MTS assay was performed using osteosarcoma cell lines MG63 and HOS, fibrosarcoma cell line HT1080, and prostate cancer cell line PC3. All the cell lines showed toxicity at high concentrations. On the other hand, at lower concentrations, the cellular viabilities of HOS and MG63 were rather higher than those of untreated controls. Since this tendency was most evident, HOS was used for further assays, including cellular motility, bone resorption activity, and cathepsin K activity. The low-concentration of alendronate enhanced cellular viability and motility, which correlated with the expression of connexin 43 at the mRNA and protein levels. Interestingly, oleamide, a potent connexin 43 inhibitor, had an inhibitory effect on the enhanced proliferation. Our data suggest that alendronate may enhance the proliferation of osteoblastic cell line through connexin 43 activation. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep.

    PubMed

    Davidson, Joanne O; Drury, Paul P; Green, Colin R; Nicholson, Louise F; Bennet, Laura; Gunn, Alistair J

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.

  2. Cues to Opening Mechanisms From in Silico Electric Field Excitation of Cx26 Hemichannel and in Vitro Mutagenesis Studies in HeLa Transfectans

    PubMed Central

    Zonta, Francesco; Buratto, Damiano; Crispino, Giulia; Carrer, Andrea; Bruno, Francesca; Yang, Guang; Mammano, Fabio; Pantano, Sergio

    2018-01-01

    Connexin channels play numerous essential roles in virtually every organ by mediating solute exchange between adjacent cells, or between cytoplasm and extracellular milieu. Our understanding of the structure-function relationship of connexin channels relies on X-ray crystallographic data for human connexin 26 (hCx26) intercellular gap junction channels. Comparison of experimental data and molecular dynamics simulations suggests that the published structures represent neither fully-open nor closed configurations. To facilitate the search for alternative stable configurations, we developed a coarse grained (CG) molecular model of the hCx26 hemichannel and studied its responses to external electric fields. When challenged by a field of 0.06 V/nm, the hemichannel relaxed toward a novel configuration characterized by a widened pore and an increased bending of the second transmembrane helix (TM2) at the level of the conserved Pro87. A point mutation that inhibited such transition in our simulations impeded hemichannel opening in electrophysiology and dye uptake experiments conducted on HeLa tranfectants. These results suggest that the hCx26 hemichannel uses a global degree of freedom to transit between different configuration states, which may be shared among the whole connexin family. PMID:29904340

  3. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    PubMed Central

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103–104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia. PMID:24865217

  4. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    called an annular GJ, or as fragments pinched off from the center of the plaque as double membrane vesicles, by endocytosis and targeted to the...lysosome for degradation. Alternatively, undocked connexons may be endocytosed by clathrin mediated or non-clathrin mediated endocytosis (Figure 2) [13... endocytosis of gap junctions in connexin-expressing LNCaP (ATCC) and PZ-HPV-7 (ATCC) cells (Mehta). (Months 28-36) We have not initiated these

  5. Currently used methods for identification and characterization of hemichannels.

    PubMed

    Schalper, Kurt A; Palacios-Prado, Nicolás; Orellana, Juan A; Sáez, Juan C

    2008-05-01

    Connexins and pannexins are vertebrate transmembrane proteins that form hexameric conduits termed hemichannels. Functional hemichannels allow the diffusional transport of ions and small molecules across the plasma membrane and serve as paracrine and autocrine communication pathways. During the last decade, interest in the hemichannel field increased substantially. Today, there is evidence for the existence of connexin hemichannels in vertebrate cells and bulk of information supports their function in diverse physiological and pathological responses. Controversy regarding the molecular identity of the hemichannel type mediating many responses arose recently with the identification of pannexin-based hemichannels. Here, the authors describe the most frequently used methods for studying hemichannels in living mammalian cells and focus on those with which they have more experience. Although the available in vitro evidence is substantial, further studies and possibly new experimental approaches are required to understand the role and properties of connexin and pannexin hemichannels in vivo.

  6. Structural and Functional Similarities of Calcium Homeostasis Modulator 1 (CALHM1) Ion Channel with Connexins, Pannexins, and Innexins*

    PubMed Central

    Siebert, Adam P.; Ma, Zhongming; Grevet, Jeremy D.; Demuro, Angelo; Parker, Ian; Foskett, J. Kevin

    2013-01-01

    CALHM1 (calcium homeostasis modulator 1) forms a plasma membrane ion channel that mediates neuronal excitability in response to changes in extracellular Ca2+ concentration. Six human CALHM homologs exist with no homology to other proteins, although CALHM1 is conserved across >20 species. Here we demonstrate that CALHM1 shares functional and quaternary and secondary structural similarities with connexins and evolutionarily distinct innexins and their vertebrate pannexin homologs. A CALHM1 channel is a hexamer, comprised of six monomers, each of which possesses four transmembrane domains, cytoplasmic amino and carboxyl termini, an amino-terminal helix, and conserved extracellular cysteines. The estimated pore diameter of the CALHM1 channel is ∼14 Å, enabling permeation of large charged molecules. Thus, CALHMs, connexins, and pannexins and innexins are structurally related protein families with shared and distinct functional properties. PMID:23300080

  7. Pannexins and gap junction protein diversity.

    PubMed

    Shestopalov, V I; Panchin, Y

    2008-02-01

    Gap junctions (GJs) are composed of proteins that form a channel connecting the cytoplasm of adjacent cells. Connexins were initially considered to be the only proteins capable of GJ formation. Another family of GJ proteins (innexins) were first found in invertebrates and were proposed to be renamed pannexins after their orthologs were discovered in vertebrates. The lack of both connexins and pannexins in the genomes of some metazoans suggests that other, still undiscovered GJ proteins exist. In vertebrates, connexins and pannexins co-exist. Here we discuss whether vertebrate pannexins have a nonredundant role in animal physiology. Pannexin channels appear to be suited for ATP and calcium signaling and play a role in the maintenance of calcium homeostasis by mechanisms implicating both GJ and nonjunctional function. Suggested roles in the ischemic death of neurons, schizophrenia, inflammation and tumor suppression have drawn much attention to exploring the molecular properties and cellular functions of pannexins.

  8. Connexin 32 is involved in mitosis.

    PubMed

    Mones, Saleh; Bordignon, Benoit; Fontes, Michel

    2012-03-01

    The X-linked form of Charcot-Marie-Tooth disorder (CMTX) is the second most frequent type (15% of CMT forms). It involves the GJB1 gene coding for connexin 32, a protein involved in gap junction formation and function. There is no curative treatment for CMTX. We present data on transgenic lines that was accomplished by inserting a human BAC carrying the GJB1 gene, in which two different mutations in connexin 32 (Cx32) observed in patients were introduced. Investigation of these models implicated Cx32 in the control of mitotic stability. The model in which Gjb1 has been invalidated had the same phenotype. This new function for Cx32 was recently confirmed by results from the Mitocheck program. Locomotor impediment was seen in the behavior of these animals, the severity of which correlated with transgene copy number and RNA expression. Copyright © 2011 Wiley Periodicals, Inc.

  9. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness.

    PubMed

    Dalamon, Viviana; Fiori, Mariana C; Figueroa, Vania A; Oliva, Carolina A; Del Rio, Rodrigo; Gonzalez, Wendy; Canan, Jonathan; Elgoyhen, Ana B; Altenberg, Guillermo A; Retamal, Mauricio A

    2016-05-01

    Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.

  10. Role of gamma carboxylated Glu47 in connexin 26 hemichannel regulation by extracellular Ca{sup 2+}: Insight from a local quantum chemistry study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zonta, Francesco; Mammano, Fabio, E-mail: fabio.mammano@unipd.it; Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova

    2014-02-28

    Graphical abstract: - Highlights: • QM calculations show that Ca{sup 2+} binds to γGlu47 in connexin hemichannels. • Molecular models of increasing size are employed in hybrid DFT calculations. • Ca{sup 2+} binding affects the interaction between γGlu47 and Arg75, Arg184. • Ca{sup 2+} binding alters the structure in a critical region of connexin hemichannels. - Abstract: Connexin hemichannels are regulated by several gating mechanisms, some of which depend critically on the extracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub e}). It is well established that hemichannel activity is inhibited at normal (∼1 mM) [Ca{sup 2+}]{sub e}, whereas lowering [Ca{sup 2+}]{sub e}more » to micromolar levels fosters hemichannel opening. Atomic force microscopy imaging shows significant and reversible changes of pore diameter at the extracellular mouth of Cx26 hemichannels exposed to different [Ca{sup 2+}]{sub e}, however, the underlying molecular mechanisms are not fully elucidated. Analysis of the crystal structure of connexin 26 (Cx26) gap junction channels, corroborated by molecular dynamics (MD) simulations, suggests that several negatively charged amino acids create a favorable environment for low-affinity Ca{sup 2+} binding within the extracellular vestibule of the Cx26 hemichannel. In particular a highly conserved glutammic acid, found in position 47 in most connexins, is thought to undergo post translational gamma carboxylation (γGlu47), and is thus likely to play an important role in Ca{sup 2+} coordination. γGlu47 may also form salt bridges with two conserved arginines (Arg75 and Arg184 in Cx26), which are considered important in stabilizing the structure of the extracellular region. Using a combination of quantum chemistry methods, we analyzed the interaction between γGlu47, Arg75 and Arg184 in a Cx26 hemichannel model both in the absence and in the presence of Ca{sup 2+}. We show that Ca{sup 2+} imparts significant local structural changes and speculate that these modifications may alter the structure of the extracellular loops in Cx26, and may thus account for the mechanism of hemichannel closure in the presence of mM [Ca{sup 2+}]{sub e}.« less

  11. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.

    PubMed

    Bargiello, Thaddeus A; Oh, Seunghoon; Tang, Qingxiu; Bargiello, Nicholas K; Dowd, Terry L; Kwon, Taekyung

    2018-01-01

    Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (V m or V i-o ). These transjunctional voltage dependent processes have been termed V j - or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bridging the gap to therapeutic strategies based on connexin/pannexin biology.

    PubMed

    Naus, Christian C; Giaume, Christian

    2016-11-29

    A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation.

  13. Inhibiting connexin channels protects against cryopreservation-induced cell death in human blood vessels.

    PubMed

    Bol, M; Van Geyt, C; Baert, S; Decrock, E; Wang, N; De Bock, M; Gadicherla, A K; Randon, C; Evans, W H; Beele, H; Cornelissen, R; Leybaert, L

    2013-04-01

    Cryopreserved blood vessels are being increasingly employed in vascular reconstruction procedures but freezing/thawing is associated with significant cell death that may lead to graft failure. Vascular cells express connexin proteins that form gap junction channels and hemichannels. Gap junction channels directly connect the cytoplasm of adjacent cells and may facilitate the passage of cell death messengers leading to bystander cell death. Two hemichannels form a gap junction channel but these channels are also present as free non-connected hemichannels. Hemichannels are normally closed but may open under stressful conditions and thereby promote cell death. We here investigated whether blocking gap junctions and hemichannels could prevent cell death after cryopreservation. Inclusion of Gap27, a connexin channel inhibitory peptide, during cryopreservation and thawing of human saphenous veins and femoral arteries was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays and histological examination. We report that Gap27 significantly reduces cell death in human femoral arteries and saphenous veins when present during cryopreservation/thawing. In particular, smooth muscle cell death was reduced by 73% in arteries and 71% in veins, while endothelial cell death was reduced by 32% in arteries and 51% in veins. We conclude that inhibiting connexin channels during cryopreservation strongly promotes vascular cell viability. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    PubMed Central

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  15. Hair phenotype in non-syndromic deafness.

    PubMed

    Volo, T; Sathiyaseelan, T; Astolfi, L; Guaran, V; Trevisi, P; Emanuelli, E; Martini, A

    2013-08-01

    The GJB2 gene is located on chromosome 13q12 and it encodes the connexin 26, a transmembrane protein involved in cell-cell attachment of almost all tissues. GJB2 mutations cause autosomal recessive (DFNB1) and sometimes dominant (DFNA3) non-syndromic sensorineural hearing loss. Moreover, it has been demonstrated that connexins are involved in regulation of growth and differentiation of epidermal tissues. Hence, mutations in GJB2 gene, which is responsible for non-syndromic deafness, may be associated with an abnormal skin and hair phenotype. We analyzed hair samples from 96 subjects: a study group of 42 patients with hearing impairments of genetic origin (38 with a non-syndromic form, 4 with a syndromic form), and a control group including 54 people, i.e. 43 patients with other, non-genetic hearing impairments and 11 healthy volunteers aged up to 10 years old. The surface structure of 49 hair samples was normal, whereas in 45 cases it was altered, with a damaged appearance. Two hair samples were considered unclassifiable: one from the patient heterozygotic for the pendrin mutation (Fig. 2C), the other from a patient from Ghana with a R134W mutation (Fig. 2D). Among the 43 altered hair samples, 31 belonged to patients with connexin mutations and the other 12 came from patients without connexin mutations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Green Fluorescent Protein Changes the Conductance of Connexin 43 (Cx43) Hemichannels Reconstituted in Planar Lipid Bilayers*

    PubMed Central

    Carnarius, Christian; Kreir, Mohamed; Krick, Marcel; Methfessel, Christoph; Moehrle, Volker; Valerius, Oliver; Brüggemann, Andrea; Steinem, Claudia; Fertig, Niels

    2012-01-01

    In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein. PMID:22139870

  17. Green fluorescent protein changes the conductance of connexin 43 (Cx43) hemichannels reconstituted in planar lipid bilayers.

    PubMed

    Carnarius, Christian; Kreir, Mohamed; Krick, Marcel; Methfessel, Christoph; Moehrle, Volker; Valerius, Oliver; Brüggemann, Andrea; Steinem, Claudia; Fertig, Niels

    2012-01-20

    In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.

  18. AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions

    PubMed Central

    Meyer, Arndt; Hilgen, Gerrit; Dorgau, Birthe; Sammler, Esther M.; Weiler, Reto; Monyer, Hannah; Dedek, Karin; Hormuzdi, Sheriar G.

    2014-01-01

    ABSTRACT Electrical synapses (gap junctions) rapidly transmit signals between neurons and are composed of connexins. In neurons, connexin36 (Cx36) is the most abundant isoform; however, the mechanisms underlying formation of Cx36-containing electrical synapses are unknown. We focus on homocellular and heterocellular gap junctions formed by an AII amacrine cell, a key interneuron found in all mammalian retinas. In mice lacking native Cx36 but expressing a variant tagged with enhanced green fluorescent protein at the C-terminus (KO-Cx36-EGFP), heterocellular gap junctions formed between AII cells and ON cone bipolar cells are fully functional, whereas homocellular gap junctions between two AII cells are not formed. A tracer injected into an AII amacrine cell spreads into ON cone bipolar cells but is excluded from other AII cells. Reconstruction of Cx36–EGFP clusters on an AII cell in the KO-Cx36-EGFP genotype confirmed that the number, but not average size, of the clusters is reduced – as expected for AII cells lacking a subset of electrical synapses. Our studies indicate that some neurons exhibit at least two discriminatory mechanisms for assembling Cx36. We suggest that employing different gap-junction-forming mechanisms could provide the means for a cell to regulate its gap junctions in a target-cell-specific manner, even if these junctions contain the same connexin. PMID:24463820

  19. Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1

    PubMed Central

    Li, Xinbo; Olson, Carl; Lu, Shijun; Kamasawa, Naomi; Yasumura, Thomas; Rash, John E.; Nagy, James I.

    2007-01-01

    Among the 20 members in the connexin family of gap junction proteins, only connexin36 (Cx36) is firmly established to be expressed in neurons and to form electrical synapses at widely distributed interneuronal gap junctions in mammalian brain. Several connexins have recently been reported to interact with the PDZ domain-containing protein zonula occludens-1 (ZO-1), which was originally considered to be associated only with tight junctions, but has recently been reported to associate with other structures including gap junctions in various cell types. Based on the presence of sequence corresponding to a putative PDZ binding motif in Cx36, we investigated anatomical relationships and molecular association of Cx36 with ZO-1. By immunofluorescence, punctate Cx36/ZO-1 colocalization was observed throughout the central nervous system of wild-type mice, whereas labelling for Cx36 was absent in Cx36 knockout mice, confirming the specificity of the anti-Cx36 antibodies employed. By freeze-fracture replica immunogold labelling, Cx36 and ZO-1 in brain were found colocalized within individual ultrastructurally identified gap junction plaques, although some plaques contained only Cx36 whereas others contained only ZO-1. Cx36 from mouse brain and Cx36-transfected HeLa cells was found to coimmunoprecipitate with ZO-1. Unlike other connexins that bind the second of the three PDZ domains in ZO-1, glutathione S-transferase-PDZ pull-down and mutational analyses indicated Cx36 interaction with the first PDZ domain of ZO-1, which required at most the presence of the four c-terminus amino acids of Cx36. These results demonstrating a Cx36/ZO-1 association suggest a regulatory and/or scaffolding role of ZO-1 at gap junctions that form electrical synapses between neurons in mammalian brain. PMID:15090040

  20. Relationship between connexin expression and gap-junction resistivity in human atrial myocardium.

    PubMed

    Dhillon, Paramdeep S; Chowdhury, Rasheda A; Patel, Pravina M; Jabr, Rita; Momin, Aziz U; Vecht, Joshua; Gray, Rosaire; Shipolini, Alex; Fry, Christopher H; Peters, Nicholas S

    2014-04-01

    The relative roles of the gap-junctional proteins connexin40 (Cx40) and connexin43 (Cx43) in determining human atrial myocardial resistivity is unknown. In addressing the hypothesis that changing relative expression of Cx40 and Cx43 underlies an increase in human atrial myocardial resistivity with age, this relationship was investigated by direct ex vivo measurement of gap-junctional resistivity and quantitative connexin immunoblotting and immunohistochemistry. Oil-gap impedance measurements were performed to determine resistivity of the intracellular pathway (Ri), which correlated with total Cx40 quantification by Western blotting (rs=0.64, P<0.01, n=20). Specific gap-junctional resistivity (Rj) correlated not only with Western immunoquantification of Cx40 (rs=0.63, P=0.01, n=20), but also more specifically, with the Cx40 fraction localized to the intercalated disks on immunohistochemical quantification (rs=0.66, P=0.02, n=12). Although Cx43 expression showed no correlation with resistivity values, the proportional expression of the 2 connexins, (Cx40/[Cx40+Cx43]) correlated with Ri and Rj (rs=0.58, P<0.01 for Ri and rs=0.51, P=0.02 for Rj). Advancing age was associated with a rise in Ri (rs=0.77, P<0.0001), Rj (rs=0.65, P<0.001, n=23), Cx40 quantity (rs=0.54, P=0.01, n=20), and Cx40 gap-junction protein per unit area of en face disk (rs=0.61, P=0.02, n=12). Cx40 is associated with human right atrial gap-junctional resistivity such that increased total, gap-junctional, and proportional Cx40 expression increases gap-junctional resistivity. Accordingly, advancing age is associated with an increase in Cx40 expression and a corresponding increase in gap-junctional resistivity. These findings are the first to demonstrate this relationship and a mechanistic explanation for changing atrial conduction and age-related arrhythmic tendency.

  1. Effect of 18β-glycyrrhetinic acid on cerebral vasospasm caused by asymmetric dimethylarginine after experimental subarachnoid hemorrhage in rats.

    PubMed

    Zhao, Dong; Liu, Qi; Ji, Yunxiang; Wang, Ganggang; He, Xuejun; Tian, Weidong; Xu, Hui; Lei, Ting; Wang, Yezhong

    2015-06-01

    Cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH) is characterized by the severe constriction of an artery, which often leads to unfavorable outcomes. CVS after SAH is closely associated with asymmetric dimethylarginine (ADMA) and connexin. The effect of 18β-glycyrrhetinic acid (18β-GA), an inhibitor of gap junction, on ADMA, connexin, and CVS after SAH were investigated. Sprague-Dawley rats (n  =  120), weighing 300-350 g, were divided into the control group, sham, SAH, and SAH + 18β-GA groups. In the SAH group, blood was injected into the prechiasmatic cistern of the rats, and 18β-GA (10 mg/kg) was intraperitoneally injected. The neurological score, basilar artery diameter, ADMA, and connexin protein contents (Cx40, Cx43, and Cx45) were measured using Kaoutzanis scoring system, pressure myograph, enzyme linked immunosorbent assay kit, and Western blot, respectively, 1, 3, 5, 7, and 14 days after SAH. The neurological score significantly decreased 3, 5, 7, and 14 days after SAH. The basilar artery diameter significantly decreased, and the ADMA level in the cerebrospinal fluid (CSF) significantly increased at all time points. The level of Cx40 significantly decreased on days 3, 5, 7, and 14, and the level of Cx43 and Cx45 significantly increased at all time points. ADMA and Cx43 are positively correlated. However, the upregulated level of ADMA, Cx43, and Cx45 were attenuated. The neurology result significantly improved in the SAH + 18β-GA group. Treatment with 18β-GA in SAH rats decreases Cx43 and Cx45 in basilar artery and ADMA in CSF. ADMA is probably involved in the pathophysiological events of CVS after SAH by altering connexin proteins. The mechanism of connexin protein changes caused by ADMA needs to be further studied.

  2. Differential expression of connexin 43 in human autoimmune thyroid disease.

    PubMed

    Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing

    2010-05-01

    Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.

  3. Monocytic cell junction proteins serve important roles in atherosclerosis via the endoglin pathway

    PubMed Central

    Chen, Lina; Chen, Zhongliang; Ge, Menghua; Tang, Oushan; Cheng, Yinhong; Zhou, Haoliang; Shen, Yu; Qin, Fengming

    2017-01-01

    The formation of atherosclerosis is recognized to be caused by multiple factors including pathogenesis in monocytes during inflammation. The current study provided evidence that monocytic junctions were significantly altered in patients with atherosclerosis, which suggested an association between cell junctions and atherosclerosis. Claudin-1, occludin-1 and ZO-1 were significantly enhanced in atherosclerosis, indicating that the tight junction pathway was activated during the pathogenesis of atherosclerosis. In addition, the gene expression of 5 connexin members involved in the gap junction pathway were quantified, indicating that connexin 43 and 46 were significantly up-regulated in atherosclerosis. Furthermore, inflammatory factors including endoglin and SMAD were observed, suggesting that immune regulative factors were down-regulated in this pathway. Silicon-based analysis additionally identified that connexins and tight junctions were altered in association with monocytic inflammation regulations, endoglin pathway. The results imply that reduced expression of the immune regulation pathway in monocytes is correlated with the generation of gap junctions and tight junctions which serve important roles in atherosclerosis. PMID:28901429

  4. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo

    PubMed Central

    Solan, Joell L.; Lampe, Paul D.

    2014-01-01

    Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin. PMID:24508467

  5. Resveratrol protects the loss of connexin 43 induced by ethanol exposure in neonatal mouse cardiomyocytes.

    PubMed

    Tu, Su; Cao, Fu-Tao; Fan, Xiao-Chun; Yang, Cheng-Jian

    2017-06-01

    Excessive alcohol consumption provides risk to cardiomyopathy with unknown mechanisms. Resveratrol, a plant polyphenol, is widely reported for its cardiovascular benefits, while its effect on alcohol-induced impairments in cardiomyocytes largely remains unknown. Effects of resveratrol on the cardiomyocytes under ethanol insult were studied in vitro. Ethanol exposure in mouse neonatal cardiomyocytes increased cell death and induced a specific loss of tight junction protein, connexin 43. In spite of adverse effects at higher concentrations, resveratrol at 10 μM improved cell viability of cardiomyocytes in the presence of a deleterious dose of ethanol. Importantly, the co-treatment of resveratrol with ethanol exhibited the restoration of connexin 43 protein. Further assays showed that these effects were likely associated with the antioxidative actions of resveratrol, and correlated with the alleviation of MAP kinase activation in cultured cardiomyocytes in response to ethanol. Our data suggests a novel mechanism of cardiomyocyte cell loss under ethanol exposure and provides new evidence of protective effects of resveratrol in the cardiomyocytes.

  6. Connexin43 Potentiates Osteoblast Responsiveness to Fibroblast Growth Factor 2 via a Protein Kinase C-Delta/Runx2–dependent Mechanism

    PubMed Central

    Lima, Florence; Niger, Corinne; Hebert, Carla

    2009-01-01

    In this study, we examine the role of the gap junction protein, connexin43 (Cx43), in the transcriptional response of osteocalcin to fibroblast growth factor 2 (FGF2) in MC3T3 osteoblasts. By luciferase reporter assays, we identify that the osteocalcin transcriptional response to FGF2 is markedly increased by overexpression of Cx43, an effect that is mediated by Runx2 via its OSE2 cognate element, but not by a previously identified connexin-responsive Sp1/Sp3-binding element. Furthermore, disruption of Cx43 function with Cx43 siRNAs or overexpression of connexin45 markedly attenuates the response to FGF2. Inhibition of protein kinase C delta (PKCδ) with rottlerin or siRNA-mediated knockdown abrogates the osteocalcin response to FGF2. Additionally, we show that upon treatment with FGF2, PKCδ translocates to the nucleus, PKCδ and Runx2 are phosphorylated and these events are enhanced by Cx43 overexpression, suggesting that the degree of activation is enhanced by increased Cx43 levels. Indeed, chromatin immunoprecipitations of the osteocalcin proximal promoter with antibodies against Runx2 demonstrate that the recruitment of Runx2 to the osteocalcin promoter in response to FGF2 treatment is dramatically enhanced by Cx43 overexpression. Thus, Cx43 plays a critical role in regulating the ability of osteoblasts to respond to FGF2 by impacting PKCδ and Runx2 function. PMID:19339281

  7. Altered differentiation and clustering of Sertoli cells in transgenic mice showing a Sertoli cell specific knockout of the connexin 43 gene.

    PubMed

    Weider, Karola; Bergmann, Martin; Giese, Sarah; Guillou, Florian; Failing, Klaus; Brehm, Ralph

    2011-07-01

    Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  8. Inverse Relationship between Tumor Proliferation Markers and Connexin Expression in a Malignant Cardiac Tumor Originating from Mesenchymal Stem Cell Engineered Tissue in a Rat in vivo Model

    PubMed Central

    Spath, Cathleen; Schlegel, Franziska; Leontyev, Sergey; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2013-01-01

    Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET) from mesenchymal stem cells. Interestingly, we observed a malignant tumor invading the heart with an inverse relationship between proliferation markers and connexin expression. Methods: Commercial CD54+/CD90+/CD34−/CD45− bone marrow derived mesenchymal rat stem cells (cBM-MSC), characterized were used for production of mesenchymal stem-cell-ET (MSC-ET) by suspending them in a collagen I, matrigel-mixture and cultivating for 14 days with electrical stimulation. Three MSC-ET were implanted around the beating heart of adult rats for days. Another three MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC). Results: Three weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumor originating from the cMSC-ET (cBM-MSC), classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin expression (Cx43, Cx40, or Cx45) and increased Ki-67 expression (Cx43: p < 0.0001, Cx45: p < 0.03, Cx40: p < 0.014). At the tumor-heart border there were significantly more Ki-67 positive cells (p = 0.001), and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p < 0.0001). Conclusion and Hypothesis: These observations strongly suggest the hypothesis, that invasive tumor growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumor and normal tissue is reduced or absent, which could mean that growth and differentiation signals can not be exchanged. PMID:23616767

  9. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    PubMed

    Liu, Shuo; Niger, Corinne; Koh, Eugene Y; Stains, Joseph P

    2015-01-01

    Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs) could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis)-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases like osteoarthritis, in vivo.

  10. Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32.

    PubMed

    Brennan, Matthew J; Karcz, Jennifer; Vaughn, Nicholas R; Woolwine-Cunningham, Yvonne; DePriest, Adam D; Escalona, Yerko; Perez-Acle, Tomas; Skerrett, I Martha

    2015-07-10

    Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes.

    PubMed

    Phelan, P; Stebbings, L A; Baines, R A; Bacon, J P; Davies, J A; Ford, C

    1998-01-08

    In most multicellular organisms direct cell-cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins. shaking-B and eat-5 are required for the formation of functional gap junctions. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.

  12. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory.

    PubMed

    Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J

    2016-01-01

    Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.

  13. Connexin Communication Compartments and Wound Repair in Epithelial Tissue.

    PubMed

    Chanson, Marc; Watanabe, Masakatsu; O'Shaughnessy, Erin M; Zoso, Alice; Martin, Patricia E

    2018-05-03

    Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  14. Gap junction-mediated intercellular communication in the immune system.

    PubMed

    Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques

    2007-01-01

    Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.

  15. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    PubMed Central

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  16. Transforming Growth Factor Beta 1 Drives a Switch in Connexin Mediated Cell-to-Cell Communication in Tubular Cells of the Diabetic Kidney.

    PubMed

    Hills, Claire; Price, Gareth William; Wall, Mark John; Kaufmann, Timothy John; Chi-Wai Tang, Sidney; Yiu, Wai Han; Squires, Paul Edward

    2018-01-01

    Changes in cell-to-cell communication have been linked to several secondary complications of diabetes, but the mechanism by which connexins affect disease progression in the kidney is poorly understood. This study examines a role for glucose-evoked changes in the beta1 isoform of transforming growth factor (TGFβ1), on connexin expression, gap-junction mediated intercellular communication (GJIC) and hemi-channel ATP release from tubular epithelial cells of the proximal renal nephron. Biopsy material from patients with and without diabetic nephropathy was stained for connexin-26 (CX26) and connexin-43 (CX43). Changes in expression were corroborated by immunoblot analysis in human primary proximal tubule epithelial cells (hPTECs) and model epithelial cells from human renal proximal tubules (HK2) cultured in either low glucose (5mmol/L) ± TGFβ1 (2-10ng/ml) or high glucose (25mmol/L) for 48h or 7days. Secretion of the cytokine was determined by ELISA. Paired whole cell patch clamp recordings were used to measure junctional conductance in control versus TGFβ1 treated (10ng/ml) HK2 cells, with carboxyfluorescein uptake and ATP-biosensing assessing hemi-channel function. A downstream role for ATP in mediating the effects of TGF-β1 on connexin mediated cell communication was assessed by incubating cells with ATPγS (1-100µM) or TGF-β1 +/- apyrase (5 Units/ml). Implications of ATP release were measured through immunoblot analysis of interleukin 6 (IL-6) and fibronectin expression. Biopsy material from patients with diabetic nephropathy exhibited increased tubular expression of CX26 and CX43 (P<0.01, n=10), data corroborated in HK2 and hPTEC cells cultured in TGFβ1 (10ng/ml) for 7days (P<0.001, n=3). High glucose significantly increased TGFβ1 secretion from tubular epithelial cells (P<0.001, n=3). The cytokine (10ng/ml) reduced junctional conductance between HK2 cells from 4.5±1.3nS in control to 1.15±0.9nS following 48h TGFβ1 and to 0.42±0.2nS after 7days TGFβ1 incubation (P<0.05, n=5). Acute (48h) and chronic (7day) challenge with TGFβ1 produced a carbenoxolone (200µM)-sensitive increase in carboxyfluorescein loading, matched by an increase in ATP release from 0.29±0.06μM in control to 1.99±0.47μM after 48hr incubation with TGFβ1 (10ng/ml; P<0.05, n=3). TGF-β1 (2-10ng/ml) and ATPγs (1-100µM) increased expression of IL-6 (P<0.001 n=3) and fibronectin (P<0.01 n=3). The effect of TGF-β1 on IL-6 and fibronectin expression was partially blunted when preincubated with apyrase (n=3). These data suggest that chronic exposure to glucose-evoked TGFβ1 induce an increase in CX26 and CX43 expression, consistent with changes observed in tubular epithelia from patients with diabetic nephropathy. Despite increased connexin expression, direct GJIC communication decreases, whilst hemichannel expression/function and paracrine release of ATP increases, changes that trigger increased levels of expression of interleukin 6 and fibronectin. Linked to inflammation and fibrosis, local increases in purinergic signals may exacerbate disease progression and highlight connexin mediated cell communication as a future therapeutic target for diabetic nephropathy. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. ‘Gap Junctions and Cancer: Communicating for 50 Years’

    PubMed Central

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  18. In-vitro formation of the blood-testis barrier during long-term organotypic culture of human prepubertal tissue: comparison with a large cohort of pre/peripubertal boys.

    PubMed

    de Michele, F; Poels, J; Giudice, M G; De Smedt, F; Ambroise, J; Vermeulen, M; Gruson, D; Wyns, C

    2018-03-12

    How does the formation of the blood-testis barrier (BTB), as reflected by the expression of connexin 43 and claudin 11 proteins during the pubertal transition period, take place in vitro compared to samples from a large cohort of pre/peripubertal boys? The BTB connexin 43 and claudin 11 expression patterns appeared to be partially achieved in organotypic culture when compared to that in samples from 71 pre/peripubertal patients. Although alterations in the protein expression patterns of the BTB, whose main components are connexin 43 and claudin 11, are known to be associated with impaired spermatogenesis in mice and adult men, there is a lack of knowledge on its formation in pre-peripubertal human tissue both in vitro and in vivo. Moreover, despite Sertoli cell (SC) maturation during long-term organotypic culture of immature testicular tissue (ITT), initiation of spermatogenesis has not yet been achieved. Histological sections from 71 pre-peripubertal patients were evaluated for the formation of the BTB acting as in-vivo controls according to age, SC maturation, clinical signs of puberty and germ cell differentiation. Testicular tissue fragments retrieved from three prepubertal boys were cultured in a long term organotypic system to analyze the BTB formation and expression pattern in correlation with SC maturation. Testicular histological sections from 71 patients aged 0-16 years who underwent a biopsy between 2005 and 2014 to preserve their fertility before gonadotoxic treatment were examined. Immunohistochemistry (IHC) results for connexin 43 and claudin 11 as BTB markers, using a semi-quantitative score for their expression, and for Anti-Mullerian hormone (AMH), as SC maturation marker, were analyzed. Germ cell differentiation was evaluated on Hematoxylin-Eosin sections. Tanner stages at the time of biopsy were recorded from medical files. A longitudinal analysis of connexin 43, claudin 11 and AMH expressions on immunohistological sections of organotypic cultured testicular tissue from three prepubertal boys who underwent a biopsy for fertility preservation was performed. Immunostaining was evaluated at culture days 0, 1, 3, 10, 16, 27, 32, 53, 64 and 139 for two different types of culture media. Immunohistochemical control sections showed progressive maturation of Sertoli cells, as shown by the decrease in AMH expression, with increasing age (p ≤ 0.01) and the AMH expression was negatively correlated with the expression of connexin 43 and claudin 11 (p ≤ 0.01 for both proteins). AR (Androgen receptor) expression increased with age (p ≤ 0.01) and was significantly correlated with the expression of connexin 43 (p = 0.002) and claudin 11 (p = 0.03). A statistical correlation was also found between the reduction of AMH expression and both the advancement of Tanner stages (p ≤ 0.01) and the differentiation of germ cells (p ≤ 0.01). Furthermore, positive correlations between BTB formation (using connexin 43 and claudin 11 expression) and age (p ≤ 0.01 for both the proteins), higher Tanner stages (p ≤ 0.001 and p ≤ 0.01 for connexin 43 and claudin 11, respectively), and presence of more advanced germ cells (p ≤ 0.001 for both proteins) were observed. In the subanalysis on organotypic cultured ITT, where a significant decrease in AMH expression as a marker of SC maturation was already reported, we showed the onset of expression of connexin 43 at day 16 (p ≤ 0.001) and a constant expression of claudin 11 from day 0 to day 139, for all three patients, without differences between the two types of culture media. N/A. Accessibility of prepubertal human testicular tissue is a major limiting factor to the analysis of cultured tissue samples from a wide number of patients, as would be needed to assess the in-vitro development of the BTB according to the age. The impossibility of performing longitudinal studies on in-vivo BTB formation in the same patient prevents a comparison of the time needed to achieve effective BTB formation and protein expression patterns in vivo and in vitro. To the best of our knowledge, this is the first report describing the expression of two BTB proteins in samples from a cohort of prepubertal and peripubertal boys, for the in-vivo pattern, and in cultured ITT from a few prepubertal boys, for the in-vitro evaluation. Since the formation of this barrier is essential for spermatogenesis and because little is known about its protein expression patterns and development in humans, a deeper understanding of the testicular microenvironment is essential to improve ITT in-vitro culture conditions. The final aim is to restore fertility by acheiving in-vitro differentiation of spermatogonial stem cells, using cryopreserved ITT collected before gonadotoxic therapies. Funding was received from Fonds National de la Recherche Scientifique de Belgique (grant Télevie No. 7.4554.14F and No. 7.6511.16) and Fondation Salus Sanguinis. No conflict of interest has to be disclosed.

  19. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition.

    PubMed

    Yang, Yan; Qin, Shu-Kui; Wu, Qiong; Wang, Zi-Shu; Zheng, Rong-Sheng; Tong, Xu-Hui; Liu, Hao; Tao, Liang; He, Xian-Di

    2014-02-01

    Increasing gap junction activity in tumor cells provides a target by which to enhance antineoplastic therapies. Previously, several naturally occurring agents, including all-trans retinoic acid (ATRA) have been demonstrated to increase gap junctional intercellular communication (GJIC) in a number of types of cancer cells. In the present study, we investigated in vitro whether ATRA modulates the response of human hepatocellular carcinoma (HCC) cells to sorafenib, the only proven oral drug for advanced HCC, and the underlying mechanisms. HepG2 and SMMC-7721 cells were treated with sorafenib and/or ATRA, and cell proliferation and apoptosis were analyzed; the role of GJIC was also explored. We found that ATRA, at non-toxic concentrations, enhanced sorafenib-induced growth inhibition in both HCC cell lines, and this effect was abolished by two GJIC inhibitors, 18-α-GA and oleamide. Whereas lower concentrations of sorafenib (5 µM) or ATRA (0.1 or 10 µM) alone modestly induced GJIC activity, the combination of sorafenib plus ATRA resulted in a strong enhancement of GJIC. However, the action paradigm differed in the HepG2 and SMMC-7721 cells, with the dominant effect of GJIC dependent on the cell-specific connexin increase in protein amounts and relocalization. RT-PCR assay further revealed a transcriptional modification of the key structural connexin in the two cell lines. Thus, a connexin-dependent gap junction enhancement may play a central role in ATRA plus sorafenib synergy in inhibiting HCC cell growth. Since both agents are available for human use, the combination treatment represents a future profitable strategy for the treatment of advanced HCC.

  20. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    PubMed Central

    Muñoz, Manuel F.; Puebla, Mariela; Figueroa, Xavier F.

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process. PMID:25805969

  1. A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews.

    PubMed

    Lerer, I; Sagi, M; Ben-Neriah, Z; Wang, T; Levi, H; Abeliovich, D

    2001-11-01

    A deletion of at least 140 kb starting approximately 35kb upstream (telomeric) to the GJB2 (CX26) gene was identified in 7 patients from 4 unrelated Jewish Ashkenazi families with non-syndromic hearing loss. These patients were heterozygous for one of the common mutations 167delT or 35delG in the GJB2 gene in trans to the deletion. The deletion started at 5' side of the GJB6 (CX30) gene including the first exon and it did not affect the integrity of the GJB2 gene. The deletion mutation segregated together with the hearing loss, and was not found in a control group of 100 Ashkenazi individuals. We suggest that the deletion is a recessive mutation causing hearing loss in individuals that are double heterozygous for the deletion and for a mutation in the GJB2 gene. The effect of the deletion mutation could be due to a digenic mode of inheritance of GJB2 and GJB6 genes that encode two different connexins; connexin 26 and connexin 30, or it may abolish control elements that are important in the expression of the GJB2 gene in the cochlea. Regardless which of the options is valid, it is apparent that the deletion mutation provides a new insight into connexin function in the auditory system. The deletion mutation was on the same haplotypic background in all the families, and therefore is a founder mutation that increases the impact of GJB2 in the etiology of prelingual recessive non-syndromic hearing loss in the Ashkenazi population. Copyright 2001 Wiley-Liss, Inc.

  2. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication

    PubMed Central

    Garciarena, Carolina D.; Malik, Akif; Swietach, Pawel; Moreno, Alonso P.; Vaughan-Jones, Richard D.

    2018-01-01

    Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue’s metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels—the major isoform in the heart and brain—is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel–mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid–base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.—Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication. PMID:29183963

  3. Altered Connexin 43 and Connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole.

    PubMed

    Grippo, Angela J; Moffitt, Julia A; Henry, Matthew K; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles - a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n = 22) or control (paired, n = 23) conditions (4 weeks), alone or in combination with chronic mild stress (CMS) (1 week). Social isolation, versus paired control conditions, produced significantly (p < 0.05) increased depressive behaviors in a 5-min forced swim test, and CMS exacerbated (p < 0.05) these behaviors. Social isolation (alone) reduced (p < 0.05) total Cx43 expression in the left ventricle; whereas CMS (but not isolation) increased (p < 0.05) total Cx45 expression and reduced (p < 0.05) the Cx43/Cx45 ratio, measured via Western blot analysis. The present findings provide insight into potential cellular mechanisms underlying altered cardiac rhythmicity associated with social and environmental stress in the prairie vole.

  4. HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS.

    PubMed

    Berman, Joan W; Carvallo, Loreto; Buckner, Clarisa M; Luers, Aimée; Prevedel, Lisa; Bennett, Michael V; Eugenin, Eliseo A

    2016-03-02

    HIV-associated neurocognitive disorders (HAND) are a major complication in at least half of the infected population despite effective antiretroviral treatment and immune reconstitution. HIV-associated CNS damage is not correlated with active viral replication but instead is associated with mechanisms that regulate inflammation and neuronal compromise. Our data indicate that one of these mechanisms is mediated by gap junction channels and/or hemichannels. Normally, gap junction channels shutdown under inflammatory conditions, including viral diseases. However, HIV infection upregulates Connexin43 (Cx43) expression and maintains gap junctional communication by unknown mechanism(s). Human primary astrocytes were exposed to several HIV proteins as well as to HIV, and expression and function of Connexin43- and Connexin30-containing channels were determined by western blot, immunofluorescence, microinjection of a fluorescent tracer and chromatin immunoprecipitation (ChIP). Here, we demonstrate that HIV infection increases Cx43 expression in vivo. HIV-tat, the transactivator of the virus, and no other HIV proteins tested, increases Cx43 expression and maintains functional gap junctional communication in human astrocytes. Cx43 upregulation is mediated by binding of the HIV-tat protein to the Cx43 promoter, but not to the Cx30 promoter, resulting in increased Cx43 messenger RNA (mRNA) and protein as well as gap junctional communication. We propose that HIV-tat contributes to the spread of intracellular toxic signals generated in a few HIV-infected cells into surrounding uninfected cells by upregulating gap junctional communication. In the current antiretroviral era, where HIV replication is often completely suppressed, viral factors such as HIV-tat are still produced and released from infected cells. Thus, blocking the effects of HIV-tat could result in new strategies to reduce the damaging consequences of HIV infection of the CNS.

  5. Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts.

    PubMed

    Rucker-Martin, Catherine; Milliez, Paul; Tan, Sisareuth; Decrouy, Xavier; Recouvreur, Michel; Vranckx, Roger; Delcayre, Claude; Renaud, Jean-François; Dunia, Irene; Segretain, Dominique; Hatem, Stéphane N

    2006-10-01

    The expression and distribution of connexins is abnormal in a number of cardiac diseases, including atrial fibrillation, and is believed to favor conduction slowing and arrhythmia. Here, we studied the role of atrial structural remodeling in the disorganization of gap junctions and whether redistributed connexins can form new functional junction channels. Expression of connexin-43 (Cx43) was characterized by immunoblotting and immunohistochemistry in human right atrial specimens and in rat atria after myocardial infarction (MI). Gap junctions were studied by electron and 3-D microscopy, and myocyte-myocyte coupling was determined by Lucifer yellow dye transfer. In both chronically hemodynamically overloaded human atria in sinus rhythm and in dilated atria from MI-rats, Cx43 were dephosphorylated and redistributed from the intercalated disc to the lateral cell membranes as observed during atrial fibrillation. In MI-rats, the gap junctions at the intercalated disc were smaller (20% decrease) and contained very little Cx43 (0 or 1 gold particle vs. 42 to 98 in sham-operated rats). In the lateral membranes of myocytes, numerous connexon aggregates comprising non-phosphorylated Cx43 were observed. These connexon aggregates were in no case assembled into gap junction plaque-like structures. However, N-cadherin was well organized in the intercalated disc. There was very little myocyte-myocyte coupling in MI-rat atria and no myocyte-fibroblast coupling. Regression of the atrial remodeling was associated with the normalization of Cx43 localization. Structural alteration of the atrial myocardium is an important factor in the disorganization of connexins and gap junction. Moreover, redistributed Cx43 do not form junction channels.

  6. Enrichment of cardiac pacemaker-like cells: neuregulin-1 and cyclic AMP increase I(f)-current density and connexin 40 mRNA levels in fetal cardiomyocytes.

    PubMed

    Ruhparwar, Arjang; Er, Fikret; Martin, Ulrich; Radke, Kristin; Gruh, Ina; Niehaus, Michael; Karck, Matthias; Haverich, Axel; Hoppe, Uta C

    2007-02-01

    Generation of a large number of cells belonging to the cardiac pacemaker system would constitute an important step towards their utilization as a biological cardiac pacemaker system. The aim of the present study was to identify factors, which might induce transformation of a heterogenous population of fetal cardiomyocytes into cells with a pacemaker-like phenotype. Neuregulin-1 (alpha- and beta-isoform) or the cAMP was added to fresh cell cultures of murine embryonic cardiomyocytes. Quantitative northern blot analysis and flowcytometry were performed to detect the expression of connexins 40, 43 and 45. Patch clamp recordings in the whole cell configuration were performed to determine current density of I (f), a characteristic ion current of pacemaker cells. Fetal cardiomyocytes without supplement of neuregulin or cAMP served as control group. Neuregulin and cAMP significantly increased mRNA levels of connexin 40 (Cx-40), a marker of the early differentiating conduction system in mice. On the protein level, flowcytometry revealed no significant differences between treated and untreated groups with regard to the expression of connexins 40, 43 and 45. Treatment with cAMP (11.2 +/- 2.24 pA/pF; P < 0.001) and neuregulin-1-beta (6.23 +/- 1.07 pA/pF; P < 0.001) significantly increased the pacemaker current density compared to control cardiomyocytes (1.76 +/- 0.49 pA/pF). Our results indicate that neuregulin-1 and cAMP possess the capacity to cause significant transformation of a mixed population of fetal cardiomyocytes into cardiac pacemaker-like cells as shown by electrophysiology and increase of Cx-40 mRNA. This method may allow the development of a biological cardiac pacemaker system when applied to adult or embryonic stem cells.

  7. Connexins and Pannexins in Vascular Function and Disease.

    PubMed

    Molica, Filippo; Figueroa, Xavier F; Kwak, Brenda R; Isakson, Brant E; Gibbins, Jonathan M

    2018-06-05

    Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function. The essential nature of these membrane proteins in vascular homeostasis is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and Panx genes.

  8. A molecular imaging analysis of C×43 association with Cdo during skeletal myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Nosi, Daniele; Mercatelli, Raffaella; Chellini, Flaminia; Soria, Silvia; Pini, Alessandro; Formigli, Lucia; Quercioli, Franco

    2014-02-01

    Cell-to-cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects are independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel-independent function of Cx43.

  9. Connexin45 interacts with zonula occludens-1 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Laing, J. G.; Manley-Markowski, R. N.; Koval, M.; Civitelli, R.; Steinberg, T. H.

    2001-01-01

    Connexin43 (Cx43) and Cx45 are co-expressed in a number of different tissues. Studies demonstrated that Cx45 transfected ROS (ROS/Cx45) cells, were less permeable to low molecular weight dyes than untransfected ROS cells, that have gap junctions made of Cx43. This suggests that there may be a functionally important interaction between Cx43 and Cx45 in these cells. One way in which these proteins may interact is by associating with the same set of proteins. In order to isolate connexin interacting proteins, we isolated Cx45 from Cx45 transfected ROS cells (ROS/Cx45 cells) under mild detergent conditions. These studies showed that Cx45 co-purified with the tight junction protein, ZO-1. Immunofluorescence studies of ROS/Cx45 cells simultaneously stained with polyclonal Cx45 antibody and a monoclonal ZO-1 antibody showed that Cx45 and ZO-1 colocalized in ROS/Cx45 cells. Furthermore we found that ZO-1 could bind to peptides derived from the carboxyl terminal of Cx45 that had been covalently bound to an agarose resin. These data suggests that Cx45 and ZO-1 directly interact in ROS/Cx45 cells.

  10. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity

    PubMed Central

    Tittarelli, A; Guerrero, I; Tempio, F; Gleisner, M A; Avalos, I; Sabanegh, S; Ortíz, C; Michea, L; López, M N; Mendoza-Naranjo, A; Salazar-Onfray, F

    2015-01-01

    Background: Alterations in connexin 43 (Cx43) expression and/or gap junction (GJ)-mediated intercellular communication are implicated in cancer pathogenesis. Herein, we have investigated the role of Cx43 in melanoma cell proliferation and apoptosis sensitivity in vitro, as well as metastatic capability and tumour growth in vivo. Methods: Connexin 43 expression levels, GJ coupling and proliferation rates were analysed in four different human melanoma cell lines. Furthermore, tumour growth and lung metastasis of high compared with low Cx43-expressing FMS cells were evaluated in vivo using a melanoma xenograft model. Results: Specific inhibition of Cx43 channel activity accelerated melanoma cell proliferation, whereas overexpression of Cx43 increased GJ coupling and reduced cell growth. Moreover, Cx43 overexpression in FMS cells increased basal and tumour necrosis factor-α-induced apoptosis and resulted in decreased melanoma tumour growth and lower number and size of metastatic foci in vivo. Conclusions: Our findings reveal an important role for Cx43 in intrinsically controlling melanoma growth, death and metastasis, and emphasise the potential use of compounds that selectively enhance Cx43 expression on melanoma in the future chemotherapy and/or immunotherapy protocols. PMID:26135897

  11. Hexadecameric structure of an invertebrate gap junction channel.

    PubMed

    Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2016-03-27

    Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Low Connexin Channel-Dependent Intercellular Communication in Human Adult Hematopoietic Progenitor/Stem Cells: Probing Mechanisms of Autologous Stem Cell Therapy

    PubMed Central

    Yang, Jian; Darley, Richard L; Hallett, Maurice; Evans, W Howard

    2009-01-01

    Human bone marrow is a clinical source of autologous progenitor stem cells showing promise for cardiac repair following ischemic insult. Functional improvements following delivery of adult bone marrow CD34+ cells into heart tissue may require metabolic/electrical communication between participating cells. Since connexin43 (Cx43) channels are implicated in cardiogenesis and provide intercellular connectivity in the heart, the authors analyzed the expression of 20 connexins (Cx) in CD34+ cells and in monocytes and granulocytes in bone marrow and spinal cord. Reverse transcriptase-polymerase chain reaction (RT-PCR) detected only low expression of Cx43 and Cx37. Very low level dye coupling was detected by flow cytometry between CD34+ cells and other Cx43 expressing cells, including HL-1 cardiac cells, and was not inhibited by specific gap junction inhibitors. The results indicate that CD34+ cells are unlikely to communicate via gap junctions and the authors conclude that use of CD34+ cells to repair damaged hearts is unlikely to involve gap junctions. The results concur with the hypothesis that bone marrow cells elicit improved cardiac function through release of undefined paracrine mediators. PMID:20298144

  13. Innexin-3 forms connexin-like intercellular channels.

    PubMed

    Landesman, Y; White, T W; Starich, T A; Shaw, J E; Goodenough, D A; Paul, D L

    1999-07-01

    Innexins comprise a large family of genes that are believed to encode invertebrate gap junction channel-forming proteins. However, only two Drosophila innexins have been directly tested for the ability to form intercellular channels and only one of those was active. Here we tested the ability of Caenorhabditis elegans family members INX-3 and EAT-5 to form intercellular channels between paired Xenopus oocytes. We show that expression of INX-3 but not EAT-5, induces electrical coupling between the oocyte pairs. In addition, analysis of INX-3 voltage and pH gating reveals a striking degree of conservation in the functional properties of connexin and innnexin channels. These data strongly support the idea that innexin genes encode intercellular channels.

  14. Flavonoids (apigenin, tangeretin) counteract tumor promoter-induced inhibition of intercellular communication of rat liver epithelial cells.

    PubMed

    Chaumontet, C; Droumaguet, C; Bex, V; Heberden, C; Gaillard-Sanchez, I; Martel, P

    1997-03-19

    We have shown previously that two flavonoids, apigenin and tangeretin, enhance gap junctional intercellular communication (GJIC) in rat liver epithelial cells, named REL cells. Here, we show that these two flavones also antagonize the inhibition of GJIC induced by tumor promoters like 12-O-tetradecanoyl-phorbol-acetate (TPA) and 3,5,di-tertio-butyl-4-hydroxytoluene (BHT). Their preventive effect is rapid. It does not seem to involve any change of the amount of the connexin expressed in REL cells, connexin 43 (Cx 43), and in its phosphorylation state. Other flavonoids tested including naringenin, myricetin, catechin and chrysin did not enhance GJIC nor counteract TPA-induced inhibition of GJIC.

  15. Physiological Role of Gap-Junctional Hemichannels

    PubMed Central

    Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar

    2000-01-01

    Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454

  16. Oleamide derivatives suppress the spontaneous metastasis by inhibiting connexin 26.

    PubMed

    Ohba, Yusuke; Kanao, Yukiko; Morita, Nobuyoshi; Fujii, Eri; Hohrai, Mai; Takatsuji, Mayuko; Hirose, Hideki; Miura, Daisaku; Watari, Akihiro; Yutsudo, Masuo; Zhao, Hanjun; Yabuta, Norikazu; Ito, Akihiko; Kita, Yasuyuki; Nojima, Hiroshi

    2007-07-01

    We previously reported that overexpressing connexin 26 (Cx26) enhances the spontaneous metastasis of mouse BL6 melanoma cells. In contrast, daily intraperitoneal injections of an oleamide derivative named MI-18 potently inhibits the spontaneous metastasis of BL6 cells. In the present study, we chemically synthesized a novel oleamide derivative named MI-22 and found that it also efficiently suppressed the spontaneous metastasis of BL6 cells. Both MI-18 and MI-22 inhibited the gap junction-mediated intercellular communications (GJIC) that are formed between HeLa cells by the ectopic expression of the hCx26 and hCx32 human connexin subtypes; however, they had no effect on GJIC mediated by hCx40, hCx43 or hCx45. Fluorescently labeled MI-18 primarily localized not only at plasma membrane but also at Golgi/endosome. This suggests that this oleamide derivative may also act on the Cx26 molecules that accumulate in the Golgi/endosome because of their overexpression. Notably, neither derivative had a cytotoxic effect on HeLa cells when they were added into the tissue culture medium. Taken together, we propose that the MI-18 and MI-22 oleamide derivatives may serve as prototypes for novel and clinically important anticancer drugs.

  17. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication

    PubMed Central

    Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan

    2017-01-01

    Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977

  18. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics.

    PubMed

    Maria, Zahra; Yin, Wei; Rubenstein, David Alan

    2014-07-01

    Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to be determined. Our goal was to evaluate these effects on EC responses. ECs were incubated with AGEs for 5 days. ECs were then subjected to physiological or pathological shear stress. Cell metabolic activity, surface expression of intercellular adhesion molecule-1, thrombomodulin, connexin-43 and caveolin-1, and cytoskeleton organization were quantified. The results show that irreversibly glycated albumin and pathological shear stress increased EC metabolic activity, and upregulated and downregulated the EC surface expression of intercellular adhesion molecule-1 and thrombomodulin, respectively. Expression of connexin-43, caveolin-1 and cytoskeletal organization was independent of shear stress; however, the presence of irreversibly glycated AGEs markedly increased connexin-43, and decreased caveolin-1 expression and actin cytoskeletal connectivity. Our data suggest that irreversibly glycated albumin and disturbed shear stress could promote CVD pathogenesis by enhancing EC inflammatory and thrombotic responses, and through the deterioration of the cytoskeletal organization.

  19. Aberrant connexin26 hemichannels underlying keratitis-ichthyosis-deafness syndrome are potently inhibited by mefloquine

    PubMed Central

    Levit, Noah A.; Sellitto, Caterina; Wang, Hong-Zhan; Li, Leping; Srinivas, Miduturu; Brink, Peter R.; White, Thomas W.

    2014-01-01

    Keratitis-ichthyosis-deafness (KID) syndrome is an ectodermal dysplasia caused by dominant mutations of connexin26 (Cx26). Loss of Cx26 function causes non-syndromic sensorineural deafness, without consequence in the epidermis. Functional analyses have revealed that a majority of KID-causing mutations confer a novel expansion of hemichannel activity, mediated by connexin channels in a non-junctional configuration. Inappropriate Cx26 hemichannel opening is hypothesized to compromise keratinocyte integrity and epidermal homeostasis. Pharmacological modulators of Cx26 are needed to assess the pathomechanistic involvement of hemichannels in the development of hyperkeratosis in KID syndrome. We have used electrophysiological assays to evaluate small molecule analogs of quinine for suppressive effects on aberrant hemichannel currents elicited by KID mutations. Here, we show that mefloquine inhibits several mutant hemichannel forms implicated in KID syndrome when expressed in Xenopus laevis oocytes (IC50≈16µM), using an extracellular divalent cation, zinc (Zn++), as a non-specific positive control for comparison (IC50≈3µM). Furthermore, we used freshly isolated transgenic keratinocytes to show that micromolar concentrations of mefloquine attenuated increased macroscopic membrane currents in primary mouse keratinocytes expressing human Cx26-G45E, a mutation causing a lethal form of KID syndrome. PMID:25229253

  20. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb

    PubMed Central

    RASH, JOHN E.; DAVIDSON, KIMBERLY G. V.; KAMASAWA, NAOMI; YASUMURA, THOMAS; KAMASAWA, MASAMI; ZHANG, CHUNBO; MICHAELS, ROBIN; RESTREPO, DIEGO; OTTERSEN, OLE P.; OLSON, CARL O.; NAGY, JAMES I.

    2006-01-01

    Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at “mixed” glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3′-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli. PMID:16841170

  1. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior.

    PubMed

    Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang

    2016-04-01

    It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates one of the possible mechanisms through which BG stimulates wound healing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) weremore » dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.« less

  3. Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating

    PubMed Central

    Kraujalis, Tadas; Maciunas, Kestutis

    2017-01-01

    We combined the Hodgkin–Huxley equations and a 36-state model of gap junction channel gating to simulate electrical signal transfer through electrical synapses. Differently from most previous studies, our model can account for dynamic modulation of junctional conductance during the spread of electrical signal between coupled neurons. The model of electrical synapse is based on electrical properties of the gap junction channel encompassing two fast and two slow gates triggered by the transjunctional voltage. We quantified the influence of a difference in input resistances of electrically coupled neurons and instantaneous conductance–voltage rectification of gap junctions on an asymmetry of cell-to-cell signaling. We demonstrated that such asymmetry strongly depends on junctional conductance and can lead to the unidirectional transfer of action potentials. The simulation results also revealed that voltage spikes, which develop between neighboring cells during the spread of action potentials, can induce a rapid decay of junctional conductance, thus demonstrating spiking activity-dependent short-term plasticity of electrical synapses. This conclusion was supported by experimental data obtained in HeLa cells transfected with connexin45, which is among connexin isoforms expressed in neurons. Moreover, the model allowed us to replicate the kinetics of junctional conductance under different levels of intracellular concentration of free magnesium ([Mg2+]i), which was experimentally recorded in cells expressing connexin36, a major neuronal connexin. We demonstrated that such [Mg2+]i-dependent long-term plasticity of the electrical synapse can be adequately reproduced through the changes of slow gate parameters of the 36-state model. This suggests that some types of chemical modulation of gap junctions can be executed through the underlying mechanisms of voltage gating. Overall, the developed model accounts for direction-dependent asymmetry, as well as for short- and long-term plasticity of electrical synapses. Our modeling results demonstrate that such complex behavior of the electrical synapse is important in shaping the response of coupled neurons. PMID:28384220

  4. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    PubMed Central

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A.; Dilly, Suzanne J.; James, Sean; Dimitri, Wade; Ladwa, Sweta R.; Taylor, Paul C.; Singer, Donald R. J.

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin’s role in therapeutic and adverse effects of statins in a range of disease states. PMID:26863535

  5. Multifaceted Roles of Connexin 43 in Stem Cell Niches.

    PubMed

    Genet, Nafiisha; Bhatt, Neha; Bourdieu, Antonin; Hirschi, Karen K

    2018-01-01

    Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.

  6. Tanshinone IIA Increases the Bystander Effect of Herpes Simplex Virus Thymidine Kinase/Ganciclovir Gene Therapy via Enhanced Gap Junctional Intercellular Communication

    PubMed Central

    Liu, Xijuan; Wu, Yingya; Du, Biaoyan; Li, Jiefen; Zhou, Jing; Li, Jingjing; Tan, Yuhui

    2013-01-01

    The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV). This effect is reported to be mediated by gap junctional intercellular communication (GJIC), and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA), a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy. PMID:23861780

  7. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    USGS Publications Warehouse

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (< 1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  8. A familial case of Keratitis-Ichthyosis-Deafness (KID) syndrome with the GJB2 mutation G45E.

    PubMed

    Jonard, Laurence; Feldmann, Delphine; Parsy, Christophe; Freitag, Sylvie; Sinico, Martine; Koval, Céleste; Grati, Mhamed; Couderc, Remy; Denoyelle, Françoise; Bodemer, Christine; Marlin, Sandrine; Hadj-Rabia, Smail

    2008-01-01

    Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect. KID consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. A rare form of the KID syndrome is a fatal course in the first year of life due to severe skin lesion infections and septicaemia. KID appears to be genetically heterogeneous and may be caused by mutations in connexin 26 or connexin 30 genes. GJB2 mutations in the connexin 26 gene are the main cause of the disease. Most of the cases caused by GJB2 mutations are sporadic, but dominant transmission has also been described. To date, the rare lethal form of the disease has been only observed in two Caucasian sporadic patients with the GJB2 mutation, with the p.Gly45Glu (G45E) arising de novo. We have reported an African family with dizygotic twins suffering from a lethal form of KID. The dizygosity of the twins was confirmed by microsatellite markers. The two patients were heterozygous for the G45E mutation of GJB2, whereas the mutation was not detected in the two parents. The unusual transmission of the disease observed in this family could be explained by the occurrence of a somatic or more probably a germinal mosaic in one of the parents.

  9. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes

    PubMed Central

    Connell, Jennifer Petsche; Augustini, Emily; Moise, Kenneth J; Johnson, Anthony; Jacot, Jeffrey G

    2013-01-01

    Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC. PMID:23634988

  10. Role of connexin 32 hemichannels in the release of ATP from peripheral nerves.

    PubMed

    Nualart-Marti, Anna; del Molino, Ezequiel Mas; Grandes, Xènia; Bahima, Laia; Martin-Satué, Mireia; Puchal, Rafel; Fasciani, Ilaria; González-Nieto, Daniel; Ziganshin, Bulat; Llobet, Artur; Barrio, Luis C; Solsona, Carles

    2013-12-01

    Extracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration-evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X-linked form of Charcot-Marie-Tooth disease, suggesting that purinergic-mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. Copyright © 2013 Wiley Periodicals, Inc.

  11. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse.

    PubMed

    Head, W Steven; Orseth, Meredith L; Nunemaker, Craig S; Satin, Leslie S; Piston, David W; Benninger, Richard K P

    2012-07-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.

  12. Connexin43 synthesis, phosphorylation, and degradation in regulation of transient inhibition of gap junction intercellular communication by the phorbol ester TPA in rat liver epithelial cells.

    PubMed

    Rivedal, Edgar; Leithe, Edward

    2005-01-15

    The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces transient inhibition of gap junction intercellular communication (GJIC) in several cell types. The initial block in GJIC has been attributed to protein kinase C (PKC) mediated phosphorylation of connexin gap junction proteins, including connexin43 (Cx43). Restoration of GJIC, associated with normalization of the Cx43 phosphorylation status, has been ascribed to different events, including dephosphorylation of Cx43 and de novo synthesis of Cx43 or other, non-gap junctional, proteins. The data presented suggest that restoration of GJIC during continuous TPA exposure in normal and transformed rat liver epithelial cells is dependent on synthesis of Cx43 protein, as well as the transport of already synthesized Cx43 from intracellular pools to the plasma membrane. Reactivation of inactivated Cx43 by dephosphorylation does not appear to be involved in the recovery of GJIC. Both PKC and MAP kinase is involved in TPA-induced degradation of Cx43 and inhibition of GJIC. We show that coincubation of TPA with the protein synthesis inhibitor cycloheximide or the transcription inhibitor actinomycin D results in synergistic enhancement of the level of activated ERK1/2. Together, the present data highlight Cx43 degradation and synthesis as critical determinants in TPA-induced modifications of cell-cell communication via gap junctions.

  13. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation.

    PubMed

    Kjenseth, Ane; Fykerud, Tone A; Sirnes, Solveig; Bruun, Jarle; Yohannes, Zeremariam; Kolberg, Matthias; Omori, Yasufumi; Rivedal, Edgar; Leithe, Edward

    2012-05-04

    SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.

  14. Cytotoxic effect of the Her-2/Her-1 inhibitor PKI-166 on renal cancer cells expressing the connexin 32 gene.

    PubMed

    Fujimoto, Eriko; Yano, Tomohiro; Sato, Hiromi; Hagiwara, Kiyokazu; Yamasaki, Hiroshi; Shirai, Sumiko; Fukumoto, Keiko; Hagiwara, Hiromi; Negishi, Etsuko; Ueno, Koichi

    2005-02-01

    We have reported that connexin (Cx) 32 acts as a tumor suppressor gene in renal cancer cells partly due to Her-2 inactivation. Here, we determined if a Her-2/Her-1 inhibitor (PKI-166) can enhance the tumor-suppressive effect of Cx32 in Caki-2 cells from human renal cell carcinoma. The expression of Cx32 in Caki-2 cells was required for PKI-166-induced cytotoxic effect at lower doses. The cyctotoxicity was dependent on the occurrence of apoptosis and partly mediated by Cx32-driven gap junction intercellular communications. These results suggest that PKI-166 further supports the tumor-suppressive effect of the Cx32 gene in renal cancer cells through the induction of apoptosis.

  15. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    PubMed

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.

  16. Inhibition of Connexin 43 Hemichannel-Mediated ATP Release Attenuates Early Inflammation During the Foreign Body Response

    PubMed Central

    Calder, Bennett W.; Rhett, Joshua Matthew; Bainbridge, Heather; Fann, Stephen A.; Gourdie, Robert G.

    2015-01-01

    Background: In the last 50 years, the use of medical implants has increased dramatically. Failure of implanted devices and biomaterials is a significant source of morbidity and increasing healthcare expenditures. An important cause of implant failure is the host inflammatory response. Recent evidence implicates extracellular ATP as an important inflammatory signaling molecule. A major pathway for release of cytoplasmic ATP into the extracellular space is through connexin hemichannels, which are the unpaired constituents of gap junction intercellular channels. Blockade of hemichannels of the connexin 43 (Cx43) isoform has been shown to reduce inflammation and improve healing. We have developed a Cx43 mimetic peptide (JM2) that targets the microtubule-binding domain of Cx43. The following report investigates the role of the Cx43 microtubule-binding domain in extracellular ATP release by Cx43 hemichannels and how this impacts early inflammatory events of the foreign body reaction. Methods: In vitro Cx43 hemichannel-mediated ATP release by cultured human microvascular endothelial cells subjected to hypocalcemic and normocalcemic conditions was measured after application of JM2 and the known hemichannel blocker, flufenamic acid. A submuscular silicone implant model was used to investigate in vivo ATP signaling during the early foreign body response. Implants were coated with control pluronic vehicle or pluronic carrying JM2, ATP, JM2+ATP, or known hemichannel blockers and harvested at 24 h for analysis. Results: JM2 significantly inhibited connexin hemichannel-mediated ATP release from cultured endothelial cells. Importantly, the early inflammatory response to submuscular silicone implants was inhibited by JM2. The reduction in inflammation by JM2 was reversed by the addition of exogenous ATP to the pluronic vehicle. Conclusions: These data indicate that ATP released through Cx43 hemichannels into the vasculature is an important signal driving the early inflammatory response to implanted devices. A vital aspect of this work is that it demonstrates that targeted molecular therapeutics, such as JM2, provide the capacity to regulate inflammation in a clinically relevant system. PMID:25760687

  17. Asparagine 175 of connexin32 is a critical residue for docking and forming functional heterotypic gap junction channels with connexin26.

    PubMed

    Nakagawa, So; Gong, Xiang-Qun; Maeda, Shoji; Dong, Yuhua; Misumi, Yuko; Tsukihara, Tomitake; Bai, Donglin

    2011-06-03

    The gap junction channel is formed by proper docking of two hemichannels. Depending on the connexin(s) in the hemichannels, homotypic and heterotypic gap junction channels can be formed. Previous studies suggest that the extracellular loop 2 (E2) is an important molecular domain for heterotypic compatibility. Based on the crystal structure of the Cx26 gap junction channel and homology models of heterotypic channels, we analyzed docking selectivity for several hemichannel pairs and found that the hydrogen bonds between E2 domains are conserved in a group of heterotypically compatible hemichannels, including Cx26 and Cx32 hemichannels. According to our model analysis, Cx32N175Y mutant destroys three hydrogen bonds in the E2-E2 interactions due to steric hindrance at the heterotypic docking interface, which makes it unlikely to dock with the Cx26 hemichannel properly. Our experimental data showed that Cx26-red fluorescent protein (RFP) and Cx32-GFP were able to traffic to cell-cell interfaces forming gap junction plaques and functional channels in transfected HeLa/N2A cells. However, Cx32N175Y-GFP exhibited mostly intracellular distribution and was occasionally observed in cell-cell junctions. Double patch clamp analysis demonstrated that Cx32N175Y did not form functional homotypic channels, and dye uptake assay indicated that Cx32N175Y could form hemichannels on the cell surface similar to wild-type Cx32. When Cx32N175Y-GFP- and Cx26-RFP-transfected cells were co-cultured, no colocalization was found at the cell-cell junctions between Cx32N175Y-GFP- and Cx26-RFP-expressing cells; also, no functional Cx32N175Y-GFP/Cx26-RFP heterotypic channels were identified. Both our modeling and experimental data suggest that Asn(175) of Cx32 is a critical residue for heterotypic docking and functional gap junction channel formation between the Cx32 and Cx26 hemichannels.

  18. Expression of gap junction genes connexin 32 and connexin 43 mRNAs and proteins, and their role in hepatocarcinogenesis

    PubMed Central

    Ma, Xiang-Dong; Ma, Xing; Sui, Yan-Fang; Wang, Wen-Liang

    2002-01-01

    AIM: To investigate the relationship between hepatocarcinogenesis and the expression of connexin32 (cx32), connexin43 (cx43) mRNAs and proteins in vitro. METHODS: Gap junction genes cx32 and cx43 mRNA in hepatocellular carcinoma cell lines HHCC, SMMC-7721 and normal liver cell line QZG were detected by in situ hybridization (ISH) with digoxin-labeled cx32, and cx43 cDNA probes. Expression of Cx32 and Cx43 proteins in the cell lines was revealed by indirect immuno-fluorescence and flow cytometry (FCM). RESULTS: Blue positive hybridization signals of cx32 and cx43 mRNAs detected by ISH with cx32 and cx43 cDNA probes respectively were located in cytoplasm of cells of HHCC, SMMC-7721 and QZG. No significant difference of either cx32 mRNA or cx43 mRNA was tested among HHCC, SMMC-7721 and QZG (P = 2.673, HHCC vs QZG; P = 1.375, SMMC-7721 vs QZG). FCM assay showed that the positive rates of Cx32 protein in HHCC, SMMC-7721 and QZG were 0.7%, 1.7% and 99.0%, and the positive rates of Cx43 protein in HHCC, SMMC-7721 and QZG were 7.3%, 26.5% and 99.1% respectively. Significant differences of both Cx32 and Cx43 protein expression existed between hepatocellular carcinoma cell lines and normal liver cell line (P = 0.0069, HHCC vs QZG; P = 0.0087, SMMC-7721 vs QZG). Moreover, the fluorescent intensities of Cx32 and Cx43 proteins in HHCC, SMMC-7721 were lower than that in QZG. CONCLUSION: Hepatocellular carcinoma cell lines HHCC and SMMC-7721 exhibited lower positive rates and fluorescent intensities of Cx32, Cx43 proteins compared with that of normal liver cell line QZG. It is suggested that lower expression of both Cx32 and Cx43 proteins in hepatocellular carcinoma cells could play pivotal roles in the hepatocarcinogenesis. Besides, genetic defects of cx32 and cx43 in post-translational processing should be considered. PMID:11833073

  19. Inhibition of connexin 43 hemichannel-mediated ATP release attenuates early inflammation during the foreign body response.

    PubMed

    Calder, Bennett W; Matthew Rhett, Joshua; Bainbridge, Heather; Fann, Stephen A; Gourdie, Robert G; Yost, Michael J

    2015-06-01

    In the last 50 years, the use of medical implants has increased dramatically. Failure of implanted devices and biomaterials is a significant source of morbidity and increasing healthcare expenditures. An important cause of implant failure is the host inflammatory response. Recent evidence implicates extracellular ATP as an important inflammatory signaling molecule. A major pathway for release of cytoplasmic ATP into the extracellular space is through connexin hemichannels, which are the unpaired constituents of gap junction intercellular channels. Blockade of hemichannels of the connexin 43 (Cx43) isoform has been shown to reduce inflammation and improve healing. We have developed a Cx43 mimetic peptide (JM2) that targets the microtubule-binding domain of Cx43. The following report investigates the role of the Cx43 microtubule-binding domain in extracellular ATP release by Cx43 hemichannels and how this impacts early inflammatory events of the foreign body reaction. In vitro Cx43 hemichannel-mediated ATP release by cultured human microvascular endothelial cells subjected to hypocalcemic and normocalcemic conditions was measured after application of JM2 and the known hemichannel blocker, flufenamic acid. A submuscular silicone implant model was used to investigate in vivo ATP signaling during the early foreign body response. Implants were coated with control pluronic vehicle or pluronic carrying JM2, ATP, JM2+ATP, or known hemichannel blockers and harvested at 24 h for analysis. JM2 significantly inhibited connexin hemichannel-mediated ATP release from cultured endothelial cells. Importantly, the early inflammatory response to submuscular silicone implants was inhibited by JM2. The reduction in inflammation by JM2 was reversed by the addition of exogenous ATP to the pluronic vehicle. These data indicate that ATP released through Cx43 hemichannels into the vasculature is an important signal driving the early inflammatory response to implanted devices. A vital aspect of this work is that it demonstrates that targeted molecular therapeutics, such as JM2, provide the capacity to regulate inflammation in a clinically relevant system.

  20. Removing or Truncating Connexin 43 in Murine Osteocytes Alters Cortical Geometry, Nanoscale Morphology, and Tissue Mechanics in the Tibia

    PubMed Central

    Hammond, Max A.; Berman, Alycia G.; Pacheco-Costa, Rafael; Davis, Hannah M.; Plotkin, Lilian I.; Wallace, Joseph M.

    2016-01-01

    Gap junctions are formed from ubiquitously expressed proteins called connexins that allow the transfer of small signaling molecules between adjacent cells. Gap junctions are especially important for signaling between osteocytes and other bone cell types. The most abundant type of connexin in bone is connexin 43 (Cx43). The C-terminal domain of Cx43 is thought to be an important modulator of gap junction function but the role that this domain plays in regulating tissue-level mechanics is largely unknown. We hypothesized that the lack of the C-terminal domain of Cx43 would cause morphological and compositional changes as well as differences in how bone responds to reference point indentation (RPI) and fracture toughness testing. The effects of the C-terminal domain of Cx43 in osteocytes and other cell types were assessed in a murine model (C57BL/6 background). Mice with endogenous Cx43 in their osteocytes removed via a Cre-loxP system were crossed with knock-in mice which expressed Cx43 that lacked the C-terminal domain in all cell types due to the insertion of a truncated allele to produce the four groups used in the study. The main effect of removing the C-terminal domain from osteocytic Cx43 increased cortical mineral crystallinity (p=0.036) and decreased fracture toughness (p=0.017). The main effect of the presence of the C-terminal domain in other cell types increased trabecular thickness (p<0.001), cortical thickness (p=0.008), and average RPI unloading slope (p=0.004). Collagen morphology was altered when either osteocytes lacked Cx43 (p=0.008) or some truncated Cx43 was expressed in all cell types (p<0.001) compared to controls but not when only the truncated form of Cx43 was expressed in osteocytes (p=0.641). In conclusion, the presence of the C-terminal domain of Cx43 in osteocytes and other cell types is important to maintain normal structure and mechanical integrity of bone. PMID:27113527

  1. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins.

    PubMed

    Lauf, U; Lopez, P; Falk, M M

    2001-06-01

    A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.

  2. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway.

    PubMed

    Kim, Yeri; Davidson, Joanne O; Gunn, Katherine C; Phillips, Anthony R; Green, Colin R; Gunn, Alistair J

    2016-01-01

    Neurodegenerative, cardiovascular, and metabolic disorders, once triggered, share a number of common features, including sustained inflammatory cell activation and vascular disruption. These shared pathways are induced independently of any genetic predisposition to the disease or the precise external stimulus. Glial cells respond to injury with an innate immune response that includes release of proinflammatory cytokines and chemokines. Vascular endothelial cells may also be affected, leading to opening of the blood-brain barrier that facilitates invasion by circulating inflammatory cells. Inflammation can trigger acute neural injury followed by chronic inflammation that plays a key role in neurodegenerative conditions. Gap junction channels normally allow direct cell-to-cell communication. They are formed by the docking of two hemichannels, one contributed by each of the neighboring cells. While the opening probability of these channels is tightly controlled under resting conditions, hemichannels can open in response to injury or inflammatory factors, forming a large, relatively nonselective membrane pore. In this review, we consider the CNS immune system from the perspective that modulating connexin hemichannel opening can prevent tissue damage arising from excessive and uncontrolled inflammation. We discuss connexin channel roles in microglia, astrocytes, and endothelial cells in both acute and chronic inflammatory conditions, and in particular describe the role of connexin hemichannels in the inflammasome pathway where they contribute to both its activation and its spread to neighboring cells. Finally, we describe the benefits of hemichannel block in animal models of brain injury. © 2016 Elsevier Inc. All rights reserved.

  3. Intercellular communications within the rat anterior pituitary. XVI: postnatal changes of distribution of S-100 protein positive cells, connexin 43 and LH-RH positive sites in the pars tuberalis of the rat pituitary gland. An immunohistochemical and electron microscopic study.

    PubMed

    Wada, Ikuo; Sakuma, Eisuke; Shirasawa, Nobuyuki; Wakabayashi, Kenjiro; Otsuka, Takanobu; Hattori, Kazuki; Yashiro, Takashi; Herbert, Damon C; Soji, Tsuyoshi

    2014-02-01

    The architecture of luteinizing hormone-releasing hormone (LH-RH) nerve ends and the S-100 protein containing folliculo-stellate cells forming gap junctions in the pars tuberalis is basically important in understanding the regulation of the hormone producing mechanism of anterior pituitary glands. In this study, intact male rats 5-60 days old were prepared for immunohistochemistry and electron microscopy. From immunostained sections, the S-100 containing cells in pars tuberalis were first detected on day 30 and increased in number to day 60; this was parallel to the immunohistochemical staining of gap junction protein, connexin 43. LH-RH positive sites were clearly observed on just behind the optic chiasm and on the root of pituitary stalk on day 30. On day 60, the width of layer increased, while follicles and gap junctions were frequently observed between agranular cells in 10 or more layers of pars tuberalis. In the present study, we investigated the sexual maturation of the anterior pituitary glands through the postnatal development of S-100 positive cells, connexin 43 and LH-RH nerves. It is suggested that the folliculo-stellate cell system including the LH-RH neurons in the pars tuberalis participates in the control of LH secretion along with the portal vein system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Monitoring gap junctional communication in astrocytes from acute adult mouse brain slices using the gap-FRAP technique.

    PubMed

    Yi, Chenju; Teillon, Jérémy; Koulakoff, Annette; Berry, Hugues; Giaume, Christian

    2018-06-01

    Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue. Here, using specific loading of astrocytes with sulforhodamine 101, we adapted the gap-FRAP (Fluorescence Recovery After Photobleaching) to acute hippocampal slices from 9 month-old adult mice. We show that gap junctional communication monitored in astrocytes with this technique was inhibited either by pharmacological treatment with a gap junctional blocker or in mice lacking the two main astroglial connexins, while a partial inhibition was measured when only one connexin was knocked-out. We validate this approach using a mathematical model of sulforhodamine 101 diffusion in an elementary astroglial network and a quantitative analysis of the exponential fits to the fluorescence recovery curves. Consequently, we consider that the adaptation of the gap-FRAP technique to acute brain slices from adult mice provides an easy going and valuable approach that allows overpassing this age-dependent obstacle and will facilitate the investigation of gap junctional communication in adult healthy or pathological brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Role of connexin 43 in the maintenance of spontaneous activity in the guinea pig prostate gland

    PubMed Central

    Dey, Anupa; Kusljic, Snezana; Lang, Richard J; Exintaris, Betty

    2010-01-01

    BACKGROUND AND PURPOSE To investigate the role of connexin 43 in the maintenance of spontaneous activity in prostate tissue from young and old guinea pigs. EXPERIMENTAL APPROACH Conventional intracellular microelectrode and tension recording techniques, coupled with Western blot analysis and immunohistochemistry for connexin 43 (CX43) were used. The effects of three gap junction uncouplers, 18β glycyrrhetinic acid (10 µM, 40 µM), carbenoxolone (10 µM, 50 µM) and octanol (0.5 mM, 1 mM), were studied in cells displaying slow wave activity and on spontaneously contracting tissue from prostate glands of young (2–5 months) and old (9–16 months) guinea pigs. KEY RESULTS 18β Glycyrrhetinic acid (40 µM), carbenoxolone (50 µM) or octanol (0.5 mM) abolished slow wave activity in prostate tissue from young and old guinea pigs and depolarized membrane potential by approximately 5 mV. These treatments also abolished all contractions in both sets of prostate tissue. These effects were reversed upon washout. Western blot analysis and CX43 immunohistochemistry showed that there was no age-related difference in the expression and distribution of CX43 in prostate tissues. CONCLUSION AND IMPLICATIONS When gap junctional communication via CX43 was disrupted, spontaneous activity was abolished at a cellular and whole tissue level; CX43 is therefore essential for the maintenance of spontaneous slow wave activity and subsequent contractile activity in the guinea pig prostate gland. PMID:20735413

  6. The p.Cys169Tyr variant of connexin 26 is not a polymorphism

    PubMed Central

    Zonta, Francesco; Girotto, Giorgia; Buratto, Damiano; Crispino, Giulia; Morgan, Anna; Abdulhadi, Khalid; Alkowari, Moza; Badii, Ramin; Gasparini, Paolo; Mammano, Fabio

    2015-01-01

    Mutations in the GJB2 gene, which encodes the gap junction protein connexin 26 (Cx26), are the primary cause of hereditary prelingual hearing impairment. Here, the p.Cys169Tyr missense mutation of Cx26 (Cx26C169Y), previously classified as a polymorphism, has been identified as causative of severe hearing loss in two Qatari families. We have analyzed the effect of this mutation using a combination of confocal immunofluorescence microscopy and molecular dynamics simulations. At the cellular level, our results show that the mutant protein fails to form junctional channels in HeLa transfectants despite being correctly targeted to the plasma membrane. At the molecular level, this effect can be accounted for by disruption of the disulfide bridge that Cys169 forms with Cys64 in the wild-type structure (Cx26WT). The lack of the disulfide bridge in the Cx26C169Y protein causes a spatial rearrangement of two important residues, Asn176 and Thr177. In the Cx26WT protein, these residues play a crucial role in the intra-molecular interactions that permit the formation of an intercellular channel by the head-to-head docking of two opposing hemichannels resident in the plasma membrane of adjacent cells. Our results elucidate the molecular pathogenesis of hereditary hearing loss due to the connexin mutation and facilitate the understanding of its role in both healthy and affected individuals. PMID:25628337

  7. Ionic blockade of the rat connexin40 gap junction channel by large tetraalkylammonium ions.

    PubMed

    Musa, H; Gough, J D; Lees, W J; Veenstra, R D

    2001-12-01

    The rat connexin40 gap junction channel is permeable to monovalent cations including tetramethylammonium and tetraethylammonium ions. Larger tetraalkyammonium (TAA(+)) ions beginning with tetrabutylammonium (TBA(+)) reduced KCl junctional currents disproportionately. Ionic blockade by tetrapentylammonium (TPeA(+)) and tetrahexylammonium (THxA(+)) ions were concentration- and voltage-dependent and occurred only when TAA(+) ions were on the same side as net K(+) efflux across the junction, indicative of block of the ionic permeation pathway. The voltage-dependent dissociation constants (K(m)(V(j))) were lower for THxA(+) than TPeA(+), consistent with steric effects within the pore. The K(m)-V(j) relationships for TPeA(+) and THxA(+) were fit with different reaction rate models for a symmetrical (homotypic) connexin gap junction channel and were described by either a one- or two-site model that assumed each ion traversed the entire V(j) field. Bilateral addition of TPeA(+) ions confirmed a common site of interaction within the pore that possessed identical K(m)(V(j)) values for cis-trans concentrations of TPeA(+) ions as indicated by the modeled I-V relations and rapid channel block that precluded unitary current measurements. The TAA(+) block of K(+) currents and bilateral TPeA(+) interactions did not alter V(j)-gating of Cx40 gap junctions. N-octyl-tributylammonium and -triethylammonium also blocked rCx40 channels with higher affinity and faster kinetics than TBA(+) or TPeA(+), indicative of a hydrophobic site within the pore near the site of block.

  8. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication

    PubMed Central

    Li, Hanjun; Spagnol, Gaelle; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2014-01-01

    ABSTRACT Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health. PMID:24849651

  9. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  10. Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress.

    PubMed

    Shi, Wen; Riquelme, Manuel A; Gu, Sumin; Jiang, Jean X

    2018-03-21

    Elevated oxidized stress contributes to lens cataracts, and gap junctions play important roles in maintaining lens transparency. As well as forming gap junctions, connexin (Cx) proteins also form hemichannels. Here, we report a new mechanism whereby hemichannels mediate transport of reductant glutathione into lens fiber cells and protect cells against oxidative stress. We found that Cx50 (also known as GJA8) hemichannels opened in response to H 2 O 2 in lens fiber cells but that transport through the channels was inhibited by two dominant-negative mutants in Cx50, Cx50P88S, which inhibits transport through both gap junctions and hemichannels, and Cx50H156N, which only inhibits transport through hemichannels and not gap junctions. Treatment with H 2 O 2 increased the number of fiber cells undergoing apoptosis, and this increase was augmented with dominant-negative mutants that disrupted both hemichannels formed from Cx46 (also known as GJA3) and Cx50, while Cx50E48K, which only impairs gap junctions, did not have such an effect. Moreover, hemichannels mediate uptake of glutathione, and this uptake protected lens fiber cells against oxidative stress, while hemichannels with impaired transport had less protective benefit from glutathione. Taken together, these results show that oxidative stress activates connexin hemichannels in the lens fiber cells and that hemichannels likely protect lens cell against oxidative damage through transporting extracellular reductants. © 2018. Published by The Company of Biologists Ltd.

  11. Genetics Home Reference: Vohwinkel syndrome

    MedlinePlus

    ... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. The variant form of Vohwinkel ...

  12. Genetics Home Reference: progressive familial heart block

    MedlinePlus

    ... Le Marec H, Roden DM, Mochizuki N, Schott JJ, Delmar M. A connexin40 mutation associated with a ... P, Mansourati J, Victor J, Nguyen JM, Schott JJ, Boisseau P, Escande D, Le Marec H. Progressive ...

  13. Genetics Home Reference: Bart-Pumphrey syndrome

    MedlinePlus

    ... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. Learn more about the gene ...

  14. Genetics Home Reference: palmoplantar keratoderma with deafness

    MedlinePlus

    ... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. Palmoplantar keratoderma with deafness can ...

  15. Changing clothes easily: connexin41.8 regulates skin pattern variation.

    PubMed

    Watanabe, Masakatsu; Kondo, Shigeru

    2012-05-01

    The skin patterns of animals are very important for their survival, yet the mechanisms involved in skin pattern formation remain unresolved. Turing's reaction-diffusion model presents a well-known mathematical explanation of how animal skin patterns are formed, and this model can predict various animal patterns that are observed in nature. In this study, we used transgenic zebrafish to generate various artificial skin patterns including a narrow stripe with a wide interstripe, a narrow stripe with a narrow interstripe, a labyrinth, and a 'leopard' pattern (or donut-like ring pattern). In this process, connexin41.8 (or its mutant form) was ectopically expressed using the mitfa promoter. Specifically, the leopard pattern was generated as predicted by Turing's model. Our results demonstrate that the pigment cells in animal skin have the potential and plasticity to establish various patterns and that the reaction-diffusion principle can predict skin patterns of animals. © 2012 John Wiley & Sons A/S.

  16. Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes.

    PubMed

    Jiang, Shan; Wang, Yong-Qiang; Xu, Cheng-Feng; Li, Ya-Na; Guo, Rong; Li, Ling

    2014-05-01

    Infrasonic noise/infrasound is a type of environmental noise that threatens public health as a nonspecific biological stressor. Glutamate-related excitotoxicity is thought to be responsible for infrasound-induced impairment of learning and memory. In addition to neurons, astrocytes are also capable of releasing glutamate. In the present study, to identify the effect of infrasound on astroglial glutamate release, cultured astrocytes were exposed to infrasound at 16 Hz, 130 dB for different times. We found that infrasound exposure caused a significant increase in glutamate levels in the extracellular fluid. Moreover, blocking the connexin43 (Cx43) hemichannel or gap junction, decreasing the probability of Cx43 being open or inhibiting of Cx43 expression blocked this increase. The results suggest that glutamate release by Cx43 hemichannels/gap junctions is involved in the response of cultured astrocytes to infrasound.

  17. Hemichannels in neurodegenerative diseases: is there a link to pathology?

    PubMed Central

    Bosch, Megan; Kielian, Tammy

    2014-01-01

    Although originally considered a structural component of gap junctions, connexin hemichannels (HCs) are now recognized as functional entities capable of influencing metabolic gradients within the CNS, allowing direct communication between the intra- and extracellular milieus. Besides connexins, HCs can also be formed by pannexins, which are not capable of gap junction assembly. Both positive and negative effects have been attributed to HC activity in the context of neurodegenerative diseases. For example, HCs can exert neuroprotective effects by promoting the uptake of neurotoxic molecules, whereas chronic HC opening can disrupt molecular gradients leading to cellular dysfunction and death. The latter scenario has been suggested for multiple neurodegenerative disorders, including Alzheimer’s disease (AD) and more recently, lysosomal storage disorders, which are the focus of this perspective. Currently available evidence suggests a complex role for HCs in neurodegenerative disorders, which sets the stage for future studies to determine whether targeting HC action may improve disease outcomes. PMID:25191227

  18. Gap junctions and connexin hemichannels in the regulation of haemostasis and thrombosis.

    PubMed

    Vaiyapuri, Sakthivel; Flora, Gagan D; Gibbins, Jonathan M

    2015-06-01

    Platelets are involved in the maintenance of haemostasis but their inappropriate activation leads to thrombosis, a principal trigger for heart attack and ischaemic stroke. Although platelets circulate in isolation, upon activation they accumulate or aggregate together to form a thrombus, where they function in a co-ordinated manner to prevent loss of blood and control wound repair. Previous report (1) indicates that the stability and functions of a thrombus are maintained through sustained, contact-dependent signalling between platelets. Given the role of gap junctions in the co-ordination of tissue responses, it was hypothesized that gap junctions may be present within a thrombus and mediate intercellular communication between platelets. Therefore studies were performed to explore the presence and functions of connexins in platelets. In this brief review, the roles of hemichannels and gap junctions in the control of thrombosis and haemostasis and the future directions for this research will be discussed.

  19. Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease. Phenotypic variability and central nervous system involvement.

    PubMed

    Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios

    2014-06-15

    Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.

  20. Models and methods for in vitro testing of hepatic gap junctional communication.

    PubMed

    Maes, Michaël; Yanguas, Sara Crespo; Willebrords, Joost; Vinken, Mathieu

    2015-12-25

    Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less

  2. Connexins: Intercellular Signal Transmitters in Lymphohematopoietic Tissues.

    PubMed

    González-Nieto, Daniel; Chang, Kyung-Hee; Fasciani, Ilaria; Nayak, Ramesh; Fernandez-García, Laura; Barrio, Luis C; Cancelas, José A

    2015-01-01

    Life-long hematopoietic demands are met by a pool of hematopoietic stem cells (HSC) with self-renewal and multipotential differentiation ability. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment control HSC activity. Cell-to-cell communication through connexin (Cx) containing gap junctions (GJs) allows pluricellular coordination and synchronization through transfer of small molecules with messenger activity. Hematopoietic and surrounding nonhematopoietic cells communicate each other through GJs, which regulate fetal and postnatal HSC content and function in hematopoietic tissues. Traffic of HSC between peripheral blood and BM is also dependent on Cx proteins. Cx mutations are associated with human disease and hematopoietic dysfunction and Cx signaling may represent a target for therapeutic intervention. In this review, we illustrate and highlight the importance of Cxs in the regulation of hematopoietic homeostasis under normal and pathological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Regulation of Connexin-Based Channels by Fatty Acids

    PubMed Central

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  4. Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling.

    PubMed

    Nisbet, Ashley M; Camelliti, Patrizia; Walker, Nicola L; Burton, Francis L; Cobbe, Stuart M; Kohl, Peter; Smith, Godfrey L

    2016-05-01

    Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte-non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera).

    PubMed

    Wang, Li; Li, Gang; Wang, Jinhong; Ye, Shaohui; Jones, Gareth; Zhang, Shuyi

    2009-04-01

    Gap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.

  6. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax

    PubMed Central

    Kanady, John D.; Dellinger, Michael T.; Munger, Stephanie J.; Witte, Marlys H.; Simon, Alexander M.

    2011-01-01

    Intraluminal valves are required for the proper function of lymphatic collecting vessels and large lymphatic trunks like the thoracic duct. Despite recent progress in the study of lymphvasculogenesis and lymphangiogenesis, the molecular mechanisms controlling the morphogenesis of lymphatic valves remains poorly understood. Here, we report that gap junction proteins, or connexins (Cxs), are required for lymphatic valvulogenesis. Cx37 and Cx43 are expressed early in mouse lymphatic development in the jugular lymph sacs, and later in development these Cxs become enriched and differentially expressed by lymphatic endothelial cells on the upstream and downstream sides of the valves. Specific deficiencies of Cx37 and Cx43 alone or in combination result in defective valve formation in lymphatic collecting vessels, lymphedema, and chylothorax. We also show that Cx37 regulates jugular lymph sac size and that both Cx37 and Cx43 are required for normal thoracic duct development, including valve formation. Another Cx family member, Cx47, whose human analog is mutated in some families with lymphedema, is also highly enriched in a subset of endothelial cells in lymphatic valves. Mechanistically, we present data from Foxc2−/− embryos suggesting that Cx37 may be a target of regulation by Foxc2, a transcription factor that is mutated in human lymphedema-distichiasis syndrome. These results show that at least three Cxs are expressed in the developing lymphatic vasculature and, when defective, are associated with clinically manifest lymphatic disorders in mice and man. PMID:21515254

  7. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    PubMed Central

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  8. In Vitro Cardiomyogenic Potential of Human Amniotic Fluid Stem Cells

    PubMed Central

    Guan, Xuan; Delo, Dawn M.; Atala, Anthony; Soker, Shay

    2010-01-01

    Stem cell therapy for damaged cardiac tissue is currently limited by a number of factors, including the inability to obtain sufficient cell numbers, the potential tumorigenicity of certain types of stem cells, and the possible link between stem cell therapy and the development of malignant arrhythmias. In this study, we investigated whether human amniotic fluid-derived stem (hAFS) cells could be a potential source of cells for cardiac cell therapy by testing the in vitro differentiation capabilities. Undifferentiated hAFS cells express several cardiac genes, including the transcription factor mef2, the gap junction connexin43, and H- and N-cadherin. A 24-hour incubation with 5-aza-2′–deoxycytidine (5-AZA-dC) induced hAFS cell differentiation along the cardiac lineage. Evidence for this differentiation included morphological changes, up-regulation of cardiac-specific genes (cardiac troponin I and cardiac troponin T) and redistribution of connexin43, as well as down-regulation of the stem cell marker SRY-box 2 (sox2). When co-cultured with neonatal rat cardiomyocytes (NRCs), hAFS cells formed both mechanical and electrical connections with the NRCs. Dye transfer experiments showed that calcein dye could be transferred from NRCs to hAFS cells through cellular connections. The gap junction connexin 43 likely involved in the communication between the two cell types, because 12-O-Tetradecanoylphorbol 13-acetate (TPA) could partially block cellular crosstalk. We conclude that hAFS cells can be differentiated into a cardiomyocyte-like phenotype and can establish functional communication with NRCs. Thus, hAFS cells may potentially be used for cardiac cell therapy. PMID:20687122

  9. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells

    PubMed Central

    Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL

    2009-01-01

    Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721

  10. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity.

    PubMed

    Yoon, Seo-Yeon; Robinson, Caleb R; Zhang, Haijun; Dougherty, Patrick M

    2013-02-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific gap junction protein connexin 43 (Cx43) was significantly increased in dorsal horn at both day 7 and day 14 following chemotherapy, but neuronal (connexin 36 [Cx36]) and oligodendrocyte (connexin 32 [Cx32]) gap junction proteins did not show any change. Blockade of astrocyte gap junction with carbenoxolone (CBX) prevented oxaliplatin-induced mechanical hypersensitivity in a dose-dependent manner and the increase of spinal GFAP expression, but had no effect once the mechanical hypersensitivity induced by oxaliplatin had fully developed. These results suggest that oxaliplatin chemotherapy induces the activation of spinal astrocytes and this is accompanied by increased expression of astrocyte-astrocyte gap junction connections via Cx43. These alterations in spinal astrocytes appear to contribute to the induction but not the maintenance of oxaliplatin-induced mechanical hypersensitivity. Combined, these results suggest that targeting spinal astrocyte/astrocyte-specific gap junction could be a new therapeutic strategy to prevent oxaliplatin-induced neuropathy. Spinal astrocytes but not microglia were recently shown to be recruited in paclitaxel-related chemoneuropathy. Here, spinal astrocyte gap junctions are shown to play an important role in the induction of oxaliplatin neuropathy. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Connexin43 Gene Transfer Reduces Ventricular Tachycardia Susceptibility After Myocardial Infarction

    PubMed Central

    Greener, Ian D.; Sasano, Tetsuo; Wan, Xiaoping; Igarashi, Tomonori; Strom, Maria; Rosenbaum, David S.; Donahue, J. Kevin

    2012-01-01

    Objectives The aim of this study was to evaluate the links between connexin43 (Cx43) expression, myocardial conduction velocity, and ventricular tachycardia in a model of healed myocardial infarction. Background Post-infarction ventricular arrhythmias frequently cause sudden death. Impaired myocardial conduction has previously been linked to ventricular arrhythmias. Altered connexin expression is a potential source of conduction slowing identified in healed scar border tissues. The functional effect of increasing border-zone Cx43 has not been previously evaluated. Methods Twenty-five Yorkshire pigs underwent anterior infarction by transient left anterior descending coronary artery occlusion, followed by weekly testing for arrhythmia inducibility. Twenty animals with reproducibly inducible sustained monomorphic ventricular tachycardia were randomized 2:1:1 to receive AdCx43, Adβgal, or no gene transfer. One week later, animals underwent follow-up electrophysiologic study and tissue assessment for several functional and molecular measures. Results Animals receiving AdCx43 had less electrogram fractionation and faster conduction velocity in the anterior-septal border zone. Only 40% of AdCx43 animals remained inducible for ventricular tachycardia, while 100% of controls were inducible after gene transfer. AdCx43 animals had 2-fold higher Cx43 protein levels in the anterior-septal infarct border, with similar percents of phosphorylated and intercalated disk-localized Cx43 compared with controls. Conclusions These data mechanistically link Cx43 expression to slow conduction and arrhythmia susceptibility in the healed scar border zone. Targeted manipulation of Cx43 levels improved conduction velocity and reduced ventricular tachycardia susceptibility. Cx43 gene transfer represents a novel treatment strategy for post-infarction arrhythmias. PMID:22883636

  12. In vitro cardiomyogenic potential of human amniotic fluid stem cells.

    PubMed

    Guan, Xuan; Delo, Dawn M; Atala, Anthony; Soker, Shay

    2011-03-01

    Stem cell therapy for damaged cardiac tissue is currently limited by a number of factors, including inability to obtain sufficient cell numbers, the potential tumorigenicity of certain types of stem cells and the possible link between stem cell therapy and the development of malignant arrhythmias. In this study, we investigated whether human amniotic fluid-derived stem (hAFS) cells could be a potential source of cells for cardiac cell therapy, by testing the in vitro differentiation capabilities. Undifferentiated hAFS cells express several cardiac genes, including the transcription factor mef2, the gap junction connexin43, and H- and N-cadherin. A 24 h incubation with 5-aza-2'-deoxycytidine (5-AZA-dC) induced hAFS cell differentiation along the cardiac lineage. Evidence for this differentiation included morphological changes, upregulation of cardiac-specific genes (cardiac troponin I and cardiac troponin T) and redistribution of connexin43, as well as downregulation of the stem cell marker SRY-box 2 (sox2). When co-cultured with neonatal rat cardiomyocytes (NRCs), hAFS cells formed both mechanical and electrical connections with the NRCs. Dye transfer experiments showed that calcein dye could be transferred from NRCs to hAFS cells through cellular connections. The gap junction connexin43 likely involved in the communication between the two cell types, because 12-O-tetradecanoylphorbol 13-acetate (TPA) could partially block cellular crosstalk. We conclude that hAFS cells can be differentiated into a cardiomyocyte-like phenotype and can establish functional communication with NRCs. Thus, hAFS cells may potentially be used for cardiac cell therapy. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    PubMed

    Ambrosi, Cinzia; Walker, Amy E; Depriest, Adam D; Cone, Angela C; Lu, Connie; Badger, John; Skerrett, I Martha; Sosinsky, Gina E

    2013-01-01

    Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons) by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26) that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P). Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S) only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels displayed an increased tendency to aggregate. Thus, mutations in TM4 cause a range of phenotypes of dysfunctional gap junction channels that are discussed within the context of the X-ray crystallographic structure.

  14. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation*

    PubMed Central

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-01

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. PMID:26565022

  15. Interaction of small G protein signaling modulator 3 with connexin 43 contributes to myocardial infarction in rat hearts.

    PubMed

    Lee, Chang Youn; Choi, Jung-Won; Shin, Sunhye; Lee, Jiyun; Seo, Hyang-Hee; Lim, Soyeon; Lee, Seahyoung; Joo, Hyun-Chul; Kim, Sang Woo; Hwang, Ki-Chul

    2017-09-16

    Connexin 43 (Cx43), a ubiquitous connexin expressed in the heart and skin, is associated with a variety of hereditary conditions. Therefore, the characterization of Cx43-interacting proteins and their dynamics is important to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication but also to identify novel and unanticipated biological functions of Cx43. In the present study, we observed potential targets of Cx43 to determine new molecular functions in cardio-protection. MALDI-TOF mass spectrometry analysis of Cx43 co-immunoprecipitated proteins showed that Cx43 interacts with several proteins related to metabolism. In GeneMANIA network analysis, SGSM3, which has not been previously associated with Cx43, was highly correlated with Cx43 in heart functions, and high levels of SGSM3 appeared to induce the turnover of Cx43 through lysosomal degradation in myocardial infarcted rat hearts. Moreover, we confirmed that lysosomal degradation of Cx43 is dependent upon the interaction between SGSM3 and Cx43 in H9c2 cardiomyocytes. The functional importance of the interaction between SGSM3 and Cx43 was confirmed by results showing that Cx43 expression was enhanced by SGSM3 siRNA knockdown in H9c2 cells. In summary, the results of this study elucidate the molecular mechanisms in which Cx43 with SGSM3 is degraded in myocardial infarcted rat hearts, which may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cholinergic stimulation with pyridostigmine protects myocardial infarcted rats against ischemic-induced arrhythmias and preserves connexin43 protein.

    PubMed

    Santos-Almeida, Fernanda Machado; Girão, Henrique; da Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens

    2015-01-15

    We investigated the effects of acute pyridostigmine (PYR) treatment, an acetylcholinesterase inhibitor, on arterial pressure (AP), heart rate (HR), cardiac sympathovagal balance, and the incidence of arrhythmias during the first 4 h after myocardial infarction (MI) in anesthetized rats. Male Wistar rats were implanted with catheters into the femoral artery and vein for AP recordings and drug administration. Rats received the autonomic receptor blockers methyl-atropine (1 mg/kg iv) and propranolol (2 mg/kg iv) at intervals of 15 min, 1 h after saline (n=16) or PYR (0.25 mg/kg iv, n=18), to indirectly assess sympathovagal balance. Acute treatment with PYR increased cardiac vagal (86±7 vs. 44±5 beats/min) and decreased sympathetic tone (-31±8 vs. -69±7 beats/min). Different animals were implanted with ECG electrodes and catheters. A large MI was induced via left coronary artery ligation after basal recordings. Rats received PYR (n=14) or saline (n=14) 10-15 min after MI, and the recordings lasted up to 4 h. In part of the animals, hearts were removed for connexin43 quantification after all procedures. MI elicited a fall in AP (-45±5 mmHg), a progressive rise in HR (26±14 beats/min), and an increase in corrected QT interval (33±13 ms). PYR elicited a prompt bradycardia (-50±14 beats/min) that returned to basal levels over time, and it prevented the lengthening of the corrected QT interval. Treatment with PYR increased by ∼20% the occurrence of rats free of arrhythmias after MI. MI markedly decreased connexin43 in left ventricles, and PYR treatment partially prevented this decrease. Copyright © 2015 the American Physiological Society.

  17. Oligomeric structure and functional characterization of Caenorhabditis elegans Innexin-6 gap junction protein.

    PubMed

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-04-12

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.

  18. Oligomeric Structure and Functional Characterization of Caenorhabditis elegans Innexin-6 Gap Junction Protein*

    PubMed Central

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-01-01

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640

  19. Connexin36 localization to pinealocytes in the pineal gland of mouse and rat.

    PubMed

    Wang, S G; Tsao, D D; Vanderpool, K G; Yasumura, T; Rash, J E; Nagy, J I

    2017-06-01

    Several cell types in the pineal gland are known to establish intercellular gap junctions, but the connexin constituents of those junctions have not been fully characterized. Specifically, the expression of connexin36 (Cx36) protein and mRNA has been examined in the pineal, but the identity of cells that produce Cx36 and that form Cx36-containing gap junctions has not been determined. We used immunofluorescence and freeze fracture replica immunogold labelling (FRIL) of Cx36 to investigate the cellular and subcellular localization of Cx36 in the pineal gland of adult mouse and rat. Immunofluorescence labelling of Cx36 was visualized exclusively as puncta or short immunopositive strands that were distributed throughout the pineal, and which were absent in pineal sections from Cx36 null mice. By double immunofluorescence labelling, Cx36 was localized to tryptophan hydroxylase-positive and 5-hydroxytryptamine-positive pinealocyte cell bodies and their large initial processes, including at intersections of those processes and at sites displaying a confluence of processes. Labelling for the cell junction marker zonula occludens-1 (ZO-1) either overlapped or was closely associated with labelling for Cx36. Pinealocytes thus form Cx36-containing gap junctions that also incorporate the scaffolding protein ZO-1. FRIL revealed labelling of Cx36 at ultrastructurally defined gap junctions between pinealocytes, most of which was at gap junctions having reticular, ribbon or string configurations. The results suggest that the endocrine functions of pinealocytes and their secretion of melatonin is supported by their intercellular communication via Cx36-containing gap junctions, which may now be tested by the use of Cx36 null mice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudmundsson, Sanna; Wilbe, Maria; Ekvall, Sara

    Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G >more » A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. Finally to our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.« less

  1. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    PubMed Central

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  2. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ.

    PubMed

    Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P

    2016-02-12

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain

    PubMed Central

    Rash, John E.; Kamasawa, Naomi; Vanderpool, Kimberly G.; Yasumura, Thomas; O'Brien, John; Nannapaneni, Srikant; Pereda, Alberto E.; Nagy, James I.

    2014-01-01

    Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at “large myelinated club ending” synapses on Mauthner cells of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical “pre-potentials” immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified “mixed” (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with Cx35 restricted to axon terminal hemiplaques and Cx34.7 restricted to apposing Mauthner cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of Cx36 on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins. PMID:25451276

  4. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

    PubMed

    Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos

    2016-07-22

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis

    PubMed Central

    MATSUKI, Tomohiro; TSUCHIDA, Shinji; TERAUCHI, Ryu; ODA, Ryo; FUJIWARA, Hiroyoshi; MAZDA, Osam; KUBO, Toshikazu

    2016-01-01

    Objectives This study aims to identify the distribution and expression level of connexin 43 (Cx43) in synovial tissue in patients with rheumatoid arthritis (RA). Patients and methods The expression of Cx43 in synovial tissue from eight patients with RA (2 males, 6 females; mean age 59.5±2.7 years; range 52 to 71 years), five patients with osteoarthritis (2 males, 3 females; mean age 68.4±2.7 years; range 61 to 81 years), and one normal female subject (mean age 61 year) was analyzed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry of tissue sections. Induction of Cx43 following stimulation of human RA synovial fibroblasts with tumor necrosis factor-alpha (TNF-a) cultures was examined by quantitative reverse transcriptase polymerase chain reaction. The effect of small interfering ribonucleic acid targeting Cx43 (siCx43) on the expression of TNF-a and interleukin-6 was examined using quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assays. Results Connexin 43 was highly expressed in RA synovial tissue, which also expressed TNF-a, but was expressed lower in osteoarthritis and normal synovial tissue. Expression of Cx43 was markedly up-regulated in RA synovial fibroblasts after stimulation with TNF-a. The over-expression of pro- inflammatory cytokines was suppressed by transfection of siCx43. Conclusion This study shows that Cx43 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNF-a. The expression of the pro-inflammatory cytokines was inhibited by transfection of siCx43. Cx43 may be a novel marker of inflammation in RA synovial tissue. PMID:29900991

  6. Connexin 30 expression inhibits growth of human malignant gliomas but protects them against radiation therapy

    PubMed Central

    Artesi, Maria; Kroonen, Jerome; Bredel, Markus; Nguyen-Khac, Minh; Deprez, Manuel; Schoysman, Laurent; Poulet, Christophe; Chakravarti, Arnab; Kim, Hyunsoo; Scholtens, Denise; Seute, Tatjana; Rogister, Bernard; Bours, Vincent; Robe, Pierre A.

    2015-01-01

    Background Glioblastomas remain ominous tumors that almost invariably escape treatment. Connexins are a family of transmembrane, gap junction-forming proteins, some members of which were reported to act as tumor suppressors and to modulate cellular metabolism in response to cytotoxic stress. Methods We analyzed the copy number and expression of the connexin (Cx)30 gene gap junction beta-6 (GJB6), as well as of its protein immunoreactivity in several public and proprietary repositories of glioblastomas, and their influence on patient survival. We evaluated the effect of the expression of this gap junction protein on the growth, DNA repair and energy metabolism, and treatment resistance of these tumors. Results The GJB6 gene was deleted in 25.8% of 751 analyzed tumors and mutated in 15.8% of 158 tumors. Cx30 immunoreactivity was absent in 28.9% of 145 tumors. Restoration of Cx30 expression in human glioblastoma cells reduced their growth in vitro and as xenografts in the striatum of immunodeficient mice. Cx30 immunoreactivity was, however, found to adversely affect survival in 2 independent retrospective cohorts of glioblastoma patients. Cx30 was found in clonogenic assays to protect glioblastoma cells against radiation-induced mortality and to decrease radiation-induced DNA damage. This radioprotection correlated with a heat shock protein 90–dependent mitochondrial translocation of Cx30 following radiation and an improved ATP production following this genotoxic stress. Conclusion These results underline the complex relationship between potential tumor suppressors and treatment resistance in glioblastomas and single out GJB6/Cx30 as a potential biomarker and target for therapeutic intervention in these tumors. PMID:25155356

  7. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26

    DOE PAGES

    Gudmundsson, Sanna; Wilbe, Maria; Ekvall, Sara; ...

    2017-02-01

    Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G >more » A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. Finally to our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.« less

  8. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels.

    PubMed

    Richter, Katrin; Kiefer, Kevin P; Grzesik, Benno A; Clauss, Wolfgang G; Fronius, Martin

    2014-01-01

    Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; P<0.0001). This effect was reversible and repeatable ≥30 times. Preincubation with ATP-sensitive K(+) channel (K(ATP)) inhibitors (HMR1098 and glibenclamide) prevented the decrease in I(SC) (I(5cm)/I(0cm): HMR1098=1.19, P<0.0001; glibenclamide=1.11, P<0.0001). Similar effects were observed with hemichannel inhibitors (I(5cm)/I(0cm): meclofenamic acid=1.09, P<0.0001; probenecid=1.0, P<0.0001). The HP effect was accompanied by release of ATP (P<0.05), determined by luciferin-luciferase luminescence in perfusion solution from the luminal side of an Ussing chamber. ATP release was abrogated by both meclofenamic acid and probenecid. RT-PCR experiments revealed the expression of pannexin and connexin hemichannels and KATP subunit transcripts in X. laevis lung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.

  9. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins*

    PubMed Central

    Pinto, Bernardo I.; García, Isaac E.; Pupo, Amaury; Retamal, Mauricio A.; Martínez, Agustín D.; Latorre, Ramón; González, Carlos

    2016-01-01

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. PMID:27143357

  10. One for all: A standardized protocol for ex vivo culture of limbal, conjunctival and oral mucosal epithelial cells into corneal lineage.

    PubMed

    Dhamodaran, Kamesh; Subramani, Murali; Matalia, Himanshu; Jayadev, Chaitra; Shetty, Rohit; Das, Debashish

    2016-04-01

    Autologous transplantation of ex vivo cultured cells the treatment of choice for patients with limbal stem cell deficiency. The most commonly used cell sources for transplantation limbal, conjunctival or oral mucosal tissue. Protocols vary for culturing each tissue type, and there are no comparative studies on transplantation outcomes using these different culture techniques. To overcome this limitation, we devised a simple protocol that can uniformly promote growth and differentiation of cells from a limbal, conjunctival or oral mucosal biopsy into the corneal lineage. Biopsies were cultured as explants on de-epithelialized human amniotic membrane in the presence of recombinant epidermal growth factor and insulin. Cultured cells were characterized using immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction for stem/progenitor markers (ABCG2 and P63α) and differentiation markers (CK3, CK12, CK4, CK13, CK15 and CONNEXIN 43). Fluorescence-activated cell sorter analysis was performed for ABCG2. The results revealed that cells of all three biopsies differentiated into the corneal lineage. Positivity of CK3/12, CK4, CK12 and CONNEXIN 43 immunostaining and the relative mRNA expression of CK3, CK4, CK12, CK13, CK15 and CONNEXIN 43 could be detected in the cultured biopsies. Unlike tissue-specific protocols, our protocol can unequivocally promote differentiation of cells from a limbal, conjunctival or oral mucosal biopsy into the corneal lineage. This simple standardized protocol can be adapted for ocular surface reconstruction using stem cell transplantation. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin

    PubMed Central

    Miron, Richard J.; Hedbom, Erik; Ruggiero, Sabrina; Bosshardt, Dieter D.; Zhang, Yufeng; Mauth, Corinna; Gemperli, Anja C.; Iizuka, Tateyuki; Buser, Daniel; Sculean, Anton

    2011-01-01

    In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo. PMID:21858092

  12. Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.

    PubMed

    Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen

    2012-01-06

    The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Gap junctional coupling in the vertebrate retina: variations on one theme?

    PubMed

    Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert

    2013-05-01

    Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such as signal averaging and synchronization. 2013 Elsevier Ltd. All rights reserved.

  14. CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Chloral hydrate decreases gap junction communication in rat liver epithelial cells

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

  15. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    PubMed

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma

    PubMed Central

    Kumar, Sandeep; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Viswanathan, Suresh; Bloomfield, Stewart A.

    2017-01-01

    The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma. PMID:28604388

  17. Localization of connexin43 in rat kidney.

    PubMed

    Barajas, L; Liu, L; Tucker, M

    1994-09-01

    The localization of connexin43 (Cx 43) in rat kidney was investigated by the indirect immunofluorescence technique with polyclonal antisera raised against Cx 43. Cx 43 is a gap junction protein expressed in a variety of tissues. The typically punctuated gap junction immunofluorescence (GJI) was observed in the renal arterial and arteriolar system. In the renal artery the GJI was concentrated in the media. In the juxtamedullary nephrons, the GJI is particularly abundant in the vascular bundles. There is abundant GJI in the extraglomerular mesangium while in the afferent arteriole GJI appears decreased. Abundant GJI was observed in the inner medullary collecting ducts and pelvic epithelium. The localization of Cx 43 immunofluorescence observed in this study is only in partial agreement with the results of ultrastructural investigations on the distribution of gap junctions in the kidney. An extensive tight junctional system has been demonstrated in the collecting duct system. However, gap junctions have been reported to be absent. Further studies to resolve this discrepancy are required.

  18. Osteogenic differentiation capacity of human mesenchymal stromal cells in response to extracellular calcium with special regard to connexin 43.

    PubMed

    Wagner, Alena-Svenja; Glenske, Kristina; Wolf, Verena; Fietz, Daniela; Mazurek, Sybille; Hanke, Thomas; Moritz, Andreas; Arnhold, Stefan; Wenisch, Sabine

    2017-01-01

    The effects of extracellular calcium on osteogenic differentiation capacity of human bone-derived mesenchymal stromal cells with special regard to connexin 43 (cx43) have been investigated by means of cell culture experiments. Mesenchymal stromal cells isolated from human cancellous bone were cultured on tissue culture plates at different calcium ion (Ca 2+ ) concentrations (1.8mmoll -1 , 10mmoll -1 , 20mmoll -1 ). Cell responses were evaluated by quantitative RT-PCR, immunofluorescence staining, and Lucifer Yellow fluorescence uptake experiments. It could be shown that increasing Ca 2+ concentrations correlate with increasing cx43 and bone sialoprotein mRNA levels as well as with enhanced cx43 fluorescence signaling and matrix mineralization of the cultures as shown by von Kossa staining. Hemichannel gating - assessed by Lucifer Yellow uptake - increases with increasing extracellular Ca 2+ concentrations suggesting that regulatory effects at the hemichannel level are calcium-dependent. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Genetic variants related to gap junctions and hormone secretion influence conception rates in cows

    PubMed Central

    Sugimoto, Mayumi; Sasaki, Shinji; Gotoh, Yusaku; Nakamura, Yuuki; Aoyagi, Yoshito; Kawahara, Takayoshi; Sugimoto, Yoshikazu

    2013-01-01

    The recent decline in fertility is a serious problem in the dairy industry. To overcome this problem, we performed a genome-wide association study using 384 Holsteins and identified four loci associated with conception rates. Two of them contained gap junction-related genes: PKP2 and CTTNBP2NL. Further analysis confirmed that PKP2 increased connexin 43, a gap junction protein, whereas CTTNBP2NL dephosphorylated connexin 43. Knockdown of PKP2 or overexpression of CTTNBP2NL inhibited embryo implantation in mice. The other two loci contained neuroendocrine-related genes: SETD6 and CACNB2. Additional experiments indicated that SETD6 is involved in the transcriptional regulation of gonadotropin-releasing hormone, whereas CACNB2 controlled the secretion of follicle-stimulating hormone in cattle. The total allele substitution effect of these genes on conception rate was 3.5%. Our findings reveal important roles for gap junction communication and the neuroendocrine system in conception and suggest unique selection methods to improve reproductive performance in the livestock industry. PMID:24218568

  20. The first de novo mutation of the connexin 32 gene associated with X linked Charcot-Marie-Tooth disease.

    PubMed Central

    Meggouh, F; Benomar, A; Rouger, H; Tardieu, S; Birouk, N; Tassin, J; Barhoumi, C; Yahyaoui, M; Chkili, T; Brice, A; LeGuern, E

    1998-01-01

    X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified the first de novo mutation of the Cx32 gene, consisting of a deletion of a G residue at position 499 in the Cx32 open reading frame. This previously unreported mutation produces a frameshift at position 147 in the protein and introduces a premature stop codon (TAG) at nucleotide 643, which results in the production of a truncated Cx32 molecule. This mutation illustrates the risk of an erroneous diagnosis of autosomal recessive CMT, especially in populations where consanguineous unions are frequent, and its consequences for genetic counselling, which can be avoided by molecular analysis. Images PMID:9541114

  1. Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex

    PubMed Central

    Laguesse, Sophie; Close, Pierre; Van Hees, Laura; Chariot, Alain; Malgrange, Brigitte; Nguyen, Laurent

    2017-01-01

    The Elongator complex is required for proper development of the cerebral cortex. Interfering with its activity in vivo delays the migration of postmitotic projection neurons, at least through a defective α-tubulin acetylation. However, this complex is already expressed by cortical progenitors where it may regulate the early steps of migration by targeting additional proteins. Here we report that connexin-43 (Cx43), which is strongly expressed by cortical progenitors and whose depletion impairs projection neuron migration, requires Elongator expression for its proper acetylation. Indeed, we show that Cx43 acetylation is reduced in the cortex of Elp3cKO embryos, as well as in a neuroblastoma cell line depleted of Elp1 expression, suggesting that Cx43 acetylation requires Elongator in different cellular contexts. Moreover, we show that histones deacetylase 6 (HDAC6) is a deacetylase of Cx43. Finally, we report that acetylation of Cx43 regulates its membrane distribution in apical progenitors of the cerebral cortex. PMID:28507509

  2. Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: an involvement of PKC pathway.

    PubMed

    Wang, Lingzhi; Fu, Yanni; Peng, Jianxin; Wu, Dengpan; Yu, Meiling; Xu, Chengfang; Wang, Qin; Tao, Liang

    2013-10-04

    Some of lipophilic statins have been reported to enhance toxicities induced by antineoplastic agents but the underling mechanism is unclear. The authors investigated the involvement of Cx43-mediated gap junction intercellular communication (GJIC) in the effect of simvastatin on the cellular toxicity induced by etoposide in this study. The results showed that a major component of the cytotoxicity of therapeutic levels of etoposide is mediated by gap junctions composed of connexin 43(Cx43) and simvastatin at the dosage which does not induce cytotoxicity enhances etoposide toxicity by increasing gap junction coupling. The augmentative effect of simvastatin on GJIC was related to the inhibition of PKC-mediated Cx43 phosphorylation at ser368 and subsequent enhancement of Cx43 membrane location induced by the agent. The present study suggests the possibility that upregulation of gap junctions may be utilized to increase the efficacy of anticancer chemotherapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  4. Genetic variants related to gap junctions and hormone secretion influence conception rates in cows.

    PubMed

    Sugimoto, Mayumi; Sasaki, Shinji; Gotoh, Yusaku; Nakamura, Yuuki; Aoyagi, Yoshito; Kawahara, Takayoshi; Sugimoto, Yoshikazu

    2013-11-26

    The recent decline in fertility is a serious problem in the dairy industry. To overcome this problem, we performed a genome-wide association study using 384 Holsteins and identified four loci associated with conception rates. Two of them contained gap junction-related genes: PKP2 and CTTNBP2NL. Further analysis confirmed that PKP2 increased connexin 43, a gap junction protein, whereas CTTNBP2NL dephosphorylated connexin 43. Knockdown of PKP2 or overexpression of CTTNBP2NL inhibited embryo implantation in mice. The other two loci contained neuroendocrine-related genes: SETD6 and CACNB2. Additional experiments indicated that SETD6 is involved in the transcriptional regulation of gonadotropin-releasing hormone, whereas CACNB2 controlled the secretion of follicle-stimulating hormone in cattle. The total allele substitution effect of these genes on conception rate was 3.5%. Our findings reveal important roles for gap junction communication and the neuroendocrine system in conception and suggest unique selection methods to improve reproductive performance in the livestock industry.

  5. [Morphological features of the myometrium in connective tissue dysplasia in women with uterine inertia].

    PubMed

    Konovalov, P V; Mitrofanova, L B; Gorshkov, A N; Ovsyannikov, F A

    2015-01-01

    to reveal the morphological features of the lower uterine segment myometrium in connective tissue dysplasia (CTD) in women with uterine inertia. Histological, immunohistochemical (with antibodies against collagen types I and III, matrix metalloproteinases 1 and 9 (MMR-1, MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), fibronectin; fibulin-5, connexin-43), electron microscopic, and electron immunocytochemical studies with morphometry of myometrial fragments from 15 parturient women with CTD and uterine inertia (a study group) and those from 10 women without CTD (a control group). The myometrium in CTD exhibited the decreased expression of connextin-43, fibulin-5, TIMP-1, collagens types I and III with collagen type III predominance and the unchanged levels of fibronectin and MMP-1 and MMP-9. Electron microscopy and immunocytochemistry showed fewer intercellular contacts and the dramatically lower expression of connexin-43 than in the control. A set of found myometrial changes in women with uterine inertia is a manifestation of CTD.

  6. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  7. Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36

    NASA Astrophysics Data System (ADS)

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.

    2014-08-01

    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single-channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i.

  8. Connexins, pannexins and their channels in fibroproliferative diseases

    PubMed Central

    Willebrords, Joost; Da Silva, Tereza Cristina; Maes, Michaël; Pereira, Isabel Veloso Alves; Crespo-Yanguas, Sara; Hernandez-Blazquez, Francisco Javier; Dagli, Maria Lúcia Zaidan; Vinken, Mathieu

    2017-01-01

    Cellular and molecular mechanisms of wound healing, tissue repair and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders. PMID:26914707

  9. Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis.

    PubMed

    Kikuchi, T; Adams, J C; Paul, D L; Kimura, R S

    1994-09-01

    The distribution of gap junctions within the vestibular labyrinth was investigated using immunohistochemistry and transmission electron microscopy. Connexin26-like immunoreactivity was observed among supporting cells in each vestibular sensory epithelium. Reaction product was also present in the transitional epithelium of each vestibular endorgan and in the planum semilunatum of crista ampullaris. No connexin26-like immunoreactivity was observed among thin wall epithelial cells or among vestibular dark cells. In addition, fibrocytes within vestibular connective tissue were positively immunostained. Reaction product was also detected in the melanocyte area just beneath dark cells. Ultrastructural observations indicated that a gap junction network of vestibular supporting cells extends to the transitional epithelium and planum semilunatum and forms an isolated epithelial cell gap junction system in each vestibular endorgan. In contrast, no gap junctions were found among wall epithelial cells or among dark cells. Fibrocytes and melanocytes were coupled by gap junctions and belong to the connective tissue cell gap junction system, which is continuous throughout the vestibular system and the cochlea. The possible functional significance of these gap junction systems is discussed.

  10. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling.

    PubMed

    Rong, Bing; Xie, Fei; Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-10-25

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.

  11. The “Tail” of Connexin43: An Unexpected Journey from Alternative Translation to Trafficking

    PubMed Central

    Basheer, Wassim; Shaw, Robin

    2015-01-01

    With each heartbeat, Connexin43 (Cx43) cell-cell communication gap junctions are needed to rapidly spread and coordinate excitation signals for an effective heart contraction. The correct formation and delivery of channels to their respective membrane subdomain is referred to as protein trafficking. Altered Cx43 trafficking is a dangerous complication of diseased myocardium which contributes to the arrhythmias of sudden cardiac death. Cx43 has also been found to regulate many other cellular processes that cannot be explained by cell-cell communication. We recently identified the existence of up to six endogenous internally translated Cx43 N-terminal truncated isoforms from the same full-length mRNA molecule. This is the first evidence that alternative translation is possible for human ion channels and in human heart. Interestingly, we found that these internally translated isoforms, more specifically the 20 kDa isoform (GJA1-20k), is important for delivery of Cx43 to its respective membrane subdomain. This review covers recent advances in Cx43 trafficking and potential importance of alternatively translated Cx43 truncated isoforms. PMID:26526689

  12. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haiying; Cui, Yazhou; Luan, Jing

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit themore » level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.« less

  13. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.

    PubMed

    Gaustad, Kristine G; Boquest, Andrew C; Anderson, Brent E; Gerdes, A Martin; Collas, Philippe

    2004-02-06

    We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.

  14. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes

    PubMed Central

    Gago-Fuentes, Raquel; Bechberger, John F.; Varela-Eirin, Marta; Varela-Vazquez, Adrian; Acea, Benigno; Fonseca, Eduardo

    2016-01-01

    Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis. PMID:27682878

  15. Molecular Determinants of Magnesium-Dependent Synaptic Plasticity at Electrical Synapses Formed by Connexin36

    PubMed Central

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.

    2014-01-01

    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bi-directionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i. PMID:25135336

  16. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation.

    PubMed

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-08

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Linoleic Acid Permeabilizes Gastric Epithelial Cells by Increasing Connexin43 Levels in the Cell Membrane Via a GPR40- and Akt-Dependent Mechanism

    PubMed Central

    Puebla, Carlos; Cisterna, Bruno A.; Salas, Daniela P.; Delgado-López, Fernando; Lampe, Paul D.; Sáez, Juan C.

    2016-01-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintain the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  18. Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell-Containing Population of Human Limbal Epithelial Cells

    PubMed Central

    Chen, Zhuo; Evans, W. Howard; Pflugfelder, Stephen C.; Li, De-Quan

    2010-01-01

    This study evaluated whether the gap junction protein connexin (Cx) 43 could serve as a negative cell surface marker for human corneal epithelial stem cells. Cx43 expression was evaluated in corneo-limbal tissue and primary limbal epithelial cultures. Immunofluorescent staining and laser scanning confocal microscopy showed that Cx43 was strongly expressed in the corneal and limbal suprabasal epithelial cells, but the basal cells of the limbal epithelium were negative. Cx43 antibody stained mainly large cells but not small cells in primary limbal epithelial cultures. As determined by semiquantitative reverse transcription polymerase chain reaction (PCR) and real-time PCR, Cx43 mRNA was more abundant in the corneal than limbal epithelia, and it was expressed in higher levels in mature limbal epithelial cultures. Using GAP11, a rabbit polyclonal antibody against the Cx32 extracellular loop 2 (151–187), a sequence that is highly homologous in Cx43, the Cx43dim and Cx43bright cells were selected from primary limbal epithelial cultures by fluorescence-activated cell sorting and were evaluated for stem cell properties. These Cx43dim and Cx43bright cells were confirmed by their expression levels of Cx43 protein and mRNA. The Cx43dim cells were found to contain higher percentages of slow-cycling bromodeoxyuridine (BrdU)-label retaining cells and the cells that were positive for stem cell-associated markers p63, ABCG2, and integrin β1 and negative for differentiation markers K3 and involucrin. The Cx43dim cells possessed a greater proliferative potential than Cx43bright cells and nonfractionated cells as evaluated by BrdU incorporation, colony-forming efficiency, and growth capacity. Our findings suggest that human limbal basal cells do not express connexin 43, which could serve as a negative cell surface marker for the stem cell-containing population of human limbal epithelial cells. PMID:16424398

  19. Promotion of lens epithelial-fiber differentiation by the C-terminus of connexin 45.6 a role independent of gap junction communication.

    PubMed

    Banks, Eric A; Yu, X Sean; Shi, Qian; Jiang, Jean X

    2007-10-15

    We previously reported that, among the three connexins expressed in chick lens, overexpression of connexin (Cx) 45.6, not Cx43 or Cx56, stimulates lens cell differentiation; however, the underlying mechanism responsible for this effect is unclear. Here, we took advantage of naturally occurring loss-of-gap-junction function mutations of Cx50 (ortholog of chick Cx45.6) and generated the corresponding site mutants in Cx45.6: Cx45.6(D47A) and Cx45.6(P88S). In contrast to wild-type Cx45.6, the mutants failed to form functional gap junctions, and Cx45.6(P88S) and, to a lesser degree, Cx45.6(D47A) functioned in a dominant-negative manner. Interestingly, overexpression of both mutants incapable of forming gap junctions significantly increased epithelial-fiber differentiation to a level comparable to that of wild-type Cx45.6. To map the functional domain of Cx45.6, we generated a C-terminus chimera as well as deletion mutants. Overexpression of Cx56(*)45.6C, the mutant in which the C-terminus of Cx56 was replaced with that of Cx45.6, had a stimulatory effect on lens cell differentiation similar to that of Cx45.6. However, cells overexpressing Cx45.6(*)56C, the mutant in which C-terminus of Cx45.6 was replaced with that of Cx56, and Cx45.6(-C), in which the C-terminus was deleted, failed to promote differentiation. Taken together, we conclude that the expression of Cx45.6, but not Cx45.6-dependent gap junction channels, is involved in lens epithelial-fiber cell differentiation, and the C-terminal domain of Cx45.6 plays a predominant role in mediating this process.

  20. Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Catherine S.; Berends, Rebecca F.; Flint, David J.

    2013-02-15

    Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-woundmore » closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance. - Highlights: ► Human organotypic and keratinocyte ‘diabetic’ skin models were used to demonstrate the ability of Gap27 to improve scrape-wound closure. ► Gap27 enhanced scrape-wound closure by reducing Cx43-mediated communication, whereas IGFBP-5 retarded cell migration. ► IGF-I and IGFBP-5 did not affect connexin-mediated pathways. ► Gap27 can override altered glucose, insulin, IGF-I, and IGFBP-5 in ‘diabetic’ skin models and thus has therapeutic potential.« less

  1. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    PubMed

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection. © 2016 International Society for Neurochemistry.

  2. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis*

    PubMed Central

    Gago-Fuentes, Raquel; Fernández-Puente, Patricia; Megias, Diego; Carpintero-Fernández, Paula; Mateos, Jesus; Acea, Benigno; Fonseca, Eduardo; Blanco, Francisco Javier; Mayan, Maria Dolores

    2015-01-01

    We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA. PMID:25903580

  3. Connexin43high prostate cancer cells induce endothelial connexin43 up-regulation through the activation of intercellular ERK1/2-dependent signaling axis.

    PubMed

    Piwowarczyk, Katarzyna; Paw, Milena; Ryszawy, Damian; Rutkowska-Zapała, Magdalena; Madeja, Zbigniew; Siedlar, Maciej; Czyż, Jarosław

    2017-06-01

    Connexin(Cx)43 regulates the invasive potential of prostate cancer cells and participates in their extravasation. To address the role of endothelial Cx43 in this process, we analyzed Cx43 regulation in human umbilical vein endothelial cells in the proximity of Cx43 high (DU-145 and MAT-LyLu) and Cx43 low prostate cancer cells (PC-3 and AT-2). Endothelial Cx43 up-regulation was observed during the diapedesis of DU-145 and MAT-LyLu cells. This process was attenuated by transient Cx43 silencing in cancer cells and by chemical inhibition of ERK1/2-dependent signaling in endothelial cells. Cx43 expression in endothelial cells was insensitive to the inhibition of gap junctional intercellular coupling between Cx43 high prostate cancer and endothelial cells by 18α-glycyrrhetinic acid. Instead, endothelial Cx43 up-regulation was correlated with the local contraction of endothelial cells and with their activation in the proximity of Cx43 high DU-145 and MAT-LyLu cells. It was also sensitive to pro-inflammatory factors secreted by peripheral blood monocytes, such as TNFα. In contrast to Cx43 low AT-2 cells, Cx43 low PC-3 cells produced angioactive factors that locally activated the endothelial cells in the absence of endothelial Cx43 up-regulation. Collectively, these data show that Cx43 low and Cx43 high prostate cancer cells can adapt discrete, Cx43-independent and Cx43-dependent strategies of diapedesis. Our observations identify a novel strategy of prostate cancer cell diapedesis, which depends on the activation of intercellular Cx43/ERK1/2/Cx43 signaling axis at the interfaces between Cx43 high prostate cancer and endothelial cells. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Polycyclic aromatic hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure.

    PubMed

    Osgood, Ross S; Upham, Brad L; Hill, Thomas; Helms, Katherine L; Velmurugan, Kalpana; Babica, Pavel; Bauer, Alison K

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and occupational toxicants, which are a major human health concern in the U.S. and abroad. Previous research has focused on the genotoxic events caused by high molecular weight PAHs, but not on non-genotoxic events elicited by low molecular weight PAHs. We used an isomeric pair of low molecular weight PAHs, namely 1-Methylanthracene (1-MeA) and 2-Methylanthracene (2-MeA), in which only 1-MeA possessed a bay-like region, and hypothesized that 1-MeA, but not 2-MeA, would affect non-genotoxic endpoints relevant to tumor promotion in murine C10 lung cells, a non-tumorigenic type II alveolar pneumocyte and progenitor cell type of lung adenocarcinoma. The non-genotoxic endpoints assessed were dysregulation of gap junction intercellular communication function and changes in the major pulmonary connexin protein, connexin 43, using fluorescent redistribution and immunoblots, activation of mitogen activated protein kinases (MAPK) using phosphospecific MAPK antibodies for immunoblots, and induction of inflammatory genes using quantitative RT-PCR. 2-MeA had no effect on any of the endpoints, but 1-MeA dysregulated gap junctional communication in a dose and time dependent manner, reduced connexin 43 protein expression, and altered membrane localization. 1-MeA also activated ERK1/2 and p38 MAP kinases. Inflammatory genes, such as cyclooxygenase 2, and chemokine ligand 2 (macrophage chemoattractant 2), were also upregulated in response to 1-MeA only. These results indicate a possible structure-activity relationship of these low molecular weight PAHs relevant to non-genotoxic endpoints of the promoting aspects of cancer. Therefore, our novel findings may improve the ability to predict outcomes for future studies with additional toxicants and mixtures, identify novel targets for biomarkers and chemotherapeutics, and have possible implications for future risk assessment for these PAHs.

  5. Altered cellular localization and hemichannel activities of KID syndrome associated connexin26 I30N and D50Y mutations.

    PubMed

    Aypek, Hande; Bay, Veysel; Meşe, Gülistan

    2016-02-02

    Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells. Immunostaining experiments showed that Cx26I30N and D50Y failed to form gap junction plaques at cell-cell contact sites. Further, these mutations resulted in the retention of Cx26 protein in the Golgi apparatus. Examination of hemichannel function by fluorescent dye uptake assays revealed that cells with Cx26I30N and D50Y mutations had increased dye uptake compared to Cx26WT (wild-type) containing cells, indicating abnormal hemichannel activities. Cells with mutant proteins had elevated intracellular calcium levels compared to Cx26WT transfected cells, which were abolished by a hemichannel blocker, carbenoxolone (CBX), as measured by Fluo-3 AM loading and flow cytometry. Here, we demonstrated that Cx26I30N and D50Y mutations resulted in the formation of aberrant hemichannels that might result in elevated intracellular calcium levels, a process which may contribute to the hyperproliferative epidermal phenotypes of KID syndrome.

  6. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells

    PubMed Central

    Johnson, Kristen E.; Mitra, Shalini; Katoch, Parul; Kelsey, Linda S.; Johnson, Keith R.; Mehta, Parmender P.

    2013-01-01

    The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions. PMID:23363606

  7. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells.

    PubMed

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J; Wahl, James K; Johnson, Keith R; Mehta, Parmender P

    2015-02-20

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling.

    PubMed

    Fan, Jinqi; Zou, Lili; Cui, Kun; Woo, Kamsang; Du, Huaan; Chen, Shaojie; Ling, Zhiyu; Zhang, Quanjun; Zhang, Bo; Lan, Xianbin; Su, Li; Zrenner, Bernhard; Yin, Yuehui

    2015-01-01

    The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1-7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin-angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.

  9. Regulation of gap junctional charge selectivity in cells coexpressing connexin 40 and connexin 43.

    PubMed

    Heyman, Nathanael S; Kurjiaka, David T; Ek Vitorin, Jose F; Burt, Janis M

    2009-07-01

    Expression of connexin 40 (Cx40) and Cx43 in cardiovascular tissues varies as a function of age, injury, and development with unknown consequences on the selectivity of junctional communication and its acute regulation. We investigated the PKC-dependent regulation of charge selectivity in junctions composed of Cx43, Cx40, or both by simultaneous assessment of junctional permeance rate constants (B(dye)) for dyes of similar size but opposite charge, N,N,N-trimethyl-2-[methyl-(7-nitro-2,1,3-benzoxadiol-4-yl)amino]ethanaminium (NBD-M-TMA; +1) and Alexa 350 (-1). The ratio of dye rate constants (B(NBD-M-TMA)/B(Alexa 350)) indicated that Cx40 junctions are cation selective (10.7 +/- 0.5), whereas Cx43 junction are nonselective (1.22 +/- 0.14). In coexpressing cells, a broad range of junctional selectivities was observed with mean cation selectivity increasing as the Cx40 to Cx43 expression ratio increased. PKC activation reduced or eliminated dye permeability of Cx43 junctions without altering their charge selectivity, had no effect on either permeability or charge selectivity of Cx40 junctions, and significantly increased the cation selectivity of junctions formed by coexpressing cells (approaching charge selectivity of Cx40 junctions). Junctions composed of Cx43 truncated at residue 257 (Cx43tr) were also not charge selective, but when Cx43tr was coexpressed with Cx40, a broad range of junctional selectivities that was unaffected by PKC activation was observed. Thus, whereas the charge selectivities of homomeric/homotypic Cx43 and Cx40 junctions appear invariant, the selectivities of junctions formed by cells coexpressing Cx40 and Cx43 vary considerably, reflecting both their relative expression levels and phosphorylation-dependent regulation. Such regulation could represent a mechanism by which coexpressing cells such as vascular endothelium and atrial cells regulate acutely the selective intercellular communication mediated by their gap junctions.

  10. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides themore » reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.« less

  11. Hippocampal Expression of Connexin36 and Connexin43 during Epileptogenesis in Pilocarpine Model of Epilepsy

    PubMed Central

    Motaghi, Sahel; Sayyah, Mohammad; Babapour, Vahab; Mahdian, Reza

    2017-01-01

    Background: Gap junctions (GJs) provide direct intercellular communications that are formed by hexameric protein subunits, called connexin (Cx). The role of Cxs in epileptogenesis has not received sufficient attention. Hippocampus with a critical function in epileptogenesis has a wide network of GJs. We examined the protein expression levels of hippocampal Cx36 (the prominent Cx present between GABAergic interneurons) and Cx43 (the main Cx expressed by astrocytes) during epileptogenesis in the pilocarpine model of epilepsy. Methods: Male Wistar rats received scopolamine (1 mg/kg, s.c.). Pilocarpine (380 mg/kg, i.p.) was administered 30 min thereafter to induce status epilepticus (SE). SE was stopped 2 h later by diazepam (10 mg/kg, i.p.). Cx36 and Cx43 protein expression was assessed by Western blot analysis in the hippocampus of SE-experienced rats, after injection of diazepam (F0 subgroup), after acquisition of focal seizures (F3 subgroup), and after development of generalized seizures (F5 subgroup). The control subgroups, C0, C3, and C5, were aged-matched rats, which received saline (1 ml/kg, i.p.) instead of pilocarpine. Injection of scopolamine and diazepam, and dissection of hippocampi were carried out at the same time interval as the test subgroups. Results: SE emerged in 67.1% of pilocarpine-treated animals. Focal and generalized seizures developed 3.8±0.4 and 7.0±0.5 days after SE, respectively. Cx36 protein abundance was not significantly different between test and control groups in the three time points. However, Cx43 protein level showed 40% increase in F3 subgroup (P<0.05 compared to C3, P<0.01 compared to F0 and F5). Conclusion: Hippocampal Cx43 is overexpressed in pilocarpine model of epileptogenesis after acquisition of focal seizures. PMID:28042145

  12. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    PubMed Central

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  13. Morphologically mixed chemical-electrical synapses formed by primary afferents in rodent vestibular nuclei as revealed by immunofluorescence detection of connexin36 and vesicular glutamate transporter-1

    PubMed Central

    Nagy, James I.; Bautista, Wendy; Blakley, Brian; Rash, John E.

    2013-01-01

    Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over forty years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). An abundance of immunolabelling for Cx36 in the form of Cx36-puncta was found in each of the four major vestibular nuclei of adult rat and mouse. Immunolabelling was associated with somata and initial dendrites of medium and large neurons, and was absent in vestibular nuclei of Cx36 knockout mice. Cx36-puncta were seen either dispersed or aggregated into clusters on the surface of neurons, and were never found to occur intracellularly. Nearly all Cx36-puncta were localized to large nerve terminals immunolabelled for vglut-1. These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labelling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20 to 25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contain Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks. PMID:23912039

  14. Shigella gets captured to gain entry.

    PubMed

    McCormick, Beth A

    2011-06-16

    The type III secretion system-dependent epithelial invasion and dissemination of Shigella is stimulated by ATP released through hemichannels. Romero et al. (2011) show that prior to epithelial contact, Shigella is captured by nanometer-thin micropodial extensions at a distance from the cell surface, in a process involving ATP and connexin-mediated signaling. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Evidence for a Role of Connexin 43 in Trigeminal Pain Using RNA Interference In Vivo

    PubMed Central

    Ohara, Peter T.; Vit, Jean-Philippe; Bhargava, Aditi; Jasmin, Luc

    2008-01-01

    The importance of glial cells in the generation and maintenance of neuropathic pain is becoming widely accepted. We examined the role of glial-specific gap junctions in nociception in the rat trigeminal ganglion in nerve-injured and -uninjured states. The connexin 43 (Cx43) gap-junction subunit was found to be confined to the satellite glial cells (SGCs) that tightly envelop primary sensory neurons in the trigeminal ganglion and we therefore used Cx43 RNA interference (RNAi) to alter gap-junction function in SGCs. Using behavioral evaluation, together with immunocytochemical and Western blot monitoring, we show that Cx43 increased in the trigeminal ganglion in rats with a chronic constriction injury (CCI) of the infraorbital nerve. Reducing Cx43 expression using RNAi in CCI rats reduced painlike behavior, whereas in non-CCI rats, reducing Cx43 expression increased painlike behavior. The degree of painlike behavior in CCI rats and intact, Cx43-silenced rats was similar. Our results support previous suggestions that increases in glial gap junctions after nerve injury increases nociceptive behavior but paradoxically the reduction of gap junctions in normal ganglia also increases nociceptive behavior, possibly a reflection of the multiple functions performed by glia. PMID:18715894

  16. Heterocellular interaction enhances recruitment of {alpha} and {beta}-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talhouk, Rabih S.; Mroue, Rana; Mokalled, Mayssa

    2008-11-01

    Gap junctions (GJ) are required for mammary epithelial differentiation. Using epithelial (SCp2) and myoepithelial-like (SCg6) mouse-derived mammary cells, the role of heterocellular interaction in assembly of GJ complexes and functional differentiation ({beta}-casein expression) was evaluated. Heterocellular interaction is critical for {beta}-casein expression, independent of exogenous basement membrane or cell anchoring substrata. Functional differentiation of SCp2, co-cultured with SCg6, is more sensitive to GJ inhibition relative to homocellular SCp2 cultures differentiated by exogenous basement membrane. Connexin (Cx)32 and Cx43 levels were not regulated across culture conditions; however, GJ functionality was enhanced under differentiation-permissive conditions. Immunoprecipitation studies demonstrated association of junctional complexmore » components ({alpha}-catenin, {beta}-catenin and ZO-2) with Cx32 and Cx43, in differentiation conditions, and additionally with Cx30 in heterocellular cultures. Although {beta}-catenin did not shuttle between cadherin and GJ complexes, increased association between connexins and {beta}-catenin in heterocellular cultures was observed. This was concomitant with reduced nuclear {beta}-catenin, suggesting that differentiation in heterocellular cultures involves sequestration of {beta}-catenin in GJ complexes.« less

  17. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas.

    PubMed

    Alaga, Katanya C; Crawford, Melissa; Dagnino, Lina; Laird, Dale W

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures.

  18. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas

    PubMed Central

    Alaga, Katanya C.; Crawford, Melissa; Dagnino, Lina; Laird, Dale W.

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures. PMID:28607585

  19. Apigenin and tangeretin enhance gap junctional intercellular communication in rat liver epithelial cells.

    PubMed

    Chaumontet, C; Bex, V; Gaillard-Sanchez, I; Seillan-Heberden, C; Suschetet, M; Martel, P

    1994-10-01

    Two flavones, apigenin and tangeretin, were studied for their ability to modulate gap junctional intercellular communication (GJIC) in the rat liver epithelial cell line REL. Their cytotoxicity was first determined by cell density and neutral red uptake assays: neither apigenin nor tangeretin are cytotoxic at 10 and 25 microM, the concentrations used in our experiments. We then studied GJIC using the dye transfer assay and we observed that both apigenin and tangeretin enhance it, the maximum stimulation (x 1.7-1.8) being achieved at 25 microM for 24 h. When the dye transfer was enhanced, the amount of connexin 43 increased, which was demonstrated by Western blot and immunofluorescence analysis. For apigenin only, Northern blot analysis showed an accumulation of connexin 43 mRNA. In addition, the incubation of REL cells with the two compounds, for 1 or 24 h, prevented the inhibition of dye transfer by 12-O-tetradecanoylphorbol-13-acetate (1 or 10 ng/ml). The enhancement of GJIC by apigenin could be one of the major mechanisms responsible for apigenin's anti-tumour promoting action in vivo. As for tangeretin, its capacity to enhance GJIC completes its potential protective properties towards the post-initiation process.

  20. Bioactivity of xerogels as modulators of osteoclastogenesis mediated by connexin 43.

    PubMed

    Glenske, Kristina; Wagner, Alena-Svenja; Hanke, Thomas; Cavalcanti-Adam, Elisabetta A; Heinemann, Sascha; Heinemann, Christiane; Kruppke, Benjamin; Arnhold, Stefan; Moritz, Andreas; Schwab, Elisabeth H; Worch, Hartmut; Wenisch, Sabine

    2014-02-01

    In order to investigate the effects of different degrees of bioactivity of xerogels on connexin 43 (cx43) signaling of osteoclasts a cell culture approach was developed. Cells isolated from peripheral blood mononuclear cells were cultured in combination with the xerogels and were harvested for further investigations on day 1, day 5, and day 10. By means of quantitative PCR increased cx43 mRNA levels and coincident decreasing mRNA levels of the calcium sensing receptor, TRAP, and Cathepsin K were detected with increasing bioactivity of the xerogel samples. Additionally, osteoclasts cultured on tissue culture plates were used to perform principle investigations on cell differentiation by means of transmission electron microscopy, life cell imaging, and immunofluorescence, and the results demonstrated that cx43-signaling could be attributed to migration and fusion of osteoclast precursors. Therefore, the positive correlation of cx43 expression with high xerogel bioactivity was caused by proceeding differentiation of the osteoclasts. Finally, the presently observed pattern of cx43 signaling refers to strong effects regarding bioactivity on cx43-associated cell differentiation of osteoclasts influenced by extracellular calcium ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling

    PubMed Central

    Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-01-01

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling. PMID:27655723

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivedal, Edgar; Leithe, Edward

    Benzene is used at large volumes in many different human activities. Hematotoxicity and cancer-causation as a result of benzene exposure was recognized many years ago, but the mechanisms involved remain unclear. Aberrant regulation of gap junction intercellular communication (GJIC) has been linked to both cancer induction and interference with normal hematopoietic development. We have previously suggested that inhibition of GJIC may play a role in benzene toxicity since benzene metabolites were found to block GJIC, the ring-opened trans,trans-muconaldehyde (MUC) being the most potent metabolite. In the present work we have studied the molecular mechanisms underlying the MUC-induced inhibition of gapmore » junctional communication. We show that MUC induces cross-linking of the gap junction protein connexin43 and that this is likely to be responsible for the induced inhibition of GJIC, as well as the loss of connexin43 observed in Western blots. We also show that glutaraldehyde possesses similar effects as MUC, and we compare the effects to that of formaldehyde. The fact that glutaraldehyde and formaldehyde have been associated with induction of leukemia as well as disturbance of hematopoiesis, strengthens the possible link between the effect of MUC on gap junctions, and the toxic effects of benzene.« less

  3. Phenotype in a patient with p.D50N mutation in GJB2 gene resemble both KID and Clouston syndromes.

    PubMed

    Markova, T G; Brazhkina, N B; Bliznech, E A; Bakhshinyan, V V; Polyakov, A V; Tavartkiladze, G A

    2016-02-01

    Keratitis-ichthyosis-deafness (KID) syndrome (OMIM 148210) is a rare ectodermal dysplasia syndrome characterized by vascularizing keratitis, congenital profound sensorineural hearing loss, and progressive erythrokeratoderma. We have found a 148G-A transition in the GJB2 gene, resulting in an asp50-to-asn (D50N) substitution in a girl with congenital deafness. This finding allowed us to diagnose а KID syndrome. But clinical features were uncommon because of a mild skin manifestation, lack of keratitis and unusual appearance resembling Clouston syndrome. Molecular genetic tests showed that it was de novo mutation because parents have normal genotype. Several autosomal dominant mutations in the GJB2 gene (сonnexin 26) now established to underlie many of the affected cases, with the majority of patients harboring the p.D50N mutation. Skin disease-associated mutation of connexin proteins can cause functional disturbances in gap junction intercellular conductance. It is likely that multiple disease mechanisms are involved across the wide spectrum of hereditary diseases relating to connexin proteins. The clinical data may provide additional insights into the dysregulation mechanisms of mutations result in the disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. A rare connexin 26 mutation in a patient with a forme fruste of keratitis-ichthyosis-deafness (KID) syndrome.

    PubMed

    Neoh, Ching Yin; Chen, Huijia; Ng, See Ket; Lane, Ellen Birgitte; Common, John Edmund Armourer

    2009-10-01

    Keratitis-ichthyosis-deafness (KID) syndrome is a rare ectodermal dysplasia characterized by generalized erythrokeratotic plaques, sensorineural hearing loss, and vascularizing keratitis. Cutaneous changes and hearing loss typically present in early childhood, whereas ocular symptoms present later. Mutations in the connexin (Cx) 26 gene, GJB2, are now established to underlie many of the affected cases, with the majority of patients harboring the p.D50N mutation. A rare patient demonstrating features of incomplete KID syndrome associated with an uncommon Cx26 gene mutation is described. The patient presented late in adolescence with partial features of KID syndrome. There was limited cutaneous involvement and the rare association of cystic acne. Both hearing impairment and ophthalmic involvement were mild in severity. Genetic mutation analysis revealed a previously described, rare mutation in GJB2, resulting in a glycine to arginine change at codon 12 (p.G12R). This report describes a patient exhibiting characteristics suggestive of a late-onset, incomplete form of KID syndrome with the GJB2 mutation (p.G12R). The p.G12R mutation has only been described in one other patient with KID syndrome, whose clinical presentation was not characterized.

  5. Proliferation, differentiation and apoptosis in connexin43-null osteoblasts

    NASA Technical Reports Server (NTRS)

    Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.

    2001-01-01

    Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.

  6. [Gap junctions: A new therapeutic target in major depressive disorder?].

    PubMed

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo.

    PubMed

    Mancuso, M; Pasquali, E; Leonardi, S; Rebessi, S; Tanori, M; Giardullo, P; Borra, F; Pazzaglia, S; Naus, C C; Di Majo, V; Saran, A

    2011-11-10

    Ionizing radiation is a genotoxic agent and human carcinogen. Recent work has questioned long-held dogmas by showing that cancer-associated genetic alterations occur in cells and tissues not directly exposed to radiation, questioning the robustness of the current system of radiation risk assessment. In vitro, diverse mechanisms involving secreted soluble factors, gap junction intercellular communication (GJIC) and oxidative metabolism are proposed to mediate these indirect effects. In vivo, the mechanisms behind long-range 'bystander' responses remain largely unknown. Here, we investigate the role of GJIC in propagating radiation stress signals in vivo, and in mediating radiation-associated bystander tumorigenesis in mouse central nervous system using a mouse model in which intercellular communication is downregulated by targeted deletion of the connexin43 (Cx43) gene. We show that GJIC is critical for transmission of oncogenic radiation damage to the non-targeted cerebellum, and that a mechanism involving adenosine triphosphate release and upregulation of Cx43, the major GJIC constituent, regulates transduction of oncogenic damage to unirradiated tissues in vivo. Our data provide a novel hypothesis for transduction of distant bystander effects and suggest that the highly branched nervous system, similar to the vascular network, has an important role.

  8. Gap and tight junctions in the formation of feather branches: A descriptive ultrastructural study.

    PubMed

    Alibardi, Lorenzo

    2010-08-20

    The present study has focused on the distribution and ultrastructure of gap and tight junctions responsible for the formation of the barb/barbule branching in developing feathers using immunocytochemical detection. Apart from desmosomes, both tight and gap junctions are present between differentiating barb/barbule cells and during keratinization. While gap junctions are rare along the perimeter of these cells, tight junctions tend to remain localized in nodes joining barbule cells and between barb cells of the ramus. Occludin and connexin-26 but not connexin-43 have been detected between barb medullary, barb cortical and barbule cells during formation of barbs. Gap junctions are present in supportive cells located in the vicinity of barbule cells and destined to degenerate, but no close junctions are present between supportive and barb/barbule cells. Close junctions mature into penta-laminar junctions that are present between mature barb/barbule cells. Immunolabeling for occludin and Cx26 is rare along these cornified junctions. The junctions allow barb/barbule cells to remain connected until feather-keratin form the mature corneous syncytium that constitutes the barbs. A discussion of the role of gap and tight junctions during feather morphogenesis is presented. 2010 Elsevier GmbH. All rights reserved.

  9. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.

    PubMed

    Haas, Brigitte; Schipke, Carola G; Peters, Oliver; Söhl, Goran; Willecke, Klaus; Kettenmann, Helmut

    2006-02-01

    In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin43, the calcium wave did not propagate. In contrast, in the corpus callosum and hippocampus of these mice, the wave propagated as in control animals. In addition to calcium wave propagation in astrocytes, ATP-release was recorded as a calcium signal from 'sniffer cells', a cell line expressing high-affinity purinergic receptors placed on the surface of the slice. The astrocyte calcium wave in the neocortex was accompanied by calcium signals in the 'sniffer cell' population. In the connexin43-deficient mice we recorded calcium signals from sniffer cells also in the absence of an astrocytic calcium wave. Our findings indicate that astrocytes propagate calcium signals by two separate mechanisms depending on the brain region and that ATP release can propagate within the neocortex independent from calcium waves.

  10. Beige Communication through Gap Junctions and Adaption by Autophagy.

    PubMed

    Enerbäck, Sven

    2016-09-13

    How thermogenic stimuli activate and control beige adipocytes is not fully understood. In this issue, Zhu et al. (2016) and Altshuler-Keylin et al. (2016) provide insights into these important issues by demonstrating roles for connexin 43 (Cx43) atg5 and atg12 in signal propagation and phenotypic adaptation in beige adipocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture

    PubMed Central

    1993-01-01

    In a previous paper (Lee et al., 1992), it was shown that normal human mammary epithelial cells (NMEC) express two connexin genes, Cx26 and Cx43, whereas neither gene is transcribed in a series of mammary tumor cell lines (TMEC). In this paper it is shown that normal human mammary fibroblasts (NMF) communicate and express Cx43 mRNA and protein. Transfection of either Cx26 or Cx43 genes into a tumor line, 21MT-2, induced the expression of the corresponding mRNAs and proteins as well as communication via gap junctions (GJs), although immunofluorescence demonstrated that the majority of Cx26 and Cx43 proteins present in transfected TMEC was largely cytoplasmic. Immunoblotting demonstrated that NMEC, NMF, and transfected TMEC each displayed a unique pattern of posttranslationally modified forms of Cx43 protein. The role of different connexins in regulating gap junction intercellular communication (GJIC) was examined using a novel two-dye method to assess homologous and heterologous communication quantitatively. The recipient cell population was prestained with a permanent non-toxic lipophilic dye that binds to membranes irreversibly (PKH26, Zynaxis); and the donor population is treated with a GJ-permeable dye Calcein, a derivative of fluorescein diacetate (Molecular Probes). After mixing the two cell populations under conditions promoting GJ formation, cells were analyzed by flow cytometry to determine the percentage of cells containing both dyes. It is shown here that Cx26 and Cx43 transfectants display strong homologous communication, as do NMEC and NMF. Furthermore, NMEC mixed with NMF communicate efficiently, Cx26 transfectants communicate with NMEC but not with NMF, and Cx43 transfectants communicate with NMF. Communication between Cx26 TMEC transfectants and NMEC was asymetrical with preferential movement of calcein from TMEC to NMEC. Despite the presence of Cx43 as well as Cx26 encoded proteins in the GJs of NMEC, few Cx43 transfectants communicated with NMEC. No heterologous GJIC was observed between Cx26- and Cx43-transfected TMEC suggesting that heterotypic GJs do not form or that Cx26/Cx43 channels do not permit dye transfer. PMID:8391000

  12. Expression and Function of Connexin 43 in Human Gingival Wound Healing and Fibroblasts

    PubMed Central

    Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari

    2015-01-01

    Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva. PMID:25584940

  13. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.

    PubMed

    Li, Nan; Mruk, Dolores D; Mok, Ka-Wai; Li, Michelle W M; Wong, Chris K C; Lee, Will M; Han, Daishu; Silvestrini, Bruno; Cheng, C Yan

    2016-04-01

    Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.-Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. © FASEB.

  14. The Importance of Connexin Hemichannels During Chondroprogenitor Cell Differentiation in Hydrogel Versus Microtissue Culture Models

    PubMed Central

    Schrobback, Karsten; Klein, Travis Jacob

    2015-01-01

    Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell–cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell–cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5′-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell–cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs. PMID:25693425

  15. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented whenmore » animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB • Off-target effects of connexin32 gene knock-out mice need to be considered.« less

  16. Downregulated Glia Interplay and Increased miRNA-155 as Promising Markers to Track ALS at an Early Stage.

    PubMed

    Cunha, Carolina; Santos, Catarina; Gomes, Cátia; Fernandes, Adelaide; Correia, Alexandra Marçal; Sebastião, Ana Maria; Vaz, Ana Rita; Brites, Dora

    2018-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.

  17. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models.

    PubMed

    Schrobback, Karsten; Klein, Travis Jacob; Woodfield, Tim B F

    2015-06-01

    Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.

  18. The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels.

    PubMed

    García, Isaac E; Villanelo, Felipe; Contreras, Gustavo F; Pupo, Amaury; Pinto, Bernardo I; Contreras, Jorge E; Pérez-Acle, Tomás; Alvarez, Osvaldo; Latorre, Ramon; Martínez, Agustín D; González, Carlos

    2018-05-07

    Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation. © 2018 García et al.

  19. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis

    PubMed Central

    Valdebenito, Silvana; Lou, Emil; Baldoni, John

    2018-01-01

    Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and “normal” surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer. PMID:29695070

  20. Gap Junction Intercellular Communication: A Review of a Potential Platform to Modulate Craniofacial Tissue Engineering

    PubMed Central

    Rossello, Ricardo A.; Kohn, David H.

    2009-01-01

    Defects in craniofacial tissues, resulting from trauma, congenital abnormalities, oncologic resection or progressive deforming diseases, may result in aesthetic deformity, pain and reduced function. Restoring the structure, function and aesthetics of craniofacial tissues represents a substantial clinical problem in need of new solutions. More biologically-interactive biomaterials could potentially improve the treatment of craniofacial defects, and an understanding of developmental processes may help identify strategies and materials that can be used in tissue engineering. One such strategy that can potentially advance tissue engineering is cell–cell communication. Gap junction intercellular communication is the most direct way of achieving such signaling. Gap junction communication through connexin-mediated junctions, in particular connexin 43 (Cx43), plays a major role bone development. Given the important role of Cx43 in controlling development and differentiation, especially in bone cells, controlling the expression of Cx43 may provide control over cell-to-cell communication and may help overcome some of the challenges in craniofacial tissue engineering. Following a review of gap junctions in bone cells, the ability to enhance cell–cell communication and osteogenic differentiation via control of gap junctions is discussed, as is the potential utility of this approach in craniofacial tissue engineering. PMID:18481782

  1. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats.

    PubMed

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-06-14

    BACKGROUND Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. MATERIAL AND METHODS The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. RESULTS Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. CONCLUSIONS These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders.

  2. A multidisciplinary approach to paediatric hearing loss: programme at the centre for hearing intervention and language development, National University Hospital, Singapore.

    PubMed

    Lim, Lynne H Y

    2008-12-01

    The objective is to describe the multidisciplinary management programme at the National University Hospital (NUH) in Singapore for children with hearing impairment (HI). Over 99.95% of babies born at NUH have hearing tested with both otoacoustic emission and automated auditory brainstem response tests by 6 weeks of age. The referral rate to Otolaryngology is 0.5%. Acquired causes of congenital HI are decreasing. Thirty percent of patients at NUH with idiopathic congenital sensorineural HI have DFNB1/ GJB6 Connexin 26 HI. CT scan or MRI imaging has a higher diagnostic yield when there is unilateral, fluctuating or non-Connexin 26 related HI. Routine electrocardiogram and Opthalmology evaluations will exclude associations of fatal cardiac rhythm anomaly and retinopathy. Other investigations are directed by history and clinical examination. There is now a very wide range of increasingly sophisticated medication, neuro-otologic external, middle and inner ear surgery, hearing aids, middle ear implants and cochlear implants available to improve hearing. A multidisciplinary team from neonatology, paediatrics, otolaryngology, audiology, auditory verbal and speech therapy, ophthalmology, radiology, and psychology working closely with the child, family and schools is needed to develop a cost-effective and comprehensive management programme for paediatric HI.

  3. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome

    PubMed Central

    Boyden, Lynn M.; Kam, Chen Y.; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G.; Sidbury, Robert; Mathes, Erin F.; Maguiness, Sheilagh M.; Crumrine, Debra A.; Williams, Mary L.; Hu, Ronghua; Lifton, Richard P.; Elias, Peter M.; Green, Kathleen J.; Choate, Keith A.

    2016-01-01

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. PMID:26604139

  4. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  5. Light- and transmission-electron-microscopic investigations on distribution of CD44, connexin 43 and actin cytoskeleton during the foreign body reaction to a nanoparticular hydroxyapatite in mini-pigs.

    PubMed

    Wenisch, Sabine; Cavalcanti-Adam, E Ada; Tryankowski, Eva; Raabe, Oksana; Kilian, Olaf; Heiss, Christian; Alt, Volker; Arnhold, Stefan; Schnettler, Reinhard

    2012-07-01

    Foreign body giant cells (FBGCs) are formed by fusion of mononucleated macrophages during the foreign body response to a nanoparticulate hydroxyapatite (HA) implanted in defects of mini-pig femura. The molecular mechanisms underlying the formation of FBGCs are still largely obscure. Here we propose connexin 43 (cx43) and CD44 as candidate molecules involved in the fusion process. Immunohistochemistry and ultrastructural immunogold labeling indicated that cx43 is present within the ruffled border of FBGCs and is the main component of gap junctions formed between fusing macrophages. CD44 was strongly expressed during clustering and fusion of mononucleated macrophages. FBGCs adhering apically at the implanted HA showed CD44 reactivity only along the basolateral aspects of the plasma membranes, while podosome formation was observed within the sealing zone and ruffled border. Taken together, these findings demonstrate that cx43 and CD44 are part of the fusion machinery responsible for the formation of FBGCs. Furthermore, the results of microfilament and cx43 labeling suggest a functional role for podosomes and hemi-channels in biomaterial degradation. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication

    PubMed Central

    Lampe, Paul D.; Nguyen, Beth P.; Gil, Susana; Usui, Marcia; Olerud, John; Takada, Yoshikazu; Carter, William G.

    1998-01-01

    Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin α3β1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin α3β1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking α3β1–laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via α3β1 promotes GJIC that integrates individual cells into synchronized epiboles. PMID:9852164

  7. CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats.

    PubMed

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Itsuzaki, Yumi; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Honoki, Kanya

    2007-04-01

    We investigated DNA methylation patterns of E-cadherin and Connexin26 (Cx26) genes in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-Amino Acid-defined (CDAA) diet. Six-wks-old F344 male rats were continuously fed with a CDAA diet for 75 wks, and were then killed. A total of five HCCs were obtained, and genomic DNA was extracted from each HCC for assessment of methylation status in the 5' upstream regions of E-cadherin and Cx26 genes by bisulfite sequencing, comparing to two normal liver tissues. The five HCCs showed highly methylated E-cadherin and Cx26 genes, while these genes in two normal liver tissues were all unmethylated. For analysis of gene expression, real-time quantitative reverse transcription (RT)-polymerase chain reaction (PCR) was performed. Expressions of E-cadherin and Cx26 genes were significantly reduced in the five HCCs (P < 0.0001 and P < 0.001, respectively) compared to normal liver tissues, correlating with their methylation statuses. These results suggested that hypermethylation of E-cadherin and Cx26 genes may be involved in the development of HCCs induced by a CDAA diet in rats.

  8. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide

    PubMed Central

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2015-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance, and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM and perhaps other TMZ-resistant cancers. PMID:26542214

  9. Hypoxic pulmonary vasoconstriction requires connexin 40–mediated endothelial signal conduction

    PubMed Central

    Wang, Liming; Yin, Jun; Nickles, Hannah T.; Ranke, Hannes; Tabuchi, Arata; Hoffmann, Julia; Tabeling, Christoph; Barbosa-Sicard, Eduardo; Chanson, Marc; Kwak, Brenda R.; Shin, Hee-Sup; Wu, Songwei; Isakson, Brant E.; Witzenrath, Martin; de Wit, Cor; Fleming, Ingrid; Kuppe, Hermann; Kuebler, Wolfgang M.

    2012-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is a physiological mechanism by which pulmonary arteries constrict in hypoxic lung areas in order to redirect blood flow to areas with greater oxygen supply. Both oxygen sensing and the contractile response are thought to be intrinsic to pulmonary arterial smooth muscle cells. Here we speculated that the ideal site for oxygen sensing might instead be at the alveolocapillary level, with subsequent retrograde propagation to upstream arterioles via connexin 40 (Cx40) endothelial gap junctions. HPV was largely attenuated by Cx40-specific and nonspecific gap junction uncouplers in the lungs of wild-type mice and in lungs from mice lacking Cx40 (Cx40–/–). In vivo, hypoxemia was more severe in Cx40–/– mice than in wild-type mice. Real-time fluorescence imaging revealed that hypoxia caused endothelial membrane depolarization in alveolar capillaries that propagated to upstream arterioles in wild-type, but not Cx40–/–, mice. Transformation of endothelial depolarization into vasoconstriction involved endothelial voltage-dependent α1G subtype Ca2+ channels, cytosolic phospholipase A2, and epoxyeicosatrienoic acids. Based on these data, we propose that HPV originates at the alveolocapillary level, from which the hypoxic signal is propagated as endothelial membrane depolarization to upstream arterioles in a Cx40-dependent manner. PMID:23093775

  10. A novel missense mutation p.L76P in the GJB2 gene causing nonsyndromic recessive deafness in a Brazilian family.

    PubMed

    Batissoco, A C; Auricchio, M T B M; Kimura, L; Tabith-Junior, A; Mingroni-Netto, R C

    2009-02-01

    Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.

  11. Characteristics of the Localization of Connexin 43 in Satellite Cells during Skeletal Muscle Regeneration In Vivo

    PubMed Central

    Ishido, Minenori; Kasuga, Norikatsu

    2015-01-01

    For myogenesis, new myotubes are formed by the fusion of differentiated myoblasts. In the sequence of events for myotube formation, intercellular communication through gap junctions composed of connexin 43 (Cx43) plays critical roles in regulating the alignment and fusion of myoblasts in advances of myotube formation in vitro. On the other hand, the relationship between the expression patterns of Cx43 and the process of myotube formation in satellite cells during muscle regeneration in vivo remains poorly understood. The present study investigated the relationship between Cx43 and satellite cells in muscle regeneration in vivo. The expression of Cx43 was detected in skeletal muscles on day 1 post-muscle injury, but not in control muscles. Interestingly, the expression of Cx43 was not localized on the inside of the basement membrane of myofibers in the regenerating muscles. Moreover, although the clusters of differentiated satellite cells, which represent a more advanced stage of myotube formation, were observed on the inside of the basement membrane of myofibers in regenerating muscles, the expression of Cx43 was not localized in the clusters of these satellite cells. Therefore, in the present study, it was suggested that Cx43 may not directly contribute to muscle regeneration via satellite cells. PMID:26019374

  12. 2',5'-Dihydroxychalcone down-regulates endothelial connexin43 gap junctions and affects MAP kinase activation.

    PubMed

    Lee, Yi-Nan; Yeh, Hung-I; Tian, Tin-Yi; Lu, Wen-Wei; Ko, Yu-Shien; Tsai, Cheng-Ho

    2002-09-30

    We examined the effect of 2',5'-dihydroxychalcone on connexin43 (Cx43) expression and gap-junctional communication in human umbilical vein endothelial cells (HUVEC). The result showed that expression of Cx43 is rapidly reduced by 2',5'-dihydroxychalcone in a dose-dependent manner, Concomitantly, the communication function, determined by fluorescence recovery after photobleaching (FRAP), is decreased. We further investigated whether the mitogen-activated protein (MAP) kinase and the degradation pathway of gap junctions are involved in these processes. Although the change of Cx43 is not affected by the level of fetal calf serum (FCS) used in the medium, activation of MAP kinase varies, depending on the FCS level. At a low level (0.5%), the chalcone inhibits the activation, like PD98059, a specific inhibitor of MAP kinase kinase. However, at a high level (20%), MAP kinase is activated. On the other hand, the chalcone's down-regulating effect on Cx43, while is totally blocked by protease inhibitors leupeptin and N-acetyl-leucyl-norleucinal (ALLN), persists in the presence of PD98059, We concluded that 2',5'-dihydroxychalcone down-regulates Cx43 expression and gap-junctional communication in the HUVEC via enhancement of the proteolysis pathway, and this compound possesses dual effects on MAP kinase activation.

  13. Ultrastructure and regulation of lateralized connexin43 in the failing heart.

    PubMed

    Hesketh, Geoffrey G; Shah, Manish H; Halperin, Victoria L; Cooke, Carol A; Akar, Fadi G; Yen, Timothy E; Kass, David A; Machamer, Carolyn E; Van Eyk, Jennifer E; Tomaselli, Gordon F

    2010-04-02

    Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.

  14. Knockdown of connexin43-mediated regulation of the zone of polarizing activity in the developing chick limb leads to digit truncation.

    PubMed

    Law, Lee Yong; Lin, Jun Sheng; Becker, David L; Green, Colin R

    2002-12-01

    In the developing chick wing, the use of antisense oligodeoxynucleotides to transiently knock down the expression of the gap junction protein, connexin43 (Cx43), results in limb patterning defects, including deletion of the anterior digits. To understand more about how such defects arise, the effects of transient Cx43 knockdown on the expression patterns of several genes known to play pivotal roles in limb formation were examined. Sonic hedgehog (Shh), which is normally expressed in the zone of polarizing activity (ZPA) and is required to maintain both the ZPA and the apical ectodermal ridge (AER), was found to be downregulated in treated limbs within 30 h. Bone morphogenetic protein-2 (Bmp-2), a gene downstream of Shh, was similarly downregulated. Fibroblast growth factor-8 expression, however, was unaltered 30 h after treatment but was greatly reduced at 48 h post-treatment, when the AER begins to regress. Expressions of Bmp-4 and Muscle segment homeobox-like gene (Msx-1) were not affected at any of the time points examined. Cx43 expression is therefore involved in some, but not all patterning cascades, and appears to play a role in the regulation of ZPA activity.

  15. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes

    PubMed Central

    Ram, Rashmi; Wescott, Andrew P.; Varandas, Katherine; Dirksen, Robert T.

    2013-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1. PMID:24186093

  16. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes.

    PubMed

    Ram, Rashmi; Wescott, Andrew P; Varandas, Katherine; Dirksen, Robert T; Blaxall, Burns C

    2014-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1.

  17. Immunohistochemical Analysis of Connexin43 Expression in Infertile Human Testes

    PubMed Central

    Matsuo, Yuzo; Nomata, Koichiro; Eguchi, Jiro; Aoki, Daiyu; Hayashi, Tomayoshi; Hishikawa, Yoshitaka; Kanetake, Hiroshi; Shibata, Yoshisada; Koji, Takehiko

    2007-01-01

    Connexin43 (Cx43) is abundantly expressed in mammalian testes and implicated in the regulation of cell-to-cell interaction between germ cells and Sertoli cells, which is essential to the normal process of spermatogenesis. In the present study, we investigated the relation between Cx43 expression and the degree of spermatogenesis in infertile human testes. Immunohistochemical analysis of Cx43 was performed on testicular biopsies from 29 patients with azoospermia (n=23) and severe oligospermia (n=6), who gave informed consent to this experiment. The degree of testicular spermatogenesis was evaluated by Johnsen score. In the interstitium, immunostaining for Cx43 was localized to some focal parts of plasma membrane between neighboring Leydig cells. In seminiferous tubules with normal spermatogenesis, Cx43 expression was found between Sertoli cells and germ cells. However, Cx43 expression in maturation arrest was decreased and located mainly in the basal compartment of seminiferous tubules. Finally, there was a significant positive correlation between histological score of spermatogenesis and intensity of Cx43 (p=0.0294). These data suggest that the alteration of Cx43 expression may be involved in spermatogenic impairment, and that the communication between Sertoli cells and germ cells through Cx43 may be important for maturation of spermatogenesis. PMID:17653298

  18. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    PubMed

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, P<0.05], and octanol preconditioning significantly attenuated the cell swelling [(113∓6)%, P<0.05]. SI/R caused a significant reduction of the cell viability compared to the control cells [(19∓2)% vs (45∓3)%, P<0.01], and octanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, P<0.01]. Connexin 43-formed hemichannels are involved in the regulation of cardiomyocyte volumes induced by SI/R challenge, and octanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  19. Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension

    PubMed Central

    Wagner, Charlotte; Jobs, Alexander; Schweda, Frank; Kurtz, Lisa; Kurt, Birguel; Sequeira Lopez, Maria L.; Gomez, R. Ariel; van Veen, Toon A.B.; de Wit, Cor; Kurtz, Armin

    2011-01-01

    Renin-producing juxtaglomerular cells are connected to each other and to endothelial cells of afferent arterioles by gap junctions containing Connexin 40 (Cx40), abundantly expressed by these two cell types. Here, we generated mice with cell-specific deletion of Cx40 in endothelial and in renin-producing cells, as its global deletion caused local dissociation of renin-producing cells from endothelial cells, renin hypersecretion, and hypertension. In mice lacking endothelial Cx40, the blood pressure, renin-producing cell distribution, and the control of renin secretion were similar to wild-type mice. In contrast, mice deficient for Cx40 in renin-producing cells were hypertensive and these cells were ectopically localized. Although plasma renin activity and kidney renin mRNA levels of these mice were not different from controls, the negative regulation of renin secretion by pressure was inverted to a positive feedback in kidneys lacking Cx40 in renin-producing cells. Thus, our findings show that endothelial Cx40 is not essential for the control of renin expression and/or release. Cx40 in renin-producing cells is required for their correct positioning in the juxtaglomerular area and the control of renin secretion by pressure. PMID:20686449

  20. Mutational studies in X-linked Charcot-Marie-Tooth disease (CMTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherryson, A.K.; Yeung, L.; Kennerson, M.L.

    1994-09-01

    Charcot-Marie-Tooth disease, also known as hereditary motor and sensory neuropathy (HMSN), is a heterogeneous group of slowly progressive disorders of the peripheral nerve. X-linked CMT (CMTX) is characterized by slow motor nerve conduction velocities in affected males and the presence of mildly affected or normal carrier females with intermediate or normal nerve conduction velocities. CMTX, which has an incidence of 3.1 per 100,000 and accounts for approximately 10% of CMT cases, has been mapped to Xq13. One of the genes lying in this region, connexin 32, has been found to contain alterations in individuals affected with X-linked CMT. We havemore » identified our X-linked families from dominant type 1 CMT families using the clinical criteria given above. These families were screened for point mutations in connexin 32. We have identified three missense mutations, a G{r_arrow}A transition at amino acid 35 (valine to methionine), a C{r_arrow}G transition at amino acid 158 (proline to alanine) and a T{r_arrow}A transition at amino acid 182 (serine to threonine). Another family showed a 18 bp deletion, which removed the amino acid 111 to 116 inclusive (histidine, glycine, aspartic acid, proline, leucine, histidine).« less

  1. Prevalence of GJB2 (connexin-26) and GJB6 (connexin-30) mutations in a cohort of 300 Brazilian hearing-impaired individuals: implications for diagnosis and genetic counseling.

    PubMed

    Batissoco, Ana Carla; Abreu-Silva, Ronaldo Serafim; Braga, Maria Cristina Célia; Lezirovitz, Karina; Della-Rosa, Valter; Alfredo, Tabith; Otto, Paulo Alberto; Mingroni-Netto, Regina Célia

    2009-02-01

    Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness. Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6-D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected c.167delT, p.Trp24X, p.Val37Ile, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro. Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27Ile, p.Met34Thr, p.Ala40Ala, and p.Gly160Ser. Two previously reported mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. The present study demonstrates that mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.

  2. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Mok, Ka-Wai; Li, Michelle W. M.; Wong, Chris K. C.; Lee, Will M.; Han, Daishu; Silvestrini, Bruno; Cheng, C. Yan

    2016-01-01

    Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated rats versus empty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction–permeability barrier based on a functional in vivo assay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.—Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. PMID:26678449

  3. Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation.

    PubMed

    Choudhary, Mayur; Naczki, Christine; Chen, Wenhong; Barlow, Keith D; Case, L Douglas; Metheny-Barlow, Linda J

    2015-05-23

    Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation. Mural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43. Using parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support detected by NG2 staining. Our data indicate that i) functional Cx43 is required for mural cell-induced endothelial quiescence, and ii) downregulation of Cx43 GJ by tumors frees endothelium to respond to angiogenic cues. These data define a novel and important role for maintained Cx43 function in regulation of vessel quiescence, and suggest its loss may contribute to pathological tumor angiogenesis.

  4. Voltage-dependent conformational changes in connexin channels.

    PubMed

    Bargiello, Thaddeus A; Tang, Qingxiu; Oh, Seunghoon; Kwon, Taekyung

    2012-08-01

    Channels formed by connexins display two distinct types of voltage-dependent gating, termed V(j)- or fast-gating and loop- or slow-gating. Recent studies, using metal bridge formation and chemical cross-linking have identified a region within the channel pore that contributes to the formation of the loop-gate permeability barrier. The conformational changes are remarkably large, reducing the channel pore diameter from 15 to 20Å to less than 4Å. Surprisingly, the largest conformational change occurs in the most stable region of the channel pore, the 3(10) or parahelix formed by amino acids in the 42-51 segment. The data provide a set of positional constraints that can be used to model the structure of the loop-gate closed state. Less is known about the conformation of the V(j)-gate closed state. There appear to be two different mechanisms; one in which conformational changes in channel structure are linked to a voltage sensor contained in the N-terminus of Cx26 and Cx32 and a second in which the C-terminus of Cx43 and Cx40 may act either as a gating particle to block the channel pore or alternatively to stabilize the closed state. The later mechanism utilizes the same domains as implicated in effecting pH gating of Cx43 channels. It is unclear if the two V(j)-gating mechanisms are related or if they represent different gating mechanisms that operate separately in different subsets of connexin channels. A model of the V(j)-closed state of Cx26 hemichannel that is based on the X-ray structure of Cx26 and electron crystallographic structures of a Cx26 mutation suggests that the permeability barrier for V(j)-gating is formed exclusively by the N-terminus, but recent information suggests that this conformation may not represent a voltage-closed state. Closed state models are considered from a thermodynamic perspective based on information from the 3.5Å Cx26 crystal structure and molecular dynamics (MD) simulations. The applications of computational and experimental methods to define the path of allosteric molecular transitions that link the open and closed states are discussed. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. DURIP - Upgrade of the Meridian ACAS-470 for Toxicological Research

    DTIC Science & Technology

    1990-01-18

    Flow Cytometry and Fluorescence Recovery After PhotobleachIng. Scanningi Microscopy. 2 14) 21 53 -2163. Li~j. Z-Y, YMEL Sanders. and V W Hu. (1989...riinn’I.~ - correlation with increasing tumorigenicity. Northern an- alysis showed reduced levels of connexin 43 in ce!1 lines Fpi~m~iIisFP - exhibiting...cells to the curcinogenic process", In: Mouse Liver CarcinoQgnesis; 3 Mechanisms and Species Comrarisons, T.J. Slaga, Ed., Alan R. Liss, Inc., New

  6. Detection of Serum Lysophosphatidic Acids Using Affinity Binding and Surface Enhanced Laser Deorption/Ionization (SELDI) Time of Flight Mass Spectrometry

    DTIC Science & Technology

    2006-04-01

    Schmidt, S. A., Clark, K. J. & Murray, A. W. Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin - 43 in...hours later adherent and floating cells were collected and analyzed for cell cycle and apoptosis (hypodiploid peak) using flow cytometry of propidium...pathophysiology of ovarian cancer, provides a major opportunity to identify markers that could contribute to early diagnosis. We have demonstrated that the

  7. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-09-01

    Isoleucine and A=alanine. In L212A/I213A the leucine at position 212 and isoleucine at position 213 were mutated to alanine. Similar strategy was used to...and isoleucine at the indicated amino acid residues were mutated to alanine using site-directed mutagenesis (Figure 3). Expression of Cx32 and...Its Mutants and Gap Junction Assembly Human LNCaP cells neither express Cx32 nor form functional GJs [23]. We introduced WT-Cx32 and various

  8. A derivative of oleamide potently inhibits the spontaneous metastasis of mouse melanoma BL6 cells.

    PubMed

    Ito, Akihiko; Morita, Nobuyoshi; Miura, Daisaku; Koma, Yu-Ichiro; Kataoka, Tatsuki R; Yamasaki, Hiroshi; Kitamura, Yukihiko; Kita, Yasuyuki; Nojima, Hiroshi

    2004-10-01

    We reported previously that the abnormally augmented expression of connexin 26 (Cx26) is responsible for the enhanced spontaneous metastasis of mouse BL6 melanoma cells, and that the exogenous expression of a dominant negative form of Cx26 inhibits the spontaneous metastasis of BL6. Here we show that daily intraperitoneal (i.p.) injections of oleamide, a sleep-inducing lipid hormone, weakly inhibited the spontaneous metastasis of BL6 cells. To obtain a more effective reagent, 19 oleamide derivatives were chemically synthesized and tested for their ability to inhibit the gap junction-mediated intercellular communications (GJIC) that are formed between HeLa cells by the ectopic expression of Cx26 or Cx43. One of these, denoted metastasis inhibitor-18 (MI-18), inhibited the GJIC formed by Cx26 as well as oleamide but unlike oleamide, which is a non-selective inhibitor of connexin, it did not inhibit the GJIC formed by Cx43. Daily i.p. injections of MI-18 potently blocked the spontaneous metastasis of BL6 cells down to 15% of that in the untreated control mice. MI-18 was safe because even after >7 weeks of daily injections, the survival rate of the mice was 93%. We propose that MI-18 may serve as a novel and clinically important prototype of a potent inhibitor of spontaneous metastasis.

  9. Connexin 32 and its derived homotypic gap junctional intercellular communication inhibit the migration and invasion of transfected HeLa cells via enhancement of intercellular adhesion.

    PubMed

    Yang, Jie; Liu, Bing; Wang, Qin; Yuan, Dongdong; Hong, Xiaoting; Yang, Yan; Tao, Liang

    2011-01-01

    The effects of connexin (Cx) and its derived homotypic gap junctional intercellular communication (GJIC) between tumor cells on the invasion of metastatic cancers and the underlying mechanisms remain unclear. In this study, we investigated the influence of Cx32 and the homotypic GJIC mediated by this Cx on the migration, invasion and intercellular adhesion of transfected HeLa cells. The expression of Cx32 significantly increased cell adhesion and inhibited migration and invasion. The inhibition of GJIC by oleamide, a widely used GJIC inhibitor, reduced the enhanced adhesion and partly reversed the decreased migration and invasion that had been induced by Cx32 expression. Blockage of the p38 and extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase (ERK1/2 MAPKs) pathways using their specific inhibitors attenuated the effects of Cx32, but not those of GJIC, on cell adhesion, migration and invasion. These results indicate that the homotypic GJIC mediated by Cx32, as well as the Cx itself, inhibit cell migration and invasion, most likely through the elevation of intercellular adhesion. The suppressive effect of Cx32 on the migration and invasion of cancer cells, but not that of its derived homotypic GJIC, partly depends on the activation of the p38 and the ERK1/2 MAPKs pathways.

  10. Connexin-Based Therapeutics and Tissue Engineering Approaches to the Amelioration of Chronic Pancreatitis and Type I Diabetes: Construction and Characterization of a Novel Prevascularized Bioartificial Pancreas.

    PubMed

    Rhett, J Matthew; Wang, Hongjun; Bainbridge, Heather; Song, Lili; Yost, Michael J

    2016-01-01

    Total pancreatectomy and islet autotransplantation is a cutting-edge technique to treat chronic pancreatitis and postoperative diabetes. A major obstacle has been low islet cell survival due largely to the innate inflammatory response. Connexin43 (Cx43) channels play a key role in early inflammation and have proven to be viable therapeutic targets. Even if cell death due to early inflammation is avoided, insufficient vascularization is a primary obstacle to maintaining the viability of implanted cells. We have invented technologies targeting the inflammatory response and poor vascularization: a Cx43 mimetic peptide that inhibits inflammation and a novel prevascularized tissue engineered construct. We combined these technologies with isolated islets to create a prevascularized bioartificial pancreas that is resistant to the innate inflammatory response. Immunoconfocal microscopy showed that constructs containing islets express insulin and possess a vascular network similar to constructs without islets. Glucose stimulated islet-containing constructs displayed reduced insulin secretion compared to islets alone. However, labeling for insulin post-glucose stimulation revealed that the constructs expressed abundant levels of insulin. This discrepancy was found to be due to the expression of insulin degrading enzyme. These results suggest that the prevascularized bioartificial pancreas is potentially a tool for improving long-term islet cell survival in vivo.

  11. Modulation of Brain Hemichannels and Gap Junction Channels by Pro-Inflammatory Agents and Their Possible Role in Neurodegeneration

    PubMed Central

    Sáez, Pablo J.; Shoji, Kenji F.; Schalper, Kurt A.; Palacios–Prado, Nicolás; Velarde, Victoria; Giaume, Christian; Bennett, Michael V.L.; Sáez, Juan C.

    2009-01-01

    Abstract In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process. Antiox. Redox Signal. 11, 369–399. PMID:18816186

  12. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration.

    PubMed

    Sapir, Yulia; Kryukov, Olga; Cohen, Smadar

    2011-03-01

    Cardiac tissue engineering aims to repair damaged myocardial tissues by applying heart patches created in vitro. Herein, we explored the possible role of a combination of two matrix-attached peptides, the adhesion peptide G(4)RGDY and heparin-binding peptide G(4)SPPRRARVTY (HBP) in cardiac tissue regeneration. Neonatal rat cardiac cells were seeded into unmodified, single peptide or double peptide-attached alginate scaffolds, all having the same physical features of porosity, hydrogel forming and matrix stiffness. The cardiac tissue developed in the HBP/RGD-attached scaffolds revealed the best features of a functional muscle tissue, as judged by all studied parameters, i.e., immunostaining of cardiac cell markers, histology, western blot of protein expressions and metabolic activity. By day 7, well-developed myocardial fibers were observed in these cell constructs. At 14 days the HBP/RGD-attached constructs presented an isotropic myofiber arrangement, while no such arrangement was seen in the other constructs. The expression levels of α-actinin, N-cadherin and Connexin-43, showing preservation and an increase in Connexin-43 expression (Cx-43) with time, further supported the formation a contractile muscle tissue in the HBP/RGD-attached scaffolds. Collectively, the attachment of combinatorial peptides representing different signaling in ECM-cell interactions proved to play a key role, contributing to the formation of a functional cardiac muscle tissue, in vitro. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats

    PubMed Central

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    Background Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. Material/Methods The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. Results Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. Conclusions These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942

  14. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  15. Effects of multipurpose solutions (MPS) for hydrogel contact lenses on gap-junctional intercellular communication (GJIC) in rabbit corneal keratocytes.

    PubMed

    Sumide, Taizo; Tsuchiya, Toshie

    2003-02-15

    To ensure the effects of multipurpose solutions (MPS) for hydrogel contact lenses on the cornea, the inhibitory activity of three types of MPS on corneal cells has been evaluated with the use of scrape loading and dye transfer assay (SLDT assay) and Western blotting on rabbit corneal keratocytes (RC4). In SLDT assay, MPS-A and poloxamine showed dose-dependent inhibitory activity, suggesting the inhibitory action of MPS-A and poloxamine to gap junctional intercellular communication (GJIC) in the tested cells. Moreover, after treatment with MPS-A, the GJIC was initially inhibited within 4 h, and thereafter gradually turned to an approximately 60% level of the initial value. When MPS-A was removed from the incubation media after exposure of the cells, the recovery of GJIC was time dependent and returned to approximately initial levels at 8 h. Complete recovery was established after approximately 24 h. These findings suggested that the inhibitory action of MPS-A on corneal keratocytes was reversible. This inhibition was accompanied by a decrease in the quantity of connexin-43, which is a major protein constituting the gap junctional channel of these cells, and its change in the phosphorylation state. Taken together, it was suggested that MPS-A interacts with connexin-43, inducing an inhibitory action on GJIC. (c) 2002 Wiley Periodicals, Inc.

  16. Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment.

    PubMed

    Pecoraro, Michela; Rodríguez-Sinovas, Antonio; Marzocco, Stefania; Ciccarelli, Michele; Iaccarino, Guido; Pinto, Aldo; Popolo, Ada

    2017-10-11

    The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1-3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca 2+ ] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca 2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca 2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.

  17. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation.

    PubMed

    Kim, D Y; Kam, Y; Koo, S K; Joe, C O

    1999-02-26

    The regulation of gap junctional permeability by phosphorylation was examined in a model system in which connexin 43 (Cx43) gap junction hemichannels were reconstituted in lipid vesicles. Cx43 was immunoaffinity-purified from rat brain, and Cx43 channels were reconstituted into unilamellar phospholipid liposomes. The activities of the reconstituted channels were measured by monitoring liposome permeability. Liposomes containing the Cx43 protein were fractionated on the basis of permeability to sucrose using sedimentation in an iso-osmolar density gradient. The gradient allowed separation of the sucrose-permeable and -impermeable liposomes. Liposomes that were permeable to sucrose were also permeable to the communicating dye molecule lucifer yellow. Permeability, and therefore activity of the reconstituted Cx43 channels, were directly dependent on the state of Cx43 phosphorylation. The permeability of liposomes containing Cx43 channels was increased by treatment of liposomes with calf intestinal phosphatase. Moreover, liposomes formed with Cx43 that had been dephosphorylated by calf intestinal phosphatase treatment showed increased permeability to sucrose. The role of phosphorylation in the gating mechanism of Cx43 channels was supported further by the observation that phosphorylation of Cx43 by mitogen-activated protein kinase reversibly reduced the permeability of liposomes containing dephosphorylated Cx43. Our results show a direct correlation between gap junctional permeability and the phosphorylation state of Cx43.

  18. Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice.

    PubMed

    Zhang, Jianhai; Li, Zhihui; Qie, Mingli; Zheng, Ruibo; Shetty, Jagathpala; Wang, Jundong

    2016-08-01

    Fluoride and sulfur dioxide (SO2), two well-known environmental toxicants, have been implicated to have adverse effects on male reproductive health in humans and animals. The objective of this study to investigate if the BTB is one of the pathways that lead to reproductive toxicity of sodium fluoride and sulfur dioxide alone or in combination, in view of the key role of blood testis barrier (BTB) in testis. The results showed that a marked decrease in sperm quality, and altered morphology and ultrastructure of BTB in testis of mice exposure to fluoride (100 mg NaF/L in drinking water) or/and sulfur dioxide (28 mg SO2/m(3), 3 h/day). Meanwhile, the mRNA expression levels of some vital BTB-associated proteins, including occluding, claudin-11, ZO-1, Ncadherin, α-catenin, and connexin-43 were all strikingly reduced after NaF exposure, although only the reduction of DSG-2 was statistically significant in all treatment groups. Moreover, the proteins expressions also decreased significantly in claudin-11, N-cadherin, α-catenin, connexin-43 and desmoglein-2 in mice treated with fluoride and/or SO2. These changes in BTB structure and constitutive proteins may therefore be connected with the low sperm quality in these mice. The role of fluoride should deserves more attention in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Effect of a Connexin43-Based Peptide on the Healing of Chronic Venous Leg Ulcers: A Multicenter, Randomized Trial

    PubMed Central

    Ghatnekar, Gautam S; Grek, Christina L; Armstrong, David G; Desai, Sanjay C; Gourdie, Robert G

    2015-01-01

    The gap junction protein, connexin43 (Cx43), has critical roles in the inflammatory, edematous, and fibrotic processes following dermal injury and during wound healing, and is abnormally upregulated at the epidermal wound margins of venous leg ulcers (VLUs). Targeting Cx43 with ACT1, a peptide mimetic of the carboxyl-terminus of Cx43, accelerates fibroblast migration and proliferation, and wound reepithelialization. In a prospective, multicenter clinical trial conducted in India, adults with chronic VLUs were randomized to treatment with an ACT1 gel formulation plus conventional standard-of-care (SOC) protocols, involving maintaining wound moisture and four-layer compression bandage therapy, or SOC protocols alone. The primary end point was mean percent ulcer reepithelialization from baseline to 12 weeks. A significantly greater reduction in mean percent ulcer area from baseline to 12 weeks was associated with the incorporation of ACT1 therapy (79% (SD 50.4)) as compared with compression bandage therapy alone (36% (SD 179.8); P=0.02). Evaluation of secondary efficacy end points indicated a reduced median time to 50 and 100% ulcer reepithelialization for ACT1-treated ulcers. Incorporation of ACT1 in SOC protocols may represent a well-tolerated, highly effective therapeutic strategy that expedites chronic venous ulcer healing by treating the underlying ulcer pathophysiology through Cx43-mediated pathways. PMID:25072595

  20. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    PubMed

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.

  1. TLR2 Mediates Gap Junctional Intercellular Communication through Connexin-43 in Intestinal Epithelial Barrier Injury*

    PubMed Central

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke

    2009-01-01

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1α-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair. PMID:19528242

  2. Cell behavior of human mesenchymal stromal cells in response to silica/collagen based xerogels and calcium deficient culture conditions.

    PubMed

    Wagner, Alena-Svenja; Glenske, Kristina; Henß, Anja; Kruppke, Benjamin; Rößler, Sina; Hanke, Thomas; Moritz, Andreas; Rohnke, Marcus; Kressin, Monika; Arnhold, Stefan; Schnettler, Reinhard; Wenisch, Sabine

    2017-07-04

    Herein, we aim to elucidate osteogenic effects of two silica-based xerogels with different degrees of bioactivity on human bone-derived mesenchymal stromal cells by means of scanning electron microscopy, quantitative PCR enhanced osteogenic effects and the formation of an extracellular matrix which could be ascribed to the sample with lower bioactivity. Given the high levels of bioactivity, the cells revealed remarkable sensitivity to extremely low calcium levels of the media. Therefore, additional experiments were performed to elucidate cell behavior under calcium deficient conditions. The results refer to capacity of the bone-derived stromal cells to overcome calcium deficiency even though proliferation, migration and osteogenic differentiation capabilities were diminished. One reason for the differences of the cellular response (on tissue culture plates versus xerogels) to calcium deficiency seems to be the positive effect of silica. The silica could be detected intracellularly as shown by time of flight-secondary ion mass spectrometry after cultivation of primary cells for 21 days on the surfaces of the xerogels. Thus, the present findings refer to different osteogenic differentiation potentials of the xerogels according to the different degrees of bioactivity, and to the role of silica as a stimulator of osteogenesis. Finally, the observed pattern of connexin-based hemichannel gating supports the assumption that connexin 43 is a key factor for calcium-mediated osteogenesis in bone-derived mesenchymal stromal cells.

  3. Multipotency of skeletal muscle stem cells on their native substrate and the expression of Connexin 43 during adoption of adipogenic and osteogenic fate.

    PubMed

    Elashry, Mohamed I; Heimann, Manuela; Wenisch, Sabine; Patel, Ketan; Arnhold, Stefan

    2017-10-01

    Muscle regeneration is performed by resident muscle stem cells called satellite cells (SC). However they are multipotent, being able to adopt adipogenic and osteogenic fate under the correct stimuli. Since SC behavior can be regulated by the extra-cellular matrix, we examined the robustness of the myogenic programme of SC on their native substrate-the surface of a myofiber. We show that the native substrate supports myogenic differentiation judged by the expression of members of the Myogenic Determination Factor (MRF) family. However SC even on their native substrate can be induced into adopting adipogenic or osteogenic fate. Furthermore conditions that support adipose or bone formation inhibit the proliferation of SC progeny as well as their migration. We show that Connexin43 (Cx43), a gap junction complex protein, is only expressed by activated and not quiescent SC. Furthermore, it is not expressed by SC that are in the process of changing their fate. Lastly we show that intact adult mouse muscle contains numerous cells expressing Cx43 and that the density of these cells seems to be related to capillary density. We suggest the Cx43 expression is localized to angioblasts and is more prominent in oxidative slow muscle compared to glycolytic fast muscle. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  4. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    PubMed

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart

    NASA Astrophysics Data System (ADS)

    Mahoney, Vanessa M.; Mezzano, Valeria; Mirams, Gary R.; Maass, Karen; Li, Zhen; Cerrone, Marina; Vasquez, Carolina; Bapat, Aneesh; Delmar, Mario; Morley, Gregory E.

    2016-05-01

    Studies have demonstrated non-myocytes, including fibroblasts, can electrically couple to myocytes in culture. However, evidence demonstrating current can passively spread across scar tissue in the intact heart remains elusive. We hypothesize electrotonic conduction occurs across non-myocyte gaps in the heart and is partly mediated by Connexin43 (Cx43). We investigated whether non-myocytes in ventricular scar tissue are electrically connected to surrounding myocardial tissue in wild type and fibroblast-specific protein-1 driven conditional Cx43 knock-out mice (Cx43fsp1KO). Electrical coupling between the scar and uninjured myocardium was demonstrated by injecting current into the myocardium and recording depolarization in the scar through optical mapping. Coupling was significantly reduced in Cx43fsp1KO hearts. Voltage signals were recorded using microelectrodes from control scars but no signals were obtained from Cx43fsp1KO hearts. Recordings showed significantly decreased amplitude, depolarized resting membrane potential, increased duration and reduced upstroke velocity compared to surrounding myocytes, suggesting that the non-excitable cells in the scar closely follow myocyte action potentials. These results were further validated by mathematical simulations. Optical mapping demonstrated that current delivered within the scar could induce activation of the surrounding myocardium. These data demonstrate non-myocytes in the scar are electrically coupled to myocytes, and coupling depends on Cx43 expression.

  6. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    PubMed

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  7. A Novel N14Y Mutation in Connexin26 in Keratitis-Ichthyosis-Deafness Syndrome

    PubMed Central

    Arita, Ken; Akiyama, Masashi; Aizawa, Tomoyasu; Umetsu, Yoshitaka; Segawa, Ikuo; Goto, Maki; Sawamura, Daisuke; Demura, Makoto; Kawano, Keiichi; Shimizu, Hiroshi

    2006-01-01

    Connexins (Cxs) are transmembranous proteins that connect adjacent cells via channels known as gap junctions. The N-terminal 21 amino acids of Cx26 are located at the cytoplasmic side of the channel pore and are thought to be essential for the regulation of channel selectivity. We have found a novel mutation, N14Y, in the N-terminal domain of Cx26 in a case of keratitis-ichthyosis-deafness syndrome. Reduced gap junctional intercellular communication was observed in the patient’s keratinocytes by the dye transfer assay using scrape-loading methods. The effect of this mutation on molecular structure was investigated using synthetic N-terminal peptides from both wild-type and mutated Cx26. Two-dimensional 1H nuclear magnetic resonance and circular dichroism measurements demonstrated that the secondary structures of these two model peptides are similar to each other. However, several novel nuclear Overhauser effect signals appeared in the N14Y mutant, and the secondary structure of the mutant peptide was more susceptible to induction of 2,2,2-trifluoroethanol than wild type. Thus, it is likely that the N14Y mutation induces a change in local structural flexibility of the N-terminal domain, which is important for exerting the activity of the channel function, resulting in impaired gap junctional intercellular communication. PMID:16877344

  8. Rapid Changes in Connexin-43 in Response to Genotoxic Stress Stabilize Cell–Cell Communication in Corneal Endothelium

    PubMed Central

    Roh, Danny S.

    2011-01-01

    Purpose. To determine how corneal endothelial (CE) cells respond to acute genotoxic stress through changes in connexin-43 (Cx43) and gap junction intercellular communication (GJIC). Methods. Cultured bovine CE cells were exposed to mitomycin C or other DNA-damaging agents. Changes in the levels, stability, binding partners, and trafficking of Cx43 were assessed by Western blot analysis and immunostaining. Live-cell imaging of a Cx43–green fluorescent protein (GFP) fusion protein was used to evaluate internalization of cell surface Cx43. Dye transfer and fluorescent recovery after photobleaching (FRAP) assessed GJIC. Results. After genotoxic stress, Cx43 accumulated in large gap junction plaques, had reduced zonula occludens-1 binding, and displayed increased stability. Live-cell imaging of Cx43–GFP plaques in stressed CE cells revealed reduced gap junction internalization and degradation compared to control cells. Mitomycin C enhanced transport of Cx43 from the endoplasmic reticulum to the cell surface and formation of gap junction plaques. Mitomycin C treatment also protected GJIC from disruption after cytokine treatment. Discussion. These results show a novel CE cell response to genotoxic stress mediated by marked and rapid changes in Cx43 and GJIC. This stabilization of cell–cell communication may be an important early adaptation to acute stressors encountered by CE. PMID:21666237

  9. The E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin 43 to promote loss of gap junctions.

    PubMed

    Totland, Max Z; Bergsland, Christian H; Fykerud, Tone A; Knudsen, Lars M; Rasmussen, Nikoline L; Eide, Peter W; Yohannes, Zeremariam; Sørensen, Vigdis; Brech, Andreas; Lothe, Ragnhild A; Leithe, Edward

    2017-09-01

    Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin 43 (Cx43; also known as GJA1) is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Cx43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of Cx43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the Cx43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of Cx43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and Cx43 degradation in human carcinoma cells. © 2017. Published by The Company of Biologists Ltd.

  10. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea

    PubMed Central

    Chan, Dylan K.; Rouse, Stephanie L.

    2016-01-01

    Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss. PMID:27959894

  11. TGF-beta1 inhibits Cx43 expression and formation of functional syncytia in cultured smooth muscle cells from human detrusor.

    PubMed

    Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2009-02-01

    Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.

  12. Connexin 43 expression on peripheral blood eosinophils: role of gap junctions in transendothelial migration.

    PubMed

    Vliagoftis, Harissios; Ebeling, Cory; Ilarraza, Ramses; Mahmudi-Azer, Salahaddin; Abel, Melanie; Adamko, Darryl; Befus, A Dean; Moqbel, Redwan

    2014-01-01

    Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx)43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.

  13. Zoledronate promotes bone formation by blocking osteocyte-osteoblast communication during bone defect healing.

    PubMed

    Cui, Pingping; Liu, Hongrui; Sun, Jing; Amizuka, Norio; Sun, Qinfeng; Li, Minqi

    2018-01-01

    Nitrogen-containing bisphosphonates (N-BPs) are potent antiresorptive drugs and their actions on osteoclasts have been studied extensively. Recent studies have suggested that N-BPs also target bone-forming cells. However, the precise mechanism of N-BPs in osteoblasts is paradoxical, and the specific role of osteocytes is worthy of in-depth study. Here, we investigated the cellular mechanisms of N-BPs regulating bone defect healing by zoledronate (ZA). Bone histomorphometry confirmed an increase in new bone formation by systemic ZA administration. ZA induced more alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-positive osteoclasts residing on the bone surface. Inexplicably, ZA increased SOST expression in osteocytes embedded in the bone matrix, which was not compatible with the intense osteoblast activity on the bone surface. ZA induced heterogeneous osteocytes and disturbed the distribution of the osteocytic-canalicular system (OLCS). Furthermore, according to the degree of OLCS regularity, dentin matrix protein 1 reactivity had accumulated around osteocytes in the ZA group, but it was distributed evenly in the OLCS of the control group. The control group showed a dense array of the gap junction protein connexin 43. However, connexin 43 was extremely sparse after ZA administration. In summary, ZA treatment reduces gap junction connections and blocks cellular communication between osteocytes and osteoblasts. Retaining SOST expression in osteocytes leads to activation of the Wnt signaling pathway and subsequent bone formation.

  14. Extremely Low-Frequency Electromagnetic Fields Affect Myogenic Processes in C2C12 Myoblasts: Role of Gap-Junction-Mediated Intercellular Communication

    PubMed Central

    Rovetta, Francesca; Boniotti, Jennifer; Mazzoleni, Giovanna

    2017-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) can interact with biological systems. Although they are successfully used as therapeutic agents in physiatrics and rehabilitative practice, they might represent environmental pollutants and pose a risk to human health. Due to the lack of evidence of their mechanism of action, the effects of ELF-EMFs on differentiation processes in skeletal muscle were investigated. C2C12 myoblasts were exposed to ELF-EMFs generated by a solenoid. The effects of ELF-EMFs on cell viability and on growth and differentiation rates were studied using colorimetric and vital dye assays, cytomorphology, and molecular analysis of MyoD and myogenin expression, respectively. The establishment of functional gap junctions was investigated analyzing connexin 43 expression levels and measuring cell permeability, using microinjection/dye-transfer assays. The ELF-EMFs did not affect C2C12 myoblast viability or proliferation rate. Conversely, at ELF-EMF intensity in the mT range, the myogenic process was accelerated, through increased expression of MyoD, myogenin, and connexin 43. The increase in gap-junction function suggests promoting cell fusion and myotube differentiation. These data provide the first evidence of the mechanism through which ELF-EMFs may provide therapeutic benefits and can resolve, at least in part, some conditions of muscle dysfunction. PMID:28607928

  15. Electric Stimulus Opens Intercellular Spaces in Skin*

    PubMed Central

    Hama, Susumu; Kimura, Yuki; Mikami, Aya; Shiota, Kanako; Toyoda, Mao; Tamura, Atsushi; Nagasaki, Yukio; Kanamura, Kiyoshi; Kajimoto, Kazuaki; Kogure, Kentaro

    2014-01-01

    Iontophoresis is a technology for transdermal delivery of ionic small medicines by faint electricity. Since iontophoresis can noninvasively deliver charged molecules into the skin, this technology could be a useful administration method that may enhance patient comfort. Previously, we succeeded in the transdermal penetration of positively charged liposomes (diameters: 200–400 nm) encapsulating insulin by iontophoresis (Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, H., and Kogure, K. (2011) Int. J. Pharm. 403, 57–65). However, the mechanism by which these liposomes penetrated the skin was difficult to define based on general knowledge of principles such as electro-repulsion and electro-osmosis. In the present study, we confirmed that rigid nanoparticles could penetrate into the epidermis by iontophoresis. We further found that levels of the gap junction protein connexin 43 protein significantly decreased after faint electric stimulus (ES) treatment, although occludin, CLD-4, and ZO-1 levels were unchanged. Moreover, connexin 43 phosphorylation and filamentous actin depolymerization in vivo and in vitro were observed when permeation of charged liposomes through intercellular spaces was induced by ES. Ca2+ inflow into cells was promoted by ES with charged liposomes, while a protein kinase C inhibitor prevented ES-induced permeation of macromolecules. Consequently, we demonstrate that ES treatment with charged liposomes induced dissociation of intercellular junctions via cell signaling pathways. These findings suggest that ES could be used to regulate skin physiology. PMID:24318878

  16. Role of heteromeric gap junctions in the cytotoxicity of cisplatin.

    PubMed

    Tong, Xuhui; Dong, Shuying; Yu, Meiling; Wang, Qin; Tao, Liang

    2013-08-09

    In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Prostacyclin primes pregnant human myometrium for an enhanced contractile response in parturition

    PubMed Central

    Fetalvero, Kristina M.; Zhang, Peisheng; Shyu, Maureen; Young, Benjamin T.; Hwa, John; Young, Roger C.; Martin, Kathleen A.

    2008-01-01

    An incomplete understanding of the molecular events that regulate the myometrial transition from the quiescent pregnant state to the active contractile state during labor has hindered the development of improved therapies for preterm labor. During myometrial activation, proteins that prime the smooth muscle for contraction are upregulated, allowing maximal responsiveness to contractile agonists and thereby producing strong phasic contractions. Upregulation of one such protein, COX-2, generates PGs that induce contractions. Intriguingly, the predominant myometrial PG produced just prior to labor is prostacyclin (PGI2), a smooth muscle relaxant. However, here we have shown that activation of PGI2 receptor (IP) upregulated the expression of several contractile proteins and the gap junction protein connexin 43 through cAMP/PKA signaling in human myometrial tissue in organ and cell culture. Functionally, these IP-dependent changes in gene expression promoted an enhanced contractile response to oxytocin in pregnant human myometrial tissue strips, which was inhibited by the IP antagonist RO3244794. Furthermore, contractile protein induction was dependent on the concentration and time of exposure to the PGI2 analog iloprost and was blocked by both RO3244794 and PKA knockdown. We therefore propose that PGI2-mediated upregulation of contractile proteins and connexin 43 is a critical step in myometrial activation, allowing for a maximal contractile response. Our observations have important implications regarding activation of the myometrium prior to the onset of labor. PMID:19033666

  19. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    PubMed Central

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  20. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    PubMed

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling

    PubMed Central

    Urbano, Francisco J.; Leznik, Elena; Llinás, Rodolfo R.

    2007-01-01

    Modafinil (Provigil, Modiodal), an antinarcoleptic and mood-enhancing drug, is shown here to sharpen thalamocortical activity and to increase electrical coupling between cortical interneurons and between nerve cells in the inferior olivary nucleus. After irreversible pharmacological block of connexin permeability (i.e., by using either 18β-glycyrrhetinic derivatives or mefloquine), modafinil restored electrotonic coupling within 30 min. It was further established that this restoration is implemented through a Ca2+/calmodulin protein kinase II-dependent step. PMID:17640897

  2. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    PubMed

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  3. Connexin 26 correlates with Bcl-xL and Bax proteins expression in colorectal cancer

    PubMed Central

    Kanczuga-Koda, Luiza; Sulkowski, Stanislaw; Koda, Mariusz; Skrzydlewska, Elzbieta; Sulkowska, Mariola

    2005-01-01

    AIM: To evaluate of Cx26 in correlation with Bcl-xL and Bax proteins in colorectal cancer. METHODS: Immunohistochemical staining using specific antibodies was performed to evaluate the protein expression of Cx26, Bax and Bcl-xL in 152 colorectal cancer samples and the correlations among studied proteins as well as the relationships between the expression of Cx26, Bax, Bcl-xL and clinicopathological features were analyzed. RESULTS: Both normal epithelial cells and carcinoma cells expressed Cx26, Bax and Bcl-xL, but Cx26 in cancer cells showed aberrant, mainly cytoplasmic staining. Expression of Cx26, Bax and Bcl-xL was observed in 55.9%, 55.5% and 72.4% of evaluated colorectal cancers respectively. We found the positive correlation between Cx26 and Bax expression (r = 0.561, P<0.0001), Cx26 and Bcl-xL (r = 0.409, P<0.0001) as well as between Bax and Bcl-xL (r = 0.486, P<0.0001). Association of Cx26, Bax and Bcl-xL expression with histological G2 grade of tumors was noted (P<0.005, P<0.001 and P<0.002 respectively). CONCLUSION: Cytoplasmic presence of Cx26 and its association with apoptotic markers could indicate a distinct role from physiological functions of Cx26 in cancer cells and it could suggest that connexins might be a target point for modulations of apoptosis with therapeutic implications. PMID:15770735

  4. Bisphosphonates Improve Trabecular Bone Mass and Normalize Cortical Thickness in Ovariectomized, Osteoblast Connexin43 Deficient Mice

    PubMed Central

    Watkins, Marcus P.; Norris, Jin Yi; Grimston, Susan K.; Zhang, Xiaowen; Phipps, Roger J.; Ebetino, Frank H.; Civitelli, Roberto

    2012-01-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20µg/kg) or alendronate (40µg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. PMID:22750450

  5. Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly (L-lactic acid) scaffolds for potential use in cardiac regeneration.

    PubMed

    Giménez, Carlos Sebastián; Locatelli, Paola; Montini Ballarin, Florencia; Orlowski, Alejandro; Dewey, Ricardo A; Pena, Milagros; Abraham, Gustavo Abel; Aiello, Ernesto Alejandro; Bauzá, María Del Rosario; Cuniberti, Luis; Olea, Fernanda Daniela; Crottogini, Alberto

    2018-04-01

    Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.

  6. Methamphetamine compromises gap junctional communication in astrocytes and neurons

    PubMed Central

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R.; Eugenin, Eliseo A.

    2016-01-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood–brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. PMID:26953131

  7. Comorbid rat model of ischemia and β-amyloid toxicity: striatal and cortical degeneration.

    PubMed

    Amtul, Zareen; Whitehead, Shawn N; Keeley, Robin J; Bechberger, John; Fisher, Alicia L; McDonald, Robert J; Naus, Christian C; Munoz, David G; Cechetto, David F

    2015-01-01

    Levels of cerebral amyloid, presumably β-amyloid (Abeta), toxicity and the incidence of cortical and subcortical ischemia increases with age. However, little is known about the severe pathological condition and dementia that occur as a result of the comorbid occurrence of this vascular risk factor and Abeta toxicity. Clinical studies have indicated that small ischemic lesions in the striatum are particularly important in generating dementia in combination with minor amyloid lesions. These cognitive deficits are highly likely to be caused by changes in the cortex. In this study, we examined the viability and morphological changes in microglial and neuronal cells, gap junction proteins (connexin43) and neuritic/axonal retraction (Fer Kinase) in the striatum and cerebral cortex using a comorbid rat model of striatal injections of endothelin-1 (ET1) and Abeta toxicity. The results demonstrated ventricular enlargement, striatal atrophy, substantial increases in β-amyloid, ramified microglia and increases in neuritic retraction in the combined models of stroke and Abeta toxicity. Changes in connexin43 occurred equally in both groups of Abeta-treated rats, with and without focal ischemia. Although previous behavioral tests demonstrated impairment in memory and learning, the visual discrimination radial maze task did not show significant difference, suggesting the cognitive impairment in these models is not related to damage to the dorsolateral striatum. These results suggest an insight into the relationship between cortical/striatal atrophy, pathology and functional impairment. © 2014 International Society of Neuropathology.

  8. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  9. Phenotypic variability in gap junction syndromic skin disorders: experience from KID and Clouston syndromes' clinical diagnostics.

    PubMed

    Kutkowska-Kaźmierczak, Anna; Niepokój, Katarzyna; Wertheim-Tysarowska, Katarzyna; Giza, Aleksandra; Mordasewicz-Goliszewska, Maria; Bal, Jerzy; Obersztyn, Ewa

    2015-08-01

    Connexins belong to the family of gap junction proteins which enable direct cell-to-cell communication by forming channels in adjacent cells. Mutations in connexin genes cause a variety of human diseases and, in a few cases, result in skin disorders. There are significant differences in the clinical picture of two rare autosomal dominant syndromes: keratitis-ichthyosis-deafness (KID) syndrome and hidrotic ectodermal dysplasia (Clouston syndrome), which are caused by GJB2 and GJB6 mutations, respectively. This is despite the fact that, in both cases, malfunctioning of the same family proteins and some overlapping clinical features (nail dystrophy, hair loss, and palmoplantar keratoderma) is observed. KID syndrome is characterized by progressive vascularizing keratitis, ichthyosiform erythrokeratoderma, and neurosensory hearing loss, whereas Clouston syndrome is characterized by nail dystrophy, hypotrichosis, and palmoplantar keratoderma. The present paper presents a Polish patient with sporadic KID syndrome caused by the mutation of p.Asp50Asn in GJB2. The patient encountered difficulties in obtaining a correct diagnosis. The other case presented is that of a family with Clouston syndrome (caused by p.Gly11Arg mutation in GJB6), who are the first reported patients of Polish origin suffering from this disorder. Phenotype diversity among patients with the same genotypes reported to date is also summarized. The conclusion is that proper diagnosis of these syndromes is still challenging and should always be followed by molecular verification.

  10. Involvement of connexin 43 phosphorylation and gap junctional communication between smooth muscle cells in vasopressin-induced ROCK-dependent vasoconstriction after hemorrhagic shock.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Wu, Yue; Li, Tao; Liu, Liangming

    2017-10-01

    We examined the roles played by gap junctions (GJs) and the GJ channel protein connexin 43 (Cx43) in arginine vasopressin (AVP)-induced vasoconstriction after hemorrhagic shock and their relationship to Rho kinase (ROCK) and protein kinase C (PKC). The results showed that AVP induced an endothelium-independent contraction in rat superior mesenteric arteries (SMAs). Blocking the GJs significantly decreased the contractile response of SMAs and vascular smooth muscle cells (VSMCs) to AVP after shock and hypoxia. The selective Cx43-mimetic peptide inhibited the vascular contractile effect of AVP after shock and hypoxia. AVP restored hypoxia-induced decrease of Cx43 phosphorylation at Ser 262 and gap junctional communication in VSMCs. Activation of RhoA with U-46619 increased the contractile effect of AVP. This effect was antagonized by the ROCK inhibitor Y27632 and the Cx43-mimetic peptide. In contrast, neither an agonist nor an inhibitor of PKC had significant effects on AVP-induced contraction after hemorrhagic shock. In addition, silencing of Cx43 with siRNA blocked the AVP-induced increase of ROCK activity in hypoxic VSMCs. In conclusion, AVP-mediated vascular contractile effects are endothelium and myoendothelial gap junction independent. Gap junctions between VSMCs, gap junctional communication, and Cx43 phosphorylation at Ser 262 play important roles in the vascular effects of AVP. RhoA/ROCK, but not PKC, is involved in this process. Copyright © 2017 the American Physiological Society.

  11. Disruption of gap junctional intercellular communication by antibiotic gentamicin is associated with aberrant localization of occludin, N-cadherin, connexin 43, and vimentin in SerW3 Sertoli cells in vitro.

    PubMed

    Bekheet, Souad H M; Stahlmann, Ralf

    2009-09-01

    Spermatogenesis is a very complex process by which male germ cells differentiate into mature spermatozoa. The sophisticated communication network that controls spermatogenesis can be derailed so that dysfunction of one cell type propagates to all types as a cascade. This accounts for the particular vulnerability of the testis to environmental factors such as drugs and xenobiotics. Sertoli cells play an important role in protecting developing germ cells by forming a physiological barrier, limiting exposure to potentially toxic substrates, or conversely, facilitating uptake of xenobiotics within the testis. In this study, cells from the rat Sertoli line (SerW3) were incubated for 3, 6 and 9 subsequent days in serum free DMEM (SFDM) composed of DMEM supplemented with three different concentrations of antibiotic gentamicin (10, 30, and 100 μg). The effect of the three different concentrations of this antibiotic was determined on Sertoli cell-cell interaction through impaired expression of their constitutive tight junction proteins as early targets for different toxicants in vitro by immunochemistry analysis. The Sertoli SerW3 cell line illustrated the cytotoxicity of GS, as the intercellular junction proteins such as occludin, N-cadherin, connexin 43, and vimentin were delocalized from the membrane to the cytoplasmic compartment during exposure to the antibiotic. This study underlines the potential deleterious effects of the routine use of antibiotics during continuous cell culture.

  12. Ganoderma lucidum inhibits proliferation of human ovarian cancer cells by suppressing VEGF expression and up-regulating the expression of connexin 43.

    PubMed

    Dai, Shuyan; Liu, Jingjing; Sun, Xiaofei; Wang, Ning

    2014-11-05

    Ganoderma lucidum (G. lucidum, Reishimax) is an herbal mushroom known to have inhibitory effect on tumor cell growth. However, the molecular mechanisms responsible for its anti-proliferative effects on the ovarian cancer have not been fully elucidated. Human ovarian cancer cells HO 8910 (HOCC) and human primary ovarian cells (HPOC) were treated with G. lucidum. Effects of G. lucidum treatment on cell proliferation were studied by MTT assay. The expression of vascular endothelial growth factor (VEGF) and connexin 43 (Cx43) were measured by immunohistochemistry and real time polymerase chain reaction. To study the molecular mechanism of CX43 mediated anti-tumor activity, small interference RNA (siRNA) was used to knockdown Cx43 expression in HOCC. G. lucidum treatment resulted in reduced proliferation of HOCC. Inhibition of proliferation was accompanied by a decrease in VEGF expression and increase in Cx43 expression in the cancer cells. The extent of immune-reactivity of Cx43 or VEGF in cancer cells were correlated with the concentrations of G. lucidum used for treatment. Furthermore, knockdown of Cx43 expression in HOCC abrogated the effect of G. lucidum on cell proliferation without alteration of G. lucidum-induced attenuation of VEGF expression. G. lucidum inhibits ovarian cancer by down-regulating the expression of VEGF and up-regulating the downstream Cx43 expression. G. lucidum may be a promising therapeutic agent for the treatment of ovarian cancer.

  13. Early structural changes of the heart after experimental polytrauma and hemorrhagic shock

    PubMed Central

    Halbgebauer, Rebecca; Eisele, Philipp; Messerer, David A. C.; Weckbach, Sebastian; Schultze, Anke; Braumüller, Sonja; Gebhard, Florian

    2017-01-01

    Evidence is emerging that systemic inflammation after trauma drives structural and functional impairment of cardiomyocytes and leads to cardiac dysfunction, thus worsening the outcome of polytrauma patients. This study investigates the structural and molecular changes in heart tissue 4 h after multiple injuries with additional hemorrhagic shock using a clinically relevant rodent model of polytrauma. We determined mediators of systemic inflammation (keratinocyte chemoattractant, macrophage chemotactic protein 1), activated complement component C3a and cardiac troponin I in plasma and assessed histological specimen of the mouse heart via standard histomorphology and immunohistochemistry for cellular and subcellular damage and ongoing apoptosis. Further we investigated spatial and quantitative changes of connexin 43 by immunohistochemistry and western blotting. Our results show significantly increased plasma levels of both keratinocyte chemoattractant and cardiac troponin I 4 h after polytrauma and 2 h after induction of hypovolemia. Although we could not detect any morphological changes, immunohistochemical evaluation showed increased level of tissue high-mobility group box 1, which is both a damage-associated molecule and actively released as a danger response signal. Additionally, there was marked lateralization of the cardiac gap-junction protein connexin 43 following combined polytrauma and hemorrhagic shock. These results demonstrate a molecular manifestation of remote injury of cardiac muscle cells in the early phase after polytrauma and hemorrhagic shock with marked disruption of the cardiac gap junction. This disruption of an important component of the electrical conduction system of the heart may lead to arrhythmia and consequently to cardiac dysfunction. PMID:29084268

  14. Connexin 26 facilitates gastrointestinal bacterial infection in vitro.

    PubMed

    Simpson, Charlotte; Kelsell, David P; Marchès, Olivier

    2013-01-01

    Escherichia coli, including enteropathogenic E. coli (EPEC), represents the most common cause of diarrhoea worldwide and is therefore a serious public health burden. Treatment for gastrointestinal pathogens is hindered by the emergence of multiple antibiotic resistance, leading to the requirement for the development of new therapies. A variety of mechanisms act in combination to mediate gastrointestinal-bacterial-associated diarrhoea development. For example, EPEC infection of enterocytes induces attaching and effacing lesion formation and the disruption of tight junctions. An alternative enteric pathogen, Shigella flexneri, manipulates the expression of Connexin 26 (Cx26), a gap junction protein. S. flexneri can open Cx26 hemichannels allowing the release of ATP, whereas HeLa cells expressing mutant gap-junction-associated Cx26 are less susceptible to cellular invasion by S. flexneri than cells expressing wild-type (WT) Cx26. We have investigated further the link between Cx26 expression and gastrointestinal infection by using EPEC and S. flexneri as in vitro models of infection. In this study, a significant reduction in EPEC adherence was observed in cells expressing mutant Cx26 compared with WT Cx26. Furthermore, a significant reduction in both cellular invasion by S. flexneri and adherence by EPEC was demonstrated in human intestinal cell lines following treatment with Cx26 short interfering RNA. These in vitro results suggest that the loss of functional Cx26 expression provides improved protection against gastrointestinal bacterial pathogens. Thus, Cx26 represents a potential therapeutic target for gastrointestinal bacterial infection.

  15. Permeability changes of connexin32 hemi channels reconstituted in liposomes induced by extremely low frequency, low amplitude magnetic fields.

    PubMed

    Ramundo-Orlando, Alfonsina; Serafino, Annalucia; Schiavo, Rosangela; Liberti, Micaela; d'Inzeo, Guglielmo

    2005-02-01

    The effect of extremely low frequency and low amplitude magnetic fields on gap junctional permeability was investigated by using reconstituted connexin32 hemi channel in liposomes. Cytochrome c was loaded inside these proteoliposomes and its reduction upon addition of ascorbate in the bulk aqueous phase was adopted as the index of hemi channel permeability. The permeability rate of the hemi channels, expressed as DeltaA/min, was dependent on the incubation temperature of proteoliposomes. The effect of exposures to magnetic fields at different frequencies (7, 13 and 18 Hz) and amplitudes (50, 50 and 70 microT, respectively), and at different temperatures (16, 18 and 24 degrees C) was studied. Only the exposure of proteoliposomes to 18-Hz (B(acpeak) and B(dc)=70 microT) magnetic field for 60 min at 16+/-0.4 degrees C resulted in a significant enhancement of the hemi channel permeability from DeltaA/min=0.0007+/-0.0002 to DeltaA/min=0.0010+/-0.0001 (P=0.030). This enhancement was not found for magnetic field exposures of liposomes kept at the higher temperatures tested. Temperature appears to influence lipid bilayer arrangement in such a way as being capable to mask possible effects induced by the magnetic field. Although the observed effect was very low, it seems to confirm the applicability of our model previously proposed for the interaction of low frequency electromagnetic fields with lipid membrane.

  16. Crucial importance of the endothelial K+ channel SK3 and connexin40 in arteriolar dilations during skeletal muscle contraction.

    PubMed

    Milkau, Malte; Köhler, Ralf; de Wit, Cor

    2010-09-01

    Skeletal muscle activity requires substantial increases in blood flow, and the underlying vasodilation involves endothelial activity, but the contribution of the endothelium-dependent hyperpolarizing factor (EDHF) is only poorly defined. In EDHF signaling, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels SK3 and IK1 is a key step and also initiates gap junction-dependent conducted dilations. We assessed the role of SK3, IK1, and connexin40 (Cx40) in muscular contraction-induced dilations in the microcirculation in vivo. Hitherto, arterioles were observed in the electrically stimulated cremaster skeletal muscle of anesthetized mice lacking SK3, IK1, or Cx40 using intravital microscopy. Genetic deficiency of SK3, but not of IK1, strongly attenuated dilations to muscular contraction. Similarly, pharmacologic blockade of SK3 by the specific blocker UCL1684 impaired such dilations in wild-type and IK1-deficient mice. In contrast, IK1 was required for acetylcholine-induced dilations. Genetic deficiency of Cx40 also attenuated dilations induced by muscular contraction but not by acetylcholine. These data support the concept that endothelial hyperpolarization through activation of SK3 contributes to exercise hyperemia and the hyperpolarization ascends the vascular tree through gap junctions formed by Cx40 to orchestrate dilation. The differential impact of SK3- and IK1-deficiency on dilations to distinct stimuli suggests stimulus-dependent activation of these endothelial channels.

  17. Mendelian diseases among Roman Jews: implications for the origins of disease alleles.

    PubMed

    Oddoux, C; Guillen-Navarro, E; Ditivoli, C; Dicave, E; Cilio, M R; Clayton, C M; Nelson, H; Sarafoglou, K; McCain, N; Peretz, H; Seligsohn, U; Luzzatto, L; Nafa, K; Nardi, M; Karpatkin, M; Aksentijevich, I; Kastner, D; Axelrod, F; Ostrer, H

    1999-12-01

    The Roman Jewish community has been historically continuous in Rome since pre-Christian times and may have been progenitor to the Ashkenazi Jewish community. Despite a history of endogamy over the past 2000 yr, the historical record suggests that there was admixture with Ashkenazi and Sephardic Jews during the Middle Ages. To determine whether Roman and Ashkenazi Jews shared common signature mutations, we tested a group of 107 Roman Jews, representing 176 haploid sets of chromosomes. No mutations were found for Bloom syndrome, BRCA1, BRCA2, Canavan disease, Fanconi anemia complementation group C, or Tay-Sachs disease. Two unrelated individuals were positive for the 3849 + 10C->T cystic fibrosis mutation; one carried the N370S Gaucher disease mutation, and one carried the connexin 26 167delT mutation. Each of these was shown to be associated with the same haplotype of tightly linked microsatellite markers as that found among Ashkenazi Jews. In addition, 14 individuals had mutations in the familial Mediterranean fever gene and three unrelated individuals carried the factor XI type III mutation previously observed exclusively among Ashkenazi Jews. These findings suggest that the Gaucher, connexin 26, and familial Mediterranean fever mutations are over 2000 yr old, that the cystic fibrosis 3849 + 10kb C->T and factor XI type III mutations had a common origin in Ashkenazi and Roman Jews, and that other mutations prevalent among Ashkenazi Jews are of more recent origin.

  18. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    PubMed

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. First person - Julia Abitbol.

    PubMed

    2018-05-04

    First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Julia Abitbol is the first author on 'Mice harbouring an oculodentodigital dysplasia-linked Cx43 G60S mutation have severe hearing loss', published in Journal of Cell Science. Julia is a PhD student in the lab of Dale Laird at the University of Western Ontario, Canada, investigating the mechanisms of connexin-induced hearing loss. © 2018. Published by The Company of Biologists Ltd.

  20. Oxidized Phospholipid Species Promote in Vivo Differential Cx43 Phosphorylation and Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Johnstone, Scott R.; Ross, Jeremy; Rizzo, Michael J.; Straub, Adam C.; Lampe, Paul D.; Leitinger, Norbert; Isakson, Brant E.

    2009-01-01

    Regulation of both the expression and function of connexins in the vascular wall is important during atherosclerosis. Progression of the disease state is marked by vascular smooth muscle cell (VSMC) proliferation, which coincides with the reduced expression levels of connexin 43 (Cx43). However, nothing is currently known about the factors that regulate post-translational modifications of Cx43 in atherogenesis, which could be of particular importance, due to the association between site-specific Cx43 phosphorylation and cellular proliferation. We compared the effects of direct carotid applications of two oxidized phospholipid derivatives, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), on Cx43 expression and phosphorylation, and on cell proliferation. Since both POVPC and PGPC have been shown to act through different intracellular pathways, we hypothesized that each oxidized phospholipid species could induce differential Cx43 phosphorylation events in the cytoplasmically located carboxyl-terminal region of the protein, which could potentially enhance cell proliferation. Application of POVPC caused a reduction in VSMC Cx43 levels, enhanced its phosphorylation at serine (pS) 279/282, and increased VSMC proliferation both in vivo and in vitro. Treatment with PGPC enhanced VSMC pS368 levels with no associated change in proliferation. These oxidized phospholipid-induced Cx43 post-translational changes in VSMCs were consistent with those identified in ApoE−/− mice. Taken together, these results demonstrate that post-translational phosphorylation of Cx43 could be a key factor in the pathogenesis of atherosclerosis. PMID:19608875

  1. Three novel GJB2 (connexin 26) variants associated with autosomal dominant syndromic and nonsyndromic hearing loss.

    PubMed

    DeMille, Desiree; Carlston, Colleen M; Tam, Oliver H; Palumbos, Janice C; Stalker, Heather J; Mao, Rong; Zori, Roberto T; Viskochil, David H; Park, Albert H; Carey, John C

    2018-04-01

    Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene. © 2018 Wiley Periodicals, Inc.

  2. Impaired osteogenic differentiation associated with connexin43/microRNA-206 in steroid-induced avascular necrosis of the femoral head.

    PubMed

    Liu, Gang; Luo, Gaobin; Bo, Zhandong; Liang, Xiaonan; Huang, Jie; Li, Donghui

    2016-08-01

    Connexin(Cx)43 and microRNA(miR)-206 play an important role in osteogenesis. However, their role in steroid-induced femoral head osteonecrosis (SANFH) is still ambiguous. The present study aimed to establish a rabbit model and investigate osteogenesis in steroid-induced femoral head osteonecrosis occurring via Cx43/miR-206 and the changes of Wnt/β-catenin signal pathway-related proteins. A total of 72 adult New Zealand white rabbits were divided randomly into a model group (Group A) and a control group (Group B) of 36 rabbits each. Group A was injected intravenously with lipopolysaccharide (10μg/kg body weight, once per day). After 48h, three injections of methylprednisolone (MPS; 20mg/kg body weight) were administered intramuscularly at 24-hour intervals. Group B were fed and housed under identical conditions but received saline injections. All animals were sacrificed at two, four, and eight weeks from the first MPS injection. Typical early osteonecrosis symptoms were observed in Group A. The expression of miR-206 in Group A was significantly higher than that of Group B. The mRNA and protein levels of Cx43, β-catenin, runt-related transcription factor 2, and alkaline phosphatase gradually decreased while Dickkopf-1 (Dkk-1) gradually increased in Group A compared with Group B. These findings indicated that Cx43/miR-206 is involved in the pathogenesis of early stage SANFH and may be associate with Wnt/β-catenin signal pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Electrical Coupling between the Myenteric Interstitial Cells of Cajal and Adjacent Muscle Layers in the Guinea-Pig Gastric Antrum

    PubMed Central

    Cousins, H M; Edwards, F R; Hickey, H; Hill, C E; Hirst, G D S

    2003-01-01

    Intracellular recordings were made from short segments of the muscular wall of the guinea-pig gastric antrum. Preparations were impaled using two independent microelectrodes, one positioned in the circular layer and the other either in the longitudinal layer, in the network of myenteric interstitial cells of Cajal (ICCmy) or in the circular layer. Cells in each layer displayed characteristic patterns of rhythmical activity, with the largest signals being generated by ICCmy. Current pulses injected into the circular muscle layer produced electrotonic potentials in each cell layer, indicating that the layers are electrically interconnected. The amplitudes of these electrotonic potentials were largest in the circular layer and smallest in the longitudinal layer. An analysis of electrical coupling between the three layers suggests that although the cells in each layer are well coupled to neighbouring cells, the coupling between either muscle layer and the network of ICCmy is relatively poor. The electrical connections between ICCmy and the circular layer did not rectify. In parallel immunohistochemical studies, the distribution of the connexins Cx40, Cx43 and Cx45 within the antral wall was determined. Only Cx43 was detected; it was widely distributed on ICCmy and throughout the circular smooth muscle layer, being concentrated around ICCIM, but was less abundant in the circular muscle layer immediately adjacent to ICCmy. Although the electrophysiological studies indicate that smooth muscle cells in the longitudinal muscle layer are electrically coupled to each other, none of the connexins examined were detected in this layer. PMID:12844505

  4. A model of early human embryonic stem cell differentiation reveals inter- and intracellular changes on transition to squamous epithelium.

    PubMed

    Galat, Vasiliy; Malchenko, Sergey; Galat, Yekaterina; Ishkin, Alex; Nikolsky, Yuri; Kosak, Steven T; Soares, Bento Marcelo; Iannaccone, Philip; Crispino, John D; Hendrix, Mary J C

    2012-05-20

    The molecular events leading to human embryonic stem cell (hESC) differentiation are the subject of considerable scrutiny. Here, we characterize an in vitro model that permits analysis of the earliest steps in the transition of hESC colonies to squamous epithelium on basic fibroblast growth factor withdrawal. A set of markers (GSC, CK18, Gata4, Eomes, and Sox17) point to a mesendodermal nature of the epithelial cells with subsequent commitment to definitive endoderm (Sox17, Cdx2, nestin, and Islet1). We assayed alterations in the transcriptome in parallel with the distribution of immunohistochemical markers. Our results indicate that the alterations of tight junctions in pluripotent culture precede the beginning of differentiation. We defined this cell population as "specified," as it is committed toward differentiation. The transitional zone between "specified" pluripotent and differentiated cells displays significant up-regulation of keratin-18 (CK18) along with a decrease in the functional activity of gap junctions and the down-regulation of 2 gap junction proteins, connexin 43 (Cx43) and connexin 45 (Cx45), which is coincidental with substantial elevation of intracellular Ca2+ levels. These findings reveal a set of cellular changes that may represent the earliest markers of in vitro hESC transition to an epithelial phenotype, before the induction of gene expression networks that guide hESC differentiation. Moreover, we hypothesize that these events may be common during the primary steps of hESC commitment to functionally varied epithelial tissue derivatives of different embryological origins.

  5. A Model of Early Human Embryonic Stem Cell Differentiation Reveals Inter- and Intracellular Changes on Transition to Squamous Epithelium

    PubMed Central

    Malchenko, Sergey; Galat, Yekaterina; Ishkin, Alex; Nikolsky, Yuri; Kosak, Steven T.; Soares, Bento Marcelo; Iannaccone, Philip; Crispino, John D.; Hendrix, Mary J.C.

    2012-01-01

    The molecular events leading to human embryonic stem cell (hESC) differentiation are the subject of considerable scrutiny. Here, we characterize an in vitro model that permits analysis of the earliest steps in the transition of hESC colonies to squamous epithelium on basic fibroblast growth factor withdrawal. A set of markers (GSC, CK18, Gata4, Eomes, and Sox17) point to a mesendodermal nature of the epithelial cells with subsequent commitment to definitive endoderm (Sox17, Cdx2, nestin, and Islet1). We assayed alterations in the transcriptome in parallel with the distribution of immunohistochemical markers. Our results indicate that the alterations of tight junctions in pluripotent culture precede the beginning of differentiation. We defined this cell population as “specified,” as it is committed toward differentiation. The transitional zone between “specified” pluripotent and differentiated cells displays significant up-regulation of keratin-18 (CK18) along with a decrease in the functional activity of gap junctions and the down-regulation of 2 gap junction proteins, connexin 43 (Cx43) and connexin 45 (Cx45), which is coincidental with substantial elevation of intracellular Ca2+ levels. These findings reveal a set of cellular changes that may represent the earliest markers of in vitro hESC transition to an epithelial phenotype, before the induction of gene expression networks that guide hESC differentiation. Moreover, we hypothesize that these events may be common during the primary steps of hESC commitment to functionally varied epithelial tissue derivatives of different embryological origins. PMID:21861759

  6. Reduced expressions of connexin 43 and VEGF in the first-trimester tissues from women with recurrent pregnancy loss.

    PubMed

    He, Xiaoping; Chen, Qinfang

    2016-08-17

    Approximately 45-50 % of the recurrent pregnancy loss (RPL) remain(s) unexplained that challenges its clinical management. Formation and development of placenta as well as angiogenesis are critical for successful pregnancy. Vascular endothelial growth factor (VEGF) and connexin 43 (Cx43) play important roles in angiogenesis and placenta development and aberration of these have been linked to RPL. We aimed to investigate whether the expressions of VEGF and Cx43 were altered in the first-trimester tissues (chorionic villi and decidua) collected from women with RPL compared to those from healthy early pregnant women. First-trimester chorionic villi and decidua were collected from pregnant women diagnosed RPL who ended up with surgical intervention (n = 28) in comparison to those collected from women requesting surgical termination of their unwanted normal first-trimester pregnancies (n = 28). These two groups of women were matched in age and gestational weeks. Tissues were analyzed for the protein and messenger ribonucleic acid (mRNA) expressions of Cx43 and VEGF by immunohistochemistry, western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expressions of both Cx43 and VEGF at the level of mRNA and protein in the villi and decidua from women with RPL were significantly decreased compared with those from women with normal early pregnancy. Reduction of Cx43 and VEGF expressed in the first-trimester tissues might indicate their important roles involved in RPL and thus holds the potential to develop pharmaceutical therapies for treatment of RPL.

  7. The Effect of Mechanical Stimulation on Mineralization in Differentiating Osteoblasts in Collagen-I Scaffolds

    PubMed Central

    Damaraju, Swathi; Matyas, John R.; Rancourt, Derrick E.

    2014-01-01

    Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5–30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal. PMID:24851936

  8. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    PubMed Central

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  9. Prenatal retinoic acid upregulates connexin 43 (Cx43) gene expression in pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2012-02-01

    Connexin 43 (Cx43), a major gap junction protein, is necessary for alveologenesis and plays an important role in the differentiation of type II to type I alveolar epithelial cells. Knockout mice of Cx43 display severe pulmonary hypoplasia (PH). Prenatal administration of retinoic acid (RA) is known to stimulate alveologenesis in nitrofen-induced PH. Recent studies revealed that retinoids upregulate Cx43 expression. We hypothesized that gene expression of Cx43 is downregulated during alveologenesis and that administration of RA upregulates Cx43 expression in the nitrofen-induced PH. Pregnant rats were exposed to olive oil or nitrofen on day 9 (D9) of gestation. Retinoic acid was given intraperitoneally on D18, D19, and D20. Fetal lungs were harvested on D18 and D21 and divided into control, nitrofen, control+RA (D21), and nitrofen+RA (D21). The Cx43 expression levels were determined using reverse transcription polymerase chain reaction and immunohistochemistry. On D18 and D21, Cx43 relative messenger RNA expression levels were significantly downregulated in nitrofen compared with those in the control group. On D21, expression levels of Cx43 were significantly upregulated in nitrofen+RA and control+RA compared with those in nitrofen group. Immunohistochemical studies confirmed these results. Downregulation of Cx43 expression may interfere with normal alveologenesis. Upregulation of Cx43 pulmonary gene expression after RA treatment may promote lung growth by stimulating alveologenesis in nitrofen-induced PH. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ca2+ Responses in Enteric Glia are Mediated by Connexin-43 Hemichannels and Modulate Colonic Transit in Mice

    PubMed Central

    Fried, David; Gomez-Suarez, Roberto A.; Leinninger, Gina M.; Sévigny, Jean; Parpura, Vladimir; Gulbransen, Brian D.

    2014-01-01

    Background & Aims In the enteric nervous system, neurotransmitters initiate changes in Ca2+ (Ca2+ responses) in glia, but it is not clear how this process affects intestinal function. We investigated whether Ca2+-mediated responses in enteric glial are required to maintain gastrointestinal function. Methods We used in situ Ca2+ imaging to monitor glial Ca2+ responses, which were manipulated with pharmacologic agents or via glia-specific disruption of the gene encoding connexin-43 (Cx43) (hGFAP::creERT2+/−/Cx43f/f mice). Gastrointestinal function was assessed based on pellet output, total gut transit, colonic bead expulsion, and muscle tension recordings. Proteins were localized and quantified by immunohistochemistry, immunoblot, and reverse transcription PCR analyses. Results Ca2+ responses in enteric glia of mice were mediated by Cx43 hemichannels. Cx43 immunoreactivity was confined to enteric glia within the myenteric plexus of the mouse colon; the Cx43 inhibitors carbenoxolone and 43Gap26 inhibited the ability of enteric glia to propagate Ca2+ responses. In vivo attenuation of Ca2+ responses in the enteric glial network slowed gut transit overall and delayed colonic transit—these changes are also observed during normal aging. Altered motility with increasing age was associated with reduced glial Ca2+-mediated responses and changes in glial expression of Cx43 mRNA and protein. Conclusions Ca2+-mediated responses in enteric glia regulate gastrointestinal function in mice. Altered intercellular signaling between enteric glia and neurons might contribute to motility disorders. PMID:24211490

  11. Connexin40 and connexin43 determine gating properties of atrial gap junction channels.

    PubMed

    Lin, Xianming; Gemel, Joanna; Glass, Aaron; Zemlin, Christian W; Beyer, Eric C; Veenstra, Richard D

    2010-01-01

    While ventricular gap junctions contain only Cx43, atrial gap junctions contain both Cx40 and Cx43; yet the functional consequences of this co-expression remain poorly understood. We quantitated the expression of Cx40 and Cx43 and their contributions to atrial gap junctional conductance (g(j)). Neonatal murine atrial myocytes showed similar abundances of Cx40 and Cx43 proteins, while ventricular myocytes contained at least 20 times more Cx43 than Cx40. Since Cx40 gap junction channels are blocked by 2 mM spermine while Cx43 channels are unaffected, we used spermine block as a functional dual whole cell patch clamp assay to determine Cx40 contributions to cardiac g(j). Slightly more than half of atrial g(j) and

  12. Hexamethonium reverses the lethal cardiopulmonary damages in a rat model of brainstem lesions mimicking fatal enterovirus 71 encephalitis.

    PubMed

    Lu, Wen-Hsien; Hsieh, Kai-Sheng; Lu, Pei-Jung; Wu, Yi-Shan; Ho, Wen-Yu; Lai, Chi-Cheng; Wang, Jyh-Seng; Ger, Luo-Ping; Hsiao, Michael; Tseng, Ching-Jiunn

    2013-05-01

    Among enterovirus 71 infections, brainstem encephalitis progressing abruptly to cardiac dysfunction and pulmonary edema causes rapid death within several hours. However, no currently known early indicators and treatments can monitor or prevent the unexpectedly fulminant course. We investigate the possible mechanisms and treatment of fatal enterovirus 71 infections to prevent the abrupt progression to cardiac dysfunction and pulmonary edema by using an animal model. Treatment study. Research laboratory. Sprague-Dawley rats. We microinjected 6-hydroxydopamine or vitamin C into nucleus tractus solitarii of the rat and evaluated the cardiopulmonary changes after treatment with ganglionic blocker. The time course of changes in the heart and lungs of rats with brainstem lesions were investigated. Rats were administered 6-hydroxydopamine to induce brainstem lesions, causing acute hypertension in 10 minutes and acute elevations of catecholamines accompanied by acute cardiac dysfunction and increased strong expressions of connexin 43 gap junction protein in heart and lung specimens by immunohistochemical staining within 3 hours. Severe pulmonary hemorrhagic edema was produced within 6 hours, and the rats expired rapidly within 7 hours. After hexamethonium treatment, it was found that the acute hypertension induced by 6-hydroxydopamine lesions was immediately reversed and the acute high rise of catecholamine serum level was significantly attenuated within 3 hours, accompanied by preserved cardiac output and decreased expressions of connexin 43 in the heart and lungs. No pulmonary edema occurred and the rats survived for more than 14 hours. Early hexamethonium treatment attenuates acute excessive release of catecholamines to prevent cardiac dysfunction and pulmonary edema for increasing survival rate.

  13. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    PubMed

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.

    PubMed

    Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo

    2017-07-22

    Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Connexin and Pannexin hemichannels are regulated by redox potential

    PubMed Central

    Retamal, Mauricio A.

    2014-01-01

    Connexins (Cxs) and Pannexins (Panxs) are two non-related protein families, having both the property to form hemichannels at the plasma membrane. There are 21 genes coding for different Cx based proteins and only 3 for Panx. Under physiological conditions, these hemichannels (Cxs and Panxs) present a low open probability, but when open, they allow the release of signaling molecules to the extracellular space. However, under pathological conditions, these hemichannels increase their open probability, inducing important lysis of metabolites, and ionic imbalance, which in turn induce the massive entry of Ca+2 to the cell. Actually, it is well recognized that Cxs and Panxs based channels play an important role in several diseases and -in many cases- this is associated with an aberrant hemichannel opening. Hemichannel opening and closing are controlled by a plethora of signaling including changes of the voltage plasma membrane, protein-protein interactions, and several posttranslational modifications, including protein cleavage, phosphorylation, glycosylation, hydroxylation and S-nitrosylation, among others. In particular, it has been recently shown that the cellular redox status modulates the opening/closing and permeability of at least Cx43, Cx46, and Panx1 hemichannels. Thus, for example, the gaseous transmitter nitric oxide (NO) can induce the S-nitrosylation of these proteins modulating in turn several of their properties. The reason is that the redox status of a cell is fundamental to set their response to the environment and also plays an important role in several pathologies. In this review, I will discuss how NO and other molecules associated with redox signaling modulate Cxs and Panx hemichannels properties. PMID:24611056

  16. Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering.

    PubMed

    Iyer, Rohin K; Chiu, Loraine L Y; Radisic, Milica

    2009-06-01

    The purpose of this study was to design a simple system for cultivation of micro-scale cardiac organoids and investigate the effects of cellular composition on the organoid function. We hypothesized that cultivation of cardiomyocytes (CM) on preformed networks of fibroblasts (FB) and endothelial cells (EC) would enhance the structural and functional properties of the organoids, compared to simultaneously seeding the three cell types or cultivating enriched CM alone. Microchannels for cell seeding were created by photopolymerization of poly(ethylene glycol) diacrylate. In the preculture group the channels were seeded with a mixture of NIH 3T3 FB and D4T EC, following by addition of neonatal rat CM after 2 days of FB/EC preculture. The control microchannels were seeded simultaneously with FB/EC/CM (simultaneous triculture) or with enriched CM alone (enriched CM). Preculture resulted in cylindrical, contractile, and compact cardiac organoids that contained elongated CM expressing connexin-43 and cardiac troponin I. In contrast, simultaneous triculture resulted in noncontractile organoids with clusters of CM growing separately from elongated FBs and ECs. The staining for Connexin-43 was absent in the simultaneous triculture group. When fixed or frozen FB/EC were utilized as a preculture substrate for CM, noncontractile organoids were obtained; while preculture on a single cell type (either FB or EC) resulted in contractile organoids but with inferior properties compared to preculture with both FB/EC. These results emphasize the importance of living cells, presence of both nonmyocyte cell types as well as sequential seeding approach for cultivation of functional multicell type cardiac organoids. 2008 Wiley Periodicals, Inc.

  17. Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion.

    PubMed

    Eckardt, D; Theis, M; Degen, J; Ott, T; van Rijen, H V M; Kirchhoff, S; Kim, J-S; de Bakker, J M T; Willecke, K

    2004-01-01

    The gap junction protein Connexin43 (Cx43) is expressed in various cell types during embryonic development and in adult mice. Cx43 null mice (Cx43-/-) die perinatally due to cardiac malformation. In order to define the major functional role of Cx43 gap junction channels in adult mice and to circumvent perinatal death as well as direct or indirect compensation of Cx43 deficiency during development, we established a novel conditional Cx43 mouse mutant. To ablate Cx43 in adult mice in all cells that express Cx43 at a certain time, we targeted the 4-hydroxytamoxifen inducible Cre recombinase, Cre-ER(T), into the endogenous Cx43 locus. This approach left only one Cx43 coding region to be deleted upon induction of Cre-ER(T) activity. Highly efficient inducible ablation of Cx43 was shown in an embryonic stem cell test system and in adult mice. Although Cx43 protein was decreased in different tissues after induction of Cre-ER(T)-mediated recombination, cardiac abnormalities most likely account for death of those mice. Surface and telemetric ECG recordings revealed significant delay of ventricular activation and death during periods of bradyarrhythmia preceded by tachycardias. This novel approach of inducible ablation of Cx43 highlights the functional importance of normal activation of ventricular cardiomyocytes mediated by Cx43 gap junction channels in adult mouse heart to prevent initiation of fatal arrhythmias. The new mouse model should be useful for further analyses of molecular changes initiated by acute loss of Cx43 expression in various cell types.

  18. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.

    PubMed

    Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2017-04-01

    Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Cataracts and Microphthalmia Caused by a Gja8 Mutation in Extracellular Loop 2

    PubMed Central

    Cheng, Catherine; White, Thomas W.; Gong, Xiaohua

    2012-01-01

    The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans. PMID:23300808

  20. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    PubMed

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.

  1. Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, acetylcholine esterase levels in the striatum, and cAMP response element-binding protein levels in the striatum and piriform cortex.

    PubMed

    Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G

    2008-05-02

    Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.

  2. A Contractile Network of Interstitial Cells of Cajal in the Supratarsal Mueller's Smooth Muscle Fibers With Sparse Sympathetic Innervation

    PubMed Central

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Ban, Ryokuya; Yano, Shiharu; Moriizumi, Tetsuji

    2012-01-01

    Background: We previously reported that the supratarsal Mueller's muscle is innervated by both sympathetic efferent fibers and trigeminal proprioceptive afferent fibers, which function as mechanoreceptors-inducing reflexive contractions of both the levator and frontalis muscles. Controversy still persists regarding the role of the mechanoreceptors in Mueller's muscle; therefore, we clinically and histologically investigated Mueller's muscle. Methods: We evaluated the role of phenylephrine administration into the upper fornix in contraction of Mueller's smooth muscle fibers and how intraoperative stretching of Mueller's muscle alters the degree of eyelid retraction in 20 patients with aponeurotic blepharoptosis. In addition, we stained Mueller's muscle in 7 cadavers with antibodies against α-smooth muscle actin, S100, tyrosine hydroxylase, c-kit, and connexin 43. Results: Maximal eyelid retraction occurred approximately 3.8 minutes after administration of phenylephrine and prolonged eyelid retraction for at least 20 minutes after administration. Intraoperative stretching of Mueller's muscle increased eyelid retraction due to its reflexive contraction. The tyrosine hydroxylase antibody sparsely stained postganglionic sympathetic nerve fibers, whereas the S100 and c-kit antibodies densely stained the interstitial cells of Cajal (ICCs) among Mueller's smooth muscle fibers. A connexin 43 antibody failed to stain Mueller's muscle. Conclusions: A contractile network of ICCs may mediate neurotransmission within Mueller's multiunit smooth muscle fibers that are sparsely innervated by postganglionic sympathetic fibers. Interstitial cells of Cajal may also serve as mechanoreceptors that reflexively contract Mueller's smooth muscle fibers, forming intimate associations with intramuscular trigeminal proprioceptive fibers to induce reflexive contraction of the levator and frontalis muscles. PMID:22359687

  3. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid.

    PubMed

    El-Hussainy, El-Hussainy M A; Hussein, Abdelaziz M; Abdel-Aziz, Azza; El-Mehasseb, Ibrahim

    2016-08-01

    The objectives of present study were to examine the effects of aluminum oxide (Al2O3) nanoparticles on myocardial functions, electrical activities, morphology, inflammation, redox state, and myocardial expression of connexin 43 (Cx43) and the effect of gallic acid (GA) on these effects in a rat animal model. Forty male albino rats were divided into 4 equal groups: the control (normal) group; the Al2O3 group, rats received Al2O3 (30 mg·kg(-1), i.p.) daily for 14 days; the nano-alumina group, rats received nano-alumina (30 mg·kg(-1), i.p.) daily for 14 days; and the nano-alumina + GA group, rats received GA (100 mg·kg(-1) orally once daily) for 14 days before nano-alumina administration. The results showed disturbed ECG variables and significant increases in serum levels of LDH, creatine phosphokinase (CPK), CK-MB, triglycerides (TGs), cholesterol and LDL, nitric oxide (NO), and TNF-α and myocardial concentrations of NO, TNF-α, and malondialdehyde (MDA), with significant decreases in serum HDL and myocardial GSH, SOD, catalase (CAT), and Cx43 expression in the nano-alumina group. Pretreatment with GA improved significantly all parameters except serum and myocardial NO. We concluded that chronic administration of Al2O3 NPs caused myocardial dysfunctions, and pretreatment with GA ameliorates myocardial injury induced by nano-alumina, probably through its hypolipidaemic, anti-inflammatory, and antioxidant effects and upregulation of Cx43 in heart.

  4. Connexin32 expression in central and peripheral nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show thatmore » Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.« less

  5. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease

    PubMed Central

    Hadjihambi, Anna; De Chiara, Francesco; Hosford, Patrick S.; Habtetion, Abeba; Karagiannis, Anastassios; Davies, Nathan

    2017-01-01

    The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte‐neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia‐lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia‐induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. Conclusion: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel‐mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306‐1318) PMID:28066916

  6. cAMP enhances Cx43 gap junction formation and function and reverses choline deficiency apoptosis.

    PubMed

    Albright, C D; Kuo, J; Jeong, S

    2001-08-01

    Previously, it had been shown that acute choline deficiency (CD) induced apoptosis in cultured rat liver epithelial cells, whereas cells that are adapted to survive in low-choline-containing medium acquire resistance to CD apoptosis and undergo malignant transformation. Thus, understanding the mechanisms of action of CD could increase our understanding of the role of choline, an essential nutrient, in the process of malignant transformation. The present experiments were designed to test the hypothesis that CD might function as a pro-apoptotic trigger by altering the localization of connexin 43 gap junction protein and gap junctional intercellular communication (GJIC). Established liver epithelial cells (WB cells; Hep3B cells) were maintained in a defined, serum-free medium control (70 microM choline) or choline deficient medium (CD, 5 microM choline) and the localization of connexin 43 protein (Cx43) was studied by immunocytochemistry and Western blotting. In nontumorigenic WB cells, CD apoptosis was associated with retention of Cx43 in the golgi/ER region of the cytoplasm and decreased GJIC as measured using a preloading fluorescent dye transfer method (calcein AM/DiIC(18)). Cells maintained in CD in the presence of 8-bromoadenosine 3':5'-cyclic monophosphate exhibited restoration of Cx43 at the plasma membrane and increased GJIC and inhibition of apoptosis. These studies show that CD apoptosis in nontumorigenic liver epithelial cells is associated with alterations to Cx43 and GJIC and that an uncoupling of Cx43 localization and GJIC is related to resistance to CD apoptosis in transformed liver epithelial cells. Copyright 2001 Academic Press.

  7. Ca2+-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients

    PubMed Central

    2013-01-01

    Background Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca2+ entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca2+ inflow is, however, unknown. Methods In this study, we sought to determine whether and how endothelial scraping induces NO production (NOP) in the endothelium of excised rat aorta by exploiting the NO-sensitive fluorochrome, DAF-FM diacetate and the Ca2+-sensitive fluorescent dye, Fura-2/AM. Results We demonstrated that injury-induced NOP at the lesion site is prevented in presence of the endothelial NO synthase inhibitor, L-NAME, and in absence of extracellular Ca2+. Unlike ATP-dependent NO liberation, the NO response to injury is insensitive to BTP-2, which selectively blocks store-operated Ca2+ inflow. However, injury-induced NOP is significantly reduced by classic gap junction blockers, and by connexin mimetic peptides specifically targeting Cx37Hcs, Cx40HCs, and Cx43Hcs. Moreover, disruption of caveolar integrity prevents injury-elicited NO signaling, but not the accompanying Ca2+ response. Conclusions The data presented provide the first evidence that endothelial scraping stimulates NO synthesis at the wound edge, which might both exert an immediate anti-thrombotic and anti-inflammatory action and promote the subsequent re-endothelialization. PMID:24266895

  8. Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability.

    PubMed

    Dunn, Clarence A; Su, Vivian; Lau, Alan F; Lampe, Paul D

    2012-01-20

    The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.

  9. Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases

    PubMed Central

    Velasquez, Stephani; Eugenin, Eliseo A.

    2014-01-01

    In the last decade several groups have determined the key role of hemichannels formed by pannexins or connexins, extracellular ATP and purinergic receptors in physiological and pathological conditions. Our work and the work of others, indicate that the opening of Pannexin-1 hemichannels and activation of purinergic receptors by extracellular ATP is essential for HIV infection, cellular migration, inflammation, atherosclerosis, stroke, and apoptosis. Thus, this review discusses the importance of purinergic receptors, Panx-1 hemichannels and extracellular ATP in the pathogenesis of several human diseases and their potential use to design novel therapeutic approaches. PMID:24672487

  10. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb; Fares, Mohamed-Bilal; Rahme, Gilbert J.

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressingmore » Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced. • Cx43-mediated gap junction complex assembly correlated with observed changes. • We propose that membranous Cx43 sequesters β-catenin away from the nucleus.« less

  11. Connexin 36 mediates blood cell flow in mouse pancreatic islets

    PubMed Central

    Short, Kurt W.; Head, W. Steve

    2013-01-01

    The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36−/−). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36+/− and Cx36−/− mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology. PMID:24326425

  12. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji

    2014-10-01

    Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  14. Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation

    PubMed Central

    Dhein, S; Rothe, S; Busch, A; Rojas Gomez, DM; Boldt, A; Reutemann, A; Seidel, T; Salameh, A; Pfannmüller, B; Rastan, A; Kostelka, M; Mohr, FW

    2011-01-01

    BACKGROUND AND PURPOSE We investigated the influence of metoprolol on gap junction proteins connexin43 (Cx43) and connexin40 (Cx40) in atrial tissue from patients with/without atrial fibrillation (AF). EXPERIMENTAL APPROACH Left atrial tissue samples from 160 patients with AF or sinus rhythm (SR) with or without metoprolol (mean daily dose: 65.2 ± 9.1 mg·day−1) were analysed for Cx43 and Cx40 by Western blot and immunohistology. Transverse and longitudinal conduction velocities were determined by 64 multi-electrode mapping. KEY RESULTS Both Cx43 and Cx40 expression were significantly increased in patients with AF versus SR. Cx43-expression in AF was significantly higher in patients receiving metoprolol, while Cx40 expression was unaffected by metoprolol treatment. In AF, the ratio of lateral/polar expression of Cx43 and Cx40 was enhanced due to increased expression at the sides of the cells (lateral) and a loss at the cell poles. This AF-induced increase in lateral/polar expression of Cx43, but not of Cx40, was significantly antagonized by metoprolol treatment. Functionally, in AF patients, transverse conduction velocity in atrial samples was significantly enhanced and this change was also significantly antagonized by metoprolol. CONCLUSIONS AND IMPLICATIONS AF induced enhanced lateral expression of Cx43 and Cx40 together with enhanced transverse conduction velocity in left atrial tissue. Alterations in localization of Cx43 and conduction changes were both antagonized by metoprolol, showing that pharmacological modulation of gap junction remodelling seems, in principle, possible. This finding may open new approaches to the development of anti-arrythmic drugs. PMID:21542828

  15. The R245X mutation of PCDH15 in Ashkenazi Jewish children diagnosed with nonsyndromic hearing loss foreshadows retinitis pigmentosa.

    PubMed

    Brownstein, Zippora; Ben-Yosef, Tamar; Dagan, Orit; Frydman, Moshe; Abeliovich, Dvorah; Sagi, Michal; Abraham, Fabian A; Taitelbaum-Swead, Riki; Shohat, Mordechai; Hildesheimer, Minka; Friedman, Thomas B; Avraham, Karen B

    2004-06-01

    Usher syndrome is a frequent cause of the combination of deafness and blindness due to retinitis pigmentosa (RP). Five genes are known to underlie different forms of Usher syndrome type I (USH1). In the Ashkenazi Jewish population, the R245X mutation of the PCDH15 gene may be the most common cause of USH1 (Ben-Yosef T, Ness SL, Madeo AC, Bar-Lev A, Wolfman JH, Ahmed ZM, Desnick RK, Willner JP, Avraham KB, Ostrer H, Oddoux C, Griffith AJ, Friedman TB N Engl J Med 348: 1664-1670, 2003). To estimate what percentage of Ashkenazi Jewish children born with profound hearing loss will develop RP due to R245X, we examined the prevalence of the R245X PCDH15 mutation and its carrier rate among Ashkenazi Jews in Israel. Among probands diagnosed with nonsyndromic hearing loss not due to mutations of connexin 26 (GJB2) and/or connexin 30 (GJB6), and below the age of 10, 2 of 20 (10%) were homozygous for the R245X mutation. Among older nonsyndromic deaf individuals, no homozygotes were detected, although one individual was heterozygous for R245X. The carrier rate of the R245X mutation among the normal hearing Ashkenazi population in Israel was estimated at 1%. Ashkenazi Jewish children with profound prelingual hearing loss should be evaluated for the R245X PCDH15 mutation and undergo ophthalmologic evaluation to determine whether they will develop RP. Rehabilitation can then begin before loss of vision. Early use of cochlear implants in such cases may rescue these individuals from a dual neurosensory deficit.

  16. Differential expression and localization of four connexins in the ovary of the ayu (Plecoglossus Altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Itoh, F.; Patino, R.

    2007-01-01

    The post-vitellogenic oocytes of teleost fish are generally unresponsive to maturation-inducing hormone (MIH) until a luteinizing hormone (LH) surge stimulates sensitivity via the acquisition of oocyte-maturational competence (OMC). Heterologous gap junctions (GJs) between granulosa cells and the oocyte have been previously implicated in the regulation of oocyte maturation in various vertebrate species. Although heterologous GJ are present in ovarian follicles of ayu (Plecoglossus altivelis), their role in maturation remains unclear. In the present study, we cloned and characterized complementary DNAs for GJ protein connexin (Cx), and examined the expression pattern of Cx messenger RNAs in the ayu ovary. Four Cx cDNAs with predicted molecular masses of 32.1 (Cx32.1), 34.9 (Cx34.9), 44.1 (Cx44.1), and 44.2 (Cx44.2) kDa, respectively, were cloned. Northern blot analysis revealed that the levels of Cx44.1 and Cx44.2 transcripts were similar during the vitellogenic and ovulatory stages. Cx32.1 transcripts were more abundant during the vitellogenic stage, but their levels declined thereafter. Cx34.9 transcript levels increased during the vitellogenic stage and remained high during the acquisition of OMC. In situ hybridization revealed that Cx44.1 and Cx44.2 signals were restricted to the oocyte, whereas the Cx32.1 and Cx34.9 signals were detected in both cellular fractions. Furthermore, a dye-transfer assay revealed the presence of functional GJs between the oocytes and follicle cells. These results suggest that Cx34.9 contributes to the formation of heterologous GJs between oocytes and granulosa cells. Moreover, GJs formed by Cx34.9 may function during the LH-dependent acquisition of OMC and the MIH-dependent resumption of meiosis in ayu. ?? 2007 Wiley-Liss, Inc.

  17. Phenotypic transformation of smooth muscle cells from porcine coronary arteries is associated with connexin 43

    PubMed Central

    ZHANG, XUMIN; WANG, XIAODONG; ZHOU, XIAOHUI; MA, XIAOYE; YAO, YIAN; LIU, XUEBO

    2016-01-01

    The current study aimed to investigate the relevance of the gap junction protein connexin Cx43 in coronary artery smooth muscle cell (SMC) heterogeneity and coronary artery restenosis. SMCs were isolated from the coronary artery of 3-month-old pigs using enzymatic digestion. Two distinct SMC populations were isolated: Rhomboid (R) and spindle-shaped (S) cells. S-SMCs exhibited relatively lower rates of proliferation, exhibiting a classic ''hills-and valleys'' growth pattern; R-SMCs displayed increased proliferation rates, growing as mono- or multi-layers. Immunofluorescent staining, polymerase chain reaction and western blotting were used to assess the expression of Cx40 and Cx43 in SMCs. For further evaluation, cultured SMCs were treated with 10 ng/ml platelet-derived growth factor (PDGF)-BB with or without the gap junction blocker 18α-glycyrrhetinic acid. Stent-induced restenosis was assessed in vivo. Different expression patterns were observed for Cx40 and Cx43 in R- and S-SMCs. Cx40 was the most abundant Cx in S-SMCs, whereas CX43 was identified at relatively higher levels than Cx40 in R-SMCs. Notably, PDGF-BB converted S-SMCs to R-SMCs, with increased Cx43 expression, while 18α-glycyrrhetinic acid inhibited the PDGF-BB-induced phenotypic alterations in S-SMCs. Additionally, restenosis was confirmed in pigs 1-month subsequent to stent placement. R-SMCs were the major cell population isolated from stent-induced restenosis artery tissues, and exhibited markedly increased Cx43 expression, in accordance with the in vitro data described above. In conclusion, the phenotypic transformation of coronary artery SMCs is closely associated with Cx43, which is involved in restenosis. These observations provide a basis for the use of Cx43 as a novel target in restenosis prevention. PMID:27175888

  18. Gap junction protein expression and cellularity: comparison of immature and adult equine digital tendons

    PubMed Central

    Stanley, Rachael L; Fleck, Roland A; Becker, David L; Goodship, Allen E; Ralphs, Jim R; Patterson-Kane, Janet C

    2007-01-01

    Injury to the energy-storing superficial digital flexor tendon is common in equine athletes and is age-related. Tenocytes in the superficial digital flexor tendon of adult horses appear to have limited ability to respond adaptively to exercise or prevent the accumulation of strain-induced microdamage. It has been suggested that conditioning exercise should be introduced during the growth period, when tenocytes may be more responsive to increased quantities or intensities of mechanical strain. Tenocytes are linked into networks by gap junctions that allow coordination of synthetic activity and facilitate strain-induced collagen synthesis. We hypothesised that there are reductions in cellular expression of the gap junction proteins connexin (Cx) 43 and 32 during maturation and ageing of the superficial digital flexor tendon that do not occur in the non-injury-prone common digital extensor tendon. Cryosections from the superficial digital flexor tendon and common digital extensor tendon of 5 fetuses, 5 foals (1–6 months), 5 young adults (2–7 years) and 5 old horses (18–33 years) were immunofluorescently labelled and quantitative confocal laser microscopy was performed. Expression of Cx43 and Cx32 protein per tenocyte was significantly higher in the fetal group compared with all other age groups in both tendons. The density of tenocytes was found to be highest in immature tissue. Higher levels of cellularity and connexin protein expression in immature tendons are likely to relate to requirements for tissue remodelling and growth. However, if further studies demonstrate that this correlates with greater gap junctional communication efficiency and synthetic responsiveness to mechanical strain in immature compared with adult tendons, it could support the concept of early introduction of controlled exercise as a means of increasing resistance to later injury. PMID:17848160

  19. Ca²⁺-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients.

    PubMed

    Berra-Romani, Roberto; Avelino-Cruz, José Everardo; Raqeeb, Abdul; Della Corte, Alessandro; Cinelli, Mariapia; Montagnani, Stefania; Guerra, Germano; Moccia, Francesco; Tanzi, Franco

    2013-01-01

    Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca²⁺ entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca²⁺ inflow is, however, unknown. In this study, we sought to determine whether and how endothelial scraping induces NO production (NOP) in the endothelium of excised rat aorta by exploiting the NO-sensitive fluorochrome, DAF-FM diacetate and the Ca²⁺-sensitive fluorescent dye, Fura-2/AM. We demonstrated that injury-induced NOP at the lesion site is prevented in presence of the endothelial NO synthase inhibitor, L-NAME, and in absence of extracellular Ca²⁺. Unlike ATP-dependent NO liberation, the NO response to injury is insensitive to BTP-2, which selectively blocks store-operated Ca²⁺ inflow. However, injury-induced NOP is significantly reduced by classic gap junction blockers, and by connexin mimetic peptides specifically targeting Cx37Hcs, Cx40HCs, and Cx43Hcs. Moreover, disruption of caveolar integrity prevents injury-elicited NO signaling, but not the accompanying Ca²⁺ response. The data presented provide the first evidence that endothelial scraping stimulates NO synthesis at the wound edge, which might both exert an immediate anti-thrombotic and anti-inflammatory action and promote the subsequent re-endothelialization.

  20. Transient downregulation of microRNA-206 protects alkali burn injury in mouse cornea by regulating connexin 43

    PubMed Central

    Li, Xiaoyan; Zhou, Huanfen; Tang, Weiqiang; Guo, Qing; Zhang, Yan

    2015-01-01

    Purpose: Chemical burn in cornea may cause permanent visual problem or complete blindness. In the present study, we investigated the role of microRNA 206 (miR-206) in relieving chemical burn in mouse cornea. Method: An alkali burn model was established in C57BL/6 mice to induce chemical corneal injury. Within 72 hours, the transient inflammatory responses in alkali-treated corneas were measured by opacity and corneal neovascularization (CNV) levels, and the gene expression profile of miR-206 was measured by quantitative real-time PCR (qPCR). Inhibitory oligonucleotides of miR-206, miR-206-I, were intrastromally injected into alkali-burned corneas. The possible protective effects of down-regulating miR-206 were assessed by both in vivo measurements of inflammatory responses and in vitro histochemical examinations of corneal epithelium sections. The possible binding of miR-206 on its molecular target, connexin43 (Cx43), was assessed by luciferase reporter (LR) and western blot (WB) assays. Cx43 was silenced by siRNA to examine its effect on regulating miR-206 modulation in alkali-burned cornea. Results: Opacity and CNV levels, along with gene expression of miR-206, were all transiently elevated within 72 hours of alkali-burned mouse cornea. Intrastromal injection of miR-206-I into alkali-burned cornea down-regulated miR-206 and ameliorated inflammatory responses both in vivo and in vitro. LR and WB assays confirmed that Cx43 was directly targeted by miR-206 in mouse cornea. Genetic silencing of Cx43 reversed the protective effect of miR-206 down-regulation in alkali-burned cornea. Conclusion: miR-206, associated with Cx43, is a novel molecular modulator in alkali burn in mouse cornea. PMID:26045777

  1. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    PubMed Central

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  2. Aquaporin 0 Modulates Lens Gap Junctions in the Presence of Lens-Specific Beaded Filament Proteins

    PubMed Central

    Kumari, Sindhu; Gao, Junyuan; Mathias, Richard T.; Sun, Xiurong; Eswaramoorthy, Amizhdini; Browne, Nicholas; Zhang, Nigel

    2017-01-01

    Purpose The objective of this study was to understand the molecular and physiologic mechanisms behind the lens cataract differences in Aquaporin 0-knockout-Heterozygous (AQP0-Htz) mice developed in C57 and FVB (lacks beaded filaments [BFs]) strains. Methods Lens transparency was studied using dark field light microscopy. Water permeability (Pf) was measured in fiber cell membrane vesicles. Western blotting/immunostaining was performed to verify expression of BF proteins and connexins. Microelectrode-based intact lens intracellular impedance was measured to determine gap junction (GJ) coupling resistance. Lens intracellular hydrostatic pressure (HP) was determined using a microelectrode/manometer system. Results Lens opacity and spherical aberration were more distinct in AQP0-Htz lenses from FVB than C57 strains. In either background, compared to wild type (WT), AQP0-Htz lenses showed decreased Pf (approximately 50%), which was restored by transgenic expression of AQP1 (TgAQP1/AQP0-Htz), but the opacities and differences between FVB and C57 persisted. Western blotting revealed no change in connexin expression levels. However, in C57 AQP0-Htz and TgAQP1/AQP0-Htz lenses, GJ coupling resistance decreased approximately 2.8-fold and the HP gradient decreased approximately 1.9-fold. Increased Pf in TgAQP1/AQP0-Htz did not alter GJ coupling resistance or HP. Conclusions In C57 AQP0-Htz lenses, GJ coupling resistance decreased. HP reduction was smaller than the coupling resistance reduction, a reflection of an increase in fluid circulation, which is one reason for the less severe cataract in C57 than FVB. Overall, our results suggest that AQP0 modulates GJs in the presence of BF proteins to maintain lens transparency and homeostasis. PMID:29196765

  3. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions

    PubMed Central

    Rimkute, Lina; Kraujalis, Tadas; Snipas, Mindaugas; Palacios-Prado, Nicolas; Jotautis, Vaidas; Skeberdis, Vytenis A.; Bukauskas, Feliksas F.

    2018-01-01

    Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pHi) and cytosolic magnesium ion concentration ([Mg2+]i), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pHi and [Mg2+]i affect junctional conductance (gj) in an interdependent manner; in other words, intracellular acidification cause increase or decay in gj depending on whether [Mg2+]i is high or low, respectively, and intracellular alkalization cause reduction in gj independently of [Mg2+]i. Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pHi and [Mg2+]i. Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pHi and [Mg2+]i. Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg2+]i, while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36*E8Q lost the initial increase of gj at low [Mg2+]i and double mutation lost the sensitivity to high [Mg2+]i. These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg2+ and H+ ions. PMID:29706896

  4. Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-stellate cells.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Kouki, Tom; Kikuchi, Motoshi; Yashiro, Takashi

    2008-12-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear. The S100b-GFP transgenic rat has recently been generated, which expresses green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary. This model is expected to be a powerful tool for studies of FS cells. The purpose of the present paper was therefore to examine the localization of GJ on connexin 43 immunohistochemistry throughout the anterior pituitary gland of S100b-GFP rats under confocal laser microscopy. The localization patterns of FS cells was also observed in primary culture of anterior pituitary cells and the question of whether GJ between FS cells are reconstructed in vitro was investigated. In vivo studies showed that GJ were present specifically between FS cells from the pars tuberalis to the pars distalis in the anterior pituitary gland. The appearance of FS cells was distinguished into two types, with localization of GJ differing between types. In vitro, it was observed for the first time that FS cells in primary culture could be categorized into two types. In vivo localization of GJ between FS cells was reconstructed in vitro. These morphological observations are consistent with the hypothesis that FS cells form an electrophysiological network throughout the anterior pituitary for signal transmission.

  5. A novel mutation in the connexin 26 gene (GJB2) in a child with clinical and histological features of keratitis-ichthyosis-deafness (KID) syndrome.

    PubMed

    Koppelhus, U; Tranebjaerg, L; Esberg, G; Ramsing, M; Lodahl, M; Rendtorff, N D; Olesen, H V; Sommerlund, M

    2011-03-01

    Keratitis-ichthyosis-deafness (KID) syndrome is a rare congenital ectodermal disorder, caused by heterozygous missense mutation in GJB2, encoding the gap junction protein connexin 26. The commonest mutation is the p.Asp50Asn mutation, and only a few other mutations have been described to date. To report the fatal clinical course and characterize the genetic background of a premature male neonate with the clinical and histological features of KID syndrome. Genomic DNA was extracted from peripheral blood and used for PCR amplification of the GJB2 gene. Direct sequencing was used for mutation analysis. The clinical features included hearing impairment, ichthyosiform erythroderma with hyperkeratotic plaques, palmoplantar keratoderma, alopecia of the scalp and eyelashes, and a thick vernix caseosa-like covering of the scalp. On histological analysis, features characteristic of KID syndrome, such as acanthosis and papillomatosis of the epidermis with basket-weave hyperkeratosis, were seen. The skin symptoms were treated successfully with acitretin 0.5 mg/kg. The boy developed intraventricular and intracerebral haemorrhage, leading to hydrocephalus. His condition was further complicated by septicaemia and meningitis caused by infection with extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Severe respiratory failure followed, and the child died at 46 weeks of gestational age (13 weeks postnatally). Sequencing of the GJB2 gene showed that the child was heterozygous for a novel nucleotide change, c.263C>T, in exon 2, leading to a substitution of alanine for valine at position 88 (p.Ala88Val). This study has identified a new heterozygous de novo mutation in the Cx26 gene (c.263C>T; p.Ala88Val) leading to KID syndrome. © The Author(s). CED © 2010 British Association of Dermatologists.

  6. Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides.

    PubMed

    Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm

    2010-03-01

    Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.

  7. Increase of gap junction activities in SW480 human colorectal cancer cells.

    PubMed

    Bigelow, Kristina; Nguyen, Thu A

    2014-07-09

    Colorectal cancer is one of the most common cancers in the United States with an early detection rate of only 39%. Colorectal cancer cells along with other cancer cells exhibit many deficiencies in cell-to-cell communication, particularly gap junctional intercellular communication (GJIC). GJIC has been reported to diminish as cancer cells progress. Gap junctions are intercellular channels composed of connexin proteins, which mediate the direct passage of small molecules from one cell to the next. They are involved in the regulation of the cell cycle, cell differentiation, and cell signaling. Since the regulation of gap junctions is lost in colorectal cancer cells, the goal of this study is to determine the effect of GJIC restoration in colorectal cancer cells. Gap Junction Activity Assay and protein analysis were performed to evaluate the effects of overexpression of connexin 43 (Cx43) and treatment of PQ1, a small molecule, on GJIC. Overexpression of Cx43 in SW480 colorectal cancer cells causes a 6-fold increase of gap junction activity compared to control. This suggests that overexpressing Cx43 can restore GJIC. Furthermore, small molecule like PQ1 directly targeting gap junction channel was used to increase GJIC. Gap junction enhancers, PQ1, at 200 nM showed a 4-fold increase of gap junction activity in SW480 cells. A shift from the P0 to the P2 isoform of Cx43 was seen after 1 hour treatment with 200 nM PQ1. Overexpression of Cx43 and treatment of PQ1 can directly increase gap junction activity. The findings provide an important implication in which restoration of gap junction activity can be targeted for drug development.

  8. Aquaporin 0 Modulates Lens Gap Junctions in the Presence of Lens-Specific Beaded Filament Proteins.

    PubMed

    Kumari, Sindhu; Gao, Junyuan; Mathias, Richard T; Sun, Xiurong; Eswaramoorthy, Amizhdini; Browne, Nicholas; Zhang, Nigel; Varadaraj, Kulandaiappan

    2017-12-01

    The objective of this study was to understand the molecular and physiologic mechanisms behind the lens cataract differences in Aquaporin 0-knockout-Heterozygous (AQP0-Htz) mice developed in C57 and FVB (lacks beaded filaments [BFs]) strains. Lens transparency was studied using dark field light microscopy. Water permeability (Pf) was measured in fiber cell membrane vesicles. Western blotting/immunostaining was performed to verify expression of BF proteins and connexins. Microelectrode-based intact lens intracellular impedance was measured to determine gap junction (GJ) coupling resistance. Lens intracellular hydrostatic pressure (HP) was determined using a microelectrode/manometer system. Lens opacity and spherical aberration were more distinct in AQP0-Htz lenses from FVB than C57 strains. In either background, compared to wild type (WT), AQP0-Htz lenses showed decreased Pf (approximately 50%), which was restored by transgenic expression of AQP1 (TgAQP1/AQP0-Htz), but the opacities and differences between FVB and C57 persisted. Western blotting revealed no change in connexin expression levels. However, in C57 AQP0-Htz and TgAQP1/AQP0-Htz lenses, GJ coupling resistance decreased approximately 2.8-fold and the HP gradient decreased approximately 1.9-fold. Increased Pf in TgAQP1/AQP0-Htz did not alter GJ coupling resistance or HP. In C57 AQP0-Htz lenses, GJ coupling resistance decreased. HP reduction was smaller than the coupling resistance reduction, a reflection of an increase in fluid circulation, which is one reason for the less severe cataract in C57 than FVB. Overall, our results suggest that AQP0 modulates GJs in the presence of BF proteins to maintain lens transparency and homeostasis.

  9. TGF-β1 (Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity.

    PubMed

    Salvarani, Nicolò; Maguy, Ange; De Simone, Stefano A; Miragoli, Michele; Jousset, Florian; Rohr, Stephan

    2017-05-01

    TGF-β 1 (transforming growth factor-β 1 ) importantly contributes to cardiac fibrosis by controlling differentiation, migration, and collagen secretion of cardiac myofibroblasts. It is still elusive, however, to which extent TGF-β 1 alters the electrophysiological phenotype of myofibroblasts and cardiomyocytes and whether it affects proarrhythmic myofibroblast-cardiomyocyte crosstalk observed in vitro. Patch-clamp recordings of cultured neonatal rat ventricular myofibroblasts revealed that TGF-β 1 , applied for 24 to 48 hours at clinically relevant concentrations (≤2.5 ng/mL), causes substantial membrane depolarization concomitant with a several-fold increase of transmembrane currents. Transcriptome analysis revealed TGF-β 1 -dependent changes in 29 of 63 ion channel/pump/connexin transcripts, indicating a pleiotropic effect on the electrical phenotype of myofibroblasts. Whereas not affecting cardiomyocyte membrane potentials and cardiomyocyte-cardiomyocyte gap junctional coupling, TGF-β 1 depolarized cardiomyocytes coupled to myofibroblasts by ≈20 mV and increased gap junctional coupling between myofibroblasts and cardiomyocytes >5-fold as reflected by elevated connexin 43 and consortin transcripts. TGF-β 1 -dependent cardiomyocyte depolarization resulted from electrotonic crosstalk with myofibroblasts as demonstrated by immediate normalization of cardiomyocyte electrophysiology after targeted disruption of coupled myofibroblasts and by cessation of ectopic activity of cardiomyocytes coupled to myofibroblasts during pharmacological gap junctional uncoupling. In cardiac fibrosis models exhibiting slow conduction and ectopic activity, block of TGF-β 1 signaling completely abolished both arrhythmogenic conditions. TGF-β 1 profoundly alters the electrophysiological phenotype of cardiac myofibroblasts. Apart from possibly contributing to the control of cell function in general, the changes proved to be pivotal for proarrhythmic myofibroblast-cardiomyocyte crosstalk in vitro, which suggests that TGF-β 1 may play a potentially important role in arrhythmogenesis of the fibrotic heart. © 2017 American Heart Association, Inc.

  10. Characterization of the Structure and Intermolecular Interactions between the Connexin 32 Carboxyl-terminal Domain and the Protein Partners Synapse-associated Protein 97 and Calmodulin*

    PubMed Central

    Stauch, Kelly; Kieken, Fabien; Sorgen, Paul

    2012-01-01

    In Schwann cells, connexin 32 (Cx32) can oligomerize to form intracellular gap junction channels facilitating a shorter pathway for metabolite diffusion across the layers of the myelin sheath. The mechanisms of Cx32 intracellular channel regulation have not been clearly defined. However, Ca2+, pH, and the phosphorylation state can regulate Cx32 gap junction channels, in addition to the direct interaction of protein partners with the carboxyl-terminal (CT) domain. In this study, we used different biophysical methods to determine the structure and characterize the interaction of the Cx32CT domain with the protein partners synapse-associated protein 97 (SAP97) and calmodulin (CaM). Our results revealed that the Cx32CT is an intrinsically disordered protein that becomes α-helical upon binding CaM. We identified the GUK domain as the minimal SAP97 region necessary for the Cx32CT interaction. The Cx32CT residues affected by the binding of CaM and the SAP97 GUK domain were determined as well as the dissociation constants for these interactions. We characterized three Cx32CT Charcot-Marie-Tooth disease mutants (R219H, R230C, and F235C) and identified that whereas they all formed functional channels, they all showed reduced binding affinity for SAP97 and CaM. Additionally, we report that in RT4-D6P2T rat schwannoma cells, Cx32 is differentially phosphorylated and exists in a complex with SAP97 and CaM. Our studies support the importance of protein-protein interactions in the regulation of Cx32 gap junction channels and myelin homeostasis. PMID:22718765

  11. Up-Regulation of Connexin43 in Glomerular Podocytes in Response to Injury

    PubMed Central

    Yaoita, Eishin; Yao, Jian; Yoshida, Yutaka; Morioka, Tetsuo; Nameta, Masaaki; Takata, Takuma; Kamiie, Jun-ichi; Fujinaka, Hidehiko; Oite, Takashi; Yamamoto, Tadashi

    2002-01-01

    Podocyte injury or podocyte loss in the renal glomerulus has been proposed as the crucial mechanism in the development of focal segmental glomerulosclerosis. However, it is poorly understood how podocytes respond to injury. In this study, glomerular expression of connexin43 (Cx43) gap junction protein was examined at both protein and transcript levels in an experimental model of podocyte injury, puromycin aminonucleoside (PAN) nephrosis. A striking increase in the number of immunoreactive dots with anti-Cx43 antibody was demonstrated along the glomerular capillary wall in the early to nephrotic stage of PAN nephrosis. The conspicuous change was not detected in the other areas including the mesangium and Bowman’s capsule. Immunoelectron microscopy showed that the immunogold particles for Cx43 along the capillary wall were localized predominantly at the cell-cell contact sites of podocytes. Consistently, Western blotting and ribonuclease protection assay revealed a distinct increase of Cx43 protein, phosphorylation, and transcript in glomeruli during PAN nephrosis. The changes were detected by 6 hours after PAN injection. These findings indicate that the increase of Cx43 expression is one of the earliest responses that have ever been reported in podocyte injury. To show the presence of functional gap junctional intercellular communication (GJIC) in podocytes, GJIC was assessed in podocytes in the primary culture by transfer of fluorescent dye, Lucifer yellow, after a single-cell microinjection. Diffusion of the dye into adjacent cells was observed frequently in the cultured podocytes, but scarcely in cultured parietal epithelial cells of Bowman’s capsule, which was compatible with their Cx43 staining. Thus, it is concluded that Cx43-mediated GJIC is present between podocytes, suggesting that podocytes may respond to injury as an integrated epithelium on a glomerulus rather than individually as a separate cell. PMID:12414508

  12. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    PubMed

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (P<0.05) in pregnant UAECs. In pregnant UAECs, ATP increased Lucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  13. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells

    PubMed Central

    Cheng, Catherine; Nowak, Roberta B.; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K.; Lo, Woo-Kuen; Mathias, Richard T.

    2015-01-01

    The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1−/−;CP49−/− double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. PMID:25740157

  14. Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice.

    PubMed

    Szilvásy-Szabó, Anett; Varga, Edina; Beliczai, Zsuzsa; Lechan, Ronald M; Fekete, Csaba

    2017-10-15

    Tanycytes are specialized glial cells lining the lateral walls and the floor of the third ventricle behind the optic chiasm. In addition to functioning as barrier cells, they also have an important role in the regulation of neuroendocrine axes and energy homeostasis. To determine whether tanycytes communicate with each other via Connexin 43 (Cx43) gap junctions, individual tanycytes were loaded with Lucifer yellow (LY) through a patch pipette. In all cases, LY filled a larger group of tanycytes as well as blood vessels adjacent to tanycyte processes. The Cx43-blocker, carbenoxolone, inhibited spreading of LY. The greatest density of Cx43-immunoreactive spots was observed in the cell membrane of α-tanycyte cell bodies. Cx43-immunoreactivity was also present in the membrane of β-tanycyte cell bodies, but in lower density. Processes of both types of tanycytes also contained Cx43-immunoreactivity. At the ultrastructural level, Cx43-immunoreactivity was present in the cell membrane of all types of tanycytes including their ventricular surface, but gap junctions were more frequent among α-tanycytes. Cx43-immunoreactivity was also observed in the cell membrane between contacting tanycyte endfeet processes, and between tanycyte endfeet process and axon varicosities in the external zone of the median eminence and capillaries in the arcuate nucleus and median eminence. These results suggest that gap junctions are present not only among tanycytes, but also between tanycytes and the axons of hypophysiotropic neurons. Cx43 hemichannels may also facilitate the transport between tanycytes and extracellular fluids, including the cerebrospinal fluid, extracellular space of the median eminence and bloodstream. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pharmacological dissection of the cellular mechanisms associated to the spontaneous and the mechanically stimulated ATP release by mesentery endothelial cells: roles of thrombin and TRPV.

    PubMed

    Verónica Donoso, M; Hernández, Felipe; Villalón, Tania; Acuña-Castillo, Claudio; Pablo Huidobro-Toro, J

    2018-06-01

    Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca 2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1 -/- rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.

  16. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells.

    PubMed

    Cheng, Catherine; Nowak, Roberta B; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K; Lo, Woo-Kuen; Mathias, Richard T; Fowler, Velia M

    2015-05-15

    The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. Copyright © 2015 the American Physiological Society.

  17. Analysis of four connexin26 mutant gap junctions and hemichannels reveals variations in hexamer stability.

    PubMed

    Ambrosi, Cinzia; Boassa, Daniela; Pranskevich, Jennifer; Smock, Amy; Oshima, Atsunori; Xu, Ji; Nicholson, Bruce J; Sosinsky, Gina E

    2010-05-19

    Connexin26 is a ubiquitous gap junction protein that serves critical homeostatic functions. Four single-site mutations found in the transmembrane helices (M1-M4) cause different types of dysfunctional channels: 1), Cx26T135A in M3 produces a closed channel; 2), Cx26M34A in M1 severely decreases channel activity; 3), Cx26P87L in M2 has been implicated in defective channel gating; and 4), Cx26V84L in M2, a nonsyndromic deafness mutant, retains normal dye coupling and electrophysiological properties but is deficient in IP(3) transfer. These mutations do not affect Cx26 trafficking in mammalian cells, and make normal-appearing channels in baculovirus-infected Sf9 membranes when imaged by negative stain electron microscopy. Upon dodecylmaltoside solubilization of the membrane fraction, Cx26M34A and Cx26V84L are stable as hexamers or dodecamers, but Cx26T135A and Cx26P87L oligomers are not. This instability is also found in Cx26T135A and Cx26P87L hemichannels isolated from mammalian cells. In this work, coexpression of both wild-type Cx26 and Cx26P87L in Sf9 cells rescued P87L hexamer stability. Similarly, in paired Xenopus oocytes, coexpression with wild-type restored function. In contrast, the stability of Cx26T135A hemichannels could not be rescued by coexpression with WT. Thus, T135 and P87 residues are in positions that are important for oligomer stability and can affect gap junction gating. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart.

    PubMed

    Zhang, J Q; Elzey, B; Williams, G; Lu, S; Law, D J; Horowits, R

    2001-12-11

    N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.

  19. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy.

    PubMed

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-12-01

    Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. © 2013 The British Pharmacological Society.

  20. Stem Cell Therapy with Overexpressed VEGF and PDGF Genes Improves Cardiac Function in a Rat Infarct Model

    PubMed Central

    Das, Hiranmoy; George, Jon C.; Joseph, Matthew; Das, Manjusri; Abdulhameed, Nasreen; Blitz, Anna; Khan, Mahmood; Sakthivel, Ramasamy; Mao, Hai-Quan; Hoit, Brian D.; Kuppusamy, Periannan; Pompili, Vincent J.

    2009-01-01

    Background Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP). Methods and Findings Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. Conclusion Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction. PMID:19809493

  1. Increased vascular sensitivity and connexin43 expression after sympathetic denervation.

    PubMed

    Slovut, David P; Mehta, Shyamal H; Dorrance, Anne M; Brosius, Frank C; Watts, Stephanie W; Webb, R Clinton

    2004-05-01

    Following denervation, arteries demonstrate a heightened sensitivity to alpha-adrenergic agonists and increased oscillatory contractions that may partly result from increased gap junction expression. Hence, we wanted to study the effect of sympathetic denervation on connexin43 (Cx43) expression and agonist-induced contractility in the vascular smooth muscle (VSM). Effects of denervation with reserpine (3 mg/kg/day, i.p.) or topical 5% phenol-glycerol on VSM contractions and expression of the gap junction Cx43 mRNA by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting for Cx43 protein were examined. Wistar-Kyoto (WKY) rat tail arteries were exposed to norepinephrine (NE) (10(-9)-10(-5) M). Reactivity was also examined in the carotid arteries and thoracic aortas from Cx43 heterozygote deficient (KO) mice. The concentration for NE-induced contraction was lower in reserpine- and phenol-treated vessels than controls (p<0.05). NE-induced oscillatory activity (OA) was seen in 5/5 reserpine- and 5/8 phenol-treated vessels vs. 0/12 controls (p<0.05). Spontaneous OA was observed more frequently in carotid and aortic rings from WT than Cx43 KO rings. Cumulative OA in response to alpha-adrenergic stimulation was significantly greater in WT carotid (429+/-101 vs. 128+/-7 mN s, p<0.05) and aortic rings (337+/-85 vs. 134+/-11 mN s, p<0.05) than in Cx43 KO rings. Following denervation, RT-PCR showed significantly increased levels of Cx43 mRNA (p<0.05). Western blot analysis revealed near doubling of Cx43 protein (p<0.05). We conclude that sympathetic denervation results in increased expression of Cx43, which in turn, contributes to increased spontaneous and agonist-induced OA in VSM.

  2. Mixed Electrical–Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36

    PubMed Central

    Hamzei-Sichani, Farid; Davidson, Kimberly G. V.; Yasumura, Thomas; Janssen, William G. M.; Wearne, Susan L.; Hof, Patrick R.; Traub, Roger D.; Gutiérrez, Rafael; Ottersen, Ole P.; Rash, John E.

    2012-01-01

    Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for “mixed” (electrical/chemical) synapses on both principal cells and interneurons in adult rat hippocampus. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF) terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr), apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into weakly fixed CA3pyr was detected in MF axons that contacted four injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold labeling revealed diverse sizes and morphologies of connexin-36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328–1140 connexons), three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin-section images of a CA3pyr, but none were found by immunogold labeling, suggesting the rarity of GABAergic mixed synapses. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal neurons. PMID:22615687

  3. Modulation of connexin expression and gap junction communication in astrocytes by the gram-positive bacterium S. aureus.

    PubMed

    Esen, Nilufer; Shuffield, Debbie; Syed, Mohsin M D; Kielian, Tammy

    2007-01-01

    Gap junctions establish direct intercellular conduits between adjacent cells and are formed by the hexameric organization of protein subunits called connexins (Cx). It is unknown whether the proinflammatory milieu that ensues during CNS infection with S. aureus, one of the main etiologic agents of brain abscess in humans, is capable of eliciting regional changes in astrocyte homocellular gap junction communication (GJC) and, by extension, influencing neuron homeostasis at sites distant from the primary focus of infection. Here we investigated the effects of S. aureus and its cell wall product peptidoglycan (PGN) on Cx43, Cx30, and Cx26 expression, the main Cx isoforms found in astrocytes. Both bacterial stimuli led to a time-dependent decrease in Cx43 and Cx30 expression; however, Cx26 levels were elevated following bacterial exposure. Functional examination of dye coupling, as revealed by single-cell microinjections of Lucifer yellow, demonstrated that both S. aureus and PGN inhibited astrocyte GJC. Inhibition of protein synthesis with cyclohexamide (CHX) revealed that S. aureus directly modulates, in part, Cx43 and Cx30 expression, whereas Cx26 levels appear to be regulated by a factor(s) that requires de novo protein production; however, CHX did not alter the inhibitory effects of S. aureus on astrocyte GJC. The p38 MAPK inhibitor SB202190 was capable of partially restoring the S. aureus-mediated decrease in astrocyte GJC to that of unstimulated cells, suggesting the involvement of p38 MAPK-dependent pathway(s). These findings could have important implications for limiting the long-term detrimental effects of abscess formation in the brain which may include seizures and cognitive deficits. Copyright 2006 Wiley-Liss, Inc.

  4. The role of connexin-36 gap junctions in alcohol intoxication and consumption.

    PubMed

    Steffensen, Scott C; Bradley, Katie D; Hansen, David M; Wilcox, Jeffrey D; Wilcox, Rebecca S; Allison, David W; Merrill, Collin B; Edwards, Jeffrey G

    2011-08-01

    Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption. Copyright © 2010 Wiley-Liss, Inc.

  5. Mefloquine effects on ventral tegmental area dopamine and GABA neuron inhibition: a physiologic role for connexin-36 GAP junctions.

    PubMed

    Allison, David W; Wilcox, Rebecca S; Ellefsen, Kyle L; Askew, Caitlin E; Hansen, David M; Wilcox, Jeffrey D; Sandoval, Stephanie S; Eggett, Dennis L; Yanagawa, Yuchio; Steffensen, Scott C

    2011-08-01

    Connexin-36 (Cx36) gap junctions (GJs) appear to be involved in the synchronization of GABA interneurons in many brain areas. We have previously identified a population of Cx36-connected ventral tegmental area (VTA) GABA neurons that may regulate mesolimbic dopamine (DA) neurotransmission, a system implicated in reward from both natural behaviors and drugs of abuse. The aim of this study was to determine the effect mefloquine (MFQ) has on midbrain DA and GABA neuron inhibition, and the role Cx36 GJs play in regulating midbrain VTA DA neuron activity in mice. In brain slices from adolescent wild-type (WT) mice the Cx36-selective GJ blocker mefloquine (MFQ, 25 μM) increased VTA DA neuron sIPSC frequency sixfold, and mIPSC frequency threefold. However, in Cx36 KO mice, MFQ only increased sIPSC and mIPSC frequency threefold. The nonselective GJ blocker carbenoxolone (CBX, 100 μM) increased DA neuron sIPSC frequency twofold in WT mice, did not affect Cx36 KO mouse sIPSCs, and did not affect mIPSCs in WT or Cx36 KO mice. Interestingly, MFQ had no effect on VTA GABA neuron sIPSC frequency. We also examined MFQ effects on VTA DA neuron firing rate and current-evoked spiking in WT and Cx36 KO mice, and found that MFQ decreased WT DA neuron firing rate and current-evoked spiking, but did not alter these measures in Cx36 KO mice. Taken together these findings suggest that blocking Cx36 GJs increases VTA DA neuron inhibition, and that GJs play in key role in regulating inhibition of VTA DA neurons. Synapse, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  6. Losartan reduced connexin43 expression in left ventricular myocardium of spontaneously hypertensive rats

    PubMed Central

    Zhao, Li-li; Chen, Hong-juan; Chen, Jun-zhu; Yu, Min; Ni, Yun-lan; Zhang, Wei-fang

    2008-01-01

    Objective: To assess the effect of angiotensin II type 1 (AT1) receptor antagonist losartan on myocardium connexin43 (Cx43) gap junction (GJ) expression in spontaneously hypertensive rats (SHRs) and investigate possible mechanisms. Methods: Sixteen 9-week-old male SHRs and 8 age-matched male Wistar-Kyoto (WKY) rats were included in this study. SHRs were randomly divided into two groups to receive losartan at 30 mg/(kg·d) by oral gavage once daily for 8 weeks (SHR-L) or vehicle (0.9% saline) to act as controls (SHR-V); WKY rats receiving vehicle for 8 weeks served as normotensive controls. At the end of the experiment, rats were sacrificed and the hearts were removed. Expressions of Cx43 and nuclear factor-kappaB p65 (NF-κB p65) proteins in all three groups were observed and further investigations on the effect of angiotensin II type 1 receptor antagonist losartan (30 mg/(kg·d), 8 weeks) on Cx43 expression were conducted with Western blot and immunohistochemistry. NF-κB p65 protein in nuclear extracts was determined by Western blot. Results: Left ventricular (LV) hypertrophy was prominent in SHRs, Cx43 and NF-κB p65 protein expressions were obviously upregulated and Cx43 distribution was dispersed over the cell surface. Treatment with losarton reduced the over-expressions of Cx43 and NF-κB p65 in LV myocardium. The distribution of Cx43 gap junction also became much regular and confined to intercalated disk after losartan treatment. Conclusion: Cx43 level was upregulated in LV myocardium of SHR during early stage of hypertrophy. Angiotensin II type 1 receptor antagonist losartan prevented Cx43 gap junction remodeling in hypertrophied left ventricles, possibly through the NF-κB pathway. PMID:18543397

  7. Reduced electromotility of outer hair cells associated with connexin-related forms of deafness: an in silico study of a cochlear network mechanism.

    PubMed

    Mistrík, Pavel; Ashmore, Jonathan F

    2010-12-01

    Mutations in the GJB2 gene encoding for the connexin 26 (Cx26) protein are the most common source of nonsyndromic forms of deafness. Cx26 is a building block of gap junctions (GJs) which establish electrical connectivity in distinct cochlear compartments by allowing intercellular ionic (and metabolic) exchange. Animal models of the Cx26 deficiency in the organ of Corti seem to suggest that the hearing loss and the degeneration of outer hair cells (OHCs) and inner hair cells is due to failed K(+) and metabolite homeostasis. However, OHCs can develop normally in some mutants, suggesting that the hair cells death is not the universal mechanism. In search for alternatives, we have developed an in silico large scale three-dimensional model of electrical current flow in the cochlea in the small signal, linearised, regime. The effect of mutations was analysed by varying the magnitude of resistive components representing the GJ network in the organ of Corti. The simulations indeed show that reduced GJ conductivity increases the attenuation of the OHC transmembrane potential at frequencies above 5 kHz from 6.1 dB/decade in the wild-type to 14.2 dB/decade. As a consequence of increased GJ electrical filtering, the OHC transmembrane potential is reduced by up to 35 dB at frequencies >10 kHz. OHC electromotility, driven by this potential, is crucial for sound amplification, cochlear sensitivity and frequency selectivity. Therefore, we conclude that reduced OHC electromotility may represent an additional mechanism underlying deafness in the presence of Cx26 mutations and may explain lowered OHC functionality in particular reported Cx26 mutants.

  8. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    PubMed

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  9. Molecular dynamics simulations highlight structural and functional alterations in deafness-related M34T mutation of connexin 26.

    PubMed

    Zonta, Francesco; Buratto, Damiano; Cassini, Chiara; Bortolozzi, Mario; Mammano, Fabio

    2014-01-01

    Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness-associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N-terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant.

  10. RhoA/rho kinase signaling reduces connexin43 expression in high glucose-treated glomerular mesangial cells with zonula occludens-1 involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xi; Department of Pharmaceutical Engineering, Ocean College, Hainan University, Haikou 570228; Chen, Cheng

    RhoA/Rho kinase (ROCK) signaling has been suggested to be involved in diabetic nephropathy (DN) pathogenesis. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. Both of them have been found to regulate nuclear factor kappa-B (NF-κB) activation in high glucose-treated glomerular mesangial cells (GMCs). The aim of this study was to investigate the relationship between RhoA/ROCK signaling and Cx43 in the DN pathogenesis. We found that upregulation of Cx43 expression inhibited NF-κB p65 nuclear translocation induced by RhoA/ROCK signaling in GMCs. Inhibition of RhoA/ROCK signaling attenuated the high glucose-induced decrease in Cx43. F-actin accumulation and anmore » enhanced interaction between zonula occludens-1 (ZO-1) and Cx43 were observed in high glucose-treated GMCs. ZO-1 depletion or disruption of F-actin formation also inhibited the reduction in Cx43 protein levels induced by high glucose. In conclusion, activated RhoA/ROCK signaling induces Cx43 degradation in GMCs cultured in high glucose, depending on F-actin regulation. Increased F-actin induced by RhoA/ROCK signaling promotes the association between ZO-1 and Cx43, which possibly triggered Cx43 endocytosis, a mechanism of NF-κB activation in high glucose-treated GMCs. - Highlights: • RhoA/ROCK signaling induces Cx43 degradation in GMCs. • F-actin and ZO-1 have functions in the regulation of Cx43 by RhoA/ROCK signaling. • We reveal the relationship between RhoA/ROCK and Cx43 in the activation of NF-κB.« less

  11. Monovalent Cation Permeation through the Connexin40 Gap Junction Channel

    PubMed Central

    Beblo, Dolores A.; Veenstra, Richard D.

    1997-01-01

    The unitary conductances and permeability sequences of the rat connexin40 (rCx40) gap junction channels to seven monovalent cations and anions were studied in rCx40-transfected neuroblastoma 2A (N2A) cell pairs using the dual whole cell recording technique. Chloride salt cation substitutions (115 mM principal salt) resulted in the following junctional maximal single channel current-voltage relationship slope conductances (γj in pS): CsCl (153), RbCl (148), KCl (142), NaCl (115), LiCl (86), TMACl (71), TEACl (63). Reversible block of the rCx40 channel was observed with TBA. Potassium anion salt γj are: Kglutamate (160), Kacetate (160), Kaspartate (158), KNO3 (157), KF (148), KCl (142), and KBr (132). Ion selectivity was verified by measuring reversal potentials for current in rCx40 gap junction channels with asymmetric salt solutions in the two electrodes and using the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The permeabilities relative to Li+ are: Cs+ (1.38), Rb+ (1.32), K+ (1.31), Na+ (1.16), TMA+ (0.53), TEA+ (0.45), TBA+ (0.03), Cl− (0.19), glutamate− (0.04), and NO3− (0.14), assuming that the monovalent anions permeate the channel by forming ion pairs with permeant monovalent cations within the pore thereby causing proportionate decreases in the channel conductance. This hypothesis can account for why the predicted increasing conductances with increasing ion mobilities in an essentially aqueous channel were not observed for anions in the rCx40 channel. The rCx40 effective channel radius is estimated to be 6.6 Å from a theoretical fit of the relationship of relative permeability and cation radius. PMID:9101408

  12. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels.

    PubMed

    Riquelme, Manuel A; Cea, Luis A; Vega, José L; Boric, Mauricio P; Monyer, Hannah; Bennett, Michael V L; Frank, Marina; Willecke, Klaus; Sáez, Juan C

    2013-12-01

    During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction

    PubMed Central

    Jiao, Kun-Li; Li, Yi-Gang; Zhang, Peng-Pai; Chen, Ren-Hua; Yu, Yi

    2012-01-01

    Abstract The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression. PMID:22128836

  14. Overexpression of hyaluronan synthase 2 and gonadotropin receptors in cumulus cells of goats subjected to one-shot eCG/FSH hormonal treatment for ovarian stimulation.

    PubMed

    Santos, Juliana D R; Batista, Ribrio I T P; Magalhães, Livia C; Paula, Alexandre R; Souza, Samara S; Salamone, Daniel F; Bhat, Maajid H; Teixeira, Dárcio I A; Freitas, Vicente J F; Melo, Luciana M

    2016-07-01

    Hormonal ovarian stimulation may affect transcripts in somatic cells of cumulus-oocyte complexes (COCs) and affect the resulting oocyte quality. Here, in parallel with morphological classification and in vitro maturation (IVM) rate analysis, we investigated the expression of hyaluronan synthase 2 (HAS2), gonadotropic receptors (FSHR and LHR) and connexin 43 (GJA1) in cumulus cells (CCs) from goat COCs after multi-dose FSH (MD) or one-shot FSH/eCG (OS) treatments, using bovine COCs as control groups. The MD treatment produced more large follicles, and the resulting COCs had a better morphology and IVM rate than were obtained with OS. The OS treatment produced COCs with increased HAS2, FSHR, LHR and GJA1 expression. This gene expression pattern was also observed in the CCs of COCs that showed poor morphological characteristics. On the other hand, the mRNA levels were more similar between groups after IVM; FSHR and LHR were the main genes that showed decreased expression. Some events that occurred in bovine CCs during IVM, such as cell expansion, increased HAS2 expression and decreased GJA1 expression, were less evident or did not occur in goat COCs. In conclusion, increasing HAS2, FSHR, LHR and GJA1 expression in goat COCs does not confer greater meiotic competence to oocytes. Instead, it may result from poor regulation of gene expression in CCs by lower quality oocytes. Finally, cumulus expansion, together with HAS2 upregulation and GJA1 downregulation, seems to be more important for bovine COCs than for goat COCs. Additional studies are needed to investigate the importance of other HAS isoforms and connexins in goat COCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype

    PubMed Central

    Gangoso, E; Thirant, C; Chneiweiss, H; Medina, J M; Tabernero, A

    2014-01-01

    Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target. PMID:24457967

  16. pH-dependent modulation of connexin-based gap junctional uncouplers

    PubMed Central

    Skeberdis, Vytenis A; Rimkute, Lina; Skeberdyte, Aiste; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2011-01-01

    Abstract Gap junction (GJ) channels formed from connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell–cell communication exhibiting high sensitivity to intracellular pH (pHi). We examined pHi-dependent modulation of junctional conductance (gj) of GJs formed of Cx26, mCx30.2, Cx36, Cx40, Cx43, Cx45, Cx46, Cx47 and Cx50 by reagents representing several distinct groups of uncouplers, such as long carbon chain alkanols (LCCAs), arachidonic acid, carbenoxolone, isoflurane, flufenamic acid and mefloquine. We demonstrate that alkalization by NH4Cl to pH ∼8 increased gj in cells expressing mCx30.2 and Cx45, yet did not affect gj of Cx26, Cx40, Cx46, Cx47 and Cx50 and decreased it in Cx43 and Cx36 GJs. Unexpectedly, cells expressing Cx45, but not other Cxs, exhibited full coupling recovery after alkalization with NH4Cl under the continuous presence of LCCAs, isoflurane and mefloquine. There was no coupling recovery by alkalization in the presence of arachidonic acid, carbenoxolone and flufenamic acid. In cells expressing Cx45, IC50 for octanol was 0.1, 0.25 and 2.68 mm at pHi values of 6.9, 7.2 and 8.1, respectively. Histidine modification of Cx45 protein by N-bromosuccinimide reduced the coupling-promoting effect of NH4Cl as well as the uncoupling effect of octanol. This suggests that LCCAs and some other uncouplers may act through the formation of hydrogen bonds with the as-of-yet unidentified histidine/s of the Cx45 GJ channel protein. PMID:21606109

  17. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  18. X-linked Charcot-Marie-Tooth (CMT) neuropathies (CMTX1, CMTX2, CMTX3) show different clinical phenotype and molecular genetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionasescu, V.V.; Searby, C.C.; Ionasescu, R.

    1994-09-01

    The purpose of this study was to compare the X-linked dominant type CMTX1 (20 families) with X-linked recessive types CMTX2 and CMTX3 (2 families). The clinical phenotype was consistent with CMT peripheral neuropathy in all cases including distal weakness, atrophy and sensory loss, pes cavus and areflexia. Additional clinicial involvement of the central nervous system was present in one family with CMTX2 (mental retardation) and one family with CMTX3 (spastic paraparesis). Tight genetic linkage to Xq13.1 was present in 20 families with CMTX1 (Z=34.07 at {theta}=0) for the marker DXS453. Fifteen of the CMTX1 families showed point mutations of themore » connexin 32 coding region (5 nonsense mutations, 8 missense mutations, 2 deletions). Five CMTX1 neuropathy families showed no evidence of point mutations of the CX32 coding sequence. These findings suggest that the CMTX1 neuropathy genotype in these families may be the result of promoter mutations, 3{prime}-untranslated region mutations or exon/intron splice site mutations or a mutation with a different type of connexin but which has close structural similarities to CX32. No mutations of the CX32 coding region were found in the CMTX2 or CMTX3 families. Linkage to Xq13.1 was excluded in both families. Genetic linkage to Xp22.2 was present in the CMTX2 family (Z=3.54 at {theta}=0) for the markers DXS987 and DXS999. Suggestion of linkage to Xq26 (Z=1.81 at {theta}=0) for the marker DXS86 was present in the CMTX3 family.« less

  19. Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea

    PubMed Central

    Ceriani, Federico; Pozzan, Tullio; Mammano, Fabio

    2016-01-01

    Spatially and temporally coordinated variations of the cytosolic free calcium concentration ([Ca2+]c) play a crucial role in a variety of tissues. In the developing sensory epithelium of the mammalian cochlea, elevation of extracellular adenosine trisphosphate concentration ([ATP]e) triggers [Ca2+]c oscillations and propagation of intercellular inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ waves. What remains uncertain is the relative contribution of gap junction channels and connexin hemichannels to these fundamental mechanisms, defects in which impair hearing acquisition. Another related open question is whether [Ca2+]c oscillations require oscillations of the cytosolic IP3 concentration ([IP3]c) in this system. To address these issues, we performed Ca2+ imaging experiments in the lesser epithelial ridge of the mouse cochlea around postnatal day 5 and constructed a computational model in quantitative adherence to experimental data. Our results indicate that [Ca2+]c oscillations are governed by Hopf-type bifurcations within the experimental range of [ATP]e and do not require [IP3]c oscillations. The model replicates accurately the spatial extent and propagation speed of intercellular Ca2+ waves and predicts that ATP-induced ATP release is the primary mechanism underlying intercellular propagation of Ca2+ signals. The model also uncovers a discontinuous transition from propagating regimes (intercellular Ca2+ wave speed > 11 μm⋅s−1) to propagation failure (speed = 0), which occurs upon lowering the maximal ATP release rate below a minimal threshold value. The approach presented here overcomes major limitations due to lack of specific connexin channel inhibitors and can be extended to other coupled cellular systems. PMID:27807138

  20. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat

    PubMed Central

    Bautista, W.; McCrea, D. A.; Nagy, J. I.

    2014-01-01

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter1 (vglut1) in spinal cord and trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabelling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabelling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labelled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5. PMID:24406437

  1. Chronic Intake of Green Propolis Negatively Affecting the Rat Testis

    PubMed Central

    Severi-Aguiar, Grasiela Dias de Campos; Pinto, Suellen Josine; Capucho, Cristina; Oliveira, Camila Andrea; Diamante, Maria Aparecida; Barbieri, Renata; Predes, Fabrícia Souza; Dolder, Heidi

    2017-01-01

    Background: Human and animal evidence suggests that environmental toxicants may have an adverse impact on male reproductive health, reducing the population's reproductive output. Owing to the renewed attraction for natural products, some of them constitute effective alternatives to mitigate these effects. Propolis is a candidate for this use because of its intrinsic properties. In many situations, it improved the testicular damage and alleviated the toxic effects induced by environmental contaminant exposure. Objective: The aim of this study was to investigate possible alterations of testicular parameters and certify if its use is really advantageous to the testis, since this could affect rat reproductive function. Materials and Methods: Forty-eight adult male Wistar rats were divided into four groups (Co = control, T1 = 3 mg propolis/kg/day, T2 = 6 mg/kg/day, T3 = 10 mg/kg/day) and were exposed during 56 days. The testes were assessed with morphometrical, stereological, and ultrastructural analyses. Cell proliferation and death were diagnosed, respectively, by immunocytochemistry. Connexin 43 (Cx43) and N-cadherin transcript levels were determined by reverse transcription-polymerase chain reaction. Results: Increased cell proliferation and Leydig cell volume were observed in T2, and in contrast, Cx43 upregulation and cell death were observed in T3. Both T2 and T3 showed ultrastructural abnormalities in testicular parenchyma. Conclusion: We recommend a cautious intake of propolis to avoid deleterious effects. SUMMARY Chronic intake of Brazilian green propolis induced N.-cadherin downregulation and decreased on seminiferous tubule volumeIncrease on connexin 43 expression and cell death and decrease in Leydig cell.(LC) number/testis with the concentration of 10 mg/kg/day were observedIncrease on cell proliferation, cytoplasmic proportion, and volume of LC with the concentration of 6 mg/kg/day was detectedThe presence of empty spaces between spermatids and malformed spermatozoa in the lumen of seminiferous tubule was showedThis male reproductive disruption can be linked to phenolic compounds present in Brazilian green propolis. Abbreviation Used: AEC: 3-amino-9-ethylcarbazole; AJ: Adherens junction; AME: Aromadendrin-40-methyl ether; CAPE: Caffeic acid phenethyl ester; Co: Control group; C×43: Connexin 43; DAB: Diaminobenzidine; dNTP: Deoxyribonucleotide phosphate; DSP: Daily sperm production; FA: Ferulic acid; FSH: Follicle-stimulating hormone; GJ: Gap junction; GJIC: Gap junction intercellular communication; HPLC: High-performance liquid chromatography; LC: Leydig cell; LH: Luteinizing hormone; N-cad: N-cadherin; PCNA: Proliferating cell nuclear antigen; PCR: Polymerase chain reaction; RT-PCR: Reverse transcription-polymerase chain reaction; SDM: Standard deviation of mean; T1: Group exposed to 3 mg of propolis/kg/day; T2: Group exposed to 6 mg of propolis/kg/day; T3: Group exposed to 10 mg of propolis/kg/day; TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; WB-ras 2 cells: Ras-transformed rat liver epithelial cell line. PMID:28250650

  2. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  3. Deafness genes in Israel: implications for diagnostics in the clinic.

    PubMed

    Brownstein, Zippora; Avraham, Karen B

    2009-08-01

    The identification of the molecular basis of deafness in the last decade has made a remarkable impact on genetic counseling and diagnostics for the hearing impaired population. Since the discovery of the most prevalent form of deafness associated with mutations in the GJB2 (connexin 26) gene, many other genes have been found worldwide, with a subset of these, including unique mutations, in Israel. Here, we review the current status of deafness genes in Israel and report one known mutation in a syndromic form of deafness, Usher syndrome, described in the Jewish Israeli population for the first time. In the future, the identification of specific mutations may be relevant for specific types of treatment.

  4. Astroglial metabolic networks sustain hippocampal synaptic transmission.

    PubMed

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-05

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  5. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent.

    PubMed

    Srisakuldee, Wattamon; Makazan, Zhanna; Nickel, Barbara E; Zhang, Feixiong; Thliveris, James A; Pasumarthi, Kishore B S; Kardami, Elissavet

    2014-07-01

    Fibroblast growth factor 2 (FGF-2) protects the heart from ischaemia- and reperfusion-induced cell death by a mechanism linked to protein kinase C (PKC)ε-mediated connexin 43 (Cx43) phosphorylation. Cx43 localizes predominantly to gap junctions, but has also been detected at subsarcolemmal (SSM), but not interfibrillar (IFM), mitochondria, where it is considered important for cardioprotection. We have now examined the effect of FGF-2 administration to the heart on resistance to calcium-induced permeability transition (mPTP) of isolated SSM vs. IFM suspensions, in relation to mitochondrial PKCε/Cx43 levels, phosphorylation, and the presence of peptide Gap27, a Cx43 channel blocker. FGF-2 perfusion increased resistance to calcium-induced mPTP in SSM and IFM suspensions by 2.9- and 1.7-fold, respectively, compared with their counterparts from vehicle-perfused hearts, assessed spectrophotometrically as cyclosporine A-inhibitable swelling. The salutary effect of FGF-2 was lost in SSM, but not in IFM, in the presence of Gap27. FGF-2 perfusion increased relative levels of PKCε, phospho(p) PKCε, and Tom-20 translocase in SSM and IFM, and of Cx43 in SSM. Phospho-serine (pS) 262- and pS368-Cx43 showed a 30- and 8-fold increase, respectively, in SSM from FGF-2-treated, compared with untreated, hearts. Stimulation of control SSM with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased both calcium tolerance and mitochondrial Cx43 phosphorylation at S262 and S368. The PMA-induced phosphorylation of mitochondrial Cx43 was prevented by εV1-2, a PKCε-inhibiting peptide. SSM are more responsive than IFM to FGF-2-triggered protection from calcium-induced mPTP, by a mitochondrial Cx43 channel-mediated pathway, associated with mitochondrial Cx43 phosphorylation at PKCε target sites. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  6. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling.

    PubMed

    Fried, David E; Watson, Ralph E; Robson, Simon C; Gulbransen, Brian D

    2017-12-01

    Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca 2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP :: Cre ER T2+/- /connexin43 f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABA A receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia. NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the effects of ammonia on enteric neurotransmission include GABAergic pathways that are regulated by enteric glial cells. Our new data suggest that myenteric glial cells sense local ammonia and directly modify neurotransmission by releasing GABA. Copyright © 2017 the American Physiological Society.

  7. E-cadherin and β-catenin adhesion proteins correlate positively with connexins in colorectal cancer

    PubMed Central

    KANCZUGA-KODA, LUIZA; WINCEWICZ, ANDRZEJ; FUDALA, ANDRZEJ; ABRYCKI, TOMASZ; FAMULSKI, WALDEMAR; BALTAZIAK, MAREK; SULKOWSKI, STANISLAW; KODA, MARIUSZ

    2014-01-01

    The majority of solid cancers present with qualitative and quantitative aberrations of adhesion proteins, including E-cadherin and β-catenin, and connexin (Cx) gap junction proteins, which is consistent with alterations in the expression and location of such proteins in neoplastic cells. Since there are no data on the correlation between adhesion proteins and Cxs in human colorectal cancer (CRC), the aim of the present study was to evaluate the expression and correlation between these proteins. Tissue specimens were obtained from 151 cases of surgically removed colorectal adenocarcinomas. The samples were examined by immunohistochemistry with the use of antibodies against E-cadherin, β-catenin and the three Cxs: Cx26, Cx32 and Cx43. The aberrant expression of the studied adhesion proteins (primarily cytoplasmic for E-cadherin and cytoplasmic and/or nuclear for β-catenin) was observed, whereas only a minority of cases revealed normal membranous distribution of the labeling. The present study is the first in the literature to reveal a correlation between the expression of E-cadherin and β-catenin and the examined Cxs in CRC in humans. The positive correlation between the Cxs, particularly Cx26 and Cx32, and the adhesive proteins occurred in patients without lymph node metastases and in the moderately differentiated tumors (G2). Such a dependency was not observed in the analysis of the correlation between Cx43 and E-cadherin. However, a positive correlation between these proteins was observed in patients with lymph nodes metastases. Additionally, a link between the expression of these adhesion proteins was observed. The present study indicates, for the first time, that the expression of adhesion proteins, E-cadherin and β-catenin, is closely associated with the expression of three studied Cxs in CRC, and that this correlation may improve an understanding of the carcinogenic process in this cancer. PMID:24932249

  8. Perfluorooctanesulfonate (PFOS) Perturbs Male Rat Sertoli Cell Blood-Testis Barrier Function by Affecting F-Actin Organization via p-FAK-Tyr407: An in Vitro Study

    PubMed Central

    Wan, Hin-Ting; Mruk, Dolores D.; Wong, Chris K. C.

    2014-01-01

    Environmental toxicants such as perfluorooctanesulfonate (PFOS) have been implicated in male reproductive dysfunction, including reduced sperm count and semen quality, in humans. However, the underlying mechanism(s) remains unknown. Herein PFOS at 10–20 μM (∼5–10 μg/mL) was found to be more potent than bisphenol A (100 μM) in perturbing the blood-testis barrier (BTB) function by disrupting the Sertoli cell tight junction-permeability barrier without detectable cytotoxicity. We also delineated the underlying molecular mechanism by which PFOS perturbed Sertoli cell BTB function using an in vitro model that mimics the BTB in vivo. First, PFOS perturbed F-actin organization in Sertoli cells, causing truncation of actin filaments at the BTB. Thus, the actin-based cytoskeleton was no longer capable of supporting the distribution and/or localization of actin-regulatory and adhesion proteins at the cell-cell interface necessary to maintain BTB integrity. Second, PFOS was found to perturb inter-Sertoli cell gap junction (GJ) communication based on a dye-transfer assay by down-regulating the expression of connexin-43, a GJ integral membrane protein. Third, phosphorylated focal adhesion kinase (FAK)-Tyr407 was found to protect the BTB from the destructive effects of PFOS as shown in a study via an overexpression of an FAK Y407E phosphomimetic mutant. Also, transfection of Sertoli cells with an FAK-specific microRNA, miR-135b, to knock down the expression of phosphorylated FAK-Tyr407 was found to worsen PFOS-mediated Sertoli cell tight junction disruption. In summary, PFOS-induced BTB disruption is mediated by down-regulating phosphorylated FAK-Tyr407 and connexin-43, which in turn perturbed F-actin organization and GJ-based intercellular communication, leading to mislocalization of actin-regulatory and adhesion proteins at the BTB. PMID:24169556

  9. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells

    PubMed Central

    Best, Monica W.; Wu, Juanjuan; Pauli, Samuel A.; Kane, Maureen A.; Pierzchalski, Keely; Session, Donna R.; Woods, Dori C.; Shang, Weirong; Taylor, Robert N.; Sidell, Neil

    2015-01-01

    Retinoids are essential for ovarian steroid production and oocyte maturation in mammals. Oocyte competency is known to positively correlate with efficient gap junction intercellular communication (GJIC) among granulosa cells in the cumulus-oocyte complex. Connexin 43 (Cx43) is the main subunit of gap junction channels in human cumulus granulosa cells (CGC) and is regulated by all-trans retinoic acid (ATRA) in other hormone responsive cell types. The objectives of this study were to quantify retinoid levels in human CGC obtained during IVF oocyte retrievals, to investigate the potential relationship between CGC ATRA levels and successful oocyte fertilization, and to determine the effects of ATRA on Cx43 protein expression in CGC. Results showed that CGC cultures actively metabolize retinol to produce ATRA. Grouped according to fertilization rate tertiles, mean ATRA levels were 2-fold higher in pooled CGC from women in the highest versus the lowest tertile (P < 0.05). ATRA induced a rapid dephosphorylation of Cx43 in CGC and granulosa cell line (KGN) cultures resulting in a >2-fold increase in the expression of the functional non-phosphorylated (P0) species (P < 0.02). Similar enhancement of P0 by ATRA was shown in CGC and KGN cultures co-treated with LH or hCG which, by themselves, enhanced the protein levels of Cx43 without altering its phosphorylation profile. Correspondingly, the combination of ATRA+hCG treatment of KGN caused a significant increase in GJIC compared with single agent treatments (P < 0.025) and a doubling of GJIC from that seen in untreated cells (P < 0.01). These findings indicate that CGC are a primary site of retinoid uptake and ATRA biosynthesis. Regulation of Cx43 by ATRA may serve an important role in folliculogenesis, development of oocyte competency, and successful fertilization by increasing GJIC in CGC. PMID:25877907

  10. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    PubMed

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  11. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    PubMed

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-01

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury.

    PubMed

    Gu, Yu; Huang, Fei; Wang, Yanling; Chen, Chaojin; Wu, Shan; Zhou, Shaoli; Hei, Ziqing; Yuan, Dongdong

    2018-05-04

    Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) not only prolongs the length of hospital stay, but also seriously affects the patient's survival rate. Although our previous investigation has verified that reactive oxygen species (ROS) transferred through gap junction composed of connexin32 (Cx32) contributed to AKI, its underlying mechanisms were not fully understood and viable preventive or therapeutic regimens were still lacking. Among various mechanisms involved in organs I/R-induced injuries, endoplasmic reticulum stress (ERS)-related apoptosis is currently considered to be an important participant. Thus, in present study, we focused on the underlying mechanisms of I/R-induced AKI, and postulated that Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. We established renal I/R models with Cx32 +/+ and Cx32 -/- mice, which underwent double kidneys clamping and recanalization. ROS scavenger (N-acetylcysteine, NAC) and ERS inhibitors (4-phenyl butyric acid, 4-PBA, and tauroursodeoxycholic acid, TUDCA) were used to decrease the content of ROS and attenuate ERS activation, respectively. Renal damage was progressively exacerbated in a time-dependent manner at the reperfusion stage, that was consistent with the alternation of ERS activation, including glucose regulated protein 78 (BiP/GRP78), X box-binding protein1, and C/EBP homologous protein expression. TUDCA or 4-PBA application attenuated I/R-induced ERS activation and protected against renal tubular epithelial cells apoptosis and renal damage. Cx32 deficiency decreased ROS generation and distribution between the neighboring cells, which attenuated I/R-induced ERS activation, and improved cell apoptosis and renal damage. Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. Cx32 deficiency, ROS elimination, and ERS inhibition all could protect against I/R-induced AKI.

  13. Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription.

    PubMed

    Kabátková, Markéta; Svobodová, Jana; Pěnčíková, Kateřina; Mohatad, Dilshad Shaik; Šmerdová, Lenka; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan

    2015-01-05

    Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Intercellular Calcium Waves in HeLa Cells Expressing GFP-labeled Connexin 43, 32, or 26

    PubMed Central

    Paemeleire, Koen; Martin, Patricia E. M.; Coleman, Sharon L.; Fogarty, Kevin E.; Carrington, Walter A.; Leybaert, Luc; Tuft, Richard A.; Evans, W. Howard; Sanderson, Michael J.

    2000-01-01

    This study was undertaken to obtain direct evidence for the involvement of gap junctions in the propagation of intercellular Ca2+ waves. Gap junction-deficient HeLa cells were transfected with plasmids encoding for green fluorescent protein (GFP) fused to the cytoplasmic carboxyl termini of connexin 43 (Cx43), 32 (Cx32), or 26 (Cx26). The subsequently expressed GFP-labeled gap junctions rendered the cells dye- and electrically coupled and were detected at the plasma membranes at points of contact between adjacent cells. To correlate the distribution of gap junctions with the changes in [Ca2+]i associated with Ca2+ waves and the distribution of the endoplasmic reticulum (ER), cells were loaded with fluorescent Ca2+-sensitive (fluo-3 and fura-2) and ER membrane (ER-Tracker) dyes. Digital high-speed microscopy was used to collect a series of image slices from which the three-dimensional distribution of the gap junctions and ER were reconstructed. Subsequently, intercellular Ca2+ waves were induced in these cells by mechanical stimulation with or without extracellular apyrase, an ATP-degrading enzyme. In untransfected HeLa cells and in the absence of apyrase, cell-to-cell propagating [Ca2+]i changes were characterized by initiating Ca2+ puffs associated with the perinuclear ER. By contrast, in Cx–GFP-transfected cells and in the presence of apyrase, [Ca2+]i changes were propagated without initiating perinuclear Ca2+ puffs and were communicated between cells at the sites of the Cx–GFP gap junctions. The efficiency of Cx expression determined the extent of Ca2+ wave propagation. These results demonstrate that intercellular Ca2+ waves may be propagated simultaneously via an extracellular pathway and an intracellular pathway through gap junctions and that one form of communication may mask the other. PMID:10793154

  15. Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation.

    PubMed

    Amino, Mari; Yoshioka, Koichiro; Fujibayashi, Daisuke; Hashida, Tadashi; Furusawa, Yoshiya; Zareba, Wojciech; Ikari, Yuji; Tanaka, Etsuro; Mori, Hidezo; Inokuchi, Sadaki; Kodama, Itsuo; Tanabe, Teruhisa

    2010-03-01

    A previous study from our laboratory has shown that a single targeted heavy ion irradiation (THIR; 15 Gy) to rabbit hearts increases connexin43 (Cx43) expression for 2 wk in association with an improvement of conduction, a decrease of the spatial inhomogeneity of repolarization, and a reduction of vulnerability to ventricular arrhythmias after myocardial infarction. This study investigated the time- and dose-dependent effects of THIR (5-15 Gy) on Cx43 expression in normal rabbit hearts (n = 45). Five rabbits without THIR were used as controls. A significant upregulation of Cx43 protein and mRNA in the ventricular myocardium was recognized by immunohistochemistry, Western blotting, and real-time PCR from 2 wk up to 1 yr after a single THIR at 15 Gy. THIR > or =10 Gy caused a significant dose-dependent increase of Cx43 protein and mRNA 2 wk after THIR. Anterior, lateral, and posterior free wall of the left ventricle, interventricular septum, and right ventricular free wall were affected similarly by THIR in terms of Cx43 upregulation. The radiation-induced increase of immunolabeled Cx43 was observed not only at the intercalated disk region but also at the lateral surface of ventricular myocytes. The increase of immunoreactive Cx43 protein was predominant in the membrane fraction insoluble in Triton X-100, that is the Cx43 in the sarcolemma. In vivo examinations of the rabbits 1 yr after THIR (15 Gy) revealed no significant changes in ECGs and echocardiograms (left ventricular dimensions, contractility, and diastolic function), indicating no apparent late radiation injury. A single application of THIR causes upregulation and altered cellular distribution of Cx43 in the ventricles lasting for at least 1 yr. This long-lasting remodeling effect on gap junctions may open the pathway to novel therapy against life threatening ventricular arrhythmias in structural heart disease.

  16. Inhibition of GSK-3β Rescues the Impairments in Bone Formation and Mechanical Properties Associated with Fracture Healing in Osteoblast Selective Connexin 43 Deficient Mice

    PubMed Central

    Loiselle, Alayna E.; Lloyd, Shane A. J.; Paul, Emmanuel M.; Lewis, Gregory S.; Donahue, Henry J.

    2013-01-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair. PMID:24260576

  17. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway.

    PubMed

    Du, Zhong-Jun; Cui, Guan-Qun; Zhang, Juan; Liu, Xiao-Mei; Zhang, Zhi-Hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-Xiang; Shao, Hua

    2017-01-01

    Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological effects.

  18. Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice.

    PubMed

    Veeranki, Sudhakar; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; Pushpakumar, Sathnur; Tyagi, Suresh C

    2016-03-01

    Although the cardiovascular benefits of exercise are well known, exercise induced effects and mechanisms in prevention of cardiomyopathy are less clear during obesity associated type-2 diabetes. The current study assessed the impact of moderate intensity exercise on diabetic cardiomyopathy by examining cardiac function and structure and mitochondrial function. Obese-diabetic (db/db), and lean control (db/+) mice, were subjected to a 5 week, 300 m run on a tread-mill for 5 days/week at the speeds of 10-11 m/min. Various physiological parameters were recorded and the heart function was evaluated with M-mode echocardiography. Contraction parameters and calcium transits were examined on isolated cardiomyocytes. At the molecular level: connexin 43 and 37 (Cx43 and 37) levels, mitochondrial biogenesis regulators: Mfn2 and Drp-1 levels, mitochondrial trans-membrane potential and cytochrome c leakage were assessed through western blotting immunohistochemistry and flow cytometry. Ability of exercise to reverse oxygen consumption rate (OCR), tissue ATP levels, and cardiac fibrosis were also determined. The exercise regimen was able to prevent diabetic cardiac functional deficiencies: ejection fraction (EF) and fractional shortening (FS). Improvements in contraction velocity and contraction maximum were noted with the isolated cardiomyocytes. Restoration of interstitial and micro-vessels associated Cx43 levels and improved gap junction intercellular communication (GJIC) were observed. The decline in the Mfn2/Drp-1 ratio in the db/db mice hearts was prevented after exercise. The exercise regimen further attenuated transmembrane potential decline and cytochrome c leakage. These corrections further led to improvements in OCR and tissue ATP levels and reduction in cardiac fibrosis. Moderate intensity exercise produced significant cardiovascular benefits by improving mitochondrial function through restoration of Cx43 networks and mitochondrial trans-membrane potential and prevention of excessive mitochondrial fission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Structural Studies of the Nedd4 WW Domains and Their Selectivity for the Connexin43 (Cx43) Carboxyl Terminus*

    PubMed Central

    Spagnol, Gaelle; Kieken, Fabien; Kopanic, Jennifer L.; Li, Hanjun; Zach, Sydney; Stauch, Kelly L.; Grosely, Rosslyn; Sorgen, Paul L.

    2016-01-01

    Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) was the first ubiquitin protein ligase identified to interact with connexin43 (Cx43), and its suppressed expression results in accumulation of gap junction plaques at the plasma membrane. Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15 and target Cx43 to the endocytic pathway. Although the Cx43 residues that undergo ubiquitination are still unknown, in this study we address other unresolved questions pertaining to the molecular mechanisms mediating the direct interaction between Nedd4 (WW1–3 domains) and Cx43 (carboxyl terminus (CT)). All three WW domains display a similar three antiparallel β-strand structure and interact with the same Cx43CT 283PPXY286 sequence. Although Tyr286 is essential for the interaction, MAPK phosphorylation of the preceding serine residues (Ser(P)279 and Ser(P)282) increases the binding affinity by 2-fold for the WW domains (WW2 > WW3 ≫ WW1). The structure of the WW2·Cx43CT276–289(Ser(P)279, Ser(P)282) complex reveals that coordination of Ser(P)282 with the end of β-strand 3 enables Ser(P)279 to interact with the back face of β-strand 3 (Tyr286 is on the front face) and loop 2, forming a horseshoe-shaped arrangement. The close sequence identity of WW2 with WW1 and WW3 residues that interact with the Cx43CT PPXY motif and Ser(P)279/Ser(P)282 strongly suggests that the significantly lower binding affinity of WW1 is the result of a more rigid structure. This study presents the first structure illustrating how phosphorylation of the Cx43CT domain helps mediate the interaction with a molecular partner involved in gap junction regulation. PMID:26841867

  20. Structural Studies of the Nedd4 WW Domains and Their Selectivity for the Connexin43 (Cx43) Carboxyl Terminus.

    PubMed

    Spagnol, Gaelle; Kieken, Fabien; Kopanic, Jennifer L; Li, Hanjun; Zach, Sydney; Stauch, Kelly L; Grosely, Rosslyn; Sorgen, Paul L

    2016-04-01

    Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) was the first ubiquitin protein ligase identified to interact with connexin43 (Cx43), and its suppressed expression results in accumulation of gap junction plaques at the plasma membrane. Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15 and target Cx43 to the endocytic pathway. Although the Cx43 residues that undergo ubiquitination are still unknown, in this study we address other unresolved questions pertaining to the molecular mechanisms mediating the direct interaction between Nedd4 (WW1-3 domains) and Cx43 (carboxyl terminus (CT)). All three WW domains display a similar three antiparallel β-strand structure and interact with the same Cx43CT(283)PPXY(286)sequence. Although Tyr(286)is essential for the interaction, MAPK phosphorylation of the preceding serine residues (Ser(P)(279)and Ser(P)(282)) increases the binding affinity by 2-fold for the WW domains (WW2 > WW3 ≫ WW1). The structure of the WW2·Cx43CT(276-289)(Ser(P)(279), Ser(P)(282)) complex reveals that coordination of Ser(P)(282)with the end of β-strand 3 enables Ser(P)(279)to interact with the back face of β-strand 3 (Tyr(286)is on the front face) and loop 2, forming a horseshoe-shaped arrangement. The close sequence identity of WW2 with WW1 and WW3 residues that interact with the Cx43CT PPXY motif and Ser(P)(279)/Ser(P)(282)strongly suggests that the significantly lower binding affinity of WW1 is the result of a more rigid structure. This study presents the first structure illustrating how phosphorylation of the Cx43CT domain helps mediate the interaction with a molecular partner involved in gap junction regulation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions.

    PubMed

    Rimkute, Lina; Kraujalis, Tadas; Snipas, Mindaugas; Palacios-Prado, Nicolas; Jotautis, Vaidas; Skeberdis, Vytenis A; Bukauskas, Feliksas F

    2018-01-01

    Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pH i ) and cytosolic magnesium ion concentration ([Mg 2+ ] i ), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pH i and [Mg 2+ ] i affect junctional conductance (g j ) in an interdependent manner; in other words, intracellular acidification cause increase or decay in g j depending on whether [Mg 2+ ] i is high or low, respectively, and intracellular alkalization cause reduction in g j independently of [Mg 2+ ] i . Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pH i and [Mg 2+ ] i . Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pH i and [Mg 2+ ] i . Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg 2+ ] i , while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36 * E8Q lost the initial increase of g j at low [Mg 2+ ] i and double mutation lost the sensitivity to high [Mg 2+ ] i . These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg 2+ and H + ions.

  2. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress.

    PubMed

    Le, Hoa T; Sin, Wun Chey; Lozinsky, Shannon; Bechberger, John; Vega, José Luis; Guo, Xu Qiu; Sáez, Juan C; Naus, Christian C

    2014-01-17

    Oxidative stress induced by reactive oxygen species (ROS) is associated with various neurological disorders including aging, neurodegenerative diseases, as well as traumatic and ischemic insults. Astrocytes have an important role in the anti-oxidative defense in the brain. The gap junction protein connexin43 (Cx43) forms intercellular channels as well as hemichannels in astrocytes. In the present study, we investigated the contribution of Cx43 to astrocytic death induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which Cx43 exerts its effects. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased ROS-induced astrocytic death, supporting a cell protective effect of functional Cx43 channels. H2O2 transiently increased hemichannel activity, but reduced gap junction intercellular communication (GJIC). GJIC in wild-type astrocytes recovered after 7 h, but was absent in Cx43 knock-out astrocytes. Blockage of Cx43 hemichannels incompletely inhibited H2O2-induced hemichannel activity, indicating the presence of other hemichannel proteins. Panx1, which is predicted to be a major hemichannel contributor in astrocytes, did not appear to have any cell protective effect from H2O2 insults. Our data suggest that GJIC is important for Cx43-mediated ROS resistance. In contrast to hypoxia/reoxygenation, H2O2 treatment decreased the ratio of the hypophosphorylated isoform to total Cx43 level. Cx43 has been reported to promote astrocytic death induced by hypoxia/reoxygenation. We therefore speculate the increase in Cx43 dephosphorylation may account for the facilitation of astrocytic death. Our findings suggest that the role of Cx43 in response to cellular stress is dependent on the activation of signaling pathways leading to alteration of Cx43 phosphorylation states.

  3. Gap junction disorders of myelinating cells.

    PubMed

    Kleopa, Kleopas A; Orthmann-Murphy, Jennifer; Sargiannidou, Irene

    2010-01-01

    Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.

  4. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    PubMed Central

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  5. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain.

    PubMed

    Li, X; Lynn, B D; Nagy, J I

    2012-01-01

    Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Localisation of SCN10A gene product Na(v)1.8 and novel pain-related ion channels in human heart.

    PubMed

    Facer, Paul; Punjabi, Prakash P; Abrari, Andleeb; Kaba, Riyaz A; Severs, Nicholas J; Chambers, John; Kooner, Jaspal S; Anand, Praveen

    2011-01-01

    We have shown that the gene SCN10A encoding the sodium channel Na(v)1.8 is a susceptibility factor for heart block and serious ventricular arrhythmia. Since Na(v)1.8 is known to be present in nerve fibres that mediate pain, it may be related to both cardiac pain and dysrhythmia. The localisation of Na(v)1.8 and other key nociceptive ion channels, including Na(v)1.7, Na(v)1.9, capsaicin receptor TRPV1, and purinergic receptor P2X(3), have not been reported in human heart. The aim of this study was to determine the distribution of Na(v)1.8, related sodium and other sensory channels in human cardiac tissue, and correlate their density with sympathetic nerves, regenerating nerves (GAP-43), and vascularity. Human heart atrial appendage tissues (n = 13) were collected during surgery for valve disease. Tissues were investigated by immunohistology using specific antibodies to Na(v)1.8 and other markers. Na(v)1.8 immunoreactivity was detected in nerve fibres and fascicles in the myocardium, often closely associated with small capillaries. Na(v)1.8 nerve fibres per mm(2) correlated significantly with vascular markers. Na(v)1.8-immunoreactivity was present also in cardiomyocytes with a similar distribution pattern to that seen with connexins, the specialised gap junction proteins of myocardial intercalated discs. Na(v)1.5-immunoreactivity was detected in cardiomyocytes but not in nerve fibres. Na(v)1.7, Na(v)1.9, TRPV1, P2X(3)/P2X(2), and GAP43 positive nerve fibres were relatively sparse, whereas sympathetic innervation and connexin43 were abundant. We conclude that sodium channel Na(v)1.8 is present in sensory nerves and cardiomyocytes of human heart. Na(v)1.8 and other pain channels provide new targets for the understanding and treatment of cardiac pain and dysrhythmia.

  7. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    PubMed Central

    Svenningsen, Per; Burford, James L.; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30−/− mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30−/− mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30−/− CCDs ([Ca2+]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca2+]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca2+]i oscillations in free-flowing CDs of wild type but not Cx30−/− mice. The [Ca2+]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption. PMID:24137132

  8. Mice Deficient in Surfactant Protein A (SP-A) and SP-D or in TLR2 Manifest Delayed Parturition and Decreased Expression of Inflammatory and Contractile Genes

    PubMed Central

    Montalbano, Alina P.; Hawgood, Samuel

    2013-01-01

    Previously we obtained compelling evidence that the fetus provides a critical signal for the initiation of term labor through developmental induction of surfactant protein (SP)-A expression by the fetal lung and secretion into amniotic fluid (AF). We proposed that interactions of AF macrophage (Mφ) Toll-like receptors (TLRs) with SP-A, at term, or bacterial components, at preterm, result in their activation and migration to the pregnant uterus. Herein the timing of labor in wild-type (WT) C57BL/6 mice was compared with mice homozygous null for TLR2, SP-A, SP-D, or doubly deficient in SP-A and SP-D. Interestingly, TLR2−/− females manifested a significant (P < 0.001) delay in timing of labor compared with WT as well as reduced expression of the myometrial contraction-associated protein (CAP) gene, connexin-43, and Mφ marker, F4/80, at 18.5 d postcoitum (dpc). Whereas in first pregnancies, SP-A−/−, SP-D−/−, and SP-A/D−/− females delivered at term (∼19.5 dpc), in second pregnancies, parturition was delayed by approximately 12 h in SP-A−/− (P = 0.07) and in SP-A/D−/− (P <0.001) females. Myometrium of SP-A/D−/− females expressed significantly lower levels of IL-1β, IL-6, and CAP genes, connexin-43, and oxytocin receptor at 18.5 dpc compared with WT. F4/80+ AF Mφs from TLR2−/− and SP-A/D−/− mice expressed significantly lower levels of both proinflammatory and antiinflammatory activation markers (e.g. IL-1β, IL-6, ARG1, YM1) compared with gestation-matched WT AF Mφs. These novel findings suggest that the pulmonary collectins acting via TLR2 serve a modulatory role in the timing of labor; their relative impact may be dependent on parity. PMID:23183169

  9. Reduced connexin 43 in eutopic endometrium and cultured endometrial stromal cells from subjects with endometriosis

    PubMed Central

    Yu, Jie; Boicea, Anisoara; Barrett, Kara L.; James, Christopher O.; Bagchi, Indrani C.; Bagchi, Milan K.; Nezhat, Ceana; Sidell, Neil; Taylor, Robert N.

    2014-01-01

    Accumulating evidence indicates that reduced fecundity associated with endometriosis reflects a failure of embryonic receptivity. Microdomains composed of endometrial gap junctions, which facilitate cell–cell communication, may be implicated. Pharmacological or genetic inhibition of connexin (Cx) 43 block human endometrial cell differentiation in vitro and conditional uterine deletion of Cx43 alleles cause implantation failure in mice. The aim of this study was to determine whether women with endometriosis have reduced eutopic endometrial Cx43. Cx26 acted as a control. Endometrial biopsies were collected from age, race and cycle phase-matched women without (15 controls) or with histologically confirmed endometriosis (15 cases). Immunohistochemistry confirmed a predominant localization of Cx43 in the endometrial stroma, whereas Cx26 was confined to the epithelium. Cx43 immunostaining was reduced in eutopic biopsies of endometriosis subjects and western blotting of tissue lysates confirmed lower Cx43 levels in endometriosis cases, with Cx43/β-actin ratios =3.4 ± 1.5 in control and =1.2 ± 0.3 in endometriosis biopsies (P < 0.01). When endometrial stromal cells (ESC) were isolated from endometriosis cases, Cx43 levels and scrape loading-dye transfer were reduced by ∼45% compared with ESC from controls. In vitro decidualization of ESC derived from endometriosis versus control subjects resulted in lesser epithelioid transformation and a significantly reduced up-regulation of Cx43 protein (1.2 ± 0.2- versus 1.7 ± 0.4-fold, P < 0.01). No changes in Cx26 were observed. While basal steady-state levels of Cx43 mRNA did not differ with respect to controls, ESC from endometriosis cases failed to manifest a response to hormone treatment in vitro. In summary, eutopic endometrial Cx43 concentrations in endometriosis cases were <50% those of controls in vivo and in vitro, functional gap junctions were reduced and hormone-induced Cx43 mRNA levels were blunted. PMID:24270393

  10. Digenic inheritance in autosomal recessive non-syndromic hearing loss cases carrying GJB2 heterozygote mutations: assessment of GJB4, GJA1, and GJC3.

    PubMed

    Kooshavar, Daniz; Tabatabaiefar, Mohammad Amin; Farrokhi, Effat; Abolhasani, Marziye; Noori-Daloii, Mohammad-Reza; Hashemzadeh-Chaleshtori, Morteza

    2013-02-01

    Autosomal recessive non-syndromic hearing loss (ARNSHL) can be caused by many genes. However, mutations in the GJB2 gene, which encodes the gap-junction (GJ) protein connexin (Cx) 26, constitute a considerable proportion differing among population. Between 10 and 42 percent of patients with recessive GJB2 mutations carry only one mutant allele. Mutations in GJB4, GJA1, and GJC3 encoding Cx30.3, Cx43, and Cx29, respectively, can lead to HL. Combination of different connexins in heteromeric and heterotypic GJ assemblies is possible. This study aims to determine whether variations in any of the genes GJB4, GJA1 or GJC3 can be the second mutant allele causing the disease in the digenic mode of inheritance in the studied GJB2 heterozygous cases. We examined 34 unrelated GJB2 heterozygous ARNSHL subjects from different geographic and ethnic areas in Iran, using polymerase chain reaction (PCR) followed by direct DNA sequencing to identify any sequence variations in these genes. Restriction fragment length polymorphism (RFLP) assays were performed on 400 normal hearing individuals. Sequence analysis of GJB4 showed five heterozygous variations including c.451C>A, c.219C>T, c.507C>G, c.155_158delTCTG and c.542C>T, with only the latter variation not being detected in any of control samples. There were three heterozygous variations including c.758C>T, c.717G>A and c.3*dupA in GJA1 in four cases. We found no variations in GJC3 gene sequence. Our data suggest that GJB4 c.542C>T variant and less likely some variations of GJB4 and GJA1, but not possibly GJC3, can be assigned to ARNSHL in GJB2 heterozygous mutation carriers providing clues of the digenic pattern. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Evolutionary adaptation of the sensitivity of connexin26 hemichannels to CO2.

    PubMed

    de Wolf, Elizabeth; Cook, Jonathan; Dale, Nicholas

    2017-02-08

    CO 2 readily combines with H 2 O to form [Formula: see text] and H + Because an increase of only 100 nM in the concentration of H + (a decrease of 0.1 unit of pH) in blood can prove fatal, the regulated excretion of CO 2 during breathing is an essential life-preserving process. In rodents and humans, this vital process is mediated in part via the direct sensing of CO 2 via connexin26 (Cx26). CO 2 binds to hemichannels of Cx26 causing them to open and allow release of the neurotransmitter ATP. If Cx26 were to be a universal and important CO 2 sensor across all homeothermic animals, then a simple hypothesis would posit that it should exhibit evolutionary adaptation in animals with different homeostatic set points for the regulation of partial pressure of arterial CO 2 (PaCO 2 ). In humans and rats, PaCO 2 is regulated around a set point of 40 mmHg. By contrast, birds are able to maintain cerebral blood flow and breathing at much lower levels of PaCO 2 Fossorial mammals, such as the mole rat, live exclusively underground in burrows that are both hypoxic and hypercapnic and can thrive under very hypercapnic conditions. We have therefore compared the CO 2 sensitivity of Cx26 from human, chicken, rat and mole rat (Heterocephalus glaber). We find that both the affinity and cooperativity of CO 2 binding to Cx26 have been subjected to evolutionary adaption in a manner consistent with the homeostatic requirements of these four species. This is analogous to the evolutionary adaptation of haemoglobin to the needs of O 2 transport across the animal kingdom and supports the hypothesis that Cx26 is an important and universal CO 2 sensor in homeotherms. © 2017 The Authors.

  12. Cardio-Metabolic Effects of HIV Protease Inhibitors (Lopinavir/Ritonavir)

    PubMed Central

    Reyskens, Kathleen M. S. E.; Fisher, Tarryn-Lee; Schisler, Jonathan C.; O'Connor, Wendi G.; Rogers, Arlin B.; Willis, Monte S.; Planesse, Cynthia; Boyer, Florence; Rondeau, Philippe; Bourdon, Emmanuel; Essop, M. Faadiel

    2013-01-01

    Although antiretroviral treatment decreases HIV-AIDS morbidity/mortality, long-term side effects may include the onset of insulin resistance and cardiovascular diseases. However, the underlying molecular mechanisms responsible for highly active antiretroviral therapy (HAART)-induced cardio-metabolic effects are poorly understood. In light of this, we hypothesized that HIV protease inhibitor (PI) treatment (Lopinavir/Ritonavir) elevates myocardial oxidative stress and concomitantly inhibits the ubiquitin proteasome system (UPS), thereby attenuating cardiac function. Lopinavir/Ritonavir was dissolved in 1% ethanol (vehicle) and injected into mini-osmotic pumps that were surgically implanted into Wistar rats for 8 weeks vs. vehicle and sham controls. We subsequently evaluated metabolic parameters, gene/protein markers and heart function (ex vivo Langendorff perfusions). PI-treated rats exhibited increased serum LDL-cholesterol, higher tissue triglycerides (heart, liver), but no evidence of insulin resistance. In parallel, there was upregulation of hepatic gene expression, i.e. acetyl-CoA carboxylase β and 3-hydroxy-3-methylglutaryl-CoA-reductase, key regulators of fatty acid oxidation and cholesterol synthesis, respectively. PI-treated hearts displayed impaired cardiac contractile function together with attenuated UPS activity. However, there was no significant remodeling of hearts exposed to PIs, i.e. lack of ultrastructural changes, fibrosis, cardiac hypertrophic response, and oxidative stress. Western blot analysis of PI-treated hearts revealed that perturbed calcium handling may contribute to the PI-mediated contractile dysfunction. Here chronic PI administration led to elevated myocardial calcineurin, nuclear factor of activated T-cells 3 (NFAT3), connexin 43, and phosphorylated phospholamban, together with decreased calmodulin expression levels. This study demonstrates that early changes triggered by PI treatment include increased serum LDL-cholesterol levels together with attenuated cardiac function. Furthermore, PI exposure inhibits the myocardial UPS and leads to elevated calcineurin and connexin 43 expression that may be associated with the future onset of cardiac contractile dysfunction. PMID:24098634

  13. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart.

    PubMed

    Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique

    2015-11-01

    The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    PubMed Central

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates. PMID:24209845

  15. Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.; Ainsworth, P.

    1994-09-01

    Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions,more » while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.« less

  16. Spiral ligament and stria vascularis changes in cochlear otosclerosis: effect on hearing level.

    PubMed

    Doherty, Joni K; Linthicum, Fred H

    2004-07-01

    To investigate the effect of changes within the spiral ligament and stria vascularis on hearing in cochlear otosclerosis, we examined spiral ligament hyalinization, stria vascularis atrophy, and sensory hearing loss in cochlear otosclerosis and described changes in ion transport molecule expression. Retrospective. Tertiary referral center. Thirty-two cochleae from 24 temporal bone donors with histologic evidence of cochlear otosclerosis, including spiral ligament hyalinization. Audiography. Measurements of spiral ligament width, stria vascularis, and bone-conduction thresholds were compared by the amount of hyalinization. Expression of the ion transport molecules Na,K-ATPase, connexin 26, and carbonic anhydrase II were assessed by immunohistochemical techniques. Hyalinization most often involved the posterior basal turn (88%) and the posterior middle turn (27%). Spiral ligament hyalinization correlated significantly with stria vascularis atrophy in the posterior middle turn of the cochlea (rho = -0.63, p < 0.01). There was a trend toward a significant association in the posterior basal turn (rho = -0.31, p < 0.08). Bone-conduction thresholds at 2,000 and 4,000 Hz were significantly associated with the amount of stria vascularis atrophy (rho = -0.44, -0.40, p < 0.05). In addition, we observed decreased immunostaining for both carbonic anhydrase II with Type I fibrocytes and Na,K-ATPase with stria vascularis and Type II and Type IV fibrocytes of the spiral ligament in cochlear otosclerosis sections compared with normal cochlea. Na,K-ATPase staining within the stria vascularis was further decreased in the presence of spiral ligament hyalinization. No significant differences were seen with connexin 26 immunostaining. However, immunostaining results were somewhat inconsistent. These data suggest that spiral ligament structure and function are essential for stria vascularis survival. In addition, dampened expression of ion transport molecules within the spiral ligament and stria vascularis may disrupt potassium ion recycling, resulting in loss of endocochlear potential and sensory hearing loss.

  17. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans

    PubMed Central

    Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P

    2014-01-01

    The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose-stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre-diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose- and cAMP-dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies. PMID:25172942

  18. Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction.

    PubMed

    Jabr, Rita I; Hatch, Fiona S; Salvage, Samantha C; Orlowski, Alejandro; Lampe, Paul D; Fry, Christopher H

    2016-11-01

    Cardiac arrhythmias are associated with raised intracellular [Ca 2+ ] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca 2+ -dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca 2+ -dependent phosphatase, calcineurin. Intracellular [Ca 2+ ] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca 2 + ] i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca 2+ ] i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca 2+ -independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca 2+ ] i . PP2A had no role. Conduction velocity was reduced by raised [Ca 2+ ] i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca 2+ ] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.

  19. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans.

    PubMed

    Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P

    2014-10-15

    The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose‐stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre‐diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose‐ and cAMP‐dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies.

  20. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes

    PubMed Central

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-01-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948

Top