Sample records for conscious visual perception

  1. Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles

    PubMed Central

    Kiefer, Markus; Ansorge, Ulrich; Haynes, John-Dylan; Hamker, Fred; Mattler, Uwe; Verleger, Rolf; Niedeggen, Michael

    2011-01-01

    Psychological and neuroscience approaches have promoted much progress in elucidating the cognitive and neural mechanisms that underlie phenomenal visual awareness during the last decades. In this article, we provide an overview of the latest research investigating important phenomena in conscious and unconscious vision. We identify general principles to characterize conscious and unconscious visual perception, which may serve as important building blocks for a unified model to explain the plethora of findings. We argue that in particular the integration of principles from both conscious and unconscious vision is advantageous and provides critical constraints for developing adequate theoretical models. Based on the principles identified in our review, we outline essential components of a unified model of conscious and unconscious visual perception. We propose that awareness refers to consolidated visual representations, which are accessible to the entire brain and therefore globally available. However, visual awareness not only depends on consolidation within the visual system, but is additionally the result of a post-sensory gating process, which is mediated by higher-level cognitive control mechanisms. We further propose that amplification of visual representations by attentional sensitization is not exclusive to the domain of conscious perception, but also applies to visual stimuli, which remain unconscious. Conscious and unconscious processing modes are highly interdependent with influences in both directions. We therefore argue that exactly this interdependence renders a unified model of conscious and unconscious visual perception valuable. Computational modeling jointly with focused experimental research could lead to a better understanding of the plethora of empirical phenomena in consciousness research. PMID:22253669

  2. Attentional Routes to Conscious Perception

    PubMed Central

    Chica, Ana B.; Bartolomeo, Paolo

    2012-01-01

    The relationships between spatial attention and conscious perception are currently the object of intense debate. Recent evidence of double dissociations between attention and consciousness cast doubt on the time-honored concept of attention as a gateway to consciousness. Here we review evidence from behavioral, neurophysiologic, neuropsychological, and neuroimaging experiments, showing that distinct sorts of spatial attention can have different effects on visual conscious perception. While endogenous, or top-down attention, has weak influence on subsequent conscious perception of near-threshold stimuli, exogenous, or bottom-up forms of spatial attention appear instead to be a necessary, although not sufficient, step in the development of reportable visual experiences. Fronto-parietal networks important for spatial attention, with peculiar inter-hemispheric differences, constitute plausible neural substrates for the interactions between exogenous spatial attention and conscious perception. PMID:22279440

  3. Perceptual integration without conscious access

    PubMed Central

    van Leeuwen, Jonathan; Olivers, Christian N. L.

    2017-01-01

    The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is required to complete perceptual integration. To investigate this question, we manipulated access to consciousness using the attentional blink. We show that, behaviorally, the attentional blink impairs conscious decisions about the presence of integrated surface structure from fragmented input. However, despite conscious access being impaired, the ability to decode the presence of integrated percepts remains intact, as shown through multivariate classification analyses of electroencephalogram (EEG) data. In contrast, when disrupting perception through masking, decisions about integrated percepts and decoding of integrated percepts are impaired in tandem, while leaving feedforward representations intact. Together, these data show that access consciousness and perceptual integration can be dissociated. PMID:28325878

  4. Conscious Vision Proceeds from Global to Local Content in Goal-Directed Tasks and Spontaneous Vision.

    PubMed

    Campana, Florence; Rebollo, Ignacio; Urai, Anne; Wyart, Valentin; Tallon-Baudry, Catherine

    2016-05-11

    The reverse hierarchy theory (Hochstein and Ahissar, 2002) makes strong, but so far untested, predictions on conscious vision. In this theory, local details encoded in lower-order visual areas are unconsciously processed before being automatically and rapidly combined into global information in higher-order visual areas, where conscious percepts emerge. Contingent on current goals, local details can afterward be consciously retrieved. This model therefore predicts that (1) global information is perceived faster than local details, (2) global information is computed regardless of task demands during early visual processing, and (3) spontaneous vision is dominated by global percepts. We designed novel textured stimuli that are, as opposed to the classic Navon's letters, truly hierarchical (i.e., where global information is solely defined by local information but where local and global orientations can still be manipulated separately). In line with the predictions, observers were systematically faster reporting global than local properties of those stimuli. Second, global information could be decoded from magneto-encephalographic data during early visual processing regardless of task demands. Last, spontaneous subjective reports were dominated by global information and the frequency and speed of spontaneous global perception correlated with the accuracy and speed in the global task. No such correlation was observed for local information. We therefore show that information at different levels of the visual hierarchy is not equally likely to become conscious; rather, conscious percepts emerge preferentially at a global level. We further show that spontaneous reports can be reliable and are tightly linked to objective performance at the global level. Is information encoded at different levels of the visual system (local details in low-level areas vs global shapes in high-level areas) equally likely to become conscious? We designed new hierarchical stimuli and provide the first empirical evidence based on behavioral and MEG data that global information encoded at high levels of the visual hierarchy dominates perception. This result held both in the presence and in the absence of task demands. The preferential emergence of percepts at high levels can account for two properties of conscious vision, namely, the dominance of global percepts and the feeling of visual richness reported independently of the perception of local details. Copyright © 2016 the authors 0270-6474/16/365200-14$15.00/0.

  5. Early visual responses predict conscious face perception within and between subjects during binocular rivalry

    PubMed Central

    Sandberg, Kristian; Bahrami, Bahador; Kanai, Ryota; Barnes, Gareth Robert; Overgaard, Morten; Rees, Geraint

    2014-01-01

    Previous studies indicate that conscious face perception may be related to neural activity in a large time window around 170-800ms after stimulus presentation, yet in the majority of these studies changes in conscious experience are confounded with changes in physical stimulation. Using multivariate classification on MEG data recorded when participants reported changes in conscious perception evoked by binocular rivalry between a face and a grating, we showed that only MEG signals in the 120-320ms time range, peaking at the M170 around 180ms and the P2m at around 260ms, reliably predicted conscious experience. Conscious perception could not only be decoded significantly better than chance from the sensors that showed the largest average difference, as previous studies suggest, but also from patterns of activity across groups of occipital sensors that individually were unable to predict perception better than chance. Additionally, source space analyses showed that sources in the early and late visual system predicted conscious perception more accurately than frontal and parietal sites, although conscious perception could also be decoded there. Finally, the patterns of neural activity associated with conscious face perception generalized from one participant to another around the times of maximum prediction accuracy. Our work thus demonstrates that the neural correlates of particular conscious contents (here, faces) are highly consistent in time and space within individuals and that these correlates are shared to some extent between individuals. PMID:23281780

  6. Are neural correlates of visual consciousness retinotopic?

    PubMed

    ffytche, Dominic H; Pins, Delphine

    2003-11-14

    Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.

  7. Implications on visual apperception: energy, duration, structure and synchronization.

    PubMed

    Bókkon, I; Vimal, Ram Lakhan Pandey

    2010-07-01

    Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.

  8. The neural monitoring of visceral inputs, rather than attention, accounts for first-person perspective in conscious vision.

    PubMed

    Tallon-Baudry, Catherine; Campana, Florence; Park, Hyeong-Dong; Babo-Rebelo, Mariana

    2018-05-01

    Why should a scientist whose aim is to unravel the neural mechanisms of perception consider brain-body interactions seriously? Brain-body interactions have traditionally been associated with emotion, effort, or stress, but not with the "cold" processes of perception and attention. Here, we review recent experimental evidence suggesting a different picture: the neural monitoring of bodily state, and in particular the neural monitoring of the heart, affects visual perception. The impact of spontaneous fluctuations of neural responses to heartbeats on visual detection is as large as the impact of explicit manipulations of spatial attention in perceptual tasks. However, we propose that the neural monitoring of visceral inputs plays a specific role in conscious perception, distinct from the role of attention. The neural monitoring of organs such as the heart or the gut would generate a subject-centered reference frame, from which the first-person perspective inherent to conscious perception can develop. In this view, conscious perception results from the integration of visual content with first-person perspective. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Visual consciousness and bodily self-consciousness.

    PubMed

    Faivre, Nathan; Salomon, Roy; Blanke, Olaf

    2015-02-01

    In recent years, consciousness has become a central topic in cognitive neuroscience. This review focuses on the relation between bodily self-consciousness - the feeling of being a subject in a body - and visual consciousness - the subjective experience associated with the perception of visual signals. Findings from clinical and experimental work have shown that bodily self-consciousness depends on specific brain networks and is related to the integration of signals from multiple sensory modalities including vision. In addition, recent experiments have shown that visual consciousness is shaped by the body, including vestibular, tactile, proprioceptive, and motor signals. Several lines of evidence suggest reciprocal relationships between vision and bodily signals, indicating that a comprehensive understanding of visual and bodily self-consciousness requires studying them in unison.

  10. Conscious visual memory with minimal attention.

    PubMed

    Pinto, Yair; Vandenbroucke, Annelinde R; Otten, Marte; Sligte, Ilja G; Seth, Anil K; Lamme, Victor A F

    2017-02-01

    Is conscious visual perception limited to the locations that a person attends? The remarkable phenomenon of change blindness, which shows that people miss nearly all unattended changes in a visual scene, suggests the answer is yes. However, change blindness is found after visual interference (a mask or a new scene), so that subjects have to rely on working memory (WM), which has limited capacity, to detect the change. Before such interference, however, a much larger capacity store, called fragile memory (FM), which is easily overwritten by newly presented visual information, is present. Whether these different stores depend equally on spatial attention is central to the debate on the role of attention in conscious vision. In 2 experiments, we found that minimizing spatial attention almost entirely erases visual WM, as expected. Critically, FM remains largely intact. Moreover, minimally attended FM responses yield accurate metacognition, suggesting that conscious memory persists with limited spatial attention. Together, our findings help resolve the fundamental issue of how attention affects perception: Both visual consciousness and memory can be supported by only minimal attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Subconscious Visual Cues during Movement Execution Allow Correct Online Choice Reactions

    PubMed Central

    Leukel, Christian; Lundbye-Jensen, Jesper; Christensen, Mark Schram; Gollhofer, Albert; Nielsen, Jens Bo; Taube, Wolfgang

    2012-01-01

    Part of the sensory information is processed by our central nervous system without conscious perception. Subconscious processing has been shown to be capable of triggering motor reactions. In the present study, we asked the question whether visual information, which is not consciously perceived, could influence decision-making in a choice reaction task. Ten healthy subjects (28±5 years) executed two different experimental protocols. In the Motor reaction protocol, a visual target cue was shown on a computer screen. Depending on the displayed cue, subjects had to either complete a reaching movement (go-condition) or had to abort the movement (stop-condition). The cue was presented with different display durations (20–160 ms). In the second Verbalization protocol, subjects verbalized what they experienced on the screen. Again, the cue was presented with different display durations. This second protocol tested for conscious perception of the visual cue. The results of this study show that subjects achieved significantly more correct responses in the Motor reaction protocol than in the Verbalization protocol. This difference was only observed at the very short display durations of the visual cue. Since correct responses in the Verbalization protocol required conscious perception of the visual information, our findings imply that the subjects performed correct motor responses to visual cues, which they were not conscious about. It is therefore concluded that humans may reach decisions based on subconscious visual information in a choice reaction task. PMID:23049749

  12. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions.

    PubMed

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk

    2008-07-15

    The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.

  13. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions

    PubMed Central

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H.; Öğmen, Haluk

    2008-01-01

    The 1990s, the “decade of the brain,” witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this “steady-state approach,” more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness. PMID:20517493

  14. Opposing effects of attention and consciousness on afterimages

    PubMed Central

    van Boxtel, Jeroen J. A.; Tsuchiya, Naotsugu; Koch, Christof

    2010-01-01

    The brain's ability to handle sensory information is influenced by both selective attention and consciousness. There is no consensus on the exact relationship between these two processes and whether they are distinct. So far, no experiment has simultaneously manipulated both. We carried out a full factorial 2 × 2 study of the simultaneous influences of attention and consciousness (as assayed by visibility) on perception, correcting for possible concurrent changes in attention and consciousness. We investigated the duration of afterimages for all four combinations of high versus low attention and visible versus invisible. We show that selective attention and visual consciousness have opposite effects: paying attention to the grating decreases the duration of its afterimage, whereas consciously seeing the grating increases the afterimage duration. These findings provide clear evidence for distinctive influences of selective attention and consciousness on visual perception. PMID:20424112

  15. Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series.

    PubMed

    Verleger, Rolf; Śmigasiewicz, Kamila

    2015-09-01

    Everyday experience suggests that people are equally aware of events in both hemi-fields. However, when two streams of stimuli are rapidly presented left and right containing two targets, the second target is better identified in the left than in the right visual field. This might be considered evidence for a right-hemisphere advantage in generating conscious percepts. However, this putative asymmetry of conscious perception cannot be measured independently of participants' access to their conscious percepts, and there is actually evidence from split-brain patients for the reverse, left-hemisphere advantage in having access to conscious percepts. Several other topics were studied in search of the responsible mechanism, among others: Mutual inhibition of hemispheres, cooperation of hemispheres in perceiving midline stimuli, and asymmetries in processing various perceptual inputs. Directing attention by salient cues turned out to be one of the few mechanisms capable of modifying the left visual-field advantage in this paradigm. Thus, this left visual-field advantage is best explained by the notion of a right-hemisphere advantage in directing attention to salient events. Dovetailing with the pathological asymmetries of attention after right-hemisphere lesions and with asymmetries of brain activation when healthy participants shift their attention, the present results extend that body of evidence by demonstrating unusually large and reliable behavioral asymmetries for attention-directing processes in healthy participants. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cortical response tracking the conscious experience of threshold duration visual stimuli indicates visual perception is all or none

    PubMed Central

    Sekar, Krithiga; Findley, William M.; Poeppel, David; Llinás, Rodolfo R.

    2013-01-01

    At perceptual threshold, some stimuli are available for conscious access whereas others are not. Such threshold inputs are useful tools for investigating the events that separate conscious awareness from unconscious stimulus processing. Here, viewing unmasked, threshold-duration images was combined with recording magnetoencephalography to quantify differences among perceptual states, ranging from no awareness to ambiguity to robust perception. A four-choice scale was used to assess awareness: “didn’t see” (no awareness), “couldn’t identify” (awareness without identification), “unsure” (awareness with low certainty identification), and “sure” (awareness with high certainty identification). Stimulus-evoked neuromagnetic signals were grouped according to behavioral response choices. Three main cortical responses were elicited. The earliest response, peaking at ∼100 ms after stimulus presentation, showed no significant correlation with stimulus perception. A late response (∼290 ms) showed moderate correlation with stimulus awareness but could not adequately differentiate conscious access from its absence. By contrast, an intermediate response peaking at ∼240 ms was observed only for trials in which stimuli were consciously detected. That this signal was similar for all conditions in which awareness was reported is consistent with the hypothesis that conscious visual access is relatively sharply demarcated. PMID:23509248

  17. The effect of phasic auditory alerting on visual perception.

    PubMed

    Petersen, Anders; Petersen, Annemarie Hilkjær; Bundesen, Claus; Vangkilde, Signe; Habekost, Thomas

    2017-08-01

    Phasic alertness refers to a short-lived change in the preparatory state of the cognitive system following an alerting signal. In the present study, we examined the effect of phasic auditory alerting on distinct perceptual processes, unconfounded by motor components. We combined an alerting/no-alerting design with a pure accuracy-based single-letter recognition task. Computational modeling based on Bundesen's Theory of Visual Attention was used to examine the effect of phasic alertness on visual processing speed and threshold of conscious perception. Results show that phasic auditory alertness affects visual perception by increasing the visual processing speed and lowering the threshold of conscious perception (Experiment 1). By manipulating the intensity of the alerting cue, we further observed a positive relationship between alerting intensity and processing speed, which was not seen for the threshold of conscious perception (Experiment 2). This was replicated in a third experiment, in which pupil size was measured as a physiological marker of alertness. Results revealed that the increase in processing speed was accompanied by an increase in pupil size, substantiating the link between alertness and processing speed (Experiment 3). The implications of these results are discussed in relation to a newly developed mathematical model of the relationship between levels of alertness and the speed with which humans process visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The perception of visual emotion: comparing different measures of awareness.

    PubMed

    Szczepanowski, Remigiusz; Traczyk, Jakub; Wierzchoń, Michał; Cleeremans, Axel

    2013-03-01

    Here, we explore the sensitivity of different awareness scales in revealing conscious reports on visual emotion perception. Participants were exposed to a backward masking task involving fearful faces and asked to rate their conscious awareness in perceiving emotion in facial expression using three different subjective measures: confidence ratings (CRs), with the conventional taxonomy of certainty, the perceptual awareness scale (PAS), through which participants categorize "raw" visual experience, and post-decision wagering (PDW), which involves economic categorization. Our results show that the CR measure was the most exhaustive and the most graded. In contrast, the PAS and PDW measures suggested instead that consciousness of emotional stimuli is dichotomous. Possible explanations of the inconsistency were discussed. Finally, our results also indicate that PDW biases awareness ratings by enhancing first-order accuracy of emotion perception. This effect was possibly a result of higher motivation induced by monetary incentives. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Split brain: divided perception but undivided consciousness.

    PubMed

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Does perceptual learning require consciousness or attention?

    PubMed

    Meuwese, Julia D I; Post, Ruben A G; Scholte, H Steven; Lamme, Victor A F

    2013-10-01

    It has been proposed that visual attention and consciousness are separate [Koch, C., & Tsuchiya, N. Attention and consciousness: Two distinct brain processes. Trends in Cognitive Sciences, 11, 16-22, 2007] and possibly even orthogonal processes [Lamme, V. A. F. Why visual attention and awareness are different. Trends in Cognitive Sciences, 7, 12-18, 2003]. Attention and consciousness converge when conscious visual percepts are attended and hence become available for conscious report. In such a view, a lack of reportability can have two causes: the absence of attention or the absence of a conscious percept. This raises an important question in the field of perceptual learning. It is known that learning can occur in the absence of reportability [Gutnisky, D. A., Hansen, B. J., Iliescu, B. F., & Dragoi, V. Attention alters visual plasticity during exposure-based learning. Current Biology, 19, 555-560, 2009; Seitz, A. R., Kim, D., & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700-707, 2009; Seitz, A. R., & Watanabe, T. Is subliminal learning really passive? Nature, 422, 36, 2003; Watanabe, T., Náñez, J. E., & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844-848, 2001], but it is unclear which of the two ingredients-consciousness or attention-is not necessary for learning. We presented textured figure-ground stimuli and manipulated reportability either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). During the second session (24 hr later), learning was assessed neurally and behaviorally, via differences in figure-ground ERPs and via a detection task. Behavioral and neural learning effects were found for stimuli presented in the inattention paradigm and not for masked stimuli. Interestingly, the behavioral learning effect only became apparent when performance feedback was given on the task to measure learning, suggesting that the memory trace that is formed during inattention is latent until accessed. The results suggest that learning requires consciousness, and not attention, and further strengthen the idea that consciousness is separate from attention.

  1. Isolating neural correlates of conscious perception from neural correlates of reporting one's perception

    PubMed Central

    Pitts, Michael A.; Metzler, Stephen; Hillyard, Steven A.

    2014-01-01

    To isolate neural correlates of conscious perception (NCCs), a standard approach has been to contrast neural activity elicited by identical stimuli of which subjects are aware vs. unaware. Because conscious experience is private, determining whether a stimulus was consciously perceived requires subjective report: e.g., button-presses indicating detection, visibility ratings, verbal reports, etc. This reporting requirement introduces a methodological confound when attempting to isolate NCCs: The neural processes responsible for accessing and reporting one's percept are difficult to distinguish from those underlying the conscious percept itself. Here, we review recent attempts to circumvent this issue via a modified inattentional blindness paradigm (Pitts et al., 2012) and present new data from a backward masking experiment in which task-relevance and visual awareness were manipulated in a 2 × 2 crossed design. In agreement with our previous inattentional blindness results, stimuli that were consciously perceived yet not immediately accessed for report (aware, task-irrelevant condition) elicited a mid-latency posterior ERP negativity (~200–240 ms), while stimuli that were accessed for report (aware, task-relevant condition) elicited additional components including a robust P3b (~380–480 ms) subsequent to the mid-latency negativity. Overall, these results suggest that some of the NCCs identified in previous studies may be more closely linked with accessing and maintaining perceptual information for reporting purposes than with encoding the conscious percept itself. An open question is whether the remaining NCC candidate (the ERP negativity at 200–240 ms) reflects visual awareness or object-based attention. PMID:25339922

  2. Tracking without perceiving: a dissociation between eye movements and motion perception.

    PubMed

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-02-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.

  3. Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception

    PubMed Central

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-01-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353

  4. A roadmap for the study of conscious audition and its neural basis

    PubMed Central

    Cariani, Peter A.; Gutschalk, Alexander

    2017-01-01

    How and which aspects of neural activity give rise to subjective perceptual experience—i.e. conscious perception—is a fundamental question of neuroscience. To date, the vast majority of work concerning this question has come from vision, raising the issue of generalizability of prominent resulting theories. However, recent work has begun to shed light on the neural processes subserving conscious perception in other modalities, particularly audition. Here, we outline a roadmap for the future study of conscious auditory perception and its neural basis, paying particular attention to how conscious perception emerges (and of which elements or groups of elements) in complex auditory scenes. We begin by discussing the functional role of the auditory system, particularly as it pertains to conscious perception. Next, we ask: what are the phenomena that need to be explained by a theory of conscious auditory perception? After surveying the available literature for candidate neural correlates, we end by considering the implications that such results have for a general theory of conscious perception as well as prominent outstanding questions and what approaches/techniques can best be used to address them. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044014

  5. [Perception, mimesis and consciousness].

    PubMed

    Emrich, H M

    1998-02-01

    Questions as to the fundamentals of "consciousness" are envisaged, first of all, from the viewpoint of quantifying experiments on visual perception in humans, focussed on "internal censorship", the role of intrapsychic mechanisms processing and correcting perception, and secondly based on recent theories on "mimesis" in the sense of R. Girard's concept of psychosocial transfer of aims and values between humans. The paper demonstrates a convergence between these two strategies of understanding, pointing to the view that "consciousness" may be interpreted as the performance of the intrapsychic "translation" between "cognitive" and "assessing" (or "valuating") emotional processes.

  6. Perception of ensemble statistics requires attention.

    PubMed

    Jackson-Nielsen, Molly; Cohen, Michael A; Pitts, Michael A

    2017-02-01

    To overcome inherent limitations in perceptual bandwidth, many aspects of the visual world are represented as summary statistics (e.g., average size, orientation, or density of objects). Here, we investigated the relationship between summary (ensemble) statistics and visual attention. Recently, it was claimed that one ensemble statistic in particular, color diversity, can be perceived without focal attention. However, a broader debate exists over the attentional requirements of conscious perception, and it is possible that some form of attention is necessary for ensemble perception. To test this idea, we employed a modified inattentional blindness paradigm and found that multiple types of summary statistics (color and size) often go unnoticed without attention. In addition, we found attentional costs in dual-task situations, further implicating a role for attention in statistical perception. Overall, we conclude that while visual ensembles may be processed efficiently, some amount of attention is necessary for conscious perception of ensemble statistics. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    PubMed

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  8. Oscillatory Correlates of Visual Consciousness

    PubMed Central

    Gallotto, Stefano; Sack, Alexander T.; Schuhmann, Teresa; de Graaf, Tom A.

    2017-01-01

    Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences). PMID:28736543

  9. Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness

    PubMed Central

    Pitts, Michael A.; Padwal, Jennifer; Fennelly, Daniel; Martínez, Antígona; Hillyard, Steven A.

    2014-01-01

    A primary goal in cognitive neuroscience is to identify neural correlates of conscious perception (NCC). By contrasting conditions in which subjects are aware versus unaware of identical visual stimuli, a number of candidate NCCs have emerged, among them induced gamma band activity in the EEG and the P3 event-related potential. In most previous studies, however, the critical stimuli were always directly relevant to the subjects’ task, such that aware versus unaware contrasts may well have included differences in post-perceptual processing in addition to differences in conscious perception per se. Here, in a series of EEG experiments, visual awareness and task relevance were manipulated independently. Induced gamma activity and the P3 were absent for task-irrelevant stimuli regardless of whether subjects were aware of such stimuli. For task-relevant stimuli, gamma and the P3 were robust and dissociable, indicating that each reflects distinct post-perceptual processes necessary for carrying-out the task but not for consciously perceiving the stimuli. Overall, this pattern of results challenges a number of previous proposals linking gamma band activity and the P3 to conscious perception. PMID:25063731

  10. Subliminal perception of complex visual stimuli.

    PubMed

    Ionescu, Mihai Radu

    2016-01-01

    Rationale: Unconscious perception of various sensory modalities is an active subject of research though its function and effect on behavior is uncertain. Objective: The present study tried to assess if unconscious visual perception could occur with more complex visual stimuli than previously utilized. Methods and Results: Videos containing slideshows of indifferent complex images with interspersed frames of interest of various durations were presented to 24 healthy volunteers. The perception of the stimulus was evaluated with a forced-choice questionnaire while awareness was quantified by self-assessment with a modified awareness scale annexed to each question with 4 categories of awareness. At values of 16.66 ms of stimulus duration, conscious awareness was not possible and answers regarding the stimulus were random. At 50 ms, nonrandom answers were coupled with no self-reported awareness suggesting unconscious perception of the stimulus. At larger durations of stimulus presentation, significantly correct answers were coupled with a certain conscious awareness. Discussion: At values of 50 ms, unconscious perception is possible even with complex visual stimuli. Further studies are recommended with a focus on a range of interest of stimulus duration between 50 to 16.66 ms.

  11. Neuronal integration in visual cortex elevates face category tuning to conscious face perception

    PubMed Central

    Fahrenfort, Johannes J.; Snijders, Tineke M.; Heinen, Klaartje; van Gaal, Simon; Scholte, H. Steven; Lamme, Victor A. F.

    2012-01-01

    The human brain has the extraordinary capability to transform cluttered sensory input into distinct object representations. For example, it is able to rapidly and seemingly without effort detect object categories in complex natural scenes. Surprisingly, category tuning is not sufficient to achieve conscious recognition of objects. What neural process beyond category extraction might elevate neural representations to the level where objects are consciously perceived? Here we show that visible and invisible faces produce similar category-selective responses in the ventral visual cortex. The pattern of neural activity evoked by visible faces could be used to decode the presence of invisible faces and vice versa. However, only visible faces caused extensive response enhancements and changes in neural oscillatory synchronization, as well as increased functional connectivity between higher and lower visual areas. We conclude that conscious face perception is more tightly linked to neural processes of sustained information integration and binding than to processes accommodating face category tuning. PMID:23236162

  12. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    PubMed Central

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the ‘top level’ of analysis in a ‘situational algorithmic strategy’ that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action. PMID:24639581

  13. A frontal but not parietal neural correlate of auditory consciousness.

    PubMed

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  14. Surprise-Induced Blindness: A Stimulus-Driven Attentional Limit to Conscious Perception

    ERIC Educational Resources Information Center

    Asplund, Christopher L.; Todd, J. Jay; Snyder, A. P.; Gilbert, Christopher M.; Marois, Rene

    2010-01-01

    The cost of attending to a visual event can be the failure to consciously detect other events. This processing limitation is well illustrated by the attentional blink paradigm, in which searching for and attending to a target presented in a rapid serial visual presentation stream of distractors can impair one's ability to detect a second target…

  15. Visual consciousness and intertrial feature priming.

    PubMed

    Peremen, Ziv; Hilo, Rinat; Lamy, Dominique

    2013-04-01

    Intertrial repetition priming plays a striking role in visual search. For instance, when searching for a target with a unique color, performance is substantially better when the specific color of the target repeats on successive trials (Maljkovic & Nakayama, 1994). Recent research has relied on objective measures of performance to show that priming improves the perceptual quality of the repeated target. Here, we examined the relation between priming and conscious perception of the target by adding a subjective measure of perception. We used backward masking to create liminal perception, that is, different levels of subjectively conscious perception of the target using exactly the same stimulus conditions. The displays in either probe trials (in which priming benefits are measured, experiment 1) or in prime trials (in which memory traces are laid down, experiment 2) were masked. The results showed that intertrial priming improves full access to awareness of the repeated target but only for targets that already achieved partial access to awareness. In addition, they show that full awareness of the target is necessary in both the prime and probe trials for intertrial priming effects to emerge. Implications for the role of implicit short-term memory in visual search are discussed.

  16. Non-conscious visual cues related to affect and action alter perception of effort and endurance performance

    PubMed Central

    Blanchfield, Anthony; Hardy, James; Marcora, Samuele

    2014-01-01

    The psychobiological model of endurance performance proposes that endurance performance is determined by a decision-making process based on perception of effort and potential motivation. Recent research has reported that effort-based decision-making during cognitive tasks can be altered by non-conscious visual cues relating to affect and action. The effects of these non-conscious visual cues on effort and performance during physical tasks are however unknown. We report two experiments investigating the effects of subliminal priming with visual cues related to affect and action on perception of effort and endurance performance. In Experiment 1 thirteen individuals were subliminally primed with happy or sad faces as they cycled to exhaustion in a counterbalanced and randomized crossover design. A paired t-test (happy vs. sad faces) revealed that individuals cycled significantly longer (178 s, p = 0.04) when subliminally primed with happy faces. A 2 × 5 (condition × iso-time) ANOVA also revealed a significant main effect of condition on rating of perceived exertion (RPE) during the time to exhaustion (TTE) test with lower RPE when subjects were subliminally primed with happy faces (p = 0.04). In Experiment 2, a single-subject randomization tests design found that subliminal priming with action words facilitated a significantly longer TTE (399 s, p = 0.04) in comparison to inaction words. Like Experiment 1, this greater TTE was accompanied by a significantly lower RPE (p = 0.03). These experiments are the first to show that subliminal visual cues relating to affect and action can alter perception of effort and endurance performance. Non-conscious visual cues may therefore influence the effort-based decision-making process that is proposed to determine endurance performance. Accordingly, the findings raise notable implications for individuals who may encounter such visual cues during endurance competitions, training, or health related exercise. PMID:25566014

  17. A TMS Study of the Ventral Projections from V1 with Implications for the Finding of Neural Correlates of Consciousness

    ERIC Educational Resources Information Center

    Overgaard, Morten; Nielsen, Jorgen Feldbaek; Fuglsang-Frederiksen, Anders

    2004-01-01

    The study of subliminal perception in normal and brain lesioned subjects has long been of interest to scholars studying the neural mechanisms behind conscious vision. Using brief durations and a developed methodology of introspective reporting, we present an experiment with visual stimuli that gives rise to little or no subliminal perception under…

  18. Insights on consciousness from taste memory research.

    PubMed

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  19. Spatiotemporal Dissociation of Brain Activity Underlying Subjective Awareness, Objective Performance and Confidence

    PubMed Central

    Li, Qi; Hill, Zachary

    2014-01-01

    Despite intense recent research, the neural correlates of conscious visual perception remain elusive. The most established paradigm for studying brain mechanisms underlying conscious perception is to keep the physical sensory inputs constant and identify brain activities that correlate with the changing content of conscious awareness. However, such a contrast based on conscious content alone would not only reveal brain activities directly contributing to conscious perception, but also include brain activities that precede or follow it. To address this issue, we devised a paradigm whereby we collected, trial-by-trial, measures of objective performance, subjective awareness, and the confidence level of subjective awareness. Using magnetoencephalography recordings in healthy human volunteers, we dissociated brain activities underlying these different cognitive phenomena. Our results provide strong evidence that widely distributed slow cortical potentials (SCPs) correlate with subjective awareness, even after the effects of objective performance and confidence were both removed. The SCP correlate of conscious perception manifests strongly in its waveform, phase, and power. In contrast, objective performance and confidence were both contributed by relatively transient brain activity. These results shed new light on the brain mechanisms of conscious, unconscious, and metacognitive processing. PMID:24647958

  20. Consciousness weaves our internal view of the outside world.

    PubMed

    Gur, Moshe

    2016-01-01

    Low-level consciousness is fundamental to our understanding of the world. Within the conscious field, the constantly changing external visual information is transformed into stable, object-based percepts. Remarkably, holistic objects are perceived while we are cognizant of all of the spatial details comprising the objects and of the relationship between individual elements. This parallel conscious association is unique to the brain. Conscious contributions to motor activity come after our understanding of the world has been established.

  1. Visualizing the Perception Filter and Breaching It with Active-Learning Strategies

    ERIC Educational Resources Information Center

    White, Harold B.

    2012-01-01

    Teachers' perception filter operates in all realms of their consciousness. It plays an important part in what and how students learn and should play a central role in what and how they teach. This may be obvious, but having a visual model of a perception filter can guide the way they think about education. In this article, the author talks about…

  2. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  3. Dissociation between the neural correlates of conscious face perception and visual attention.

    PubMed

    Navajas, Joaquin; Nitka, Aleksander W; Quian Quiroga, Rodrigo

    2017-08-01

    Given the higher chance to recognize attended compared to unattended stimuli, the specific neural correlates of these two processes, attention and awareness, tend to be intermingled in experimental designs. In this study, we dissociated the neural correlates of conscious face perception from the effects of visual attention. To do this, we presented faces at the threshold of awareness and manipulated attention through the use of exogenous prestimulus cues. We show that the N170 component, a scalp EEG marker of face perception, was modulated independently by attention and by awareness. An earlier P1 component was not modulated by either of the two effects and a later P3 component was indicative of awareness but not of attention. These claims are supported by converging evidence from (a) modulations observed in the average evoked potentials, (b) correlations between neural and behavioral data at the single-subject level, and (c) single-trial analyses. Overall, our results show a clear dissociation between the neural substrates of attention and awareness. Based on these results, we argue that conscious face perception is triggered by a boost in face-selective cortical ensembles that can be modulated by, but are still independent from, visual attention. © 2017 Society for Psychophysiological Research.

  4. Unconscious Imagination and the Mental Imagery Debate

    PubMed Central

    Brogaard, Berit; Gatzia, Dimitria Electra

    2017-01-01

    Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn’s model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience. PMID:28588527

  5. A new neural framework for visuospatial processing.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer

    2011-04-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

  6. Different Signal Enhancement Pathways of Attention and Consciousness Underlie Perception in Humans.

    PubMed

    van Boxtel, Jeroen J A

    2017-06-14

    It is not yet known whether attention and consciousness operate through similar or largely different mechanisms. Visual processing mechanisms are routinely characterized by measuring contrast response functions (CRFs). In this report, behavioral CRFs were obtained in humans (both males and females) by measuring afterimage durations over the entire range of inducer stimulus contrasts to reveal visual mechanisms behind attention and consciousness. Deviations relative to the standard CRF, i.e., gain functions, describe the strength of signal enhancement, which were assessed for both changes due to attentional task and conscious perception. It was found that attention displayed a response-gain function, whereas consciousness displayed a contrast-gain function. Through model comparisons, which only included contrast-gain modulations, both contrast-gain and response-gain effects can be explained with a two-level normalization model, in which consciousness affects only the first level and attention affects only the second level. These results demonstrate that attention and consciousness can effectively show different gain functions because they operate through different signal enhancement mechanisms. SIGNIFICANCE STATEMENT The relationship between attention and consciousness is still debated. Mapping contrast response functions (CRFs) has allowed (neuro)scientists to gain important insights into the mechanistic underpinnings of visual processing. Here, the influence of both attention and consciousness on these functions were measured and they displayed a strong dissociation. First, attention lowered CRFs, whereas consciousness raised them. Second, attention manifests itself as a response-gain function, whereas consciousness manifests itself as a contrast-gain function. Extensive model comparisons show that these results are best explained in a two-level normalization model in which consciousness affects only the first level, whereas attention affects only the second level. These findings show dissociations between both the computational mechanisms behind attention and consciousness and the perceptual consequences that they induce. Copyright © 2017 the authors 0270-6474/17/375912-11$15.00/0.

  7. Anosognosia for obvious visual field defects in stroke patients.

    PubMed

    Baier, Bernhard; Geber, Christian; Müller-Forell, Wiebke; Müller, Notger; Dieterich, Marianne; Karnath, Hans-Otto

    2015-01-01

    Patients with anosognosia for visual field defect (AVFD) fail to recognize consciously their visual field defect. There is still unclarity whether specific neural correlates are associated with AVFD. We studied AVFD in 54 patients with acute stroke and a visual field defect. Nineteen percent of this unselected sample showed AVFD. By using modern voxelwise lesion-behaviour mapping techniques we found an association between AVFD and parts of the lingual gyrus, the cuneus as well as the posterior cingulate and corpus callosum. Damage to these regions appears to induce unawareness of visual field defects and thus may play a significant role for conscious visual perception.

  8. Visual perception and consciousness in dermatopathology: mechanisms of figure-ground segregation account for errors in diagnosis.

    PubMed

    Böer, Almut

    2009-02-01

    Visual perception has been the object of research in psychology for almost a century. Little has been written, however, about the effects of perceptive phenomena on methods in medicine that utilize interpretation of two-dimensional images for diagnosis. Starting from the work by Edgar Rubin in the beginning of the last century, this article gives a summary of observations of psychologists who investigated the mechanisms of so-called "figure-ground segregation." These unconscious mechanisms follow rules that explain why certain structures are perceived consciously as a figure, whereas other structures surrounding such a figure are neglected and not perceived consciously in detail. Perception of a structure as a figure can be due to, for example, a convex shape of its contour, proximity of lines around it, closed contours, a simple shape, and attribution of meaning to a structure. In examples from the practice of dermatopathology, those unconscious mechanisms of figure-ground segregation will be shown to be relevant to diagnosis of sections of tissue. The mechanisms help to explain why, for example, ill-defined and concave-shaped structures, stromal differences of neoplasms, interstitial infiltrates and deposits, and simulators of common diseases are often difficult to recognize at first sight. Teachers of dermatopathology need to be aware of these unconscious mechanisms of visual perception because they explain why novices struggle with certain diagnoses and differential diagnoses. Proper instruction about these phenomena, early in the process of training, will prevent a student from being frustrated with misperceptions.

  9. Subjective visual perception: from local processing to emergent phenomena of brain activity.

    PubMed

    Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K

    2014-05-05

    The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.

  10. Subjective visual perception: from local processing to emergent phenomena of brain activity

    PubMed Central

    Panagiotaropoulos, Theofanis I.; Kapoor, Vishal; Logothetis, Nikos K.

    2014-01-01

    The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness. PMID:24639588

  11. A new neural framework for visuospatial processing

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer

    2012-01-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848

  12. Preserved subliminal processing and impaired conscious access in schizophrenia

    PubMed Central

    Del Cul, Antoine; Dehaene, Stanislas; Leboyer, Marion

    2006-01-01

    Background Studies of visual backward masking have frequently revealed an elevated masking threshold in schizophrenia. This finding has frequently been interpreted as indicating a low-level visual deficit. However, more recent models suggest that masking may also involve late and higher-level integrative processes, while leaving intact early “bottom-up” visual processing. Objectives We tested the hypothesis that the backward masking deficit in schizophrenia corresponds to a deficit in the late stages of conscious perception, whereas the subliminal processing of masked stimuli is fully preserved. Method 28 patients with schizophrenia and 28 normal controls performed two backward-masking experiments. We used Arabic digits as stimuli and varied quasi-continuously the interval with a subsequent mask, thus allowing us to progressively “unmask” the stimuli. We finely quantified their degree of visibility using both objective and subjective measures to evaluate the threshold duration for access to consciousness. We also studied the priming effect caused by the variably masked numbers on a comparison task performed on a subsequently presented and highly visible target number. Results The threshold delay between digit and mask necessary for the conscious perception of the masked stimulus was longer in patients compared to control subjects. This higher consciousness threshold in patients was confirmed by an objective and a subjective measure, and both measures were highly correlated for patients as well as for controls. However, subliminal priming of masked numbers was effective and identical in patients compared to controls. Conclusions Access to conscious report of masked stimuli is impaired in schizophrenia, while fast bottom-up processing of the same stimuli, as assessed by subliminal priming, is preserved. These findings suggest a high-level origin of the masking deficit in schizophrenia, although they leave open for further research its exact relation to previously identified bottom-up visual processing abnormalities. PMID:17146006

  13. Conscious and Nonconscious Processes:Distinct Forms of Evidence Accumulation?

    NASA Astrophysics Data System (ADS)

    Dehaene, Stanislas

    Among the many brain events evoked by a visual stimulus, which ones are associated specifically with conscious perception, and which merely reflect nonconscious processing? Understanding the neuronal mechanisms of consciousness is a major challenge for cognitive neuroscience. Recently, progress has been achieved by contrasting behavior and brain activation in minimally different experimental conditions, one of which leads to conscious perception whereas the other does not. This chapter reviews briefly this line of research and speculates on its theoretical interpretation. I propose to draw links between evidence accumulation models, which are highly successful in capturing elementary psychophysical decisions, and the conscious/nonconscious dichotomy. In this framework, conscious access would correspond to the crossing of a threshold in evidence accumulation within a distributed global workspace, a set of recurrently connected neurons with long axons that is able to integrate and broadcast back evidence from multiple brain processors. During nonconscious processing, evidence would be accumulated locally within specialized subcircuits, but would fail to reach the threshold needed for global ignition and, therefore, conscious reportability.

  14. A theory of working memory without consciousness or sustained activity

    PubMed Central

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  15. Objects of consciousness

    PubMed Central

    Hoffman, Donald D.; Prakash, Chetan

    2014-01-01

    Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale. PMID:24987382

  16. What You See Isn’t Always What You Get: Auditory Word Signals Trump Consciously Perceived Words in Lexical Access

    PubMed Central

    Ostrand, Rachel; Blumstein, Sheila E.; Ferreira, Victor S.; Morgan, James L.

    2016-01-01

    Human speech perception often includes both an auditory and visual component. A conflict in these signals can result in the McGurk illusion, in which the listener perceives a fusion of the two streams, implying that information from both has been integrated. We report two experiments investigating whether auditory-visual integration of speech occurs before or after lexical access, and whether the visual signal influences lexical access at all. Subjects were presented with McGurk or Congruent primes and performed a lexical decision task on related or unrelated targets. Although subjects perceived the McGurk illusion, McGurk and Congruent primes with matching real-word auditory signals equivalently primed targets that were semantically related to the auditory signal, but not targets related to the McGurk percept. We conclude that the time course of auditory-visual integration is dependent on the lexicality of the auditory and visual input signals, and that listeners can lexically access one word and yet consciously perceive another. PMID:27011021

  17. Evidence of conscious and subconscious olfactory information processing during word encoding: a magnetoencephalographic (MEG) study.

    PubMed

    Walla, Peter; Hufnagl, Bernd; Lehrner, Johann; Mayer, Dagmar; Lindinger, Gerald; Deecke, Lüder; Lang, Wilfried

    2002-11-01

    The present study was meant to distinguish between unconscious and conscious olfactory information processing and to investigate the influence of olfaction on word information processing. Magnetic field changes were recorded in healthy young participants during deep encoding of visually presented words whereby some of the words were randomly associated with an odor. All recorded data were then split into two groups. One group consisted of participants who did not consciously perceive the odor during the whole experiment whereas the other group did report continuous conscious odor perception. The magnetic field changes related to the condition 'words without odor' were subtracted from the magnetic field changes related to the condition 'words with odor' for both groups. First, an odor-induced effect occurred between about 200 and 500 ms after stimulus onset which was similar in both groups. It is interpreted to reflect an activity reduction during word encoding related to the additional olfactory stimulation. Second, a later effect occurred between about 600 and 900 ms after stimulus onset which differed between the two groups. This effect was due to higher brain activity related to the additional olfactory stimulation. It was more pronounced in the group consisting of participants who consciously perceived the odor during the whole experiment as compared to the other group. These results are interpreted as evidence that the later effect is related to conscious odor perception whereas the earlier effect reflects unconscious olfactory information processing. Furthermore, our study provides evidence that only the conscious perception of an odor which is simultaneously presented to the visual presentation of a word reduces its chance to be subsequently recognized.

  18. Predictive Feedback and Conscious Visual Experience

    PubMed Central

    Panichello, Matthew F.; Cheung, Olivia S.; Bar, Moshe

    2012-01-01

    The human brain continuously generates predictions about the environment based on learned regularities in the world. These predictions actively and efficiently facilitate the interpretation of incoming sensory information. We review evidence that, as a result of this facilitation, predictions directly influence conscious experience. Specifically, we propose that predictions enable rapid generation of conscious percepts and bias the contents of awareness in situations of uncertainty. The possible neural mechanisms underlying this facilitation are discussed. PMID:23346068

  19. Gestalt isomorphism and the primacy of subjective conscious experience: a Gestalt Bubble model.

    PubMed

    Lehar, Steven

    2003-08-01

    A serious crisis is identified in theories of neurocomputation, marked by a persistent disparity between the phenomenological or experiential account of visual perception and the neurophysiological level of description of the visual system. In particular, conventional concepts of neural processing offer no explanation for the holistic global aspects of perception identified by Gestalt theory. The problem is paradigmatic and can be traced to contemporary concepts of the functional role of the neural cell, known as the Neuron Doctrine. In the absence of an alternative neurophysiologically plausible model, I propose a perceptual modeling approach, to model the percept as experienced subjectively, rather than modeling the objective neurophysiological state of the visual system that supposedly subserves that experience. A Gestalt Bubble model is presented to demonstrate how the elusive Gestalt principles of emergence, reification, and invariance can be expressed in a quantitative model of the subjective experience of visual consciousness. That model in turn reveals a unique computational strategy underlying visual processing, which is unlike any algorithm devised by man, and certainly unlike the atomistic feed-forward model of neurocomputation offered by the Neuron Doctrine paradigm. The perceptual modeling approach reveals the primary function of perception as that of generating a fully spatial virtual-reality replica of the external world in an internal representation. The common objections to this "picture-in-the-head" concept of perceptual representation are shown to be ill founded.

  20. Right insular damage decreases heartbeat awareness and alters cardio-visual effects on bodily self-consciousness.

    PubMed

    Ronchi, Roberta; Bello-Ruiz, Javier; Lukowska, Marta; Herbelin, Bruno; Cabrilo, Ivan; Schaller, Karl; Blanke, Olaf

    2015-04-01

    Recent evidence suggests that multisensory integration of bodily signals involving exteroceptive and interoceptive information modulates bodily aspects of self-consciousness such as self-identification and self-location. In the so-called Full Body Illusion subjects watch a virtual body being stroked while they perceive tactile stimulation on their own body inducing illusory self-identification with the virtual body and a change in self-location towards the virtual body. In a related illusion, it has recently been shown that similar changes in self-identification and self-location can be observed when an interoceptive signal is used in association with visual stimulation of the virtual body (i.e., participants observe a virtual body illuminated in synchrony with their heartbeat). Although brain imaging and neuropsychological evidence suggest that the insular cortex is a core region for interoceptive processing (such as cardiac perception and awareness) as well as for self-consciousness, it is currently not known whether the insula mediates cardio-visual modulation of self-consciousness. Here we tested the involvement of insular cortex in heartbeat awareness and cardio-visual manipulation of bodily self-consciousness in a patient before and after resection of a selective right neoplastic insular lesion. Cardio-visual stimulation induced an abnormally enhanced state of bodily self-consciousness; in addition, cardio-visual manipulation was associated with an experienced loss of the spatial unity of the self (illusory bi-location and duplication of his body), not observed in healthy subjects. Heartbeat awareness was found to decrease after insular resection. Based on these data we propose that the insula mediates interoceptive awareness as well as cardio-visual effects on bodily self-consciousness and that insular processing of interoceptive signals is an important mechanism for the experienced unity of the self. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Implicit Semantic Perception in Object Substitution Masking

    ERIC Educational Resources Information Center

    Goodhew, Stephanie C.; Visser, Troy A. W.; Lipp, Ottmar V.; Dux, Paul E.

    2011-01-01

    Decades of research on visual perception has uncovered many phenomena, such as binocular rivalry, backward masking, and the attentional blink, that reflect "failures of consciousness". Although stimuli do not reach awareness in these paradigms, there is evidence that they nevertheless undergo semantic processing. Object substitution masking (OSM),…

  2. The levels of perceptual processing and the neural correlates of increasing subjective visibility.

    PubMed

    Binder, Marek; Gociewicz, Krzysztof; Windey, Bert; Koculak, Marcin; Finc, Karolina; Nikadon, Jan; Derda, Monika; Cleeremans, Axel

    2017-10-01

    According to the levels-of-processing hypothesis, transitions from unconscious to conscious perception may depend on stimulus processing level, with more gradual changes for low-level stimuli and more dichotomous changes for high-level stimuli. In an event-related fMRI study we explored this hypothesis using a visual backward masking procedure. Task requirements manipulated level of processing. Participants reported the magnitude of the target digit in the high-level task, its color in the low-level task, and rated subjective visibility of stimuli using the Perceptual Awareness Scale. Intermediate stimulus visibility was reported more frequently in the low-level task, confirming prior behavioral results. Visible targets recruited insulo-fronto-parietal regions in both tasks. Task effects were observed in visual areas, with higher activity in the low-level task across all visibility levels. Thus, the influence of level of processing on conscious perception may be mediated by attentional modulation of activity in regions representing features of consciously experienced stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Retrospective Attention Gates Discrete Conscious Access to Past Sensory Stimuli.

    PubMed

    Thibault, Louis; van den Berg, Ronald; Cavanagh, Patrick; Sergent, Claire

    2016-01-01

    Cueing attention after the disappearance of visual stimuli biases which items will be remembered best. This observation has historically been attributed to the influence of attention on memory as opposed to subjective visual experience. We recently challenged this view by showing that cueing attention after the stimulus can improve the perception of a single Gabor patch at threshold levels of contrast. Here, we test whether this retro-perception actually increases the frequency of consciously perceiving the stimulus, or simply allows for a more precise recall of its features. We used retro-cues in an orientation-matching task and performed mixture-model analysis to independently estimate the proportion of guesses and the precision of non-guess responses. We find that the improvements in performance conferred by retrospective attention are overwhelmingly determined by a reduction in the proportion of guesses, providing strong evidence that attracting attention to the target's location after its disappearance increases the likelihood of perceiving it consciously.

  4. Visible propagation from invisible exogenous cueing.

    PubMed

    Lin, Zhicheng; Murray, Scott O

    2013-09-20

    Perception and performance is affected not just by what we see but also by what we do not see-inputs that escape our awareness. While conscious processing and unconscious processing have been assumed to be separate and independent, here we report the propagation of unconscious exogenous cueing as determined by conscious motion perception. In a paradigm combining masked exogenous cueing and apparent motion, we show that, when an onset cue was rendered invisible, the unconscious exogenous cueing effect traveled, manifesting at uncued locations (4° apart) in accordance with conscious perception of visual motion; the effect diminished when the cue-to-target distance was 8° apart. In contrast, conscious exogenous cueing manifested in both distances. Further evidence reveals that the unconscious and conscious nonretinotopic effects could not be explained by an attentional gradient, nor by bottom-up, energy-based motion mechanisms, but rather they were subserved by top-down, tracking-based motion mechanisms. We thus term these effects mobile cueing. Taken together, unconscious mobile cueing effects (a) demonstrate a previously unknown degree of flexibility of unconscious exogenous attention; (b) embody a simultaneous dissociation and association of attention and consciousness, in which exogenous attention can occur without cue awareness ("dissociation"), yet at the same time its effect is contingent on conscious motion tracking ("association"); and (c) underscore the interaction of conscious and unconscious processing, providing evidence for an unconscious effect that is not automatic but controlled.

  5. Manipulation of Pre-Target Activity on the Right Frontal Eye Field Enhances Conscious Visual Perception in Humans

    PubMed Central

    Chanes, Lorena; Chica, Ana B.; Quentin, Romain; Valero-Cabré, Antoni

    2012-01-01

    The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network. PMID:22615759

  6. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    PubMed

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. The functional impact of mental imagery on conscious perception

    PubMed Central

    Pearson, Joel; Clifford, Colin; Tong, Frank

    2008-01-01

    Summary Mental imagery has been proposed to contribute to a variety of high-level cognitive functions, including memory encoding and retrieval, navigation and spatial planning, and even social communication and language comprehension [1–5]. However, it is debated whether mental imagery relies on the same sensory representations as perception [1, 6–10], and if so, what functional consequences such an overlap might have on perception itself. We report novel evidence that single instances of imagery can have a pronounced facilitatory influence on subsequent conscious perception. Either seeing or imagining a specific pattern could strongly bias which of two competing stimuli reach awareness during binocular rivalry. Effects of imagery and perception were location- and orientation-specific, accumulated in strength over time, and survived an intervening visual task lasting several seconds prior to presentation of the rivalry display. Interestingly, effects of imagery differed from those of feature-based attention. The results demonstrate that imagery, in the absence of any incoming visual signals, leads to the formation of a short-term sensory trace that can bias future perception, suggesting a means by which high-level processes that support imagination and memory retrieval may shape low-level sensory representations. PMID:18583132

  8. Natural Evolution and Human Consciousness

    PubMed Central

    Holmgren, Jan

    2014-01-01

    A visual conscious experience is my empirical basis. All that we know comes to us through conscious experiences. Thanks to natural evolution, we have nearly direct perception, and can largely trust the information we attain. There is full integration, with no gaps, of organisms in the continuous world. Human conscious experiences, on the other hand, are discrete. Consciousness has certain limits for its resolution. This is illustrated by the so-called light-cone, with consequences for foundations in physics. Traditional universals are replaced by feels and distributions. Conscious experiences can be ordered within a framework of conceptual spaces. Triple Aspect Monism (TAM) can represent the dynamics of conscious systems. However, to fully represent the creative power of human consciousness, an all-inclusive view is suggested: Multi Aspect Monism (MAM). PMID:24891802

  9. Attention, Awareness, and the Perception of Auditory Scenes

    PubMed Central

    Snyder, Joel S.; Gregg, Melissa K.; Weintraub, David M.; Alain, Claude

    2011-01-01

    Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences. PMID:22347201

  10. Unconscious Learning versus Visual Perception: Dissociable Roles for Gamma Oscillations Revealed in MEG

    ERIC Educational Resources Information Center

    Chaumon, Maximilien; Schwartz, Denis; Tallon-Baudry, Catherine

    2009-01-01

    Oscillatory synchrony in the gamma band (30-120 Hz) has been involved in various cognitive functions including conscious perception and learning. Explicit memory encoding, in particular, relies on enhanced gamma oscillations. Does this finding extend to unconscious memory encoding? Can we dissociate gamma oscillations related to unconscious…

  11. Do early neural correlates of visual consciousness show the oblique effect? A binocular rivalry and event-related potential study.

    PubMed

    Jack, Bradley N; Roeber, Urte; O'Shea, Robert P

    2017-01-01

    When dissimilar images are presented one to each eye, we do not see both images; rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and it has recently been used to study brain processes that correlate with visual consciousness, because perception changes without any change in the sensory input. Such studies have used various types of images, but the most popular have been gratings: sets of bright and dark lines of orthogonal orientations presented one to each eye. We studied whether using cardinal rival gratings (vertical, 0°, and horizontal, 90°) versus oblique rival gratings (left-oblique, -45°, and right-oblique, 45°) influences early neural correlates of visual consciousness, because of the oblique effect: the tendency for visual performance to be greater for cardinal gratings than for oblique gratings. Participants viewed rival gratings and pressed keys indicating which of the two gratings they perceived, was dominant. Next, we changed one of the gratings to match the grating shown to the other eye, yielding binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant grating and not to the other, suppressed grating. Using event-related potentials (ERPs), we found neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but only for perceived changes. These results show that the P1 is the earliest neural activity associated with visual consciousness and that visual consciousness might be necessary to elicit the oblique effect.

  12. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    PubMed

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor programming of actions that could be accomplished congruently with the objects' functions? In this fMRI study, we instantiated unaware visual perception conditions, by dynamically suppressing the visibility of manipulable object pictures with mondrian masks. Despite escaping conscious perception, manipulable objects activated an object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices. This demonstrates that visuomotor encoding occurs independently of conscious object perception. Copyright © 2017 the authors 0270-6474/17/3710712-13$15.00/0.

  13. Seeing without Seeing? Degraded Conscious Vision in a Blindsight Patient.

    PubMed

    Overgaard, Morten; Fehl, Katrin; Mouridsen, Kim; Bergholt, Bo; Cleeremans, Axel

    2008-08-21

    Blindsight patients, whose primary visual cortex is lesioned, exhibit preserved ability to discriminate visual stimuli presented in their "blind" field, yet report no visual awareness hereof. Blindsight is generally studied in experimental investigations of single patients, as very few patients have been given this "diagnosis". In our single case study of patient GR, we ask whether blindsight is best described as unconscious vision, or rather as conscious, yet severely degraded vision. In experiment 1 and 2, we successfully replicate the typical findings of previous studies on blindsight. The third experiment, however, suggests that GR's ability to discriminate amongst visual stimuli does not reflect unconscious vision, but rather degraded, yet conscious vision. As our finding results from using a method for obtaining subjective reports that has not previously used in blindsight studies (but validated in studies of healthy subjects and other patients with brain injury), our results call for a reconsideration of blindsight, and, arguably also of many previous studies of unconscious perception in healthy subjects.

  14. The internal representation of head orientation differs for conscious perception and balance control

    PubMed Central

    Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy

    2017-01-01

    Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656

  15. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition

    PubMed Central

    Gagnepain, Pierre; Henson, Richard N.; Anderson, Michael C.

    2014-01-01

    Suppressing retrieval of unwanted memories reduces their later conscious recall. It is widely believed, however, that suppressed memories can continue to exert strong unconscious effects that may compromise mental health. Here we show that excluding memories from awareness not only modulates medial temporal lobe regions involved in explicit retention, but also neocortical areas underlying unconscious expressions of memory. Using repetition priming in visual perception as a model task, we found that excluding memories of visual objects from consciousness reduced their later indirect influence on perception, literally making the content of suppressed memories harder for participants to see. Critically, effective connectivity and pattern similarity analysis revealed that suppression mechanisms mediated by the right middle frontal gyrus reduced activity in neocortical areas involved in perceiving objects and targeted the neural populations most activated by reminders. The degree of inhibitory modulation of the visual cortex while people were suppressing visual memories predicted, in a later perception test, the disruption in the neural markers of sensory memory. These findings suggest a neurobiological model of how motivated forgetting affects the unconscious expression of memory that may be generalized to other types of memory content. More generally, they suggest that the century-old assumption that suppression leaves unconscious memories intact should be reconsidered. PMID:24639546

  16. The experience of reading.

    PubMed

    Moore, Alan Tonnies; Schwitzgebel, Eric

    2018-05-03

    What do people consciously experience when they read? There has been almost no rigorous research on this question, and opinions diverge radically among both philosophers and psychologists. We describe three studies of the phenomenology of reading and its relationship to memory of textual detail and general cognitive abilities. We find three main results. First, there is substantial variability in reports about reading experience, both within and between participants. Second, reported reading experience varies with passage type: passages with dialogue prompted increased reports of inner speech, while passages with vivid visual detail prompted increased reports of visual imagery. Third, reports of visual imagery experiences, inner speech experiences, and experiences of conscious visual perception of the words on the page were at best weakly related to general cognitive abilities and memory of visual and auditory details. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Seeing and identifying with a virtual body decreases pain perception.

    PubMed

    Hänsel, Alexander; Lenggenhager, Bigna; von Känel, Roland; Curatolo, Michele; Blanke, Olaf

    2011-09-01

    Pain and the conscious mind (or the self) are experienced in our body. Both are intimately linked to the subjective quality of conscious experience. Here, we used virtual reality technology and visuo-tactile conflicts in healthy subjects to test whether experimentally induced changes of bodily self-consciousness (self-location; self-identification) lead to changes in pain perception. We found that visuo-tactile stroking of a virtual body but not of a control object led to increased pressure pain thresholds and self-location. This increase was not modulated by the synchrony of stroking as predicted based on earlier work. This differed for self-identification where we found as predicted that synchrony of stroking increased self-identification with the virtual body (but not a control object), and positively correlated with an increase in pain thresholds. We discuss the functional mechanisms of self-identification, self-location, and the visual perception of human bodies with respect to pain perception. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  18. Unconscious integration of multisensory bodily inputs in the peripersonal space shapes bodily self-consciousness.

    PubMed

    Salomon, Roy; Noel, Jean-Paul; Łukowska, Marta; Faivre, Nathan; Metzinger, Thomas; Serino, Andrea; Blanke, Olaf

    2017-09-01

    Recent studies have highlighted the role of multisensory integration as a key mechanism of self-consciousness. In particular, integration of bodily signals within the peripersonal space (PPS) underlies the experience of the self in a body we own (self-identification) and that is experienced as occupying a specific location in space (self-location), two main components of bodily self-consciousness (BSC). Experiments investigating the effects of multisensory integration on BSC have typically employed supra-threshold sensory stimuli, neglecting the role of unconscious sensory signals in BSC, as tested in other consciousness research. Here, we used psychophysical techniques to test whether multisensory integration of bodily stimuli underlying BSC also occurs for multisensory inputs presented below the threshold of conscious perception. Our results indicate that visual stimuli rendered invisible through continuous flash suppression boost processing of tactile stimuli on the body (Exp. 1), and enhance the perception of near-threshold tactile stimuli (Exp. 2), only once they entered PPS. We then employed unconscious multisensory stimulation to manipulate BSC. Participants were presented with tactile stimulation on their body and with visual stimuli on a virtual body, seen at a distance, which were either visible or rendered invisible. We found that participants reported higher self-identification with the virtual body in the synchronous visuo-tactile stimulation (as compared to asynchronous stimulation; Exp. 3), and shifted their self-location toward the virtual body (Exp.4), even if stimuli were fully invisible. Our results indicate that multisensory inputs, even outside of awareness, are integrated and affect the phenomenological content of self-consciousness, grounding BSC firmly in the field of psychophysical consciousness studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Automatic Online Motor Control Is Intact in Parkinson's Disease With and Without Perceptual Awareness.

    PubMed

    Merritt, Kate E; Seergobin, Ken N; Mendonça, Daniel A; Jenkins, Mary E; Goodale, Melvyn A; MacDonald, Penny A

    2017-01-01

    In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson's disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients ( n = 14) and healthy controls ( n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls'. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses.

  20. Automatic Online Motor Control Is Intact in Parkinson’s Disease With and Without Perceptual Awareness

    PubMed Central

    Seergobin, Ken N.; Mendonça, Daniel A.

    2017-01-01

    Abstract In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson’s disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients (n = 14) and healthy controls (n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls’. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses. PMID:29085900

  1. Consciousness platform: the greatest mystery of all time.

    PubMed

    Deutsch, Sid

    2010-01-01

    This article is about the model for a very controversial edifice--the many-sided foundation for consciousness. What I refer to is, undoubtedly, the greatest mystery of all time--why do we have an awareness of our own existence? What is the evolutionary advantage of consciousness? Much of the material printed about consciousness has a religious flavor, with references to the human spirit and/or extrasensory perception, but I will have none of that here. In this study, consciousness is tied in with a platform, not a physical platform, of course, but a conceptual platform. This is because we are most comfortable imagining or visualizing an actual platform that has many connections to various parts of the brain, a sort of an old-fashioned telephone switchboard.

  2. Reduced sensitivity for visual textures affects judgments of shape-from-shading and step-climbing behaviour in older adults.

    PubMed

    Schofield, Andrew J; Curzon-Jones, Benjamin; Hollands, Mark A

    2017-02-01

    Falls on stairs are a major hazard for older adults. Visual decline in normal ageing can affect step-climbing ability, altering gait and reducing toe clearance. Here we show that a loss of fine-grained visual information associated with age can affect the perception of surface undulations in patterned surfaces. We go on to show that such cues affect the limb trajectories of young adults, but due to their lack of sensitivity, not that of older adults. Interestingly neither the perceived height of a step nor conscious awareness is altered by our visual manipulation, but stepping behaviour is, suggesting that the influence of shape perception on stepping behaviour is via the unconscious, action-centred, dorsal visual pathway.

  3. Spatial Frequency Tuning during the Conscious and Non-Conscious Perception of Emotional Facial Expressions – An Intracranial ERP Study

    PubMed Central

    Willenbockel, Verena; Lepore, Franco; Nguyen, Dang Khoa; Bouthillier, Alain; Gosselin, Frédéric

    2012-01-01

    Previous studies have shown that complex visual stimuli, such as emotional facial expressions, can influence brain activity independently of the observers’ awareness. Little is known yet, however, about the “informational correlates” of consciousness – i.e., which low-level information correlates with brain activation during conscious vs. non-conscious perception. Here, we investigated this question in the spatial frequency (SF) domain. We examined which SFs in disgusted and fearful faces modulate activation in the insula and amygdala over time and as a function of awareness, using a combination of intracranial event-related potentials (ERPs), SF Bubbles (Willenbockel et al., 2010a), and Continuous Flash Suppression (CFS; Tsuchiya and Koch, 2005). Patients implanted with electrodes for epilepsy monitoring viewed face photographs (13° × 7°) that were randomly SF filtered on a trial-by-trial basis. In the conscious condition, the faces were visible; in the non-conscious condition, they were rendered invisible using CFS. The data were analyzed by performing multiple linear regressions on the SF filters from each trial and the transformed ERP amplitudes across time. The resulting classification images suggest that many SFs are involved in the conscious and non-conscious perception of emotional expressions, with SFs between 6 and 10 cycles per face width being particularly important early on. The results also revealed qualitative differences between the awareness conditions for both regions. Non-conscious processing relied on low SFs more and was faster than conscious processing. Overall, our findings are consistent with the idea that different pathways are employed for the processing of emotional stimuli under different degrees of awareness. The present study represents a first step to mapping how SF information “flows” through the emotion-processing network with a high temporal resolution and to shedding light on the informational correlates of consciousness in general. PMID:23055988

  4. Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception

    PubMed Central

    Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.

    2017-01-01

    Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023

  5. Skating down a steeper slope: Fear influences the perception of geographical slant

    PubMed Central

    Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish

    2008-01-01

    Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594

  6. Cardio-visual full body illusion alters bodily self-consciousness and tactile processing in somatosensory cortex.

    PubMed

    Heydrich, Lukas; Aspell, Jane Elizabeth; Marillier, Guillaume; Lavanchy, Tom; Herbelin, Bruno; Blanke, Olaf

    2018-06-18

    Prominent theories highlight the importance of bodily perception for self-consciousness, but it is currently not known whether this is based on interoceptive or exteroceptive signals or on integrated signals from these anatomically distinct systems, nor where in the brain such integration might occur. To investigate this, we measured brain activity during the recently described 'cardio-visual full body illusion' which combines interoceptive and exteroceptive signals, by providing participants with visual exteroceptive information about their heartbeat in the form of a periodically illuminated silhouette outlining a video image of the participant's body and flashing in synchrony with their heartbeat. We found, as also reported previously, that synchronous cardio-visual signals increased self-identification with the virtual body. Here we further investigated whether experimental changes in self-consciousness during this illusion are accompanied by activity changes in somatosensory cortex by recording somatosensory evoked potentials (SEPs). We show that a late somatosensory evoked potential component (P45) reflects the illusory self-identification with a virtual body. These data demonstrate that interoceptive and exteroceptive signals can be combined to modulate activity in parietal somatosensory cortex.

  7. Two memories for geographical slant: separation and interdependence of action and awareness

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1998-01-01

    The present study extended previous findings of geographical slant perception, in which verbal judgments of the incline of hills were greatly overestimated but motoric (haptic) adjustments were much more accurate. In judging slant from memory following a brief or extended time delay, subjects' verbal judgments were greater than those given when viewing hills. Motoric estimates differed depending on the length of the delay and place of response. With a short delay, motoric adjustments made in the proximity of the hill did not differ from those evoked during perception. When given a longer delay or when taken away from the hill, subjects' motoric responses increased along with the increase in verbal reports. These results suggest two different memorial influences on action. With a short delay at the hill, memory for visual guidance is separate from the explicit memory informing the conscious response. With short or long delays away from the hill, short-term visual guidance memory no longer persists, and both motor and verbal responses are driven by an explicit representation. These results support recent research involving visual guidance from memory, where actions become influenced by conscious awareness, and provide evidence for communication between the "what" and "how" visual processing systems.

  8. The internal representation of head orientation differs for conscious perception and balance control.

    PubMed

    Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien

    2017-04-15

    We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Explaining seeing? Disentangling qualia from perceptual organization.

    PubMed

    Ibáñez, Agustin; Bekinschtein, Tristan

    2010-09-01

    Abstract Visual perception and integration seem to play an essential role in our conscious phenomenology. Relatively local neural processing of reentrant nature may explain several visual integration processes (feature binding or figure-ground segregation, object recognition, inference, competition), even without attention or cognitive control. Based on the above statements, should the neural signatures of visual integration (via reentrant process) be non-reportable phenomenological qualia? We argue that qualia are not required to understand this perceptual organization.

  10. A sensorimotor account of vision and visual consciousness.

    PubMed

    O'Regan, J K; Noë, A

    2001-10-01

    Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual "filling in," visual stability despite eye movements, change blindness, sensory substitution, and color perception.

  11. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.

    PubMed

    Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro

    2016-10-01

    Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ventral and Dorsal Pathways Relate Differently to Visual Awareness of Body Postures under Continuous Flash Suppression

    PubMed Central

    Goebel, Rainer

    2018-01-01

    Abstract Visual perception includes ventral and dorsal stream processes. However, it is still unclear whether the former is predominantly related to conscious and the latter to nonconscious visual perception as argued in the literature. In this study upright and inverted body postures were rendered either visible or invisible under continuous flash suppression (CFS), while brain activity of human participants was measured with functional MRI (fMRI). Activity in the ventral body-sensitive areas was higher during visible conditions. In comparison, activity in the posterior part of the bilateral intraparietal sulcus (IPS) showed a significant interaction of stimulus orientation and visibility. Our results provide evidence that dorsal stream areas are less associated with visual awareness. PMID:29445766

  13. A comparison of signal detection theory to the objective threshold/strategic model of unconscious perception.

    PubMed

    Haase, Steven J; Fisk, Gary D

    2011-08-01

    A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.

  14. Cortical activity is more stable when sensory stimuli are consciously perceived

    PubMed Central

    Schurger, Aaron; Sarigiannidis, Ioannis; Naccache, Lionel; Sitt, Jacobo D.; Dehaene, Stanislas

    2015-01-01

    According to recent evidence, stimulus-tuned neurons in the cerebral cortex exhibit reduced variability in firing rate across trials, after the onset of a stimulus. However, in order for a reduction in variability to be directly relevant to perception and behavior, it must be realized within trial—the pattern of activity must be relatively stable. Stability is characteristic of decision states in recurrent attractor networks, and its possible relevance to conscious perception has been suggested by theorists. However, it is difficult to measure on the within-trial time scales and broadly distributed spatial scales relevant to perception. We recorded simultaneous magneto- and electroencephalography (MEG and EEG) data while subjects observed threshold-level visual stimuli. Pattern-similarity analyses applied to the data from MEG gradiometers uncovered a pronounced decrease in variability across trials after stimulus onset, consistent with previous single-unit data. This was followed by a significant divergence in variability depending upon subjective report (seen/unseen), with seen trials exhibiting less variability. Applying the same analysis across time, within trial, we found that the latter effect coincided in time with a difference in the stability of the pattern of activity. Stability alone could be used to classify data from individual trials as “seen” or “unseen.” The same metric applied to EEG data from patients with disorders of consciousness exposed to auditory stimuli diverged parametrically according to clinically diagnosed level of consciousness. Differences in signal strength could not account for these results. Conscious perception may involve the transient stabilization of distributed cortical networks, corresponding to a global brain-scale decision. PMID:25847997

  15. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury.

    PubMed

    Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A

    2017-11-13

    Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Conscious experience and episodic memory: hippocampus at the crossroads.

    PubMed

    Behrendt, Ralf-Peter

    2013-01-01

    If an instance of conscious experience of the seemingly objective world around us could be regarded as a newly formed event memory, much as an instance of mental imagery has the content of a retrieved event memory, and if, therefore, the stream of conscious experience could be seen as evidence for ongoing formation of event memories that are linked into episodic memory sequences, then unitary conscious experience could be defined as a symbolic representation of the pattern of hippocampal neuronal firing that encodes an event memory - a theoretical stance that may shed light into the mind-body and binding problems in consciousness research. Exceedingly detailed symbols that describe patterns of activity rapidly self-organizing, at each cycle of the θ rhythm, in the hippocampus are instances of unitary conscious experience that jointly constitute the stream of consciousness. Integrating object information (derived from the ventral visual stream and orbitofrontal cortex) with contextual emotional information (from the anterior insula) and spatial environmental information (from the dorsal visual stream), the hippocampus rapidly forms event codes that have the informational content of objects embedded in an emotional and spatiotemporally extending context. Event codes, formed in the CA3-dentate network for the purpose of their memorization, are not only contextualized but also allocentric representations, similarly to conscious experiences of events and objects situated in a seemingly objective and observer-independent framework of phenomenal space and time. Conscious perception, creating the spatially and temporally extending world that we perceive around us, is likely to be evolutionarily related to more fleeting and seemingly internal forms of conscious experience, such as autobiographical memory recall, mental imagery, including goal anticipation, and to other forms of externalized conscious experience, namely dreaming and hallucinations; and evidence pointing to an important contribution of the hippocampus to these conscious phenomena will be reviewed.

  17. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  18. Interobject grouping facilitates visual awareness.

    PubMed

    Stein, Timo; Kaiser, Daniel; Peelen, Marius V

    2015-01-01

    In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.

  19. Attentional load modulates responses of human primary visual cortex to invisible stimuli.

    PubMed

    Bahrami, Bahador; Lavie, Nilli; Rees, Geraint

    2007-03-20

    Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.

  20. Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception

    PubMed Central

    Doesburg, Sam M.; Green, Jessica J.; McDonald, John J.; Ward, Lawrence M.

    2009-01-01

    Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour. PMID:19582165

  1. Knowledge applied to new domains: the unconscious succeeds where the conscious fails.

    PubMed

    Scott, Ryan B; Dienes, Zoltan

    2010-03-01

    A common view holds that consciousness is needed for knowledge acquired in one domain to be applied in a novel domain. We present evidence for the opposite; where the transfer of knowledge is achieved only in the absence of conscious awareness. Knowledge of artificial grammars was examined where training and testing occurred in different vocabularies or modalities. In all conditions grammaticality judgments attributed to random selection showed above-chance accuracy (60%), while those attributed to conscious decisions did not. Participants also rated each string's familiarity and performed a perceptual task assessing fluency. Familiarity was predicted by repetition structure and was thus related to grammaticality. Fluency, though increasing familiarity, was unrelated to grammaticality. While familiarity predicted all judgments only those attributed to random selection showed a significant additional contribution of grammaticality, deriving primarily from chunk novelty. In knowledge transfer, as in visual perception (Marcel, 1993), the unconscious may outperform the conscious.

  2. Hardy's stargazers and the astronomy of other minds.

    PubMed

    Henchman, A

    2008-01-01

    This essay argues that Thomas Hardy compares the act of observing another person to the scientific practice of observing the stars in order to reveal structural obstacles to accessing other minds. He draws on astronomy and optics to underscore the discrepancy between the full perception one has of one's own consciousness and the lack of such sensory evidence for the consciousness of others. His scenes of stargazing show such obstacles being temporarily overcome; the stargazer turns away from the thick sensory detail of earthly life and uses minimal visual information as a jumping-off point for the imagination. These visual journeys into space are analogous to those Hardy's readers experience as he wrests them out of their bodies into imaginary landscapes and unfamiliar minds.

  3. The mere exposure effect is modulated by selective attention but not visual awareness.

    PubMed

    Huang, Yu-Feng; Hsieh, Po-Jang

    2013-10-18

    Repeated exposures to an object will lead to an enhancement of evaluation toward that object. Although this mere exposure effect may occur when the objects are presented subliminally, the role of conscious perception per se on evaluation has never been examined. Here we use a binocular rivalry paradigm to investigate whether a variance in conscious perceptual duration of faces has an effect on their subsequent evaluation, and how selective attention and memory interact with this effect. Our results show that face evaluation is positively biased by selective attention but not affected by visual awareness. Furthermore, this effect is not due to participants recalling which face had been attended to. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Understanding face perception by means of human electrophysiology.

    PubMed

    Rossion, Bruno

    2014-06-01

    Electrophysiological recordings on the human scalp provide a wealth of information about the temporal dynamics and nature of face perception at a global level of brain organization. The time window between 100 and 200 ms witnesses the transition between low-level and high-level vision, an N170 component correlating with conscious interpretation of a visual stimulus as a face. This face representation is rapidly refined as information accumulates during this time window, allowing the individualization of faces. To improve the sensitivity and objectivity of face perception measures, it is increasingly important to go beyond transient visual stimulation by recording electrophysiological responses at periodic frequency rates. This approach has recently provided face perception thresholds and the first objective signature of integration of facial parts in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Virtually simulated social pressure influences early visual processing more in low compared to high autonomous participants.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2014-02-01

    In a previous study, we showed that virtually simulated social group pressure could influence early stages of perception after only 100  ms. In the present EEG study, we investigated the influence of social pressure on visual perception in participants with high (HA) and low (LA) levels of autonomy. Ten HA and ten LA individuals were asked to accomplish a visual discrimination task in an adapted paradigm of Solomon Asch. Results indicate that LA participants adapted to the incorrect group opinion more often than HA participants (42% vs. 30% of the trials, respectively). LA participants showed a larger posterior P1 component contralateral to targets presented in the right visual field when conforming to the correct compared to conforming to the incorrect group decision. In conclusion, our ERP data suggest that the group context can have early effects on our perception rather than on conscious decision processes in LA, but not HA participants. Copyright © 2013 Society for Psychophysiological Research.

  6. Multisensory integration in complete unawareness: evidence from audiovisual congruency priming.

    PubMed

    Faivre, Nathan; Mudrik, Liad; Schwartz, Naama; Koch, Christof

    2014-11-01

    Multisensory integration is thought to require conscious perception. Although previous studies have shown that an invisible stimulus could be integrated with an audible one, none have demonstrated integration of two subliminal stimuli of different modalities. Here, pairs of identical or different audiovisual target letters (the sound /b/ with the written letter "b" or "m," respectively) were preceded by pairs of masked identical or different audiovisual prime digits (the sound /6/ with the written digit "6" or "8," respectively). In three experiments, awareness of the audiovisual digit primes was manipulated, such that participants were either unaware of the visual digit, the auditory digit, or both. Priming of the semantic relations between the auditory and visual digits was found in all experiments. Moreover, a further experiment showed that unconscious multisensory integration was not obtained when participants did not undergo prior conscious training of the task. This suggests that following conscious learning, unconscious processing suffices for multisensory integration. © The Author(s) 2014.

  7. Visual perception and imagery: a new molecular hypothesis.

    PubMed

    Bókkon, I

    2009-05-01

    Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.

  8. The phase of prestimulus alpha oscillations affects tactile perception.

    PubMed

    Ai, Lei; Ro, Tony

    2014-03-01

    Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.

  9. Visual anticipation biases conscious decision making but not bottom-up visual processing.

    PubMed

    Mathews, Zenon; Cetnarski, Ryszard; Verschure, Paul F M J

    2014-01-01

    Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself.

  10. Oculomotor inhibition covaries with conscious detection

    PubMed Central

    Rolfs, Martin

    2016-01-01

    Saccadic eye movements occur frequently even during attempted fixation, but they halt momentarily when a new stimulus appears. Here, we demonstrate that this rapid, involuntary “oculomotor freezing” reflex is yoked to fluctuations in explicit visual perception. Human observers reported the presence or absence of a brief visual stimulus while we recorded microsaccades, small spontaneous eye movements. We found that microsaccades were reflexively inhibited if and only if the observer reported seeing the stimulus, even when none was present. By applying a novel Bayesian classification technique to patterns of microsaccades on individual trials, we were able to decode the reported state of perception more accurately than the state of the stimulus (present vs. absent). Moreover, explicit perceptual sensitivity and the oculomotor reflex were both susceptible to orientation-specific adaptation. The adaptation effects suggest that the freezing reflex is mediated by signals processed in the visual cortex before reaching oculomotor control centers rather than relying on a direct subcortical route, as some previous research has suggested. We conclude that the reflexive inhibition of microsaccades immediately and inadvertently reveals when the observer becomes aware of a change in the environment. By providing an objective measure of conscious perceptual detection that does not require explicit reports, this finding opens doors to clinical applications and further investigations of perceptual awareness. PMID:27385794

  11. Sleepiness induced by sleep-debt enhanced amygdala activity for subliminal signals of fear.

    PubMed

    Motomura, Yuki; Kitamura, Shingo; Oba, Kentaro; Terasawa, Yuri; Enomoto, Minori; Katayose, Yasuko; Hida, Akiko; Moriguchi, Yoshiya; Higuchi, Shigekazu; Mishima, Kazuo

    2014-08-19

    Emotional information is frequently processed below the level of consciousness, where subcortical regions of the brain are thought to play an important role. In the absence of conscious visual experience, patients with visual cortex damage discriminate the valence of emotional expression. Even in healthy individuals, a subliminal mechanism can be utilized to compensate for a functional decline in visual cognition of various causes such as strong sleepiness. In this study, sleep deprivation was simulated in healthy individuals to investigate functional alterations in the subliminal processing of emotional information caused by reduced conscious visual cognition and attention due to an increase in subjective sleepiness. Fourteen healthy adult men participated in a within-subject crossover study consisting of a 5-day session of sleep debt (SD, 4-h sleep) and a 5-day session of sleep control (SC, 8-h sleep). On the last day of each session, participants performed an emotional face-viewing task that included backward masking of nonconscious presentations during magnetic resonance scanning. Finally, data from eleven participants who were unaware of nonconscious face presentations were analyzed. In fear contrasts, subjective sleepiness was significantly positively correlated with activity in the amygdala, ventromedial prefrontal cortex, hippocampus, and insular cortex, and was significantly negatively correlated with the secondary and tertiary visual areas and the fusiform face area. In fear-neutral contrasts, subjective sleepiness was significantly positively correlated with activity of the bilateral amygdala. Further, changes in subjective sleepiness (the difference between the SC and SD sessions) were correlated with both changes in amygdala activity and functional connectivity between the amygdala and superior colliculus in response to subliminal fearful faces. Sleepiness induced functional decline in the brain areas involved in conscious visual cognition of facial expressions, but also enhanced subliminal emotional processing via superior colliculus as represented by activity in the amygdala. These findings suggest that an evolutionally old and auxiliary subliminal hazard perception system is activated as a compensatory mechanism when conscious visual cognition is impaired. In addition, enhancement of subliminal emotional processing might cause involuntary emotional instability during sleep debt through changes in emotional response to or emotional evaluation of external stimuli.

  12. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    PubMed

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Unconscious manipulation of free choice by novel primes.

    PubMed

    Ocampo, Brenda

    2015-07-01

    The extent to which non-conscious perception can influence behaviour has been a topic of considerable controversy in psychology for decades. Although a challenging task, convincing empirical demonstrations have emerged suggesting that non-consciously perceived 'prime' stimuli can influence motor responses to subsequent targets. Interestingly, recent studies have shown that the influence of masked primes is not restricted to target-elicited responses, but can also bias free-choices between alternative behaviours. The present experiment extends these findings by showing that free-choices could also be biased by novel primes that never appeared as targets and therefore could not trigger acquired stimulus-response (S-R) mappings. This new evidence suggests that free-choice behaviour can be influenced by non-consciously triggered semantic representations. Furthermore, the results reported here support accounts of masked priming that posit an automatic semantic categorisation of non-consciously perceived visual stimuli. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. From sensation to perception: Using multivariate classification of visual illusions to identify neural correlates of conscious awareness in space and time.

    PubMed

    Hogendoorn, Hinze

    2015-01-01

    An important goal of cognitive neuroscience is understanding the neural underpinnings of conscious awareness. Although the low-level processing of sensory input is well understood in most modalities, it remains a challenge to understand how the brain translates such input into conscious awareness. Here, I argue that the application of multivariate pattern classification techniques to neuroimaging data acquired while observers experience perceptual illusions provides a unique way to dissociate sensory mechanisms from mechanisms underlying conscious awareness. Using this approach, it is possible to directly compare patterns of neural activity that correspond to the contents of awareness, independent from changes in sensory input, and to track these neural representations over time at high temporal resolution. I highlight five recent studies using this approach, and provide practical considerations and limitations for future implementations.

  15. Ambiguous Figures – What Happens in the Brain When Perception Changes But Not the Stimulus

    PubMed Central

    Kornmeier, Jürgen; Bach, Michael

    2011-01-01

    During observation of ambiguous figures our perception reverses spontaneously although the visual information stays unchanged. Research on this phenomenon so far suffered from the difficulty to determine the instant of the endogenous reversals with sufficient temporal precision. A novel experimental paradigm with discontinuous stimulus presentation improved on previous temporal estimates of the reversal event by a factor of three. It revealed that disambiguation of ambiguous visual information takes roughly 50 ms or two loops of recurrent neural activity. Further, the decision about the perceptual outcome has taken place at least 340 ms before the observer is able to indicate the consciously perceived reversal manually. We provide a short review about physiological studies on multistable perception with a focus on electrophysiological data. We further present a new perspective on multistable perception that can easily integrate previous apparently contradicting explanatory approaches. Finally we propose possible extensions toward other research fields where ambiguous figure perception may be useful as an investigative tool. PMID:22461773

  16. The Attention Window: A Narrative Review of Limitations and Opportunities Influencing the Focus of Attention

    ERIC Educational Resources Information Center

    Hüttermann, Stefanie; Memmert, Daniel

    2017-01-01

    Purpose: Visual attention is essential in many areas ranging from everyday life situations to the workplace. Different circumstances such as driving in traffic or participating in sports require immediate adaptation to constantly changing situations and frequently the conscious perception of 2 objects or scenes at the same time. Method: The…

  17. Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink.

    PubMed

    Slagter, Heleen A; Mazaheri, Ali; Reteig, Leon C; Smolders, Ruud; Figee, Martijn; Mantione, Mariska; Schuurman, P Richard; Denys, Damiaan

    2017-02-01

    The brain is limited in its capacity to consciously process information, necessitating gating of information. While conscious perception is robustly associated with sustained, recurrent interactions between widespread cortical regions, subcortical regions, including the striatum, influence cortical activity. Here, we examined whether the ventral striatum, given its ability to modulate cortical information flow, contributes to conscious perception. Using intracranial EEG, we recorded ventral striatum activity while 7 patients performed an attentional blink task in which they had to detect two targets (T1 and T2) in a stream of distractors. Typically, when T2 follows T1 within 100-500 ms, it is often not perceived (i.e., the attentional blink). We found that conscious T2 perception was influenced and signaled by ventral striatal activity. Specifically, the failure to perceive T2 was foreshadowed by a T1-induced increase in α and low β oscillatory activity as early as 80 ms after T1, indicating that the attentional blink to T2 may be due to very early T1-driven attentional capture. Moreover, only consciously perceived targets were associated with an increase in θ activity between 200 and 400 ms. These unique findings shed new light on the mechanisms that give rise to the attentional blink by revealing that conscious target perception may be determined by T1 processing at a much earlier processing stage than traditionally believed. More generally, they indicate that ventral striatum activity may contribute to conscious perception, presumably by gating cortical information flow. What determines whether we become aware of a piece of information or not? Conscious access has been robustly associated with activity within a distributed network of cortical regions. Using intracranial electrophysiological recordings during an attentional blink task, we tested the idea that the ventral striatum, because of its ability to modulate cortical information flow, may contribute to conscious perception. We find that conscious perception is influenced and signaled by ventral striatal activity. Short-latency (80-140 ms) striatal responses to a first target determined conscious perception of a second target. Moreover, conscious perception of the second target was signaled by longer-latency (200-400 ms) striatal activity. These results suggest that the ventral striatum may be part of a subcortical network that influences conscious experience. Copyright © 2017 the authors 0270-6474/17/371081-09$15.00/0.

  18. Attention versus consciousness in the visual brain: differences in conception, phenomenology, behavior, neuroanatomy, and physiology.

    PubMed

    Baars, B J

    1999-07-01

    A common confound between consciousness and attention makes it difficult to think clearly about recent advances in the understanding of the visual brain. Visual consciousness involves phenomenal experience of the visual world, but visual attention is more plausibly treated as a function that selects and maintains the selection of potential conscious contents, often unconsciously. In the same sense, eye movements select conscious visual events, which are not the same as conscious visual experience. According to common sense, visual experience is consciousness, and selective processes are labeled as attention. The distinction is reflected in very different behavioral measures and in very different brain anatomy and physiology. Visual consciousness tends to be associated with the "what" stream of visual feature neurons in the ventral temporal lobe. In contrast, attentional selection and maintenance are mediated by other brain regions, ranging from superior colliculi to thalamus, prefrontal cortex, and anterior cingulate. The author applied the common-sense distinction between attention and consciousness to the theoretical positions of M. I. Posner (1992, 1994) and D. LaBerge (1997, 1998) to show how it helps to clarify the evidence. He concluded that clarity of thought is served by calling a thing by its proper name.

  19. Phosphene phenomenon: a new concept.

    PubMed

    Bókkon, István

    2008-05-01

    This paper proposes a new biopsychophysical concept of phosphene phenomenon. Namely, visual sensation of phosphenes is due to the intrinsic perception of ultraweak bioluminescent photon emission of cells in the visual system. In other words, phosphenes are bioluminescent biophotons in the visual system induced by various stimuli (mechanical, electrical, magnetic, ionizing radiation, etc.) as well as random bioluminescent biophotons firings of cells in the visual pathway. This biophoton emission can become conscious if induced or spontaneous biophoton emission of cells in the visual system exceeds a distinct threshold. Neuronal biophoton communication can occur by means of non-visual neuronal opsins and natural photosensitive biomolecules. Our interpretation is in direct connection with the functional roles of free radicals and excited biomolecules in living cells.

  20. Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance

    PubMed Central

    Veniero, Domenica

    2017-01-01

    Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794

  1. Blind subjects construct conscious mental images of visual scenes encoded in musical form.

    PubMed Central

    Cronly-Dillon, J; Persaud, K C; Blore, R

    2000-01-01

    Blind (previously sighted) subjects are able to analyse, describe and graphically represent a number of high-contrast visual images translated into musical form de novo. We presented musical transforms of a random assortment of photographic images of objects and urban scenes to such subjects, a few of which depicted architectural and other landmarks that may be useful in navigating a route to a particular destination. Our blind subjects were able to use the sound representation to construct a conscious mental image that was revealed by their ability to depict a visual target by drawing it. We noted the similarity between the way the visual system integrates information from successive fixations to form a representation that is stable across eye movements and the way a succession of image frames (encoded in sound) which depict different portions of the image are integrated to form a seamless mental image. Finally, we discuss the profound resemblance between the way a professional musician carries out a structural analysis of a musical composition in order to relate its structure to the perception of musical form and the strategies used by our blind subjects in isolating structural features that collectively reveal the identity of visual form. PMID:11413637

  2. Differences in the effects of crowding on size perception and grip scaling in densely cluttered 3-D scenes.

    PubMed

    Chen, Juan; Sperandio, Irene; Goodale, Melvyn Alan

    2015-01-01

    Objects rarely appear in isolation in natural scenes. Although many studies have investigated how nearby objects influence perception in cluttered scenes (i.e., crowding), none has studied how nearby objects influence visually guided action. In Experiment 1, we found that participants could scale their grasp to the size of a crowded target even when they could not perceive its size, demonstrating for the first time that neurologically intact participants can use visual information that is not available to conscious report to scale their grasp to real objects in real scenes. In Experiments 2 and 3, we found that changing the eccentricity of the display and the orientation of the flankers had no effect on grasping but strongly affected perception. The differential effects of eccentricity and flanker orientation on perception and grasping show that the known differences in retinotopy between the ventral and dorsal streams are reflected in the way in which people deal with targets in cluttered scenes. © The Author(s) 2014.

  3. Is fear perception special? Evidence at the level of decision-making and subjective confidence.

    PubMed

    Koizumi, Ai; Mobbs, Dean; Lau, Hakwan

    2016-11-01

    Fearful faces are believed to be prioritized in visual perception. However, it is unclear whether the processing of low-level facial features alone can facilitate such prioritization or whether higher-level mechanisms also contribute. We examined potential biases for fearful face perception at the levels of perceptual decision-making and perceptual confidence. We controlled for lower-level visual processing capacity by titrating luminance contrasts of backward masks, and the emotional intensity of fearful, angry and happy faces. Under these conditions, participants showed liberal biases in perceiving a fearful face, in both detection and discrimination tasks. This effect was stronger among individuals with reduced density in dorsolateral prefrontal cortex, a region linked to perceptual decision-making. Moreover, participants reported higher confidence when they accurately perceived a fearful face, suggesting that fearful faces may have privileged access to consciousness. Together, the results suggest that mechanisms in the prefrontal cortex contribute to making fearful face perception special. © The Author (2016). Published by Oxford University Press.

  4. Unconscious perception: a model-based approach to method and evidence.

    PubMed

    Snodgrass, Michael; Bernat, Edward; Shevrin, Howard

    2004-07-01

    Unconscious perceptual effects remain controversial because it is hard to rule out alternative conscious perception explanations for them. We present a novel methodological framework, stressing the centrality of specifying the single-process conscious perception model (i.e., the null hypothesis). Various considerations, including those of SDT (Macmillan & Creelman, 1991), suggest that conscious perception functions hierarchically, in such a way that higher level effects (e.g., semantic priming) should not be possible without lower level discrimination (i.e., detection and identification). Relatedly, alternative conscious perception accounts (as well as the exhaustiveness, null sensitivity, and exclusiveness problems-Reingold & Merikle, 1988, 1990) predict positive relationships between direct and indirect measures. Contrariwise, our review suggests that negative and/or nonmonotonic relationships are found, providing strong evidence for unconscious perception and further suggesting that conscious and unconscious perceptual influences are functionally exclusive (cf. Jones, 1987), in such a way that the former typically override the latter when both are present. Consequently, unconscious perceptual effects manifest reliably only when conscious perception is completely absent, which occurs at the objective detection (but not identification) threshold.

  5. Visual motion disambiguation by a subliminal sound.

    PubMed

    Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier

    2008-09-01

    There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.

  6. Visual anticipation biases conscious decision making but not bottom-up visual processing

    PubMed Central

    Mathews, Zenon; Cetnarski, Ryszard; Verschure, Paul F. M. J.

    2015-01-01

    Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself. PMID:25741290

  7. Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.

    PubMed

    Grossberg, S

    1997-07-01

    This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.

  8. A Neural Network Approach to fMRI Binocular Visual Rivalry Task Analysis

    PubMed Central

    Bertolino, Nicola; Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Ghielmetti, Francesco; Leonardi, Matilde; Agostino Parati, Eugenio; Grazia Bruzzone, Maria; Franceschetti, Silvana; Caldiroli, Dario; Sattin, Davide; Giovannetti, Ambra; Pagani, Marco; Covelli, Venusia; Ciaraffa, Francesca; Vela Gomez, Jesus; Reggiori, Barbara; Ferraro, Stefania; Nigri, Anna; D'Incerti, Ludovico; Minati, Ludovico; Andronache, Adrian; Rosazza, Cristina; Fazio, Patrik; Rossi, Davide; Varotto, Giulia; Panzica, Ferruccio; Benti, Riccardo; Marotta, Giorgio; Molteni, Franco

    2014-01-01

    The purpose of this study was to investigate whether artificial neural networks (ANN) are able to decode participants’ conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR). Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR) and a BR paradigm in which two classes of stimuli (faces and houses) were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a ‘brain reading’ tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR) and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived) during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05) were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients. PMID:25121595

  9. The Structure of Conscious Bodily Self-Perception during Full-Body Illusions

    PubMed Central

    Dobricki, Martin; de la Rosa, Stephan

    2013-01-01

    Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency. PMID:24376765

  10. The structure of conscious bodily self-perception during full-body illusions.

    PubMed

    Dobricki, Martin; de la Rosa, Stephan

    2013-01-01

    Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency.

  11. Missing a trick: Auditory load modulates conscious awareness in audition.

    PubMed

    Fairnie, Jake; Moore, Brian C J; Remington, Anna

    2016-07-01

    In the visual domain there is considerable evidence supporting the Load Theory of Attention and Cognitive Control, which holds that conscious perception of background stimuli depends on the level of perceptual load involved in a primary task. However, literature on the applicability of this theory to the auditory domain is limited and, in many cases, inconsistent. Here we present a novel "auditory search task" that allows systematic investigation of the impact of auditory load on auditory conscious perception. An array of simultaneous, spatially separated sounds was presented to participants. On half the trials, a critical stimulus was presented concurrently with the array. Participants were asked to detect which of 2 possible targets was present in the array (primary task), and whether the critical stimulus was present or absent (secondary task). Increasing the auditory load of the primary task (raising the number of sounds in the array) consistently reduced the ability to detect the critical stimulus. This indicates that, at least in certain situations, load theory applies in the auditory domain. The implications of this finding are discussed both with respect to our understanding of typical audition and for populations with altered auditory processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. The Relationship between Object Files and Conscious Perception

    ERIC Educational Resources Information Center

    Mitroff, S.R.; Scholl, B.J.; Wynn, K.

    2005-01-01

    Object files (OFs) are hypothesized mid-level representations which mediate our conscious perception of persisting objects-e.g. telling us 'which went where'. Despite the appeal of the OF framework, not previous research has directly explored whether OFs do indeed correspond to conscious percepts. Here we present at least one case wherein…

  13. Focal and Ambient Processing of Built Environments: Intellectual and Atmospheric Experiences of Architecture

    PubMed Central

    Rooney, Kevin K.; Condia, Robert J.; Loschky, Lester C.

    2017-01-01

    Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one’s fist at arm’s length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words) PMID:28360867

  14. Focal and Ambient Processing of Built Environments: Intellectual and Atmospheric Experiences of Architecture.

    PubMed

    Rooney, Kevin K; Condia, Robert J; Loschky, Lester C

    2017-01-01

    Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one's fist at arm's length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words).

  15. [The influence of conscious and unconcious perception of emotional acoustic stimuli on time characteristics of respiration].

    PubMed

    Vaisertreiger, A S-R; Ivanova, V Iu

    2014-12-01

    A set of physiological studies proves that conscious perception of affective stimuli influence on respiratory activity. Less is known about the effect of unconscious perception of emotional information on human breathing. The aim of current research is to compare time characteristics of respiration during unconscious and conscious perception of emotional stimuli. As emotionally provocative stimuli we used natural vocalizations of 3-month-old infants in different emotional state. Both ways of acoustic presentation--first-order unconscious and second-order conscious stimuli--were applied to the one subject within one experiment with a brief inter-trial interval. A comparative data analysis revealed significant changes in time characteristics of respiration in response to acoustic emotional stimuli perceived either consciously or unconsciously. The differences in respiratory dynamics during two conditions of emotional stimuli perception are discussed.

  16. A computational investigation of feedforward and feedback processing in metacontrast backward masking

    PubMed Central

    Silverstein, David N.

    2015-01-01

    In human perception studies, visual backward masking has been used to understand the temporal dynamics of subliminal vs. conscious perception. When a brief target stimulus is followed by a masking stimulus after a short interval of <100 ms, performance on the target is impaired when the target and mask are in close spatial proximity. While the psychophysical properties of backward masking have been studied extensively, there is still debate on the underlying cortical dynamics. One prevailing theory suggests that the impairment of target performance due to the mask is the result of lateral inhibition between the target and mask in feedforward processing. Another prevailing theory suggests that this impairment is due to the interruption of feedback processing of the target by the mask. This computational study demonstrates that both aspects of these theories may be correct. Using a biophysical model of V1 and V2, visual processing was modeled as interacting neocortical attractors, which must propagate up the visual stream. If an activating target attractor in V1 is quiesced enough with lateral inhibition from a mask, or not reinforced by recurrent feedback, it is more likely to burn out before becoming fully active and progressing through V2 and beyond. Results are presented which simulate metacontrast backward masking with an increasing stimulus interval and with the presence and absence of feedback activity. This showed that recurrent feedback diminishes backward masking effects and can make conscious perception more likely. One model configuration presented a metacontrast noise mask in the same hypercolumns as the target, and produced type-A masking. A second model configuration presented a target line with two parallel adjacent masking lines, and produced type-B masking. Future work should examine how the model extends to more complex spatial mask configurations. PMID:25759672

  17. Electrophysiological evidence for phenomenal consciousness.

    PubMed

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.

  18. Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception

    PubMed Central

    Rangarajan, Vinitha; Hermes, Dora; Foster, Brett L.; Weiner, Kevin S.; Jacques, Corentin; Grill-Spector, Kalanit

    2014-01-01

    Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception. PMID:25232118

  19. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  20. Decreased visual detection during subliminal stimulation.

    PubMed

    Bareither, Isabelle; Villringer, Arno; Busch, Niko A

    2014-10-17

    What is the perceptual fate of invisible stimuli-are they processed at all and does their processing have consequences for the perception of other stimuli? As has been shown previously in the somatosensory system, even stimuli that are too weak to be consciously detected can influence our perception: Subliminal stimulation impairs perception of near-threshold stimuli and causes a functional deactivation in the somatosensory cortex. In a recent study, we showed that subliminal visual stimuli lead to similar responses, indicated by an increase in alpha-band power as measured with electroencephalography (EEG). In the current study, we investigated whether a behavioral inhibitory mechanism also exists within the visual system. We tested the detection of peripheral visual target stimuli under three different conditions: Target stimuli were presented alone or embedded in a concurrent train of subliminal stimuli either at the same location as the target or in the opposite hemifield. Subliminal stimuli were invisible due to their low contrast, not due to a masking procedure. We demonstrate that target detection was impaired by the subliminal stimuli, but only when they were presented at the same location as the target. This finding indicates that subliminal, low-intensity stimuli induce a similar inhibitory effect in the visual system as has been observed in the somatosensory system. In line with previous reports, we propose that the function underlying this effect is the inhibition of spurious noise by the visual system. © 2014 ARVO.

  1. Perceptual latency priming by masked and unmasked stimuli: evidence for an attentional interpretation.

    PubMed

    Scharlau, Ingrid; Neumann, Odmar

    2003-08-01

    Four experiments investigated the influence of a metacontrast-masked prime on temporal order judgments. The main results were (1) that a masked prime reduced the latency of the mask's conscious perception (perceptual latency priming), (2) that this effect was independent of whether the prime suffered strong or weak masking, (3) that it was unaffected by the degree of visual similarity between the prime and the mask, and that (4) there was no difference between congruent and incongruent primes. Finding (1) suggests that location cueing affects not only response times but also the latency of conscious perception. (2) The finding that priming was unaffected by the prime's detectability argues against a response bias interpretation of this effect. (3) Since visual similarity had no effect on the prime's efficiency, it is unlikely that sensory priming was involved. (4) The lack of a divergence between the effects of congruent and incongruent primes implies a functional difference between the judgments in the temporal order judgment task and speeded responses that have demonstrated differential effects of congruent and incongruent primes (e.g., Klotz & Neumann, 1999). These results can best be interpreted by assuming that the prime affects perceptual latency by initiating a shift of attention, as suggested by the Asynchronous Updating Model (AUM; Neumann 1978, 1982).

  2. Neural dynamics of 3-D surface perception: figure-ground separation and lightness perception.

    PubMed

    Kelly, F; Grossberg, S

    2000-11-01

    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding figures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodally completed, whereas the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Münker-White, Benary cross, and checkerboard percepts.

  3. Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    PubMed Central

    Zhang, Sheng; Eckstein, Miguel P.

    2010-01-01

    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways. PMID:20838589

  4. An invisible touch: Body-related multisensory conflicts modulate visual consciousness.

    PubMed

    Salomon, Roy; Galli, Giulia; Łukowska, Marta; Faivre, Nathan; Ruiz, Javier Bello; Blanke, Olaf

    2016-07-29

    The majority of scientific studies on consciousness have focused on vision, exploring the cognitive and neural mechanisms of conscious access to visual stimuli. In parallel, studies on bodily consciousness have revealed that bodily (i.e. tactile, proprioceptive, visceral, vestibular) signals are the basis for the sense of self. However, the role of bodily signals in the formation of visual consciousness is not well understood. Here we investigated how body-related visuo-tactile stimulation modulates conscious access to visual stimuli. We used a robotic platform to apply controlled tactile stimulation to the participants' back while they viewed a dot moving either in synchrony or asynchrony with the touch on their back. Critically, the dot was rendered invisible through continuous flash suppression. Manipulating the visual context by presenting the dot moving on either a body form, or a non-bodily object we show that: (i) conflict induced by synchronous visuo-tactile stimulation in a body context is associated with a delayed conscious access compared to asynchronous visuo-tactile stimulation, (ii) this effect occurs only in the context of a visual body form, and (iii) is not due to detection or response biases. The results indicate that body-related visuo-tactile conflicts impact visual consciousness by facilitating access of non-conflicting visual information to awareness, and that these are sensitive to the visual context in which they are presented, highlighting the interplay between bodily signals and visual experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Global workspace dynamics: cortical "binding and propagation" enables conscious contents.

    PubMed

    Baars, Bernard J; Franklin, Stan; Ramsoy, Thomas Zoega

    2013-01-01

    A global workspace (GW) is a functional hub of binding and propagation in a population of loosely coupled signaling elements. In computational applications, GW architectures recruit many distributed, specialized agents to cooperate in resolving focal ambiguities. In the brain, conscious experiences may reflect a GW function. For animals, the natural world is full of unpredictable dangers and opportunities, suggesting a general adaptive pressure for brains to resolve focal ambiguities quickly and accurately. GW theory aims to understand the differences between conscious and unconscious brain events. In humans and related species the cortico-thalamic (C-T) core is believed to underlie conscious aspects of perception, thinking, learning, feelings of knowing (FOK), felt emotions, visual imagery, working memory, and executive control. Alternative theoretical perspectives are also discussed. The C-T core has many anatomical hubs, but conscious percepts are unitary and internally consistent at any given moment. Over time, conscious contents constitute a very large, open set. This suggests that a brain-based GW capacity cannot be localized in a single anatomical hub. Rather, it should be sought in a functional hub - a dynamic capacity for binding and propagation of neural signals over multiple task-related networks, a kind of neuronal cloud computing. In this view, conscious contents can arise in any region of the C-T core when multiple input streams settle on a winner-take-all equilibrium. The resulting conscious gestalt may ignite an any-to-many broadcast, lasting ∼100-200 ms, and trigger widespread adaptation in previously established networks. To account for the great range of conscious contents over time, the theory suggests an open repertoire of binding coalitions that can broadcast via theta/gamma or alpha/gamma phase coupling, like radio channels competing for a narrow frequency band. Conscious moments are thought to hold only 1-4 unrelated items; this small focal capacity may be the biological price to pay for global access. Visuotopic maps in cortex specialize in features like color, retinal size, motion, object identity, and egocentric/allocentric framing, so that a binding coalition for the sight of a rolling billiard ball in nearby space may resonate among activity maps of LGN, V1-V4, MT, IT, as well as the dorsal stream. Spatiotopic activity maps can bind into coherent gestalts using adaptive resonance (reentry). Single neurons can join a dominant coalition by phase tuning to regional oscillations in the 4-12 Hz range. Sensory percepts may bind and broadcast from posterior cortex, while non-sensory FOKs may involve prefrontal and frontotemporal areas. The anatomy and physiology of the hippocampal complex suggest a GW architecture as well. In the intact brain the hippocampal complex may support conscious event organization as well as episodic memory storage.

  6. Global Workspace Dynamics: Cortical “Binding and Propagation” Enables Conscious Contents

    PubMed Central

    Baars, Bernard J.; Franklin, Stan; Ramsoy, Thomas Zoega

    2013-01-01

    A global workspace (GW) is a functional hub of binding and propagation in a population of loosely coupled signaling elements. In computational applications, GW architectures recruit many distributed, specialized agents to cooperate in resolving focal ambiguities. In the brain, conscious experiences may reflect a GW function. For animals, the natural world is full of unpredictable dangers and opportunities, suggesting a general adaptive pressure for brains to resolve focal ambiguities quickly and accurately. GW theory aims to understand the differences between conscious and unconscious brain events. In humans and related species the cortico-thalamic (C-T) core is believed to underlie conscious aspects of perception, thinking, learning, feelings of knowing (FOK), felt emotions, visual imagery, working memory, and executive control. Alternative theoretical perspectives are also discussed. The C-T core has many anatomical hubs, but conscious percepts are unitary and internally consistent at any given moment. Over time, conscious contents constitute a very large, open set. This suggests that a brain-based GW capacity cannot be localized in a single anatomical hub. Rather, it should be sought in a functional hub – a dynamic capacity for binding and propagation of neural signals over multiple task-related networks, a kind of neuronal cloud computing. In this view, conscious contents can arise in any region of the C-T core when multiple input streams settle on a winner-take-all equilibrium. The resulting conscious gestalt may ignite an any-to-many broadcast, lasting ∼100–200 ms, and trigger widespread adaptation in previously established networks. To account for the great range of conscious contents over time, the theory suggests an open repertoire of binding1 coalitions that can broadcast via theta/gamma or alpha/gamma phase coupling, like radio channels competing for a narrow frequency band. Conscious moments are thought to hold only 1–4 unrelated items; this small focal capacity may be the biological price to pay for global access. Visuotopic maps in cortex specialize in features like color, retinal size, motion, object identity, and egocentric/allocentric framing, so that a binding coalition for the sight of a rolling billiard ball in nearby space may resonate among activity maps of LGN, V1-V4, MT, IT, as well as the dorsal stream. Spatiotopic activity maps can bind into coherent gestalts using adaptive resonance (reentry). Single neurons can join a dominant coalition by phase tuning to regional oscillations in the 4–12 Hz range. Sensory percepts may bind and broadcast from posterior cortex, while non-sensory FOKs may involve prefrontal and frontotemporal areas. The anatomy and physiology of the hippocampal complex suggest a GW architecture as well. In the intact brain the hippocampal complex may support conscious event organization as well as episodic memory storage. PMID:23974723

  7. Open and closed cortico-subcortical loops: A neuro-computational account of access to consciousness in the distractor-induced blindness paradigm.

    PubMed

    Ebner, Christian; Schroll, Henning; Winther, Gesche; Niedeggen, Michael; Hamker, Fred H

    2015-09-01

    How the brain decides which information to process 'consciously' has been debated over for decades without a simple explanation at hand. While most experiments manipulate the perceptual energy of presented stimuli, the distractor-induced blindness task is a prototypical paradigm to investigate gating of information into consciousness without or with only minor visual manipulation. In this paradigm, subjects are asked to report intervals of coherent dot motion in a rapid serial visual presentation (RSVP) stream, whenever these are preceded by a particular color stimulus in a different RSVP stream. If distractors (i.e., intervals of coherent dot motion prior to the color stimulus) are shown, subjects' abilities to perceive and report intervals of target dot motion decrease, particularly with short delays between intervals of target color and target motion. We propose a biologically plausible neuro-computational model of how the brain controls access to consciousness to explain how distractor-induced blindness originates from information processing in the cortex and basal ganglia. The model suggests that conscious perception requires reverberation of activity in cortico-subcortical loops and that basal-ganglia pathways can either allow or inhibit this reverberation. In the distractor-induced blindness paradigm, inadequate distractor-induced response tendencies are suppressed by the inhibitory 'hyperdirect' pathway of the basal ganglia. If a target follows such a distractor closely, temporal aftereffects of distractor suppression prevent target identification. The model reproduces experimental data on how delays between target color and target motion affect the probability of target detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis.

    PubMed

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Nixon-Shapiro, Elizabeth

    2016-11-01

    The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory. Copyright © 2016. Published by Elsevier Ltd.

  9. Are patients with Parkinson’s disease blind to blindsight?

    PubMed Central

    Stebbins, Glenn; Schiltz, Christine; Goetz, Christopher G.

    2014-01-01

    In Parkinson’s disease, visual dysfunction is prominent. Visual hallucinations can be a major hallmark of late stage disease, but numerous visual deficits also occur in early stage Parkinson’s disease. Specific retinopathy, deficits in the primary visual pathway and the secondary ventral and dorsal pathways, as well as dysfunction of the attention pathways have all been posited as causes of hallucinations in Parkinson’s disease. We present data from patients with Parkinson’s disease that contrast with a known neuro-ophthalmological syndrome, termed ‘blindsight’. In this syndrome, there is an absence of conscious object identification, but preserved ‘guess’ of the location of a stimulus, preserved reflexive saccades and motion perception and preserved autonomical and expressive reactions to negative emotional facial expressions. We propose that patients with Parkinson’s disease have the converse of blindsight, being ‘blind to blindsight’. As such they preserve conscious vision, but show erroneous ‘guess’ localization of visual stimuli, poor saccades and motion perception, and poor emotional face perception with blunted autonomic reaction. Although a large data set on these deficits in Parkinson’s disease has been accumulated, consolidation into one specific syndrome has not been proposed. Focusing on neuropathological and physiological data from two phylogenetically old and subconscious pathways, the retino-colliculo-thalamo-amygdala and the retino-geniculo-extrastriate pathways, we propose that aberrant function of these systems, including pathologically inhibited superior colliculus activity, deficient corollary discharges to the frontal eye fields, dysfunctional pulvinar, claustrum and amygdaloid subnuclei of the amygdala, the latter progressively burdened with Lewy bodies, underlie this syndrome. These network impairments are further corroborated by the concept of the ‘silent amygdala’. Functionally being ‘blind to blindsight’ may facilitate the highly distinctive ‘presence’ or ‘passage’ hallucinations of Parkinson’s disease and can help to explain handicaps in driving capacities and dysfunctional ‘theory of mind’. We propose this synthesis to prompt refined neuropathological and neuroimaging studies on the pivotal nuclei in these pathways in order to better understand the networks underpinning this newly conceptualized syndrome in Parkinson’s disease. PMID:24764573

  10. Pupillary responses reveal infants' discrimination of facial emotions independent of conscious perception.

    PubMed

    Jessen, Sarah; Altvater-Mackensen, Nicole; Grossmann, Tobias

    2016-05-01

    Sensitive responding to others' emotions is essential during social interactions among humans. There is evidence for the existence of subcortically mediated emotion discrimination processes that occur independent of conscious perception in adults. However, only recently work has begun to examine the development of automatic emotion processing systems during infancy. In particular, it is unclear whether emotional expressions impact infants' autonomic nervous system regardless of conscious perception. We examined this question by measuring pupillary responses while subliminally and supraliminally presenting 7-month-old infants with happy and fearful faces. Our results show greater pupil dilation, indexing enhanced autonomic arousal, in response to happy compared to fearful faces regardless of conscious perception. Our findings suggest that, early in ontogeny, emotion discrimination occurs independent of conscious perception and is associated with differential autonomic responses. This provides evidence for the view that automatic emotion processing systems are an early-developing building block of human social functioning. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Working Memory and Consciousness: The Current State of Play

    PubMed Central

    Persuh, Marjan; LaRock, Eric; Berger, Jacob

    2018-01-01

    Working memory (WM), an important posit in cognitive science, allows one to temporarily store and manipulate information in the service of ongoing tasks. WM has been traditionally classified as an explicit memory system—that is, as operating on and maintaining only consciously perceived information. Recently, however, several studies have questioned this assumption, purporting to provide evidence for unconscious WM. In this article, we focus on visual working memory (VWM) and critically examine these studies as well as studies of unconscious perception that seem to provide indirect evidence for unconscious WM. Our analysis indicates that current evidence does not support an unconscious WM store, though we offer independent reasons to think that WM may operate on unconsciously perceived information. PMID:29551967

  12. Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: a meta-analysis of fMRI studies.

    PubMed

    Meneguzzo, Paolo; Tsakiris, Manos; Schioth, Helgi B; Stein, Dan J; Brooks, Samantha J

    2014-01-01

    Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both subliminal and supraliminal presentation of the same stimulus. We use Activation Likelihood Estimation (ALE) to examine functional Magnetic Resonance Imaging (fMRI) studies that uniquely present the same stimuli subliminally and supraliminally to healthy participants during functional magnetic resonance imaging (fMRI). We included a total of 193 foci from 9 studies representing subliminal stimulation and 315 foci from 10 studies representing supraliminal stimulation. The anterior cingulate cortex is significantly activated during both subliminal and supraliminal stimulus presentation. Subliminal stimuli are linked to significantly increased activation in the right fusiform gyrus and right insula. Supraliminal stimuli show significantly increased activation in the left rostral anterior cingulate. Non-conscious processing of arousing stimuli may involve primary visual areas and may also recruit the insula, a brain area involved in eventual interoceptive awareness. The anterior cingulate is perhaps a key brain region for the integration of conscious and non-conscious processing. These preliminary data provide candidate brain regions for further study in to the neural correlates of conscious experience.

  13. Visual processing during recovery from vegetative state to consciousness: comparing behavioral indices to brain responses.

    PubMed

    Wijnen, V J M; Eilander, H J; de Gelder, B; van Boxtel, G J M

    2014-11-01

    Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to consciousness. Behavioral responses to visual stimuli (visual localization, comprehension of written commands, and object manipulation) and flash VEPs were repeatedly examined in eleven vegetative patients every two weeks for an average period of 2.6months, and patients' VEPs were compared to a healthy control group. Long-term outcome of the patients was assessed 2-3years later. Visual response scores increased during recovery to consciousness for all scales: visual localization, comprehension of written commands, and object manipulation. VEP amplitudes were smaller, and latencies were longer in the patient group relative to the controls. VEPs characteristics at first measurement were related to long-term outcome up to three years after injury. Our findings show the improvement of visual responding with recovery from the vegetative state to consciousness. Elementary visual processing is present, yet according to VEP responses, poorer in vegetative and minimally conscious state than in healthy controls, and remains poorer when patients recovered to consciousness. However, initial VEPs are related to long-term outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Body conscious? Interoceptive awareness, measured by heartbeat perception, is negatively correlated with self-objectification.

    PubMed

    Ainley, Vivien; Tsakiris, Manos

    2013-01-01

    'Self-objectification' is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders.

  15. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    PubMed Central

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene. PMID:27445750

  16. Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness.

    PubMed

    Hirvonen, Jonni; Palva, Satu

    2016-01-01

    Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept. © 2015 Wiley Periodicals, Inc.

  17. Music in Research and Rehabilitation of Disorders of Consciousness: Psychological and Neurophysiological Foundations.

    PubMed

    Kotchoubey, Boris; Pavlov, Yuri G; Kleber, Boris

    2015-01-01

    According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients' self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation.

  18. Music in Research and Rehabilitation of Disorders of Consciousness: Psychological and Neurophysiological Foundations

    PubMed Central

    Kotchoubey, Boris; Pavlov, Yuri G.; Kleber, Boris

    2015-01-01

    According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients’ self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation. PMID:26640445

  19. The eye as metronome of the body.

    PubMed

    Lubkin, Virginia; Beizai, Pouneh; Sadun, Alfredo A

    2002-01-01

    Vision is much more than just resolving small objects. In fact, the eye sends visual information to the brain that is not consciously perceived. One such pathway entails visual information to the hypothalamus. The retinohypothalamic tract (RHT) mediates light entrainment of circadian rhythms. Retinofugal fibers project to several nuclei of the hypothalamus. These and further projections to the pineal via the sympathetic system provide the anatomical substrate for the neuro-endocrine control of diurnal and longer rhythms. Without the influence of light and dark, many rhythms desynchronize and exhibit free-running periods of approximately 24.2-24.9 hours in humans. This review will demonstrate the mechanism by which the RHT synchronizes circadian rhythms and the importance of preserving light perception in those persons with impending visual loss.

  20. Bridging consciousness and cognition in memory and perception: evidence for both state and strength processes.

    PubMed

    Aly, Mariam; Yonelinas, Andrew P

    2012-01-01

    Subjective experience indicates that mental states are discrete, in the sense that memories and perceptions readily come to mind in some cases, but are entirely unavailable to awareness in others. However, a long history of psychophysical research has indicated that the discrete nature of mental states is largely epiphenomenal and that mental processes vary continuously in strength. We used a novel combination of behavioral methodologies to examine the processes underlying perception of complex images: (1) analysis of receiver operating characteristics (ROCs), (2) a modification of the change-detection flicker paradigm, and (3) subjective reports of conscious experience. These methods yielded converging results showing that perceptual judgments reflect the combined, yet functionally independent, contributions of two processes available to conscious experience: a state process of conscious perception and a strength process of knowing; processes that correspond to recollection and familiarity in long-term memory. In addition, insights from the perception experiments led to the discovery of a new recollection phenomenon in a long-term memory change detection paradigm. The apparent incompatibility between subjective experience and theories of cognition can be understood within a unified state-strength framework that links consciousness to cognition across the domains of perception and memory.

  1. Bridging Consciousness and Cognition in Memory and Perception: Evidence for Both State and Strength Processes

    PubMed Central

    Aly, Mariam; Yonelinas, Andrew P.

    2012-01-01

    Subjective experience indicates that mental states are discrete, in the sense that memories and perceptions readily come to mind in some cases, but are entirely unavailable to awareness in others. However, a long history of psychophysical research has indicated that the discrete nature of mental states is largely epiphenomenal and that mental processes vary continuously in strength. We used a novel combination of behavioral methodologies to examine the processes underlying perception of complex images: (1) analysis of receiver operating characteristics (ROCs), (2) a modification of the change-detection flicker paradigm, and (3) subjective reports of conscious experience. These methods yielded converging results showing that perceptual judgments reflect the combined, yet functionally independent, contributions of two processes available to conscious experience: a state process of conscious perception and a strength process of knowing; processes that correspond to recollection and familiarity in long-term memory. In addition, insights from the perception experiments led to the discovery of a new recollection phenomenon in a long-term memory change detection paradigm. The apparent incompatibility between subjective experience and theories of cognition can be understood within a unified state-strength framework that links consciousness to cognition across the domains of perception and memory. PMID:22272314

  2. Attention and Conscious Perception in the Hypothesis Testing Brain

    PubMed Central

    Hohwy, Jakob

    2012-01-01

    Conscious perception and attention are difficult to study, partly because their relation to each other is not fully understood. Rather than conceiving and studying them in isolation from each other it may be useful to locate them in an independently motivated, general framework, from which a principled account of how they relate can then emerge. Accordingly, these mental phenomena are here reviewed through the prism of the increasingly influential predictive coding framework. On this framework, conscious perception can be seen as the upshot of prediction error minimization and attention as the optimization of precision expectations during such perceptual inference. This approach maps on well to a range of standard characteristics of conscious perception and attention, and can be used to interpret a range of empirical findings on their relation to each other. PMID:22485102

  3. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    PubMed Central

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178

  4. Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness.

    PubMed

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.

  5. Cross-modal prediction changes the timing of conscious access during the motion-induced blindness.

    PubMed

    Chang, Acer Y C; Kanai, Ryota; Seth, Anil K

    2015-01-01

    Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Unconscious analyses of visual scenes based on feature conjunctions.

    PubMed

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  7. Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry

    PubMed Central

    O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte

    2013-01-01

    Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536

  8. Differentiating aversive conditioning in bistable perception: Avoidance of a percept vs. salience of a stimulus.

    PubMed

    Wilbertz, Gregor; Sterzer, Philipp

    2018-05-01

    Alternating conscious visual perception of bistable stimuli is influenced by several factors. In order to understand the effect of negative valence, we tested the effect of two types of aversive conditioning on dominance durations in binocular rivalry. Participants received either aversive classical conditioning of the stimuli shown alone between rivalry blocks, or aversive percept conditioning of one of the two possible perceptual choices during rivalry. Both groups showed successful aversive conditioning according to skin conductance responses and affective valence ratings. However, while classical conditioning led to an immediate but short-lived increase in dominance durations of the conditioned stimulus, percept conditioning yielded no significant immediate effect but tended to decrease durations of the conditioned percept during extinction. These results show dissociable effects of value learning on perceptual inference in situations of perceptual conflict, depending on whether learning relates to the decision between conflicting perceptual choices or the sensory stimuli per se. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Different effects of executive and visuospatial working memory on visual consciousness.

    PubMed

    De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip

    2015-11-01

    Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.

  10. Evidence for an All-Or-None Perceptual Response: Single-Trial Analyses of Magnetoencephalography Signals Indicate an Abrupt Transition Between Visual Perception and Its Absence

    PubMed Central

    Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.

    2014-01-01

    Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus identification accuracy and exposure duration, we were able to investigate whether a high-amplitude perception-related cortical event was (1) only evoked for conditions where perception was most probable (2) had invariant amplitude once evoked and (3) was largely absent for conditions where perception was least probable (criteria satisfying an all-on-none hypothesis). We found that averaged evoked responses showed a gradual increase in amplitude with increasing perceptual strength. However, single trial analyses demonstrated that stimulus perception was correlated with an all-or-none response, the temporal precision of which increased systematically as perception transitioned from ambiguous to robust states. Due to poor signal-to-noise resolution of single trial data, whether perception-related responses, whenever present, were invariant in amplitude could not be unambiguously demonstrated. However, our findings strongly suggest that visual perception of simple stimuli is associated with an all-or-none cortical evoked response the temporal precision of which varies as a function of perceptual strength. PMID:22020091

  11. Body Conscious? Interoceptive Awareness, Measured by Heartbeat Perception, Is Negatively Correlated with Self-Objectification

    PubMed Central

    Ainley, Vivien; Tsakiris, Manos

    2013-01-01

    Background ‘Self-objectification’ is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. Methodology/Principal Findings Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. Conclusions/Significance We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders. PMID:23405173

  12. ERP signatures of conscious and unconscious word and letter perception in an inattentional blindness paradigm.

    PubMed

    Schelonka, Kathryn; Graulty, Christian; Canseco-Gonzalez, Enriqueta; Pitts, Michael A

    2017-09-01

    A three-phase inattentional blindness paradigm was combined with ERPs. While participants performed a distracter task, line segments in the background formed words or consonant-strings. Nearly half of the participants failed to notice these word-forms and were deemed inattentionally blind. All participants noticed the word-forms in phase 2 of the experiment while they performed the same distracter task. In the final phase, participants performed a task on the word-forms. In all phases, including during inattentional blindness, word-forms elicited distinct ERPs during early latencies (∼200-280ms) suggesting unconscious orthographic processing. A subsequent ERP (∼320-380ms) similar to the visual awareness negativity appeared only when subjects were aware of the word-forms, regardless of the task. Finally, word-forms elicited a P3b (∼400-550ms) only when these stimuli were task-relevant. These results are consistent with previous inattentional blindness studies and help distinguish brain activity associated with pre- and post-perceptual processing from correlates of conscious perception. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation

    PubMed Central

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-01-01

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation. PMID:24639586

  14. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation.

    PubMed

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-05-05

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation.

  15. Predictors of Biased Self-perception in Individuals with High Social Anxiety: The Effect of Self-consciousness in the Private and Public Self Domains.

    PubMed

    Nordahl, Henrik; Plummer, Alice; Wells, Adrian

    2017-01-01

    "Biased self-perception," the tendency to perceive one's social performance as more negative than observers do, is characteristic of socially anxious individuals. Self-attention processes are hypothesised to underlie biased self-perception, however, different models emphasise different aspects of self-attention, with attention to the public aspects of the self being prominent. The current study aimed to investigate the relative contribution of two types of dispositional self-attention; public- and private self-consciousness to biased self-perception in a high ( n = 48) versus a low ( n = 48) social anxiety group undergoing an interaction task. The main finding was that private self-consciousness explained substantial and unique variance in biased negative self-perception in individuals with high social anxiety, while public self-consciousness did not. This relationship was independent of increments in state anxiety. Private self-consciousness appeared to have a specific association with bias related to overestimation of negative social performance rather than underestimation of positive social performance. The implication of this finding is that current treatment models of Social anxiety disorder might include broader aspects of self-focused attention, especially in the context of formulating self-evaluation biases.

  16. The Role of Attention in Conscious Recollection

    PubMed Central

    De Brigard, Felipe

    2012-01-01

    Most research on the relationship between attention and consciousness has been limited to perception. However, perceptions are not the only kinds of mental contents of which we can be conscious. An important set of conscious states that has not received proper treatment within this discussion is that of memories. This paper reviews compelling evidence indicating that attention may be necessary, but probably not sufficient, for conscious recollection. However, it is argued that unlike the case of conscious perception, the kind of attention required during recollection is internal, as opposed to external, attention. As such, the surveyed empirical evidence is interpreted as suggesting that internal attention is necessary, but probably not sufficient, for conscious recollection. The paper begins by justifying the need for clear distinctions among different kinds of attention, and then emphasizes the difference between internal and external attention. Next, evidence from behavioral, neuropsychological, and neuroimaging studies suggesting that internal attention is required for the successful retrieval of memorial contents is reviewed. In turn, it is argued that internal attention during recollection is what makes us conscious of the contents of retrieved memories; further evidence in support of this claim is also provided. Finally, it is suggested that internal attention is probably not sufficient for conscious recollection. Open questions and possible avenues for future research are also mentioned. PMID:22363305

  17. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  18. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.

    PubMed

    Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F

    2017-11-01

    The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Is conscious perception a series of discrete temporal frames?

    PubMed

    White, Peter A

    2018-04-01

    This paper reviews proposals that conscious perception consists, in whole or part, of successive discrete temporal frames on the sub-second time scale, each frame containing information registered as simultaneous or static. Although the idea of discrete frames in conscious perception cannot be regarded as falsified, there are many problems. Evidence does not consistently support any proposed duration or range of durations for frames. EEG waveforms provide evidence of periodicity in brain activity, but not necessarily in conscious perception. Temporal properties of perceptual processes are flexible in response to competing processing demands, which is hard to reconcile with the relative inflexibility of regular frames. There are also problems concerning the definition of frames, the need for informational connections between frames, the means by which boundaries between frames are established, and the apparent requirement for a storage buffer for information awaiting entry to the next frame. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Temporal parameters and time course of perceptual latency priming.

    PubMed

    Scharlau, Ingrid; Neumann, Odmar

    2003-06-01

    Visual stimuli (primes) reduce the perceptual latency of a target appearing at the same location (perceptual latency priming, PLP). Three experiments assessed the time course of PLP by masked and, in Experiment 3, unmasked primes. Experiments 1 and 2 investigated the temporal parameters that determine the size of priming. Stimulus onset asynchrony was found to exert the main influence accompanied by a small effect of prime duration. Experiment 3 used a large range of priming onset asynchronies. We suggest to explain PLP by the Asynchronous Updating Model which relates it to the asynchrony of 2 central coding processes, preattentive coding of basic visual features and attentional orienting as a prerequisite for perceptual judgments and conscious perception.

  1. Age differences in conscious versus subconscious social perception: the influence of face age and valence on gaze following.

    PubMed

    Bailey, Phoebe E; Slessor, Gillian; Rendell, Peter G; Bennetts, Rachel J; Campbell, Anna; Ruffman, Ted

    2014-09-01

    Gaze following is the primary means of establishing joint attention with others and is subject to age-related decline. In addition, young but not older adults experience an own-age bias in gaze following. The current research assessed the effects of subconscious processing on these age-related differences. Participants responded to targets that were either congruent or incongruent with the direction of gaze displayed in supraliminal and subliminal images of young and older faces. These faces displayed either neutral (Study 1) or happy and fearful (Study 2) expressions. In Studies 1 and 2, both age groups demonstrated gaze-directed attention by responding faster to targets that were congruent as opposed to incongruent with gaze-cues. In Study 1, subliminal stimuli did not attenuate the age-related decline in gaze-cuing, but did result in an own-age bias among older participants. In Study 2, gaze-cuing was reduced for older relative to young adults in response to supraliminal stimuli, and this could not be attributed to reduced visual acuity or age group differences in the perceived emotional intensity of the gaze-cue faces. Moreover, there were no age differences in gaze-cuing when responding to subliminal faces that were emotionally arousing. In addition, older adults demonstrated an own-age bias for both conscious and subconscious gaze-cuing when faces expressed happiness but not fear. We discuss growing evidence for age-related preservation of subconscious relative to conscious social perception, as well as an interaction between face age and valence in social perception. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. The science of consciousness - Basics, models, and visions.

    PubMed

    Hinterberger, Thilo

    2015-12-01

    This article presents a few models and aspects of the phenomenon consciousness that are emerging from modern neuroscience and might serve as a basis for scientific discourse in the field of Applied Consciousness Sciences. A first model describes the dynamics of information processing in the brain. The evoked electric brain potentials represent a hierarchical sequence of functions playing an important role in conscious perception. These range from primary processing, attention, pattern recognition, categorization, associations to judgments, and complex thoughts. Most functions seem to be implemented in the brain's neural network operating as a neurobiological computer. Another model treats conscious perception as a process of internalisation leading to the "self" as conscious observer. As a consequence, every conscious perception can be seen as a reduced and already interpreted observation of an inner representation of an outer or imagined "world." Subjective experience thus offers properties which can only be experienced from the inside and cannot be made objective. Basic values of humanity such as responsibility, love, compassion, freedom, and dignity can be derived from these subjective qualities. Therefore, in contrast to the Natural Sciences, the Science of Consciousness additionally is challenged to deal with those subjective qualities, emphasizing the resulting influence on health, social interactions, and the whole society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Human observers have optimal introspective access to perceptual processes even for visually masked stimuli

    PubMed Central

    Peters, Megan A K; Lau, Hakwan

    2015-01-01

    Many believe that humans can ‘perceive unconsciously’ – that for weak stimuli, briefly presented and masked, above-chance discrimination is possible without awareness. Interestingly, an online survey reveals that most experts in the field recognize the lack of convincing evidence for this phenomenon, and yet they persist in this belief. Using a recently developed bias-free experimental procedure for measuring subjective introspection (confidence), we found no evidence for unconscious perception; participants’ behavior matched that of a Bayesian ideal observer, even though the stimuli were visually masked. This surprising finding suggests that the thresholds for subjective awareness and objective discrimination are effectively the same: if objective task performance is above chance, there is likely conscious experience. These findings shed new light on decades-old methodological issues regarding what it takes to consider a neurobiological or behavioral effect to be 'unconscious,' and provide a platform for rigorously investigating unconscious perception in future studies. DOI: http://dx.doi.org/10.7554/eLife.09651.001 PMID:26433023

  4. Organization of area hV5/MT+ in subjects with homonymous visual field defects.

    PubMed

    Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M

    2018-04-06

    Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Dissociation between awareness and spatial coding: evidence from unilateral neglect.

    PubMed

    Treccani, Barbara; Cubelli, Roberto; Sellaro, Roberta; Umiltà, Carlo; Della Sala, Sergio

    2012-04-01

    Prevalent theories about consciousness propose a causal relation between lack of spatial coding and absence of conscious experience: The failure to code the position of an object is assumed to prevent this object from entering consciousness. This is consistent with influential theories of unilateral neglect following brain damage, according to which spatial coding of neglected stimuli is defective, and this would keep their processing at the nonconscious level. Contrary to this view, we report evidence showing that spatial coding and consciousness can dissociate. A patient with left neglect, who was not aware of contralesional stimuli, was able to process their color and position. However, in contrast to (ipsilesional) consciously perceived stimuli, color and position of neglected stimuli were processed separately. We propose that individual object features, including position, can be processed without attention and consciousness and that conscious perception of an object depends on the binding of its features into an integrated percept.

  6. Emotional consciousness: a neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience.

    PubMed

    Thagard, Paul; Aubie, Brandon

    2008-09-01

    This paper proposes a theory of how conscious emotional experience is produced by the brain as the result of many interacting brain areas coordinated in working memory. These brain areas integrate perceptions of bodily states of an organism with cognitive appraisals of its current situation. Emotions are neural processes that represent the overall cognitive and somatic state of the organism. Conscious experience arises when neural representations achieve high activation as part of working memory. This theory explains numerous phenomena concerning emotional consciousness, including differentiation, integration, intensity, valence, and change.

  7. Neural correlates of visuospatial consciousness in 3D default space: insights from contralateral neglect syndrome.

    PubMed

    Jerath, Ravinder; Crawford, Molly W

    2014-08-01

    One of the most compelling questions still unanswered in neuroscience is how consciousness arises. In this article, we examine visual processing, the parietal lobe, and contralateral neglect syndrome as a window into consciousness and how the brain functions as the mind and we introduce a mechanism for the processing of visual information and its role in consciousness. We propose that consciousness arises from integration of information from throughout the body and brain by the thalamus and that the thalamus reimages visual and other sensory information from throughout the cortex in a default three-dimensional space in the mind. We further suggest that the thalamus generates a dynamic default three-dimensional space by integrating processed information from corticothalamic feedback loops, creating an infrastructure that may form the basis of our consciousness. Further experimental evidence is needed to examine and support this hypothesis, the role of the thalamus, and to further elucidate the mechanism of consciousness. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The sensory timecourses associated with conscious visual item memory and source memory.

    PubMed

    Thakral, Preston P; Slotnick, Scott D

    2015-09-01

    Previous event-related potential (ERP) findings have suggested that during visual item and source memory, nonconscious and conscious sensory (occipital-temporal) activity onsets may be restricted to early (0-800 ms) and late (800-1600 ms) temporal epochs, respectively. In an ERP experiment, we tested this hypothesis by separately assessing whether the onset of conscious sensory activity was restricted to the late epoch during source (location) memory and item (shape) memory. We found that conscious sensory activity had a late (>800 ms) onset during source memory and an early (<200 ms) onset during item memory. In a follow-up fMRI experiment, conscious sensory activity was localized to BA17, BA18, and BA19. Of primary importance, the distinct source memory and item memory ERP onsets contradict the hypothesis that there is a fixed temporal boundary separating nonconscious and conscious processing during all forms of visual conscious retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cross-modal cueing effects of visuospatial attention on conscious somatosensory perception.

    PubMed

    Doruk, Deniz; Chanes, Lorena; Malavera, Alejandra; Merabet, Lotfi B; Valero-Cabré, Antoni; Fregni, Felipe

    2018-04-01

    The impact of visuospatial attention on perception with supraliminal stimuli and stimuli at the threshold of conscious perception has been previously investigated. In this study, we assess the cross-modal effects of visuospatial attention on conscious perception for near-threshold somatosensory stimuli applied to the face. Fifteen healthy participants completed two sessions of a near-threshold cross-modality cue-target discrimination/conscious detection paradigm. Each trial began with an endogenous visuospatial cue that predicted the location of a weak near-threshold electrical pulse delivered to the right or left cheek with high probability (∼75%). Participants then completed two tasks: first, a forced-choice somatosensory discrimination task (felt once or twice?) and then, a somatosensory conscious detection task (did you feel the stimulus and, if yes, where (left/right)?). Somatosensory discrimination was evaluated with the response reaction times of correctly detected targets, whereas the somatosensory conscious detection was quantified using perceptual sensitivity (d') and response bias (beta). A 2 × 2 repeated measures ANOVA was used for statistical analysis. In the somatosensory discrimination task (1 st task), participants were significantly faster in responding to correctly detected targets (p < 0.001). In the somatosensory conscious detection task (2 nd task), a significant effect of visuospatial attention on response bias (p = 0.008) was observed, suggesting that participants had a less strict criterion for stimuli preceded by spatially valid than invalid visuospatial cues. We showed that spatial attention has the potential to modulate the discrimination and the conscious detection of near-threshold somatosensory stimuli as measured, respectively, by a reduction of reaction times and a shift in response bias toward less conservative responses when the cue predicted stimulus location. A shift in response bias indicates possible effects of spatial attention on internal decision processes. The lack of significant results in perceptual sensitivity (d') could be due to weaker effects of endogenous attention on perception.

  10. Time, Memory, and Consciousness a View from the Brain

    NASA Astrophysics Data System (ADS)

    Markowitsch, Hans J.

    2005-10-01

    Memory can be defined as mental time traveling. Seen in this way, memory provides the glue which combines different time episodes and leads to a coherent view of one's own person. The importance of time becomes apparent in a neuroscientific comparison of animals and human beings. All kinds of animals have biorhythms -- times when they sleep, prefer or avoid sex, or move to warmer places. Mammalian brains have a number of time sensitive structures damage to which alters a subject's behavior to his or her environment. For human beings, damage to certain brain regions may alter the sense of time and consciousness of time in quite different ways. Furthermore, brain damage, drugs, or psychiatric disturbances may lead to an impaired perception of time, sometimes leading to major positive or negative accelerations in time perception. An impaired time perception alters consciousness and awareness of oneself. A proper synchronized action of time perception, brain activation, memory processing, and autonoetic (self-aware) consciousness provides the bases of an integrated personality.

  11. Dopaminergic stimulation enhances confidence and accuracy in seeing rapidly presented words.

    PubMed

    Lou, Hans C; Skewes, Joshua C; Thomsen, Kristine Rømer; Overgaard, Morten; Lau, Hakwan C; Mouridsen, Kim; Roepstorff, Andreas

    2011-02-23

    Liberal acceptance, overconfidence, and increased activity of the neurotransmitter dopamine have been proposed to account for abnormal sensory experiences, for instance, hallucinations in schizophrenia. In normal subjects, increased sensory experience in Yoga Nidra meditation is linked to striatal dopamine release. We therefore hypothesize that the neurotransmitter dopamine may function as a regulator of subjective confidence of visual perception in the normal brain. Although much is known about the effect of stimulation by neurotransmitters on cognitive functions, their effect on subjective confidence of perception has never been recorded experimentally before. In a controlled study of 24 normal, healthy female university students with the dopamine agonist pergolide given orally, we show that dopaminergic activation increases confidence in seeing rapidly presented words. It also improves performance in a forced-choice word recognition task. These results demonstrate neurotransmitter regulation of subjective conscious experience of perception and provide evidence for a crucial role of dopamine.

  12. Color-binding errors during rivalrous suppression of form.

    PubMed

    Hong, Sang Wook; Shevell, Steven K

    2009-09-01

    How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.

  13. Aura phenomena during syncope.

    PubMed

    Benke, T; Hochleitner, M; Bauer, G

    1997-01-01

    We studied the frequency and clinical characteristics of aura phenomena in 60 patients with cardiac and 40 subjects with vasovagal syncopes. The majority (93%) of all syncope patients recalled having experienced an aura. Aura phenomena were similar in both groups and were mostly compound auras comprising epigastric, vertiginous, visual, or somatosensory experiences, but were more detailed in the noncardiac group. The localizing significance of auras preceding a syncope was generally poor. Although hard to distinguish from epileptic auras from their structure and shape, syncope-related auras lacked symptoms that are commonly reported after epileptic seizures such as tastes, smells, déjà vu phenomena, scenic visual perceptions, and speech impairments. A detailed anamnestic exploration of auras seems worthwhile in unexplained disorders of consciousness.

  14. Parietal disruption alters audiovisual binding in the sound-induced flash illusion.

    PubMed

    Kamke, Marc R; Vieth, Harrison E; Cottrell, David; Mattingley, Jason B

    2012-09-01

    Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. The flash illusion is a widely studied multisensory phenomenon in which a single flash of light is falsely perceived as multiple flashes in the presence of irrelevant sounds. We investigated the hypothesis that extrastriate regions involved in selective attention, specifically within the right parietal cortex, exert an influence on the multisensory integrative processes that cause the flash illusion. We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. No Evidence of Narrowly Defined Cognitive Penetrability in Unambiguous Vision

    PubMed Central

    Lammers, Nikki A.; de Haan, Edward H.; Pinto, Yair

    2017-01-01

    The classical notion of cognitive impenetrability suggests that perceptual processing is an automatic modular system and not under conscious control. Near consensus is now emerging that this classical notion is untenable. However, as recently pointed out by Firestone and Scholl, this consensus is built on quicksand. In most studies claiming perception is cognitively penetrable, it remains unclear which actual process has been affected (perception, memory, imagery, input selection or judgment). In fact, the only available “proofs” for cognitive penetrability are proxies for perception, such as behavioral responses and neural correlates. We suggest that one can interpret cognitive penetrability in two different ways, a broad sense and a narrow sense. In the broad sense, attention and memory are not considered as “just” pre- and post-perceptual systems but as part of the mechanisms by which top-down processes influence the actual percept. Although many studies have proven top-down influences in this broader sense, it is still debatable whether cognitive penetrability remains tenable in a narrow sense. The narrow sense states that cognitive penetrability only occurs when top-down factors are flexible and cause a clear illusion from a first person perspective. So far, there is no strong evidence from a first person perspective that visual illusions can indeed be driven by high-level flexible factors. One cannot be cognitively trained to see and unsee visual illusions. We argue that this lack of convincing proof for cognitive penetrability in the narrow sense can be explained by the fact that most research focuses on foveal vision only. This type of perception may be too unambiguous for transient high-level factors to control perception. Therefore, illusions in more ambiguous perception, such as peripheral vision, can offer a unique insight into the matter. They produce a clear subjective percept based on unclear, degraded visual input: the optimal basis to study narrowly defined cognitive penetrability. PMID:28740471

  16. The feeling of fluent perception: a single experience from multiple asynchronous sources.

    PubMed

    Wurtz, Pascal; Reber, Rolf; Zimmermann, Thomas D

    2008-03-01

    Zeki and co-workers recently proposed that perception can best be described as locally distributed, asynchronous processes that each create a kind of microconsciousness, which condense into an experienced percept. The present article is aimed at extending this theory to metacognitive feelings. We present evidence that perceptual fluency-the subjective feeling of ease during perceptual processing-is based on speed of processing at different stages of the perceptual process. Specifically, detection of briefly presented stimuli was influenced by figure-ground contrast, but not by symmetry (Experiment 1) or the font (Experiment 2) of the stimuli. Conversely, discrimination of these stimuli was influenced by whether they were symmetric (Experiment 1) and by the font they were presented in (Experiment 2), but not by figure-ground contrast. Both tasks however were related with the subjective experience of fluency (Experiments 1 and 2). We conclude that subjective fluency is the conscious phenomenal correlate of different processing stages in visual perception.

  17. Quantized visual awareness.

    PubMed

    Escobar, W A

    2013-01-01

    The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.

  18. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities

    PubMed Central

    Foerster, Rebecca M.; Poth, Christian H.; Behler, Christian; Botsch, Mario; Schneider, Werner X.

    2016-01-01

    Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen’s visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions. PMID:27869220

  19. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities.

    PubMed

    Foerster, Rebecca M; Poth, Christian H; Behler, Christian; Botsch, Mario; Schneider, Werner X

    2016-11-21

    Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen's visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions.

  20. Activation of color-selective areas of the visual cortex in a blind synesthete.

    PubMed

    Steven, Megan S; Hansen, Peter C; Blakemore, Colin

    2006-02-01

    Many areas of the visual cortex are activated when blind people are stimulated naturally through other sensory modalities (e.g., haptically; Sadato et al., 1996). While this extraneous activation of visual areas via other senses in normal blind people might have functional value (Kauffman et al., 2002; Lessard et al., 1998), it does not lead to conscious visual experiences. On the other hand, electrical stimulation of the primary visual cortex in the blind does produce illusory visual phosphenes (Brindley and Lewin, 1968). Here we provide the first evidence that high-level visual areas not only retain their specificity for particular visual characteristics in people who have been blind for long periods, but that activation of these areas can lead to visual sensations. We used fMRI to demonstrate activity in visual cortical areas specifically related to illusory colored and spatially located visual percepts in a synesthetic man who has been completely blind for 10 years. No such differential activations were seen in late-blind or sighted non-synesthetic controls; neither were these areas activated during color-imagery in the late-blind synesthete, implying that this subject's synesthesia is truly a perceptual experience.

  1. Close similarity between spatiotemporal frequency tunings of human cortical responses and involuntary manual following responses to visual motion.

    PubMed

    Amano, Kaoru; Kimura, Toshitaka; Nishida, Shin'ya; Takeda, Tsunehiro; Gomi, Hiroaki

    2009-02-01

    Human brain uses visual motion inputs not only for generating subjective sensation of motion but also for directly guiding involuntary actions. For instance, during arm reaching, a large-field visual motion is quickly and involuntarily transformed into a manual response in the direction of visual motion (manual following response, MFR). Previous attempts to correlate motion-evoked cortical activities, revealed by brain imaging techniques, with conscious motion perception have resulted only in partial success. In contrast, here we show a surprising degree of similarity between the MFR and the population neural activity measured by magnetoencephalography (MEG). We measured the MFR and MEG induced by the same motion onset of a large-field sinusoidal drifting grating with changing the spatiotemporal frequency of the grating. The initial transient phase of these two responses had very similar spatiotemporal tunings. Specifically, both the MEG and MFR amplitudes increased as the spatial frequency was decreased to, at most, 0.05 c/deg, or as the temporal frequency was increased to, at least, 10 Hz. We also found in peak latency a quantitative agreement (approximately 100-150 ms) and correlated changes against spatiotemporal frequency changes between MEG and MFR. In comparison with these two responses, conscious visual motion detection is known to be most sensitive (i.e., have the lowest detection threshold) at higher spatial frequencies and have longer and more variable response latencies. Our results suggest a close relationship between the properties of involuntary motor responses and motion-evoked cortical activity as reflected by the MEG.

  2. The edge of awareness: Mask spatial density, but not color, determines optimal temporal frequency for continuous flash suppression.

    PubMed

    Drewes, Jan; Zhu, Weina; Melcher, David

    2018-01-01

    The study of how visual processing functions in the absence of visual awareness has become a major research interest in the vision-science community. One of the main sources of evidence that stimuli that do not reach conscious awareness-and are thus "invisible"-are still processed to some degree by the visual system comes from studies using continuous flash suppression (CFS). Why and how CFS works may provide more general insight into how stimuli access awareness. As spatial and temporal properties of stimuli are major determinants of visual perception, we hypothesized that these properties of the CFS masks would be of significant importance to the achieved suppression depth. In previous studies however, the spatial and temporal properties of the masks themselves have received little study, and masking parameters vary widely across studies, making a metacomparison difficult. To investigate the factors that determine the effectiveness of CFS, we varied both the temporal frequency and the spatial density of Mondrian-style masks. We consistently found the longest suppression duration for a mask temporal frequency of around 6 Hz. In trials using masks with reduced spatial density, suppression was weaker and frequency tuning was less precise. In contrast, removing color reduced mask effectiveness but did not change the pattern of suppression strength as a function of frequency. Overall, this pattern of results stresses the importance of CFS mask parameters and is consistent with the idea that CFS works by disrupting the spatiotemporal mechanisms that underlie conscious access to visual input.

  3. Conceptualizing Mind and Consciousness: Using Constructivist Ideas to Transcend the Physical Bind

    ERIC Educational Resources Information Center

    Becker, Joe

    2008-01-01

    Philosophers and scientists seeking to conceptualize consciousness, and subjective experience in particular, have focused on sensation and perception, and have emphasized binding--how a percept holds together. Building on a constructivist approach to conception centered on separistic-holistic complexes incorporating multiple levels of abstraction,…

  4. Prestimulus Network Integration of Auditory Cortex Predisposes Near-Threshold Perception Independently of Local Excitability

    PubMed Central

    Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan

    2015-01-01

    An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799

  5. Right Orbitofrontal Cortex Mediates Conscious Olfactory Perception

    PubMed Central

    Li, Wen; Lopez, Leonardo; Osher, Jason; Howard, James D.; Parrish, Todd B.; Gottfried, Jay A.

    2013-01-01

    Understanding how the human brain translates sensory impressions into conscious percepts is a key challenge of neuroscience research. Work in this area has overwhelmingly centered on the conscious experience of vision at the exclusion of the other senses—in particular, smell. We hypothesized that the orbitofrontal cortex (OFC) is a central substrate for olfactory conscious experience because of its privileged physiological role in odor processing. Combining functional magnetic resonance imaging, peripheral autonomic recordings, and olfactory psychophysics, we studied a case of complete anosmia (smell loss) in a patient with circumscribed traumatic brain injury to the right OFC. Despite a complete absence of conscious olfaction, the patient exhibited robust “blind smell,” as indexed by reliable odor-evoked neural activity in the left OFC and normal autonomic responses to odor hedonics during presentation of stimuli to the left nostril. These data highlight the right OFC’s critical role in subserving human olfactory consciousness. PMID:20817780

  6. A spatially collocated sound thrusts a flash into awareness

    PubMed Central

    Aller, Máté; Giani, Anette; Conrad, Verena; Watanabe, Masataka; Noppeney, Uta

    2015-01-01

    To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception. PMID:25774126

  7. Future challenges for vection research: definitions, functional significance, measures, and neural bases

    PubMed Central

    Palmisano, Stephen; Allison, Robert S.; Schira, Mark M.; Barry, Robert J.

    2015-01-01

    This paper discusses four major challenges facing modern vection research. Challenge 1 (Defining Vection) outlines the different ways that vection has been defined in the literature and discusses their theoretical and experimental ramifications. The term vection is most often used to refer to visual illusions of self-motion induced in stationary observers (by moving, or simulating the motion of, the surrounding environment). However, vection is increasingly being used to also refer to non-visual illusions of self-motion, visually mediated self-motion perceptions, and even general subjective experiences (i.e., “feelings”) of self-motion. The common thread in all of these definitions is the conscious subjective experience of self-motion. Thus, Challenge 2 (Significance of Vection) tackles the crucial issue of whether such conscious experiences actually serve functional roles during self-motion (e.g., in terms of controlling or guiding the self-motion). After more than 100 years of vection research there has been surprisingly little investigation into its functional significance. Challenge 3 (Vection Measures) discusses the difficulties with existing subjective self-report measures of vection (particularly in the context of contemporary research), and proposes several more objective measures of vection based on recent empirical findings. Finally, Challenge 4 (Neural Basis) reviews the recent neuroimaging literature examining the neural basis of vection and discusses the hurdles still facing these investigations. PMID:25774143

  8. Socially Conscious Ventures and Experiential Learning: Perceptions of Student Engagement

    ERIC Educational Resources Information Center

    Vasbinder, William; Koehler, William

    2015-01-01

    This qualitative study explored stakeholder perceptions of the outcomes of semester-long experiential learning projects in five selected business courses at a small, private college. Students worked with the owners of socially conscious startup firms to develop and present strategic marketing and business plans. The work draws upon interviews with…

  9. The Function of Consciousness in Multisensory Integration

    ERIC Educational Resources Information Center

    Palmer, Terry D.; Ramsey, Ashley K.

    2012-01-01

    The function of consciousness was explored in two contexts of audio-visual speech, cross-modal visual attention guidance and McGurk cross-modal integration. Experiments 1, 2, and 3 utilized a novel cueing paradigm in which two different flash suppressed lip-streams cooccured with speech sounds matching one of these streams. A visual target was…

  10. "Binaural Rivalry": Dichotic Listening as a Tool for the Investigation of the Neural Correlate of Consciousness

    ERIC Educational Resources Information Center

    Brancucci, Alfredo; Tommasi, Luca

    2011-01-01

    Since about two decades neuroscientists have systematically faced the problem of consciousness: the aim is to discover the neural activity specifically related to conscious perceptions, i.e. the biological properties of what philosophers call qualia. In this view, a neural correlate of consciousness (NCC) is a precise pattern of brain activity…

  11. Phenomenology of hallucinations, illusions, and delusions as part of seizure semiology.

    PubMed

    Kasper, B S; Kasper, E M; Pauli, E; Stefan, H

    2010-05-01

    In partial epilepsy, a localized hypersynchronous neuronal discharge evolving into a partial seizure affecting a particular cortical region or cerebral subsystem can give rise to subjective symptoms, which are perceived by the affected person only, that is, ictal hallucinations, illusions, or delusions. When forming the beginning of a symptom sequence leading to impairment of consciousness and/or a classic generalized seizure, these phenomena are referred to as an epileptic aura, but they also occur in isolation. They often manifest in the fully awake state, as part of simple partial seizures, but they also can be associated to different degrees of disturbed consciousness. Initial ictal symptoms often are closely related to the physiological functions of the cortical circuit involved and, therefore, can provide localizing information. When brain regions related to sensory integration are involved, the seizure discharge can cause specific kinds of hallucinations, for example, visual, auditory, gustatory, olfactory, and cutaneous sensory sensations. In addition to these elementary sensory perceptions, quite complex hallucinations related to a partial seizure can arise, for example, perception of visual scenes or hearing music. By involving psychic and emotional spheres of human perception, many seizures also give rise to hallucinatory emotional states (e.g., fear or happiness) or even more complex hallucinations (e.g., visuospatial phenomena), illusions (e.g., déjà vu, out-of-body experience), or delusional beliefs (e.g., identity change) that often are not easily recognized as epileptic. Here we suggest a classification into elementary sensory, complex sensory, and complex integratory seizure symptoms. Epileptic hallucinations, illusions, and delusions shine interesting light on the physiology and functional anatomy of brain regions involved and their functions in the human being. This article, in which 10 cases are described, introduces the fascinating phenomenology of subjective seizure symptoms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Drugs and People: Repertory Grid Structure and the Construal of Two Different Kinds of Target.

    ERIC Educational Resources Information Center

    Leenaars, Antoon A.

    1981-01-01

    Investigated comparisons of perceptions of drugs with perceptions of people, using the repertory grid technique. A significant result was finding a shift from seeing people as less positive and drugs as more positive when subjects shifted from a normal state of consciousness to a simulated altered state of consciousness. (Author)

  13. Visual perception and stereoscopic imaging: an artist's perspective

    NASA Astrophysics Data System (ADS)

    Mason, Steve

    2015-03-01

    This paper continues my 2014 February IS and T/SPIE Convention exploration into the relationship of stereoscopic vision and consciousness (90141F-1). It was proposed then that by using stereoscopic imaging people may consciously experience, or see, what they are viewing and thereby help make them more aware of the way their brains manage and interpret visual information. Environmental imaging was suggested as a way to accomplish this. This paper is the result of further investigation, research, and follow-up imaging. A show of images, that is a result of this research, allows viewers to experience for themselves the effects of stereoscopy on consciousness. Creating dye-infused aluminum prints while employing ChromaDepth® 3D glasses, I hope to not only raise awareness of visual processing but also explore the differences and similarities between the artist and scientist―art increases right brain spatial consciousness, not only empirical thinking, while furthering the viewer's cognizance of the process of seeing. The artist must abandon preconceptions and expectations, despite what the evidence and experience may indicate in order to see what is happening in his work and to allow it to develop in ways he/she could never anticipate. This process is then revealed to the viewer in a show of work. It is in the experiencing, not just from the thinking, where insight is achieved. Directing the viewer's awareness during the experience using stereoscopic imaging allows for further understanding of the brain's function in the visual process. A cognitive transformation occurs, the preverbal "left/right brain shift," in order for viewers to "see" the space. Using what we know from recent brain research, these images will draw from certain parts of the brain when viewed in two dimensions and different ones when viewed stereoscopically, a shift, if one is looking for it, which is quite noticeable. People who have experienced these images in the context of examining their own visual process have been startled by the effect they have on how they perceive the world around them. For instance, when viewing the mountains on a trip to Montana, one woman exclaimed, "I could no longer see just mountains, but also so many amazing colors and shapes"―she could see beyond her preconceptions of mountains to realize more of the beauty that was really there, not just the objects she "thought" to be there. The awareness gained from experiencing the artist's perspective will help with creative thinking in particular and overall research in general. Perceiving the space in these works, completely removing the picture-plane by use of the 3D glasses, making a conscious connection between the feeling and visual content, and thus gaining a deeper appreciation of the visual process will all contribute to understanding how our thinking, our left-brain domination, gets in the way of our seeing what is right in front of us. We fool ourselves with concept and memory―experiencing these prints may help some come a little closer to reality.

  14. Feature binding, attention and object perception.

    PubMed Central

    Treisman, A

    1998-01-01

    The seemingly effortless ability to perceive meaningful objects in an integrated scene actually depends on complex visual processes. The 'binding problem' concerns the way in which we select and integrate the separate features of objects in the correct combinations. Experiments suggest that attention plays a central role in solving this problem. Some neurological patients show a dramatic breakdown in the ability to see several objects; their deficits suggest a role for the parietal cortex in the binding process. However, indirect measures of priming and interference suggest that more information may be implicitly available than we can consciously access. PMID:9770223

  15. Subjective and objective characteristics of altered consciousness during epileptic seizures.

    PubMed

    Campora, Nuria; Kochen, Silvia

    2016-02-01

    Conscious states are inner states and processes of awareness. These states are by definition subjective. We analyzed subjective and objective characteristics of alteration of consciousness (AOC) during epileptic seizures, including its involvement in both the level of awareness and subjective content of consciousness. We evaluated AOC using the Consciousness Seizure Scale, the Ictal Consciousness Inventory, and a new structured survey developed by our group: the Seizure Perception Survey, which incorporates patients' subjective experiences before and after they watch a video-electroencephalographic recording of their own seizure. We included 35 patients (105 seizures) with drug-resistant epilepsy. Most seizures caused profound AOC. The content of consciousness was lower during temporal seizures with profound AOC. We uncovered a correlation between the subjective perception and objective duration of a seizure using the Seizure Perception Survey regarding memory; the patients had a better recall of ictal onset during wakefulness regardless of the epileptogenic zone, laterality, or magnitude of AOC. Nonetheless, the recovery of memory at the end of a seizure took more time in patients who showed greater AOC, less vivid content of consciousness, or a longer seizure. For 85% of the patients, this was the first time they were able to view their own seizures. The majority of the patients requested to view them again because this procedure allowed them to compare the recordings with their own memories and emotions during a seizure and to verify the real duration of the seizure. Alteration of consciousness is one of the most dramatic clinical manifestations of epilepsy. Usually, practitioners or relatives assume that the patients with AOC may not have any knowledge on their seizures. In this study, however, we found that most patients with AOC had a fairly accurate perception of the duration of a seizure and retained their memory of ictal onset. In contrast, for the majority of the patients, watching their own seizure was an extremely positive experience, and most patients stated that they were surprised as well as glad to view what really happened, without expressing negative opinions. Inclusion of subjective characteristics of AOC into the analysis yielded complete assessment of various dimensions of consciousness and therefore allowed us to gain a more detailed understanding of consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nonconscious semantic processing of emotional words modulates conscious access

    PubMed Central

    Gaillard, Raphaël; Del Cul, Antoine; Naccache, Lionel; Vinckier, Fabien; Cohen, Laurent; Dehaene, Stanislas

    2006-01-01

    Whether masked words can be processed at a semantic level remains a controversial issue in cognitive psychology. Although recent behavioral studies have demonstrated masked semantic priming for number words, attempts to generalize this finding to other categories of words have failed. Here, as an alternative to subliminal priming, we introduce a sensitive behavioral method to detect nonconscious semantic processing of words. The logic of this method consists of presenting words close to the threshold for conscious perception and examining whether their semantic content modulates performance in objective and subjective tasks. Our results disclose two independent sources of modulation of the threshold for access to consciousness. First, prior conscious perception of words increases the detection rate of the same words when they are subsequently presented with stronger masking. Second, the threshold for conscious access is lower for emotional words than for neutral ones, even for words that have not been previously consciously perceived, thus implying that written words can receive nonconscious semantic processing. PMID:16648261

  17. Visual cognition in disorders of consciousness: from V1 to top-down attention.

    PubMed

    Monti, Martin M; Pickard, John D; Owen, Adrian M

    2013-06-01

    What is it like to be at the lower boundaries of consciousness? Disorders of consciousness such as coma, the vegetative state, and the minimally conscious state are among the most mysterious and least understood conditions of the human brain. Particularly complicated is the assessment of residual cognitive functioning and awareness for diagnostic, rehabilitative, legal, and ethical purposes. In this article, we present a novel functional magnetic resonance imaging exploration of visual cognition in a patient with a severe disorder of consciousness. This battery of tests, first developed in healthy volunteers, assesses increasingly complex transformations of visual information along a known caudal to rostral gradient from occipital to temporal cortex. In the first five levels, the battery assesses (passive) processing of light, color, motion, coherent shapes, and object categories (i.e., faces, houses). At the final level, the battery assesses the ability to voluntarily deploy visual attention in order to focus on one of two competing stimuli. In the patient, this approach revealed appropriate brain activations, undistinguishable from those seen in healthy and aware volunteers. In addition, the ability of the patient to focus one of two competing stimuli, and switch between them on command, also suggests that he retained the ability to access, to some degree, his own visual representations. Copyright © 2012 Wiley Periodicals, Inc.

  18. Exploring the functional nature of synaesthetic colour: Dissociations from colour perception and imagery.

    PubMed

    Chiou, Rocco; Rich, Anina N; Rogers, Sebastian; Pearson, Joel

    2018-08-01

    Individuals with grapheme-colour synaesthesia experience anomalous colours when reading achromatic text. These unusual experiences have been said to resemble 'normal' colour perception or colour imagery, but studying the nature of synaesthesia remains difficult. In the present study, we report novel evidence that synaesthetic colour impacts conscious vision in a way that is different from both colour perception and imagery. Presenting 'normal' colour prior to binocular rivalry induces a location-dependent suppressive bias reflecting local habituation. By contrast, a grapheme that evokes synaesthetic colour induces a facilitatory bias reflecting priming that is not constrained to the inducing grapheme's location. This priming does not occur in non-synaesthetes and does not result from response bias. It is sensitive to diversion of visual attention away from the grapheme, but resistant to sensory perturbation, reflecting a reliance on cognitive rather than sensory mechanisms. Whereas colour imagery in non-synaesthetes causes local priming that relies on the locus of imagined colour, imagery in synaesthetes caused global priming not dependent on the locus of imagery. These data suggest a unique psychophysical profile of high-level colour processing in synaesthetes. Our novel findings and method will be critical to testing theories of synaesthesia and visual awareness. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Conscious Motivations of Adolescent Visual Artists and Creative Writers: Similarities and Differences

    ERIC Educational Resources Information Center

    Harrington, David M.; Chin-Newman, Christina S.

    2017-01-01

    This exploratory study was designed to expand the field's understanding of talented adolescent visual artists and creative writers and their conscious motivations for engaging in these creative activities. Accordingly, 233 talented high school visual arts (n = 151) and creative writing (n = 82) students were asked to rate the degree to which they…

  20. Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers.

    PubMed

    Hedger, Nicholas; Gray, Katie L H; Garner, Matthew; Adams, Wendy J

    2016-09-01

    Given capacity limits, only a subset of stimuli give rise to a conscious percept. Neurocognitive models suggest that humans have evolved mechanisms that operate without awareness and prioritize threatening stimuli over neutral stimuli in subsequent perception. In this meta-analysis, we review evidence for this 'standard hypothesis' emanating from 3 widely used, but rather different experimental paradigms that have been used to manipulate awareness. We found a small pooled threat-bias effect in the masked visual probe paradigm, a medium effect in the binocular rivalry paradigm and highly inconsistent effects in the breaking continuous flash suppression paradigm. Substantial heterogeneity was explained by the stimulus type: the only threat stimuli that were robustly prioritized across all 3 paradigms were fearful faces. Meta regression revealed that anxiety may modulate threat-biases, but only under specific presentation conditions. We also found that insufficiently rigorous awareness measures, inadequate control of response biases and low level confounds may undermine claims of genuine unconscious threat processing. Considering the data together, we suggest that uncritical acceptance of the standard hypothesis is premature: current behavioral evidence for threat-sensitive visual processing that operates without awareness is weak. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Inattentional blindness reflects limitations on perception, not memory: Evidence from repeated failures of awareness.

    PubMed

    Ward, Emily J; Scholl, Brian J

    2015-06-01

    Perhaps the most striking phenomenon of visual awareness is inattentional blindness (IB), in which a surprisingly salient event right in front of you may go completely unseen when unattended. Does IB reflect a failure of perception, or only of subsequent memory? Previous work has been unable to answer this question, due to a seemingly intractable dilemma: ruling out memory requires immediate perceptual reports, but soliciting such reports fuels an expectation that eliminates IB. Here we introduce a way of evoking repeated IB in the same subjects and the same session: we show that observers fail to report seeing salient events' not only when they have no expectation, but also when they have the wrong expectations about the events nature. This occurs when observers must immediately report seeing anything unexpected, even mid-event. Repeated IB thus demonstrates that IB is aptly named: it reflects a genuine deficit in moment-by-moment conscious perception, rather than a form of inattentional amnesia.

  2. Shared motion signals for human perceptual decisions and oculomotor actions

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Krauzlis, Richard J.

    2003-01-01

    A fundamental question in primate neurobiology is to understand to what extent motor behaviors are driven by shared neural signals that also support conscious perception or by independent subconscious neural signals dedicated to motor control. Although it has clearly been established that cortical areas involved in processing visual motion support both perception and smooth pursuit eye movements, it remains unknown whether the same or different sets of neurons within these structures perform these two functions. Examination of the trial-by-trial variation in human perceptual and pursuit responses during a simultaneous psychophysical and oculomotor task reveals that the direction signals for pursuit and perception are not only similar on average but also co-vary on a trial-by-trial basis, even when performance is at or near chance and the decisions are determined largely by neural noise. We conclude that the neural signal encoding the direction of target motion that drives steady-state pursuit and supports concurrent perceptual judgments emanates from a shared ensemble of cortical neurons.

  3. Consciousness as a graded and an all-or-none phenomenon: A conceptual analysis.

    PubMed

    Windey, Bert; Cleeremans, Axel

    2015-09-01

    The issue whether consciousness is a graded or an all-or-none phenomenon has been and continues to be a debate. Both contradictory accounts are supported by solid evidence. Starting from a level of processing framework allowing for states of partial awareness, here we further elaborate our view that visual experience, as it is most often investigated in the literature, is both graded and all-or-none. Low-level visual experience is graded, whereas high-level visual experience is all-or-none. We then present a conceptual analysis starting from the notion that consciousness is a general concept. We specify a number of different subconcepts present in the literature on consciousness, and outline how each of them may be seen as either graded, all-or-none, or both. We argue that such specifications are necessary to lead to a detailed and integrated understanding of how consciousness should be conceived of as graded and all-or-none. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  5. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  6. Relative Spatial Frequency Processing Drives Hemispheric Asymmetry in Conscious Awareness

    PubMed Central

    Piazza, Elise A.; Silver, Michael A.

    2017-01-01

    Visual stimuli with different spatial frequencies (SFs) are processed asymmetrically in the two cerebral hemispheres. Specifically, low SFs are processed relatively more efficiently in the right hemisphere than the left hemisphere, whereas high SFs show the opposite pattern. In this study, we ask whether these differences between the two hemispheres reflect a low-level division that is based on absolute SF values or a flexible comparison of the SFs in the visual environment at any given time. In a recent study, we showed that conscious awareness of SF information (i.e., visual perceptual selection from multiple SFs simultaneously present in the environment) differs between the two hemispheres. Building upon that result, here we employed binocular rivalry to test whether this hemispheric asymmetry is due to absolute or relative SF processing. In each trial, participants viewed a pair of rivalrous orthogonal gratings of different SFs, presented either to the left or right of central fixation, and continuously reported which grating they perceived. We found that the hemispheric asymmetry in perception is significantly influenced by relative processing of the SFs of the simultaneously presented stimuli. For example, when a medium SF grating and a higher SF grating were presented as a rivalry pair, subjects were more likely to report that they initially perceived the medium SF grating when the rivalry pair was presented in the left visual hemifield (right hemisphere), compared to the right hemifield. However, this same medium SF grating, when it was paired in rivalry with a lower SF grating, was more likely to be perceptually selected when it was in the right visual hemifield (left hemisphere). Thus, the visual system’s classification of a given SF as “low” or “high” (and therefore, which hemisphere preferentially processes that SF) depends on the other SFs that are present, demonstrating that relative SF processing contributes to hemispheric differences in visual perceptual selection. PMID:28469585

  7. Suppression of melatonin secretion in some blind patients by exposure to bright light.

    PubMed

    Czeisler, C A; Shanahan, T L; Klerman, E B; Martens, H; Brotman, D J; Emens, J S; Klein, T; Rizzo, J F

    1995-01-05

    Complete blindness generally results in the loss of synchronization of circadian rhythms to the 24-hour day and in recurrent insomnia. However, some blind patients maintain circadian entrainment. We undertook this study to determine whether some blind patients' eyes convey sufficient photic information to entrain the hypothalamic circadian pacemaker and suppress melatonin secretion, despite an apparently complete loss of visual function. We evaluated the input of light to the circadian pacemaker by testing the ability of bright light to decrease plasma melatonin concentrations in 11 blind patients with no conscious perception of light and in 6 normal subjects. We also evaluated circadian entrainment over time in the blind patients. Plasma melatonin concentrations decreased during exposure to bright light in three sightless patients by an average (+/- SD) of 69 +/- 21 percent and in the normal subjects by an average of 66 +/- 15 percent. When two of these blind patients were tested with their eyes covered during exposure to light, plasma melatonin did not decrease. The three blind patients reported no difficulty sleeping and maintained apparent circadian entrainment to the 24-hour day. Plasma melatonin concentrations did not decrease during exposure to bright light in seven of the remaining blind patients; in the eighth, plasma melatonin was undetectable. These eight patients reported a history of insomnia, and in four the circadian temperature rhythm was not entrained to the 24-hour day. The visual subsystem that mediates light-induced suppression of melatonin secretion remains functionally intact in some sightless patients. The absence of photic input to the circadian system thus constitutes a distinct form of blindness, associated with periodic insomnia, that afflicts most but not all patients with no conscious perception of light.

  8. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision

    PubMed Central

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground separation. PMID:25309467

  9. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground separation.

  10. Cortical regions activated by the subjective sense of perceptual coherence of environmental sounds: a proposal for a neuroscience of intuition.

    PubMed

    Volz, Kirsten G; Rübsamen, Rudolf; von Cramon, D Yves

    2008-09-01

    According to the Oxford English Dictionary, intuition is "the ability to understand or know something immediately, without conscious reasoning." In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input.

  11. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    PubMed

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Consciousness, biology and quantum hypotheses

    NASA Astrophysics Data System (ADS)

    Baars, Bernard J.; Edelman, David B.

    2012-09-01

    Natural phenomena are reducible to quantum events in principle, but quantum mechanics does not always provide the best level of analysis. The many-body problem, chaotic avalanches, materials properties, biological organisms, and weather systems are better addressed at higher levels. Animals are highly organized, goal-directed, adaptive, selectionist, information-preserving, functionally redundant, multicellular, quasi-autonomous, highly mobile, reproducing, dissipative systems that conserve many fundamental features over remarkably long periods of time at the species level. Animal brains consist of massive, layered networks of specialized signaling cells with 10,000 communication points per cell, and interacting up to 1000 Hz. Neurons begin to divide and differentiate very early in gestation, and continue to develop until middle age. Waking brains operate far from thermodynamic equilibrium under delicate homeostatic control, making them extremely sensitive to a range of physical and chemical stimuli, highly adaptive, and able to produce a remarkable range of goal-relevant actions. Consciousness is “a difference that makes a difference” at the level of massive neuronal interactions in the most parallel-interactive anatomical structure of the mammalian brain, the cortico-thalamic (C-T) system. Other brain structures are not established to result in direct conscious experiences, at least in humans. However, indirect extra-cortical influences on the C-T system are pervasive. Learning, brain plasticity and major life adaptations may require conscious cognition. While brains evolved over hundreds of millions of years, and individual brains grow over months, years and decades, conscious events appear to have a duty cycle of ∼100 ms, fading after a few seconds. They can of course be refreshed by inner rehearsal, re-visualization, or attending to recurrent stimulus sources. These very distinctive brain events are needed when animals seek out and cope with new, unpredictable and highly valued life events, such as evading predators, gathering critical information, seeking mates and hunting prey. Attentional selection of conscious events can be observed behaviorally in animals showing coordinated receptor orienting, flexible responding, alertness, emotional reactions, seeking, motivation and curiosity, as well as behavioral surprise and cortical and autonomic arousal. Brain events corresponding to attentional selection are prominent and widespread. Attention generally results in conscious experiences, which may be needed to recruit widespread processing resources in the brain. Many neuronal processes never become conscious, such as the balance system of the inner ear. An air traveler may “see” the passenger cabin tilt downward as the plane tilts to descend for a landing. That visual experience occurs even at night, when the traveler has no external frame of spatial reference. The passenger's body tilt with respect to gravity is detected unconsciously via the hair cells of the vestibular canals, which act as liquid accelerometers. However, that sensory activity is not experienced directly. It only becomes conscious via vision and the body senses. The vestibular sense is therefore quite different from visual perception, which “reports” accurately to a conscious field of experience, so that we can point accurately to a bright star on a dark night. Vestibular input is also precise but unconscious. Conscious cognition is therefore a distinct kind of brain event. Many of its features are well established, and must be accounted for by any adequate theory. No non-biological examples are known. Penrose and Hameroff have proposed that consciousness may be viewed as a fundamental problem in quantum physics. Specifically, their ‘orchestrated objective reduction’ (Orch-OR) hypothesis posits that conscious states arise from quantum computations in the microtubules of neurons. However, a number of microtubule-associated proteins are found in both plant and animal cells (like neurons) and plants are not generally considered to be conscious. Current quantum-level proposals do not explain the prominent empirical features of consciousness. Notably, they do not distinguish between closely matched conscious and unconscious brain events, as cognitive-biological theories must. About half of the human brain does not support conscious contents directly, yet neurons in these “unconscious” brain regions contain large numbers of microtubules. QM phenomena are famously observer-dependent, but to the best of our knowledge it has not been shown that they require a conscious observer, as opposed to a particle detector. Conscious humans cannot detect quantum events “as such” without the aid of special instrumentation. Instead, we categorize the wavelengths of light into conscious sensory events that neglect their quantum mechanical properties. In science the burden of proof is on the proposer, and this burden has not yet been met by quantum-level proposals. While in the future we may discover quantum effects that bear distinctively on conscious cognition ‘as such,’ we do not have such evidence today.

  13. Consciousness, biology and quantum hypotheses.

    PubMed

    Baars, Bernard J; Edelman, David B

    2012-09-01

    Natural phenomena are reducible to quantum events in principle, but quantum mechanics does not always provide the best level of analysis. The many-body problem, chaotic avalanches, materials properties, biological organisms, and weather systems are better addressed at higher levels. Animals are highly organized, goal-directed, adaptive, selectionist, information-preserving, functionally redundant, multicellular, quasi-autonomous, highly mobile, reproducing, dissipative systems that conserve many fundamental features over remarkably long periods of time at the species level. Animal brains consist of massive, layered networks of specialized signaling cells with 10,000 communication points per cell, and interacting up to 1000 Hz. Neurons begin to divide and differentiate very early in gestation, and continue to develop until middle age. Waking brains operate far from thermodynamic equilibrium under delicate homeostatic control, making them extremely sensitive to a range of physical and chemical stimuli, highly adaptive, and able to produce a remarkable range of goal-relevant actions. Consciousness is "a difference that makes a difference" at the level of massive neuronal interactions in the most parallel-interactive anatomical structure of the mammalian brain, the cortico-thalamic (C-T) system. Other brain structures are not established to result in direct conscious experiences, at least in humans. However, indirect extra-cortical influences on the C-T system are pervasive. Learning, brain plasticity and major life adaptations may require conscious cognition. While brains evolved over hundreds of millions of years, and individual brains grow over months, years and decades, conscious events appear to have a duty cycle of ∼100 ms, fading after a few seconds. They can of course be refreshed by inner rehearsal, re-visualization, or attending to recurrent stimulus sources. These very distinctive brain events are needed when animals seek out and cope with new, unpredictable and highly valued life events, such as evading predators, gathering critical information, seeking mates and hunting prey. Attentional selection of conscious events can be observed behaviorally in animals showing coordinated receptor orienting, flexible responding, alertness, emotional reactions, seeking, motivation and curiosity, as well as behavioral surprise and cortical and autonomic arousal. Brain events corresponding to attentional selection are prominent and widespread. Attention generally results in conscious experiences, which may be needed to recruit widespread processing resources in the brain. Many neuronal processes never become conscious, such as the balance system of the inner ear. An air traveler may "see" the passenger cabin tilt downward as the plane tilts to descend for a landing. That visual experience occurs even at night, when the traveler has no external frame of spatial reference. The passenger's body tilt with respect to gravity is detected unconsciously via the hair cells of the vestibular canals, which act as liquid accelerometers. However, that sensory activity is not experienced directly. It only becomes conscious via vision and the body senses. The vestibular sense is therefore quite different from visual perception, which "reports" accurately to a conscious field of experience, so that we can point accurately to a bright star on a dark night. Vestibular input is also precise but unconscious. Conscious cognition is therefore a distinct kind of brain event. Many of its features are well established, and must be accounted for by any adequate theory. No non-biological examples are known. Penrose and Hameroff have proposed that consciousness may be viewed as a fundamental problem in quantum physics. Specifically, their 'orchestrated objective reduction' (Orch-OR) hypothesis posits that conscious states arise from quantum computations in the microtubules of neurons. However, a number of microtubule-associated proteins are found in both plant and animal cells (like neurons) and plants are not generally considered to be conscious. Current quantum-level proposals do not explain the prominent empirical features of consciousness. Notably, they do not distinguish between closely matched conscious and unconscious brain events, as cognitive-biological theories must. About half of the human brain does not support conscious contents directly, yet neurons in these "unconscious" brain regions contain large numbers of microtubules. QM phenomena are famously observer-dependent, but to the best of our knowledge it has not been shown that they require a conscious observer, as opposed to a particle detector. Conscious humans cannot detect quantum events "as such" without the aid of special instrumentation. Instead, we categorize the wavelengths of light into conscious sensory events that neglect their quantum mechanical properties. In science the burden of proof is on the proposer, and this burden has not yet been met by quantum-level proposals. While in the future we may discover quantum effects that bear distinctively on conscious cognition 'as such,' we do not have such evidence today. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study.

    PubMed

    Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi

    2016-12-07

    Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (P<0.001, uncorrected). In contrast, decreased activations of the hippocampus, thalamus, inferior frontal cortex (ventrolateral prefrontal cortex), and cerebellum were maintained during the sedation and early-recovery sessions (P<0.001, uncorrected) and were recovered in the late-recovery session of ∼40 min. Temporal changes in the signals from these areas varied in a manner comparable to that described by the random-effect model analysis (P<0.05, corrected). In conclusion, conscious sedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.

  15. Afference copy as a quantitative neurophysiological model for consciousness.

    PubMed

    Cornelis, Hugo; Coop, Allan D

    2014-06-01

    Consciousness is a topic of considerable human curiosity with a long history of philosophical analysis and debate. We consider there is nothing particularly complicated about consciousness when viewed as a necessary process of the vertebrate nervous system. Here, we propose a physiological "explanatory gap" is created during each present moment by the temporal requirements of neuronal activity. The gap extends from the time exteroceptive and proprioceptive stimuli activate the nervous system until they emerge into consciousness. During this "moment", it is impossible for an organism to have any conscious knowledge of the ongoing evolution of its environment. In our schematic model, a mechanism of "afference copy" is employed to bridge the explanatory gap with consciously experienced percepts. These percepts are fabricated from the conjunction of the cumulative memory of previous relevant experience and the given stimuli. They are structured to provide the best possible prediction of the expected content of subjective conscious experience likely to occur during the period of the gap. The model is based on the proposition that the neural circuitry necessary to support consciousness is a product of sub/preconscious reflexive learning and recall processes. Based on a review of various psychological and neurophysiological findings, we develop a framework which contextualizes the model and briefly discuss further implications.

  16. Non-Conscious Emotional Activation Colors First Impressions: A Regulatory Role for Conscious Awareness

    PubMed Central

    Lapate, R.C.; Rokers, B.; Li, T.; Davidson, R.J.

    2014-01-01

    Emotions can color our attitudes toward unrelated objects in the environment. Prior evidence suggests that such emotional coloring is particularly strong when emotion-triggering information escapes conscious awareness. But, is emotional reactivity stronger following non-conscious versus conscious emotional provocation? Or does conscious processing specifically change the association between emotional reactivity and evaluations of unrelated objects? In this study, we independently indexed emotional reactivity and coloring as a function of emotional-stimulus awareness to disentangle these accounts. Specifically, we recorded skin conductance responses (SCRs) to spiders and fearful faces, along with subsequent preferences for novel neutral faces during visually aware and unaware states. Fearful faces increased SCRs comparably in both aware and unaware conditions. Yet, only when visual awareness was precluded did SCRs to fearful faces predict decreased likeability of neutral faces. These findings suggest a regulatory role for conscious awareness in breaking otherwise automatic associations between physiological reactivity and evaluative emotional responses. PMID:24317420

  17. Genital Appearance Dissatisfaction: Implications for Women's Genital Image Self-Consciousness, Sexual Esteem, Sexual Satisfaction, and Sexual Risk.

    PubMed

    Schick, Vanessa R; Calabrese, Sarah K; Rima, Brandi N; Zucker, Alyssa N

    2010-09-01

    Findings regarding the link between body image and sexuality have been equivocal, possibly because of the insensitivity of many of body image measures to potential variability across sensory aspects of the body (e.g., appearance versus odor), individual body parts (e.g., genitalia versus thighs), and social settings (e.g., public versus intimate). The current study refined existing methods of evaluating women's body image in the context of sexuality by focusing upon two highly specified dimensions: satisfaction with the visual appearance of the genitalia and self-consciousness about the genitalia during a sexual encounter. Genital appearance dissatisfaction, genital image self-consciousness, and multiple facets of sexuality were examined with a sample of 217 undergraduate women using an online survey. Path analysis revealed that greater dissatisfaction with genital appearance was associated with higher genital image self-consciousness during physical intimacy, which, in turn, was associated with lower sexual esteem, sexual satisfaction, and motivation to avoid risky sexual behavior. These findings underscore the detrimental impact of negative genital perceptions on young women's sexual wellbeing, which is of particular concern given their vulnerability at this stage of sexual development as well as the high rates of sexually transmitted infections within this age group. Interventions that enhance satisfaction with the natural appearance of their genitalia could facilitate the development of a healthy sexual self-concept and provide long-term benefits in terms of sexual safety and satisfaction.

  18. Perceiving a story outside of conscious awareness: When we infer narrative attributes from subliminal sequential stimuli.

    PubMed

    Kawakami, Naoaki; Yoshida, Fujio

    2015-05-01

    Perceiving a story behind successive movements plays an important role in our lives. From a general perspective, such higher mental activity would seem to depend on conscious processes. Using a subliminal priming paradigm, we demonstrated that such story perception occurs without conscious awareness. In the experiments, participants were subliminally presented with sequential pictures that represented a story in which one geometrical figure was chased by the other figure, and in which one fictitious character defeated the other character in a tug-of-war. Although the participants could not report having seen the pictures, their automatic mental associations (i.e., associations that are activated unintentionally, difficult to control, and not necessarily endorsed at a conscious level) were shifted to line up with the story. The results suggest that story perception operates outside of conscious awareness. Implications for research on the unconscious were also briefly discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Enhanced Awareness Followed Reversible Inhibition of Human Visual Cortex: A Combined TMS, MRS and MEG Study

    PubMed Central

    Allen, Christopher P. G.; Dunkley, Benjamin T.; Muthukumaraswamy, Suresh D.; Edden, Richard; Evans, C. John; Sumner, Petroc; Singh, Krish D.; Chambers, Christopher D.

    2014-01-01

    This series of experiments investigated the neural basis of conscious vision in humans using a form of transcranial magnetic stimulation (TMS) known as continuous theta burst stimulation (cTBS). Previous studies have shown that occipital TMS, when time-locked to the onset of visual stimuli, can induce a phenomenon analogous to blindsight in which conscious detection is impaired while the ability to discriminate ‘unseen’ stimuli is preserved above chance. Here we sought to reproduce this phenomenon using offline occipital cTBS, which has been shown to induce an inhibitory cortical aftereffect lasting 45–60 minutes. Contrary to expectations, our first experiment revealed the opposite effect: cTBS enhanced conscious vision relative to a sham control. We then sought to replicate this cTBS-induced potentiation of consciousness in conjunction with magnetoencephalography (MEG) and undertook additional experiments to assess its relationship to visual cortical excitability and levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA; via magnetic resonance spectroscopy, MRS). Occipital cTBS decreased cortical excitability and increased regional GABA concentration. No significant effects of cTBS on MEG measures were observed, although the results provided weak evidence for potentiation of event related desynchronisation in the β band. Collectively these experiments suggest that, through the suppression of noise, cTBS can increase the signal-to-noise ratio of neural activity underlying conscious vision. We speculate that gating-by-inhibition in the visual cortex may provide a key foundation of consciousness. PMID:24956195

  20. Subliminal stimuli modulate somatosensory perception rhythmically and provide evidence for discrete perception.

    PubMed

    Baumgarten, Thomas J; Königs, Sara; Schnitzler, Alfons; Lange, Joachim

    2017-03-09

    Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13-18 Hz). This can be compellingly explained by a model of discrete perceptual cycles.

  1. Gender difference in the theta/alpha ratio during the induction of peaceful audiovisual modalities.

    PubMed

    Yang, Chia-Yen; Lin, Ching-Po

    2015-09-01

    Gender differences in emotional perception have been found in numerous psychological and psychophysiological studies. The conducting modalities in diverse characteristics of different sensory systems make it interesting to determine how cooperation and competition contribute to emotional experiences. We have previously estimated the bias from the match attributes of auditory and visual modalities and revealed specific brain activity frequency patterns related to a peaceful mood. In that multimodality experiment, we focused on how inner-quiet information is processed in the human brain, and found evidence of auditory domination from the theta-band activity. However, a simple quantitative description of these three frequency bands is lacking, and no studies have assessed the effects of peacefulness on the emotional state. Therefore, the aim of this study was to use magnetoencephalography to determine if gender differences exist (and when and where) in the frequency interactions underpinning the perception of peacefulness. This study provides evidence of auditory and visual domination in perceptual bias during multimodality processing of peaceful consciousness. The results of power ratio analyses suggest that the values of the theta/alpha ratio are associated with a modality as well as hemispheric asymmetries in the anterior-to-posterior direction, which shift from right to left with the auditory to visual stimulations in a peaceful mood. This means that the theta/alpha ratio might be useful for evaluating emotion. Moreover, the difference was found to be most pronounced for auditory domination and visual sensitivity in the female group.

  2. Categorical information influences conscious perception: An interaction between object-substitution masking and repetition blindness.

    PubMed

    Goodhew, Stephanie C; Greenwood, John A; Edwards, Mark

    2016-05-01

    The visual system is constantly bombarded with dynamic input. In this context, the creation of enduring object representations presents a particular challenge. We used object-substitution masking (OSM) as a tool to probe these processes. In particular, we examined the effect of target-like stimulus repetitions on OSM. In visual crowding, the presentation of a physically identical stimulus to the target reduces crowding and improves target perception, whereas in spatial repetition blindness, the presentation of a stimulus that belongs to the same category (type) as the target impairs perception. Across two experiments, we found an interaction between spatial repetition blindness and OSM, such that repeating a same-type stimulus as the target increased masking magnitude relative to presentation of a different-type stimulus. These results are discussed in the context of the formation of object files. Moreover, the fact that the inducer only had to belong to the same "type" as the target in order to exacerbate masking, without necessarily being physically identical to the target, has important implications for our understanding of OSM per se. That is, our results show the target is processed to a categorical level in OSM despite effective masking and, strikingly, demonstrate that this category-level content directly influences whether or not the target is perceived, not just performance on another task (as in priming).

  3. The developmental emergence of unconscious fear processing from eyes during infancy.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2016-02-01

    From early in life, emotion detection plays an important role during social interactions. Recently, 7-month-old infants have been shown to process facial signs of fear in others without conscious perception and solely on the basis of their eyes. However, it is not known whether unconscious fear processing from eyes is present before 7months of age or only emerges at around 7months. To investigate this question, we measured 5-month-old infants' event-related potentials (ERPs) in response to subliminally presented fearful and non-fearful eyes and compared these with 7-month-old infants' ERP responses from a previous study. Our ERP results revealed that only 7-month-olds, but not 5-month-olds, distinguished between fearful and non-fearful eyes. Specifically, 7-month-olds' processing of fearful eyes was reflected in early visual processes over occipital cortex and later attentional processes over frontal cortex. This suggests that, in line with prior work on the conscious detection of fearful faces, the brain processes associated with the unconscious processing of fearful eyes develop between 5 and 7months of age. More generally, these findings support the notion that emotion perception and the underlying brain processes undergo critical change during the first year of life. Therefore, the current data provide further evidence for viewing infancy as a formative period in human socioemotional functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A mathematical model of embodied consciousness.

    PubMed

    Rudrauf, David; Bennequin, Daniel; Granic, Isabela; Landini, Gregory; Friston, Karl; Williford, Kenneth

    2017-09-07

    We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM combines multisensory evidence with prior beliefs in memory and frames them by selecting points of view and perspectives according to preferences. The choice of projective frames governs how expectations are transformed by consciousness. Violations of expectation are encoded as free energy. Free energy minimization drives perspective taking, and controls the switch between perception, imagination and action. In the PCM, consciousness functions as an algorithm for the maximization of resilience, using projective perspective taking and imagination in order to escape local minima of free energy. The PCM can account for a variety of psychological phenomena: the characteristic spatial phenomenology of subjective experience, the distinctions and integral relationships between perception, imagination and action, the role of affective processes in intentionality, but also perceptual phenomena such as the dynamics of bistable figures and body swap illusions in virtual reality. It relates phenomenology to function, showing the computational advantages of consciousness. It suggests that changes of brain states from unconscious to conscious reflect the action of projective transformations and suggests specific neurophenomenological hypotheses about the brain, guidelines for designing artificial systems, and formal principles for psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Psychic reality and the nature of consciousness.

    PubMed

    Fonagy, Peter; Allison, Elizabeth

    2016-02-01

    In this paper we make the case for a psychoanalytically informed reconsideration of the phenomena of consciousness. Classically, following Freud, who viewed consciousness as merely a reflection or perception of unconscious mental activity, psychoanalysts have tended to regard a focus on conscious experience as potentially reductionistic and at risk of overlooking the mind's deeper structures. We describe the case of Mr K, a patient who experienced disturbances of consciousness that forced us to consider the possibility that the capacity to experience ourselves as conscious, intentional agents in a coherent world of objects is not merely a modality of perception but rather a maturational and developmental achievement that to some degree depends on adequate experiences of caregiving and is vital in ensuring the possibility of human communication. As such, it is a capacity that is vulnerable to experiences of neglect and maltreatment. We suggest that as well as compromising the capacity to think about one's own and other people's feelings, such experiences may have the further adverse consequence of leading the individual to experience and risk becoming conscious of certain dangerously maladaptive, destructive states of mind which in normal development remain inaccessible to conscious experience. Phenomenologically, such states of mind are experienced as fragmentation and disturbances of consciousness. We discuss the clinical implications of these reflections and the limitations they place on psychoanalytic work in the context of their impact on the work with Mr K. Copyright © 2015 Institute of Psychoanalysis.

  6. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    PubMed Central

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  7. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system.

    PubMed

    Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao

    2015-12-15

    For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses.

  8. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence

    PubMed Central

    Massimini, Marcello; Postle, Bradley R.; Koch, Christof

    2017-01-01

    The role of the frontal cortex in consciousness remains a matter of debate. In this Perspective, we will critically review the clinical and neuroimaging evidence for the involvement of the front versus the back of the cortex in specifying conscious contents and discuss promising research avenues. Dual Perspectives Companion Paper: Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?, by Brian Odegaard, Robert T. Knight, and Hakwan Lau PMID:28978697

  9. Electrophysiological Correlates of Subliminal Perception of Facial Expressions in Individuals with Autistic Traits: A Backward Masking Study

    PubMed Central

    Vukusic, Svjetlana; Ciorciari, Joseph; Crewther, David P.

    2017-01-01

    People with Autism spectrum disorder (ASD) show difficulty in social communication, especially in the rapid assessment of emotion in faces. This study examined the processing of emotional faces in typically developing adults with high and low levels of autistic traits (measured using the Autism Spectrum Quotient—AQ). Event-related potentials (ERPs) were recorded during viewing of backward-masked neutral, fearful and happy faces presented under two conditions: subliminal (16 ms, below the level of visual conscious awareness) and supraliminal (166 ms, above the time required for visual conscious awareness). Individuals with low and high AQ differed in the processing of subliminal faces, with the low AQ group showing an enhanced N2 amplitude for subliminal happy faces. Some group differences were found in the condition effects, with the Low AQ showing shorter frontal P3b and N4 latencies for subliminal vs. supraliminal condition. Although results did not show any group differences on the face-specific N170 component, there were shorter N170 latencies for supraliminal vs. subliminal conditions across groups. The results observed on the N2, showing group differences in subliminal emotion processing, suggest that decreased sensitivity to the reward value of social stimuli is a common feature both of people with ASD as well as people with high autistic traits from the normal population. PMID:28588465

  10. Electrophysiological Correlates of Subliminal Perception of Facial Expressions in Individuals with Autistic Traits: A Backward Masking Study.

    PubMed

    Vukusic, Svjetlana; Ciorciari, Joseph; Crewther, David P

    2017-01-01

    People with Autism spectrum disorder (ASD) show difficulty in social communication, especially in the rapid assessment of emotion in faces. This study examined the processing of emotional faces in typically developing adults with high and low levels of autistic traits (measured using the Autism Spectrum Quotient-AQ). Event-related potentials (ERPs) were recorded during viewing of backward-masked neutral, fearful and happy faces presented under two conditions: subliminal (16 ms, below the level of visual conscious awareness) and supraliminal (166 ms, above the time required for visual conscious awareness). Individuals with low and high AQ differed in the processing of subliminal faces, with the low AQ group showing an enhanced N2 amplitude for subliminal happy faces. Some group differences were found in the condition effects, with the Low AQ showing shorter frontal P3b and N4 latencies for subliminal vs. supraliminal condition. Although results did not show any group differences on the face-specific N170 component, there were shorter N170 latencies for supraliminal vs. subliminal conditions across groups. The results observed on the N2, showing group differences in subliminal emotion processing, suggest that decreased sensitivity to the reward value of social stimuli is a common feature both of people with ASD as well as people with high autistic traits from the normal population.

  11. Objectification in Virtual Romantic Contexts: Perceived Discrepancies between Self and Partner Ideals Differentially affect Body Consciousness in Women and Men

    PubMed Central

    Overstreet, Nicole M.; Quinn, Diane M.; Marsh, Kerry L.

    2015-01-01

    The current study examined whether exposure to sexually objectifying images in a potential romantic partner's virtual apartment affects discrepancies between people's perception of their own appearance (i.e., self-perceptions) and their perception of the body ideal that is considered desirable to a romantic partner (i.e., partner-ideals). Participants were 114 heterosexual undergraduate students (57 women and 57 men) from a northeastern U.S. university. The study used a 2 (Participant Gender) x 2 (Virtual Environment: Sexualized vs. Non-Sexualized) between-subjects design. We predicted that women exposed to sexually objectifying images in a virtual environment would report greater discrepancies between their self-perceptions and partner-ideals than men, which in turn would contribute to women's body consciousness. Findings support this hypothesis and show that perceived discrepancies account for the relationship between exposure to sexually objectifying images and body consciousness for women but not men. We also found gender asymmetries in objectification responses when each component of perceived discrepancies, i.e., self-perceptions versus perceptions of a romantic partner's body ideal, were examined separately. For men, exposure to muscular sexualized images was significantly associated with their self-perceptions but not their perceptions of the body size that is considered desirable to a romantic partner. For women, exposure to thin sexualized images was significantly associated with their perceptions that a romantic partner preferred a woman with a smaller body size. However, exposure to these images did not affect women's self-perceptions. Implications for gender asymmetries in objectification responses and perceived discrepancies that include a romantic partner's perceptions are discussed. PMID:26594085

  12. Colour Perception in Ancient World

    NASA Astrophysics Data System (ADS)

    Nesterov, D. I.; Fedorova, M. Yu

    2017-11-01

    How did the human thought form the surrounding color information into the persistent semantic images of a mythological, pseudoscientific and religious nature? The concepts associated with colour perception are suggested. The existence of colour environment does not depend on the human consciousness. The colour culture formation is directly related to the level of the human consciousness development and the possibility to influence the worldview and culture. The colour perception of a person goes through the stages similar to the development of colour vision in a child. Like any development, the colour consciousness has undergone stages of growth and decline, evolution and stagnation. The way of life and difficult conditions for existence made their own adjustments to the development of the human perception of the surrounding world. Wars have been both a powerful engine of progress in all spheres of life and a great destructive force demolishing the already created and preserved heritage. The surrounding world has always been interesting for humans, evoked images and fantasies in the consciousness of ancient people. Unusual and inexplicable natural phenomena spawned numerous legends and myths which was reflected in the ancient art and architecture and, accordingly, in a certain manifestation of colour in the human society. The colour perception of the ancient man, his pragmatic, utilitarian attitude to colour is considered as well as the influence of dependence on external conditions of existence and their reflection in the colour culture of antiquity. “Natural Science” conducts research in the field of the colour nature and their authorial interpretation of the Hellenic period. Several authorial concepts of the ancient world have been considered.

  13. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Degrees of Consciousness in the Communication of Actions and Events on the Visual Cliff. No. 58.

    ERIC Educational Resources Information Center

    Bierschenk, Bernhard

    The consciousness of dizygotic twins in their communication of actions and events as seen in the visual cliff pictures published by E. J. Gibson and R. D. Walk (1960) was studied in Sweden. In the process of communication, many different state spaces are generated. The methodology demonstrates that ecological and biophysical properties of language…

  15. Towards An Integrative Theory Of Consciousness: Part 2 (An Anthology Of Various Other Models)

    PubMed Central

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed. PMID:23678242

  16. Towards an integrative theory of consciousness: part 2 (an anthology of various other models).

    PubMed

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed.

  17. Subliminal Speech Perception and Auditory Streaming

    ERIC Educational Resources Information Center

    Dupoux, Emmanuel; de Gardelle, Vincent; Kouider, Sid

    2008-01-01

    Current theories of consciousness assume a qualitative dissociation between conscious and unconscious processing: while subliminal stimuli only elicit a transient activity, supraliminal stimuli have long-lasting influences. Nevertheless, the existence of this qualitative distinction remains controversial, as past studies confounded awareness and…

  18. Subliminal stimuli modulate somatosensory perception rhythmically and provide evidence for discrete perception

    PubMed Central

    Baumgarten, Thomas J.; Königs, Sara; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13–18 Hz). This can be compellingly explained by a model of discrete perceptual cycles. PMID:28276493

  19. Job satisfaction in relation to energy resource consciousness and perceptions of energy utilization in selected Illinois manufacturing firms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, T.S.

    1986-01-01

    This study was developed through a synthesis and review of literature and research related to the current status of job satisfaction, energy resources, and perceptions of how energy is utilized in the manufacturing work environment. This synthesis and review revolved around several proven contributing factors of job satisfaction, such as age, education, and challenge from work itself. Quality of work life programs and their components are discussed in relation to their impact on job satisfaction. The nature of energy resource utilization is traced back through history with an emphasis on the limitations of current resources and options for the future.more » The review highlights the current debate over what should be the future path of energy resource development. The concept of satisfaction of human needs is reviewed and related to job satisfaction and energy resources. The purpose of this research study was to contribute to the understanding of how perceptions of energy resources relate to job satisfaction. Results of the study indicated that there were no significant differences between an individual's energy resource consciousness and perceptions of energy utilization in the work place, energy resource consciousness and job satisfaction, and job satisfaction and perceptions of energy utilization in the workplace.« less

  20. [Self-consciousness, consciousness of the other and dementias].

    PubMed

    Gil, Roger

    2007-06-01

    Studies of self-consciousness in dementia concern essentially anosognosia or the loss of insight. However, Self-consciousness is multifaceted: it includes awareness of the body, perceptions, one's own history, identity, and one's own projects. Self-consciousness is linked to consciousness of others i.e. to social cognition supported by identification of others, but also by comprehension of facial expression of emotions, comprehension and expression of emotional prosody, pragmatic abilities, ability to infer other's people's mental states, thoughts, and feelings (theory of mind and empathy), knowledge of social norms and rules, social reasoning. The subtypes of dementias (and namely Alzheimer's disease and frontotemporal dementia) affect heterogeneously the different aspects of the self-and other-consciousness. Further studies are needed for a better knowledge of the complex relationship between Self-consciousness, social cognition, decision making and neuropsychiatric symptoms and behavioral disturbances occurring in demented patients.

  1. Effects of Visual Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning.

    PubMed

    Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho

    2015-09-01

    Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.

  2. The conjunction of non-consciously perceived object identity and spatial position can be retained during a visual short-term memory task.

    PubMed

    Bergström, Fredrik; Eriksson, Johan

    2015-01-01

    Although non-consciously perceived information has previously been assumed to be short-lived (< 500 ms), recent findings show that non-consciously perceived information can be maintained for at least 15 s. Such findings can be explained as working memory without a conscious experience of the information to be retained. However, whether or not working memory can operate on non-consciously perceived information remains controversial, and little is known about the nature of such non-conscious visual short-term memory (VSTM). Here we used continuous flash suppression to render stimuli non-conscious, to investigate the properties of non-consciously perceived representations in delayed match-to-sample (DMS) tasks. In Experiment I we used variable delays (5 or 15 s) and found that performance was significantly better than chance and was unaffected by delay duration, thereby replicating previous findings. In Experiment II the DMS task required participants to combine information of spatial position and object identity on a trial-by-trial basis to successfully solve the task. We found that the conjunction of spatial position and object identity was retained, thereby verifying that non-conscious, trial-specific information can be maintained for prospective use. We conclude that our results are consistent with a working memory interpretation, but that more research is needed to verify this interpretation.

  3. EEG-based usability assessment of 3D shutter glasses

    NASA Astrophysics Data System (ADS)

    Wenzel, Markus A.; Schultze-Kraft, Rafael; Meinecke, Frank C.; Cardinaux, Fabien; Kemp, Thomas; Müller, Klaus-Robert; Curio, Gabriel; Blankertz, Benjamin

    2016-02-01

    Objective. Neurotechnology can contribute to the usability assessment of products by providing objective measures of neural workload and can uncover usability impediments that are not consciously perceived by test persons. In this study, the neural processing effort imposed on the viewer of 3D television by shutter glasses was quantified as a function of shutter frequency. In particular, we sought to determine the critical shutter frequency at which the ‘neural flicker’ vanishes, such that visual fatigue due to this additional neural effort can be prevented by increasing the frequency of the system. Approach. Twenty-three participants viewed an image through 3D shutter glasses, while multichannel electroencephalogram (EEG) was recorded. In total ten shutter frequencies were employed, selected individually for each participant to cover the range below, at and above the threshold of flicker perception. The source of the neural flicker correlate was extracted using independent component analysis and the flicker impact on the visual cortex was quantified by decoding the state of the shutter from the EEG. Main Result. Effects of the shutter glasses were traced in the EEG up to around 67 Hz—about 20 Hz over the flicker perception threshold—and vanished at the subsequent frequency level of 77 Hz. Significance. The impact of the shutter glasses on the visual cortex can be detected by neurotechnology even when a flicker is not reported by the participants. Potential impact. Increasing the shutter frequency from the usual 50 Hz or 60 Hz to 77 Hz reduces the risk of visual fatigue and thus improves shutter-glass-based 3D usability.

  4. EEG-based usability assessment of 3D shutter glasses.

    PubMed

    Wenzel, Markus A; Schultze-Kraft, Rafael; Meinecke, Frank C; Fabien Cardinaux; Kemp, Thomas; Klaus-Robert Müller; Gabriel Curio; Benjamin Blankertz

    2016-02-01

    Neurotechnology can contribute to the usability assessment of products by providing objective measures of neural workload and can uncover usability impediments that are not consciously perceived by test persons. In this study, the neural processing effort imposed on the viewer of 3D television by shutter glasses was quantified as a function of shutter frequency. In particular, we sought to determine the critical shutter frequency at which the 'neural flicker' vanishes, such that visual fatigue due to this additional neural effort can be prevented by increasing the frequency of the system. Twenty-three participants viewed an image through 3D shutter glasses, while multichannel electroencephalogram (EEG) was recorded. In total ten shutter frequencies were employed, selected individually for each participant to cover the range below, at and above the threshold of flicker perception. The source of the neural flicker correlate was extracted using independent component analysis and the flicker impact on the visual cortex was quantified by decoding the state of the shutter from the EEG. Effects of the shutter glasses were traced in the EEG up to around 67 Hz-about 20 Hz over the flicker perception threshold-and vanished at the subsequent frequency level of 77 Hz. The impact of the shutter glasses on the visual cortex can be detected by neurotechnology even when a flicker is not reported by the participants. Potential impact. Increasing the shutter frequency from the usual 50 Hz or 60 Hz to 77 Hz reduces the risk of visual fatigue and thus improves shutter-glass-based 3D usability.

  5. Spatial Attention Effects during Conscious and Nonconscious Processing of Visual Features and Objects

    ERIC Educational Resources Information Center

    Tapia, Evelina; Breitmeyer, Bruno G.; Jacob, Jane; Broyles, Elizabeth C.

    2013-01-01

    Flanker congruency effects were measured in a masked flanker task to assess the properties of spatial attention during conscious and nonconscious processing of form, color, and conjunctions of these features. We found that (1) consciously and nonconsciously processed colored shape distractors (i.e., flankers) produce flanker congruency effects;…

  6. Sweet taste enhancement through pulsatile stimulation depends on pulsation period not on conscious pulse perception.

    PubMed

    Burseg, Kerstin Martha Mensien; Brattinga, Celine; de Kok, Petrus Maria Theresia; Bult, Johannes Hendrikus Franciscus

    2010-06-16

    When aqueous NaCl solutions are tasted at continuously alternating concentrations, overall saltiness ratings exceed those observed for solutions with the same averaged, but non-alternating concentrations. In the present study, this effect is replicated for alternating aqueous sucrose solutions. We tested the hypothesis that enhancement depends on the conscious perception of intensity contrasts. High sucrose pulses were continuously alternated with low sucrose intervals at pulsation periods between 1.5s and 20s. Tastant pulsation enhanced sweetness intensity and this enhancement varied between 8 and 14%, peaking for periods from 4.5s to 6s (Study 1). This range coincided with the average pulsation period at which perceived taste pulses blended into a continuous stimulus, i.e. the taste fusion period (TFP). When comparing intensity ratings of sucrose solutions at individualized pulse periods of 0.5, 1.0 and 2.0 times TFP to ratings for continuous sucrose solutions of the same net concentration, pulsatile stimuli were perceived as significantly sweeter (p<0.01; Study 2). However, sweetness intensity enhancement was the same for all pulsation periods. It was shown that sweet taste enhancement peaks at pulsation periods ranging from 0.5 to 2.0 TFP and that the level of conscious pulsation perception does not affect taste enhancement. The results suggest the introduction of enhancement effects at pre-conscious stages of gustatory processing. Further mechanisms that may account for such pre-conscious effects are discussed. (c) 2010 Elsevier Inc. All rights reserved.

  7. Using ERPs for assessing the (sub) conscious perception of noise.

    PubMed

    Porbadnigk, Anne K; Antons, Jan-N; Blankertz, Benjamin; Treder, Matthias S; Schleicher, Robert; Moller, Sebastian; Curio, Gabriel

    2010-01-01

    In this paper, we investigate the use of event-related potentials (ERPs) as a quantitative measure for quality assessment of disturbed audio signals. For this purpose, we ran an EEG study (N=11) using an oddball paradigm, during which subjects were presented with the phoneme /a/, superimposed with varying degrees of signal-correlated noise. Based on this data set, we address the question to which degree the degradation of the auditory stimuli is reflected on a neural level, even if the disturbance is below the threshold of conscious perception. For those stimuli that are consciously recognized as being disturbed, we suggest the use of the amplitude and latency of the P300 component for assessing the level of disturbance. For disturbed stimuli for which the noise is not perceived consciously, we show for two subjects that a classifier based on shrinkage LDA can be applied successfully to single out stimuli, for which the noise was presumably processed subconsciously.

  8. Act quickly, decide later: long-latency visual processing underlies perceptual decisions but not reflexive behavior.

    PubMed

    Jolij, Jacob; Scholte, H Steven; van Gaal, Simon; Hodgson, Timothy L; Lamme, Victor A F

    2011-12-01

    Humans largely guide their behavior by their visual representation of the world. Recent studies have shown that visual information can trigger behavior within 150 msec, suggesting that visually guided responses to external events, in fact, precede conscious awareness of those events. However, is such a view correct? By using a texture discrimination task, we show that the brain relies on long-latency visual processing in order to guide perceptual decisions. Decreasing stimulus saliency leads to selective changes in long-latency visually evoked potential components reflecting scene segmentation. These latency changes are accompanied by almost equal changes in simple RTs and points of subjective simultaneity. Furthermore, we find a strong correlation between individual RTs and the latencies of scene segmentation related components in the visually evoked potentials, showing that the processes underlying these late brain potentials are critical in triggering a response. However, using the same texture stimuli in an antisaccade task, we found that reflexive, but erroneous, prosaccades, but not antisaccades, can be triggered by earlier visual processes. In other words: The brain can act quickly, but decides late. Differences between our study and earlier findings suggesting that action precedes conscious awareness can be explained by assuming that task demands determine whether a fast and unconscious, or a slower and conscious, representation is used to initiate a visually guided response.

  9. Nonconscious emotional activation colors first impressions: a regulatory role for conscious awareness.

    PubMed

    Lapate, Regina C; Rokers, Bas; Li, Tianyi; Davidson, Richard J

    2014-02-01

    Emotions can color people's attitudes toward unrelated objects in the environment. Existing evidence suggests that such emotional coloring is particularly strong when emotion-triggering information escapes conscious awareness. But is emotional reactivity stronger after nonconscious emotional provocation than after conscious emotional provocation, or does conscious processing specifically change the association between emotional reactivity and evaluations of unrelated objects? In this study, we independently indexed emotional reactivity and coloring as a function of emotional-stimulus awareness to disentangle these accounts. Specifically, we recorded skin-conductance responses to spiders and fearful faces, along with subsequent preferences for novel neutral faces during visually aware and unaware states. Fearful faces increased skin-conductance responses comparably in both stimulus-aware and stimulus-unaware conditions. Yet only when visual awareness was precluded did skin-conductance responses to fearful faces predict decreased likability of neutral faces. These findings suggest a regulatory role for conscious awareness in breaking otherwise automatic associations between physiological reactivity and evaluative emotional responses.

  10. Conscious awareness is required for holistic face processing

    PubMed Central

    Axelrod, Vadim; Rees, Geraint

    2014-01-01

    Investigating the limits of unconscious processing is essential to understand the function of consciousness. Here, we explored whether holistic face processing, a mechanism believed to be important for face processing in general, can be accomplished unconsciously. Using a novel “eyes-face” stimulus we tested whether discrimination of pairs of eyes was influenced by the surrounding face context. While the eyes were fully visible, the faces that provided context could be rendered invisible through continuous flash suppression. Two experiments with three different sets of face stimuli and a subliminal learning procedure converged to show that invisible faces did not influence perception of visible eyes. In contrast, surrounding faces, when they were clearly visible, strongly influenced perception of the eyes. Thus, we conclude that conscious awareness might be a prerequisite for holistic face processing. PMID:24950500

  11. Stigma consciousness: the psychological legacy of social stereotypes.

    PubMed

    Pinel, E C

    1999-01-01

    Whereas past researchers have treated targets of stereotypes as though they have uniform reactions to their stereotyped status (e.g., J. Crocker & B. Major, 1989; C. M. Steele & J. Aronson, 1995), it is proposed here that targets differ in the extent to which they expect to be stereotyped by others (i.e., stigma consciousness). Six studies, 5 of which validate the stigma-consciousness questionnaire (SCQ), are presented. The results suggest that the SCQ is a reliable and valid instrument for detecting differences in stigma consciousness. In addition, scores on the SCQ predict perceptions of discrimination and the ability to generate convincing examples of such discrimination. The final study highlights a behavioral consequence of stigma consciousness: the tendency for people high in stigma consciousness to forgo opportunities to invalidate stereotypes about their group. The relation of stigma consciousness to past research on targets of stereotypes is considered as is the issue of how stigma consciousness may encourage continued stereotyping.

  12. A Heuristic Model of Consciousness with Applications to the Development of Science and Society

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2010-01-01

    A working model of consciousness is fundamental to understanding of the interactions of the observer in science. This paper examines contemporary understanding of consciousness. A heuristic model of consciousness is suggested that is consistent with psycophysics measurements of bandwidth of consciousness relative to unconscious perception. While the self reference nature of consciousness confers a survival benefit by assuring the all points of view regarding a problem are experienced in sufficiently large population, conscious bandwidth is constrained by design to avoid chaotic behavior. The multiple hypotheses provided by conscious reflection enable the rapid progression of science and technology. The questions of free will and the problem of attention are discussed in relation to the model. Finally the combination of rapid technology growth with the assurance of many unpredictable points of view is considered in respect to contemporary constraints to the development of society.

  13. A higher-order theory of emotional consciousness

    PubMed Central

    LeDoux, Joseph E.; Brown, Richard

    2017-01-01

    Emotional states of consciousness, or what are typically called emotional feelings, are traditionally viewed as being innately programmed in subcortical areas of the brain, and are often treated as different from cognitive states of consciousness, such as those related to the perception of external stimuli. We argue that conscious experiences, regardless of their content, arise from one system in the brain. In this view, what differs in emotional and nonemotional states are the kinds of inputs that are processed by a general cortical network of cognition, a network essential for conscious experiences. Although subcortical circuits are not directly responsible for conscious feelings, they provide nonconscious inputs that coalesce with other kinds of neural signals in the cognitive assembly of conscious emotional experiences. In building the case for this proposal, we defend a modified version of what is known as the higher-order theory of consciousness. PMID:28202735

  14. Consciousness of the first order in blindsight

    PubMed Central

    Sahraie, Arash; Hibbard, Paul B.; Trevethan, Ceri T.; Ritchie, Kay L.; Weiskrantz, Lawrence

    2010-01-01

    At suprathreshold levels, detection and awareness of visual stimuli are typically synonymous in nonclinical populations. But following postgeniculate lesions, some patients may perform above chance in forced-choice detection paradigms, while reporting not to see the visual events presented within their blind field. This phenomenon, termed “blindsight,” is intriguing because it demonstrates a dissociation between detection and perception. It is possible, however, for a blindsight patient to have some “feeling” of the occurrence of an event without seeing per se. This is termed blindsight type II to distinguish it from the type I, defined as discrimination capability in the total absence of any acknowledged awareness. Here we report on a well-studied patient, D.B., whose blindsight capabilities have been previously documented. We have found that D.B. is capable of detecting visual patterns defined by changes in luminance (first-order gratings) and those defined by contrast modulation of textured patterns (textured gratings; second-order stimuli) while being aware of the former but reporting no awareness of the latter. We have systematically investigated the parameters that could lead to visual awareness of the patterns and show that mechanisms underlying the subjective reports of visual awareness rely primarily on low spatial frequency, first-order spatial components of the image. PMID:21078979

  15. Children's Dreaming and the Development of Consciousness.

    ERIC Educational Resources Information Center

    Foulkes, David

    Noting that scientific observation of children's dreaming offers unparalleled opportunities to study experience of conscious mental states, this book presents findings from two studies on children's dreaming. Following an argument outlining the problems in equating dreaming with perception, the book explains the use of sleep laboratories and…

  16. The art of seeing and painting.

    PubMed

    Grossberg, Stephen

    2008-01-01

    The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understood paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.

  17. Advantage of hole stimulus in rivalry competition.

    PubMed

    Meng, Qianli; Cui, Ding; Zhou, Ke; Chen, Lin; Ma, Yuanye

    2012-01-01

    Mounting psychophysical evidence suggests that early visual computations are sensitive to the topological properties of stimuli, such as the determination of whether the object has a hole or not. Previous studies have demonstrated that the hole feature took some advantages during conscious perception. In this study, we investigate whether there exists a privileged processing for hole stimuli during unconscious perception. By applying a continuous flash suppression paradigm, the target was gradually introduced to one eye to compete against a flashed full contrast Mondrian pattern which was presented to the other eye. This method ensured that the target image was suppressed during the initial perceptual period. We compared the initial suppressed duration between the stimuli with and without the hole feature and found that hole stimuli required less time than no-hole stimuli to gain dominance against the identical suppression noise. These results suggest the hole feature could be processed in the absence of awareness, and there exists a privileged detection of hole stimuli during suppressed phase in the interocular rivalry.

  18. The Emergence of Visual Awareness: Temporal Dynamics in Relation to Task and Mask Type

    PubMed Central

    Kiefer, Markus; Kammer, Thomas

    2017-01-01

    One aspect of consciousness phenomena, the temporal emergence of visual awareness, has been subject of a controversial debate. How can visual awareness, that is the experiential quality of visual stimuli, be characterized best? Is there a sharp discontinuous or dichotomous transition between unaware and fully aware states, or does awareness emerge gradually encompassing intermediate states? Previous studies yielded conflicting results and supported both dichotomous and gradual views. It is well conceivable that these conflicting results are more than noise, but reflect the dynamic nature of the temporal emergence of visual awareness. Using a psychophysical approach, the present research tested whether the emergence of visual awareness is context-dependent with a temporal two-alternative forced choice task. During backward masking of word targets, it was assessed whether the relative temporal sequence of stimulus thresholds is modulated by the task (stimulus presence, letter case, lexical decision, and semantic category) and by mask type. Four masks with different similarity to the target features were created. Psychophysical functions were then fitted to the accuracy data in the different task conditions as a function of the stimulus mask SOA in order to determine the inflection point (conscious threshold of each feature) and slope of the psychophysical function (transition from unaware to aware within each feature). Depending on feature-mask similarity, thresholds in the different tasks were highly dispersed suggesting a graded transition from unawareness to awareness or had less differentiated thresholds indicating that clusters of features probed by the tasks quite simultaneously contribute to the percept. The latter observation, although not compatible with the notion of a sharp all-or-none transition between unaware and aware states, suggests a less gradual or more discontinuous emergence of awareness. Analyses of slopes of the fitted psychophysical functions also indicated that the emergence of awareness of single features is variable and might be influenced by the continuity of the feature dimensions. The present work thus suggests that the emergence of awareness is neither purely gradual nor dichotomous, but highly dynamic depending on the task and mask type. PMID:28316583

  19. Perception, Psychedelics, And Social Change

    ERIC Educational Resources Information Center

    Kaiser, Charles; Gold, Robert

    1973-01-01

    The most profound consequences of the increasingly widespread use of psychedelics may be sociological in nature. Altered states of consciousness create nothing less than new perceptual configurations which may well spell the end of social institutions based upon modes of perception which are incongruent with new perceptions being attained by…

  20. Evolution of the circuitry for conscious color vision in primates

    PubMed Central

    Neitz, J; Neitz, M

    2017-01-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision. PMID:27935605

  1. Evolution of the circuitry for conscious color vision in primates.

    PubMed

    Neitz, J; Neitz, M

    2017-02-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.

  2. Using brain stimulation to disentangle neural correlates of conscious vision

    PubMed Central

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  3. Conscious Action/Zombie Action

    PubMed Central

    Shepherd, Joshua

    2015-01-01

    Abstract I argue that the neural realizers of experiences of trying (that is, experiences of directing effort towards the satisfaction of an intention) are not distinct from the neural realizers of actual trying (that is, actual effort directed towards the satisfaction of an intention). I then ask how experiences of trying might relate to the perceptual experiences one has while acting. First, I assess recent zombie action arguments regarding conscious visual experience, and I argue that contrary to what some have claimed, conscious visual experience plays a causal role for action control in some circumstances. Second, I propose a multimodal account of the experience of acting. According to this account, the experience of acting is (at the very least) a temporally extended, co‐conscious collection of agentive and perceptual experiences, functionally integrated and structured both by multimodal perceptual processing as well as by what an agent is, at the time, trying to do. PMID:27667859

  4. Theoretical Tinnitus Framework: A Neurofunctional Model.

    PubMed

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques.

  5. Theoretical Tinnitus Framework: A Neurofunctional Model

    PubMed Central

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques. PMID:27594822

  6. Differential effects of visual-spatial attention on response latency and temporal-order judgment.

    PubMed

    Neumann, O; Esselmann, U; Klotz, W

    1993-01-01

    Theorists from both classical structuralism and modern attention research have claimed that attention to a sensory stimulus enhances processing speed. However, they have used different operations to measure this effect, viz., temporal-order judgment (TOJ) and reaction-time (RT) measurement. We report two experiments that compared the effect of a spatial cue on RT and TOJ. Experiment 1 demonstrated that a nonmasked, peripheral cue (the brief brightening of a box) affected both RT and TOJ. However, the former effect was significantly larger than the latter. A masked cue had a smaller, but reliable, effect on TOJ. In Experiment 2, the effects of a masked cue on RT and TOJ were compared under identical stimulus conditions. While the cue had a strong effect on RT, it left TOJ unaffected. These results suggest that a spatial cue may have dissociable effects on response processes and the processes that lead to a conscious percept. Implications for the concept of direct parameter specification and for theories of visual attention are discussed.

  7. Phenomenal and access consciousness in olfaction.

    PubMed

    Stevenson, Richard J

    2009-12-01

    Contemporary literature on consciousness, with some exceptions, rarely considers the olfactory system. In this article the characteristics of olfactory consciousness, viewed from the standpoint of the phenomenal (P)/access (A) distinction, are examined relative to the major senses. The review details several qualitative differences in both olfactory P consciousness (shifts in the felt location, universal synesthesia-like and affect-rich experiences, and misperceptions) and A consciousness (recovery from habituation, capacity for conscious processing, access to semantic and episodic memory, learning, attention, and in the serial-unitary nature of olfactory percepts). The basis for these differences is argued to arise from the functions that the olfactory system performs and from the unique neural architecture needed to instantiate them. These data suggest, at a minimum, that P and A consciousness are uniquely configured in olfaction and an argument can be made that the P and A distinction may not hold for this sensory system.

  8. Regulating the Access to Awareness: Brain Activity Related to Probe-related and Spontaneous Reversals in Binocular Rivalry.

    PubMed

    Metzger, Brian A; Mathewson, Kyle E; Tapia, Evelina; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2017-06-01

    Research on the neural correlates of consciousness (NCC) has implicated an assortment of brain regions, ERP components, and network properties associated with visual awareness. Recently, the P3b ERP component has emerged as a leading NCC candidate. However, typical P3b paradigms depend on the detection of some stimulus change, making it difficult to separate brain processes elicited by the stimulus itself from those associated with updates or changes in visual awareness. Here we used binocular rivalry to ask whether the P3b is associated with changes in awareness even in the absence of changes in the object of awareness. We recorded ERPs during a probe-mediated binocular rivalry paradigm in which brief probes were presented over the image in either the suppressed or dominant eye to determine whether the elicited P3b activity is probe or reversal related. We found that the timing of P3b (but not its amplitude) was closely related to the timing of the report of a perceptual change rather than to the onset of the probe. This is consistent with the proposal that P3b indexes updates in conscious awareness, rather than being related to stimulus processing per se. Conversely, the probe-related P1 amplitude (but not its latency) was associated with reversal latency, suggesting that the degree to which the probe is processed increases the likelihood of a fast perceptual reversal. Finally, the response-locked P3b amplitude (but not its latency) was associated with the duration of an intermediate stage between reversals in which parts of both percepts coexist (piecemeal period). Together, the data suggest that the P3b reflects an update in consciousness and that the intensity of that process (as indexed by P3b amplitude) predicts how immediate that update is.

  9. Positive Perceptions of Genital Appearance and Feeling Sexually Attractive: Is It a Matter of Sexual Esteem?

    PubMed

    Amos, Natalie; McCabe, Marita

    2016-07-01

    The present study examined the relationship between perceptions of genital appearance and self-perceived sexual attractiveness. The study sample included men and women (aged 18-45 years, M = 23.7, SD = 4.98) who identified as heterosexual (n = 1017), gay or lesbian (n = 1225), or bisexual (n = 651). Participants responded to an online survey assessing their self-perceived sexual attractiveness, genital self-image, genital self-consciousness during sexual activity, and sexual esteem. Based on previous findings, we hypothesized a positive link between genital self-perceptions and self-perceived sexual attractiveness, with sexual esteem acting as a mediator. We tested this hypothesis using structural equation modeling. Analyses revealed a significant association between both genital self-image and genital self-consciousness and self-perceived sexual attractiveness. However, these relationships were at least partially mediated by sexual esteem, across both gender and sexual orientation. The findings suggest that, regardless of gender or sexual orientation, individuals who maintain a positive genital self-image or lack genital self-consciousness, are more likely to experience greater sexual esteem, and in turn, feel more sexually attractive. The findings have implications for the importance of genital appearance perceptions and improving individuals' sexual esteem and self-perceived sexual attractiveness.

  10. A temporal dissociation of subliminal versus supraliminal fear perception: an event-related potential study.

    PubMed

    Liddell, Belinda J; Williams, Leanne M; Rathjen, Jennifer; Shevrin, Howard; Gordon, Evian

    2004-04-01

    Current theories of emotion suggest that threat-related stimuli are first processed via an automatically engaged neural mechanism, which occurs outside conscious awareness. This mechanism operates in conjunction with a slower and more comprehensive process that allows a detailed evaluation of the potentially harmful stimulus (LeDoux, 1998). We drew on the Halgren and Marinkovic (1995) model to examine these processes using event-related potentials (ERPs) within a backward masking paradigm. Stimuli used were faces with fear and neutral (as baseline control) expressions, presented above (supraliminal) and below (subliminal) the threshold for conscious detection. ERP data revealed a double dissociation for the supraliminal versus subliminal perception of fear. In the subliminal condition, responses to the perception of fear stimuli were enhanced relative to neutral for the N2 "excitatory" component, which is thought to represent orienting and automatic aspects of face processing. By contrast, supraliminal perception of fear was associated with relatively enhanced responses for the late P3 "inhibitory" component, implicated in the integration of emotional processes. These findings provide evidence in support of Halgren and Marinkovic's temporal model of emotion processing, and indicate that the neural mechanisms for appraising signals of threat may be initiated, not only automatically, but also without the need for conscious detection of these signals.

  11. A between-subjects test of the lower-identification/ higher-priming paradox.

    PubMed

    Rubino, I Alex; Rociola, Giuseppe; Di Lorenzo, Giorgio; Magni, Valentina; Ribolsi, Michele; Mancini, Valentina; Saya, Anna; Pezzarossa, Bianca; Siracusano, Alberto; Suslow, Thomas

    2013-01-01

    An under-recognised U-shaped model states that unconscious and conscious perceptual effects are functionally exclusive and that unconscious perceptual effects manifest themselves only at the objective detection threshold, when conscious perception is completely absent. We tested the U-shaped line model with a between-subjects paradigm. Angry, happy, neutral faces, or blank slides were flashed for 5.5 ms and 19.5 ms before Chinese ideographs in a darkened room. A group of volunteers (n = 84) were asked to rate how much they liked each ideograph and performed an identification task. According to the median identification score two subgroups were composed; one with 50% or < 50% identification scores (n = 31), and one with above 50% identification scores (n = 53). The hypothesised U-shaped line was confirmed by the findings. Affective priming was found only at the two extreme points: the 5.5 ms condition of the low-identification group (subliminal perception) and the 19.5 ms condition of the > 50% high-identification group (supraliminal perception). The two intermediate points (19.5 ms of the low-identification group and 5.5 ms of the high-identification group) did not correspond to significant priming effects. These results confirm that a complete absence of conscious perception is the condition for the deployment of unconscious perceptual effects.

  12. Load induced blindness.

    PubMed

    Macdonald, James S P; Lavie, Nilli

    2008-10-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of perceptual load in a letter-search task and assessed its effect on the conscious perception of a search-irrelevant shape stimulus appearing in the periphery, using a direct measure of awareness (present/absent reports). Detection sensitivity (d') was consistently reduced with high, compared to low, perceptual load but was unaffected by the level of working memory load. Because alternative accounts in terms of expectation, memory, response bias, and goal-neglect due to the more strenuous high load task were ruled out, these experiments clearly demonstrate that high perceptual load determines conscious perception, impairing the ability to merely detect the presence of a stimulus--a phenomenon of load induced blindness.

  13. The Sander parallelogram illusion dissociates action and perception despite control for the litany of past confounds.

    PubMed

    Whitwell, Robert L; Goodale, Melvyn A; Merritt, Kate E; Enns, James T

    2018-01-01

    The two visual systems hypothesis proposes that human vision is supported by an occipito-temporal network for the conscious visual perception of the world and a fronto-parietal network for visually-guided, object-directed actions. Two specific claims about the fronto-parietal network's role in sensorimotor control have generated much data and controversy: (1) the network relies primarily on the absolute metrics of target objects, which it rapidly transforms into effector-specific frames of reference to guide the fingers, hands, and limbs, and (2) the network is largely unaffected by scene-based information extracted by the occipito-temporal network for those same targets. These two claims lead to the counter-intuitive prediction that in-flight anticipatory configuration of the fingers during object-directed grasping will resist the influence of pictorial illusions. The research confirming this prediction has been criticized for confounding the difference between grasping and explicit estimates of object size with differences in attention, sensory feedback, obstacle avoidance, metric sensitivity, and priming. Here, we address and eliminate each of these confounds. We asked participants to reach out and pick up 3D target bars resting on a picture of the Sander Parallelogram illusion and to make explicit estimates of the length of those bars. Participants performed their grasps without visual feedback, and were permitted to grasp the targets after making their size-estimates to afford them an opportunity to reduce illusory error with haptic feedback. The results show unequivocally that the effect of the illusion is stronger on perceptual judgments than on grasping. Our findings from the normally-sighted population provide strong support for the proposal that human vision is comprised of functionally and anatomically dissociable systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.

    PubMed

    Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi

    2012-01-01

    Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation.

  15. Volitional components of consciousness vary across wakefulness, dreaming and lucid dreaming

    PubMed Central

    Dresler, Martin; Eibl, Leandra; Fischer, Christian F. J.; Wehrle, Renate; Spoormaker, Victor I.; Steiger, Axel; Czisch, Michael; Pawlowski, Marcel

    2014-01-01

    Consciousness is a multifaceted concept; its different aspects vary across species, vigilance states, or health conditions. While basal aspects of consciousness like perceptions and emotions are present in many states and species, higher-order aspects like reflective or volitional capabilities seem to be most pronounced in awake humans. Here we assess the experience of volition across different states of consciousness: 10 frequent lucid dreamers rated different aspects of volition according to the Volitional Components Questionnaire for phases of normal dreaming, lucid dreaming, and wakefulness. Overall, experienced volition was comparable for lucid dreaming and wakefulness, and rated significantly higher for both states compared to non-lucid dreaming. However, three subscales showed specific differences across states of consciousness: planning ability was most pronounced during wakefulness, intention enactment most pronounced during lucid dreaming, and self-determination most pronounced during both wakefulness and lucid dreaming. Our data confirm the multifaceted nature of consciousness: different higher-order aspects of consciousness are differentially expressed across different conscious states. PMID:24427149

  16. Volitional components of consciousness vary across wakefulness, dreaming and lucid dreaming.

    PubMed

    Dresler, Martin; Eibl, Leandra; Fischer, Christian F J; Wehrle, Renate; Spoormaker, Victor I; Steiger, Axel; Czisch, Michael; Pawlowski, Marcel

    2014-01-01

    Consciousness is a multifaceted concept; its different aspects vary across species, vigilance states, or health conditions. While basal aspects of consciousness like perceptions and emotions are present in many states and species, higher-order aspects like reflective or volitional capabilities seem to be most pronounced in awake humans. Here we assess the experience of volition across different states of consciousness: 10 frequent lucid dreamers rated different aspects of volition according to the Volitional Components Questionnaire for phases of normal dreaming, lucid dreaming, and wakefulness. Overall, experienced volition was comparable for lucid dreaming and wakefulness, and rated significantly higher for both states compared to non-lucid dreaming. However, three subscales showed specific differences across states of consciousness: planning ability was most pronounced during wakefulness, intention enactment most pronounced during lucid dreaming, and self-determination most pronounced during both wakefulness and lucid dreaming. Our data confirm the multifaceted nature of consciousness: different higher-order aspects of consciousness are differentially expressed across different conscious states.

  17. Predictable internal brain dynamics in EEG and its relation to conscious states

    PubMed Central

    Yoo, Jaewook; Kwon, Jaerock; Choe, Yoonsuck

    2014-01-01

    Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory), protention (anticipation), and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG) data. Our results show that EEG signals from awake or rapid eye movement (REM) sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS). Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics. PMID:24917813

  18. Developing Historical Consciousness and a Community of History Practitioners: A Survey of Prospective History Teachers across Canada

    ERIC Educational Resources Information Center

    Lévesque, Stéphane G.; Zanazanian, Paul

    2015-01-01

    This paper looks at the historical consciousness of prospective history teachers in Canada. Using a bilingual online survey instrument inspired by the pan-Canadian research "Canadians and their Pasts" with volunteer participants (N = 233), the study investigates their background knowledge, their perceptions of the trustworthiness of…

  19. Racial bias in pain perception and response: experimental examination of automatic and deliberate processes

    PubMed Central

    Mathur, Vani A.; Richeson, Jennifer A.; Paice, Judith A.; Muzyka, Michael; Chiao, Joan Y.

    2014-01-01

    Racial disparities in pain treatment pose a significant public health and scientific problem. Prior studies demonstrate clinicians and non-clinicians are less perceptive, and suggest less treatment for, the pain of African Americans, relative to European Americans. Here we investigate the effects of explicit/implicit patient race presentation, patient race, and perceiver race on pain perception and response. African American and European American participants rated pain perception, empathy, helping motivation, and treatment suggestion in response to vignettes about patients’ pain. Vignettes were accompanied by a rapid (implicit), or static (explicit) presentation of an African or European American patient’s face. Participants perceived and responded more to European American patients in the implicit prime condition, when the effect of patient race was below the level of conscious regulation. This effect was reversed when patient race was presented explicitly. Additionally, female participants perceived and responded more to the pain of all patients, relative to male participants, and in the implicit prime condition, African American participants were more perceptive and responsive than European Americans to the pain of all patients. Taken together, these results suggest that known disparities in pain treatment may be largely due to automatic (below the level of conscious regulation), rather than deliberate (subject to conscious regulation) biases. These biases were not associated with traditional implicit measures of racial attitudes, suggesting that biases in pain perception and response may be independent of general prejudice. Perspective Results suggest racial biases in pain perception and treatment are at least partially due to automatic processes. When the relevance of patient race is made explicit, however, biases are attenuated and even reversed. We also find preliminary evidence that African Americans may be more sensitive to the pain of others than European Americans. PMID:24462976

  20. Neuroimaging somatosensory perception and masking.

    PubMed

    Meador, Kimford J; Revill, Kathleen Pirog; Epstein, Charles M; Sathian, K; Loring, David W; Rorden, Chris

    2017-01-08

    The specific cortical and subcortical regions involved in conscious perception and masking are uncertain. This study sought to identify brain areas involved in conscious perception of somatosensory stimuli during a masking task using functional magnetic resonance (fMRI) to contrast perceived vs. non-perceived targets. Electrical trains were delivered to the right index finger for targets and to the left index finger for masks. Target intensities were adjusted to compensate for threshold drift. Sham target trials were given in ~10% of the trials, and target stimuli without masks were delivered in one of the five runs (68 trials/run). When healthy dextral adult volunteers (n=15) perceived right hand targets, greater left- than right-cerebral activations were seen with similar patterns across the parietal cortex, thalamus, insula, claustrum, and midbrain. When targets were not perceived, left/right cerebral activations were similar overall. Directly comparing perceived vs. non-perceived stimuli with similar intensities in the masking task revealed predominate activations contralateral to masks. In contrast, activations were greater contralateral to perceived targets if no masks were given or if masks were given but target stimulus intensities were greater for perceived than non-perceived targets. The novel aspects of this study include: 1) imaging of cortical and subcortical activations in healthy humans related to somatosensory perception during a masking task, 2) activations in the human thalamus and midbrain related to perception of stimuli compared to matched non-perceived stimuli, and 3) similar left/right cerebral activation patterns across cortical, thalamic and midbrain structures suggesting interactions across all three levels during conscious perception in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Promoting the use of personally relevant stimuli for investigating patients with disorders of consciousness

    PubMed Central

    Perrin, Fabien; Castro, Maïté; Tillmann, Barbara; Luauté, Jacques

    2015-01-01

    Sensory stimuli are used to evaluate and to restore cognitive functions and consciousness in patients with a disorder of consciousness (DOC) following a severe brain injury. Although sophisticated protocols can help assessing higher order cognitive functions and awareness, one major drawback is their lack of sensitivity. The aim of the present review is to show that stimulus selection is crucial for an accurate evaluation of the state of patients with disorders of consciousness as it determines the levels of processing that the patient can have with stimulation from his/her environment. The probability to observe a behavioral response or a cerebral response is increased when her/his personal history and/or her/his personal preferences are taken into account. We show that personally relevant stimuli (i.e., with emotional, autobiographical, or self-related characteristics) are associated with clearer signs of perception than are irrelevant stimuli in patients with DOC. Among personally relevant stimuli, music appears to be a promising clinical tool as it boosts perception and cognition in patients with DOC and could also serve as a prognostic tool. We suggest that the effect of music on cerebral processes in patients might reflect the music’s capacity to act both on the external and internal neural networks supporting consciousness. PMID:26284020

  2. Medical Student Perceptions of Cost-Conscious Care in an Internal Medicine Clerkship: A Thematic Analysis.

    PubMed

    Tartaglia, Kimberly M; Kman, Nicholas; Ledford, Cynthia

    2015-10-01

    Although as much as 87 % of all healthcare spending is directed by physicians, studies have demonstrated that they lack knowledge about the costs of medical care. Similarly, learners have not traditionally received instruction on cost-conscious care. To examine medical students' perceptions of healthcare delivery as it relates to cost consciousness Retrospective qualitative analysis of medical student narratives Third-year medical students during their inpatient internal medicine clerkship Students completed a reflective exercise wherein they were asked to describe a scenario in which a patient experienced lack of attention to cost-conscious care, and were asked to identify solutions and barriers. We analyzed these reflections to learn more about students' awareness and perceptions regarding the practice of cost-conscious care within our medical center. Eighty students submitted the assignment between July and December 2012. The most common problems identified included unnecessary tests and treatments (n = 69) and duplicative tests and treatments (n = 20.) With regards to solutions, students described 82 scenarios, with 125 potential solutions identified. Students most commonly used discussion with the team (speak up, ask why) as the process they would use (n = 28) and most often wanted to focus lab testing (n = 38) as the intervention. The most common barriers to high-value care included increased time and effort (n = 19), ingrained practices (n = 17), and defensive medicine or fear of missing something (n = 18.) Even with minimal clinical experience, medical students were able to identify instances of lack of attention to cost-conscious care as well as potential solutions. Although students identified the hierarchy in healthcare teams as a potential barrier to improving high value care, most students stated they would feel comfortable engaging the team in discussion. Future efforts to empower learners at all levels to question value decisions and to develop and implement solutions may result in improved healthcare.

  3. Decide Now - Ditch Decision Making

    DTIC Science & Technology

    2004-05-01

    Consciousness I was first sensitised to the issue of consciousness by my work on Blindsight (Campion et al, 1983) and Visual Agnosia (Campion...Behavioral and Brain Sciences, 6, 423-448. Campion J. and Latto R. (1985) Apperceptive agnosia due to carbon monoxide poisoning: an

  4. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    PubMed

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The role of perceptual load in inattentional blindness.

    PubMed

    Cartwright-Finch, Ula; Lavie, Nilli

    2007-03-01

    Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the effects of load on conscious perception using the "inattentional blindness" paradigm. As predicted by load theory, awareness of a task-irrelevant stimulus was significantly reduced by higher perceptual load (with increased numbers of search items, or a harder discrimination vs. detection task). These results demonstrate that conscious perception of task-irrelevant stimuli critically depends upon the level of task-relevant perceptual load rather than intentions or expectations, thus enhancing the resolution to the early vs. late selection debate offered by the perceptual load theory.

  6. Posthypnotic suggestion alters conscious color perception in an automatic manner.

    PubMed

    Kallio, Sakari; Koivisto, Mika

    2013-01-01

    The authors studied whether a posthypnotic suggestion to see a brief, masked target as gray can change the color experience of a hypnotic virtuoso. The visibility of the target was manipulated by varying the delay between the target and the mask that followed it. The virtuoso's subjective reports indicated that her conscious color experience was altered already at short delays between the target and the subsequent mask. The virtuoso's objectively measured pattern of responding under posthypnotic suggestion could not be mimicked either by control participants nor the virtuoso herself. Due to posthypnotic amnesia, the virtuoso was unaware of suggestions given during hypnosis. Importantly, the virtuoso could not alter her color perception without a hypnotic suggestion. These results suggest that hypnosis can affect even a highly automatic process such as color perception.

  7. Conscious awareness is required for holistic face processing.

    PubMed

    Axelrod, Vadim; Rees, Geraint

    2014-07-01

    Investigating the limits of unconscious processing is essential to understand the function of consciousness. Here, we explored whether holistic face processing, a mechanism believed to be important for face processing in general, can be accomplished unconsciously. Using a novel "eyes-face" stimulus we tested whether discrimination of pairs of eyes was influenced by the surrounding face context. While the eyes were fully visible, the faces that provided context could be rendered invisible through continuous flash suppression. Two experiments with three different sets of face stimuli and a subliminal learning procedure converged to show that invisible faces did not influence perception of visible eyes. In contrast, surrounding faces, when they were clearly visible, strongly influenced perception of the eyes. Thus, we conclude that conscious awareness might be a prerequisite for holistic face processing. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Attention mechanisms in visual search -- an fMRI study.

    PubMed

    Leonards, U; Sunaert, S; Van Hecke, P; Orban, G A

    2000-01-01

    The human visual system is usually confronted with many different objects at a time, with only some of them reaching consciousness. Reaction-time studies have revealed two different strategies by which objects are selected for further processing: an automatic, efficient search process, and a conscious, so-called inefficient search [Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 17, 652--676; Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97--136; Wolfe, J. M. (1996). Visual search. In H. Pashler (Ed.), Attention. London: University College London Press]. Two different theories have been proposed to account for these search processes. Parallel theories presume that both types of search are treated by a single mechanism that is modulated by attentional and computational demands. Serial theories, in contrast, propose that parallel processing may underlie efficient search, but inefficient searching requires an additional serial mechanism, an attentional "spotlight" (Treisman, A., 1991) that successively shifts attention to different locations in the visual field. Using functional magnetic resonance imaging (fMRI), we show that the cerebral networks involved in efficient and inefficient search overlap almost completely. Only the superior frontal region, known to be involved in working memory [Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347--1351], and distinct from the frontal eye fields, that control spatial shifts of attention, was specifically involved in inefficient search. Activity modulations correlated with subjects' behavior best in the extrastriate cortical areas, where the amount of activity depended on the number of distracting elements in the display. Such a correlation was not observed in the parietal and frontal regions, usually assumed as being involved in spatial attention processing. These results can be interpreted in two ways: the most likely is that visual search does not require serial processing, otherwise we must assume the existence of a serial searchlight that operates in the extrastriate cortex but differs from the visuospatial shifts of attention involving the parietal and frontal regions.

  9. Inferring cortical function in the mouse visual system through large-scale systems neuroscience.

    PubMed

    Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof

    2016-07-05

    The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.

  10. A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits.

    PubMed

    Simner, Julia; Mayo, Neil; Spiller, Mary-Jane

    2009-01-01

    Individuals with 'time-space' synaesthesia have conscious awareness of mappings between time and space (e.g., they may see months arranged in an ellipse, or years as columns or spirals). These mappings exist in the 3D space around the body or in a virtual space within the mind's eye. Our study shows that these extra-ordinary mappings derive from, or give rise to, superior abilities in the two domains linked by this cross-modal phenomenon (i.e., abilities relating to time, and visualised space). We tested ten time-space synaesthetes with a battery of temporal and visual/spatial tests. Our temporal battery (the Edinburgh [Public and Autobiographical] Events Battery - EEB) assessed both autobiographical and non-autobiographical memory for events. Our visual/spatial tests assessed the ability to manipulate real or imagined objects in 3D space (the Three Dimensional Constructional Praxis test; Visual Object and Space Perception Battery, University of Southern California Mental Rotation Test) as well as assessing visual memory recall (Visual Patterns Test - VPT). Synaesthetes' performance was superior to the control population in every assessment, but was not superior in tasks that do not draw upon abilities related to their mental calendars. Our paper discusses the implications of this temporal-spatial advantage as it relates to normal processing, synaesthetic processing, and to the savant-like condition of hyperthymestic syndrome (Parker et al., 2006).

  11. African American College Women's Body Image: An Examination of Body Mass, African Self-Consciousness, and Skin Color Satisfaction.

    ERIC Educational Resources Information Center

    Falconer, Jameca Woody; Neville, Helen A.

    2000-01-01

    Investigated the general and cultural factors associated with body image perceptions of African American female college students. Data from surveys of 124 women at a historically black college indicated that African self-consciousness, skin color satisfaction, and body mass index collectively accounted for significant variance in dimensions of…

  12. CCTV Surveillance in Primary Schools: Normalisation, Resistance, and Children's Privacy Consciousness

    ERIC Educational Resources Information Center

    Birnhack, Michael; Perry-Hazan, Lotem; German Ben-Hayun, Shiran

    2018-01-01

    This study explored how primary school children perceive school surveillance by Closed Circuit TV systems (CCTVs) and how their perceptions relate to their privacy consciousness. It drew on interviews with 57 children, aged 9-12, who were enrolled in three Israeli public schools that had installed CCTVs, and on information gathered from members of…

  13. Impact of Dysphoria and Self-Consciousness on Perceptions of Social Competence: Test of the Depressive Realism Hypothesis

    ERIC Educational Resources Information Center

    Chau, Phuong M.; Milling, Leonard S.

    2006-01-01

    Depressive realism refers to a cognitive style wherein depressed people sometimes have more accurate perceptions of reality than nondepressed people. The notion of depressives being "sadder yet wiser" was controversial when first presented, and continues to be heavily debated. Self-perception studies provide maximum external validity,…

  14. EEG and EMG responses to emotion-evoking stimuli processed without conscious awareness.

    PubMed

    Wexler, B E; Warrenburg, S; Schwartz, G E; Janer, L D

    1992-12-01

    Dichotic stimulus pairs were constructed with one word that was emotionally neutral and another that evoked either negative or positive feelings. Temporal and spectral overlap between the members of each pair was so great that the two words fused into a single auditory percept. Subjects were consciously aware of hearing only one word from most pairs; sometimes the emotion-evoking word was heard consciously, other times the neutral word was heard consciously. Subjects were instructed to let their thoughts wander in response to the word they heard, during which time EEG alpha activity over left and right frontal regions, and muscle activity (EMG) in the corrugator ("frowning") and zygomatic ("smiling") regions were recorded. Both EEG and EMG provided evidence of emotion-specific responses to stimuli that were processed without conscious awareness. Moreover both suggested relatively greater right hemisphere activity with unconscious rather than conscious processing.

  15. Behavior in Oblivion: The Neurobiology of Subliminal Priming

    PubMed Central

    Jacobs, Christianne; Sack, Alexander T.

    2012-01-01

    Subliminal priming refers to behavioral modulation by an unconscious stimulus, and can thus be regarded as a form of unconscious visual processing. Theories on recurrent processing have suggested that the neural correlate of consciousness (NCC) comprises of the non-hierarchical transfer of stimulus-related information. According to these models, the neural correlate of subliminal priming (NCSP) corresponds to the visual processing within the feedforward sweep. Research from cognitive neuroscience on these two concepts and the relationship between them is discussed here. Evidence favoring the necessity of recurrent connectivity for visual awareness is accumulating, although some questions, such as the need for global versus local recurrent processing, are not clarified yet. However, this is not to say that recurrent processing is sufficient for consciousness, as a neural definition of consciousness in terms of recurrent connectivity would imply. We argue that the limited interest cognitive neuroscience currently has for the NCSP is undeserved, because the discovery of the NCSP can give insight into why people do (and do not) express certain behavior. PMID:24962773

  16. Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth

    PubMed Central

    2016-01-01

    Binocular disparity is detected in the primary visual cortex by a process similar to calculation of local cross-correlation between left and right retinal images. As a consequence, correlation-based neural signals convey information about false disparities as well as the true disparity. The false responses in the initial disparity detectors are eliminated at later stages in order to encode only disparities of the features correctly matched between the two eyes. For a simple stimulus configuration, a feed-forward nonlinear process can transform the correlation signal into the match signal. For human observers, depth judgement is determined by a weighted sum of the correlation and match signals rather than depending solely on the latter. The relative weight changes with spatial and temporal parameters of the stimuli, allowing adaptive recruitment of the two computations under different visual circumstances. A full transformation from correlation-based to match-based representation occurs at the neuronal population level in cortical area V4 and manifests in single-neuron responses of inferior temporal and posterior parietal cortices. Neurons in area V5/MT represent disparity in a manner intermediate between the correlation and match signals. We propose that the correlation and match signals in these areas contribute to depth perception in a weighted, parallel manner. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269600

  17. Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth.

    PubMed

    Fujita, Ichiro; Doi, Takahiro

    2016-06-19

    Binocular disparity is detected in the primary visual cortex by a process similar to calculation of local cross-correlation between left and right retinal images. As a consequence, correlation-based neural signals convey information about false disparities as well as the true disparity. The false responses in the initial disparity detectors are eliminated at later stages in order to encode only disparities of the features correctly matched between the two eyes. For a simple stimulus configuration, a feed-forward nonlinear process can transform the correlation signal into the match signal. For human observers, depth judgement is determined by a weighted sum of the correlation and match signals rather than depending solely on the latter. The relative weight changes with spatial and temporal parameters of the stimuli, allowing adaptive recruitment of the two computations under different visual circumstances. A full transformation from correlation-based to match-based representation occurs at the neuronal population level in cortical area V4 and manifests in single-neuron responses of inferior temporal and posterior parietal cortices. Neurons in area V5/MT represent disparity in a manner intermediate between the correlation and match signals. We propose that the correlation and match signals in these areas contribute to depth perception in a weighted, parallel manner.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  18. The signature of undetected change: an exploratory electrotomographic investigation of gradual change blindness.

    PubMed

    Kiat, John E; Dodd, Michael D; Belli, Robert F; Cheadle, Jacob E

    2018-05-01

    Neuroimaging-based investigations of change blindness, a phenomenon in which seemingly obvious changes in visual scenes fail to be detected, have significantly advanced our understanding of visual awareness. The vast majority of prior investigations, however, utilize paradigms involving visual disruptions (e.g., intervening blank screens, saccadic movements, "mudsplashes"), making it difficult to isolate neural responses toward visual changes cleanly. To address this issue in this present study, high-density EEG data (256 channel) were collected from 25 participants using a paradigm in which visual changes were progressively introduced into detailed real-world scenes without the use of visual disruption. Oscillatory activity associated with undetected changes was contrasted with activity linked to their absence using standardized low-resolution brain electromagnetic tomography (sLORETA). Although an insufficient number of detections were present to allow for analysis of actual change detection, increased beta-2 activity in the right inferior parietal lobule (rIPL), a region repeatedly associated with change blindness in disruption paradigms, followed by increased theta activity in the right superior temporal gyrus (rSTG) was noted in undetected visual change responses relative to the absence of change. We propose the rIPL beta-2 activity to be associated with orienting attention toward visual changes, with the subsequent rise in rSTG theta activity being potentially linked with updating preconscious perceptual memory representations. NEW & NOTEWORTHY This study represents the first neuroimaging-based investigation of gradual change blindness, a visual phenomenon that has significant potential to shed light on the processes underlying visual detection and conscious perception. The use of gradual change materials is reflective of real-world visual phenomena and allows for cleaner isolation of signals associated with the neural registration of change relative to the use of abrupt change transients.

  19. Artificial consciousness and the consciousness-attention dissociation.

    PubMed

    Haladjian, Harry Haroutioun; Montemayor, Carlos

    2016-10-01

    Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to implement sophisticated forms of human intelligence in machines. This research attempts to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable once we overcome short-term engineering challenges. We believe, however, that phenomenal consciousness cannot be implemented in machines. This becomes clear when considering emotions and examining the dissociation between consciousness and attention in humans. While we may be able to program ethical behavior based on rules and machine learning, we will never be able to reproduce emotions or empathy by programming such control systems-these will be merely simulations. Arguments in favor of this claim include considerations about evolution, the neuropsychological aspects of emotions, and the dissociation between attention and consciousness found in humans. Ultimately, we are far from achieving artificial consciousness. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [Sedation with midazolam for ambulatory pediatric dentistry].

    PubMed

    Shavlokhova, E A; Ostreĭkov, I F; Korolenkova, M V

    2014-01-01

    To improve the quality of dental treatment in children by using combined anaesthesia technique including local anaesthesia and conscious sedation, and to assess the effectiveness of conscious sedation for younger children undergoing dental treatment. The study included 208 children aged 14-88 months who received dental treatment for tooth decay and its complication under combined anaesthesia. Midazolam was used as sedative medication. Sedation level was assessed by visual scale and BIS-monitoring. ANI-monitoring was also used for pain sensitiveness evaluation. Results All 208 children were successfully treated under combined anaesthesia which showed satisfactory sedation rates both by visual scale and and BIS-monitoring values. While mean patient age was 39 months 20.6% were younger than 24 months. These data are extremely valuable as according to literature review conscious sedation in early infancy remains controversial. Our results proved conscious sedation to be effective in younger children undergoing dental treatment thus representing important alternative for general anaesthesia and providing a basis for later behavior management.

  1. A Sensorimotor Signature of the Transition to Conscious Social Perception: Co-regulation of Active and Passive Touch.

    PubMed

    Kojima, Hiroki; Froese, Tom; Oka, Mizuki; Iizuka, Hiroyuki; Ikegami, Takashi

    2017-01-01

    It is not yet well understood how we become conscious of the presence of other people as being other subjects in their own right. Developmental and phenomenological approaches are converging on a relational hypothesis: my perception of a "you" is primarily constituted by another subject's attention being directed toward "me." This is particularly the case when my body is being physically explored in an intentional manner. We set out to characterize the sensorimotor signature of the transition to being aware of the other by re-analyzing time series of embodied interactions between pairs of adults (recorded during a "perceptual crossing" experiment). Measures of turn-taking and movement synchrony were used to quantify social coordination, and transfer entropy was used to quantify direction of influence. We found that the transition leading to one's conscious perception of the other's presence was indeed characterized by a significant increase in one's passive reception of the other's tactile stimulations. Unexpectedly, one's clear experience of such passive touch was consistently followed by a switch to active touching of the other, while the other correspondingly became more passive, which suggests that this intersubjective experience was reciprocally co-regulated by both participants.

  2. Unconscious Local Motion Alters Global Image Speed

    PubMed Central

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  3. Affective associative learning modifies the sensory perception of nociceptive stimuli without participant's awareness.

    PubMed

    Wunsch, Annabel; Philippot, Pierre; Plaghki, Léon

    2003-03-01

    The present experiment examined the possibility to change the sensory and/or the affective perception of thermal stimuli by an emotional associative learning procedure known to operate without participants' awareness (evaluative conditioning). In a mixed design, an aversive conditioning procedure was compared between subjects to an appetitive conditioning procedure. Both groups were also compared within-subject to a control condition (neutral conditioning). The aversive conditioning was induced by associating non-painful and painful thermal stimuli - delivered on the right forearm - with unpleasant slides. The appetitive conditioning consisted in an association between thermal stimuli - also delivered on the right forearm - and pleasant slides. The control condition consisted in an association between thermal stimuli - delivered for all participants on the left forearm - and neutral slides. The effects of the conditioning procedures on the sensory and affective dimensions were evaluated with visual analogue scale (VAS)-intensity and VAS-unpleasantness. Startle reflex was used as a physiological index of emotional valence disposition. Results confirmed that no participants were aware of the conditioning procedure. After unpleasant slides (aversive conditioning), non-painful and painful thermal stimuli were judged more intense and more unpleasant than when preceded by neutral slides (control condition) or pleasant slides (appetitive conditioning). Despite a strong correlation between the intensity and the unpleasantness scales, effects were weaker for the affective scale and, became statistically non-significant when VAS-intensity was used as covariate. This experiment shows that it is possible to modify the perception of intensity of thermal stimuli by a non-conscious learning procedure based on the transfer of the valence of the unconditioned stimuli (pleasant or unpleasant slides) towards the conditioned stimuli (non-painful and painful thermal stimuli). These results plead for a conception of pain as a conscious output of complex informational processes all of which are not accessible to participants' awareness. Mechanisms by which affective input may influence sensory experience and clinical implications of the present study are discussed.

  4. Visual context processing deficits in schizophrenia: effects of deafness and disorganization.

    PubMed

    Horton, Heather K; Silverstein, Steven M

    2011-07-01

    Visual illusions allow for strong tests of perceptual functioning. Perceptual impairments can produce superior task performance on certain tasks (i.e., more veridical perception), thereby avoiding generalized deficit confounds while tapping mechanisms that are largely outside of conscious control. Using a task based on the Ebbinghaus illusion, a perceptual phenomenon where the perceived size of a central target object is affected by the size of surrounding inducers, we tested hypotheses related to visual integration in deaf (n = 31) and hearing (n = 34) patients with schizophrenia. In past studies, psychiatrically healthy samples displayed increased visual integration relative to schizophrenia samples and thus were less able to correctly judge target sizes. Deafness, and especially the use of sign language, leads to heightened sensitivity to peripheral visual cues and increased sensitivity to visual context. Therefore, relative to hearing subjects, deaf subjects were expected to display increased context sensitivity (ie, a more normal illusion effect as evidenced by a decreased ability to correctly judge central target sizes). Confirming the hypothesis, deaf signers were significantly more sensitive to the illusion than nonsigning hearing patients. Moreover, an earlier age of sign language acquisition, higher levels of linguistic ability, and shorter illness duration were significantly related to increased context sensitivity. As predicted, disorganization was associated with reduced context sensitivity for all subjects. The primary implications of these data are that perceptual organization impairment in schizophrenia is plastic and that it is related to a broader failure in coordinating cognitive activity.

  5. Human single neuron activity precedes emergence of conscious perception.

    PubMed

    Gelbard-Sagiv, Hagar; Mudrik, Liad; Hill, Michael R; Koch, Christof; Fried, Itzhak

    2018-05-25

    Identifying the neuronal basis of spontaneous changes in conscious experience in the absence of changes in the external environment is a major challenge. Binocular rivalry, in which two stationary monocular images lead to continuously changing perception, provides a unique opportunity to address this issue. We studied the activity of human single neurons in the medial temporal and frontal lobes while patients were engaged in binocular rivalry. Here we report that internal changes in the content of perception are signaled by very early (~-2000 ms) nonselective medial frontal activity, followed by selective activity of medial temporal lobe neurons that precedes the perceptual change by ~1000 ms. Such early activations are not found for externally driven perceptual changes. These results suggest that a medial fronto-temporal network may be involved in the preconscious internal generation of perceptual transitions.

  6. Quantum-like model of unconscious–conscious dynamics

    PubMed Central

    Khrennikov, Andrei

    2015-01-01

    We present a quantum-like model of sensation–perception dynamics (originated in Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward) embedding of experimental statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well-approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation–perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions. PMID:26283979

  7. [Development of spatial orientation during pilot training].

    PubMed

    Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu

    1988-01-01

    The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle.

  8. Global Consciousness and Pillars of Sustainable Development: A Study on Self-Perceptions of the First-Year University Students

    ERIC Educational Resources Information Center

    Savelyeva, Tamara; Douglas, William

    2017-01-01

    Purpose: This paper aims to provide data on the self-perceived state of sustainability consciousness of first-year Hong Kong students. Design/methodology/approach: Within a mixed-method research design framework, the authors conducted 787 questionnaires and collected 989 reflective narratives of first-year students of a university in Hong Kong,…

  9. Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex

    PubMed Central

    van der Loo, Elsa; Gais, Steffen; Congedo, Marco; Vanneste, Sven; Plazier, Mark; Menovsky, Tomas; Van de Heyning, Paul; De Ridder, Dirk

    2009-01-01

    Background Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. Methods and Findings In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05). Conclusion Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception. PMID:19816597

  10. Consciousness and working memory: Current trends and research perspectives.

    PubMed

    Velichkovsky, Boris B

    2017-10-01

    Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [Nursing education: integrating gender equity consciousness].

    PubMed

    Tzeng, Ya-Ling; Shih, Hsin-Hsin; Yang, Ya-Ling

    2011-12-01

    Gender sensitivity influences the way a nurse handles the nursing process and can influence both patient care and public perception of the nursing profession. Nurses unaware of the influences of gender are unable to perform holistic nursing, the practice of which centers on patient-centered care. Education is essential to promote gender consciousness. Providing scenario-based education to apply gender consciousness can help nursing students integrate gender and nursing care concepts and improve nursing care quality. In addition to raising attention to this important issue, this article makes comprehensive suggestions on how to apply gender concepts in nursing education. These suggestions include requiring instructors to consider and assess their own gender consciousness in order to enhance positive gender consciousness; reviewing teaching materials to identify and remove content tainted by sexual discrimination, and emphasizing gender education in the nursing education curriculum.

  12. The "serendipitous brain": Low expectancy and timing uncertainty of conscious events improve awareness of unconscious ones (evidence from the Attentional Blink).

    PubMed

    Lasaponara, Stefano; Dragone, Alessio; Lecce, Francesca; Di Russo, Francesco; Doricchi, Fabrizio

    2015-10-01

    To anticipate upcoming sensory events, the brain picks-up and exploits statistical regularities in the sensory environment. However, it is untested whether cumulated predictive knowledge about consciously seen stimuli improves the access to awareness of stimuli that usually go unseen. To explore this issue, we exploited the Attentional Blink (AB) effect, where conscious processing of a first visual target (T1) hinders detection of early following targets (T2). We report that timing uncertainty and low expectancy about the occurrence of consciously seen T2s presented outside the AB period, improve detection of early and otherwise often unseen T2s presented inside the AB. Recording of high-resolution Event Related Potentials (ERPs) and the study of their intracranial sources showed that the brain achieves this improvement by initially amplifying and extending the pre-conscious storage of T2s' traces signalled by the N2 wave originating in the extra-striate cortex. This enhancement in the N2 wave is followed by specific changes in the latency and amplitude of later components in the P3 wave (P3a and P3b), signalling access of the sensory trace to the network of parietal and frontal areas modulating conscious processing. These findings show that the interaction between conscious and unconscious processing changes adaptively as a function of the probabilistic properties of the sensory environment and that the combination of an active attentional state with loose probabilistic and temporal expectancies on forthcoming conscious events favors the emergence to awareness of otherwise unnoticed visual events. This likely provides an insight on the attentional conditions that predispose an active observer to unexpected "serendipitous" findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effect of contextual sound cues on visual fidelity perception.

    PubMed

    Rojas, David; Cowan, Brent; Kapralos, Bill; Collins, Karen; Dubrowski, Adam

    2014-01-01

    Previous work has shown that sound can affect the perception of visual fidelity. Here we build upon this previous work by examining the effect of contextual sound cues (i.e., sounds that are related to the visuals) on visual fidelity perception. Results suggest that contextual sound cues do influence visual fidelity perception and, more specifically, our perception of visual fidelity increases with contextual sound cues. These results have implications for designers of multimodal virtual worlds and serious games that, with the appropriate use of contextual sounds, can reduce visual rendering requirements without a corresponding decrease in the perception of visual fidelity.

  14. Consciousness, cognition and brain networks: New perspectives.

    PubMed

    Aldana, E M; Valverde, J L; Fábregas, N

    2016-10-01

    A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. "Blindsight" and subjective awareness of fearful faces: Inversion reverses the deficits in fear perception associated with core psychopathic traits.

    PubMed

    Oliver, Lindsay D; Mao, Alexander; Mitchell, Derek G V

    2015-01-01

    Though emotional faces preferentially reach awareness, the present study utilised both objective and subjective indices of awareness to determine whether they enhance subjective awareness and "blindsight". Under continuous flash suppression, participants localised a disgusted, fearful or neutral face (objective index), and rated their confidence (subjective index). Psychopathic traits were also measured to investigate their influence on emotion perception. As predicted, fear increased localisation accuracy, subjective awareness and "blindsight" of upright faces. Coldhearted traits were inversely related to subjective awareness, but not "blindsight", of upright fearful faces. In a follow-up experiment using inverted faces, increased localisation accuracy and awareness, but not "blindsight", were observed for fear. Surprisingly, awareness of inverted fearful faces was positively correlated with coldheartedness. These results suggest that emotion enhances both pre-conscious processing and the qualitative experience of awareness, but that pre-conscious and conscious processing of emotional faces rely on at least partially dissociable cognitive mechanisms.

  16. HYPOTHALAMIC DIGOXIN AND SCHIZOPHRENIA - A MODEL FOR CONSCIOUS AND SUBLIMINAL PERCEPTION AND ITS DYSFUNCTION IN SCHIZOPHRENIA

    PubMed Central

    Kurup, Ravikumar A.; Augustine, Jyothi; Kurup, P.A.

    1999-01-01

    In view of reports of an upregulated cation pump in genetically related Bipolar Affective Disorders the role of hypothalamic digoxin, an endogenous regulator of the cation pump was studied with special reference to its role as a modulator of glycoprotein synthesis. The study demonstrated elevated serum digoxin levels, elevated HMG CoA reductase activity suggesting increased digoxin synthesis, reduced sodium-potassium ATPase activity and altered sugar residues of serum glycoprotein in schizophrenia. A hypothalamic digoxin mediated model for conscious and subliminal perception is proposed and the significance of its dysfunction due to abnormal glycoprotein induced synaptic connectivity defects in schizophrenia is discussed. PMID:21455390

  17. Racial bias in pain perception and response: experimental examination of automatic and deliberate processes.

    PubMed

    Mathur, Vani A; Richeson, Jennifer A; Paice, Judith A; Muzyka, Michael; Chiao, Joan Y

    2014-05-01

    Racial disparities in pain treatment pose a significant public health and scientific problem. Prior studies have demonstrated that clinicians and nonclinicians are less perceptive of, and suggest less treatment for, the pain of African Americans relative to European Americans. Here we investigate the effects of explicit/implicit patient race presentation, patient race, and perceiver race on pain perception and response. African American and European American participants rated pain perception, empathy, helping motivation, and treatment suggestion in response to vignettes about patients' pain. Vignettes were accompanied by a rapid (implicit) or static (explicit) presentation of an African or European American patient's face. Participants perceived and responded more to European American patients in the implicit prime condition, when the effect of patient race was below the level of conscious regulation. This effect was reversed when patient race was presented explicitly. Additionally, female participants perceived and responded more to the pain of all patients, relative to male participants, and in the implicit prime condition, African American participants were more perceptive and responsive than European Americans to the pain of all patients. Taken together, these results suggest that known disparities in pain treatment may be largely due to automatic (below the level of conscious regulation) rather than deliberate (subject to conscious regulation) biases. These biases were not associated with traditional implicit measures of racial attitudes, suggesting that biases in pain perception and response may be independent of general prejudice. Results suggest that racial biases in pain perception and treatment are at least partially due to automatic processes. When the relevance of patient race is made explicit, however, biases are attenuated and even reversed. We also find preliminary evidence that African Americans may be more sensitive to the pain of others than are European Americans. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Interaction of cerebral hemispheres and artistic thinking

    NASA Astrophysics Data System (ADS)

    Nikolaenko, Nikolay N.

    1998-07-01

    Study of drawings by patients with local lesions of the right or left hemisphere allows to understand how artistic thinking is supported by brain structures. The role of the right hemisphere is significant at the early stage of creative process. The right hemisphere is a generator of nonverbal visuo-spatial thinking. It operates with blurred nonverbal images and arrange them in a visual space. With the help of iconic signs the right hemisphere reflects the world and creates perceptive visual standards which are stored in the long-term right hemisphere memory. The image, which appeared in the `inner' space, should be transferred into a principally different language, i.e. a left hemispheric sign language. This language operates with a number of discrete units, logical succession and learned grammar rules. This process can be explained by activation (information) transfer from the right hemisphere to the left one. Thus, natural and spontaneous creative process, which is finished by a conscious effort, can be understood as an activation impulse transfer from the right hemisphere to the left one and back.

  19. Raising Historical Consciousness in the Novel "The Giver", a Dystopic Work According to Social Studies Teacher Candidates

    ERIC Educational Resources Information Center

    Yildirim, Sefa

    2017-01-01

    It is known that in many of the developed countries of the world, especially the U.S.A, educators benefit from dystopic works in education and training of the topics such as historical consciousness, metaphors, numbers, color perception and development of language. From this point forth, it can be suggested that dystopic works, as long as they are…

  20. [Some implications of the "consciousness and brain" problem].

    PubMed

    Ivanitskiĭ, A M; Ivanitskiĭ, G A

    2009-10-01

    Three issues are discussed: the possible mechanism of subjective events, the rhythmic coding of thinking operations and the possible brain basis of understanding. 1. Several approaches have been developed to explain how subjective experience emerges from brain activity. One of them is the return of the nervous impulses to the sites of their primary projections, providing a synthesis of sensory information with memory and motivation. Support for the existence of such a mechanism stems from studies upon the brain activity that underlies perception (visual and somatosensory) and thought (verbal and imaginative). The cortical centers for information synthesis have been found. For perception, these are located in projection areas: for thinking,--in frontal and temporal-parietal associative cortex. Closely related ideas were also developed by G. Edelman in his re-entry theory of consciousness. Both theories emphasize the key role of memory and motivation in the origin of conscious function. 2. Rearrangements of EEC rhythms underlie mental functions. Certain rhythmical patterns are related with definite types of mental activity. The dependence of one upon the other is rather pronounced and expressive, so it becomes possible to recognize the type of mental operation being performed in mind with few seconds of the ongoing EEG, provided that the analysis of rhythms is accomplished using an artificial neural network. 3. It is commonly recognized that the computer, in contrast to the living brain, can calculate, yet cannot understand. Comprehension implies the comparison of new and old information that requires the ability to search for associations, group similar objects together, and distinguish different objects one from another. However, these functions may also be implemented on a computer. Still, it is believed that computers perform these complicated operations without genuine understanding. Evidently, comprehension additionally has to be based upon some biologically significant ground. It is hypothesized that the subjective feeling of understanding appears when current information is attributed to a definite need, which is scaled in sigh (+/-) coordinated. This coordinate system ceases the brain calculations, when "comprehension" is reached, i. e., the acceptable level of need satisfaction is attained.

  1. Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

    PubMed Central

    Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas

    2015-01-01

    The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100

  2. Non-Conscious Perception of Emotions in Psychiatric Disorders: The Unsolved Puzzle of Psychopathology.

    PubMed

    Lee, Seung A; Kim, Chai-Youn; Lee, Seung-Hwan

    2016-03-01

    Psychophysiological and functional neuroimaging studies have frequently and consistently shown that emotional information can be processed outside of the conscious awareness. Non-conscious processing comprises automatic, uncontrolled, and fast processing that occurs without subjective awareness. However, how such non-conscious emotional processing occurs in patients with various psychiatric disorders requires further examination. In this article, we reviewed and discussed previous studies on the non-conscious emotional processing in patients diagnosed with anxiety disorder, schizophrenia, bipolar disorder, and depression, to further understand how non-conscious emotional processing varies across these psychiatric disorders. Although the symptom profile of each disorder does not often overlap with one another, these patients commonly show abnormal emotional processing based on the pathology of their mood and cognitive function. This indicates that the observed abnormalities of emotional processing in certain social interactions may derive from a biased mood or cognition process that precedes consciously controlled and voluntary processes. Since preconscious forms of emotional processing appear to have a major effect on behaviour and cognition in patients with these disorders, further investigation is required to understand these processes and their impact on patient pathology.

  3. Non-conscious processing of motion coherence can boost conscious access.

    PubMed

    Kaunitz, Lisandro; Fracasso, Alessio; Lingnau, Angelika; Melcher, David

    2013-01-01

    Research on the scope and limits of non-conscious vision can advance our understanding of the functional and neural underpinnings of visual awareness. Here we investigated whether distributed local features can be bound, outside of awareness, into coherent patterns. We used continuous flash suppression (CFS) to create interocular suppression, and thus lack of awareness, for a moving dot stimulus that varied in terms of coherence with an overall pattern (radial flow). Our results demonstrate that for radial motion, coherence favors the detection of patterns of moving dots even under interocular suppression. Coherence caused dots to break through the masks more often: this indicates that the visual system was able to integrate low-level motion signals into a coherent pattern outside of visual awareness. In contrast, in an experiment using meaningful or scrambled biological motion we did not observe any increase in the sensitivity of detection for meaningful patterns. Overall, our results are in agreement with previous studies on face processing and with the hypothesis that certain features are spatiotemporally bound into coherent patterns even outside of attention or awareness.

  4. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation.

    PubMed

    Jacob, Jane; Jacobs, Christianne; Silvanto, Juha

    2015-01-01

    What is the role of top-down attentional modulation in consciously accessing working memory (WM) content? In influential WM models, information can exist in different states, determined by allocation of attention; placing the original memory representation in the center of focused attention gives rise to conscious access. Here we discuss various lines of evidence indicating that such attentional modulation is not sufficient for memory content to be phenomenally experienced. We propose that, in addition to attentional modulation of the memory representation, another type of top-down modulation is required: suppression of all incoming visual information, via inhibition of early visual cortex. In this view, there are three distinct memory levels, as a function of the top-down control associated with them: (1) Nonattended, nonconscious associated with no attentional modulation; (2) attended, phenomenally nonconscious memory, associated with attentional enhancement of the actual memory trace; (3) attended, phenomenally conscious memory content, associated with enhancement of the memory trace and top-down suppression of all incoming visual input.

  5. The Effect of Conscious Control on Handwriting in Children with Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Tucha, Oliver; Lange, Klaus W.

    2005-01-01

    Two experiments were performed regarding the effect of conscious control on handwriting fluency in healthy adults and ADHD children. First, 26 healthy students were asked to write a sentence under different conditions. The results indicate that automated handwriting movements are independent from visual feedback. Second, the writing performance of…

  6. A Sensorimotor Signature of the Transition to Conscious Social Perception: Co-regulation of Active and Passive Touch

    PubMed Central

    Kojima, Hiroki; Froese, Tom; Oka, Mizuki; Iizuka, Hiroyuki; Ikegami, Takashi

    2017-01-01

    It is not yet well understood how we become conscious of the presence of other people as being other subjects in their own right. Developmental and phenomenological approaches are converging on a relational hypothesis: my perception of a “you” is primarily constituted by another subject’s attention being directed toward “me.” This is particularly the case when my body is being physically explored in an intentional manner. We set out to characterize the sensorimotor signature of the transition to being aware of the other by re-analyzing time series of embodied interactions between pairs of adults (recorded during a “perceptual crossing” experiment). Measures of turn-taking and movement synchrony were used to quantify social coordination, and transfer entropy was used to quantify direction of influence. We found that the transition leading to one’s conscious perception of the other’s presence was indeed characterized by a significant increase in one’s passive reception of the other’s tactile stimulations. Unexpectedly, one’s clear experience of such passive touch was consistently followed by a switch to active touching of the other, while the other correspondingly became more passive, which suggests that this intersubjective experience was reciprocally co-regulated by both participants. PMID:29085318

  7. Multisensory Origin of the Subjective First-Person Perspective: Visual, Tactile, and Vestibular Mechanisms

    PubMed Central

    Pfeiffer, Christian; Lopez, Christophe; Schmutz, Valentin; Duenas, Julio Angel; Martuzzi, Roberto; Blanke, Olaf

    2013-01-01

    In three experiments we investigated the effects of visuo-tactile and visuo-vestibular conflict about the direction of gravity on three aspects of bodily self-consciousness: self-identification, self-location, and the experienced direction of the first-person perspective. Robotic visuo-tactile stimulation was administered to 78 participants in three experiments. Additionally, we presented participants with a virtual body as seen from an elevated and downward-directed perspective while they were lying supine and were therefore receiving vestibular and postural cues about an upward-directed perspective. Under these conditions, we studied the effects of different degrees of visuo-vestibular conflict, repeated measurements during illusion induction, and the relationship to a classical measure of visuo-vestibular integration. Extending earlier findings on experimentally induced changes in bodily self-consciousness, we show that self-identification does not depend on the experienced direction of the first-person perspective, whereas self-location does. Changes in bodily self-consciousness depend on visual gravitational signals. Individual differences in the experienced direction of first-person perspective correlated with individual differences in visuo-vestibular integration. Our data reveal important contributions of visuo-vestibular gravitational cues to bodily self-consciousness. In particular we show that the experienced direction of the first-person perspective depends on the integration of visual, vestibular, and tactile signals, as well as on individual differences in idiosyncratic visuo-vestibular strategies. PMID:23630611

  8. Contextual specificity in perception and action

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.

    1991-01-01

    The visually guided control of helicopter flight is a human achievement, and, thus, understanding this skill is, in part, a psychological problem. The abilities of skilled pilots are impressive, and yet it is of concern that pilots' performance is less than ideal: they suffer from workload constraints, make occasional errors, and are subject to such debilities as simulator sickness. Remedying such deficiencies is both an engineering and a psychological problem. When studying the psychological aspects of this problem, it is desirable to simplify the problem as much as possible, and thereby, sidestep as many intractable psychological issues as possible. Simply stated, we do not want to have to resolve such polemics as the mind-body problem in order to contribute to the design of more effective helicopter systems. On the other hand, the study of human behavior is a psychological endeavor and certain problems cannot be evaded. Four related issues that are of psychological significance in understanding the visually guided control of helicopter flight are discussed. First, a selected discussion of the nature of descriptive levels in analyzing human perception and performance is presented. It is argued that the appropriate level of description for perception is kinematical, and for performance, it is procedural. Second, it is argued that investigations into pilot performance cannot ignore the nature of pilots' phenomenal experience. The conscious control of actions is not based upon environmental states of affairs, nor upon the optical information that specifies them. Actions are coupled to perceptions. Third, the acquisition of skilled actions in the context of inherent misperceptions is discussed. Such skills may be error prone in some situations, but not in others. Finally, I discuss the contextual relativity of human errors. Each of these four issues relates to a common theme: the control of action is mediated by phenomenal experience, the veracity of which is context specific.

  9. It is time to combine the two main traditions in the research on the neural correlates of consciousness: C = L × D

    PubMed Central

    Bachmann, Talis; Hudetz, Anthony G.

    2014-01-01

    Research on neural correlates of consciousness has been conducted and carried out mostly from within two relatively autonomous paradigmatic traditions – studying the specific contents of conscious experience and their brain-process correlates and studying the level of consciousness. In the present paper we offer a theoretical integration suggesting that an emphasis has to be put on understanding the mechanisms of consciousness (and not a mere correlates) and in doing this, the two paradigmatic traditions must be combined. We argue that consciousness emerges as a result of interaction of brain mechanisms specialized for representing the specific contents of perception/cognition – the data – and mechanisms specialized for regulating the level of activity of whatever data the content-carrying specific mechanisms happen to represent. Each of these mechanisms are necessary because without the contents there is no conscious experience and without the required level of activity the processed contents remain unconscious. Together the two mechanisms, when activated up to a necessary degree each, provide conditions sufficient for conscious experience to emerge. This proposal is related to pertinent experimental evidence. PMID:25202297

  10. Breakdown of the brain’s functional network modularity with awareness

    PubMed Central

    Godwin, Douglass; Barry, Robert L.; Marois, René

    2015-01-01

    Neurobiological theories of awareness propose divergent accounts of the spatial extent of brain changes that support conscious perception. Whereas focal theories posit mostly local regional changes, global theories propose that awareness emerges from the propagation of neural signals across a broad extent of sensory and association cortex. Here we tested the scalar extent of brain changes associated with awareness using graph theoretical analysis applied to functional connectivity data acquired at ultra-high field while subjects performed a simple masked target detection task. We found that awareness of a visual target is associated with a degradation of the modularity of the brain’s functional networks brought about by an increase in intermodular functional connectivity. These results provide compelling evidence that awareness is associated with truly global changes in the brain’s functional connectivity. PMID:25759440

  11. What colour does that feel? Tactile--visual mapping and the development of cross-modality.

    PubMed

    Ludwig, Vera U; Simner, Julia

    2013-04-01

    Humans share implicit preferences for cross-modal mappings (e.g., low pitch sounds are preferentially paired with darker colours). Individuals with synaesthesia experience cross-modal mappings to a conscious degree (e.g., they may see colours when they hear sounds). The neonatal synaesthesia hypothesis claims that all humans may be born with this explicit cross-modal perception, which dies out in most people through childhood, leaving only implicit associations in the average adult. Although there is evidence for decreasing cross-modality throughout early infancy, it is unclear whether this decline continues to take place throughout childhood and adolescence. This large-scale study had two goals. First, we aimed to establish whether human non-synaesthetes systematically map tactile and visual dimensions - a combination that has rarely been studied. Second, we asked whether tactile-visual associations may be more pronounced in younger compared to older participants. 210 participants between the ages of 5-74 years assigned colours to tactile stimuli. Smoothness, softness and roundness of stimuli positively correlated with luminance of the chosen colour; and smoothness and softness also positively correlated with chroma. Moreover, tactile sensations were associated with specific colours (e.g., softness with pink). There were no age differences for luminance effects. Chroma effects, however, were found exclusively in children and adolescents. Our findings are consistent with the neonatal synaesthesia hypothesis which suggests that all humans are born with strong cross-modal perception which is pruned away or inhibited throughout development. Moreover, the findings suggest that a decline of some forms of cross-modality may take place over a much longer time span than previously assumed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Virtual reality and consciousness inference in dreaming

    PubMed Central

    Hobson, J. Allan; Hong, Charles C.-H.; Friston, Karl J.

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity – becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain’s generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research. PMID:25346710

  13. Virtual reality and consciousness inference in dreaming.

    PubMed

    Hobson, J Allan; Hong, Charles C-H; Friston, Karl J

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that - through experience-dependent plasticity - becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep - and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis - evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  14. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability

    PubMed Central

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2014-01-01

    Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403

  15. Negative, but not positive emotional images modulate the startle response independent of conscious awareness.

    PubMed

    Reagh, Zachariah M; Knight, David C

    2013-08-01

    The emotional response to a threat is influenced by the valence of other stimuli in the environment. This emotional modulation of the threat-elicited response occurs even when negative valence stimuli are not consciously perceived. Relatively little prior research has investigated whether nonconsciously perceived positive valence stimuli modify the response to a threat, and the work that has been completed is in need of additional rigorous testing of stimulus and valence perception. The current study presented images of negative, neutral, and positive valence (1,000 ms and 17 ms durations), followed by a mask. A startle probe (100 dB whitenoise) was presented during 33% of each trial type while eyeblink electromyography (EMG) and skin conductance response (SCR) were measured. During the study, participants rated the emotional content of each image to assess valence perception. Participants accurately classified the valence of 1,000 ms images, but not 17 ms images. Further, participants performed at chance levels on an independent postexperimental forced-choice perception task using 17 ms masked images, indicating they were unable to perceive the valence and content of these images. Greater EMG and SCR were elicited by the startle probe during perceived and unperceived negative images compared to perceived and unperceived positive and neutral images. In addition, perceived, but not unperceived positive images diminished startle responses. The current findings suggest that images of negative valence potentiate the startle response in the absence of conscious stimulus perception. However, the attenuation of the startle response by positive images appears to require perception of the emotional valence of an image. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Neural Dynamic Logic of Consciousness: The Knowledge Instinct

    DTIC Science & Technology

    2007-09-07

    have the drive for positive stimulation , regardless of the satisfaction of drives such as hunger [i]; David Berlyne emphasized curiosity as a desire...and stimulates differentiation. The simplest modification of eq.(9), accounting for influence of synthesis is dD/dt = aS. (13) These equations...perception (when it is usually subliminal )? Can we measure aesthetic emotions during more complex cognition (when it is more conscious)? Does brain

  17. A new dimension in evolution: Impacts of human consciousness on sustainability - and beyond

    Treesearch

    Charles M. Jr. McKenna

    2006-01-01

    Starting with the concepts of the “noosphere” -- the sphere of thought -- and the evolution of consciousness developed by Pierre Teilhard de Chardin in the first half of the last century, we will introduce a hypothesis declaring the interdependence of the noosphere with global systems, and extrapolate to new perceptions that these concepts, and others which seem to...

  18. Neural signatures of conscious and unconscious emotional face processing in human infants.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2015-03-01

    Human adults can process emotional information both with and without conscious awareness, and it has been suggested that the two processes rely on partly distinct brain mechanisms. However, the developmental origins of these brain processes are unknown. In the present event-related brain potential (ERP) study, we examined the brain responses of 7-month-old infants in response to subliminally (50 and 100 msec) and supraliminally (500 msec) presented happy and fearful facial expressions. Our results revealed that infants' brain responses (Pb and Nc) over central electrodes distinguished between emotions irrespective of stimulus duration, whereas the discrimination between emotions at occipital electrodes (N290 and P400) only occurred when faces were presented supraliminally (above threshold). This suggests that early in development the human brain not only discriminates between happy and fearful facial expressions irrespective of conscious perception, but also that, similar to adults, supraliminal and subliminal emotion processing relies on distinct neural processes. Our data further suggest that the processing of emotional facial expressions differs across infants depending on their behaviorally shown perceptual sensitivity. The current ERP findings suggest that distinct brain processes underpinning conscious and unconscious emotion perception emerge early in ontogeny and can therefore be seen as a key feature of human social functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Human factors involved in perception and action in a natural stereoscopic world: an up-to-date review with guidelines for stereoscopic displays and stereoscopic virtual reality (VR)

    NASA Astrophysics Data System (ADS)

    Perez-Bayas, Luis

    2001-06-01

    In stereoscopic perception of a three-dimensional world, binocular disparity might be thought of as the most important cue to 3D depth perception. Nevertheless, in reality there are many other factors involved before the 'final' conscious and subconscious stereoscopic perception, such as luminance, contrast, orientation, color, motion, and figure-ground extraction (pop-out phenomenon). In addition, more complex perceptual factors exist, such as attention and its duration (an equivalent of 'brain zooming') in relation to physiological central vision, In opposition to attention to peripheral vision and the brain 'top-down' information in relation to psychological factors like memory of previous experiences and present emotions. The brain's internal mapping of a pure perceptual world might be different from the internal mapping of a visual-motor space, which represents an 'action-directed perceptual world.' In addition, psychological factors (emotions and fine adjustments) are much more involved in a stereoscopic world than in a flat 2D-world, as well as in a world using peripheral vision (like VR, using a curved perspective representation, and displays, as natural vision does) as opposed to presenting only central vision (bi-macular stereoscopic vision) as in the majority of typical stereoscopic displays. Here is presented the most recent and precise information available about the psycho-neuro- physiological factors involved in the perception of stereoscopic three-dimensional world, with an attempt to give practical, functional, and pertinent guidelines for building more 'natural' stereoscopic displays.

  20. Sleeping on the rubber-hand illusion: Memory reactivation during sleep facilitates multisensory recalibration.

    PubMed

    Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A

    2016-01-01

    Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.

  1. Decomposing fear perception: A combination of psychophysics and neurometric modeling of fear perception

    PubMed Central

    Forscher, Emily C.; Zheng, Yan; Ke, Zijun; Folstein, Jonathan; Li, Wen

    2016-01-01

    Emotion perception is known to involve multiple operations and waves of analysis, but specific nature of these processes remains poorly understood. Combining psychophysical testing and neurometric analysis of event-related potentials (ERPs) in a fear detection task with parametrically-varied fear intensities (N=45), we sought to elucidate key processes in fear perception. Building on psychophysics marking fear perception thresholds, our neurometric model fitting identified several putative operations and stages: four key processes arose in sequence following face presentation—fear-neutral categorization (P1 at 100 ms), fear detection (P300 at 320 ms), valuation (early subcomponent of the late positive potential/LPP at 400–500 ms) and conscious awareness (late subcomponent LPP at 500–600 ms). Furthermore, within-subject brain-behavior association suggests that initial emotion categorization was mandatory and detached from behavior whereas valuation and conscious awareness directly impacted behavioral outcome (explaining 17% and 31% of the total variance, respectively). The current study thus reveals the chronometry of fear perception, ascribing psychological meaning to distinct underlying processes. The combination of early categorization and late valuation of fear reconciles conflicting (categorical versus dimensional) emotion accounts, lending support to a hybrid model. Importantly, future research could specifically interrogate these psychological processes in various behaviors and psychopathologies (e.g., anxiety and depression). PMID:27546075

  2. Does object view influence the scene consistency effect?

    PubMed

    Sastyin, Gergo; Niimi, Ryosuke; Yokosawa, Kazuhiko

    2015-04-01

    Traditional research on the scene consistency effect only used clearly recognizable object stimuli to show mutually interactive context effects for both the object and background components on scene perception (Davenport & Potter in Psychological Science, 15, 559-564, 2004). However, in real environments, objects are viewed from multiple viewpoints, including an accidental, hard-to-recognize one. When the observers named target objects in scenes (Experiments 1a and 1b, object recognition task), we replicated the scene consistency effect (i.e., there was higher accuracy for the objects with consistent backgrounds). However, there was a significant interaction effect between consistency and object viewpoint, which indicated that the scene consistency effect was more important for identifying objects in the accidental view condition than in the canonical view condition. Therefore, the object recognition system may rely more on the scene context when the object is difficult to recognize. In Experiment 2, the observers identified the background (background recognition task) while the scene consistency and object views were manipulated. The results showed that object viewpoint had no effect, while the scene consistency effect was observed. More specifically, the canonical and accidental views both equally provided contextual information for scene perception. These findings suggested that the mechanism for conscious recognition of objects could be dissociated from the mechanism for visual analysis of object images that were part of a scene. The "context" that the object images provided may have been derived from its view-invariant, relatively low-level visual features (e.g., color), rather than its semantic information.

  3. Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex.

    PubMed

    Silvanto, Juha; Cattaneo, Zaira

    2010-05-01

    Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.

  4. Attending to the Affective Dimensions of Bullying: Necessary Approaches for the School Leader

    ERIC Educational Resources Information Center

    Englehart, Joshua M.

    2014-01-01

    "Bullying" has permeated the public consciousness, and has become a knee-jerk explanation for virtually any negative event in school. Counter to public perception, however, most school conflict is in fact not bullying. School leaders must nonetheless manage community perception simultaneously with the realities within their schools, even…

  5. Coupling between perception and action timing during sensorimotor synchronization.

    PubMed

    Serrien, Deborah J; Spapé, Michiel M

    2010-12-17

    Time is an important parameter in behaviour, especially when synchronization with external events is required. To evaluate the nature of the association between perception and action timing, this study introduced pitch accented tones during performance of a sensorimotor tapping task. Furthermore, regularity of the pacing cues was modified by small (subliminal) or large (conscious) timing perturbations. A global analysis across the intervals showed that repeated accented tones increased the tap-tone asynchrony in the regular (control) and irregular (subliminal) trials but not in the irregular trials with awareness of the perturbations. Asynchrony variability demonstrated no effect of accentuation in the regular and subliminal irregular trials, whereas it increased in the conscious irregular trials. A local analysis of the intervals showed that pitch accentuation lengthened the duration of the tapping responses, but only in the irregular trials with large timing perturbations. These data underline that common timing processes are automatically engaged for perception and action, although this arrangement can be overturned by cognitive intervention. Overall, the findings highlight a flexible association between perception and action timing within a functional information processing framework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. The role of human ventral visual cortex in motion perception

    PubMed Central

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  7. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    PubMed Central

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain. PMID:27023274

  8. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    PubMed

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d') and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  9. Affective and cognitive reactions to subliminal flicker from fluorescent lighting.

    PubMed

    Knez, Igor

    2014-05-01

    This study renews the classical concept of subliminal perception (Peirce & Jastrow, 1884) by investigating the impact of subliminal flicker from fluorescent lighting on affect and cognitive performance. It was predicted that low compared to high frequency lighting (latter compared to former emits non-flickering light) would evoke larger changes in affective states and also impair cognitive performance. Subjects reported high rather than low frequency lighting to be more pleasant, which, in turn, enhanced their problem solving performance. This suggests that sensory processing can take place outside of conscious awareness resulting in conscious emotional consequences; indicating a role of affect in subliminal/implicit perception, and that positive affect may facilitate cognitive task performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Rescuing Stimuli from Invisibility: Inducing a Momentary Release from Visual Masking with Pre-Target Entrainment

    ERIC Educational Resources Information Center

    Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M.; Lleras, Alejandro

    2010-01-01

    At near-threshold levels of stimulation, identical stimulus parameters can result in very different phenomenal experiences. Can we manipulate which stimuli reach consciousness? Here we show that consciousness of otherwise masked stimuli can be experimentally induced by sensory entrainment. We preceded a backward-masked stimulus with a series of…

  11. ViSA: A Neurodynamic Model for Visuo-Spatial Working Memory, Attentional Blink, and Conscious Access

    ERIC Educational Resources Information Center

    Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2012-01-01

    Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one "simultaneously" in a spatially distributed fashion, the other "sequentially" at a single location. To understand their findings in a unified framework, we propose a…

  12. Exploring the Link between Visual Perception, Visual-Motor Integration, and Reading in Normal Developing and Impaired Children using DTVP-2.

    PubMed

    Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie

    2017-08-01

    Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Dissociable Electroencephalograph Correlates of Visual Awareness and Feature-Based Attention

    PubMed Central

    Chen, Yifan; Wang, Xiaochun; Yu, Yanglan; Liu, Ying

    2017-01-01

    Background: The relationship between awareness and attention is complex and controversial. A growing body of literature has shown that the neural bases of consciousness and endogenous attention (voluntary attention) are independent. The important role of exogenous attention (reflexive attention) on conscious experience has been noted in several studies. However, exogenous attention can also modulate subliminal processing, suggesting independence between the two processes. The question of whether visual awareness and exogenous attention rely on independent mechanisms under certain circumstances remains unanswered. Methods: In the current study, electroencephalograph recordings were conducted using 64 channels from 16 subjects while subjects attempted to detect faint speed changes of colored rotating dots. Awareness and attention were manipulated throughout trials in order to test whether exogenous attention and visual awareness rely on independent mechanisms. Results: Neural activity related to consciousness was recorded in the following cue-locked time-windows (event related potential, cluster- based permutation test): 0–50, 150–200, and 750–800 ms. With a more liberal threshold, the inferior occipital lobe was found to be the source of awareness-related activity in the 0–50 ms range. In the later 150–200 ms range, activity in the fusiform and post-central gyrus was related to awareness. Awareness-related activation in the later 750–800 ms range was more widely distributed. This awareness-related activation pattern was quite different from that of attention. Attention-related neural activity was emphasized in the 750–800 ms time window and the main source of attention-related activity was localized to the right angular gyrus. These results suggest that exogenous attention and visual consciousness correspond to different and relatively independent neural mechanisms and are distinct processes under certain conditions. PMID:29180950

  14. Influences of selective adaptation on perception of audiovisual speech

    PubMed Central

    Dias, James W.; Cook, Theresa C.; Rosenblum, Lawrence D.

    2016-01-01

    Research suggests that selective adaptation in speech is a low-level process dependent on sensory-specific information shared between the adaptor and test-stimuli. However, previous research has only examined how adaptors shift perception of unimodal test stimuli, either auditory or visual. In the current series of experiments, we investigated whether adaptation to cross-sensory phonetic information can influence perception of integrated audio-visual phonetic information. We examined how selective adaptation to audio and visual adaptors shift perception of speech along an audiovisual test continuum. This test-continuum consisted of nine audio-/ba/-visual-/va/ stimuli, ranging in visual clarity of the mouth. When the mouth was clearly visible, perceivers “heard” the audio-visual stimulus as an integrated “va” percept 93.7% of the time (e.g., McGurk & MacDonald, 1976). As visibility of the mouth became less clear across the nine-item continuum, the audio-visual “va” percept weakened, resulting in a continuum ranging in audio-visual percepts from /va/ to /ba/. Perception of the test-stimuli was tested before and after adaptation. Changes in audiovisual speech perception were observed following adaptation to visual-/va/ and audiovisual-/va/, but not following adaptation to auditory-/va/, auditory-/ba/, or visual-/ba/. Adaptation modulates perception of integrated audio-visual speech by modulating the processing of sensory-specific information. The results suggest that auditory and visual speech information are not completely integrated at the level of selective adaptation. PMID:27041781

  15. Attention and working memory: two basic mechanisms for constructing temporal experiences

    PubMed Central

    Marchetti, Giorgio

    2014-01-01

    Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language, and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activity, which has a discrete and periodic nature, and working memory, which allows for the combination of discrete attentional operations. An explanation is also provided of how past and future events are constructed. PMID:25177305

  16. Critical Viewing and the Significance of the Emotional Response.

    ERIC Educational Resources Information Center

    Rood, Carrie

    Within the scholarly debate about the value of visual literacy is the belief that visual literacy bestows the skill of critical viewing, or conscious appreciation of artistry along with the ability to see through manipulative uses and ideological implications of visual images. Critical thinking is commonly viewed as argument skills, cognitive…

  17. Awareness in contextual cueing of visual search as measured with concurrent access- and phenomenal-consciousness tasks.

    PubMed

    Schlagbauer, Bernhard; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas

    2012-10-25

    In visual search, context information can serve as a cue to guide attention to the target location. When observers repeatedly encounter displays with identical target-distractor arrangements, reaction times (RTs) are faster for repeated relative to nonrepeated displays, the latter containing novel configurations. This effect has been termed "contextual cueing." The present study asked whether information about the target location in repeated displays is "explicit" (or "conscious") in nature. To examine this issue, observers performed a test session (after an initial training phase in which RTs to repeated and nonrepeated displays were measured) in which the search stimuli were presented briefly and terminated by visual masks; following this, observers had to make a target localization response (with accuracy as the dependent measure) and indicate their visual experience and confidence associated with the localization response. The data were examined at the level of individual displays, i.e., in terms of whether or not a repeated display actually produced contextual cueing. The results were that (a) contextual cueing was driven by only a very small number of about four actually learned configurations; (b) localization accuracy was increased for learned relative to nonrepeated displays; and (c) both consciousness measures were enhanced for learned compared to nonrepeated displays. It is concluded that contextual cueing is driven by only a few repeated displays and the ability to locate the target in these displays is associated with increased visual experience.

  18. [The mind-brain problem (II): about consciousness].

    PubMed

    Tirapu-Ustarroz, J; Goni-Saez, F

    2016-08-16

    Consciousness is the result of a series of neurobiological processes in the brain and is, in turn, a feature of the level of its complexity. In fact, being conscious and being aware place us before what Chalmers called the 'soft problem' and the 'hard problem' of consciousness. The first refers to aspects such as wakefulness, attention or knowledge, while the second is concerned with such complex concepts as self-awareness, 'neural self' or social cognition. In this sense it can be said that the concept of consciousness as a unitary thing poses problems of approaching a highly complex reality. We outline the main models that have addressed the topic of consciousness from a neuroscientific perspective. On the one hand, there are the conscious experience models of Crick, Edelman and Tononi, and Llinas, and, on the other, the models and neuronal bases of self-consciousness by authors such as Damasio (core and extended consciousness), Tulving (autonoetic and noetic consciousness and chronesthesia), the problem of qualia (Dennett, Popper, Ramachandran) and the cognit model (Fuster). All the stimuli we receive from the outside world and from our own internal world are converted and processed by the brain so as to integrate them, and from there they become part of our identity. The perception of a dog and being able to recognise it as such or the understanding of our own consciousness are the result of the functioning of brain, neuronal and synaptic structures. The more complex processes of consciousness, such as self-awareness or empathy, are probably emergent brain processes.

  19. Pain, dissociation and subliminal self-representations.

    PubMed

    Bob, Petr

    2008-03-01

    According to recent evidence, neurophysiological processes coupled to pain are closely related to the mechanisms of consciousness. This evidence is in accordance with findings that changes in states of consciousness during hypnosis or traumatic dissociation strongly affect conscious perception and experience of pain, and markedly influence brain functions. Past research indicates that painful experience may induce dissociated state and information about the experience may be stored or processed unconsciously. Reported findings suggest common neurophysiological mechanisms of pain and dissociation and point to a hypothesis of dissociation as a defense mechanism against psychological and physical pain that substantially influences functions of consciousness. The hypothesis is also supported by findings that information can be represented in the mind/brain without the subject's awareness. The findings of unconsciously present information suggest possible binding between conscious contents and self-functions that constitute self-representational dimensions of consciousness. The self-representation means that certain inner states of own body are interpreted as mental and somatic identity, while other bodily signals, currently not accessible to the dominant interpreter's access are dissociated and may be defined as subliminal self-representations. In conclusion, the neurophysiological aspects of consciousness and its integrative role in the therapy of painful traumatic memories are discussed.

  20. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections. Copyright © 2017 Song, Sandberg et al.

  1. Exploration of Functional Connectivity During Preferred Music Stimulation in Patients with Disorders of Consciousness

    PubMed Central

    Heine, Lizette; Castro, Maïté; Martial, Charlotte; Tillmann, Barbara; Laureys, Steven; Perrin, Fabien

    2015-01-01

    Preferred music is a highly emotional and salient stimulus, which has previously been shown to increase the probability of auditory cognitive event-related responses in patients with disorders of consciousness (DOC). To further investigate whether and how music modifies the functional connectivity of the brain in DOC, five patients were assessed with both a classical functional connectivity scan (control condition), and a scan while they were exposed to their preferred music (music condition). Seed-based functional connectivity (left or right primary auditory cortex), and mean network connectivity of three networks linked to conscious sound perception were assessed. The auditory network showed stronger functional connectivity with the left precentral gyrus and the left dorsolateral prefrontal cortex during music as compared to the control condition. Furthermore, functional connectivity of the external network was enhanced during the music condition in the temporo-parietal junction. Although caution should be taken due to small sample size, these results suggest that preferred music exposure might have effects on patients auditory network (implied in rhythm and music perception) and on cerebral regions linked to autobiographical memory. PMID:26617542

  2. Segregating the neural correlates of physical and perceived change in auditory input using the change deafness effect.

    PubMed

    Puschmann, Sebastian; Weerda, Riklef; Klump, Georg; Thiel, Christiane M

    2013-05-01

    Psychophysical experiments show that auditory change detection can be disturbed in situations in which listeners have to monitor complex auditory input. We made use of this change deafness effect to segregate the neural correlates of physical change in auditory input from brain responses related to conscious change perception in an fMRI experiment. Participants listened to two successively presented complex auditory scenes, which consisted of six auditory streams, and had to decide whether scenes were identical or whether the frequency of one stream was changed between presentations. Our results show that physical changes in auditory input, independent of successful change detection, are represented at the level of auditory cortex. Activations related to conscious change perception, independent of physical change, were found in the insula and the ACC. Moreover, our data provide evidence for significant effective connectivity between auditory cortex and the insula in the case of correctly detected auditory changes, but not for missed changes. This underlines the importance of the insula/anterior cingulate network for conscious change detection.

  3. Implementing novel imaging methods for improved diagnosis of disorder of consciousness patients.

    PubMed

    Bick, Atira S; Leker, Ronen R; Ben-Hur, Tamir; Levin, Netta

    2013-11-15

    The clinical evaluation of consciousness in disorder of consciousness (DOC) patients based on their exhibited behavior is difficult and remains erroneous in many cases. Recent studies demonstrated different levels of stimulus processing as well as evidence of some level of awareness in sub-groups of these patients. The aim of the current study was to examine the plausibility and challenges of implementing a clinical service for evaluation of consciousness level in DOC patients. Eleven Patients (ages 11-67) diagnosed as being in vegetative or minimal conscious states were included. Functional MRI evaluations included auditory, language, voice familiarity, imagery, and visual tests. In 9 patients auditory-related activation was found, however only in 5 of the subjects was differential activation found for language. Six patients exhibited differential response to their own name. In three patients a response to visual stimuli was identified. In one patient the auditory and linguistic systems were clearly activated in a hierarchical pattern, and moreover willful modulation of brain activity was identified in the imagery test. We discuss the importance of using a wide battery of tests, the difference between our clinical cohort and previous publications, as well as the challenges of clinically implementing this method. Translating novel imaging methods into the clinical evaluation of DOC patients is essential for better diagnosis and may encourage treatment development. © 2013 Elsevier B.V. All rights reserved.

  4. A Magic Dwells in Each Beginning? Contextual Effects of Autonomy Support on Students' Intrinsic Motivation in Unfamiliar Situations

    ERIC Educational Resources Information Center

    Thomas, Almut E.; Mueller, Florian H.

    2017-01-01

    In school classes students influence each other at conscious and subconscious levels and therefore, students' shared perceptions are considered meaningful for the development of the individual student. This article identified situations where students' class-average perceptions of autonomy support add to the predictive validity of students'…

  5. How quantum brain biology can rescue conscious free will

    PubMed Central

    Hameroff, Stuart

    2012-01-01

    Conscious “free will” is problematic because (1) brain mechanisms causing consciousness are unknown, (2) measurable brain activity correlating with conscious perception apparently occurs too late for real-time conscious response, consciousness thus being considered “epiphenomenal illusion,” and (3) determinism, i.e., our actions and the world around us seem algorithmic and inevitable. The Penrose–Hameroff theory of “orchestrated objective reduction (Orch OR)” identifies discrete conscious moments with quantum computations in microtubules inside brain neurons, e.g., 40/s in concert with gamma synchrony EEG. Microtubules organize neuronal interiors and regulate synapses. In Orch OR, microtubule quantum computations occur in integration phases in dendrites and cell bodies of integrate-and-fire brain neurons connected and synchronized by gap junctions, allowing entanglement of microtubules among many neurons. Quantum computations in entangled microtubules terminate by Penrose “objective reduction (OR),” a proposal for quantum state reduction and conscious moments linked to fundamental spacetime geometry. Each OR reduction selects microtubule states which can trigger axonal firings, and control behavior. The quantum computations are “orchestrated” by synaptic inputs and memory (thus “Orch OR”). If correct, Orch OR can account for conscious causal agency, resolving problem 1. Regarding problem 2, Orch OR can cause temporal non-locality, sending quantum information backward in classical time, enabling conscious control of behavior. Three lines of evidence for brain backward time effects are presented. Regarding problem 3, Penrose OR (and Orch OR) invokes non-computable influences from information embedded in spacetime geometry, potentially avoiding algorithmic determinism. In summary, Orch OR can account for real-time conscious causal agency, avoiding the need for consciousness to be seen as epiphenomenal illusion. Orch OR can rescue conscious free will. PMID:23091452

  6. Smelling directions: Olfaction modulates ambiguous visual motion perception

    PubMed Central

    Kuang, Shenbing; Zhang, Tao

    2014-01-01

    Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162

  7. Attention Orienting in Response to Non-conscious Hierarchical Arrows: Individuals with Higher Autistic Traits Differ in Their Global/Local Bias.

    PubMed

    Laycock, Robin; Chan, Daniel; Crewther, Sheila G

    2017-01-01

    One aspect of the social communication impairments that characterize autism spectrum disorder (ASD) include reduced use of often subtle non-verbal social cues. People with ASD, and those with self-reported sub-threshold autistic traits, also show impairments in rapid visual processing of stimuli unrelated to social or emotional properties. Hence, this study sought to investigate whether perceptually non-conscious visual processing is related to autistic traits. A neurotypical sample of thirty young adults completed the Subthreshold Autism Trait Questionnaire and a Posner-like attention cueing task. Continuous Flash Suppression (CFS) was employed to render incongruous hierarchical arrow cues perceptually invisible prior to consciously presented targets. This was achieved via a 10 Hz masking stimulus presented to the dominant eye that suppressed information presented to the non-dominant eye. Non-conscious arrows consisted of local arrow elements pointing in one direction, and forming a global arrow shape pointing in the opposite direction. On each trial, the cue provided either a valid or invalid cue for the spatial location of the subsequent target, depending on which level (global or local) received privileged attention. A significant autism-trait group by global cue validity interaction indicated a difference in the extent of non-conscious local/global cueing between groups. Simple effect analyses revealed that whilst participants with lower autistic traits showed a global arrow cueing effect, those with higher autistic traits demonstrated a small local arrow cueing effect. These results suggest that non-conscious processing biases in local/global attention may be related to individual differences in autistic traits.

  8. Little behaviors with big impacts: Exploring the sense of community surrounding socially conscious consumption

    NASA Astrophysics Data System (ADS)

    Devincenzo, Marie E. Hafey

    The thesis is a study of socially conscious consumption practices and the meanings those behaviors have for consumers who participate in them. Psychological sense of community was used as the theoretical grounding for the study because it provided a way to examine socially conscious behaviors not solely as the behaviors of individuals but as behaviors within a social context with social meaning. Data were collected in two phases. First, a written, projective instrument compared cultural perceptions of various types of socially conscious consumption practices. Then, in-depth interviews were conducted to collect consumption narratives from participants and nonparticipants in a wind energy program called Blue Sky. The interviews were analyzed using a hermeneutical approach. The findings identified a new type of consumption community not recognized in prior literature: the principle based consumption community.

  9. Object of desire self-consciousness theory.

    PubMed

    Bogaert, Anthony F; Brotto, Lori A

    2014-01-01

    In this article, the authors discuss the construct of object of desire self-consciousness, the perception that one is romantically and sexually desirable in another's eyes. The authors discuss the nature of the construct, variations in its expression, and how it may function as part of a self-schemata or script related to romance and sexuality. The authors suggest that object of desire self-consciousness may be an adaptive, evolved psychological mechanism allowing sexual and romantic tactics suitable to one's mate value. The authors also suggest that it can act as a signal that one has high mate value in the sexual marketplace. The authors then review literature (e.g., on fantasies, on sexual activity preferences, on sexual dysfunctions, on language) suggesting that object of desire self-consciousness plays a particularly important role in heterosexual women's sexual/romantic functioning and desires.

  10. Who Learns More? Cultural Differences in Implicit Sequence Learning

    PubMed Central

    Fu, Qiufang; Dienes, Zoltan; Shang, Junchen; Fu, Xiaolan

    2013-01-01

    Background It is well documented that East Asians differ from Westerners in conscious perception and attention. However, few studies have explored cultural differences in unconscious processes such as implicit learning. Methodology/Principal Findings The global-local Navon letters were adopted in the serial reaction time (SRT) task, during which Chinese and British participants were instructed to respond to global or local letters, to investigate whether culture influences what people acquire in implicit sequence learning. Our results showed that from the beginning British expressed a greater local bias in perception than Chinese, confirming a cultural difference in perception. Further, over extended exposure, the Chinese learned the target regularity better than the British when the targets were global, indicating a global advantage for Chinese in implicit learning. Moreover, Chinese participants acquired greater unconscious knowledge of an irrelevant regularity than British participants, indicating that the Chinese were more sensitive to contextual regularities than the British. Conclusions/Significance The results suggest that cultural biases can profoundly influence both what people consciously perceive and unconsciously learn. PMID:23940773

  11. Effects of color combination and ambient illumination on visual perception time with TFT-LCD.

    PubMed

    Lin, Chin-Chiuan; Huang, Kuo-Chen

    2009-10-01

    An empirical study was carried out to examine the effects of color combination and ambient illumination on visual perception time using TFT-LCD. The effect of color combination was broken down into two subfactors, luminance contrast ratio and chromaticity contrast. Analysis indicated that the luminance contrast ratio and ambient illumination had significant, though small effects on visual perception. Visual perception time was better at high luminance contrast ratio than at low luminance contrast ratio. Visual perception time under normal ambient illumination was better than at other ambient illumination levels, although the stimulus color had a confounding effect on visual perception time. In general, visual perception time was better for the primary colors than the middle-point colors. Based on the results, normal ambient illumination level and high luminance contrast ratio seemed to be the optimal choice for design of workplace with video display terminals TFT-LCD.

  12. Human Development IX: A Model of the Wholeness of Man, His Consciousness, and Collective Consciousness

    PubMed Central

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Rald, Erik; Nielsen, Maj Lyck; Merrick, Joav

    2006-01-01

    In this paper we look at the rational and the emotional interpretation of reality in the human brain and being, and discuss the representation of the brain-mind (ego), the body-mind (Id), and the outer world in the human wholeness (the I or “soul”). Based on this we discuss a number of factors including the coherence between perception, attention and consciousness, and the relation between thought, fantasies, visions and dreams. We discuss and explain concepts as intent, will, morals and ethics. The Jungian concept of the human collective conscious and unconscious is also analyzed. We also hypothesis on the nature of intuition and consider the source of religious experience of man. These phenomena are explained based on the concept of deep quantum chemistry and infinite dancing fractal spirals making up the energetic backbone of the world. In this paper we consider man as a real wholeness and debate the concepts of subjectivity, consciousness and intent that can be deduced from such a perspective. PMID:17115085

  13. Neural signature of the conscious processing of auditory regularities

    PubMed Central

    Bekinschtein, Tristan A.; Dehaene, Stanislas; Rohaut, Benjamin; Tadel, François; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool. PMID:19164526

  14. Decomposing fear perception: A combination of psychophysics and neurometric modeling of fear perception.

    PubMed

    Forscher, Emily C; Zheng, Yan; Ke, Zijun; Folstein, Jonathan; Li, Wen

    2016-10-01

    Emotion perception is known to involve multiple operations and waves of analysis, but specific nature of these processes remains poorly understood. Combining psychophysical testing and neurometric analysis of event-related potentials (ERPs) in a fear detection task with parametrically varied fear intensities (N=45), we sought to elucidate key processes in fear perception. Building on psychophysics marking fear perception thresholds, our neurometric model fitting identified several putative operations and stages: four key processes arose in sequence following face presentation - fear-neutral categorization (P1 at 100ms), fear detection (P300 at 320ms), valuation (early subcomponent of the late positive potential/LPP at 400-500ms) and conscious awareness (late subcomponent LPP at 500-600ms). Furthermore, within-subject brain-behavior association suggests that initial emotion categorization was mandatory and detached from behavior whereas valuation and conscious awareness directly impacted behavioral outcome (explaining 17% and 31% of the total variance, respectively). The current study thus reveals the chronometry of fear perception, ascribing psychological meaning to distinct underlying processes. The combination of early categorization and late valuation of fear reconciles conflicting (categorical versus dimensional) emotion accounts, lending support to a hybrid model. Importantly, future research could specifically interrogate these psychological processes in various behaviors and psychopathologies (e.g., anxiety and depression). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Consciousness: a neural capacity for objectivity, especially pronounced in humans

    PubMed Central

    Dijker, Anton J. M.

    2014-01-01

    Consciousness tends to be viewed either as subjective experience of sensations and feelings, or as perception and internal representation of objects. This paper argues that neither view sufficiently acknowledges that consciousness may refer to the brain’s most adaptive property: its capacity to produce states of objectivity. It is proposed that this capacity relies on multiple sensorimotor networks for internally representing objects and their properties in terms of expectancies, as well as on motivational and motor mechanisms involved in exploration, play, and care for vulnerable living and non-living objects. States of objectivity are associated with a very special phenomenal aspect; the experience that subjective aspects are absent and one is “just looking” at the world as it really is and can be. However, these states are normally closely preceded and followed by (and tend to be combined or fused with) sensations and feelings which are caused by activation of sensory and motivational mechanisms. A capacity for objectivity may have evolved in different species and can be conceived as a common basis for other elusive psychological properties such as intelligence, conscience, and esthetic experience; all three linked to crucial behaviors in human evolution such as tool making, cooperation, and art. The brain’s pervasive tendency to objectify may be responsible for wrongly equating consciousness with feelings and wrongly opposing it to well-learned or habitual (“unconscious”) patterns of perception and behavior. PMID:24672506

  16. The claustrum's proposed role in consciousness is supported by the effect and target localization of Salvia divinorum.

    PubMed

    Stiefel, Klaus M; Merrifield, Alistair; Holcombe, Alex O

    2014-01-01

    THIS ARTICLE BRINGS TOGETHER THREE FINDINGS AND IDEAS RELEVANT FOR THE UNDERSTANDING OF HUMAN CONSCIOUSNESS: (I) Crick's and Koch's theory that the claustrum is a "conductor of consciousness" crucial for subjective conscious experience. (II) Subjective reports of the consciousness-altering effects the plant Salvia divinorum, whose primary active ingredient is salvinorin A, a κ-opioid receptor agonist. (III) The high density of κ-opioid receptors in the claustrum. Fact III suggests that the consciousness-altering effects of S. divinorum/salvinorin A (II) are due to a κ-opioid receptor mediated inhibition of primarily the claustrum and, additionally, the deep layers of the cortex, mainly in prefrontal areas. Consistent with Crick and Koch's theory that the claustrum plays a key role in consciousness (I), the subjective effects of S. divinorum indicate that salvia disrupts certain facets of consciousness much more than the largely serotonergic hallucinogen lysergic acid diethylamide (LSD). Based on this data and on the relevant literature, we suggest that the claustrum does indeed serve as a conductor for certain aspects of higher-order integration of brain activity, while integration of auditory and visual signals relies more on coordination by other areas including parietal cortex and the pulvinar.

  17. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules

    PubMed Central

    Grossberg, Stephen

    2016-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob—V2 interstripe—V4 cortical stream and the V1 blob—V2 thin stripe—V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties. PMID:26858665

  18. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules.

    PubMed

    Grossberg, Stephen

    2015-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob-V2 interstripe-V4 cortical stream and the V1 blob-V2 thin stripe-V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties.

  19. Subliminally presented and stored objects capture spatial attention.

    PubMed

    Astle, Duncan E; Nobre, Anna C; Scerif, Gaia

    2010-03-10

    When objects disappear from view, we can still bring them to mind, at least for brief periods of time, because we can represent those objects in visual short-term memory (VSTM) (Sperling, 1960; Cowan, 2001). A defining characteristic of this representation is that it is topographic, that is, it preserves a spatial organization based on the original visual percept (Vogel and Machizawa, 2004; Astle et al., 2009; Kuo et al., 2009). Recent research has also shown that features or locations of visual items that match those being maintained in conscious VSTM automatically capture our attention (Awh and Jonides, 2001; Olivers et al., 2006; Soto et al., 2008). But do objects leave some trace that can guide spatial attention, even without participants intentionally remembering them? Furthermore, could subliminally presented objects leave a topographically arranged representation that can capture attention? We presented objects either supraliminally or subliminally and then 1 s later re-presented one of those objects in a new location, as a "probe" shape. As participants made an arbitrary perceptual judgment on the probe shape, their covert spatial attention was drawn to the original location of that shape, regardless of whether its initial presentation had been supraliminal or subliminal. We demonstrate this with neural and behavioral measures of memory-driven attentional capture. These findings reveal the existence of a topographically arranged store of "visual" objects, the content of which is beyond our explicit awareness but which nonetheless guides spatial attention.

  20. Attentional Modulation of Change Detection ERP Components by Peripheral Retro-Cueing

    PubMed Central

    Pazo-Álvarez, Paula; Roca-Fernández, Adriana; Gutiérrez-Domínguez, Francisco-Javier; Amenedo, Elena

    2017-01-01

    Change detection is essential for visual perception and performance in our environment. However, observers often miss changes that should be easily noticed. A failure in any of the processes involved in conscious detection (encoding the pre-change display, maintenance of that information within working memory, and comparison of the pre and post change displays) can lead to change blindness. Given that unnoticed visual changes in a scene can be easily detected once attention is drawn to them, it has been suggested that attention plays an important role on visual awareness. In the present study, we used behavioral and electrophysiological (ERPs) measures to study whether the manipulation of retrospective spatial attention affects performance and modulates brain activity related to the awareness of a change. To that end, exogenous peripheral cues were presented during the delay period (retro-cues) between the first and the second array using a one-shot change detection task. Awareness of a change was associated with a posterior negative amplitude shift around 228–292 ms (“Visual Awareness Negativity”), which was independent of retrospective spatial attention, as it was elicited to both validly and invalidly cued change trials. Change detection was also associated with a larger positive deflection around 420–580 ms (“Late Positivity”), but only when the peripheral retro-cues correctly predicted the change. Present results confirm that the early and late ERP components related to change detection can be functionally dissociated through manipulations of exogenous retro-cueing using a change blindness paradigm. PMID:28270759

  1. Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.

    PubMed

    Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P

    2013-07-24

    Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.

  2. Of the Helmholtz Club, South-Californian seedbed for visual and cognitive neuroscience, and its patron Francis Crick

    PubMed Central

    Aicardi, Christine

    2014-01-01

    Taking up the view that semi-institutional gatherings such as clubs, societies, research schools, have been instrumental in creating sheltered spaces from which many a 20th-century project-driven interdisciplinary research programme could develop and become established within the institutions of science, the paper explores the history of one such gathering from its inception in the early 1980s into the 2000s, the Helmholtz Club, which brought together scientists from such various research fields as neuroanatomy, neurophysiology, psychophysics, computer science and engineering, who all had an interest in the study of the visual system and of higher cognitive functions relying on visual perception such as visual consciousness. It argues that British molecular biologist turned South Californian neuroscientist Francis Crick had an early and lasting influence over the Helmholtz Club of which he was a founding pillar, and that from its inception, the club served as a constitutive element in his long-term plans for a neuroscience of vision and of cognition. Further, it argues that in this role, the Helmholtz Club served many purposes, the primary of which was to be a social forum for interdisciplinary discussion, where ‘discussion’ was not mere talk but was imbued with an epistemic value and as such, carefully cultivated. Finally, it questions what counts as ‘doing science’ and in turn, definitions of success and failure—and provides some material evidence towards re-appraising the successfulness of Crick’s contribution to the neurosciences. PMID:24384229

  3. Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness.

    PubMed

    Giacino, Joseph T; Hirsch, Joy; Schiff, Nicholas; Laureys, Steven

    2006-12-01

    To describe the theoretic framework, design, and potential clinical applications of functional neuroimaging protocols in patients with disorders of consciousness. Recent published literature and authors' own work. Studies using functional neuroimaging techniques to investigate cognitive processing in patients diagnosed with vegetative and minimally conscious state. Not applicable. Positron-emission tomography activation studies suggest that the vegetative state represents a global disconnection syndrome in which higher order association cortices are functionally disconnected from primary cortical areas. In contrast, patterns of activation in functional magnetic resonance imaging studies of patients in the minimally conscious state show preservation of large-scale cortical networks associated with language and visual processing. Novel applications of functional neuroimaging in patients with disorders of consciousness may aid in differential diagnosis, prognostic assessment and identification of pathophysiologic mechanisms. Improvements in patient characterization may, in turn, provide new opportunities for restoration of function through interventional neuromodulation.

  4. Converging Intracranial Markers of Conscious Access

    PubMed Central

    Gaillard, Raphaël; Dehaene, Stanislas; Adam, Claude; Clémenceau, Stéphane; Hasboun, Dominique; Baulac, Michel; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. PMID:19296722

  5. Implantation and Recording of Wireless Electroretinogram and Visual Evoked Potential in Conscious Rats.

    PubMed

    Charng, Jason; He, Zheng; Bui, Bang; Vingrys, Algis; Ivarsson, Magnus; Fish, Rebecca; Gurrell, Rachel; Nguyen, Christine

    2016-06-29

    The full-field electroretinogram (ERG) and visual evoked potential (VEP) are useful tools to assess retinal and visual pathway integrity in both laboratory and clinical settings. Currently, preclinical ERG and VEP measurements are performed with anesthesia to ensure stable electrode placements. However, the very presence of anesthesia has been shown to contaminate normal physiological responses. To overcome these anesthesia confounds, we develop a novel platform to assay ERG and VEP in conscious rats. Electrodes are surgically implanted sub-conjunctivally on the eye to assay the ERG and epidurally over the visual cortex to measure the VEP. A range of amplitude and sensitivity/timing parameters are assayed for both the ERG and VEP at increasing luminous energies. The ERG and VEP signals are shown to be stable and repeatable for at least 4 weeks post surgical implantation. This ability to record ERG and VEP signals without anesthesia confounds in the preclinical setting should provide superior translation to clinical data.

  6. Temporal expectancy in the context of a theory of visual attention.

    PubMed

    Vangkilde, Signe; Petersen, Anders; Bundesen, Claus

    2013-10-19

    Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue-stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s(-1)) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.

  7. Color synesthesia. Insight into perception, emotion, and consciousness

    PubMed Central

    Safran, Avinoam B.; Sanda, Nicolae

    2015-01-01

    Purpose of review Synesthesia is an extraordinary perceptual phenomenon, in which individuals experience unusual percepts elicited by the activation of an unrelated sensory modality or by a cognitive process. Emotional reactions are commonly associated. The condition prompted philosophical debates on the nature of perception and impacted the course of art history. It recently generated a considerable interest among neuroscientists, but its clinical significance apparently remains underevaluated. This review focuses on the recent studies regarding variants of color synesthesia, the commonest form of the condition. Recent findings Synesthesia is commonly classified as developmental and acquired. Developmental forms predispose to changes in primary sensory processing and cognitive functions, usually with better performances in certain aspects and worse in others, and to heightened creativity. Acquired forms of synesthesia commonly arise from drug ingestion or neurological disorders, including thalamic lesions and sensory deprivation (e.g., blindness). Cerebral exploration using structural and functional imaging has demonstrated distinct patterns in cortical activation and brain connectivity for controls and synesthetes. Artworks of affected painters are most illustrative of the nature of synesthetic experiences. Summary Results of the recent investigations on synesthesia offered a remarkable insight into the mechanisms of perception, emotion and consciousness, and deserve attention both from neuroscientists and from clinicians. PMID:25545055

  8. Color synesthesia. Insight into perception, emotion, and consciousness.

    PubMed

    Safran, Avinoam B; Sanda, Nicolae

    2015-02-01

    Synesthesia is an extraordinary perceptual phenomenon, in which individuals experience unusual percepts elicited by the activation of an unrelated sensory modality or by a cognitive process. Emotional reactions are commonly associated. The condition prompted philosophical debates on the nature of perception and impacted the course of art history. It recently generated a considerable interest among neuroscientists, but its clinical significance apparently remains underevaluated. This review focuses on the recent studies regarding variants of color synesthesia, the commonest form of the condition. Synesthesia is commonly classified as developmental and acquired. Developmental forms predispose to changes in primary sensory processing and cognitive functions, usually with better performances in certain aspects and worse in others, and to heightened creativity. Acquired forms of synesthesia commonly arise from drug ingestion or neurological disorders, including thalamic lesions and sensory deprivation (e.g., blindness). Cerebral exploration using structural and functional imaging has demonstrated distinct patterns in cortical activation and brain connectivity for controls and synesthetes. Artworks of affected painters are most illustrative of the nature of synesthetic experiences. Results of the recent investigations on synesthesia offered a remarkable insight into the mechanisms of perception, emotion and consciousness, and deserve attention both from neuroscientists and from clinicians.

  9. The importance of vertical buildings in perception and memorising the city

    NASA Astrophysics Data System (ADS)

    Alihodzic, Rifat; Zupančič, Domen

    2018-03-01

    Being aware of the surrounding we live in, among other things, means establishing of spatial relationships between oneself and the environment, equally important as relationship between oneself and others. Environment consists of facilities and space. Space, "gift by itself", is defined by terrain topography, sky horizon, plants and animals. The architecture, as a profession, is interested in space created distinctively. Perception, as elementary process of consciousness and psychological life, deals with being conscious about something. In this case, physical structures that create a city. Psychological experience of urban environment is important factor having effect on perception, memorising and orientation in urban space. Gestalt psychology of perceiving is area applying to and significant for architecture either. The importance of vertical lies in its perceiving the gravitation, forming perceiving focus, landmark, for urban units and subunits to be memorised, creating spatial hierarchy and perception logics, remembering and orientation in space. This work analyses reasons for building upright with comparative analyses in their participation in space and on human psychology. This paper's purpose is to, using fundamental facts, show the importance of vertical buildings, not as a spatial use phenomenon, but also as significant phenomenon.

  10. Perceived state of self during motion can differentially modulate numerical magnitude allocation.

    PubMed

    Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M

    2016-09-01

    Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Task-irrelevant memory load induces inattentional blindness without temporo-parietal suppression.

    PubMed

    Matsuyoshi, Daisuke; Ikeda, Takashi; Sawamoto, Nobukatsu; Kakigi, Ryusuke; Fukuyama, Hidenao; Osaka, Naoyuki

    2010-08-01

    We often fail to consciously detect an unexpected object when we are engaged in an attention-demanding task (inattentional blindness). The inattentional blindness which is induced by visual short-term memory (VSTM) load has been proposed to result from a suppression of temporo-parietal junction (TPJ) activity that involves stimulus-driven attention. However, the fact that, inversely proportional to TPJ activity, intraparietal sulcus (IPS) activity correlates with VSTM load renders questionable the account of inattentional blindness based only on TPJ activity. Here, we investigated whether the TPJ is solely responsible for inattentional blindness by decoupling IPS and TPJ responses to VSTM load and then using the same manipulation to test the behavioral inattentional blindness performance. Experiment 1 showed that TPJ activity was not suppressed by task-irrelevant load while the IPS responded to both task-relevant and task-irrelevant load. Although the TPJ account of inattentional blindness predicts that the degree of inattentional blindness should track TPJ activity, we found in Experiment 2 that inattentional blindness was induced not only by task-relevant load but also by task-irrelevant load, showing inconsistency between the extent of inattentional blindness and TPJ response. These findings suggest that inattentional blindness can be induced without suppression of TPJ activity and seem to offer the possibility that the IPS contributes to conscious perception. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. A Comparative Study on the Visual Perceptions of Children with Attention Deficit Hyperactivity Disorder

    NASA Astrophysics Data System (ADS)

    Ahmetoglu, Emine; Aral, Neriman; Butun Ayhan, Aynur

    This study was conducted in order to (a) compare the visual perceptions of seven-year-old children diagnosed with attention deficit hyperactivity disorder with those of normally developing children of the same age and development level and (b) determine whether the visual perceptions of children with attention deficit hyperactivity disorder vary with respect to gender, having received preschool education and parents` educational level. A total of 60 children, 30 with attention deficit hyperactivity disorder and 30 with normal development, were assigned to the study. Data about children with attention deficit hyperactivity disorder and their families was collected by using a General Information Form and the visual perception of children was examined through the Frostig Developmental Test of Visual Perception. The Mann-Whitney U-test and Kruskal-Wallis variance analysis was used to determine whether there was a difference of between the visual perceptions of children with normal development and those diagnosed with attention deficit hyperactivity disorder and to discover whether the variables of gender, preschool education and parents` educational status affected the visual perceptions of children with attention deficit hyperactivity disorder. The results showed that there was a statistically meaningful difference between the visual perceptions of the two groups and that the visual perceptions of children with attention deficit hyperactivity disorder were affected meaningfully by gender, preschool education and parents` educational status.

  13. Egocentric Direction and Position Perceptions are Dissociable Based on Only Static Lane Edge Information

    PubMed Central

    Nakashima, Ryoichi; Iwai, Ritsuko; Ueda, Sayako; Kumada, Takatsune

    2015-01-01

    When observers perceive several objects in a space, at the same time, they should effectively perceive their own position as a viewpoint. However, little is known about observers’ percepts of their own spatial location based on the visual scene information viewed from them. Previous studies indicate that two distinct visual spatial processes exist in the locomotion situation: the egocentric position perception and egocentric direction perception. Those studies examined such perceptions in information rich visual environments where much dynamic and static visual information was available. This study examined these two perceptions in information of impoverished environments, including only static lane edge information (i.e., limited information). We investigated the visual factors associated with static lane edge information that may affect these perceptions. Especially, we examined the effects of the two factors on egocentric direction and position perceptions. One is the “uprightness factor” that “far” visual information is seen at upper location than “near” visual information. The other is the “central vision factor” that observers usually look at “far” visual information using central vision (i.e., foveal vision) whereas ‘near’ visual information using peripheral vision. Experiment 1 examined the effect of the “uprightness factor” using normal and inverted road images. Experiment 2 examined the effect of the “central vision factor” using normal and transposed road images where the upper half of the normal image was presented under the lower half. Experiment 3 aimed to replicate the results of Experiments 1 and 2. Results showed that egocentric direction perception is interfered with image inversion or image transposition, whereas egocentric position perception is robust against these image transformations. That is, both “uprightness” and “central vision” factors are important for egocentric direction perception, but not for egocentric position perception. Therefore, the two visual spatial perceptions about observers’ own viewpoints are fundamentally dissociable. PMID:26648895

  14. The Anatomy of Non-conscious Recognition Memory.

    PubMed

    Rosenthal, Clive R; Soto, David

    2016-11-01

    Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    ERIC Educational Resources Information Center

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  16. Using topographic networks to build a representation of consciousness.

    PubMed

    Tinsley, Chris J

    2008-04-01

    The subject of consciousness has intrigued both psychologists and neuroscientists for many years. Recently, following many recent advances in the emerging field of cognitive neuroscience, there is the possibility that this fundamental process may soon be explained. In particular, there have been dramatic insights gained into the mechanisms of attention, cognition and perception in recent decades. Here, simple network models are proposed which are used to create a representation of consciousness. The models are inspired by the structure of the thalamus and all incorporate topographic layers in their structure. Operation of the models allows filtering of the information reaching the representation according to (1) modality and/or (2) sub-modality, in addition several of the models allowing filtering at the topographic level. The models presented have different structures and employ different integrative mechanisms to produce gating or amplification at different levels; the resultant representations of consciousness are discussed.

  17. Fine-Grained Parcellation of Brain Connectivity Improves Differentiation of States of Consciousness During Graded Propofol Sedation.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Guangyu; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G

    2017-08-01

    Conscious perception relies on interactions between spatially and functionally distinct modules of the brain at various spatiotemporal scales. These interactions are altered by anesthesia, an intervention that leads to fading consciousness. Relatively little is known about brain functional connectivity and its anesthetic modulation at a fine spatial scale. Here, we used functional imaging to examine propofol-induced changes in functional connectivity in brain networks defined at a fine-grained parcellation based on a combination of anatomical and functional features. Fifteen healthy volunteers underwent resting-state functional imaging in wakeful baseline, mild sedation, deep sedation, and recovery of consciousness. Compared with wakeful baseline, propofol produced widespread, dose-dependent functional connectivity changes that scaled with the extent to which consciousness was altered. The dominant changes in connectivity were associated with the frontal lobes. By examining node pairs that demonstrated a trend of functional connectivity change between wakefulness and deep sedation, quadratic discriminant analysis differentiated the states of consciousness in individual participants more accurately at a fine-grained parcellation (e.g., 2000 nodes) than at a coarse-grained parcellation (e.g., 116 anatomical nodes). Our study suggests that defining brain networks at a high granularity may provide a superior imaging-based distinction of the graded effect of anesthesia on consciousness.

  18. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  19. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  20. Circadian-Related Sleep Disorders and Sleep Medication Use in the New Zealand Blind Population: An Observational Prevalence Survey

    PubMed Central

    Warman, Guy R.; Pawley, Matthew D. M.; Bolton, Catherine; Cheeseman, James F.; Fernando, Antonio T.; Arendt, Josephine; Wirz-Justice, Anna

    2011-01-01

    Study Objectives To determine the prevalence of self-reported circadian-related sleep disorders, sleep medication and melatonin use in the New Zealand blind population. Design A telephone survey incorporating 62 questions on sleep habits and medication together with validated questionnaires on sleep quality, chronotype and seasonality. Participants Participants were grouped into: (i) 157 with reduced conscious perception of light (RLP); (ii) 156 visually impaired with no reduction in light perception (LP) matched for age, sex and socioeconomic status, and (iii) 156 matched fully-sighted controls (FS). Sleep Habits and Disturbances The incidence of sleep disorders, daytime somnolence, insomnia and sleep timing problems was significantly higher in RLP and LP compared to the FS controls (p<0.001). The RLP group had the highest incidence (55%) of sleep timing problems, and 26% showed drifting sleep patterns (vs. 4% FS). Odds ratios for unconventional sleep timing were 2.41 (RLP) and 1.63 (LP) compared to FS controls. For drifting sleep patterns, they were 7.3 (RLP) and 6.0 (LP). Medication Use Zopiclone was the most frequently prescribed sleep medication. Melatonin was used by only 4% in the RLP group and 2% in the LP group. Conclusions Extrapolations from the current study suggest that 3,000 blind and visually impaired New Zealanders may suffer from circadian-related sleep problems, and that of these, fewer than 15% have been prescribed melatonin. This may represent a therapeutic gap in the treatment of circadian-related sleep disorders in New Zealand, findings that may generalize to other countries. PMID:21789214

  1. Gestalt principles in the control of motor action.

    PubMed

    Klapp, Stuart T; Jagacinski, Richard J

    2011-05-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control. © 2011 American Psychological Association

  2. A perception theory in mind-body medicine: guided imagery and mindful meditation as cross-modal adaptation.

    PubMed

    Bedford, Felice L

    2012-02-01

    A new theory of mind-body interaction in healing is proposed based on considerations from the field of perception. It is suggested that the combined effect of visual imagery and mindful meditation on physical healing is simply another example of cross-modal adaptation in perception, much like adaptation to prism-displaced vision. It is argued that psychological interventions produce a conflict between the perceptual modalities of the immune system and vision (or touch), which leads to change in the immune system in order to realign the modalities. It is argued that mind-body interactions do not exist because of higher-order cognitive thoughts or beliefs influencing the body, but instead result from ordinary interactions between lower-level perceptual modalities that function to detect when sensory systems have made an error. The theory helps explain why certain illnesses may be more amenable to mind-body interaction, such as autoimmune conditions in which a sensory system (the immune system) has made an error. It also renders sensible erroneous changes, such as those brought about by "faith healers," as conflicts between modalities that are resolved in favor of the wrong modality. The present view provides one of very few psychological theories of how guided imagery and mindfulness meditation bring about positive physical change. Also discussed are issues of self versus non-self, pain, cancer, body schema, attention, consciousness, and, importantly, developing the concept that the immune system is a rightful perceptual modality. Recognizing mind-body healing as perceptual cross-modal adaptation implies that a century of cross-modal perception research is applicable to the immune system.

  3. Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics.

    PubMed

    Legrand, Lore B; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J

    2013-01-01

    This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.

  4. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain

    PubMed Central

    2010-01-01

    Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract. PMID:20420714

  5. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain.

    PubMed

    Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian

    2010-04-27

    Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.

  6. Between-Subject Variability in the Breaking Continuous Flash Suppression Paradigm: Potential Causes, Consequences, and Solutions

    PubMed Central

    Gayet, Surya; Stein, Timo

    2017-01-01

    A recent focus in the field of consciousness research involves investigating the propensity of initially non-conscious visual information to gain access to consciousness. A critical tool for measuring conscious access is the so-called breaking continuous flash suppression paradigm (b-CFS). In this paradigm, a high contrast dynamic pattern is presented to one eye, thereby temporarily suppressing a target stimulus that is presented to the other eye. The time it takes for observers to report (e.g., the location of) the initially suppressed stimulus provides a measure of conscious access. Typical observations in b-CFS studies include the finding that upright faces are released from suppression faster than inverted faces, and the finding that stimuli that match the current content of visual working memory are released from suppression faster than mismatching stimuli. Interestingly, the extent to which observers exhibit these effects varies extensively (in the range of hundreds of milliseconds). By re-analyzing existing datasets and a new dataset we establish that the difference in RTs between conditions in b-CFS tasks (i.e., the effect of interest) is highly correlated with participants' overall suppression durations, and with their trial-to-trial variability in RTs. We advocate the usage of a simple latency- normalization method, which (1) removes the between-subject variability in suppression duration from the effect of interest, while (2) providing distributions of RT differences that are better suited for parametric testing. We next compare this latency-normalization method to two other transformations that are widely applied on within-subject RT data (z-transformations and log-transformations). Finally, we tentatively discuss how trial-to-trial variability and overall suppression duration might relate to prolonged phases of shallow suppression that are more prone to modulations of conscious access. PMID:28396645

  7. The Attention Window: A Narrative Review of Limitations and Opportunities Influencing the Focus of Attention.

    PubMed

    Hüttermann, Stefanie; Memmert, Daniel

    2017-06-01

    Visual attention is essential in many areas ranging from everyday life situations to the workplace. Different circumstances such as driving in traffic or participating in sports require immediate adaptation to constantly changing situations and frequently the conscious perception of 2 objects or scenes at the same time. The attention window task, a measure of attentional breadth, in which people must attend to 2 equally attention-demanding stimuli simultaneously, was introduced. This article provides a narrative review of studies using this task and outlines different factors that might influence the attention window. Differences in the spatial distribution of attention result, for example, from effects of age or physical activities as well as from emotional processes and those affected by current motivation, while gender does not have any influence. The window is represented as an ellipse with greater attentional breadth along the horizontal axis than the vertical axis, and it is about 5 to 6 times smaller than the human visual field. Not only everyday occurrences but also situations in sport games-for example, having an overview of the opponent, teammates, and the ball-require the ability to pay visual attention to 2 peripheral objects and continuously changing situations. Therefore, the application or avoidance of different strategies and factors is discussed to improve and adjust behavior in those situations.

  8. Appearance concerns among women with neurofibromatosis: examining sexual/bodily and social self-consciousness.

    PubMed

    Smith, Kelly B; Wang, Daphne L; Plotkin, Scott R; Park, Elyse R

    2013-12-01

    Neurofibromatosis (NF) 1 and 2 have distinct appearance effects, yet little research has examined patients' appearance concerns. We assessed appearance concerns and self-consciousness, self-esteem, and loneliness among women with NF. Women with NF1 (n = 79) and NF2 (n = 48) completed the Derriford Appearance Scale to assess appearance concerns and sexual/bodily and social self-consciousness, Rosenberg Self-Esteem Scale, and UCLA Loneliness Scale. Women's appearance concerns were coded to determine whether they were NF-related and whether psychosocial factors contributed to the concerns. A total of 85% of women reported appearance concerns, many of which were NF-related and attributed to psychosocial factors. Women with NF1 reported significantly more sexual/bodily self-consciousness but similar levels of social self-consciousness compared with women with NF2. Significantly higher sexual/bodily self-consciousness was found among married/cohabiting women regardless of NF group. Compared with general population norms and breast cancer survivors (BCS), women with NF1 reported significantly greater sexual/bodily and social self-consciousness. Women with NF2 reported less sexual/bodily self-consciousness compared with population norms, yet tended to report greater sexual/bodily self-consciousness than BCS. Women with NF2 reported significantly greater social self-consciousness compared with population norms and BCS. For both NF1 and NF2, higher levels of sexual/bodily and social self-consciousness were related to lower self-esteem and higher levels of social self-consciousness to more loneliness. Appearance concerns are prevalent, and social self-consciousness is high, among women with NF1 and NF2. Women with NF1 compared with NF2 experience more sexual/bodily self-consciousness. Providers should assess the impact of NF on women's self-perceptions and address sexual, body image, and social concerns. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Probing consciousness in a sensory-disconnected paralyzed patient.

    PubMed

    Rohaut, Benjamin; Raimondo, Federico; Galanaud, Damien; Valente, Mélanie; Sitt, Jacobo Diego; Naccache, Lionel

    2017-01-01

    Diagnosis of consciousness can be very challenging in some clinical situations such as severe sensory-motor impairments. We report the case study of a patient who presented a total "locked-in syndrome" associated with and a multi-sensory deafferentation (visual, auditory and tactile modalities) following a protuberantial infarction. In spite of this severe and extreme disconnection from the external world, we could detect reliable evidence of consciousness using a multivariate analysis of his high-density resting state electroencephalogram. This EEG-based diagnosis was eventually confirmed by the clinical evolution of the patient. This approach illustrates the potential importance of functional brain-imaging data to improve diagnosis of consciousness and of cognitive abilities in critical situations in which the behavioral channel is compromised such as deafferented locked-in syndrome.

  10. Identifying a "default" visual search mode with operant conditioning.

    PubMed

    Kawahara, Jun-ichiro

    2010-09-01

    The presence of a singleton in a task-irrelevant domain can impair visual search. This impairment, known as the attentional capture depends on the set of participants. When narrowly searching for a specific feature (the feature search mode), only matching stimuli capture attention. When searching broadly (the singleton detection mode), any oddball captures attention. The present study examined which strategy represents the "default" mode using an operant conditioning approach in which participants were trained, in the absence of explicit instructions, to search for a target in an ambiguous context in which one of two modes was available. The results revealed that participants behaviorally adopted the singleton detection as the default mode but reported using the feature search mode. Conscious strategies did not eliminate capture. These results challenge the view that a conscious set always modulates capture, suggesting that the visual system tends to rely on stimulus salience to deploy attention.

  11. Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers.

    PubMed

    Beacher, Felix D C C; Gray, Marcus A; Minati, Ludovico; Whale, Richard; Harrison, Neil A; Critchley, Hugo D

    2011-02-01

    Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception.

  12. Prevailing theories of consciousness are challenged by novel cross-modal associations acquired between subliminal stimuli.

    PubMed

    Scott, Ryan B; Samaha, Jason; Chrisley, Ron; Dienes, Zoltan

    2018-06-01

    While theories of consciousness differ substantially, the 'conscious access hypothesis', which aligns consciousness with the global accessibility of information across cortical regions, is present in many of the prevailing frameworks. This account holds that consciousness is necessary to integrate information arising from independent functions such as the specialist processing required by different senses. We directly tested this account by evaluating the potential for associative learning between novel pairs of subliminal stimuli presented in different sensory modalities. First, pairs of subliminal stimuli were presented and then their association assessed by examining the ability of the first stimulus to prime classification of the second. In Experiments 1-4 the stimuli were word-pairs consisting of a male name preceding either a creative or uncreative profession. Participants were subliminally exposed to two name-profession pairs where one name was paired with a creative profession and the other an uncreative profession. A supraliminal task followed requiring the timed classification of one of those two professions. The target profession was preceded by either the name with which it had been subliminally paired (concordant) or the alternate name (discordant). Experiment 1 presented stimuli auditorily, Experiment 2 visually, and Experiment 3 presented names auditorily and professions visually. All three experiments revealed the same inverse priming effect with concordant test pairs associated with significantly slower classification judgements. Experiment 4 sought to establish if learning would be more efficient with supraliminal stimuli and found evidence that a different strategy is adopted when stimuli are consciously perceived. Finally, Experiment 5 replicated the unconscious cross-modal association achieved in Experiment 3 utilising non-linguistic stimuli. The results demonstrate the acquisition of novel cross-modal associations between stimuli which are not consciously perceived and thus challenge the global access hypothesis and those theories embracing it. Copyright © 2018. Published by Elsevier B.V.

  13. Unconscious response priming during continuous flash suppression

    PubMed Central

    Grassini, Simone

    2018-01-01

    Continuous flash suppression (CFS) has become a popular tool for studying unconscious processing, but the level at which unconscious processing of visual stimuli occurs under CFS is not clear. Response priming is a robust and well-understood phenomenon, in which the prime stimulus facilitates overt responses to targets if the prime and target are associated with the same response. We used CFS to study unconscious response priming of shape: arrows with left or right orientation served as primes and targets. The prime was presented near the limen of consciousness and each trial was followed by subjective rating of visibility and a forced-choice response concerning the orientation of the prime in counterbalanced order. In trials without any reported awareness of the presence of the prime, discrimination of the prime’s orientation was at chance level. However, priming was elicited in such unconscious trials. Unconscious priming was not influenced by the prime-target onset-asynchrony (SOA)/prime duration, whereas conscious processing, as indicated by the enhanced discriminability of the prime’s orientation and conscious priming, increased at the longest SOAs/prime durations. These results show that conscious and unconscious processes can be dissociated with CFS and that CFS-masking does not completely suppress unconscious visual processing of shape. PMID:29401503

  14. Self-Grounded Vision: Hand Ownership Modulates Visual Location through Cortical β and γ Oscillations.

    PubMed

    Faivre, Nathan; Dönz, Jonathan; Scandola, Michele; Dhanis, Herberto; Bello Ruiz, Javier; Bernasconi, Fosco; Salomon, Roy; Blanke, Olaf

    2017-01-04

    Vision is known to be shaped by context, defined by environmental and bodily signals. In the Taylor illusion, the size of an afterimage projected on one's hand changes according to proprioceptive signals conveying hand position. Here, we assessed whether the Taylor illusion does not just depend on the physical hand position, but also on bodily self-consciousness as quantified through illusory hand ownership. Relying on the somatic rubber hand illusion, we manipulated hand ownership, such that participants embodied a rubber hand placed next to their own hand. We found that an afterimage projected on the participant's hand drifted depending on illusory ownership between the participants' two hands, showing an implication of self-representation during the Taylor illusion. Oscillatory power analysis of electroencephalographic signals showed that illusory hand ownership was stronger in participants with stronger α suppression over left sensorimotor cortex, whereas the Taylor illusion correlated with higher β/γ power over frontotemporal regions. Higher γ connectivity between left sensorimotor and inferior parietal cortex was also found during illusory hand ownership. These data show that afterimage drifts in the Taylor illusion do not only depend on the physical hand position but also on subjective ownership, which itself is based on the synchrony of somatosensory signals from the two hands. The effect of ownership on afterimage drifts is associated with β/γ power and γ connectivity between frontoparietal regions and the visual cortex. Together, our results suggest that visual percepts are not only influenced by bodily context but are self-grounded, mapped on a self-referential frame. Vision is influenced by the body: in the Taylor illusion, the size of an afterimage projected on one's hand changes according to tactile and proprioceptive signals conveying hand position. Here, we report a new phenomenon revealing that the perception of afterimages depends not only on bodily signals, but also on the sense of self. Relying on the rubber hand illusion, we manipulated hand ownership, so that participants embodied a rubber hand placed next to their own hand. We found that visual afterimages projected on the participant's hand drifted laterally, only when the rubber hand was embodied. Electroencephalography revealed spectral dissociations between somatic and visual effects, and higher γ connectivity along the dorsal visual pathways when the rubber hand was embodied. Copyright © 2017 the authors 0270-6474/17/370011-12$15.00/0.

  15. Altered figure-ground perception in monkeys with an extra-striate lesion.

    PubMed

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  16. Dreams, reality and memory: confabulations in lucid dreamers implicate reality-monitoring dysfunction in dream consciousness.

    PubMed

    Corlett, P R; Canavan, S V; Nahum, L; Appah, F; Morgan, P T

    2014-01-01

    Dreams might represent a window on altered states of consciousness with relevance to psychotic experiences, where reality monitoring is impaired. We examined reality monitoring in healthy, non-psychotic individuals with varying degrees of dream awareness using a task designed to assess confabulatory memory errors - a confusion regarding reality whereby information from the past feels falsely familiar and does not constrain current perception appropriately. Confabulatory errors are common following damage to the ventromedial prefrontal cortex (vmPFC). Ventromedial function has previously been implicated in dreaming and dream awareness. In a hospital research setting, physically and mentally healthy individuals with high (n = 18) and low (n = 13) self-reported dream awareness completed a computerised cognitive task that involved reality monitoring based on familiarity across a series of task runs. Signal detection theory analysis revealed a more liberal acceptance bias in those with high dream awareness, consistent with the notion of overlap in the perception of dreams, imagination and reality. We discuss the implications of these results for models of reality monitoring and psychosis with a particular focus on the role of vmPFC in default-mode brain function, model-based reinforcement learning and the phenomenology of dreaming and waking consciousness.

  17. The Earliest Electrophysiological Correlate of Visual Awareness?

    ERIC Educational Resources Information Center

    Koivisto, Mika; Lahteenmaki, Mikko; Sorensen, Thomas Alrik; Vangkilde, Signe; Overgaard, Morten; Revonsuo, Antti

    2008-01-01

    To examine the neural correlates and timing of human visual awareness, we recorded event-related potentials (ERPs) in two experiments while the observers were detecting a grey dot that was presented near subjective threshold. ERPs were averaged for conscious detections of the stimulus (hits) and nondetections (misses) separately. Our results…

  18. Unconscious Cross-Modal Priming of Auditory Sound Localization by Visual Words

    ERIC Educational Resources Information Center

    Ansorge, Ulrich; Khalid, Shah; Laback, Bernhard

    2016-01-01

    Little is known about the cross-modal integration of unconscious and conscious information. In the current study, we therefore tested whether the spatial meaning of an unconscious visual word, such as "up", influences the perceived location of a subsequently presented auditory target. Although cross-modal integration of unconscious…

  19. Why Visual Literacy: Consciousness and Convention

    ERIC Educational Resources Information Center

    Rezabek, Landra L.

    2005-01-01

    In this article, the author discusses the intentions of the October 2005 Association for Educational Communications & Technology (AECT) conference. She explains that the conference will be a shared event between the AECT members and the participants of the 37th annual meeting of the International Visual Literacy Association (IVLA), a stalwart…

  20. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    PubMed

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  1. From computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions.

    PubMed

    Zadeh, L A

    2001-04-01

    Interest in issues relating to consciousness has grown markedly during the last several years. And yet, nobody can claim that consciousness is a well-understood concept that lends itself to precise analysis. It may be argued that, as a concept, consciousness is much too complex to fit into the conceptual structure of existing theories based on Aristotelian logic and probability theory. An approach suggested in this paper links consciousness to perceptions and perceptions to their descriptors in a natural language. In this way, those aspects of consciousness which relate to reasoning and concept formation are linked to what is referred to as the methodology of computing with words (CW). Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language (e.g., small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco, it is very unlikely that there will be a significant increase in the price of oil in the near future, etc.). Computing with words is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing golf, riding a bicycle, understanding speech, and summarizing a story. Underlying this remarkable capability is the brain's crucial ability to manipulate perceptions--perceptions of distance, size, weight, color, speed, time, direction, force, number, truth, likelihood, and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions: a theory which may have an important bearing on how humans make--and machines might make--perception-based rational decisions in an environment of imprecision, uncertainty, and partial truth. A basic difference between perceptions and measurements is that, in general, measurements are crisp, whereas perceptions are fuzzy. One of the fundamental aims of science has been and continues to be that of progressing from perceptions to measurements. Pursuit of this aim has led to brilliant successes. We have sent men to the moon; we can build computers that are capable of performing billions of computations per second; we have constructed telescopes that can explore the far reaches of the universe; and we can date the age of rocks that are millions of years old. But alongside the brilliant successes stand conspicuous underachievements and outright failures. We cannot build robots that can move with the agility of animals or humans; we cannot automate driving in heavy traffic; we cannot translate from one language to another at the level of a human interpreter; we cannot create programs that can summarize non-trivial stories; our ability to model the behavior of economic systems leaves much to be desired; and we cannot build machines that can compete with children in the performance of a wide variety of physical and cognitive tasks. It may be argued that underlying the underachievements and failures is the unavailability of a methodology for reasoning and computing with perceptions rather than measurements. An outline of such a methodology--referred to as a computational theory of perceptions--is presented in this paper. The computational theory of perceptions (CTP) is based on the methodology of CW. In CTP, words play the role of labels of perceptions, and, more generally, perceptions are expressed as propositions in a natural language. CW-based techniques are employed to translate propositions expressed in a natural language into what is called the Generalized Constraint Language (GCL). In this language, the meaning of a proposition is expressed as a generalized constraint, X isr R, where X is the constrained variable, R is the constraining relation, and isr is a variable copula in which r is an indexing variable whose value defines the way in which R constrains X. Among the basic types of constraints are possibilistic, veristic, probabilistic, random set, Pawlak set, fuzzy graph, and usuality. The wide variety of constraints in GCL makes GCL a much more expressive language than the language of predicate logic. In CW, the initial and terminal data sets, IDS and TDS, are assumed to consist of propositions expressed in a natural language. These propositions are translated, respectively, into antecedent and consequent constraints. Consequent constraints are derived from antecedent constraints through the use of rules of constraint propagation. The principal constraint propagation rule is the generalized extension principle. (ABSTRACT TRUNCATED)

  2. Consciousness as a useful concept in epilepsy classification

    PubMed Central

    Blumenfeld, Hal; Meador, Kimford J.

    2014-01-01

    Summary Impaired consciousness has important practical consequences for people living with epilepsy. Recent pathophysiologic studies show that seizures with impaired level of consciousness always affect widespread cortical networks and subcortical arousal systems. In light of these findings and their clinical significance, efforts are underway to revise the International League Against Epilepsy (ILAE) 2010 report to include impaired consciousness in the classification of seizures. Lüders and colleagues have presented one such effort, which we discuss here. We then propose an alternative classification of impaired consciousness in epilepsy based on functional neuroanatomy. Some seizures involve focal cortical regions and cause selective deficits in the content of consciousness but without impaired overall level of consciousness or awareness. These include focal aware conscious seizures (FACS) with lower order cortical deficits such as somatosensory or visual impairment as well as FACS with higher cognitive deficits including ictal aphasia or isolated epileptic amnesia. Another category applies to seizures with impaired level of consciousness leading to deficits in multiple cognitive domains. For this category, we believe the terms “dyscognitive” or “dialeptic” should be avoided because they may create confusion. Instead we propose that seizures with impaired level of consciousness be described based on underlying pathophysiology. Widespread moderately severe deficits in corticothalamic function are seen in absence seizures and in focal impaired consciousness seizures (FICS), including many temporal lobe seizures and other focal seizures with impaired consciousness. Some simple responses or automatisms may be preserved in these seizures. In contrast, generalized tonic–clonic seizures usually produce widespread severe deficits in corticothalamic function causing loss of all meaningful responses. Further work is needed to understand and prevent impaired consciousness in epilepsy, but the first step is to keep this crucial practical and physiologic aspect of seizures front-and-center in our discussions. PMID:24981294

  3. Consciousness as a useful concept in epilepsy classification.

    PubMed

    Blumenfeld, Hal; Meador, Kimford J

    2014-08-01

    Impaired consciousness has important practical consequences for people living with epilepsy. Recent pathophysiologic studies show that seizures with impaired level of consciousness always affect widespread cortical networks and subcortical arousal systems. In light of these findings and their clinical significance, efforts are underway to revise the International League Against Epilepsy (ILAE) 2010 report to include impaired consciousness in the classification of seizures. Lüders and colleagues have presented one such effort, which we discuss here. We then propose an alternative classification of impaired consciousness in epilepsy based on functional neuroanatomy. Some seizures involve focal cortical regions and cause selective deficits in the content of consciousness but without impaired overall level of consciousness or awareness. These include focal aware conscious seizures (FACS) with lower order cortical deficits such as somatosensory or visual impairment as well as FACS with higher cognitive deficits including ictal aphasia or isolated epileptic amnesia. Another category applies to seizures with impaired level of consciousness leading to deficits in multiple cognitive domains. For this category, we believe the terms "dyscognitive" or "dialeptic" should be avoided because they may create confusion. Instead we propose that seizures with impaired level of consciousness be described based on underlying pathophysiology. Widespread moderately severe deficits in corticothalamic function are seen in absence seizures and in focal impaired consciousness seizures (FICS), including many temporal lobe seizures and other focal seizures with impaired consciousness. Some simple responses or automatisms may be preserved in these seizures. In contrast, generalized tonic-clonic seizures usually produce widespread severe deficits in corticothalamic function causing loss of all meaningful responses. Further work is needed to understand and prevent impaired consciousness in epilepsy, but the first step is to keep this crucial practical and physiologic aspect of seizures front-and-center in our discussions. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  4. Perception and control of rotorcraft flight

    NASA Technical Reports Server (NTRS)

    Owen, Dean H.

    1991-01-01

    Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.

  5. Suggested Activities to Use With Children Who Present Symptoms of Visual Perception Problems, Elementary Level.

    ERIC Educational Resources Information Center

    Washington County Public Schools, Washington, PA.

    Symptoms displayed by primary age children with learning disabilities are listed; perceptual handicaps are explained. Activities are suggested for developing visual perception and perception involving motor activities. Also suggested are activities to develop body concept, visual discrimination and attentiveness, visual memory, and figure ground…

  6. [Visual perception and its disorders].

    PubMed

    Ruf-Bächtiger, L

    1989-11-21

    It's the brain and not the eye that decides what is perceived. In spite of this fact, quite a lot is known about the functioning of the eye and the first sections of the optic tract, but little about the actual process of perception. Examination of visual perception and its malfunctions relies therefore on certain hypotheses. Proceeding from the model of functional brain systems, variant functional domains of visual perception can be distinguished. Among the more important of these domains are: digit span, visual discrimination and figure-ground discrimination. Evaluation of these functional domains allows us to understand those children with disorders of visual perception better and to develop more effective treatment methods.

  7. The Developmental Test of Visual Perception-Third Edition (DTVP-3): A Review, Critique, and Practice Implications

    ERIC Educational Resources Information Center

    Brown, Ted; Murdolo, Yuki

    2015-01-01

    The "Developmental Test of Visual Perception-Third Edition" (DTVP-3) is a recent revision of the "Developmental Test of Visual Perception-Second Edition" (DTVP-2). The DTVP-3 is designed to assess the visual perceptual and/or visual-motor integration skills of children from 4 to 12 years of age. The test is standardized using…

  8. A Critical Review of the "Motor-Free Visual Perception Test-Fourth Edition" (MVPT-4)

    ERIC Educational Resources Information Center

    Brown, Ted; Peres, Lisa

    2018-01-01

    The "Motor-Free Visual Perception Test-fourth edition" (MVPT-4) is a revised version of the "Motor-Free Visual Perception Test-third edition." The MVPT-4 is used to assess the visual-perceptual ability of individuals aged 4.0 through 80+ years via a series of visual-perceptual tasks that do not require a motor response. Test…

  9. Conscious control over the content of unconscious cognition.

    PubMed

    Kunde, Wilfried; Kiesel, Andrea; Hoffmann, Joachim

    2003-06-01

    Visual stimuli (primes) presented too briefly to be consciously identified can nevertheless affect responses to subsequent stimuli - an instance of unconscious cognition. There is a lively debate as to whether such priming effects originate from unconscious semantic processing of the primes or from reactivation of learned motor responses that conscious stimuli afford during preceding practice. In four experiments we demonstrate that unconscious stimuli owe their impact neither to automatic semantic categorization nor to memory traces of preceding stimulus-response episodes, but to their match with pre-specified cognitive action-trigger conditions. The intentional creation of such triggers allows actors to control the way unconscious stimuli bias their behaviour.

  10. Cephalopod consciousness: behavioural evidence.

    PubMed

    Mather, Jennifer A

    2008-03-01

    Behavioural evidence suggests that cephalopod molluscs may have a form of primary consciousness. First, the linkage of brain to behaviour seen in lateralization, sleep and through a developmental context is similar to that of mammals and birds. Second, cephalopods, especially octopuses, are heavily dependent on learning in response to both visual and tactile cues, and may have domain generality and form simple concepts. Third, these animals are aware of their position, both within themselves and in larger space, including having a working memory of foraging areas in the recent past. Thus if using a 'global workspace' which evaluates memory input and focuses attention is the criterion, cephalopods appear to have primary consciousness.

  11. Resting State Networks and Consciousness

    PubMed Central

    Heine, Lizette; Soddu, Andrea; Gómez, Francisco; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Demertzi, Athena

    2012-01-01

    In order to better understand the functional contribution of resting state activity to conscious cognition, we aimed to review increases and decreases in functional magnetic resonance imaging (fMRI) functional connectivity under physiological (sleep), pharmacological (anesthesia), and pathological altered states of consciousness, such as brain death, coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. The reviewed resting state networks were the DMN, left and right executive control, salience, sensorimotor, auditory, and visual networks. We highlight some methodological issues concerning resting state analyses in severely injured brains mainly in terms of hypothesis-driven seed-based correlation analysis and data-driven independent components analysis approaches. Finally, we attempt to contextualize our discussion within theoretical frameworks of conscious processes. We think that this “lesion” approach allows us to better determine the necessary conditions under which normal conscious cognition takes place. At the clinical level, we acknowledge the technical merits of the resting state paradigm. Indeed, fast and easy acquisitions are preferable to activation paradigms in clinical populations. Finally, we emphasize the need to validate the diagnostic and prognostic value of fMRI resting state measurements in non-communicating brain damaged patients. PMID:22969735

  12. [Neuropsychological evaluation of children in low conciseness state after a severe traumatic brain injury].

    PubMed

    Fufaeva, E V; Mikadze, Yu V; Lukyanov, V I

    2017-01-01

    To follow up patterns of cognitive recovery in children (6-17 years of age) at the first four months after a severe traumatic brain injury (TBI). Seventeen children with TBI (GCS ≤8) were evaluated with the Coma Recovery Scale-R (CRS). Children were stratified into three groups according to their consciousness recovery. Seven children regained their consciousness completely and were assessed by the Luria Neuropsychological Battery test. Six children remained in the minimally conscious state (MCS) and were tested by the adapted procedure of neuropsychological assessment during the first four months. Four children with low level of consciousness were evaluated with CRS. The most destroying functions at the early recovery period were the processing speed (neurodynamics of mental activity), executive functions and memory. Children with the anterior cortex damage had the slowest dynamics of recovery. The slower dynamics of consciousness recovery was combined with severe primary damages of visual gnosis, speech and executive functions according to neuropsychological examination. The positive dynamics of consciousness recovery was combined with early behavioral changes and the greater rate of behavioral changes.

  13. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    PubMed

    Etcoff, Nancy L; Stock, Shannon; Haley, Lauren E; Vickery, Sarah A; House, David M

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first glance and at longer inspection.

  14. Cosmetics as a Feature of the Extended Human Phenotype: Modulation of the Perception of Biologically Important Facial Signals

    PubMed Central

    Etcoff, Nancy L.; Stock, Shannon; Haley, Lauren E.; Vickery, Sarah A.; House, David M.

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first glance and at longer inspection. PMID:21991328

  15. A study of structure of phenomenology of consciousness in meditative and non-meditative states.

    PubMed

    Venkatesh, S; Raju, T R; Shivani, Y; Tompkins, G; Meti, B L

    1997-04-01

    Twelve senior Kundalini (Chakra) meditators were assessed during meditation session and non-meditation or control session using Phenomenology of Consciousness Inventory. The data has been analyzed using structural analysis to measure the altered state of consciousness and the identity state by comparing meditative state with non-meditative state. The structural analysis of pattern of consciousness during the meditative state revealed altered experience in perception (percentile rank PR = 90), meaning (PR = 82) and time sense (PR = 87), while positive affect dimension showed increased joy (PR = 73) and love (PR = 67). The imagery vividness (PR = 72), self-awareness (PR = 77), rationality (PR = 73) and arousal (PR = 69) were found to be structurally different from the ordinary state. With regards to identity state meditative experience was found to produce statistically significant changes in terms of intensity in meaning (P < 0.05), time sense (P < 0.05), joy (P < 0.05), love (P < 0.05) and state of awareness (P < 0.01). Our results indicate that long term practice of meditation appears to produce structural as well as intensity changes in phenomenological experiences of consciousness.

  16. Ultra-slow mechanical stimulation of olfactory epithelium modulates consciousness by slowing cerebral rhythms in humans.

    PubMed

    Piarulli, A; Zaccaro, A; Laurino, M; Menicucci, D; De Vito, A; Bruschini, L; Berrettini, S; Bergamasco, M; Laureys, S; Gemignani, A

    2018-04-26

    The coupling between respiration and neural activity within olfactory areas and hippocampus has recently been unambiguously demonstrated, its neurophysiological basis sustained by the well-assessed mechanical sensitivity of the olfactory epithelium. We herein hypothesize that this coupling reverberates to the whole brain, possibly modulating the subject's behavior and state of consciousness. The olfactory epithelium of 12 healthy subjects was stimulated with periodical odorless air-delivery (frequency 0.05 Hz, 8 s on, 12 off). Cortical electrical activity (High Density-EEG) and perceived state of consciousness have been studied. The stimulation induced i) an enhancement of delta-theta EEG activity over the whole cortex mainly involving the Limbic System and Default Mode Network structures, ii) a reversal of the overall information flow directionality from wake-like postero-anterior to NREM sleep-like antero-posterior, iii) the perception of having experienced an Altered State of Consciousness. These findings could shed further light via a neurophenomenological approach on the links between respiration, cerebral activity and subjective experience, suggesting a plausible neurophysiological basis for interpreting altered states of consciousness induced by respiration-based meditative practices.

  17. Children with developmental coordination disorder (DCD) can adapt to perceptible and subliminal rhythm changes but are more variable.

    PubMed

    Roche, Renuka; Viswanathan, Priya; Clark, Jane E; Whitall, Jill

    2016-12-01

    Children with DCD demonstrate impairments in bimanual finger tapping during self-paced tapping and tapping in synchrony to different frequencies. In this study, we investigated the ability of children with DCD to adapt motorically to perceptible or subliminal changes of the auditory stimuli without a change in frequency, and compared their performance to typically developing controls (TDC). Nineteen children with DCD between ages 6-11years (mean age±SD=114±21months) and 17 TDC (mean age±SD=113±21months) participated in this study. Auditory perceptual threshold was established. Children initially tapped bimanually to an antiphase beat and then to either a perceptible change in rhythm or to gradual subliminal changes in rhythm. Children with DCD were able to perceive changes in rhythm similar to TDC. They were also able to adapt to both perceptible and subliminal changes in rhythms similar to their age- and gender- matched TDC. However, these children were significantly more variable compared with TDC in all phasing conditions. The results suggest that the performance impairments in bilateral tapping are not a result of poor conscious or sub-conscious perception of the auditory cue. The increased motor variability may be associated with cerebellar dysfunction but further behavioral and neurophysiological studies are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Perception and Cognition Are Largely Independent, but Still Affect Each Other in Systematic Ways: Arguments from Evolution and the Consciousness-Attention Dissociation

    PubMed Central

    Montemayor, Carlos; Haladjian, Harry H.

    2017-01-01

    The main thesis of this paper is that two prevailing theories about cognitive penetration are too extreme, namely, the view that cognitive penetration is pervasive and the view that there is a sharp and fundamental distinction between cognition and perception, which precludes any type of cognitive penetration. These opposite views have clear merits and empirical support. To eliminate this puzzling situation, we present an alternative theoretical approach that incorporates the merits of these views into a broader and more nuanced explanatory framework. A key argument we present in favor of this framework concerns the evolution of intentionality and perceptual capacities. An implication of this argument is that cases of cognitive penetration must have evolved more recently and that this is compatible with the cognitive impenetrability of early perceptual stages of processing information. A theoretical approach that explains why this should be the case is the consciousness and attention dissociation framework. The paper discusses why concepts, particularly issues concerning concept acquisition, play an important role in the interaction between perception and cognition. PMID:28174551

  19. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism.

    PubMed

    Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G

    2011-06-07

    It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking.

  20. The development of visual speech perception in Mandarin Chinese-speaking children.

    PubMed

    Chen, Liang; Lei, Jianghua

    2017-01-01

    The present study aimed to investigate the development of visual speech perception in Chinese-speaking children. Children aged 7, 13 and 16 were asked to visually identify both consonant and vowel sounds in Chinese as quickly and accurately as possible. Results revealed (1) an increase in accuracy of visual speech perception between ages 7 and 13 after which the accuracy rate either stagnates or drops; and (2) a U-shaped development pattern in speed of perception with peak performance in 13-year olds. Results also showed that across all age groups, the overall levels of accuracy rose, whereas the response times fell for simplex finals, complex finals and initials. These findings suggest that (1) visual speech perception in Chinese is a developmental process that is acquired over time and is still fine-tuned well into late adolescence; (2) factors other than cross-linguistic differences in phonological complexity and degrees of reliance on visual information are involved in development of visual speech perception.

  1. Cortical visual prostheses: from microstimulation to functional percept

    NASA Astrophysics Data System (ADS)

    Najarpour Foroushani, Armin; Pack, Christopher C.; Sawan, Mohamad

    2018-04-01

    Cortical visual prostheses are intended to restore vision by targeted electrical stimulation of the visual cortex. The perception of spots of light, called phosphenes, resulting from microstimulation of the visual pathway, suggests the possibility of creating meaningful percept made of phosphenes. However, to date electrical stimulation of V1 has still not resulted in perception of phosphenated images that goes beyond punctate spots of light. In this review, we summarize the clinical and experimental progress that has been made in generating phosphenes and modulating their associated perceptual characteristics in human and macaque primary visual cortex (V1). We focus specifically on the effects of different microstimulation parameters on perception and we analyse key challenges facing the generation of meaningful artificial percepts. Finally, we propose solutions to these challenges based on the application of supervised learning of population codes for spatial stimulation of visual cortex.

  2. Analysis of EEG signals related to artists and nonartists during visual perception, mental imagery, and rest using approximate entropy.

    PubMed

    Shourie, Nasrin; Firoozabadi, Mohammad; Badie, Kambiz

    2014-01-01

    In this paper, differences between multichannel EEG signals of artists and nonartists were analyzed during visual perception and mental imagery of some paintings and at resting condition using approximate entropy (ApEn). It was found that ApEn is significantly higher for artists during the visual perception and the mental imagery in the frontal lobe, suggesting that artists process more information during these conditions. It was also observed that ApEn decreases for the two groups during the visual perception due to increasing mental load; however, their variation patterns are different. This difference may be used for measuring progress in novice artists. In addition, it was found that ApEn is significantly lower during the visual perception than the mental imagery in some of the channels, suggesting that visual perception task requires more cerebral efforts.

  3. A common neural code for similar conscious experiences in different individuals

    PubMed Central

    Naci, Lorina; Cusack, Rhodri; Anello, Mimma; Owen, Adrian M.

    2014-01-01

    The interpretation of human consciousness from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. We asked whether there is a common neural code that underpins similar conscious experiences, which could be used to decode these experiences in the absence of behavior. To this end, we used richly evocative stimulation (an engaging movie) portraying real-world events to elicit a similar conscious experience in different people. Common neural correlates of conscious experience were quantified and related to measurable, quantitative and qualitative, executive components of the movie through two additional behavioral investigations. The movie’s executive demands drove synchronized brain activity across healthy participants’ frontal and parietal cortices in regions known to support executive function. Moreover, the timing of activity in these regions was predicted by participants’ highly similar qualitative experience of the movie’s moment-to-moment executive demands, suggesting that synchronization of activity across participants underpinned their similar experience. Thus we demonstrate, for the first time to our knowledge, that a neural index based on executive function reliably predicted every healthy individual’s similar conscious experience in response to real-world events unfolding over time. This approach provided strong evidence for the conscious experience of a brain-injured patient, who had remained entirely behaviorally nonresponsive for 16 y. The patient’s executive engagement and moment-to-moment perception of the movie content were highly similar to that of every healthy participant. These findings shed light on the common basis of human consciousness and enable the interpretation of conscious experience in the absence of behavior. PMID:25225384

  4. What Explains Consciousness? Or…What Consciousness Explains?

    PubMed Central

    Dulany, Donelson E.

    2014-01-01

    In this invited commentary I focus on the topic addressed in three papers: De Sousa's (2013[1617]) Toward an Integrative Theory of Consciousness, a monograph with Parts 1 & 2, as well as commentaries by Pereira (2013a[59]) and Hirstein (2013[42]). All three are impressively scholarly and can stand—and shout—on their own. But theory of consciousness? My aim is to slice that topic into the two fundamentally different kinds of theories of consciousness, say what appears to be an ideology, out of behaviourism into cognitivism, now also influencing the quest for an “explanation of consciousness” in cognitive neuroscience. I will then say what can be expected given what we know of the complexity of brain structure, the richness of a conscious “vocabulary”, and current technological limits of brain imaging. This will then turn to the strategy for examining “what consciousness explains”—metatheory, theories, mappings, and a methodology of competitive support, a methodology especially important where there are competing commitments. There are also increasingly common identifications of methodological bias in, along with failures to replicate, studies reporting unconscious controls in decision, social priming—as there have been in perception, learning, problem solving, etc. The literature critique has provided evidence taken as reducing, and in some cases eliminating, a role for conscious controls—a position consistent with that ideology out of behaviourism into cognitivism. It is an ideological position that fails to recognize the fundamental distinction between theoretical and metaphysical assertions. PMID:24891796

  5. Introduction to the fractality principle of consciousness and the sentyon postulate

    PubMed Central

    Bieberich, Erhard

    2013-01-01

    Recently, consciousness research has gained much attention. Indeed, the question at stake is significant: why is the brain not just a computing device, but generates a perception from within? Ambitious endeavors trying to simulate the entire human brain assume that the algorithm will do the trick: as soon as we assemble the brain in a computer and increase the number of operations per time, consciousness will emerge by itself. I disagree with this simplistic representation. My argument emerges from the “atomism paradox”: the irreducible space of the consciously perceived world, the endospace is incompatible with the reducible and decomposable architecture of the brain or a computer. I will first discuss the fundamental challenges in current consciousness models and then propose a new model based on the fractality principle: “the whole is in each of its parts”. This new model copes with the atomism paradox by implementing an iterative mapping of information from higher order brain structures to smaller scales on the cellular and molecular level, which I will refer to as “fractalization”. This information fractalization gives rise to a new form of matter that is conscious (“bright matter”). Bright matter is composed of conscious particles or units named “sentyons”. The internal fractality of these sentyons will close a loop (the “psychic loop”) in a recurrent fractal neural network (RFNN) that allows for continuous and complete information transformation and sharing between higher order brain structures and the endpoint substrate of consciousness at the molecular level. PMID:23950765

  6. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    PubMed

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind's eye after termination of its retinal input. It is hypothesized that information maintained in visual working memory relies on the same neural populations that process visual input. Accordingly, the content of visual working memory is known to affect our conscious perception of concurrent visual input. Here, we demonstrate for the first time that visual input elicits an enhanced neural response when it matches the content of visual working memory, both in terms of signal strength and information content. Copyright © 2017 the authors 0270-6474/17/376638-10$15.00/0.

  7. Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?

    PubMed Central

    Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837

  8. Brain-stimulation induced blindsight: unconscious vision or response bias?

    PubMed

    Lloyd, David A; Abrahamyan, Arman; Harris, Justin A

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.

  9. Consciousness and the natural method.

    PubMed

    Flanagan, O

    1995-09-01

    'Consciousness' is a superordinate term for a heterogeneous array of mental state types. The types share the property of 'being experienced' or 'being experiences'--'of there being something that it is like for the subject to be in one of these states.' I propose that we can only build a theory of consciousness by deploying 'the natural method' of coordinating all relevant informational resources at once, especially phenomenology, cognitive science, neuroscience and evolutionary biology. I'll provide two examples of the natural method in action in mental domains where an adaptationist evolutionary account seems plausible: (i) visual awareness and (ii) conscious event memory. Then I will discuss a case, (iii), dreaming, where I think no adaptationist evolutionary account exists. Beyond whatever interest the particular cases have, the examination will show why I think that a theory of mind, and the role conscious mentation plays in it, will need to be built domain-by-domain with no a priori expectation that there will be a unified account of the causal role or evolutionary history of different domains and competences.

  10. Enhancing emotional experiences to dance through music: the role of valence and arousal in the cross-modal bias.

    PubMed

    Christensen, Julia F; Gaigg, Sebastian B; Gomila, Antoni; Oke, Peter; Calvo-Merino, Beatriz

    2014-01-01

    It is well established that emotional responses to stimuli presented to one perceptive modality (e.g., visual) are modulated by the concurrent presentation of affective information to another modality (e.g., auditory)-an effect known as the cross-modal bias. However, the affective mechanisms mediating this effect are still not fully understood. It remains unclear what role different dimensions of stimulus valence and arousal play in mediating the effect, and to what extent cross-modal influences impact not only our perception and conscious affective experiences, but also our psychophysiological emotional response. We addressed these issues by measuring participants' subjective emotion ratings and their Galvanic Skin Responses (GSR) in a cross-modal affect perception paradigm employing videos of ballet dance movements and instrumental classical music as the stimuli. We chose these stimuli to explore the cross-modal bias in a context of stimuli (ballet dance movements) that most participants would have relatively little prior experience with. Results showed (i) that the cross-modal bias was more pronounced for sad than for happy movements, whereas it was equivalent when contrasting high vs. low arousal movements; and (ii) that movement valence did not modulate participants' GSR, while movement arousal did, such that GSR was potentiated in the case of low arousal movements with sad music and when high arousal movements were paired with happy music. Results are discussed in the context of the affective dimension of neuroentrainment and with regards to implications for the art community.

  11. Perceiving groups: The people perception of diversity and hierarchy.

    PubMed

    Phillips, L Taylor; Slepian, Michael L; Hughes, Brent L

    2018-05-01

    The visual perception of individuals has received considerable attention (visual person perception), but little social psychological work has examined the processes underlying the visual perception of groups of people (visual people perception). Ensemble-coding is a visual mechanism that automatically extracts summary statistics (e.g., average size) of lower-level sets of stimuli (e.g., geometric figures), and also extends to the visual perception of groups of faces. Here, we consider whether ensemble-coding supports people perception, allowing individuals to form rapid, accurate impressions about groups of people. Across nine studies, we demonstrate that people visually extract high-level properties (e.g., diversity, hierarchy) that are unique to social groups, as opposed to individual persons. Observers rapidly and accurately perceived group diversity and hierarchy, or variance across race, gender, and dominance (Studies 1-3). Further, results persist when observers are given very short display times, backward pattern masks, color- and contrast-controlled stimuli, and absolute versus relative response options (Studies 4a-7b), suggesting robust effects supported specifically by ensemble-coding mechanisms. Together, we show that humans can rapidly and accurately perceive not only individual persons, but also emergent social information unique to groups of people. These people perception findings demonstrate the importance of visual processes for enabling people to perceive social groups and behave effectively in group-based social interactions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives.

    PubMed

    Venkatasubramanian, Ganesan

    2015-04-30

    From neurophenomenological perspectives, schizophrenia has been conceptualized as "a disorder with heterogeneous manifestations that can be integrally understood to involve fundamental perturbations in consciousness". While these theoretical constructs based on consciousness facilitate understanding the 'gestalt' of schizophrenia, systematic research to unravel translational implications of these models is warranted. To address this, one needs to begin with exploration of plausible biological underpinnings of "perturbed consciousness" in schizophrenia. In this context, an attractive proposition to understand the biology of consciousness is "the orchestrated object reduction (Orch-OR) theory" which invokes quantum processes in the microtubules of neurons. The Orch-OR model is particularly important for understanding schizophrenia especially due to the shared 'scaffold' of microtubules. The initial sections of this review focus on the compelling evidence to support the view that "schizophrenia is a disorder of consciousness" through critical summary of the studies that have demonstrated self-abnormalities, aberrant time perception as well as dysfunctional intentional binding in this disorder. Subsequently, these findings are linked with 'Orch-OR theory' through the research evidence for aberrant neural oscillations as well as microtubule abnormalities observed in schizophrenia. Further sections emphasize the applicability and translational implications of Orch-OR theory in the context of schizophrenia and elucidate the relevance of quantum biology to understand the origins of this puzzling disorder as "fundamental disturbances in consciousness".

  13. Not explicit but implicit memory is influenced by individual perception style

    PubMed Central

    Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style. PMID:29370212

  14. Not explicit but implicit memory is influenced by individual perception style.

    PubMed

    Hine, Kyoko; Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style.

  15. Basic Instinct Undressed: Early Spatiotemporal Processing for Primary Sexual Characteristics

    PubMed Central

    Legrand, Lore B.; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J.

    2013-01-01

    This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success. PMID:23894532

  16. Multiple mechanisms of consciousness: the neural correlates of emotional awareness.

    PubMed

    Amting, Jayna M; Greening, Steven G; Mitchell, Derek G V

    2010-07-28

    Emotional stimuli, including facial expressions, are thought to gain rapid and privileged access to processing resources in the brain. Despite this access, we are conscious of only a fraction of the myriad of emotion-related cues we face everyday. It remains unclear, therefore, what the relationship is between activity in neural regions associated with emotional representation and the phenomenological experience of emotional awareness. We used functional magnetic resonance imaging and binocular rivalry to delineate the neural correlates of awareness of conflicting emotional expressions in humans. Behaviorally, fearful faces were significantly more likely to be perceived than disgusted or neutral faces. Functionally, increased activity was observed in regions associated with facial expression processing, including the amygdala and fusiform gyrus during emotional awareness. In contrast, awareness of neutral faces and suppression of fearful faces were associated with increased activity in dorsolateral prefrontal and inferior parietal cortices. The amygdala showed increased functional connectivity with ventral visual system regions during fear awareness and increased connectivity with perigenual prefrontal cortex (pgPFC; Brodmann's area 32/10) when fear was suppressed. Despite being prioritized for awareness, emotional items were associated with reduced activity in areas considered critical for consciousness. Contributions to consciousness from bottom-up and top-down neural regions may be additive, such that increased activity in specialized regions within the extended ventral visual system may reduce demands on a frontoparietal system important for awareness. The possibility is raised that interactions between pgPFC and the amygdala, previously implicated in extinction, may also influence whether or not an emotional stimulus is accessible to consciousness.

  17. What is it like to be a patient with apperceptive agnosia?

    PubMed

    Vecera, S P; Gilds, K S

    1997-01-01

    Neuropsychological deficits have been widely used to elucidate normal cognitive functioning. Can patients with such deficits also be used to understand conscious visual experience? In this paper, we ask what it would be like to be a patient with apperceptive agnosia (a deficit in object recognition). Philosophical analyses of such questions have suggested that subjectively experiencing what another person experiences would be impossible. Although such roadblocks into the conscious experience of others exist, the experimental study of both patients and neurologically normal subjects can be used to understand visual processing mechanisms. In order to understand the visual processes damaged in apperceptive agnosia, we first review this syndrome and present a case study of one such patient, patient J.W. We then review several theoretical accounts of apperceptive agnosia, and we conclude that studies of the patients themselves may not allow us to discriminate between the various explanations of the syndrome. To test these accounts, we have simulated apperceptive agnosia in neurologically normal subjects. The implications of our results for understanding both apperceptive agnosia and normal visual processing are discussed.

  18. Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares

    PubMed Central

    Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Mur, Marieke

    2016-01-01

    Object similarity, in brain representations and conscious perception, must reflect a combination of the visual appearance of the objects on the one hand and the categories the objects belong to on the other. Indeed, visual object features and category membership have each been shown to contribute to the object representation in human inferior temporal (IT) cortex, as well as to object-similarity judgments. However, the explanatory power of features and categories has not been directly compared. Here, we investigate whether the IT object representation and similarity judgments are best explained by a categorical or a feature-based model. We use rich models (>100 dimensions) generated by human observers for a set of 96 real-world object images. The categorical model consists of a hierarchically nested set of category labels (such as “human”, “mammal”, and “animal”). The feature-based model includes both object parts (such as “eye”, “tail”, and “handle”) and other descriptive features (such as “circular”, “green”, and “stubbly”). We used non-negative least squares to fit the models to the brain representations (estimated from functional magnetic resonance imaging data) and to similarity judgments. Model performance was estimated on held-out images not used in fitting. Both models explained significant variance in IT and the amounts explained were not significantly different. The combined model did not explain significant additional IT variance, suggesting that it is the shared model variance (features correlated with categories, categories correlated with features) that best explains IT. The similarity judgments were almost fully explained by the categorical model, which explained significantly more variance than the feature-based model. The combined model did not explain significant additional variance in the similarity judgments. Our findings suggest that IT uses features that help to distinguish categories as stepping stones toward a semantic representation. Similarity judgments contain additional categorical variance that is not explained by visual features, reflecting a higher-level more purely semantic representation. PMID:26493748

  19. Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares.

    PubMed

    Jozwik, Kamila M; Kriegeskorte, Nikolaus; Mur, Marieke

    2016-03-01

    Object similarity, in brain representations and conscious perception, must reflect a combination of the visual appearance of the objects on the one hand and the categories the objects belong to on the other. Indeed, visual object features and category membership have each been shown to contribute to the object representation in human inferior temporal (IT) cortex, as well as to object-similarity judgments. However, the explanatory power of features and categories has not been directly compared. Here, we investigate whether the IT object representation and similarity judgments are best explained by a categorical or a feature-based model. We use rich models (>100 dimensions) generated by human observers for a set of 96 real-world object images. The categorical model consists of a hierarchically nested set of category labels (such as "human", "mammal", and "animal"). The feature-based model includes both object parts (such as "eye", "tail", and "handle") and other descriptive features (such as "circular", "green", and "stubbly"). We used non-negative least squares to fit the models to the brain representations (estimated from functional magnetic resonance imaging data) and to similarity judgments. Model performance was estimated on held-out images not used in fitting. Both models explained significant variance in IT and the amounts explained were not significantly different. The combined model did not explain significant additional IT variance, suggesting that it is the shared model variance (features correlated with categories, categories correlated with features) that best explains IT. The similarity judgments were almost fully explained by the categorical model, which explained significantly more variance than the feature-based model. The combined model did not explain significant additional variance in the similarity judgments. Our findings suggest that IT uses features that help to distinguish categories as stepping stones toward a semantic representation. Similarity judgments contain additional categorical variance that is not explained by visual features, reflecting a higher-level more purely semantic representation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Brain-Mind Operational Architectonics Imaging: Technical and Methodological Aspects

    PubMed Central

    Fingelkurts, Andrew A; Fingelkurts, Alexander A

    2008-01-01

    This review paper deals with methodological and technical foundations of the Operational Architectonics framework of brain and mind functioning. This theory provides a framework for mapping and understanding important aspects of the brain mechanisms that constitute perception, cognition, and eventually consciousness. The methods utilized within Operational Architectonics framework allow analyzing with an incredible detail the operational behavior of local neuronal assemblies and their joint activity in the form of unified and metastable operational modules, which constitute the whole hierarchy of brain operations, operations of cognition and phenomenal consciousness. PMID:19526071

  1. A systematic review of the technology-based assessment of visual perception and exploration behaviour in association football.

    PubMed

    McGuckian, Thomas B; Cole, Michael H; Pepping, Gert-Jan

    2018-04-01

    To visually perceive opportunities for action, athletes rely on the movements of their eyes, head and body to explore their surrounding environment. To date, the specific types of technology and their efficacy for assessing the exploration behaviours of association footballers have not been systematically reviewed. This review aimed to synthesise the visual perception and exploration behaviours of footballers according to the task constraints, action requirements of the experimental task, and level of expertise of the athlete, in the context of the technology used to quantify the visual perception and exploration behaviours of footballers. A systematic search for papers that included keywords related to football, technology, and visual perception was conducted. All 38 included articles utilised eye-movement registration technology to quantify visual perception and exploration behaviour. The experimental domain appears to influence the visual perception behaviour of footballers, however no studies investigated exploration behaviours of footballers in open-play situations. Studies rarely utilised representative stimulus presentation or action requirements. To fully understand the visual perception requirements of athletes, it is recommended that future research seek to validate alternate technologies that are capable of investigating the eye, head and body movements associated with the exploration behaviours of footballers during representative open-play situations.

  2. Of the Helmholtz Club, South-Californian seedbed for visual and cognitive neuroscience, and its patron Francis Crick.

    PubMed

    Aicardi, Christine

    2014-03-01

    Taking up the view that semi-institutional gatherings such as clubs, societies, research schools, have been instrumental in creating sheltered spaces from which many a 20th-century project-driven interdisciplinary research programme could develop and become established within the institutions of science, the paper explores the history of one such gathering from its inception in the early 1980s into the 2000s, the Helmholtz Club, which brought together scientists from such various research fields as neuroanatomy, neurophysiology, psychophysics, computer science and engineering, who all had an interest in the study of the visual system and of higher cognitive functions relying on visual perception such as visual consciousness. It argues that British molecular biologist turned South Californian neuroscientist Francis Crick had an early and lasting influence over the Helmholtz Club of which he was a founding pillar, and that from its inception, the club served as a constitutive element in his long-term plans for a neuroscience of vision and of cognition. Further, it argues that in this role, the Helmholtz Club served many purposes, the primary of which was to be a social forum for interdisciplinary discussion, where 'discussion' was not mere talk but was imbued with an epistemic value and as such, carefully cultivated. Finally, it questions what counts as 'doing science' and in turn, definitions of success and failure-and provides some material evidence towards re-appraising the successfulness of Crick's contribution to the neurosciences. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Guiding the mind's eye: improving communication and vision by external control of the scanpath

    NASA Astrophysics Data System (ADS)

    Barth, Erhardt; Dorr, Michael; Böhme, Martin; Gegenfurtner, Karl; Martinetz, Thomas

    2006-02-01

    Larry Stark has emphasised that what we visually perceive is very much determined by the scanpath, i.e. the pattern of eye movements. Inspired by his view, we have studied the implications of the scanpath for visual communication and came up with the idea to not only sense and analyse eye movements, but also guide them by using a special kind of gaze-contingent information display. Our goal is to integrate gaze into visual communication systems by measuring and guiding eye movements. For guidance, we first predict a set of about 10 salient locations. We then change the probability for one of these candidates to be attended: for one candidate the probability is increased, for the others it is decreased. To increase saliency, for example, we add red dots that are displayed very briefly such that they are hardly perceived consciously. To decrease the probability, for example, we locally reduce the temporal frequency content. Again, if performed in a gaze-contingent fashion with low latencies, these manipulations remain unnoticed. Overall, the goal is to find the real-time video transformation minimising the difference between the actual and the desired scanpath without being obtrusive. Applications are in the area of vision-based communication (better control of what information is conveyed) and augmented vision and learning (guide a person's gaze by the gaze of an expert or a computer-vision system). We believe that our research is very much in the spirit of Larry Stark's views on visual perception and the close link between vision research and engineering.

  4. Seeing a haptically explored face: visual facial-expression aftereffect from haptic adaptation to a face.

    PubMed

    Matsumiya, Kazumichi

    2013-10-01

    Current views on face perception assume that the visual system receives only visual facial signals. However, I show that the visual perception of faces is systematically biased by adaptation to a haptically explored face. Recently, face aftereffects (FAEs; the altered perception of faces after adaptation to a face) have been demonstrated not only in visual perception but also in haptic perception; therefore, I combined the two FAEs to examine whether the visual system receives face-related signals from the haptic modality. I found that adaptation to a haptically explored facial expression on a face mask produced a visual FAE for facial expression. This cross-modal FAE was not due to explicitly imaging a face, response bias, or adaptation to local features. Furthermore, FAEs transferred from vision to haptics. These results indicate that visual face processing depends on substrates adapted by haptic faces, which suggests that face processing relies on shared representation underlying cross-modal interactions.

  5. Endogenous modulation of human visual cortex activity improves perception at twilight.

    PubMed

    Cordani, Lorenzo; Tagliazucchi, Enzo; Vetter, Céline; Hassemer, Christian; Roenneberg, Till; Stehle, Jörg H; Kell, Christian A

    2018-04-10

    Perception, particularly in the visual domain, is drastically influenced by rhythmic changes in ambient lighting conditions. Anticipation of daylight changes by the circadian system is critical for survival. However, the neural bases of time-of-day-dependent modulation in human perception are not yet understood. We used fMRI to study brain dynamics during resting-state and close-to-threshold visual perception repeatedly at six times of the day. Here we report that resting-state signal variance drops endogenously at times coinciding with dawn and dusk, notably in sensory cortices only. In parallel, perception-related signal variance in visual cortices decreases and correlates negatively with detection performance, identifying an anticipatory mechanism that compensates for the deteriorated visual signal quality at dawn and dusk. Generally, our findings imply that decreases in spontaneous neural activity improve close-to-threshold perception.

  6. The vestibular system: a spatial reference for bodily self-consciousness

    PubMed Central

    Pfeiffer, Christian; Serino, Andrea; Blanke, Olaf

    2014-01-01

    Self-consciousness is the remarkable human experience of being a subject: the “I”. Self-consciousness is typically bound to a body, and particularly to the spatial dimensions of the body, as well as to its location and displacement in the gravitational field. Because the vestibular system encodes head position and movement in three-dimensional space, vestibular cortical processing likely contributes to spatial aspects of bodily self-consciousness. We review here recent data showing vestibular effects on first-person perspective (the feeling from where “I” experience the world) and self-location (the feeling where “I” am located in space). We compare these findings to data showing vestibular effects on mental spatial transformation, self-motion perception, and body representation showing vestibular contributions to various spatial representations of the body with respect to the external world. Finally, we discuss the role for four posterior brain regions that process vestibular and other multisensory signals to encode spatial aspects of bodily self-consciousness: temporoparietal junction, parietoinsular vestibular cortex, ventral intraparietal region, and medial superior temporal region. We propose that vestibular processing in these cortical regions is critical in linking multisensory signals from the body (personal and peripersonal space) with external (extrapersonal) space. Therefore, the vestibular system plays a critical role for neural representations of spatial aspects of bodily self-consciousness. PMID:24860446

  7. Optical phonetics and visual perception of lexical and phrasal stress in English.

    PubMed

    Scarborough, Rebecca; Keating, Patricia; Mattys, Sven L; Cho, Taehong; Alwan, Abeer

    2009-01-01

    In a study of optical cues to the visual perception of stress, three American English talkers spoke words that differed in lexical stress and sentences that differed in phrasal stress, while video and movements of the face were recorded. The production of stressed and unstressed syllables from these utterances was analyzed along many measures of facial movement, which were generally larger and faster in the stressed condition. In a visual perception experiment, 16 perceivers identified the location of stress in forced-choice judgments of video clips of these utterances (without audio). Phrasal stress was better perceived than lexical stress. The relation of the visual intelligibility of the prosody of these utterances to the optical characteristics of their production was analyzed to determine which cues are associated with successful visual perception. While most optical measures were correlated with perception performance, chin measures, especially Chin Opening Displacement, contributed the most to correct perception independently of the other measures. Thus, our results indicate that the information for visual stress perception is mainly associated with mouth opening movements.

  8. Visual and auditory perception in preschool children at risk for dyslexia.

    PubMed

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Eye movements and attention in reading, scene perception, and visual search.

    PubMed

    Rayner, Keith

    2009-08-01

    Eye movements are now widely used to investigate cognitive processes during reading, scene perception, and visual search. In this article, research on the following topics is reviewed with respect to reading: (a) the perceptual span (or span of effective vision), (b) preview benefit, (c) eye movement control, and (d) models of eye movements. Related issues with respect to eye movements during scene perception and visual search are also reviewed. It is argued that research on eye movements during reading has been somewhat advanced over research on eye movements in scene perception and visual search and that some of the paradigms developed to study reading should be more widely adopted in the study of scene perception and visual search. Research dealing with "real-world" tasks and research utilizing the visual-world paradigm are also briefly discussed.

  10. Human single-neuron responses at the threshold of conscious recognition

    PubMed Central

    Quiroga, R. Quian; Mukamel, R.; Isham, E. A.; Malach, R.; Fried, I.

    2008-01-01

    We studied the responses of single neurons in the human medial temporal lobe while subjects viewed familiar faces, animals, and landmarks. By progressively shortening the duration of stimulus presentation, coupled with backward masking, we show two striking properties of these neurons. (i) Their responses are not statistically different for the 33-ms, 66-ms, and 132-ms stimulus durations, and only for the 264-ms presentations there is a significantly higher firing. (ii) These responses follow conscious perception, as indicated by the subjects' recognition report. Remarkably, when recognized, a single snapshot as brief as 33 ms was sufficient to trigger strong single-unit responses far outlasting stimulus presentation. These results suggest that neurons in the medial temporal lobe can reflect conscious recognition by “all-or-none” responses. PMID:18299568

  11. The impact of interference on short-term memory for visual orientation.

    PubMed

    Rademaker, Rosanne L; Bloem, Ilona M; De Weerd, Peter; Sack, Alexander T

    2015-12-01

    Visual short-term memory serves as an efficient buffer for maintaining no longer directly accessible information. How robust are visual memories against interference? Memory for simple visual features has proven vulnerable to distractors containing conflicting information along the relevant stimulus dimension, leading to the idea that interacting feature-specific channels at an early stage of visual processing support memory for simple visual features. Here we showed that memory for a single randomly orientated grating was susceptible to interference from a to-be-ignored distractor grating presented midway through a 3-s delay period. Memory for the initially presented orientation became noisier when it differed from the distractor orientation, and response distributions were shifted toward the distractor orientation (by ∼3°). Interestingly, when the distractor was rendered task-relevant by making it a second memory target, memory for both retained orientations showed reduced reliability as a function of increased orientation differences between them. However, the degree to which responses to the first grating shifted toward the orientation of the task-relevant second grating was much reduced. Finally, using a dichoptic display, we demonstrated that these systematic biases caused by a consciously perceived distractor disappeared once the distractor was presented outside of participants' awareness. Together, our results show that visual short-term memory for orientation can be systematically biased by interfering information that is consciously perceived. (c) 2015 APA, all rights reserved).

  12. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    PubMed

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Subliminal processes, dissociation and the 'I'.

    PubMed

    Bob, Petr

    2003-06-01

    The study of unconscious processes leads to the hypothesis of the limit of consciousness, which involves two main kinds of psychic activity. The first represents psychic contents which are subliminal for their low energy, the second subliminal contents which are inaccessible to consciousness because they are dissociated in the subliminal region. Dissociation is a concept introduced by Pierre Janet for splitting consciousness due to traumatic events or during hypnosis. It takes a more general form in Hilgard's neo-dissociation theory of hypnotic phenomena and also in Jung's theory of the collective unconscious. Further generalization links it to the modern findings of explicit and implicit perception, leading to a shift in dissociation from hypothesis to clinical, experimental and theoretical reality. Studies in hypnosis also point to the existence of an integrative psychic entity, that comprises the conscious 'I'. Hilgard called this the hidden observer, and his findings represent empirical confirmation of Jung's term for the Self as mirror 'I', which leads to many important consequences for self-discovery and the meaning of life.

  14. Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    PubMed Central

    Gray, Marcus A.; Minati, Ludovico; Whale, Richard; Harrison, Neil A.; Critchley, Hugo D.

    2010-01-01

    Rationale Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception. PMID:20596858

  15. The claustrum’s proposed role in consciousness is supported by the effect and target localization of Salvia divinorum

    PubMed Central

    Stiefel, Klaus M.; Merrifield, Alistair; Holcombe, Alex O.

    2014-01-01

    This article brings together three findings and ideas relevant for the understanding of human consciousness: (I) Crick’s and Koch’s theory that the claustrum is a “conductor of consciousness” crucial for subjective conscious experience. (II) Subjective reports of the consciousness-altering effects the plant Salvia divinorum, whose primary active ingredient is salvinorin A, a κ-opioid receptor agonist. (III) The high density of κ-opioid receptors in the claustrum. Fact III suggests that the consciousness-altering effects of S. divinorum/salvinorin A (II) are due to a κ-opioid receptor mediated inhibition of primarily the claustrum and, additionally, the deep layers of the cortex, mainly in prefrontal areas. Consistent with Crick and Koch’s theory that the claustrum plays a key role in consciousness (I), the subjective effects of S. divinorum indicate that salvia disrupts certain facets of consciousness much more than the largely serotonergic hallucinogen lysergic acid diethylamide (LSD). Based on this data and on the relevant literature, we suggest that the claustrum does indeed serve as a conductor for certain aspects of higher-order integration of brain activity, while integration of auditory and visual signals relies more on coordination by other areas including parietal cortex and the pulvinar. PMID:24624064

  16. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations.

    PubMed

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S

    2017-12-01

    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT 2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  17. Acyclovir resistant acute herpes simplex encephalitis associated with acute retinal necrosis: A case report and review of the literature.

    PubMed

    Ogura, Haruchika; Fukae, Jiro; Kimura, Satoshi; Aoki, Mikiko; Nabeshima, Kazuki; Tsuboi, Yoshio

    2017-05-27

    A 55-year-old man was admitted to our hospital for investigation of high fever, decreased consciousness and bilateral visual impairment. His cerebrospinal fluid analysis revealed pleocytosis of mononuclear cells and an increased protein concentration. FLAIR images revealed multiple high-intensity lesions in the frontal lobe, part of which was enhanced with gadolinium. Despite initiating treatment with acyclovir and corticosteroids, his consciousness and visual acuity deteriorated. Immunopathological examination of brain biopsies showed numerous herpes simplex virus type 2-positive neurons and macrophages, leading to a diagnosis of herpes simplex encephalitis (HSE). Fundoscopic examination revealed multiple foci of retinitis with vasculopathies, and inflammation in the anterior chamber and vitreous, indicating acute retinal necrosis (ARN). Foscarnet treatment was initiated in place of acyclovir and his consciousness improved, with a slight improvement in visual acuity. ARN is typically caused by a herpes virus infection limited to the eyeball, and rarely in combination with HSE. In such cases, there is a latency of approximately 2-4 weeks between ARN and the onset of encephalitis. Our case is unique in that HSE and ARN developed simultaneously, and it highlights that there may not always be a latency between the onsets of the two disorders. Finally, foscarnet should be considered in cases of HSE and ARN with acyclovir resistance.

  18. [Case with probable dementia with Lewy bodies, who shows reduplicative paramnesia and Capgras syndrome].

    PubMed

    Ohara, Kazuyuki; Morita, Yoshio

    2006-01-01

    We report a case of probable dementia with Lewy bodies (DLB), showing reduplicative paramnesia (RP) and Capgras syndrome (CS). The patient, a right-handed 60 year-old male, began to show progressive dementia. At the age of 65, he showed fluctuating cognitive impairment and recurrent visual hallucinations. His SPECT demonstrated hypoperfusion not in the medial temporal cortices, but in the parieto-occipital lobes, where the right hemisphere was dominantly hypoperfused. He was diagnosed with probable DLB. In addition to recurrent visual hallucinations, he showed a sense of self- (or others) transfiguration, consciousness of something non-existent (Leibhaftige Bewusstheit; Jaspers, K.), and fluctuating visuo-spacial impairment. At the age of 67, he gradually complained of his duplicative wives "sosie". Finally he went so far as to talk about a nameless phantom boarder. We considered that RP and CS of this case comprised a sense of self-(or others) transfiguration, misidentification of important persons and places, and productive symptoms such as consciousness of something non-existent (Leibhaftige Bewusstheit) and visual hallucinations. The above mentioned symptoms might be originated not only from the disturbance of visuospacial recognition, which involves the limbic system (especially amygdala), medial frontal cortex, and right hemisphere of the brain, but also from the disturbance of recursive consciousness, due to diffusely damaged brain regions with Lewy body pathology. (Authors' abstract)

  19. ViSA: a neurodynamic model for visuo-spatial working memory, attentional blink, and conscious access.

    PubMed

    Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2012-10-01

    Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    PubMed

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-05-01

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

Top